NASA Astrophysics Data System (ADS)
Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero
2015-04-01
In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net warming.
Vetikko, Virve; Rantavaara, Aino; Moilanen, Mikko
2010-12-01
Increasing use of wood fuels for energy production in Finland since the 1990s implies that large quantities of the generated ashes will be available for forest fertilization. The aim of this study was to analyse the effect of wood ash application on ¹³⁷Cs activity concentrations in Scots pine (Pinus sylvestris L.) needles and certain berries and mushrooms on drained peatlands. The study was based on field experiments carried out on two mires in Finland in 1997-1998. Two different types of wood ash were applied at dosages of 3500, 3700, 10 500 and 11 100 kg ha⁻¹. Wood ash did not increase ¹³⁷Cs activity concentration in plants in the second growing season following application. On the contrary, a decrease in ¹³⁷Cs activity concentration was seen in the plants of the ecosystem on drained peatlands. This result is of importance, for instance, when recycling of ash is being planned. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tahvanainen, Teemu; Kumpula, Timo; Tolonen, Kimmo
2016-04-01
Aapa mires are northern mire complexes with typical patterned central fen areas and relatively thin peat layers. In principle, aapa mires could develop into raised bogs either 1) through autogenic succession, given enough time for peat accumulation or 2) through allogenic mechanism triggered by hydrological change. Climate change models predict that the climatic envelop of aapa mires will move north and, indeed, that hydrology may change sufficiently to cause allogenic change pressure. Potential resilience or pace of ecosystem-scale responses are poorly understood, however, in the case of aapa mires. We studied recent (ca. 60 years) changes in vegetation, hydrotopography and peat accumulation of two aapa mires at their southern limit of distribution in eastern Finland. We used repeated sampling after 60 years combined with peat stratigraphy and time-series of aerial images in a multi-proxy approach. The study site at the Valkeasuo mire was affected by extensive drainage activities in its catchment, while the aapa mire area itself was not drained. This resulted in the loss of minerotrophic hydrology that lead to rapid changes over the whole patterned fen area. Wet minerotrophic sedge fen vegetation was almost totally covered by ombrotrophic Sphagnum mosses within few decades. Even up to 50 cm high hummocks emerged on the patterned fen strings in an abrupt response that could be precisely dated by simultaneous encroachment of pine seedlings and from the aerial images. The recent apparent rate of carbon accumulation of the new Sphagnum peat was ca. 100 g m-2 -a. The other study site in the Ilajansuo aapa mire persists in a more pristine setting without significant disturbance in its catchment area. Here the mineral-water limit was studied across a transition between a bog zone and an aapa mire zone of the mire complex. We were able to exactly locate a 100 x 300-m special study area and repeat e.g. mapping of all trees, of all topographic patterns (hummocks, hollows, pools), 155 peat depth measurements and 38 vegetation plots. Despite the pristine wilderness character of the site, we found increased tree encroachment, significant increase of height of Sphagnum hummocks, lateral expansion of ombrotrophic bog zone over fen vegetation and increase of dwarf-shrubs typical to raised bog vegetation. Peat thickness in the bog zone had increased by 2.2 mm per year, greatly exceeding the long-term average of bogs in the region. Our case studies demonstrate a remarkable potential of ecosystem-scale responses in northern aapa mires, ecotone mire type between temperate-south boreal bogs and subarctic palsa mires. Hydrological disturbances can rapidly trigger an allogenic mechanism of fen to bog transition. Traces of ongoing changes in aapa mires can be apparent also in seemingly pristine sites when accurate repeated measurements are performed. Although the observed changes may threaten aapa mire habitat types and biota, they are progressive in terms of peat growth and carbon dioxide sequestration.
James D. Haywood
1995-01-01
Slash pines (Pinus elliottii Engelm. var. elliottii) were planted on poorly drained Wrightsville and somewhat poorly drained Vidrine silt loam soils in southwest Louisiana. Neither flat disking nor bedding increased pine growth and yield substantially after nine growing seasons, but broadcast application of triple superphoshate...
NASA Astrophysics Data System (ADS)
Augustin, Juergen; Giebels, Michael; Albiac Borraz, Elisa; Hoffmann, Mathias; Sommer, Michael
2014-05-01
Fen mires, widely distributed in Germany and Northern Europe, contain extreme high amounts of carbon (up to 5000 t C per hectare). For this reason, they play an important role in the global cycle of the greenhouse gases carbon dioxide (CO2) and methane (CH4). Currently more than 95% of all fen mires in central Europe are drained. Therefore, they are assumed to represent extremely strong sources for CO2,accompanied by a fast reduction of the peat carbon stocks. For a number of reasons it is not possible to overcome this problem by restoration measures like flooding at the most drained fen sites. Moreover, there are till now just few and contradictory information about the contribution of alternative land use forms like grassland extensification on the reduction of the CO2 source function of these organic soils. As a contribution to clearing this deficit, we have ongoingly measured the CO2 and CH4 exchange as well as the changes in C stock on a deeply drained fen mire near the village of Paulinenaue from 2007 till 2012. The measurement sites is located within the so-called Rhin-Havelluch, an 80000 ha shallow paludification mire complex in the northwest of Berlin. The investigation included extensively and intensively used meadows (one cut vs. three cuts) on two soil types with different C stocks (Hemic Rheic Histosol vs. Mollic Gleysol). We used transparent chambers for measuring the CO2 flux net ecosystem exchange (difference between gross primary production and ecosystem respiration) and non-transparent chambers for measuring the CO2 flux ecosystem respiration and the CH4 exchange. Determined soil stock changes based on a C budget approach, including cumulated annual net ecosystem exchange, cumulated CH4 exchange, C export by harvest, and C import by fertilization. All current C fluxes were influenced in a complex way by ground-water level, plant development, land use intensity (cut frequency) and current weather conditions. Averaged over the whole investigation time all combinations of land use intensity and soil types acted as strong CO2 sources and showed high soil C losses (up to 1070 g C m-2 yr-1). There was a tendency of lower soil C losses in case of extensive grassland compared to intensive grassland use (820 vs. 1070 g C m-2 yr-1) and grassland at the Gleysol site compared to the Histosol site (538 vs. 946 g C m-2 yr-1). However, the cumulated C fluxes and the soil C losses are subject to a very strong interannual variability. The actual range varied from 245 to 2092 g C m-2 yr-1 in case of the soil C losses. It can be therefore concluded that only long-term measurements (> 3 years) provides reliable information about the C dynamics of drained fen mires. Due to the high interannual variability, there is a high risk to get largely biased results if only short-term measurements will be done.
Matt R. Whiles; J. Bruce Wallace
1997-01-01
Benthic invertebrates, litter decomposition, and litterbag invertebrates were examined in streams draining pine monoculture and undisturbed hardwood catchments at the Coweeta Hydrologic Laboratory in the southern Appalachian Mountains, USA. Bimonthly benthic samples were collected from a stream draining a pine catchment at Coweeta during 1992, and compared to...
Extent and status of mires, peatlands, and organic soils in Europe
NASA Astrophysics Data System (ADS)
Tanneberger, Franziska; Barthelmes, Alexandra; Tegetmeyer, Cosima; Busse, Stephan; Joosten, Hans
2016-04-01
Key words: peatland distribution, peatland drainage, GIS, Global Peatland Database, European Mires Book The relevance of drained peatlands to climate change due to emission of huge amounts of greenhouse gases has recently been recognised e.g. by IPCC, FAO, and the European Union. Oppositely, natural and restored peatlands provide ecosystem services like enhancing biodiversity, nutrient retention, groundwater storage, flood mitigation, and cooling. To evaluate the drainage status of peatlands and organic soils and to develop specific restoration strategies comprehensive and exact geospatial data are needed. The Global Peatland Database (GPD) is hosted at Greifswald Mire Centre (http://tiny.cc/globalpeat). Currently, it provides estimates on location, extent, and drainage status of peatlands and organic soils for 268 countries and regions of the world. Due to the large diversity of definitions and terms for peatlands and organic soils, this mapping follows the broad definition of organic soils from IPCC that gives a minimum soil organic carbon threshold of 12% and considers any depth of the organic layer larger than 10 cm. GIS datasets are continuously collected, specific terms and definitions analysed and the completeness and accuracy of the datasets evaluated. Currently, the GPD contains geospatial data on peatlands and organic soils for all European countries (except Moldova). Recent information on status, distribution, and conservation of mires and peatlands in Europe is summarised in the European Mires Book. It includes descriptions from 49 countries and other geographic entities in Europe. All country chapters follow a generic structure and include also extensive descriptions of national terminology (also in national languages and script) and typologies as well as up to date area statistics and maps. They are complemented by integrative chapters presenting mire classification, mire regionality, peatland use, and mire conservation in Europe. The European Mires Book is a project of the International Mire Conservation Group (IMCG) started in 1990. The volume contains contributions of 130 mire scientists from all over Europe and is published in 2016.
NASA Astrophysics Data System (ADS)
Vasander, Harri; Sallantaus, Tapani; Koskinen, Markku
2010-05-01
Impacts of peatland restoration on nutrient and carbon leaching from contrasting sites in southern Finland Tapani Sallantaus1, Markku Koskinen2, Harri Vasander2 1)Finnish Environment Institute, Biodiversity unit, Box 140, FIN-00251 Helsinki, Finland, tapani.sallantaus@ymparisto.fi 2)Department of Forest Sciences, University of Helsinki, Box 27, FIN-00014 University of Helsinki, Finland, markku.koskinen@helsinki.fi, harri.vasander@helsinki.fi Less than 20 % of the original mire area of southern Finland is still in natural state. Even many peatlands in today's nature conservation areas had been partly or totally drained before conservation. Until now, about 15000 ha of peatlands have been restored in conservation areas. Here we present data concerning changes in leaching due to restoration in two contrasting areas in southern Finland. The peatlands in Seitseminen have originally been fairly open, growing stunted pine, and unfertile, either bogs or poor fens. The responses of tree stand to drainage in the 1960s were moderate, and the tree stand before restoration was about 50 m3/ha, on average. The trees were partly harvested before filling in the ditches mainly in the years 1997-1999 . The peatlands of Nuuksio are much more fertile than those in Seitseminen, and had greatly responded to drainage, which took place already in the 1930s and 1950s. The tree stand consisted mainly of spruce and exceeded 300 m3/ha in large part of the area. The ditches were dammed in the autumn 2001 and the tree stand was left standing. Runoff water quality was monitored in three basins in both areas. To obtain the leaching rates, we used simulated runoff data obtained from the Finnish Environment Institute, Hydrological Services Division. The responses in leaching were in the same direction in both cases. However, especially when calculated per restored hectare (Table 1), the responses were much stronger in the more fertile areas of Nuuksio for organic carbon and nitrogen, but not so much with phosphorus. The reasons for the greater responses in Nuuksio are partly hydrological. The mires are minerogenic, catchment fed mires, and by restoration the peat layers regain their contact with the waters from the catchment. This is not the case with the bogs of Seitseminen and of less importance in the poor fens with a small catchment. Also biological reasons exist. The peat layers have changed much more in the fertile peatlands of Nuuksio. Moreover, the living biomass is much larger in Nuuksio, and due to restoration this biomass is inundated and consequently exposed to anaerobia. This has caused death of the forest species, release of bound nutrients, and gradual colonization by mires species leading to renewed bounding of nutrients. Restoration of drained peatlands is a positive action, but harmful water impacts should be avoided. This urges for hydrological knowledge in the planning and accomplishing phases. Table 1. Annual unrestored leaching rates of organic carbon, nitrogen and phosphorus in the study sites, and increase in leaching as a sum of 6 post-restoration years, calculated per restored mire area. Site Unrestored leaching g C m-2 a-1 Increase in leaching g C m-2 6a-1 Unrestored leaching g N m-2 a-1 Increase in leaching g N m-2 6a-1 Unrestored leaching g P m-2 a-1 Increase in leaching g P m-2 6a-1 Seitseminen 10.5 58 0.19 1.18 0.009 0.21 Nuuksio 5.3 107 0.13 2.54 0.004 0.18
Small topographic differences affect slash pine response to site preparation and fertilization
James D. Haywood
1983-01-01
On a Wrightsville-Vidrine silt loam flatwoods in southwest Louisiana, six-year-old slash pines (Pinus elliottii Engelm. var. elliottii) planted on the better drained Vidrine-pimple mounds Vidrine-like ridges were nearly four times larger than pines planted in the poorly drained Wrightsville depressions. Site preperation treatments...
Blanchet, Guillaume; Guillet, Sébastien; Calliari, Baptiste; Corona, Christophe; Edvardsson, Johannes; Stoffel, Markus; Bragazza, Luca
2017-01-01
Ring width (TRW) chronologies from Siberian (Pinus sibirica) and Scots (Pinus sylvestris) pine trees were sampled at Mukhrino - a large mire complex in central-western Siberia - to evaluate the impacts of hydroclimatic variability on tree growth over the last three centuries. For this purpose, we compared climate-growth correlation profiles from trees growing on peat soils with those growing on adjacent mineral soils. Tree growth at both peat and mineral soils was positively correlated to air temperature during the vegetation period. This finding can be explained by (i) the positive influence of temperature on plant physiological processes (i.e. growth control) during the growing season and (ii) the indirect impact of air temperatures on water table fluctuations. We observe also a strong link between TRW and the winter Palmer Drought Severity Index (PDSI), especially in Siberian pine, reflecting the isolating effect of snow and limited freezing damage in roots. Significant negative relations were, by contrast, observed between bog TRW chronologies and hydroclimatic indices during spring and summer; they are considered an expression of the negative impacts of high water levels and moist peat soils on root development. Some unusually old bog pines - exhibiting >500 growth rings - apparently colonized the site at the beginning of the Little Ice Age, and therefore seem to confirm that (i) peat conditions may have been drier in Siberia than in most other regions of western Europe during this period. At the same time, the bog trees also point to (ii) their strong dependence on surface conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Szajdak, L.
2009-04-01
Mires, or peatlands belong to the wetlands ecosystems where carbon is bounded in primary production and deposited as peat in water saturated, anoxic conditions. In those conditions, the rate of the supply of new organic matter has exceeded that the decomposition, resulting in carbon accumulation. Place of sampling belongs to an oligotrophic landscapes of the river Klyuch basin in spurs of Vasyugan mire. The catchment represents reference system for Bokchar swampy area (political district of Tomsk region). Landscape profile crosses main kinds of swampy biogeocoenosis (BGC) toward the mire center: paludal tall mixed forest, pine undershrub Sphagnum (high riam, trans-accumulative part of a profile, P2), pine-undershrub Sphagnum (low riam, transit part, P3), sedge-moss swamp (eluvial part, P5). The latter represents an eluvial part of a slope of watershed massif where it is accomplished discharge of excess, surface, soil-mire waters. The depth of peat deposit of sedge-moss swamp reaches 2,5m. To the depth of 0,6m there is a layer of Sphagnum raised bog peat, then it is a mesotrophic Scheuchzeria Sphagnum layer and at the bottom there is a thick layer of low-mire horsetail peat. The samples of peats were taken from two places (P2 and P3), both from the depth 0-75 cm of the great Vasyugan Mire. These materials represent (P2) Sphagnum fuscum peat (ash content ranged from 10.8 to 15.1%), but samples P3 belong to low-moor sedge peat (ash content ranged from 4.5-4.8%). The differences in water level, redox potential, pH, degree of degradation, bulk density, number of microorganisms, activity of enzymes, different kinds of nitrogen and humic substances were studied in two different peat soils characterized by different type of peat. In general in P2 the redox potential changed from 858 to /-140/ mV, higher activity of xanthine oxidase and peroxidase, different kinds of microorganisms (ammonifing bacteria and cellulose decomposing microorganisms) and different kinds of nitrogen (mineral, easily hydrolysable, hardly hydrolysable and non-hydrolyzable), bitumines, 3 fractions of humic acids and 3 fractions of fulvic acids were determined in the deep 0-25 cm than in 50-75 cm. The ratio HA/FA in the depth 0-25 cm was equal to from 1.87, but in the depth 50-75 cm was equal to 7.66. Contrary was observed for P3. For this peat with the increase of the deep of sampling the decrease of total nitrogen, activity of enzymes (xanthine oxidase and peroxidase) is connected with the changes of Fe+2/Fe+3 and lower difference of redox potential than in P2. The ratio HA/FA in the depth 0-25 cm was equal to 0.56, but in the depth 50-70 cm was equal to 0.84.
Crocodiles count on it: Regulation of discharge to Lake St Lucia Estuary by a South African peatland
NASA Astrophysics Data System (ADS)
Price, J. S.; Grundling, P.; Grootjans, A.
2010-12-01
The Mfabeni mire is located within the iSimangaliso Wetland Park in north-eastern KwaZulu-Natal Province on the Indian Ocean sea-board of South Africa. This mire complex includes open peatland with occurrences of sedge communities, Sphagnum (rare in South Africa), and swamp forest which is common in the region (but rare in South Africa). It is one of the largest (1650 ha), thickest (10.8 m of peat) and the oldest (~45,000 years Before Present) known peatlands in South Africa. The mire is almost pristine, with very few disturbances. In the past the surrounding area supported pine plantations but these alien trees were recently removed, with conservation and tourism the primary designated activities. Surface and groundwater exchanges to and within the mire and its surrounding coastal dune landscape were studied. Profiles of electrical conductivity and major cations and anions, as well as natural isotopes (δ2H and δ18O) in water samples of ground and surface water were also analysed to develop a conceptual model of the system’s hydrological function. Water efflux from an inland dune complex provides substantial recharge towards Mfabeni, while coastward hydraulic gradients from the dune complex through the wetland are evident. Consequently, the linkages between the dune system and Mfabeni, and the peatland’s water regulation function, dictate the nature and magnitude of the local freshwater discharge to the estuary, and internal water exchanges that control peatland ecological function. The hydrograph from the stream outlet indicate an initial rapid response in increased flows after major rainfall events but with a delayed drawdown over time reflecting the contribution of the relatively large size of the mire (comprising 38% of the catchment) in attenuating flood events and ensuring sustained flow to the estuary. Freshwater discharge from the Mfabeni mire to the St. Lucia estuary, which has provided refuge for aquatic species during periods of drought, may become crucial under a more erratic climate.
NASA Astrophysics Data System (ADS)
Mizugaki, S.; Yoshida, K.; Kojima, Y.; Araya, T.
2004-12-01
In Japan, the wetlands have shrunk markedly since 1950s due to land-use development from wetland to urban and agricultural land. Rapid sedimentation in the Kushiro Mire, Hokkaido, northern Japan, was caused by extensive land-use development and stream channel rationalization during the 1960s and 1970s. In the Kuchoro River catchment, draining into the Kushiro Mire, the meandering stream was channelized in the mid- and downstream associated with land-use development between 1966 and 1980. Prominent degradation of a streambed due to channelization has occurred over 2 km in the midstream since channelization was finished. Bare slope has occurred due to streambed degradation, and produced fine sediment through the freeze-thaw process in late fall season. Following snowmelt and/or typhoon flood events in spring and summer season could transport fine sediment on the bare slope into the wetland. During a flood event, stream flow eroded the streambed laterally and vertically, resulting in the overhang of riverbank and the dropping down the clods into the stream. These erosion processes has occurred and produced the sediment of 7500 m3/year in average between 2000 and 2003. The upstream portion of a channelized reach is often degraded because of high flow velocities associated with a steeper streambed. On the other hand, the annual sediment production on the streamside bare slopes in the mountain area was measured by erosion pins and estimated as 4500 m3/year. Thus, the reach of streambed degradation is considered a major point-source of suspended sediment in the Kuchoro River catchment for the past 20 years, leading to the recent rapid sedimentation in the marginal area of the wetland.
NASA Astrophysics Data System (ADS)
Maike Achterberg, Inke Elisabeth; Eckstein, Jan; Birkholz, Bernhard; Bauerochse, Andreas; Leuschner, Hanns Hubert
2018-01-01
The investigated northwest German mire site at Totes Moor
is densely covered with subfossil pine stumps (Pinus sylvestris L.) from the fen-bog transition. This facilitates the spatio-temporal reconstruction of mire development, which is based on 212 in situ tree stumps in the case study presented here. Six dendrochronologically dated site chronologies together cover 2345 years between 6703 and 3403 BC. The gaps in between are 6 to 550 years long. Additionally, a floating chronology of 309 years, containing 30 trees, was radiocarbon-dated to the beginning of the 7th millennium cal BC. Peat-stratigraphical survey was carried out additionally, and elevations a.s.l. were determined at several locations. Tree dying-off phases, which indicate water level rise at the site, mostly in context of the local fen-bog transition, are evident for ca. 6600-6450, ca. 6350-5750, ca. 5300-4900, ca. 4700-4550, ca. 3900-3850, ca. 3700-3600, ca. 3500-3450 and ca. 3400 BC. The spatial distribution of the dated in situ trees illustrates the phase-wise expansion of raised bog over fen peat at the site. The documented bog expansion pulses likely correspond to climatic wet sifts.
J. L. Deforest; Ge Sun; A. Noormets; J. Chen; Steve McNulty; M. Gavazzi; Devendra M. Amatya; R. W. Skaggs
2006-01-01
The effects of clear-cutting and cultivating for timber on ecosystem carbon and water fluxes were evaluated by comparative measurements of two drained coastal wetland systems in the North Carolina coastal plain. Measurements were conducted from January through September, 2005 in a recent clearcut (CC) of native hardwoods and a loblolly pine (Pinus tacda...
NASA Astrophysics Data System (ADS)
Sirin, Andrey; Chistotin, Maxim; Suvorov, Gennady; Glagolev, Mikhail; Kravchenko, Irina; Minaeva, Tatiana
2010-05-01
Many peatlands previously drained for peat extraction or utilized for agriculture (directly or after partial cutoff) are left abandoned during last decades in Europe, and especially in its eastern part. In the European part of Russia alone, several million hectares of peatlands have been modified for peat extraction and agriculture by direct water level draw-down and nowadays are not under use by economic reasons. This makes up one of the most serious and urgent problems of wise use and management of peatlands in these regions with serious feedback to people, environment and economy (Quick Scan of Peatlands in Central and Eastern Europe, 2009). Drainage for agriculture leads to peat oxidation resulting in substantial emissions of greenhouse gases (carbon dioxide and sometimes nitrous oxide) to the atmosphere. Together with peat fires this is the most significant negative input of peatland degradation to climate change (Assessment on Peatlands Biodiversity and Climate Change, 2008; Peatlands and Climate Change, 2008). Besides that, dehydrated peatlands often release methane. Starting from 2003, the effect of drainage and subsequent utilization of peatlands on the emissions of carbon dioxide and methane was studied in Tomsk region (West Siberia) during the summer-fall periods (Glagolev et al. 2008). The measurements were conducted by chamber method at peatlands drained for use as croplands (now partly being fallows) and peat cutting (currently abandoned or reclaimed for forest planting, haying, or pasturing), as well as at a wide range of undrained oligotrophic, mesotrophic, and eutrophic mires and burnt mire areas of different regeneration stages. The statistical analysis of data from a large number of study sites indicated a higher release of carbon dioxide from disturbed peatlands compared to undrained ones. At the same time some drained peatlands had considerable methane emission rates, additionally enhanced by the intensive efflux from the surface of drainage ditches. The findings were supported by the studies conducted from 2005 at drained peatland sites in Moscow region (European part of Russia) which are used for peat extraction or as hayfield (Chistotin et al., 2006). Unexpected transient methane fluxes were observed at the inter-ditch surfaces in two types of sites: milled peat extraction area and used as a hay field after partial peat extraction. Under warm and wet conditions methane was released even from peat stockpiles. Microbiological studies showed not lower and near to twice higher genomic diversity of methanogens in extracted sites and in a hayfield as compared to virgin mire. We suppose that well-developed plant roots at the grassland provide a source of fresh organic material used for CH4 production. To test this hypothesis, a pot experiment with mesocosms which model three succession stages (bare peat, grass sowing, and developed grassland) under permanently high or fluctuating wetness was conducted. Methane efflux from peat under developed grassland was higher as compared to the other treatments. Under permanently high water supply the methane emission was 1 to 2 orders of magnitude higher. The obtained results clearly showed that plant organic matter can be an additional source of methane after rewetting which is obviously needed for abandoned peatland sites not used for agriculture any more. To mitigate the emissions, such management options as removal of the surface peat layer before rewetting could be applied. This practice could have additional benefits achieved by bringing day surface closer to ground water table level and forming more favorable soil conditions for mire species.
James M. Guldin
1986-01-01
Shortleaf pine (Pinus echinata Mill.) occupies the broadest natural range of all the southern pines, and is found across a diverse range of geography, soils, topography, and habitats. Individual shortleaf trees achieve their best developmnet on deep, well-drained soils of the Upper Coastal Plain, but shortleaf pine communities are most prominent in the Ouachita...
Impacts of fertilization on water quality of a drained pine plantation: a worse case scenario
Bray J. Beltran; Devendra M. Amatya; Mohamed Youssef; Martin Jones; Timothy J. Skaggs Callahan
2010-01-01
Intensive plantation forestry will be increasingly important in the next 50 yr to meet the high demand for domestic wood in the United States. However, forest management practices can substantially infl uence downstream water quality and ecology. Th is study analyses, the eff ect of fertilization on effl uent water quality of a low gradient drained coastal pine...
Long-term hydrology and water quality of a drained pine plantation in North Carolina
D.M. Amatya; R.W. Skaggs
2011-01-01
Long-term data provide a basis for understanding natural variability, reducing uncertainty in model inputs and parameter estimation, and developing new hypotheses. This article evaluates 21 years (1988-2008) of hydrologic data and 17 years (1988-2005) of water quality data from a drained pine plantation in eastern North Carolina. The plantation age was 14 years at the...
D. Andrew Scott; Allan E. Tiarks
2006-01-01
Physical disturbances to soil resulting from forest management operations may reduce tree survival and growth, but responses are soil-, species-, and disturbance-specific. We studied wet-weather harvesting, shearing, root-raking, disking, and phosphorus fertilization on a poorly drained flatwoods site in Louisiana. Slash pine survival was improved by wet-weather...
Early longleaf pine seedling survivorship on hydric soils
Susan Cohen; Joan Walker
2006-01-01
We established a study to evaluate site preparation in restoring longleaf pine on poorly drained sites. Most existing longleaf pine stands occur on drier sites, and traditional approaches to restoring longleaf pine on wetter sites may rely on intensive practices that compromise the integrity of the ground layer vegetation. We applied silvicultural treatments to improve...
Michael D. Cain
1978-01-01
Early gains in lobloliy and slash pine height growth achieved by bedding an imperfectly drained Beauregard-Caddo silt loam diminished somewhat by age 15. After age 8 there were no increases in growth response to site treatment for either species. For loblolly, yields on flat-disked and bedded plots were about 6 cords (500 ft3) per acre greater...
Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp
2012-01-01
Throughout the southeastern United States, land managers are currently interested in converting loblolly pine (Pinus taeda L.) plantations to species rich longleaf pine (Pinus palustris Mill.) ecosystems. In a 3-year study on moderately well- to well-drained soils of the Lower Coastal Plain in North Carolina, we examined the...
NASA Astrophysics Data System (ADS)
Le Feuvre, N.; Hartley, I.; Anderson, K.; Luscombe, D.; Grand-Clement, E.; Smith, D.; Brazier, R.
2012-04-01
Peat soils in the United Kingdom are estimated to store a minimum of 3,121Mt C (Lindsay, 2010). Despite being such a large carbon store the annual imbalance between uptake and release is small and susceptible to change in response to land management, atmospheric deposition and climate change. The upland blanket mires of Southwest England have been subject to extensive drainage and are particularly vulnerable to climate change as they lie at the lower edge of the peatland climatic envelope. The Mires-on-the-Moors project, funded by South West Water will restore over 2000 hectares of drained mire by April 2015. Herein, we question whether this restoration, which will block historical drainage ditches will allow the blanket bogs of Exmoor and Dartmoor National Parks to recover their ecohydrological functionality. We hypothesise that such mire restoration will increase the resilience of these ecosystems to climate change and will return these upland mires to peat forming/carbon sequestering systems. A method is proposed which aims to understand the processes driving gaseous carbon exchange and peat formation in an upland blanket bog and quantifies the effect restoration has on these processes. We propose to measure the spatial variation in gas fluxes with respect to structural features of the mire; drainage ditches and nanotopes. The role of vegetation; the community composition, phenology and health will be explored as well as environmental variables such as water table depths, temperature and photosynthetically active radiation. Importantly, the experiment will partition below ground respiration to assess the environmental controls and effect of restoration on autotrophic and heterotrophic respiration separately. Unusually, it will be possible to collect both pre- and post-restoration data for two experimental sites with existing intensive hydrological monitoring (baseline monitoring of water table depths at 15 minute timesteps has been in place for > 1 year at ca. 160 locations across two experimental catchments on Exmoor). Remote sensing of vegetation structure (using both airborne LiDAR and ground-based laser scanning tools) alongside geospatial modelling will enable the effects of restoration on carbon storage to be modelled from headwater catchment to moorland scales. Lindsay, R. (2010) Peatbogs and Carbon: A Critical Synthesis. University of East London, London.
D.M. Amatya; R.W. Skaggs
2008-01-01
A study was conducted to examine the effects of commercial thinning on hydrology and water quality of a 28-year old (in 2002) drained loblolly pine (Pinus taeda L.) plantation watershed (D3) using another adjacent watershed (D1) as a control. A paired watershed approach was used with data from two periods (1988-90 and 2000-02) for calibration and data from 2002-07 as...
An old-growth definition for xeric pine and pine-oak woodlands
Paul A. Murphy; Gregory J. Nowacki
1997-01-01
The old-growth characteristics of xeric pine and pine-oak woodlands are summarized from a survey of the available scientific literature. This type occurs throughout the South and is usually found as small inclusions on ridgetops and south-facing slopes in the mountains or on excessively drained, sandy uplands in gentle terrain. Historically, this type has had frequent...
Hydrology and Water Quality of a Drained Loblolly Pine Plantation in Coastal North Carolina
Devendra M. Amatya; R. W. Skaggs; J. W. Gilliam
2006-01-01
This paper evaluates 17 years (1988-2004) of hydrologic and water quality data from a drained pine plantation in eastern North Carolina. The plantation age was 14 years at the beginning of the investigation (1988) and 30 years at the end of (2004). The 17-year average rainfall of 1538 mm was 11% higher that the 50-year (1951 â 2000) long-term data of 1391 mm observed...
Hydrology and water quality of a drained loblolly pine plantation in coastal North Carolina
D.M. Amatya; R.W. Skaggs; J.W. Gilliam
2006-01-01
This paper evaluates 17 years (1 988-2004) of hydrologic and water quality data from a drained pine plantation in eastern North Carolina. The plantation age was 14 years at the beginning of the investigation (1988) and 30 years at the end (2004). The 17-year average rainfall of 1538 mm was 1 1 % higher than the 50-year (1 95 1-2000) long-term data of 139 1 mm observed...
76 FR 66629 - Establishment of the Pine Mountain-Cloverdale Peak Viticultural Area
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... explains. The petition states that local growers report that Pine Mountain vineyards are naturally free of.... Southern storms often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other..., and very well to excessively well-drained. Also, these mountain soils include large amounts of sand...
James D. Haywood; Allan E. Tiarks
1990-01-01
Through 11 years, fertilization at planting significantly increased the stemwood volume (outside bark) per loblolly pine (Pinus taeda L.) on an intensively prepared moderately well-drained fine sandy loam site in northern Louisiana. Four years of herbaceous plant control significantly increased pine survival, and because herbaceous plant control...
NASA Astrophysics Data System (ADS)
Lamentowicz, Mariusz; Słowiński, Michał; Marcisz, Katarzyna; Zielińska, Małgorzata; Kaliszan, Karolina; Lapshina, Elena; Gilbert, Daniel; Buttler, Alexandre; Fiałkiewicz-Kozieł, Barbara; Jassey, Vincent E. J.; Laggoun-Defarge, Fatima; Kołaczek, Piotr
2015-11-01
Siberian peatlands provide records of past changes in the continental climate of Eurasia. We analyzed a core from Mukhrino mire in western Siberia to reconstruct environmental change in this region over the last 1300 years. The pollen analysis revealed little variation of local pine-birch forests. A testate amoebae transfer function was used to generate a quantitative water-table reconstruction; pollen, plant macrofossils, and charcoal were analyzed to reconstruct changes in vegetation and fire activity. The study revealed that Mukhrino mire was wet until the Little Ice Age (LIA), when drought was recorded. Dry conditions during the LIA are consistent with other studies from central and eastern Europe, and with the pattern of carbon accumulation across the Northern Hemisphere. A significant increase in fire activity between ca. AD 1975 and 1990 may be associated with the development of the nearby city of Khanty-Mansiysk, as well as with the prevailing positive Arctic Oscillation.
Influence of thinning operations on the hydrology of a drained coastal plantation watershed
Johnny M. Grace; R.W. Skaggs; H.R. Malcom; G.M. Chescheir; D.K. Cassel
2003-01-01
Forest management activities such as harvesting, thinning, and site preparation can affect the hydrologic behavior of watersheds on poorly drained soils. The effects of thinning on hydrology are presented for an artificially drained pine plantation paired watershed in eastern North Carolina. Outflow and water table depths were monitored over a 3-year study period...
NASA Spacecraft Images Massive Crack in Antarctica Pine Island Glacier
2011-11-15
This image from NASA Terra spacecraft shows a massive crack across the Pine Island Glacier, a major ice stream that drains the West Antarctic Ice Sheet. Eventually, the crack will extend all the way across the glacier.
Michael A. Blazier; Terry R. Clason
2006-01-01
On a well-drained site in northwest Louisiana, effects of seedling type (container, bareroot) and herbicide site preparation (hexazinone, hexazinone + sulfometuron, imazapyr + metsulfuron) on loblolly pine growth and survival have been tested for 11 years. All possible combinations of these treatments were applied to loblolly pine planted at 302 trees acre-1, and these...
Effects of Orifice-Weir Outlet on Hydrology and Water Quality of a Drained Forested Watershed
Devendra M. Amatya; R. Wayne Skaggs; J.W. Gilliam; J.H. Hughes
2003-01-01
Orifice-weir structures at ditch outlets are proposed to reduce peak drainage rates during high flows and to store water during the growing season in poorly drained managed pine plantations. Two coastal watersheds, one conventionally drained (D1) and another with an orifice-weir outlet (D3), were monitored to examine the effects of this orifice treatment on drainage...
Ground water differences on pine and hardwood forests of the Udell Experimental Forest in Michigan.
Dean H. Urie
1977-01-01
Ground water recharge under hardwood and pine forests was measured from 1962 to 1971 on the Udell Experimental Forest in Michigan. Hardwood forests produced more net ground water than pine forests by an average of 50 and 100 mm/year, using two methods of analysis. Shallow water-table lands yield 80 to 100 mm/year less water than deep, well-drained sands. Water yield...
NASA Astrophysics Data System (ADS)
Avagyan, A.; Runkle, B.; Kutzbach, L.
2011-12-01
It is well known that peatlands represent an important soil carbon reserve. Therefore, they are considered as hot-spots with respect to climate change. However, lack of information concerning the transport of dissolved organic matter within peatlands and its release into fluvial systems represents a major gap in our understanding of both local and global carbon cycles. In particular, the spring snowmelt period, as a major hydrological event in the annual water cycle of boreal regions, strongly influences the fluxes of carbon between terrestrial and fluvial systems. The aim of this study is to provide thorough quantitative analyses of dissolved organic carbon (DOC) concentrations and fluxes in a boreal mire-forest-river landscape during the snowmelt period. Water samples were collected in the Komi Republic, Russia, in spring 2011 along transects across the near-pristine Ust-Pojeg mire complex and the nearby river Pojeg into which it drains (61°56'N, 50°13'E). This peatland is in a transitional state from fen to bog and consists of minerogeous, ombrogenous, and transitional forest-mire (lagg) zones. Microtopographic features include hummocks, hollows, and lawns. High frequency absorption measurements were conducted directly at the study site with a portable UV-Vis spectrometer over a wavelength range of 200-742.5 nm at 2.5 nm intervals. These results were calibrated against values obtained from the catalytically-aided platinum 680°C combustion technique. The results showed that in the beginning of the snowmelt period only surface carbon is flushed away by melted snow water while deeper layers remain frozen. During this time, DOC concentrations fluctuated within the range of 10-14 mg L-1 across the whole mire complex. During the later stages of snowmelt, concentrations of DOC were different between lagg, fen and bog zones, which separated them into distinct hydrological and biogeochemical units within the mire complex. The highest concentration was observed at the lagg zone with 30 mg L-1, while the lowest concentration was found at the bog site 15 mg L-1. The river water DOC concentration reached about 25 mg L-1 and was thus significantly increased compared to summer values of about 4.7 mg L-1. Water from the mire complex with a high DOC concentration was discharged via an outflow creek, into the river Pojeg. During the first flush during the snowmelt, the DOC concentration was approximately 60 mg L-1 in the outflow creek; after 10 days it decreased to 30-34 mg L-1. Additionally, we found that the following metals were discharged from the mire complex into the river as demonstrated by their concentrations in the outflow water: iron (0.34 mg L-1); manganese (28 μg L-1); arsenic (0.42 μg L-1); and mercury (0.020 μg L-1). These findings imply that the snowmelt water fluxes redistribute major parts of the carbon stock between the site's terrestrial and fluvial systems and affect the transport of metals. These large peatland regions could therefore play a substantial role as a carbon source for the river-ocean matter transport system.
Sand Pine Symposium Proceedings
USDA Forest Service Southern Forest Experiment Station
1973-01-01
Sand pine, a species well suited to the excessively drained soils common to several million acres in the Southeast, was the subject of this well-attended 3-day meeting. Papers presented included a review of the literature plus results of current research related to this species. Subjects covered ranged from seeds and seedlings to final harvest and conversion...
Loblolly Pine Responds to Mechanical Wounding with Increased Resin Flow
Jonathan J. Ruel; Matthew P. Ayres; Peter L. Lorio
1998-01-01
The oleoresin produced by many conifers has a deleterious effect on numerous associated herbivores, including bark beetles (Coleoptera: Scolytidae), and may have evolved as a plant defense mechanism. Three experiments with juvenile loblolly pine (Pinus taeda L.) used mechanical wounding to drain resin reserves and assess the effects of prior bark wounding on...
Height growth of red pine on fine-textured soils.
David H. Alban; Donald H. Prettyman
1984-01-01
Height growth was determined by stem analysis for red pine in 12 natural and 10 planted stands on well-drained, fine textured soils. Growth closely followed the Gervorkiantz site index curves. When calculating site index, an age adjustment is desirable if the trees take longer than 8 years to attain breast height.
Producing high-quality slash pine seeds
James Barnett; Sue Varela
2003-01-01
Slash pine is a desirable species. It serves many purposes and is well adapted to poorly drained flatwoods and seasonally flooded areas along the lower Coastal Plain of the Southeastern US. The use of high-quality seeds has been shown to produce uniform seedlings for outplanting, which is key to silvicultural success along the Coastal Plain and elsewhere. We present...
The white pine - hemlock forests of the anthracite region
C. F. Burnham; M. J. Ferree; F. E. Cunningham
1947-01-01
The white pine - hemlock forests are found chiefly on well drained slopes and along the sides of ravines. Though the area occupied by this type is less than 8 percent of the forest land in the region, it accounts for a quarter of the saw-timber area and 29 percent of the volume in saw-timber stands.
Belowground Processes in Nitrogen Fertilized Cottonwood and Loblolly Pine Plantations
Kye-Han Lee; Shibu Jose
2004-01-01
We measured soil respiration, fine root biomass production, and microbial biomass along a fertilization gradient (0, 56, 112, and 224 kg N ha-1 per year) in 7-year-old cottonwood and loblolly pine plantations, established on a well-drained, Redbay sandy loam (a fine-loamy, siliceous, thermic Rhodic Paleudlt), in northwest Florida. Annual soil...
J.-C. Domec; A. Noormets; Ge Sun; J. King; Steven McNulty; Michael Gavazzi; Johnny Boggs; Emrys Treasure
2009-01-01
The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal...
Design of an Orifice and Weir Outlet for Poorly Drained Forested Watersheds
D.M. Amatya; R.W. Skaggs; J.H. Hughes
1999-01-01
Orifice-weir structures at ditch outlets are being used to reduce peak drainage rates and to store water during the growing season in poorly drained managed pine plantations. Earlier studies have shown their effectiveness on reducing drainage outflows while conserving water during the growing season. This study reports on criteria and preliminary guidelines for...
Field evaluations of a forestry version of DRAINMOD-NII model
S. Tian; M. A. Youssef; R.W. Skaggs; D.M. Amatya; G.M. Chescheir
2010-01-01
This study evaluated the performance of the newly developed forestry version of DRAINMOD-NII model using a long term (21-year) data set collected from an artificially drained loblolly pine (Pinus taeda L.) plantation in eastern North Carolina, U.S.A. The model simulates the main hydrological and biogeochemical processes in drained forested lands. The...
Bray J. Beltran; Devendra M. Amatya; Martin Jones; R. Wayne Skaggs; William Neal P.E. Reynolds; Timothy J. Callahan; Jami E. Nettles
2008-01-01
Intensive plantation forestry will be increasingly important in the next 50 years to meet the high demand for domestic wood in the US. However, forestry management practices can substantially influence downstream water quality and ecology. In this study, the effect of fertilization on drainage water quality of a coastal pine plantation located in Carteret County, NC...
Bray J. Beltran; Devendra M. Amatya; Martin Jones; R. Wayne Skaggs; William Neal Reynolds; Timothy J. Callahan; Jami E. Nettles
2008-01-01
Abstract. Intensive plantation forestry will be increasingly important in the next 50 years to meet the high demand for domestic wood in the US. However, forestry management practices can substantially influence downstream water quality and ecology. In this study, the effect of fertilization on drainage water quality of a coastal pine plantation located in Carteret...
Hydrologic and Water Quality Effects of Harvesting and Regeneration of a Drained Pine Forest
Devendra M. Amatya; R. W. Skaggs; C. D. Blanton; J. W. Gilliam
2006-01-01
Data on precipitation, weather, water tables, outflows, and nutrient concentrations from two paired watersheds (D1 - control and D2 - treatment) on a pine forest in Coastal North Carolina were measured during 1988-90 calibration period to characterize the pre-treatment hydrology and water quality. Similarly, measured data from 199 5 (D2 harvested) to 2004 (seven years...
Early Growth Response of Slash Pine to Double-Bedding on a Flatwoods Site in Georgia
Curtis L. VanderSchaaf; David B. South
2004-01-01
A somewhat poorly-drained site in the Georgia flatwoods was prepared with single- and double-bedding and was planted with slash pine (Pinus elliottii Engelm.) seedlings in October. Half of the plots were treated with imazypyr in March. Double-bedding increased 7 th year volume by 5 m3 per ha, but due to insufficient control of...
May Burns Stimulate Growth in Longleaf Pine Seedlings
Harold E. Grelen
1978-01-01
Annual and biennial fires applied around May 1 are more beneficial to the growth of young longleaf pines than March 1 fires. Four years of testing on a poorly drained silt loam soil in central Louisiana showed that more grass-stage seedlings survived. began height growth, and grew taller on plots burned in May than on March-burned plots. A biennial May burn was best...
NASA Astrophysics Data System (ADS)
Jaszczyński, Jacek; Sapek, Andrzej
2010-05-01
Key words: peatlands, drained areas, surface water, nutrients and DOC in water The object of this study was fundamental mineral component concentration (N-NO3, N-NH4, PO4, K, Na, Ca, Mg, Cl, Fe) and dissolved organic carbon concentration (DOC) in surface water in artificial canal running across drained fen area. Also pH, electrical conductivity and abssorbance A280 in water samples were measured. The investigations were localized on the area of drained and agricultural used Kuwasy Mire, which are situated in the middle basin of Biebrza River, in North-East Poland. Currently on the object there is superiority of peat-moorsh soils with moorsh layers to 25 cm of depth. The bog depth is determined from 60 to 140 cm. The most of area is occupied by soils with 110-120 cm organic layer which are intensive agricultural used. Mean annual ground water table amounted 55 cm. On the distance of 8 km (about 1100-1200 ha catchment area) fen space is crossed by Kuwaski Canal collecting water from draining network above describing peatland. Surface water samples were collected every month in three constant point of canal: at entrance on peatland (upper point) in the middle part (middle point) and in border part of peatland (lower point). The study was carried out in 2001-2009. The aim of this study was to determine enriching of surface water in individual mineral and organic components during flowing across peatland area. Mean concentration in whole research period for all investigated components was higher together with flowing of water in canal across fen area. The higest increments of mean concentration between upper a lower point of canal was connected with phosphorous and amonia. The concentrations of these compounds were adequately 4,8 i 2,6 times higher in lower part of canal. Mean concentrations of remaining compounds were 2-14% higher in water in lower point in comparision to upper point of canal. In course of interflow through peatland pH of water was decreasing but electrical conductivity and abssorbance A280 were increasing. When we take into consideration annual quantity of water flowing by canal only on biological level (0,5 m3/s) the increments load of PO4 in this distance amounted 3,6; N-NH4 - 4,6; N-NO3 - 3,0; DOC - 9,5 t.year-1. At mean interflow 3 m3/s the load of describing components was increasing to 21, 27, 20 i 57 t.year-1 in research part of canal.
Water balance of drained plantation watersheds in North Carolina
Johnny M. Grace; R. W. Skaggs
2006-01-01
A 3-year study to evaluate the effect of thinning on the hydrology of a drained loblolly pine (Pinus taeda L.) plantation was conducted in eastern North Carolina. The study utilized a paired watershed design with a 40-ha thinned watershed (WS5) and a 16-ha control watershed (WS2). Data from the field experiment conducted from 1999-2002 was used to...
Shiying Tian; Mohamed A. Youssef; R. Wayne Skaggs; Devendra Amatya; George M. Chescheir
2012-01-01
This paper reports results of a study to test the reliability of the DRAINMOD-FOREST model for predicting water, soil carbon (C) and nitrogen (N) dynamics in intensively managed forests. The study site, two adjacent loblolly pine (Pinus taeda L.) plantations (referred as D2 and D3), are located in the coastal plain of North Carolina, USA. Controlled drainage (with weir...
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker
2010-01-01
Our study, conducted over two years on poorly drained, sandy sites in Onslow County, NC, compared the effects of eight common site preparation treatments on early survival and growth of planted longleaf pine seedlings. Through two growing seasons, we found survival to be similar across all treatments (p = 0.8806), but root collar diameter was greatest with combinations...
Devendra M. Amatya; Kim Hyunwoo; George M. Chescheir; R. Wayne Nettles Skaggs
2008-01-01
A calibrated DRAINWAT model was used to evaluate long -term hydrologic effects of conversion to agriculture of a 30 km2 pine forest on mostly organic soils in North Carolina, USA. Fifty years of weather data were used for determining baseline outflows. Simulation revealed that increased mean annual outflow was significant only for a 75% conversion at both upstream and...
Hydrologic Effects of Global Climate Change on a Large Drained Pine Forest
Devendra M. Amatya; Ge Sun; R. W. Skaggs; G. M Chescheir; J. E. Nettles
2006-01-01
A simulation study using a watershed scale forest hydrology model (DRAINWAT) was conducted to evaluate potential effects of climate change on the hydrology of a 3,000 ha managed pine forest in coastal North Carolina. The model was first validated with a five-year (1996-2000) data set fro111 the study site and then run with 50-years (1951-00) of historic weather data...
Diversity of mire massif types in the boreal zone of European Russia
NASA Astrophysics Data System (ADS)
Kuznetsov, O. L.
2018-03-01
In Russia, mire massif type is the principal structural unit for descriptions of the diversity of regional mire ecosystems of various ranks, vegetation mapping, and decision-making on the use of mires. The classification of mire massifs is based on various criteria and indicators. The botanical-geographical classification of mire massifs of the boreal zone of European Russia is four-tiered, and includes 22 types gathered in groups, subgroups and three classes. For most of the types their characteristic associations and diagnostic species are stated.
Wightman, Maxwell G.; Martin, Timothy A.; Gonzalez-Benecke, Carlos A.; ...
2016-09-26
Loblolly pine ( Pinus taeda L.) forests are of great ecological and economic value in the southeastern United States, where nutrient availability frequently limits productivity. The impact of fertilizer application on the growth and water relations of loblolly pine has been investigated by numerous studies; however, few field experiments have examined the effects of drought. Drought is of particular interest due to the potential for climate change to alter soil water availability. In this study, we investigated the impact of fertilizer application and a 30% reduction in throughfall on loblolly pine productivity, transpiration, hydraulic conductance, and stomatal conductance. The studymore » was installed in a ten-year-old loblolly pine plantation on a somewhat poorly drained site in northern Florida. Throughfall reduction did not impact tree productivity or water relations of the trees. This lack of response was attributed to abundant rainfall and the ability of trees to access the shallow water table at this site. Fertilizer application increased basal area production by 20% and maximum leaf area index by 0.5 m2 m 2, but it did not affect whole-tree hydraulic conductance or the sensitivity of stomatal conductance to vapor pressure deficit. During the spring, when leaf area and vapor pressure deficit were high, the fertilizer-only treatment increased monthly transpiration by 17% when compared to the control. This relationship, furthermore, was not significant during the rest of the year.« less
NASA Astrophysics Data System (ADS)
Voityuk, M. M.
2015-05-01
Socioeconomic expediency and soil-ecological potential of introducing Korean pine ( Pinus koraiensis) in the forest zone of the European part of Russia are discussed. The specificity of soil-ecological conditions and technologies applied for growing Korean pine in some tree farms in the Far East region and in the European part of Russia are compared. The main soil-ecological factors and optimum soil parameters for the successful development of Korean pine in its natural and introduction areas are determined. It is shown that development of Korean pine seedlings on well-drained soils depends on the contents of potassium, humus, and physical clay in the soils. The seedlings gain maximum size upon their growing on soddypodzolic soils (Retisols). The analysis of mineral nutrition of pine seedlings of different ages, soil conditions, and seasonal growth phases shows that the contents of potassium and some microelements play the leading role in the successful growth of introduced Korean pine.
Eutrophic mire, its characteristics and modern conditions of peat genesis
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Golubina, O. A.; Zaplatnikova, Yu. D.; Dubrovskaya, L. I.
2009-04-01
The study of structure functional organization of Siberian mire ecosystems is the base of after-effects influence of their reclamation on global changes of biosphere. The aim of this investigation is to study the structure functional organization of eutrophic mire ecosystem "Tagan". Peat deposit "Tagan" (West Siberia, 20 kilometers near Tomsk) is situated on the second flood-plain terrace of the river Tom of ancient flow channel. Maximum power of peat deposit is 9.3 meters. Subsoil is made up from sand, more seldom from loamy sand and loam. Eutrophic vegetation covers almost the whole mire. It is presented by woody sedge, sedge, sedge-moss and grass undershrub phytocenoses. The oligotrophic vegetation is presented by Sphagnum pine cotton-grass phytocenosis. There were organized three observation points on the mire in 2007. They watched dynamics of hydrothermic, redox, biological, hydrochemical regimes. There were studied physicochemical properties at given points. Peats with normal ash basically refer to grass, woody grass group of lowland type. They are characterized by high degree of decomposition which is increased down deposit. Group composition of organic matters of investigated peats showed that bitumen content in peat changes from 1.4 to 3.56%, and humid acids content is within the limits of 16.67 - 44.34 %. Water-soluble and hardly-hydrolyzed matters are contained in quantity of 19.04 - 49.76% of the whole dry peat mass. The overall nitrogen content changes within the limits of 1.76 - 3.52%. It is presented mainly by fraction of unhydrolyzed nitrogen (72.07 - 95.67% of the whole nitrogen). Highly-hydrolyzed nitrogen is the most available reserve of mineral compound of nitrogen and its content changes within the limits of 0.18 - 4.79 of the overall nitrogen. 2008 year is characterized as an average year at conditions of moistening and heat providing. Investigations, made during this year, revealed the following results. Bog waters were kept at a surface level of 20 - 69cm in summer. Peat deposit heating up to 10˚ C was observed at a depth of 120cm. Oxidizing conditions are traced up to 40 - 60cm deep. There is gradual change into restoring conditions deep in peat deposit. Very reduction conditions are observed at a depth of 60cm. Weather conditions of 2008 year were favorable for biological processes activation. In the result of their manifestation hydrochemical composition of bog waters was formed. First of all, one should pay attention to weak alkaline reaction of bog waters. Calcium content in bog waters changes from 70.2 to 150.9 mg/l. One may state calcium removal from peat deposit of eutrophic mire into an outfall. The latter is the river which is flowing along the mire. Magnesium concentration in bog waters changed within the limits of 8.5 - 42.5 mg/l. It is important to note high content of iron in individual months - up to 17.8 mg/l. Organic matters content in bog waters, which are presented by humid acids (HA) and fulvic acids (FA), is HA 3.4 - 24.65 mg/l, FA 11.0 - 58.3 mg/l. Let's, first of all, examine dynamics of individual components in bog waters. Thus, content of calcium, water-soluble carbon, and fulvic acids naturally increased in July, when it was marked combination of high temperature and minor precipitation. Active iron in bog waters had the highest concentration in spring which had gradually decreased by September (from 18 and 8 mg/l to 0.1 mg/l). Preliminary obtained results reveal bog drainage occurring at present. It is followed also from the fact that there are favorable redox conditions in a meter layer of peat deposit and high degree of peats decomposition. The examination of dynamics of hydrothermic, biological and hydrochemical regimes also is evidence of biological processes activity in eutrophic mire "Tagan". This fact, in its turn, influences on hydrochemical compound formation of bog waters.
AmeriFlux CA-Qcu Quebec - Eastern Boreal, Black Spruce/Jack Pine Cutover
Margolis, Hank A. [Université Laval
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-Qcu Quebec - Eastern Boreal, Black Spruce/Jack Pine Cutover. Site Description - The ground is gently rolling with a weak slope (<5%). In mesic areas (designated as well to moderately well drained areas, according to the Canadian System of Soil Classification (Agriculture Canada Expert Committee on Soil Survey, 1983)), the soil is a ferro-humic to humic podzol covered by an organic layer having an average depth of 26 cm (Fig. 1). In humid areas, the soil is organic (imperfectly to poorly drained) with an average organic layer of 125 cm. Mesic areas accounted for approximately 75% of the total surface area of the footprint and humid areas accounted for 25%. Full-time continuous measurements eneded in 2011. Intermittent measurements are on-going as resources permit.
Facies development in the Lower Freeport coal bed, west-central Pennsylvania, U.S.A.
Pierce, B.S.; Stanton, R.W.; Eble, C.F.
1991-01-01
The Lower Freeport coal bed in west-central Pennsylvania is interpreted to have formed within a lacustrine-mire environment. Conditions of peat formation, caused by the changing chemical and physical environments, produced five coal facies and two mineral-rich parting facies within the coal bed. The coal bed facies are compositionally unique, having developed under varying conditions, and are manifested by megascopic, petrographic, palynologic and quality characteristics. The initial environment of the Lower Freeport peat resulted in a coal facies that is relatively high in ash yield and contains large amounts of lycopod miospores and moderate abundances of cryptotelinite, crypto-gelocollinite, inertinite and tree fern miospores. This initial Lower Freeport peat is interpreted to have been a topogenous body that was low lying, relatively nutrient rich (mesotrophic to eutrophic), and susceptible to ground water and to sediment influx from surface water. The next facies to form was a ubiquitous, clay-rich durain parting which is attributed to a general rise in the water table accompanied by widespread flooding. Following formation of the parting, peat accumulation resumed within an environment that inhibited clastic input. Development of doming in this facies restricted deposition of the upper shale parting to the margins of the mire and allowed low-ash peat to form in the interior of the mire. Because this environment was conducive to preservation of cellular tissue, this coal facies also contains large amounts of crypto-telinite. This facies development is interpreted to have been a transitional phase from topogenous, planar peat formation to slightly domed, oligotrophic (nutrient-poor) peat formation. As domed peat formation continued, fluctuations in the water table enabled oxidation of the peat surface and produced high inertinite concentrations toward the top of the coal bed. Tree ferns became an increasingly important peat contributor in the e upper facies, based on the palynoflora. This floral change is interpreted to have resulted from the peat surface becoming less wet or better drained, a condition that inhibited proliferation of lycopod trees. Accumulation of the peat continued until rising water levels formed a freshwater lake within which clays and silts were deposited. The development of the Lower Freeport peat from a planar mire through transitional phases toward domed peat formation may be an example of the type of peat formation of other upper Middle and Upper Pennsylvanian coal beds. ?? 1991.
Weaver, T.L.; Healy, D.; Sabin, T.G.
2005-01-01
The Nottawaseppi Huron Band of Potawatomi Indians in Calhoun County, Michigan is concerned about the water quality and quantity of streams in and around tribal lands and of shallow ground water. The tribe wanted to establish a database that included streamflow, stage, and water quality of local streams and quality of ground water from wells belonging to the tribe and its members. Concerned about the effects of long-term agricultural activity and increasing numbers of singlefamily dwellings being constructed within the watershed both on and off the reservation, the tribe wants to develop a water-resources management plan.U.S. Geological Survey (USGS) measured streamflow and installed staff gages tied into local datum on three tributaries of the St. Joseph River that cross tribal lands. Water-quality samples were collected from the sites under a variety of flow regimes from spring to fall during 2000-03. Stage-streamflow rating curves were constructed for Pine Creek and Athens & Indian Creek Drain after a number of discharge measurements were made and a thorough basin analysis was completed. Daily streamflow for Pine Creek near Athens was estimated for the period from May 2000 through September 2003.USGS collected 12 water samples at Pine Creek near Athens, Athens & Indian Creek Drain, and an unnamed tributary to Pine Creek during October 2000 through September 2003. Physical properties were measured, and the streams were sampled for major ions, nutrients, trace elements, caffeine, and herbicides/pesticides and their breakdown products (degradates). The tribe also measured physical properties weekly at the three sites during each growing season for the study period. Surface water at the three sites can be classified as hard, with calcium carbonate concentrations exceeding 180 milligrams per liter (mg/L). Concentrations of calcium, magnesium, chloride, and dissolved solids are typical of the area. There were 68 detections of 17 pesticides, degradates, and caffeine. Atrazine and metolachlor were detected in all samples, and the atrazine degradate deethylatrazine was detected in all samples from Pine Creek and Athens & Indian Creek Drain. Another atrazine degradate (2-hydroxy-atrazine, or OIET) was detected five of the six times that it was included in the analyses. A single sample collected from Athens & Indian Creek Drain in May 2001 had relatively higher concentrations of acetochlor, atrazine, CIAT (deethylatrazine), and diuron than the other sampling sites did during the study. Analysis for various species of mercury was completed on samples collected at Pine Creek and Athens & Indian Creek Drain in July 2003, and results were similar to those typical of unimpaired streams in the Midwest. None of the surface-water sites had major ion, nutrient, or trace-element concentrations that exceeded Michigan Department of Environmental Quality standards for nonpotable surface water.USGS also collected 11 ground-water samples from 7 wells on or adjacent to the traditional reservation in 2003. Two wells were sampled twice, and a single well was sampled three times, in order to document any chemical changes that might have occurred as a result of aquifer recharge, which most typically occurs in late winter to spring in the southern Lower Peninsula of Michigan. Samples were analyzed for 184 pesticides and degradates and caffeine. There were five detections of four pesticides or degradates, but none of the detected chemicals are included in current U.S. Environmental Protection Agency drinking-water standards. The remaining 181 analytes were below laboratory reporting limits.
1990-05-01
initially known as Portsmouth AFB. In 1957, it was rededicated as Pease AFB in honor of Captain Harl Pease, Jr., a native of Plymouth , Now Hampshire. During... barren soil, up-gradient from storm drains, or in close proximity of floor drains. Corrective action currently being taken is the prompt disposal of...Plant communities on base are indicative of the pine / northern hardwood ecosystem.. The forest resources of. Pease AFB are substantial. More than one
NASA Astrophysics Data System (ADS)
Schoning, Kristian; Sohlenius, Gustav
2016-04-01
In this investigation we have studied patterns in peat accumulation and changes in mire status since the early 1900s for two areas in Sweden. In the early 1900s the Geological Survey of Sweden collected a vast amount of peat and peatland data, including information on vegetation and land-use. We have used this archive data to evaluate changes in mire vegetation, mire wetness and surface peat properties, rates of peat accumulation, succession in young wetlands and the effects of cultivation on peatlands. In total 156 mires in an uplift area of eastern middle Sweden were included in the data-set, including both pristine mires and peatlands used for agricultural purposes. In this area new peatlands have continuously been formed during the past 7 000 years making it possible to evaluate changes in peat accumulation over time. The other study area is situated in the south Swedish Uplands where we have revisited some larger bogs. The results from our investigation show that many of the peatlands have underwent major changes since the early 1900s. In most of the small peatlands we have found important changes in vegetation where mire vegetation has been replaced by nutrient demanding and/or dry species flora while the tree stand on large mires in south Sweden have increased. In some mires humification has increased in the uppermost peat-layers and the mire surface have become drier compared to the early 1900s. In eastern middle Sweden there are indications that the peat accumulation is lower 0,5 mm/year in older peatlands compared with younger ones 1,2 mm/year, although the mire vegetation in the older peatlands is dominated by sphagnum. The peat depth of the cultivated mires in this area shows a mean decrease of 40 cm since the early 1900s.
Mack, Steven J.; Milius, Robert P.; Gifford, Benjamin D.; Sauter, Jürgen; Hofmann, Jan; Osoegawa, Kazutoyo; Robinson, James; Groeneweg, Mathijs; Turenchalk, Gregory S.; Adai, Alex; Holcomb, Cherie; Rozemuller, Erik H.; Penning, Maarten T.; Heuer, Michael L.; Wang, Chunlin; Salit, Marc L.; Schmidt, Alexander H.; Parham, Peter R.; Müller, Carlheinz; Hague, Tim; Fischer, Gottfried; Fernandez-Viňa, Marcelo; Hollenbach, Jill A; Norman, Paul J.; Maiers, Martin
2015-01-01
The development of next-generation sequencing (NGS) technologies for HLA and KIR genotyping is rapidly advancing knowledge of genetic variation of these highly polymorphic loci. NGS genotyping is poised to replace older methods for clinical use, but standard methods for reporting and exchanging these new, high quality genotype data are needed. The Immunogenomic NGS Consortium, a broad collaboration of histocompatibility and immunogenetics clinicians, researchers, instrument manufacturers and software developers, has developed the Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines. MIRING is a checklist that specifies the content of NGS genotyping results as well as a set of messaging guidelines for reporting the results. A MIRING message includes five categories of structured information – message annotation, reference context, full genotype, consensus sequence and novel polymorphism – and references to three categories of accessory information – NGS platform documentation, read processing documentation and primary data. These eight categories of information ensure the long-term portability and broad application of this NGS data for all current histocompatibility and immunogenetics use cases. In addition, MIRING can be extended to allow the reporting of genotype data generated using pre-NGS technologies. Because genotyping results reported using MIRING are easily updated in accordance with reference and nomenclature databases, MIRING represents a bold departure from previous methods of reporting HLA and KIR genotyping results, which have provided static and less-portable data. More information about MIRING can be found online at miring.immunogenomics.org. PMID:26407912
NASA Astrophysics Data System (ADS)
Rubiales, Juan M.; Ezquerra, Javier; Muñoz Sobrino, Castor; Génova, María M.; Gil, Luis; Ramil-Rego, Pablo; Gómez Manzaneque, Fernando
2012-02-01
Macrofossils and megafossils of different genera, which were found in twelve localities in the mountains of northwest Iberia, provide spatially precise evidence of their distribution in the region during the Holocene. Macrofossils were recovered from mires, eroded peat bogs and lakes, identified by their wood anatomy and dated using radiocarbon methods. Conifers (Pinus), deciduous trees (Betula, Salix, Quercus) and shrubs (Erica, Fabaceae) were identified. The findings of Pinus gr. sylvestris/nigra have special biogeographical significance. The available palaeoecological data from the Cantabrian Range and nearby mountains (Ancares and Courel) indicate that pines have grown during the Holocene over the highlands of the western part of the Cantabrian Range area as a natural vegetation element. Nevertheless, Pinus sylvestris is the only pine species that is currently present in the Cantabrian Mountains, and its natural distribution area is now limited to a few enclaves. In this study, we provide a number of conclusive findings demonstrating that the past distribution of Pinus gr. sylvestris/nigra in this region suffered an important range contraction during the last two millennia. Historical data also support this idea, as they strongly suggest that this species survived well into the historical period.
NASA Astrophysics Data System (ADS)
Bracho, Rosvel; Powell, Thomas L.; Dore, Sabina; Li, Jiahong; Hinkle, C. Ross; Drake, Bert G.
2008-06-01
Scrub oak and pine flatwoods are two contrasting ecosystems common to the humid subtropical climate of Florida. Scrub oak forests are short in stature (<2 m) and occur on well-drained sandy soils, and pine flatwoods are much taller and occur in areas with poorly drained soils. Eddy covariance measurements were made from January 2001 to February 2003 over a scrub oak forest and from January 2002 to February 2003 over an adjacent pine flatwoods located on in central Florida, USA, and exposed to similar atmospheric conditions to evaluate how the dynamics of latent heat (λE) and sensible heat (H) exchanges are affected by environmental and biological variables. Annual evapotranspiration (Et) for the scrub oak was 737 and 713 mm in 2001 and 2002, respectively. Et was comparatively higher, 812 mm, in 2002 at the pine flatwoods due to higher soil moisture and leaf area. In both ecosystems, springtime increases in λE coincided with increasing leaf area and evaporative demand. However, H was the main energy-dissipating component in the spring due to the seasonal decrease in soil water content in the upper soil profile. In the spring, mean weekly Bowen ratio (β, i.e. H/λE) values reached 1.6 and 1.2 in the scrub oak and pine flatwoods, respectively. With the onset of the summertime rainy season, λE became the dominant energy flux and β fells to < 0.4. In both ecosystems, β was strongly controlled by the interaction between leaf area and soil moisture. The lowest values of the decoupling coefficient (Ω, 0.2 and 0.25 scrub oak and pine flatwoods, respectively) also occurred during the dry springtime period indicating that surface conductance (gs) was the mechanism controlling energy partitioning causing high β in both ecosystems. Et increases in the spring, when water in the upper soil profile was scarce and strongly retained by soil particles, indicated that plants in both ecosystems obtained water from deeper sources. The results from this research elucidate how energy partitioning differs and is regulated in contrasting ecosystems within the Florida landscape, which is important for refining regional hydrological and climate models.
Martin, Jeffrey D.; Crawford, Charles G.; Duwelius, Richard F.; Renn, Danny E.
1990-01-01
Pond Creek and the unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Approximately one-half of the Pond Creek watershed is unmined, agricultural land. Soils are very well-drained shaly silty loams that have formed or' steeply sloping spoil banks. Both watersheds contain numerous impoundments of water and have enclosed areas that do not contribute surface runoff to streamflow. The ridges of mine spoil are covered with pine trees, but much of the soil surface is devoid of vegetation.
NASA Technical Reports Server (NTRS)
Breininger, David R.; Schmalzer, Paul A.; Hinkle, C. Ross
1991-01-01
One hundred twelve plots were established in coastal scrub and slash pine flatwoods habitats on the John F. Kennedy Space Center (KSC) to evaluate relationships between the number of burrows and gopher tortoise (Gopherus polyphemus) density. All burrows were located within these plots and were classified according to tortoise activity. Depending on season, bucket trapping, a stick method, a gopher tortoise pulling device, and a camera system were used to estimate tortoise occupancy. Correction factors (% of burrows occupied) were calculated by season and habitat type. Our data suggest that less than 20% of the active and inactive burrows combined were occupied during seasons when gopher tortoises were active. Correction factors were higher in poorly-drained areas and lower in well-drained areas during the winter, when gopher tortoise activity was low. Correction factors differed from studies elsewhere, indicating that population estimates require correction factors specific to the site and season to accurately estimate population size.
NASA Astrophysics Data System (ADS)
Olchev, Alexander; Volkova, Elena; Karataeva, Tatiana; Zatsarinnaya, Dina; Novenko, Elena
2014-05-01
The spatial and temporal variability of net ecosystem exchange of CO2 (NEE) and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest-steppe zones in the central part of European Russia (54.06N, 37.59E, 260 m a.s.l.) was described using results of field measurements and simulations with Mixfor-3D model. The area of the mire is about 1.2 ha and it is surrounded by a broadleaved forest stand. It is a typical peat mire according to water and mineral supply as well as to vegetation composition. The vegetation of the peripheral parts of the mire is typical eutrophic whereas the vegetation in its central part is represented by meso-oligothrophic plant communities. To describe the spatial variability of NEE and ET within the mire a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO2 and H2O analyzer LI-840A (Li-Cor, USA) was used. The measurements were provided along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and from May 2013 to October 2013. The chamber method was used for measurements of NEE and ET fluxes because of small size of the mire, a very uniform surrounding forest stand and the mosaic mire vegetation. All these factors promote very heterogeneous exchange conditions within the mire and make it difficult to apply, for example, an eddy covariance method that is widely used for flux measurements in the field. The results of the field measurements showed a significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation, air temperature and ground water level. During the entire growing season the central part of the mire was a sink of CO2 for the atmosphere (up to 6.8±4.2 µmol m-2 s-1 in June) whereas its peripheral part, due to strong shading by the surrounding forest, was mainly a source of CO2 for the atmosphere. ET is reached maximal values in the central part of the mire (0.34±0.20 mm hour-1 in May 2013) mainly due to high air and surface temperatures and the very wet upper peat horizon and sphagnum moss. ET the peripheral part of the mire was much smaller and usually didn't exceed 0.03±0.02 mm hour-1. To estimate the total mire NEE and ET taking into account spatial heterogeneity of solar radiation, thermal and soil moisture conditions within the mire the process-based Mixfor-3D model was applied. Parameters describing the photosynthesis, respiration and transpiration variability were derived from results of the field measurements. This study was supported by grants of the Russian Foundation for Basic Research (RFBR 11-04-01622-a, 14-04-01568-a).
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiMichele, W.A.; Phillips, T.L.
1992-01-01
Peat-forming environments (coals) were major landscape elements of the Pennsylvanian tropics. Mires reached a pantropical zenith during the 9 Ma of the Westphalian when long intervals of similar vegetation were separated by short intervals of rapid change. Differences between successive vegetation types primarily reflect different proportions of several major habitat-specific subfloras within which species turnover occurred. A hierarchy of organizational levels is suggested in which biotic interactions helped structure and constrain patterns of species replacement. Lycopsids were the framework trees of nearly all Westphalian mires; tree ferns and pteridosperm were important subdominants by the late Westphalian. Environmental changes, largely climatic,more » during the Westphalian-Stephanian transition resulted in extinction of most mire species, particularly trees. Tree ferns dominated Stephanian mires following a short transitional period of small-lycopsid and fern abundance. Tree ferns were cheaply constructed opportunists and their rise in abundance coincided with an increase in species numbers throughout tropical lowlands. Within mires there was an increase in physical size of plants from several major lineages. The structure and dynamics of Stephanian mires differed from the Westphalian; previously sharp distinctions between mires and other lowland floras diminished. The Westphalian to Stephanian vegetational changes suggest that ecosystems can display a brittle'' response to environmental change. Such threshold responses are a likely consequences of levels of extinction high enough to disrupt ecosystem fabric. The success of opportunistic lineages following loss of indigenous mire vegetation constitutes a secondary replacement, with establishment of a new equilibrium within hundreds of thousands of years.« less
Tracking Organic Carbon Transport From the Stordalen Mire to Glacial Lake Tornetrask, Abisko, Sweden
NASA Astrophysics Data System (ADS)
Beck, M. A.; Hamilton, B. T.; Spry, E.; Johnson, J. E.; Palace, M. W.; McCalley, C. K.; Varner, R. K.; Bothner, W. A.
2016-12-01
In subarctic regions, labile organic carbon from thawing permafrost and productivity of terrestrial and aquatic vegetation are sources of carbon to lake sediments. Methane is produced in lake sediments from the decomposition of organic carbon at rates affected by vegetation presence and type as well as sediment temperature. Recent research in the Stordalen Mire in northern Sweden has suggested that labile organic carbon sources in young, shallow lake sediments yield the highest in situ sediment methane concentrations. Ebullition (or bubbling) of this methane is predominantly controlled by seasonal warming. In this project we sampled stream, glacial and post-glacial lake sediments along a drainage transect through the Stordalen Mire into the large glacial Lake Torneträsk. Our results indicate that the highest methane and total organic carbon (TOC) concentrations were observed in lake and stream sediments in the upper 25 centimeters, consistent with previous studies. C/N ratios range from 8 to 32, and suggest that a mix of aquatic and terrestrial vegetation sources dominate the sedimentary record. Although water transport occurs throughout the mire, major depositional centers for sediments and organic carbon occur within the lakes and prohibit young, labile TOC from entering the larger glacial Lake Torneträsk. The lack of an observed sediment fan at the outlet of the Mire to the lake is consistent with this observation. Our results suggest that carbon produced in the mire stays in the mire, allowing methane production to be greater in the mire bound lakes and streams than in the larger adjacent glacial lake.
Roberts, S.B.; Stanton, R.W.; Flores, R.M.
1994-01-01
Coal and clastic facies investigations of a Paleocene coal-bearing succession in the Grass Creek coal mine, southwestern Bighorn Basin, Wyoming, USA, suggest that disruption of peat accumulation in recurrent mires was caused by the repetitive progradation of crevasse splays and, ultimately, by a catastrophic mass movement. The mass movement, represented by deposits of debris flow, marked the termination of significant peat accumulation in the Grass Creek coal mine area. Megascopic and microscopic analyses of coal beds exposed along the mine highwalls suggest that these deposits developed in low-lying mires, as evidenced primarily by their ash yields and maceral composition. Disruption of peat accumulation in successive mires was caused by incursions of sediment into the mire environments. Termination by crevasse splay progradation is represented by coarsening-upward successions of mudrock and tabular, rooted sandstone, which overlie coal beds in the lower part of the coal-bearing interval. A more rapid process of mire termination by mass movement is exemplified by a debris flow deposit of diamictite, which overlies the uppermost coal bed at the top of the coal-bearing interval. The diamictite consists of a poorly sorted, unstratified mixture of quartzite cobbles and pebbles embedded in a claystone-rich or sandy mudstone matrix. Deposition of the diamictite may have taken place over a matter of weeks, days, or perhaps even hours, by catastrophic flood, thus reflecting an instantaneous process of mire termination. Coarse clastics and mud were transported from the southwest some 20-40 km as a viscous debris flow along stream courses from the ancestral Washakie Range to the Grass Creek area, where the flow overrode a low-lying mire and effectively terminated peat accumulation. ?? 1994.
R.N. Addington; L.A. Donovan; R.J. Mitchell; J.M. Vose; S.D. Pecot; S.B. Jack; U.G. Hacke; J.S. Sperry; R. Oren
2006-01-01
We investigated relationships between whole-tree hydranlic architecture and stomatal conductance in Pinus palustris Mill. (longleaf pine) across habitats that differed in soil properties and habitat structure. Trees occupying a xeric habitat (characterized by sandy, well-drained soils, higher nitrogen availability and lower overstory tree density)...
Response of Soil Bulk Density and Mineral Nitrogen to Harvesting and Cultural Treatments
Minyi Zhou; Mason C. Carter; Thomas J. Dean
1998-01-01
The interactive effects of harvest intensity, site preparation, and fertilization on soil compaction and nitrogen mineralization were examined in a loblolly pine (Pinus taeda L.) stand growing on a sandy, well-drained soil in eastern Texas. The experimental design was 2 by 2 by 2 factorial, consisting of two harvesting treatments (mechanical whole-...
John R. Probst; Deahn Donner; Carol I. Bocetti; Steve Sjogren
2003-01-01
The threatened Kirtland`s warbler Dendroica kirtlandii breeds in stands of young jack pine Pinus banksiana growing on well-drained soils in Michigan, USA. We summarize information documenting the range expansion of Kirtland`s warbler due to increased habitat management in the core breeding range in the Lower Peninsula of Michigan...
John R. Probst; Deahn M. Donner; Carol I. Bocetti; Steve Sjogren
2003-01-01
The threatened Kirtland's warbler Dendroica kirtlandii breeds in stands of young jack pine Pinus banksiana growing on well-drained soils in Michigan, USA. We summarize information documenting the range expansion of Kirtland's warbler due to increased habitat management in the core breeding range in the Lower Peninsula of...
Tree Species for Plantations in the Grantic Uplands of Puerto Rico
T. F. Geary; C. B. Briscoe
1972-01-01
Thirty-two tree species were tested for adaptability in Puerto Rico's humid, granitic uplands, a region of sandy, well drained, erosive soils. Based on adaptability and potential wood uses the following species are recommended for timber plantations: Honduras pine for most landowners; mahoe for those willing to speculate on development of a demand for this cabinet...
Hydrologic and water quality effects of thinning Loblolly Pine
Johnny M. Grace; R. W. Skaggs; G. M. Chescheir
2006-01-01
Forest operations such as harvesting, thinning, and site preparation can affect the hydrologic behavior of watersheds on poorly drained soils. The influence of these operations conducted on organic soil sites can be more pronounced than on mineral soil sites due to the differences in bulk density and soil moisture relationships that exist between mineral and organic...
Synchronous Wildfire Activity Rise and Mire Deforestation at the Triassic–Jurassic Boundary
Petersen, Henrik I.; Lindström, Sofie
2012-01-01
The end-Triassic mass extinction event (∼201.4 million years ago) caused major faunal and floral turnovers in both the marine and terrestrial realms. The biotic changes have been attributed to extreme greenhouse warming across the Triassic–Jurassic (T–J) boundary caused by massive release of carbon dioxide and/or methane related to extensive volcanism in the Central Atlantic Magmatic Province (CAMP), resulting in a more humid climate with increased storminess and lightning activity. Lightning strikes are considered the primary source of wildfires, producing charcoal, microscopically recognized as inertinite macerals. The presence of polycyclic aromatic hydrocarbons (PAHs) of pyrolytic origin and allochthonous charcoal in siliciclastic T–J boundary strata has suggested widespread wildfire activity at the time. We have investigated largely autochthonous coal and coaly beds across the T–J boundary in Sweden and Denmark. These beds consist of predominantly organic material from the in situ vegetation in the mires, and as the coaly beds represent a substantial period of time they are excellent environmental archives. We document a remarkable increase in inertinite content in the coal and coaly beds across the T–J boundary. We show estimated burning temperatures derived from inertinite reflectance measurements coupled with palynological data and conclude that pre-boundary late Rhaetian mire wildfires included high-temperature crown fires, whereas latest Rhaetian–Sinemurian mire wildfires were more frequent but dominated by lower temperature surface fires. Our results suggest a major change in the mire ecosystems across the T–J boundary from forested, conifer dominated mires to mires with a predominantly herbaceous and shrubby vegetation. Contrary to the overall regional vegetation for which onset of recovery commenced in the early Hettangian, the sensitive mire ecosystem remained affected during the Hettangian and did not start to recover until around the Hettangian–Sinemurian boundary. Decreasing inertinite content through the Lower Jurassic suggests that fire activity gradually resumed to considerable lower levels. PMID:23077574
Some climatological factors of pine in the lake toba catchment area
NASA Astrophysics Data System (ADS)
Nasution, Z.
2018-02-01
The article deals with climatological factors of Pine at the Lake Toba Catchment Area also called drained basin, Pinus merkusii is a plant endemic in Sumatra. A central population of Pine in North Sumatra is located in the Tapanuli region to south of Lake Toba. Junghuhn discovered the species in the mountains range of Sipirok. He provisionally named the species as Pinus sumatrana. The article presents a detail analysis of approaches to climate factors, considers rainfall, air temperature, humidity, stemflow, throughfall and Interception following calculation of regression to determine relationship between precipitation with stemflow and interception. Stemflow, it is highly significant with significance of difference between correlation coefficients and z normal distribution. Temperature and relative humidity are the important components in the climate. These components influence the evaporation process and rainfall in the catchment. Pinus merkusii has the big crown interception. Stemflow and Interception has an opposite relation. Increasing of interception capacity will decrease stemflow. This type of Pine also has rough bark however significant channels so that, it flows water even during the wet season and caused the stemflow in Pinus merkusii relatively bigger.
Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs.
Wieczorek, Adam S; Drake, Harold L; Kolb, Steffen
2011-07-01
Aerobic methane (CH(4) ) oxidation reduces the emission of CH(4) from mires and is regulated by various environmental factors. Organic acids and alcohols are intermediates of the anaerobic degradation of organic matter or are released by plant roots. Methanotrophs isolated from mires utilize these compounds preferentially to CH(4) . Thus, the effect of organic acids and ethanol on CH(4) oxidation by methanotrophs of a mire was evaluated. Slurries of mire soil oxidized supplemental CH(4) down to subatmospheric concentrations. The dominant pmoA and mmoX genotypes were affiliated with sequences from Methylocystis species capable of utilization of acetate and atmospheric CH(4) . Soil slurries supplemented with acetate, propionate or ethanol had reduced CH(4) oxidation rates compared with unsupplemented or glucose-supplemented controls. Expression of Methylocystis-affiliated pmoA decreased when CH(4) consumption decreased in response to acetate and was enhanced after acetate was consumed, at which time the consumption of CH(4) reached control levels. The inhibition of methanotroph activity might have been due to either toxicity of organic compounds or their preferred utilization. CH(4) oxidation was reduced at 5 and 0.5 mM of supplemental organic compounds. Acetate concentrations may exceed 3 mM in the investigated mire. Thus, the oxidation of CH(4) might decrease in microzones where organic acids occur. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Hyun Woo Kim; Devendra M. Amatya; George M. Chescheir; Wayne R. Skaggs; Jami E. Nettles
2013-01-01
Hydrological effects of land-use change are of great concern to ecohydrologists and watershed managers, especially in the Atlantic coastal plain of the southeastern United States. The concern is attributable to rapid population growth and the resulting pressure to develop forested lands. Many researchers have studied these effects in various scales, with varying...
E. David Dickens; Bryan C. McElvany; David J. Moorhead
2010-01-01
This project was initiated on the Sand Hills State Forest in Chesterfield County, SC in May 1995 to determine the benefits of inorganic fertilizer (NPK) and lime stabilized biosolids applications in a twice-thinned longleaf pine (Pinus palustris Mill.) stand planted in 1963 on an excessively well drained deep sand (Alpin soil series). Major...
Effect of Drainage and Management Practices on Hydrology of Pine Plantation
R. Wayne Skaggs; Devendra M. Amatya; G. M. Chescheir; C. D. Blanton; J. W. Gilliam
2006-01-01
This paper reviews results of long-term studies, initiated in the late 1980s, to determine the hydrologic and water quality impacts of drainage and related water and forest management practices on a poorly drained site in Carteret County, North Carolina. Three watersheds, each approximately 25 ha, were instrumented to measure and record drainage rate, water table depth...
Impacts of fertilization on water quality of a drained pine plantation: a worst case scenario.
Beltran, Bray J; Amatya, Devendra M; Youssef, Mohamed; Jones, Martin; Callahan, Timothy J; Skaggs, R Wayne; Nettles, Jami E
2010-01-01
Intensive plantation forestry will be increasingly important in the next 50 yr to meet the high demand for domestic wood in the United States. However, forest management practices can substantially influence downstream water quality and ecology. This study analyses, the effect of fertilization on effluent water quality of a low gradient drained coastal pine plantation in Carteret County, North Carolina using a paired watershed approach. The plantation consists of three watersheds, two mature (31-yr) and one young (8-yr) (age at treatment). One of the mature watersheds was commercially thinned in 2002. The mature unthinned watershed was designated as the control. The young and mature-thinned watersheds were fertilized at different rates with Arborite (Encee Chemical Sales, Inc., Bridgeton, NC), and boron. The outflow rates and nutrient concentrations in water drained from each of the watersheds were measured. Nutrient concentrations and loadings were analyzed using general linear models (GLM). Three large storm events occurred within 47 d of fertilization, which provided a worst case scenario for nutrient export from these watersheds to the receiving surface waters. Results showed that average nutrient concentrations soon after fertilization were significantly (alpha = 0.05) higher on both treatment watersheds than during any other period during the study. This increase in nutrient export was short lived and nutrient concentrations and loadings were back to prefertilization levels as soon as 3 mo after fertilization. Additionally, the mature-thinned watershed presented higher average nutrient concentrations and loadings when compared to the young watershed, which received a reduced fertilizer rate than the mature-thinned watershed.
Changes in soil fertility following prescribed burning on Coastal Plain pine sites
William H. McKee
1982-01-01
Soil and forest floor samples were collected from four prescribed burning studies in the Atlantic and Gulf Coastal Plains. The surface textures of soils ranged from sands to silt loams and the drainage classes from well to poorly drained. Burning treatments had been in force from 8 to 65 years. Reduction of the forest floor and its chemical constituents was related to...
George M. Chescheir; François Birgand; Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya
2010-01-01
Nutrient loading in drainage outflow is estimated from measured flows and nutrient concentrations in the drainage water. The loading function is ideally continuous, representing the product of continuously measured outflows and nutrient concentrations in drainage water. However, loading is often estimated as the product of continuously measured outflow and nutrient...
Development and validation of the Measure of Indigenous Racism Experiences (MIRE)
Paradies, Yin C; Cunningham, Joan
2008-01-01
Background In recent decades there has been increasing evidence of a relationship between self-reported racism and health. Although a plethora of instruments to measure racism have been developed, very few have been described conceptually or psychometrically Furthermore, this research field has been limited by a dearth of instruments that examine reactions/responses to racism and by a restricted focus on African American populations. Methods In response to these limitations, the 31-item Measure of Indigenous Racism Experiences (MIRE) was developed to assess self-reported racism for Indigenous Australians. This paper describes the development of the MIRE together with an opportunistic examination of its content, construct and convergent validity in a population health study involving 312 Indigenous Australians. Results Focus group research supported the content validity of the MIRE, and inter-item/scale correlations suggested good construct validity. A good fit with a priori conceptual dimensions was demonstrated in factor analysis, and convergence with a separate item on discrimination was satisfactory. Conclusion The MIRE has considerable utility as an instrument that can assess multiple facets of racism together with responses/reactions to racism among indigenous populations and, potentially, among other ethnic/racial groups. PMID:18426602
Drought-induced adaptation of the xylem in Scots pine and pubescent oak.
Eilmann, Britta; Zweifel, Roman; Buchmann, Nina; Fonti, Patrick; Rigling, Andreas
2009-08-01
Drought impairs tree growth in the inner-Alpine valleys of Central Europe. We investigated species-specific responses to contrasting water supply, with Scots pine (Pinus sylvestris L.), threatened by drought-induced mortality, and pubescent oak (Quercus pubescens Willd.), showing no connection between drought events and mortality. The two co-occurring tree species were compared, growing either along an open water channel or at a site with naturally dry conditions. In addition, the growth response of Scots pine to a draining of a water channel was studied. We analysed the radial increment for the last 100 years and wood anatomical parameters for the last 45 years. Drought reduced the conduit area of pubescent oak, but increased the radial lumen diameter of the conduits in Scots pine. Both species decreased their radial increment under drought. In Scots pine, radial increment was generally more dependent on water availability than that in pubescent oak. Irrigated trees responded less negatively to high temperature as seen in the increase in the conduit area in pubescent oak and the removal of the limitation of cell division by high temperatures. After irrigation stopped, tree-ring width for Scots pine decreased within 1-year delay, whereas lumen diameter and cell-wall thickness responded with a 4-year delay. Scots pine seemed to optimize the carbon-per-conduit-costs under drought by increasing conduits diameter while decreasing cell numbers. This strategy might lead to a complete loss of tree rings under severe drought and thus to an impairment of water transport. In contrast, in pubescent oak tree-ring width is less affected by summer drought because parts of the earlywood are built in early spring. Thus, pubescent oak might have gradual advantages over pine in today's climate of the inner-Alpine valley.
Harkless, Lawrence B; DeLellis, Salvatore; Carnegie, Dale H; Burke, Thomas J
2006-01-01
The medical records of 2239 patients (mean age=73 years) with established peripheral neuropathy (PN) were examined to determine whether treatment with MIRE was, in fact, associated with increased foot sensitivity to the Semmes Weinstein monofilament (SWM) 5.07 and a reduction in neuropathic pain. The PN in 1395 of these patients (62%) was due to diabetes. Prior to treatment with MIRE, of the 10 tested sites (5 on each foot), 7.1+/-2.9 were insensitive to the SWM 5.07, and 2078 patients (93%) exhibited loss of protective sensation defined by Medicare as a loss of sensation at two or more sites on either foot. After treatment, the number of insensate sites on both feet decreased to 2.4+/-2.6, an improvement of 66%. Of the 2078 (93%) patients initially presenting with loss of protective sensation, 1106 (53%) no longer had loss of protective sensation after treatment (P<.0001); 1563 patients (70%) also exhibited neuropathic pain in addition to sensory impairment. Prior to treatment with MIRE, pain measured on the 11-point visual analogue scale (VAS) was 7.2+/-2.2 points, despite the use of a variety of pain-relieving therapeutic agents. After treatment with MIRE, pain was reduced by 4.8+/-2.4 points, a 67% reduction. Therefore, MIRE appears to be associated with significant clinical improvement in foot sensation and, simultaneously, a reduction in neuropathic pain in a large cohort of primarily Medicare aged, community-dwelling patients, initially diagnosed with PN. The quality of life associated with these two outcomes cannot be underappreciated.
U. Nilsson; T.J. Albaugh; H.L. Allen
2002-01-01
Nine years of growth and stand development were investigated in a 2 x 2 nutrient and water factorial experiment with four replications. The study was located on an infertile, excessively drained sandy site in Scotland County, North Carolina, U.S.A. The hypothesis tested was that increased growth following irrigation and fertilization would increase the rate at which...
Hydrology and water quality of two first order forested watersheds in coastal South Carolina
D.M. Amatya; M. Miwa; C.A. Harrison; C.C. Trettin; G. Sun
2006-01-01
Two first-order forested watersheds (WS 80 and WS 77) on poorly drained pine-hardwood stands in the South Carolina Coastal Plain have been monitored since mid-1960s to characterize the hydrology, water quality and vegetation dynamics. This study examines the flow and nutrient dynamics of these two watersheds using 13 years (1 969-76 and 1977-81) of data prior to...
Mohd S. Rahman; Michael G. Messina; Richard F. Fisher
2002-01-01
Substantial forest acreage in the south-central U.S. is seasonally water-logged due to an underlying fragipan. Severely restricted drainage in the non-growing season leads to a reduced subsoil zone, which restricts root respiration. The same sites may also be subjected to summer drought. These climatic and edaphic problems may result in low seedling survival and...
Hower, J.C.; Eble, C.F.; Pierce, B.S.
1996-01-01
The Middle Pennsylvanian (Westphalian D) Stockton (also known as the Broas) coal bed of the Breathitt Formation is an important energy resource in Kentucky. Petrographic, geochemical and palynologic studies were undertaken from mine, core and highway exposures in Martin and northern Pike counties, Kentucky, in order to determine the influence of the Stockton depositional ecosystem on those parameters. Vitrinite-rich Stockton lithotypes are dominated by Lycospora. Dull lithotypes, including both high- and low-ash yield durains, generally have abundant Densosporites, suggesting that the parent plant inhabited a fairly wide range of environments. Lithologies having tree ferns as an important component also have high fusinite + semifusinite and a low telinite/gelocollinite ratio. The aerial root bundles of the tree ferns were susceptible to oxidation and, for tissue not oxidized to inertinite, to preservation as gelocollinite. In the initial stages of formation, the Stockton mire was discontinuous and had a rather restricted floral assemblage. The presence of durains higher in the Stockton section, particularly the low-ash yield durains having petrographic indicators of degradation, suggests that portions of the mire developed as a domed peat. The termination of the mire as a high-sulfur, arboreous lycopod-domimated mire is consistent with the return to more planar mire development.
Can a bog drained for forestry be a stronger carbon sink than a natural bog forest?
NASA Astrophysics Data System (ADS)
Hommeltenberg, J.; Schmid, H. P.; Drösler, M.; Werle, P.
2014-07-01
This study compares the CO2 exchange of a natural bog forest, and of a bog drained for forestry in the pre-Alpine region of southern Germany. The sites are separated by only 10 km, they share the same soil formation history and are exposed to the same climate and weather conditions. In contrast, they differ in land use history: at the Schechenfilz site a natural bog-pine forest (Pinus mugo ssp. rotundata) grows on an undisturbed, about 5 m thick peat layer; at Mooseurach a planted spruce forest (Picea abies) grows on drained and degraded peat (3.4 m). The net ecosystem exchange of CO2 (NEE) at both sites has been investigated for 2 years (July 2010-June 2012), using the eddy covariance technique. Our results indicate that the drained, forested bog at Mooseurach is a much stronger carbon dioxide sink (-130 ± 31 and -300 ± 66 g C m-2 a-1 in the first and second year, respectively) than the natural bog forest at Schechenfilz (-53 ± 28 and -73 ± 38 g C m-2 a-1). The strong net CO2 uptake can be explained by the high gross primary productivity of the 44-year old spruces that over-compensates the two-times stronger ecosystem respiration at the drained site. The larger productivity of the spruces can be clearly attributed to the larger plant area index (PAI) of the spruce site. However, even though current flux measurements indicate strong CO2 uptake of the drained spruce forest, the site is a strong net CO2 source when the whole life-cycle since forest planting is considered. It is important to access this result in terms of the long-term biome balance. To do so, we used historical data to estimate the difference between carbon fixation by the spruces and the carbon loss from the peat due to drainage since forest planting. This rough estimate indicates a strong carbon release of +134 t C ha-1 within the last 44 years. Thus, the spruces would need to grow for another 100 years at about the current rate, to compensate the potential peat loss of the former years. In contrast, the natural bog-pine ecosystem has likely been a small but stable carbon sink for decades, which our results suggest is very robust regarding short-term changes of environmental factors.
Peatlands as a unique climatic hotspots
NASA Astrophysics Data System (ADS)
Slowinska, S.; Marcisz, K.; Slowinski, M. M.; Blazejczyk, K.; Lamentowicz, M.
2017-12-01
Peatlands are unique environments, often acting as microrefugia of various taxa. High groundwater table, organic soils, specific vegetation and topography are important determinants of their local climatic conditions. However, relations between those determinants are not stable. For example, seasonal changes in weather patterns, hydrological dynamics, and local vegetation may alter microclimate. Additionally, long-term changes are important factor, as for example overgrowing due to significant change of microclimate conditions, what in turn changes geochemical and biological processes in the peat layer. We have been investigating interactions between abiotic and biotic factors of a small Sphagnum mire (ca. 6.0 ha) for over ten years now. The mire is located in Poland in transitional temperate climate and is the only place in polish lowlands where glacial relict Betula nana occurs. Identification of local climate of the mire, its microclimatic differentiation and its influence on surroundings were objectives of the study. We recorded water level fluctuations, photosynthetically active radiation (PAR), air temperature and humidity, and peat temperature at five monitoring plots at the mire and observed significant differences between them. We also investigated Sphagnum mosses growth and testate amoeba diversity and community structure to understand biological response of those differences. We observed that local climate of the mire was significantly different from open area reference place, it was much colder especially during nights. The average minimal temperature at the height 30 cm for growing seasons 2010-2012 was 3.7oC lower there and ground frosts occurred even in the summer. The climate of the mire affected the forest directly adjacent to it, and depending on weather conditions the strength and the distance of this interaction was different. Our results show that micro-environmental changes affects on biological processes and should be taken into consideration in palaeoecological investigations.
Sources and distribution of trace elements in Estonian peat
NASA Astrophysics Data System (ADS)
Orru, Hans; Orru, Mall
2006-10-01
This paper presents the results of the distribution of trace elements in Estonian mires. Sixty four mires, representative of the different landscape units, were analyzed for the content of 16 trace elements (Cr, Mn, Ni, Cu, Zn, and Pb using AAS; Cd by GF-AAS; Hg by the cold vapour method; and V, Co, As, Sr, Mo, Th, and U by XRF) as well as other peat characteristics (peat type, degree of humification, pH and ash content). The results of the research show that concentrations of trace elements in peat are generally low: V 3.8 ± 0.6, Cr 3.1 ± 0.2, Mn 35.1 ± 2.7, Co 0.50 ± 0.05, Ni 3.7 ± 0.2, Cu 4.4 ± 0.3, Zn 10.0 ± 0.7, As 2.4 ± 0.3, Sr 21.9 ± 0.9, Mo 1.2 ± 0.2, Cd 0.12 ± 0.01, Hg 0.05 ± 0.01, Pb 3.3 ± 0.2, Th 0.47 ± 0.05, U 1.3 ± 0.2 μg g - 1 and S 0.25 ± 0.02%. Statistical analyses on these large database showed that Co has the highest positive correlations with many elements and ash content. As, Ni, Mo, ash content and pH are also significantly correlated. The lowest abundance of most trace elements was recorded in mires fed only by precipitation (ombrotrophic), and the highest in mires fed by groundwater and springs (minerotrophic), which are situated in the flood plains of river valleys. Concentrations usually differ between the superficial, middle and bottom peat layers, but the significance decreases depending on the type of mire in the following order: transitional mires - raised bogs - fens. Differences among mire types are highest for the superficial but not significant for the basal peat layers. The use of peat with high concentrations of trace elements in agriculture, horticulture, as fuel, for water purification etc., may pose a risk for humans: via the food chain, through inhalation, drinking water etc.
Effects of drainage and forest management practices on hydraulic conductivity of wetland soils
R.W. Skaggs; Amatya Chescheir; J.D. Diggs
2008-01-01
Continuous records of water table elevations and flow rates from drained forested lands were analysed to determine field effective hydraulic conductivity (K) of a mineral (Deloss s.l.) and an organic (Belhaven muck) soil. K of the top 90 cm of Deloss under mature pine was 60 m/day, which is 20 to 30 times that published for this series. Harvest had a minor effect on K...
EVALUATING CUMULATIVE EFFECTS OF DISTURBANCE ON THE HYDROLOGIC FUNCTION OF BOGS, FENS, AND MIRES
Few quantitative studies have been done on the hydrology of fens, bogs and mires, and consequently any predictions of the cumulative impacts of disturbances on their hydrologic functions is extremely difficult. or example, few data are available on the role of bogs and fens with ...
Depositional history of the Fire Clay coal bed (Late Duckmantian), Eastern Kentucky, USA
Greb, S.F.; Eble, C.F.; Hower, J.C.
1999-01-01
More than 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores were used in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability in the Fire Clay (Hazard No. 4) coal bed across a 1860 km2 area of the Eastern Kentucky Coal Field. The bench architecture of the Fire Clay coal bed consists of uncommon leader benches, a persistent but variable lower bench, a widespread, and generally thick upper bench, and local, variable rider benches. Rheotrophic conditions are inferred for the leader benches and lower bench based on sedimentological associations, mixed palynomorph assemblages, locally common cannel coal layers, and generally high ash yields. The lower bench consistently exhibits vertical variability in petrography and palynology that reflects changing trophic conditions as topographic depressions infilled. Infilling also led to unconfined flooding and ultimately the drowning of the lower bench mire. The drowned mire was covered by an air-fall volcanic-ash deposit, which produced the characteristic flint clay parting. The extent and uniform thickness of the parting suggests that the ash layer was deposited in water on a relatively flat surface without a thick canopy or extensive standing vegetation across most of the study area. Ash deposits led to regional ponding and establishment of a second planar mire. Because the topography had become a broadly uniform, nutrient-rich surface, upper-bench peats became widespread with large areas of the mire distant to clastic sources. Vertical sections of thick (> 70 cm), low-ash yield, upper coal bench show a common palynomorph change from arborescent lycopod dominance upward to fern and densospore-producing, small lycopod dominance, inferred as a shift from planar to ombrotrophic mire phases. Domed mires appear to have been surrounded by wide areas of planar mires, where the coal was thinner (< 70 cm), higher in ash yield, and dominated by arborescent lycopods. Rectangular thickness trends suggest that syndepositional faulting influenced peat accumulation, and possibly the position of the domed mire phase. Faulting also influenced post-depositional clastic environments of deposition, resulting in sandstone channels with angular changes in orientation. Channels and lateral facies were locally draped by high-ash-yield rider coal benches, which sometimes merged with the upper coal bench. These arborescent-lycopod dominant rider coal benches were profoundly controlled by palcotopography, much like the leader coal benches. Each of the benches of coal documented here represent distinctly different mires that came together to form the Fire Clay coal bed, rather than a single mire periodically split by clastic influx. This is significant as each bench of the coal has its own characteristics, which contribute to the total coal characteristics. The large data set allows interpretation of both vertical and lateral limits to postulated domed phases in the upper coal bench, and to the delineation of subtle tectonic structures that allow for meaningful thickness projections beyond the limits of present mining.A study was conducted to analyze the depositional history of the Fire Clay coal bed in the eastern Kentucky coal field. The study involved over 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability.
Drivers of variability in tree transpiration in a Boreal Black Spruce Forest Chronosequence
NASA Astrophysics Data System (ADS)
Angstmann, J. L.; Ewers, B. E.; Kwon, H.
2009-12-01
Boreal forests are of particular interest in climate change studies because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through the impact of more frequent wildfires, warmer, longer growing seasons, and potential drainage of forested wetlands. This study aims to quantify the influence of stand age, drainage condition, and species on tree transpiration and its drivers in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 113 trees (69 Picea mariana (black spruce), 25 Populus tremuloides (trembling aspen), and 19 Pinus banksiana (jack pine) at four stand ages, each containing a well- and poorly-drained site over three growing seasons (2006-2008). Sap flux per unit xylem area, JS, was expressed as transpiration per unit ground area, EC, and transpiration per unit leaf area, EL, using site- and species-specific allometry to obtain sapwood area (AS)and leaf area(AL)per unit ground area. Well-drained, younger Picea mariana daily JS was 47-64% greater than the older well-drained burn ages and younger poorly-drained stands were 64-68% greater than the two oldest poorly-drained stands. Daily EL in the well-drained Picea mariana stands was on average 12-33% higher in younger stand than in the two oldest stands whereas young, poorly-drained Picea mariana had 71% greater daily EL than the older stands. Well-drained Picea mariana trees had 52% higher daily EC than older trees and poorly-drained Picea mariana in the 1964 burn had 42-81% higher daily EC than the oldest stands. Populus tremuloides located in the two youngest stands had daily JS 38-58% greater rates than the 1930 burn, whereas daily EL and EC had no distint differences due to high interannual variability. Pinus banksiana experienced 21-33% greater daily JS in the 1989 burn than in the older 1964 burn for well- and poorly-drained sites. Poorly-drained Pinus banksiana trees from the older 1964 burn had 23-48% greater daily EL and 26-39% higher daily EC than the 1989 burn. Poorly-drained Picea mariana had 17-31% higher daily JS than the well-drained sites. Poorly-drained Picea mariana had 29-58% higher daily EL 42-50% higher daily EC than the well-drained trees. Poorly-drained Pinus banksiana on average had 27-28% higher daily JS than well-drained trees. Poorly-drained Pinus banskiana had 23.25% higher daily EL than well-drained trees and daily EC 32-67% lower than the well-drained trees. Drivers of these differences include midday leaf water potential, AS, and AL.
NASA Astrophysics Data System (ADS)
Preston, C. M.; Bhatti, J. S.; Norris, C. E.; Quideau, S. A.; Arevalo, C.
2012-04-01
To improve prediction of climate change impacts on the carbon balance of boreal forests, we are investigating C stocks, fluxes and organic matter quality of jack pine (Pinus banksiana) and black spruce (Picea mariana) stands in northern Saskatchewan and Manitoba along the Boreal Forest Transect Case Study (BFTCS). Jack pine stands occupy well-drained sandy soils with thin forest floor, whereas poorly-drained black spruce stands have a thick moss-dominated forest floor. Carbon storage for jack pine and black spruce stands respectively was 3.0-5.5 kg m-2 and 5.2-8.2 kg m-2 in vegetation, and 0.20-0.85 kg m-2 and 0.12-0.40 kg m-2 in coarse woody debris. Forest floor C stock was much higher for black spruce (6.0-12.7 kg m-2) than for jack pine (0.6-0.82 kg m-2). Mineral soil C to 50 cm was also significantly higher for black spruce (3.3-12.5 kg m-2) than for jack pine sites (2.2-3.0 kg m-2). Black spruce forest floor properties indicate hindered decomposition and N cycling, with high C/N ratios, strongly stratified and depleted ^13C and ^15N values, high tannins and phenolics, and 13C nuclear magnetic resonance (NMR) spectra typical of poorly decomposed plant material, especially roots and mosses. The thinner jack pine forest floor appears to be dominated by lichen, with charcoal in some samples. These contrasts are unlikely due to the small differences in aboveground litter inputs (110 vs 121 g m-2) for jack pine and black spruce respectively, 2000-2010 means) or litter quality. Development of colder, wetter and thicker black spruce forest floor is more likely associated with soil texture and drainage, further exacerbated by increasing sphagnum coverage and forest floor depth. This suggests that small environmental changes could trigger large C losses through enhanced forest floor decomposition. An investigation of mineral soil C stabilization in four jack pine sites showed that silt plus clay accounted for 15-43 % of 0-1 m C (1.5-2.8 kg m-2); silt held 0.9-3.3% of horizon mass and 13-31% of total C. Carbon-13 NMR of HF-treated silt fractions showed that alkyl and O-alkyl C dominated the A and B horizons, but C-horizon samples were higher in aromatic C, possibly of fire origin. HCl hydrolysis was used to to isolate older C, but most 14C dates were modern, with five samples from deeper horizons ranging from 141-5184 ybp. HCl residues were mainly alkyl and aromatic C. Especially for black spruce stands, soil C appears to be dominated by inputs from roots and moss, and stabilized mainly by environmental factors; soil C stored as thick forest floor is also vulnerable to loss by fire. Forest floor and mineral soil show evidence of pyrogenic C, but quantitative data are lacking to assess its role in long-term C sequestration. Considering the sensitivity of this region to climate change, further research should focus on understanding the processes controlling climate, vegetation and soil interactions throughout the lifecycle of jack pine and black spruce forests.
Power and Socioscientific Issues: The Pedagogy of Mire's Critique of Skin Whitening Cosmeceuticals
ERIC Educational Resources Information Center
Blades, David
2012-01-01
In her article, "The Scientification of Skin Whitening and the Entrepreneurial University- Linked Corporate Scientific Officer," published in this issue, Amina Mire (2012) deconstructs the tacit investments implicit in such discourses of beauty, in particular those linked to cosmetic products that purport to fight the "war on aging" through the…
Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride
2017-04-01
An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.
Effects of inorganic sulfur addition on fluxes of volatile sulfur compounds in Sphagnum peatlands
NASA Technical Reports Server (NTRS)
Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.
1992-01-01
Short and long-term impacts of increased S deposition on fluxes of volatile S compounds (VSC's) from Sphagnum peatlands were investigated in an artificially acidified (sulfuric and nitric acids) poor fen (Mire 239) at the Experimental Lakes Area (ELA), Ontario, Canada. Additional experiments were conducted in a poor fen (Sallie's Fen) in Barrington, NH, USA. At Mire 239, emissions of VSC's were monitored, before and after acidification, at control (unacidified) and experimental sections within two major physiographic zones of the mire (oligotrophic and minerotrophic). The experimental segments of the mire received S amendments since 1983, in amounts equivalent to the annual S deposition in the highest polluted areas of Canada and U.S. Dimethyl sulfide (DMS) was the predominant VSC released from the mire and varied largely with time and space (i.e., from 2.5 to 127 nmol/m(sup -2)h(sup -1)). Sulfur addition did not affect DMS emissions in a period of hours to a few days, although it stimulated production of DMS and MSH in the anoxic surficial regions of the peat. DMS emissions in the experimental oligotrophic segment of the mire was approximately 3-fold greater than in the control oligotrophic segment, and approximately 10-fold greater than in the minerotrophic zones. These differences could be due to a combination of differences in types of vegetation, nutritional status, and S input. At Sallie's Fen, DMS fluxes were approximately 8 times higher from a Sphagnum site than from a bare peat site. Fluxes of VSC's were not significantly affected by sulfate amendments at both sites, while DMS and MSH concentrations increases greatly with time in the top 10 cm of the peat column. Our data indicated that although Sphagnum is not the direct source of DMS released from Sphagnum peatlands, it might play a role in regulating DMS emissions to the atmosphere.
Microtropography and water table fluctuation in a sphagnum mire
E.S. Verry
1984-01-01
A detailed organic soil profile description, 22 years of continuous water table records, and a hummock-hollow level survey were examined at a small Minnesota mire (a bog with remnants of poor fen vegetation). Variation in the level survey suggests that hollows be used to minimize variation when detailed topographic information is needed and to match profile...
The Modernization of the Chinese People’s Liberation Army: Goals and Problems.
1980-06-01
been deployed. Nearly 200 MIRE.s and IRBMs had been deployed along the Trans- Siberian Railway, including some of the new SS-20 IRB4s with MIRV...39. U. S., Congress, Mouse , A New Realism, p. 44. 40. Beiing Review, No. 11, 17 March 1980, p. 9. Note: it covers The areas of physics, chemistry
NASA Astrophysics Data System (ADS)
Avagyan, Armine; Runkle, Benjamin; Kutzbach, Lars
2013-04-01
An accurate quantification of dissolved organic carbon (DOC) is crucial for understanding changes in water resources under the influence of climate, land use and urbanization. However, the conventionally used methods do not allow high frequency in situ analyses in remote or hostile environments (e.g., industrial wastewater or during environmental high-flow events, such as snowmelt or floods). In particular, missing measurements during the snowmelt period in landscapes of the boreal region can lead to significant miscalculations in regional carbon budgets. Therefore, the aim of the study was to test the performance of a portable, submersible UV-Vis spectrophotometer (spectro::lyser, s::can Messtechnik GmbH, Austria) during the snowmelt period in a boreal mire-forest catchment, and to provide a conceptual understanding of the spatial and temporal dynamics of DOC concentrations during and after snowmelt. During 2011, water samples were collected from the near-pristine Ust-Pojeg mire complex in northwestern Russia (61° 56'N, 50° 13'E). Sampling started during the spring snowmelt period and continued until late fall. The mire presented a mosaic of different landscape units. The mire consisted of minerogeous (fen), ombrogenous (bog), and transitional forest-mire (lagg) zones. Water samples were taken from the surface across the mire (22 points at 50-m intervals). DOC concentrations were analyzed directly at the study site using a portable, submersible UV-Vis spectrophotometer, which uses high-resolution absorbance measurements over the wavelength range 200-742.5 nm at 2.5-nm intervals as a proxy for DOC content. Because the DOC composition of fluids varies by site, a local calibration replaced the default settings of the spectro::lyser (Global Calibration) to enhance the accuracy of the measurements. To evaluate the local calibration and correct for drift, the same samples (n = 157) were additionally analyzed using the wet persulfate oxidation method (O-I-Analytica, Aurora Model 1030, USA). Based on ordinary least squares regression, the local calibration showed good agreement between the results obtained from the high-resolution absorption measurements and the wet persulfate oxidation method (r2= 0.99, root-mean-square error = 1.7 mg L-1). The measurement campaign revealed spatial and temporal variability of DOC concentrations, and demonstrated that at the beginning of the snowmelt period, surface carbon was flushed away by meltwater, whereas deeper layers remained frozen. During this time, the surface DOC concentrations fluctuated within the range of 8-15 mg L-1 (April 07) across the entire mire complex. After April 18, the concentrations diverged between the sites; the DOC concentration reached 30 mg L-1in the surface water at the lagg zone but was 15 mg L-1 at the bog site (April 25). The DOC surface water concentration continued to increase during summer and fall, ranging from 19 to 74 mg L-1 across the mire, with an average of 45 ± 14 mg L-1. The study indicates that high-resolution spectroscopic measurements provide a simple, fast, robust and non-destructive method for measuring DOC contents, with a short duration (17-20 seconds) and portability of the sample analysis rendering this method particularly advantageous for in-situ measurements at remote field locations.
Bat response to carolina bays and wetland restoration in the southeastern U.S. Coastal Plain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzel, Jennifer M.; Michael A. Menzel; John C. Kilgo
2005-09-01
Abstract: Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist of many species that are of conservation concern and are commonly associated with wetland and riparian habitats in the Southeast (making them a good general indicator for the condition of wetland habitats), we monitored bat activity over restored and reference Carolina bays surrounded by pine savanna (Pinusmore » spp.) or mixed pine-hardwood habitat types at the Savannah River Site in South Carolina. In order to determine how wetland restoration efforts affected the bat community, we monitored bat activity above drained Carolina bays pre- and post-restoration. Our results indicate that bat activity was greater over reference (i.e., undrained) than drained bays prior to the restorative efforts. One year following combined hydrologic and vegetation treatment, however, bat activity was generally greater over restored than reference bays. Bat activity was also greater over both reference and restored bays than in random, forested interior locations. We found significantly more bat activity after restoration than prior to restoration for all but one species in the treatment bays, suggesting that Carolina bay restoration can have almost immediate positive impacts on bat activity.« less
miREE: miRNA recognition elements ensemble
2011-01-01
Background Computational methods for microRNA target prediction are a fundamental step to understand the miRNA role in gene regulation, a key process in molecular biology. In this paper we present miREE, a novel microRNA target prediction tool. miREE is an ensemble of two parts entailing complementary but integrated roles in the prediction. The Ab-Initio module leverages upon a genetic algorithmic approach to generate a set of candidate sites on the basis of their microRNA-mRNA duplex stability properties. Then, a Support Vector Machine (SVM) learning module evaluates the impact of microRNA recognition elements on the target gene. As a result the prediction takes into account information regarding both miRNA-target structural stability and accessibility. Results The proposed method significantly improves the state-of-the-art prediction tools in terms of accuracy with a better balance between specificity and sensitivity, as demonstrated by the experiments conducted on several large datasets across different species. miREE achieves this result by tackling two of the main challenges of current prediction tools: (1) The reduced number of false positives for the Ab-Initio part thanks to the integration of a machine learning module (2) the specificity of the machine learning part, obtained through an innovative technique for rich and representative negative records generation. The validation was conducted on experimental datasets where the miRNA:mRNA interactions had been obtained through (1) direct validation where even the binding site is provided, or through (2) indirect validation, based on gene expression variations obtained from high-throughput experiments where the specific interaction is not validated in detail and consequently the specific binding site is not provided. Conclusions The coupling of two parts: a sensitive Ab-Initio module and a selective machine learning part capable of recognizing the false positives, leads to an improved balance between sensitivity and specificity. miREE obtains a reasonable trade-off between filtering false positives and identifying targets. miREE tool is available online at http://didattica-online.polito.it/eda/miREE/ PMID:22115078
Hsieh, Ru-Lan; Lo, Min-Tzu; Lee, Wen-Chung; Liao, Wei-Cheng
2012-11-01
Randomized, double-blind, placebo-controlled study. To examine the short-term therapeutic effects of monochromatic infrared energy (MIRE) on participants with knee osteoarthritis (OA). Patients were assessed according to the International Classification of Functioning, Disability and Health. MIRE is commonly used in therapy for patients with peripheral neuropathies. However, research has not focused intensively on the therapeutic effects of MIRE in patients with knee OA. This study enrolled 73 participants with knee OA. Participants received six 40-minute sessions of active or placebo MIRE treatment (890-nm wavelength; power, 6.24 W; energy density, 2.08 J/cm2/min; total energy, 83.2 J/cm2) over the knee joints for 2 weeks. International Classification of Functioning, Disability and Health-related outcomes were collected weekly over 4 weeks using the Knee injury and Osteoarthritis Outcome Score, Lysholm Knee Scale, Hospital Anxiety and Depression Scale, Multidimensional Fatigue Inventory, Chronic Pain Grade questionnaire, World Health Organization Quality of Life-brief version, and OA Quality of Life Questionnaire. Data were analyzed by repeated-measures analysis of variance. No statistically significant differences were found for the interaction of group by time for Knee injury and Osteoarthritis Outcome Score scores, including pain, other symptoms, function in daily living, function in sport and recreation, and knee-related quality of life. Scores on the Lysholm Knee Scale, Hospital Anxiety and Depression Scale, Multidimensional Fatigue Inventory, Chronic Pain Grade questionnaire, World Health Organization Quality of Life-brief version, and OA Quality of Life Questionnaire also showed no significant differences between the 2 groups at any of the 4 follow-up assessments. Short-term MIRE therapy provided no beneficial effects to body functions, activities, participation, and quality of life in patients with knee OA.
Sequence stratigraphic distribution of coaly rocks: Fundamental controls and paralic examples
Bohacs, K.; Suter, J.
1997-01-01
Significant volumes of terrigenous organic matter can be preserved to form coals only when and where the overall increase in accommodation approximately equals the production rate of peat. Accommodation is a function of subsidence and base level. For mires, base level is very specifically the groundwater table. In paralic settings, the groundwater table is strongly controlled by sea level and the precipitation/evaporation ratio. Peat accumulates over a range of rates, but always with a definite maximum rate set by original organic productivity and space available below depositional base level (groundwater table). Below a threshold accommodation rate (nonzero), no continuous peats accumulate, due to falling or low groundwater table, sedimentary bypass, and extensive erosion by fluvial channels. This is typical of upper highstand, lowstand fan, and basal lowstand-wedge systems tracts. Higher accommodation rates provide relatively stable conditions with rising groundwater tables. Mires initiate and thrive, quickly filling local accommodation vertically and expanding laterally, favoring accumulation of laterally continuous coals in paralic zones within both middle lowstand and middle highstand systems tracts. If the accommodation increase balances or slightly exceeds organic productivity, mires accumulate peat vertically, yielding thicker, more isolated coals most likely during of late lowstand-early transgressive and late transgressive-early highstand periods. At very large accommodation increases, mires are stressed and eventually inundated by clastics or standing water (as in middle transgressive systems tracts). These relations should be valid for mires in all settings, including alluvial, lake plain, and paralic. The tie to sea level in paralic zones depends on local subsidence, sediment supply, and groundwater regimes. These concepts are also useful for investigating the distribution of seal and reservoir facies in nonmarine settings.
Visible camera cryostat design and performance for the SuMIRe Prime Focus Spectrograph (PFS)
NASA Astrophysics Data System (ADS)
Smee, Stephen A.; Gunn, James E.; Golebiowski, Mirek; Hope, Stephen C.; Madec, Fabrice; Gabriel, Jean-Francois; Loomis, Craig; Le fur, Arnaud; Dohlen, Kjetil; Le Mignant, David; Barkhouser, Robert; Carr, Michael; Hart, Murdock; Tamura, Naoyuki; Shimono, Atsushi; Takato, Naruhisa
2016-08-01
We describe the design and performance of the SuMIRe Prime Focus Spectrograph (PFS) visible camera cryostats. SuMIRe PFS is a massively multi-plexed ground-based spectrograph consisting of four identical spectrograph modules, each receiving roughly 600 fibers from a 2394 fiber robotic positioner at the prime focus. Each spectrograph module has three channels covering wavelength ranges 380 nm - 640 nm, 640 nm - 955 nm, and 955 nm - 1.26 um, with the dispersed light being imaged in each channel by a f/1.07 vacuum Schmidt camera. The cameras are very large, having a clear aperture of 300 mm at the entrance window, and a mass of 280 kg. In this paper we describe the design of the visible camera cryostats and discuss various aspects of cryostat performance.
Ecological gradients within a Pennsylvanian mire forest
DiMichele, W.A.; Falcon-Lang, H. J.; Nelson, W.J.; Elrick, S.D.; Ames, P.R.
2007-01-01
Pennsylvanian coals represent remains of the earliest peat-forming rain forests, but there is no current consensus on forest ecology. Localized studies of fossil forests suggest intermixture of taxa (heterogeneity), while, in contrast, coal ball and palynological analyses imply the existence of pronounced ecological gradients. Here, we report the discovery of a spectacular fossil forest preserved over ???1000 ha on top of the Pennsylvanian (Desmoinesian) Herrin (No. 6) Coal of Illinois, United States. The forest was abruptly drowned when fault movement dropped a segment of coastal mire below sea level. In the largest study of its kind to date, forest composition is statistically analyzed within a well-constrained paleogeographic context. Findings resolve apparent conflicts in models of Pennsylvanian mire ecology by confirming the existence of forest heterogeneity at the local scale, while additionally demonstrating the emergence of ecological gradients at landscape scale. ?? 2007 The Geological Society of America.
Symptomatic reversal of peripheral neuropathy in patients with diabetes.
Kochman, Alan B; Carnegie, Dale H; Burke, Thomas J
2002-03-01
Forty-nine consecutive subjects with established diabetic peripheral neuropathy were treated with monochromatic near-infrared photo energy (MIRE) to determine if there was an improvement of sensation. Loss of protective sensation characterized by Semmes-Weinstein monofilament values of 4.56 and above was present in 100% of subjects (range, 4.56 to 6.45), and 42 subjects (86%) had Semmes-Weinstein values of 5.07 or higher. The ability to discriminate between hot and cold sensation was absent (54%) or impaired (46%) in both groups prior to the initiation of MIRE treatment. On the basis of Semmes-Weinstein monofilament values, 48 subjects (98%) exhibited improved sensation after 6 treatments, and all subjects had improved sensation after 12 treatments. Therefore, MIRE may be a safe, drug-free, noninvasive treatment for the consistent and predictable improvement of sensation in diabetic patients with peripheral neuropathy of the feet.
NASA Astrophysics Data System (ADS)
Słowiński, Michał; Marcisz, Katarzyna; Płóciennik, Mateusz; Obremska, Milena; Pawłowski, Dominik; Okupny, Daniel; Słowińska, Sandra; Borówka, Ryszard; Kittel, Piotr; Forysiak, Jacek; Michczyńska, Danuta J.; Lamentowicz, Mariusz
2016-04-01
Hydrological changes are main drivers of the processes occurring in the peatland ecosystem, e.g. organic matter accumulation and decomposition. Hydroclimatic changes in mires are caused by various non-climatic factors, such as hydroseral succession or land use changes. Central Europe, namely Poland, is characterized by a transitional climate with influence o both continental and Atlantic air masses, which makes a this region a very sensitive to climate change. Here we explore a potential of multidisciplinary approach in reconstruction of past climate change and particularly hydroclimatic conditions which control in Sphagnum peatland ecosystem. We reconstructed 3300 years (between 3,500 BC and 200 BC) history of development of Rąbień mire using several biotic proxies (pollen, plant macrofossils, testate amoebae, Cladocera, Chironomidae) and geochemistry. Study site - Rąbień mire (area 42 ha) is located in central Poland and it is protected nature reserve. The origin of the mire depression is connected with the development of the thermokarst basin isolated by dunes. Rąbień mire is limnogenic, i.e. formed by the process of terrestrialisation of a water body and thickness of biogenic deposits is 6.2 m (440 cm of lacustrine sediment and 180 cm of peat). Our results demonstrate the high potential of Rąbień peat record for reconstructing the palaeohydrological dynamics. The studied time interval is characterized by two pronounced dry periods: ~2,500 to ~1,700 cal. BC and ~800 to ~600 cal. BC, and two periods of significant increases in water table: ~1,100 to ~800 cal. BC and ~600 to ~250 cal. BC. The timing of the wet shift at 600 cal. BC corresponds to wet periods in different sites from Central and Eastern Europe. Our investigation reveals a complex pattern of proxies, what might be linked to the past atmospheric circulation patterns. Extreme hydroclimatic conditions most possibly had a direct impact on the functioning of peatland ecosystems. What has been observed in the within the peatland monitoring during the heat wave events in 2015 (Linje mire, Northern Poland). In our opinion, only reconstructions supported by the knowledge of current observations from peatland ecosystems may provide a better interpretation of past climate changes. The research was supported by the National Science Centre Poland (grants NN 306 27 6735 NN 306 034 040, No 2015/17/B/ST10/03430). This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association. We acknowledge support from grant PSPB-013/2010 from Switzerland through the Swiss Contribution to the enlarged European Union.
Infill and mire evolution of a typical kettle hole: young ages at great depths (Jackenmoos, Austria)
NASA Astrophysics Data System (ADS)
Götz, Joachim; Salcher, Bernhard
2015-04-01
Kettle holes are very common features in proglacial environments. Myriads of small, often circular shaped lakes are indicative of dead ice slowly melting out after the collapse of glaciers and subsequent burial of glaciofluvial sediments. Many of these lakes transformed into mires during the Postglacial and the Holocene. Still, little is known about the mechanisms leading to mire formation in such environments. We aim to analyse the shape and the postglacial history of infilling and peat accumulation of a typical dead ice kettle using 2D resistivity surveying, core-drilling, 14C dating and palynologic analyses. The kettle hole mire is located within a small kame delta deposit just south of the LGM extend of the Salzach Piedmont glacier (Austria/Germany). Today, the mire is a spot of exceptional high biodiversity and under protection. Sediment core samples extracted in the deepest (c. 10-14 m) and central part of the kettle directly overly lacustrine fine sediments and yielded young ages covering the subatlantic period only. Young ages are in agreement with palynologic results comprising e.g. pollen of secale (rye) and juglans (walnut). However, these deposits are situated beneath a massive water body (10 m), only covered by a thin floating mat. A second, more distally situated drill core indicates the thinning of this water body at the expense of peat deposits covering the Late Glacial to Middle Holocene. Multiple 2D resistivity data support drilling information and enabled us to reconstruct the shape of the basin. The transition from lacustrine sediments to the water body above is characterised by a sharp increase in resistivity. Furthermore, the resistivity pattern within the entire kettle indicates an increase towards the centre, most probably as a result of the changing nutrient content. The postglacial evolution of the mire is in agreement with the concept of "floating mat terrestrialisation", representing a horizontal growth of the floating mat from the edges toward the lake centre. This concept further includes the deposition of strongly hydrated and loose debris peat formations under the floating mat. The process leads to decreasing basal ages from the edge towards the centre and therefore well explains the age distribution in the studied kettle hole.
Controls of Carbon Exchange in a Boreal Minerogenic Mire
NASA Astrophysics Data System (ADS)
Nilsson, M.; Sagerfors, J.; Buffam, I.; Eriksson, T.; Grelle, A.; Klemedtsson, L.; Weslien, P.; Laudon, H.; Lindroth, A.
2008-12-01
Based on theories on both mire development and their response to environmental change, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the contemporary net C-exchange in mires requires direct measurements of all relevant fluxes. We use data on carbon exchange from a boreal minerogenic oligotrophic mire (Degerö Stormyr, 64°11' N, 19°33E) to derive a contemporary carbon budget and to analyze the main controls on the C exchange. Data on the following fluxes were collected: land-atmosphere CO2 (continuous Eddy Covariance measurements, 7 years) and CH4 (static chambers during the snow free period, 4 years) exchange; DOC in precipitation; loss of TOC, CO2 and CH4 through water runoff, 4 years (continuous discharge measurement and regular C-content measurements). The annual land atmosphere exchange of CO2 (NEE) was fairly constant between years and varied between -48 - -61 gCm-2yr-1 during six out of the seven years, despite a large variation in weather combinations, the average being -53 ± 5 gCm-2yr-1. Of the net fixation of atmospheric CO2-C during the net uptake period, i.e. the growing season, approximately a third was lost during the net source period, i.e. the winter period. During the four years with measurements of methane and runoff C-export another third of the growing season uptake was lost from the mire ecosystem as methane and runoff C. While the balance between the length of the NEE uptake and the NEE loss period are most important for the annual net ecosystem carbon balance (NECB) it is central to understand the controls of the spring-summer, and the summer-autumn transitions. The onset of the net C uptake period was controlled by the interaction between the water content and the temperature of the peat moss surface. We interpret this as mainly being a control of the CO2 photosynthesis uptake by the Sphagnum mosses. The transition from being a net C sink to being a net C source is in contrast only controlled by the soil temperature. The higher the soil temperature during the months preceding the transition the earlier the mire will shift from being a C sink to become a C source. Our interpretation is that this transition is mainly controlled by the activity of the heterotrophic microorganisms. During a year with exceptional dry late summer the NEE dropped to -17 gCm-2yr-1, compared to -53±5 gCm- 2yr-1 during "normal" years. During this period the water table level was approximately 15 cm below the long-term lowest level. Data indicate that most of the reduction in NEE comes from decreased GPP while the ecosystem respiration was relatively stable between years. Including all component fluxes the mire still is a sink of atmospheric C during average weather conditions. During the years 2004 and 2005 the Net Ecosystem Balance (NECB) was -20±3.3 gCm-2yr-1. Both emission of methane and runoff export of carbon contributed significantly to the loss of carbon. During the dry year with a NEE of -17 gCm-2yr-1 the methane emission and runoff C export resulted in a NECB not different from 0.
Gopher Tortoise (Gopherus polyphemus) Densities in Coastal Scrub and Slash Pine Flatwoods in Florida
NASA Technical Reports Server (NTRS)
Breininger, David R.; Schmalzer, Paul A.; Hinkle, C. Ross
1994-01-01
Densities of gopher tortoises were compared with habitat characteristics in scrub and in flatwood habitats on the Kennedy Space Center, Florida. Tortoises were distributed widely among habitat types and did not have higher densities in well-drained (oak-palmetto) than in poorly-drained (saw palmetto) habitats. Fall densities of tortoises ranged from a mean of 2.7 individuals/ha in disturbed habitat to 0.0 individuals/ha in saw palmetto habitat. Spring densities of tortoises ranged from a mean of 2.5 individuals/ha in saw palmetto habitat to 0.7 individuals/ha in oak-palmetto habitat. Densities of tortoises were correlated positively with the percent herbaceous cover, an indicator of food resources. Plots were divided into three burn classes; these were areas burned within three years, burned four to seven years, and unburned for more than seven years prior to the study. Relationships between densities of tortoises and time-since-fire classes were inconsistent.
Mapping wetland and forest landscapes in Siberia with Landsat data
NASA Astrophysics Data System (ADS)
Maksyutov, Shamil; Kleptsova, Irina; Glagolev, Mikhail; Sedykh, Vladimir; Kuzmenko, Ekaterina; Silaev, Anton; Frolov, Alexander; Nikolaeva, Svetlana; Fedorov, Alexander
2014-05-01
Landsat data availability provides opportunity for improving the knowledge of the Siberian ecosystems necessary for quantifying the response of the regional carbon cycle to the climate change. We developed a new wetland map based on Landsat data for whole West Siberia aiming at scaling up the methane emission observations. Mid-summer Landsat scenes were used in supervised classification method, based on ground truth data obtained during multiple field surveys. The method allows distinguishing following wetland types: pine-dwarf shrubs-sphagnum bogs or ryams, ridge-hollows complexes, shallow-water complexes, sedge-sphagnum poor fens, herbaceous-sphagnum poor fens, sedge-(moss) poor fens and fens, wooded swamps or sogra, palsa complexes. In our estimates wetlands cover 36% of the taiga area. Total methane emission from WS taiga mires is estimated as 3.6 TgC/yr,which is 77% larger as compared to the earlier estimate based on partial Landsat mapping combined with low resolution map due to higher fraction of fen area. We make an attempt to develop a forest typology system useful for a dynamic vegetation modeling and apply it to the analysis of the forest type distribution for several test areas in West and East Siberia, aiming at capability of mapping whole Siberian forests based on Landsat data. Test region locations are: two in West Siberian middle taiga (Laryegan and Nyagan), and one in East Siberia near Yakutsk. The ground truth data are based on analysis of the field survey, forest inventory data from the point of view of the successional forest type classification. Supervised classification was applied to the areas where ample ground truth and inventory data are available, using several limited area maps and vegetation survey. In Laryegan basin the upland forest areas are dominated (as climax forest species) by Scots pine on sandy soils and Siberian pine with presence of fir and spruce on the others. Those types are separable using Landsat spectral data alone. In the permafrost area around Yakutsk the most widespread succession type is birch to larch succession. Three stages of the birch to larch succession are detectable from Landsat image. When Landsat data is used in both West and East Siberia, distinction between deciduous broad-leaved species (birch, aspen, and willow) is difficult due to similarity in spectral signatures. Same problem exists for distinguishing between dark coniferous species (Siberian pine, fir and spruce). Forest classification can be improved by applying landscape type analysis, such as separation into floodplain, terrace, sloping hills.
NASA Astrophysics Data System (ADS)
Ashe, Josie; Luscombe, David; Grand-Clement, Emilie; Gatis, Naomi; Anderson, Karen; Brazier, Richard
2014-05-01
The Exmoor/Dartmoor Mires Project is a peatland restoration programme focused on the geoclimatically marginal blanket bogs of South West England. In order to better understand the hydrological functioning of degraded/restored peatlands and support land management decisions across these uplands, this study is providing robust spatially distributed, hydrological monitoring at a high temporal resolution and in near real time. This paper presents the conceptual framework and experimental design for three hydrological monitoring arrays situated in headwater catchments dominated by eroding and drained blanket peatland. Over 250 individual measurements are collected at a high temporal resolution (15 minute time-step) via sensors integrated within a remote telemetry system. These are sent directly to a dedicated server over VHF and GPRS mobile networks. Sensors arrays are distributed at varying spatial scales throughout the studied catchments and record multiple parameters including: water table depth, channel flow, temperature, conductivity and pH measurements. A full suite of meteorological sensors and ten spatially distributed automatic flow based water samplers are also connected to the telemetry system and controlled remotely. This paper will highlight the challenges and solutions to obtaining these data in exceptionally remote and harsh field conditions over long (multi annual) temporal scales.
Hackley, P.C.; Martinez, M.
2007-01-01
About 7??Mt of high volatile bituminous coal are produced annually from the four coal zones of the Upper Paleocene Marcelina Formation at the Paso Diablo open-pit mine of western Venezuela. As part of an ongoing coal quality study, we have characterized twenty-two coal channel samples from the mine using organic petrology techniques. Samples also were analyzed for proximate-ultimate parameters, forms of sulfur, free swelling index, ash fusion temperatures, and calorific value. Six of the samples represent incremental benches across the 12-13??m thick No. 4 bed, the stratigraphically lowest mined coal, which is also mined at the 10??km distant Mina Norte open-pit. Organic content of the No. 4 bed indicates an upward increase of woody vegetation and/or greater preservation of organic material throughout the life of the original mire(s). An upward increase in telovitrinite and corresponding decrease in detrovitrinite and inertinite illustrate this trend. In contrast, stratigraphically higher coal groups generally exhibit a 'dulling upward' trend. The generally high inertinite content, and low ash yield and sulfur content, suggest that the Paso Diablo coals were deposited in rain-fed raised mires, protected from clastic input and subjected to frequent oxidation and/or moisture stress. However, the two thinnest coal beds (both 0.7??m thick) are each characterized by lower inertinite and higher telovitrinite content relative to the rest of Paso Diablo coal beds, indicative of less well-established raised mire environments prior to drowning. Foreland basin Paleocene coals of western Venezuela, including the Paso Diablo deposit and time-correlative coal deposits of the Ta??chira and Me??rida Andes, are characterized by high inertinite and consistently lower ash and sulfur relative to Eocene and younger coals of the area. We interpret these age-delimited coal quality characteristics to be due to water availability as a function of the tectonic control of subsidence rate. It is postulated that slower subsidence rates dominated during the Paleocene while greater foreland basin subsidence rates during the Eocene-Miocene resulted from the loading of nappe thrust sheets as part of the main construction phases of the Andean orogen. South-southeastward advance and emplacement of the Lara nappes during the oblique transpressive collision of the Caribbean and South American tectonic plates in the Paleocene was further removed from the sites of peat deposition, resulting in slower subsidence rates. Slower subsidence in the Paleocene may have favored the growth of raised mires, generating higher inertinite concentrations through more frequent moisture stress. Consistently low ash yield and sulfur content would be due to the protection from clastic input in raised mires, in addition to the leaching of mineral matter by rainfall and the development of acidic conditions preventing fixation of sulfur. In contrast, peat mires of Eocene-Miocene age encountered rapid subsidence due to the proximity of nappe emplacement, resulting in lower inertinite content, higher and more variable sulfur content, and higher ash yield.
Boreal mire Green House Gas exchange in response to global change perturbations
NASA Astrophysics Data System (ADS)
Nilsson, Mats
2017-04-01
High latitude boreal peatlands contribute importantly to the land-atmosphere-hydrosphere exchange of carbon and GHG, i.e. carbon dioxide, methane and dissolved organic carbon. High latitude biomes are identified as most vulnerable to changing climate. High latitudes are also characterized by a strong seasonality in incoming solar radiation, weather conditions and thus also in biogeochemical processes. The strong seasonality in incoming solar radiation, not to change in response to a changing climate, constitute firm constraints on how changes in air temperature, evapotranspiration and precipitation will affect biogeochemical processes underlying the land atmosphere and land hydrosphere exchange of green house gases. In this presentation I combine data from long-term monitoring, long-term field manipulations and detailed chemical analysis to understand how changes in atmosphere and weather conditions influence the major carbon fluxes of a boreal mire Net Ecosystem Carbon Balance. The long-term monitoring data contains >12 years of continuous Eddy Covariance CO2 data, growing season chamber CH4 data and continuous measurements of discharge export of DOC, CO2 and CH4. Data from long-term field snow removal manipulations and growing season temperature increase manipulations are used to further understand the impact of climate on mire carbon and GHG fluxes. Finally we uses Nuclear Magnetic Spectroscopy (NMR) to reveal how century scale changes in atmospheric CO2 from 300 to 400 pm CO2 and temperature have influenced the net photosynthetic capacity of Sphagnum mosses, the single most important plant genus for boreal mire carbon sequestration.
Suping, P.; Flores, R.M.
1996-01-01
Sedimentary facies types of the Pleistocene deposits of the Modern Pearl River Delta in Guangdong Province, China and Permian Member D deposits in Huainan coalfield in Anhui Province are exemplified by depositional facies of anastomosing fluvial systems. In both study areas, sand/sandstone and mud/mudstone-dominated facies types formed in diverging and converging, coeval fluvial channels laterally juxtaposed with floodplains containing ponds, lakes, and topogenous mires. The mires accumulated thin to thick peat/coal deposits that vary in vertical and lateral distribution between the two study areas. This difference is probably due to attendant sedimentary processes that affected the floodplain environments. The ancestral floodplains of the Modern Pearl River Delta were reworked by combined fluvial and tidal and estuarine processes. In contrast, the floodplains of the Permian Member D were mainly influenced by freshwater fluvial processes. In addition, the thick, laterally extensive coal zones of the Permian Member D may have formed in topogenous mires that developed on abandoned courses of anastomosing fluvial systems. This is typified by Seam 13-1, which is a blanket-like body that thickens to as much as 8 in but also splits into thinner beds. This seam overlies deposits of diverging and converging, coeval fluvial channels of the Sandstone D, and associated overbank-floodplain deposits. The limited areal extent of lenticular Pleistocene peat deposits of the Modern Pearl River Delta is due to their primary accumulation in topogenous mires in the central floodplains that were restricted by contemporaneous anastomosing channels.
Thiros, Susan A.; Cordy, G.E.
1991-01-01
Bydrologic data were collected for the proposed Quitchupah and Pines coal-lease tracts in Sevier and Bnery Counties, Utah, in order to describe the hydrology and potential effects of mining on the hydrologic system. The Quitchupah and Pines coal-lease tracts are near the Southern Utah Fuel Company coal mine in an area of the central Wasatch Plateau that is characterized by a relatively flat plateau deeply dissected by steep-sided canyons.Surface water in the Quitchupah and Pines study area drains to two perennial streams, Muddy Creek to the north and Quitchupah Creek to the south. Peak streamflow is usually in May and June in response to snowmelt runoff; however, thunderstorms can cause short-term high flows in late summer and fall. The specific conductance of surface water in and near the study area measured during the 1987 water year ranged from 440 (iS/cm to 860 (iS/cm. Suspended-sediment concentrations ranged from 17 to 10,900 mg/L in the Quitchupah Creek drainage and 34 to 312 mg/L in the Muddy Creek drainage.Stable-isotope studies indicate that recharge to aquifers in the study area is by seepage of snowmelt into rock outcrops. Discharge from the aquifers is at springs, seeps, mines, and zones of seepage in streambeds. The chemical quality of ground water is related to the mineralogy of the formations with which the water has contact. Water from the upper part of the Cast legate Sandstone has the smallest concentration of dissolved solids, 61 mg/L, and water from the North Horn Formation has the largest concentration, 1,080 mg/L.Observed effects of underground coal mining at the nearby active mine are considered indicative of the changes that can be expected in the Quitchupah and Pines coal-lease tracts. Subsidence above the mined area could cause dewatering of the Blackhawk Formation and the Star Point Sandstone, changes in the natural drainage patterns, and alteration of both surface- and ground-water quality. Additional studies are needed to gain a better understanding of the hydrologic effects of underground mining in the Quitchupah and Pines coal-lease tracts.
AmeriFlux US-Me2 Metolius-intermediate aged ponderosa pine
Law, Bev [Oregon State University
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Me2 Metolius-intermediate aged ponderosa pine. Site Description - The mean stand age is 64 years old and the stand age of the oldest trees is about 100 years old. This site is one of the Metolius cluster sites with different age and disturbance classes and part of the AmeriFlux network (http://ameriflux.ornl.gov/fullsiteinfo.php?sid=88). The overstory is almost exclusively composed of ponderosa pine trees (Pinus ponderosa Doug. Ex P. Laws) with a few scattered incense cedars (Calocedrus decurrens (Torr.) Florin) and has a peak leaf area index (LAI) of 2.8 m2 m-2. Tree height is relatively homogeneous at about 16 m, and the mean tree density is approximately 325 trees ha-1 (Irvine et al., 2008). The understory is sparse with an LAI of 0.2 m2 m-2 and primarily composed of bitterbrush (Purshia tridentate (Push) DC.) and Manzanita (Arctostaphylos patula Greene). Soils at the site are sandy (69%/24%/7% sand/silt/clay at 0–0.2 m depth and 66%/27%/7% at 0.2–0.5 m depth, and 54%/ 35%/11% at 0.5–1.0 m depth), freely draining with a soil depth of approximately 1.5 m (Irvine et al., 2008; Law et al., 2001b; Schwarz et al., 2004).
Factors controlling fluxes of volatile sulfur compounds in Sphagnum peatlands. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Demello, William Zamboni
1992-01-01
Exchange of DMS and OCS between the surface of Sphagnum peatlands and the atmosphere were measured with dynamic (S-free sweep air) and static enclosures. DMS emission rates determined by both methods were comparable. The dynamic method provided positive OCS flux rates (emission) for measurements performed at sites containing Sphagnum. Conversely, data from the static method indicated that OCS was consumed from the atmosphere. Short and long-term impacts of increased S deposition on fluxes of volatile S compounds (VSC's) from Sphagnum peatlands were investigated in a poor fen (Mire 239) at the Experimental Lakes Area, Ontario, Canada. Additional experiments were conducted in a poor fen (Sallie's Fen in Barrington, NH, USA). At Mire 239, emissions of VSC's were monitored, before and after acidification, at control and experimental sections within two major physiographic areas of the mire (oligotrophic and minerotrophic). DMS was the predominant VSC released from Mire 239 and varied largely with time and space. Sulfur addition did not affect DMS emissions in a period of hours to a few days. DMS emissions in the experimental oligotrophic area of the mire was approximately 3-fold greater than in the control oligotrophic area, and approximately 10-fold greater than in the minerotrophic zones. These differences could be due to a combination of differences in types of vegetation, nutritional status, and S input. At Sallie's Fen, DMS fluxes were not significantly affected by sulfate amendments, while DMS and MSH concentrations increased greatly with time in the top 10 cm of the peat column. The major environmental factors controlling fluxes of DMS in a Sphagnum-dominated peatland were investigated in Sallie's Fen, NH. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Temperature seemed to be the major environmental factor controlling these variabilities. Concentrations of dissolved VSC's varied with time and space throughout the fen. Dissolved DMS, MSH, and OCS in the surface of the water table were supersaturated with respect to their concentrations in the atmosphere. Sphagnum mosses did not appear to be a direct source of VSC's, however they increase transport of DMS from the peat surface to the atmosphere.
Ecosystem-Vegetation Dynamics in sub-arctic Stordalen Mire, Sweden
NASA Astrophysics Data System (ADS)
Mugnani, M. P.; Varner, R. K.; Steele, K.; Frey, S. D.; Crill, P. M.
2012-12-01
Increased global temperatures have contributed to the thaw of permafrost and a subsequent atmospheric release of stored methane (CH4) from sub-arctic ecosystems. Palsas, small frost uplifted mounds that support specialized dry-tolerant vegetation species, degrade when permafrost thaws, allowing other species such a Sphagnum and Eriophorum to encroach on the microhabitats and outcompete other species, altering the carbon feedback into the thin arctic soil. Other climate change-related events including increased precipitation, seasonal temperature abnormalities and changes in humidity and nutrient availability may alter vegetation dynamics in terms of diversity and abundance in sub-arctic regions. During July 2012, measurements of vegetation composition and species abundance estimates were made in Stordalen Mire (68° 21' N, 19° 03' E), Abisko Sweden, two hundred kilometers north of the Arctic Circle. The mire is an area of discontinuous permafrost populated by micro-ecosystems that vary in vegetation species and abundance depending on growth conditions. All ecosystems provide beneficial services to support a range of life forms including rodents, birds, insects and reindeer. Five representative ecosystems of the mire were chosen to conduct studies on vegetation diversity and percent cover-based abundance: palsa, Eriophorum-dominated fen, Sphagnum-dominated peatland, lakeshore edge and lakeside heath. In each ecosystem vegetation species were recorded in six transects with quadrats along with a corresponding percent cover estimation and scale number based on the Braun-Blanquet percent cover method. To determine nutrient dynamics between ecosystems, soil peat samples were also taken at random from all ecosystem transects. These were analyzed for carbon and inorganic nitrogen as well as ammonium and nitrate. In the vegetation data analysis, the Shannon-Wiener Diversity Index showed that the lakeside heath ecosystem was the most diverse and even in species distribution followed by lakeshore edge, palsa, Sphagnum and Eriophorum fen. These results, in addition to species composition data, suggested correlations between ecosystem dynamics and species diversity that could be used to extrapolate predictions about future mire ecosystem status and vegetation composition as climate change and permafrost thaw continues.
Individual Fit Testing of Hearing Protection Devices Based on Microphone in Real Ear.
Biabani, Azam; Aliabadi, Mohsen; Golmohammadi, Rostam; Farhadian, Maryam
2017-12-01
Labeled noise reduction (NR) data presented by manufacturers are considered one of the main challenging issues for occupational experts in employing hearing protection devices (HPDs). This study aimed to determine the actual NR data of typical HPDs using the objective fit testing method with a microphone in real ear (MIRE) method. Five available commercially earmuff protectors were investigated in 30 workers exposed to reference noise source according to the standard method, ISO 11904-1. Personal attenuation rating (PAR) of the earmuffs was measured based on the MIRE method using a noise dosimeter (SVANTEK, model SV 102). The results showed that means of PAR of the earmuffs are from 49% to 86% of the nominal NR rating. The PAR values of earmuffs when a typical eyewear was worn differed statistically ( p < 0.05). It is revealed that a typical safety eyewear can reduce the mean of the PAR value by approximately 2.5 dB. The results also showed that measurements based on the MIRE method resulted in low variability. The variability in NR values between individuals, within individuals, and within earmuffs was not the statistically significant ( p > 0.05). This study could provide local individual fit data. Ergonomic aspects of the earmuffs and different levels of users experience and awareness can be considered the main factors affecting individual fitting compared with the laboratory condition for acquiring the labeled NR data. Based on the obtained fit testing results, the field application of MIRE can be employed for complementary studies in real workstations while workers perform their regular work duties.
Ecological Health and Water Quality Assessments in Big Creek Lake, AL
NASA Astrophysics Data System (ADS)
Childs, L. M.; Frey, J. W.; Jones, J. B.; Maki, A. E.; Brozen, M. W.; Malik, S.; Allain, M.; Mitchell, B.; Batina, M.; Brooks, A. O.
2008-12-01
Big Creek Lake (aka J.B. Converse Reservoir) serves as the water supply for the majority of residents in Mobile County, Alabama. The area surrounding the reservoir serves as a gopher tortoise mitigation bank and is protected from further development, however, impacts from previous disasters and construction have greatly impacted the Big Creek Lake area. The Escatawpa Watershed drains into the lake, and of the seven drainage streams, three have received a 303 (d) (impaired water bodies) designation in the past. In the adjacent ecosystem, the forest is experiencing major stress from drought and pine bark beetle infestations. Various agencies are using control methods such as pesticide treatment to eradicate the beetles. There are many concerns about these control methods and the run-off into the ecosystem. In addition to pesticide control methods, the Highway 98 construction projects cross the north area of the lake. The community has expressed concern about both direct and indirect impacts of these construction projects on the lake. This project addresses concerns about water quality, increasing drought in the Southeastern U.S., forest health as it relates to vegetation stress, and state and federal needs for improved assessment methods supported by remotely sensed data to determine coastal forest susceptibility to pine bark beetles. Landsat TM, ASTER, MODIS, and EO-1/ALI imagery was employed in Normalized Difference Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI), as well as to detect concentration of suspended solids, chlorophyll and water turbidity. This study utilizes NASA Earth Observation Systems to determine how environmental conditions and human activity relate to pine tree stress and the onset of pine beetle invasion, as well as relate current water quality data to community concerns and gain a better understanding of human impacts upon water resources.
Conifer Decline and Mortality in Siberia
NASA Astrophysics Data System (ADS)
Kharuk, V.; Im, S.; Ranson, K.
2015-12-01
"Dark needle conifer" (DNC: Abies sibirica, Pinus sibirica and Picea obovata) decline and mortality increase were documented in Russia during recent decades. Here we analyzed causes and scale of Siberian pine and fir mortality in Altai-Sayan and Baikal Lake Regions and West Siberian Plane based on in situdata and remote sensing (QuickBird, Landsat, GRACE). Geographically, mortality began on the margins of the DNC range (i.e., within the forest-steppe and conifer-broadleaf ecotones) and on terrain features with maximal water stress risk (narrow-shaped hilltops, convex steep south facing slopes, shallow well-drained soils). Within ridges, mortality occurred mainly along mountain passes, where stands faced drying winds. Regularly mortality was observed to decrease with elevation increase with the exception of Baikal Lake Mountains, where it was minimal near the lake shore and increased with elevation (up to about 1000 m a.s.l.). Siberian pine and fir mortality followed a drying trend with consecutive droughts since the 1980s. Dendrochronology analysis showed that mortality was correlated with vapor pressure deficit increase, drought index, soil moisture decrease and occurrence of late frosts. In Baikal region Siberian pine mortality correlated with Baikal watershed meteorological variables. An impact of previous year climate conditions on the current growth was found (r2 = 0.6). Thus, water-stressed trees became sensitive to bark beetles and fungi impact (including Polygraphus proximus and Heterobasidion annosum). At present, an increase in mortality is observed within the majority of DNC range. Results obtained also showed a primary role of water stress in that phenomenon with a secondary role of bark beetles and fungi attacks. In future climate with increased drought severity and frequency Siberian pine and fir will partly disappear from its current range, and will be substituted by drought-tolerant species (e.g., Pinus silvestris, Larix sibirica).
Martin, Jeffrey D.; Crawford, Charles G.; Duwelius, R.F.; Renn, D.E.
1987-01-01
Information on the geology, geomorphology, soils, climate, hydrology, water use, land use, population, and coal mining history of Clay, Owen, Sullivan, and Vigo Counties in Indiana is summarized. Site-specific information is given on the morphology , geology, soils, land use, coal mining history, and hydrologic instrumentation of the six watersheds which are each less than 3 sq mi in area. The Wabash, White, and Eel Rivers are the major drainages in west-central Indiana. Average annual precipitation is about 39.5 in/yr and average annual runoff is about 13 in/yr. The most productive aquifers are confined or unconfined outwash aquifers located along the major rivers. Bedrock aquifers are regionally insignificant but are the sole source of groundwater for areas that lack outwash, alluvium, or sand and gravel lenses in till. Indiana has more than 17 billion short tons of recoverable coal reserves; about 11% can be mined by surface methods. Almost half of Indiana 's surface reserves are in Clay, Owen, Sullivan, and Vigo Counties. More than 50,000 acres in west-central Indiana have been disturbed by surface coal mining from 1941 through 1980. Big Slough and Hooker Creek are streams that drain unmined, agricultural watersheds. Row-crop corn and soybeans are the principal crops. Soils are moderately well drained silt loams, and the watersheds well developed dendritic drainage systems. Unnamed tributaries drain mined and reclaimed watersheds. Ridges of mine spoil have been graded to a gently rolling topography. Soils are well drained and consist of 6 to 12 inches of silt-loam topsoil that was stockpiled and then replaced over shale and sandstone fragments of the graded mine spoil. Grasses and legumes form the vegetative cover in each watershed. Pond Creek and an unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Soils are very well drained shaly silty loams that have formed on steeply sloping banks. Both watersheds contain numerous impoundments of water and have enclosed areas that do not contribute surface runoff to streamflow. The ridges of mine spoil are covered with pine trees, but much of the soil surface is devoid of vegetation. (Lantz-PTT)
Kellomäki, Seppo; Peltola, Heli; Nuutinen, Tuula; Korhonen, Kari T; Strandman, Harri
2008-07-12
This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and southern edges of this forest zone. In the north, forest growth may increase, but the special features of northern forests may be diminished. In the south, climate change may create a suboptimal environment for Norway spruce. Dominance of Scots pine may increase on less fertile sites currently occupied by Norway spruce. Birches may compete with Scots pine even in these sites and the dominance of birches may increase. These changes may reduce the total forest growth locally but, over the whole of Finland, total forest growth may increase by 44%, with an increase of 82% in the potential cutting drain. The choice of appropriate species and reduced rotation length may sustain the productivity of forest land under climate change.
Water resources of the Snake River watershed, east-central Minnesota
Lindholm, Gerald F.; Helgesen, J.O.; Broussard, W.L.; Ericson, D.W.
1974-01-01
The Snake River, which drains an area of about 1,030 square miles, originates in an extensive area of peat bogs in the northern part of the watershed. It flows southward across gently rolling glacial terrain in which the major relief is near the river. Near the southern boundary of the watershed, the Snake River turns eastward to its confluence with the St. Croix River. The northwest half of the watershed is heavily forested, whereas much of the southeast half has been cleared. The largest communities in the watershed, Mora and Pine City, had 1970 populations of 2,582 and 2,143, respectively.
Seven centuries of atmospheric Pb deposition recorded in a floating mire from Central Italy
NASA Astrophysics Data System (ADS)
Zaccone, Claudio; Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro M.; Shotyk, William
2016-04-01
Floating mires generally consist of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Generally speaking, the entire floating mass (mat) is divided into a mat root zone and an underlying mat peat zone. Floating mires are distributed world-wide; large areas of floating marsh occur along rivers and lakes in Africa, the Danube Delta in Romania, the Amazon River in South America, and in the Mississippi River delta in USA, whereas smaller areas occur also in The Netherlands, Australia and Canada. While peat cores from ombrotrophic bogs have been often (and successfully) used to reconstruct changes in the atmospheric deposition of several metals (including Pb), no studies are present in literature about the possibility to use peat profiles from floating mires. To test the hypothesis that peat-forming floating mires could provide an exceptional tool for environmental studies, a complete, 4-m deep peat profile was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum palustre centre. The whole core was frozen cut each 1-to-2 cm (n =231), and Pb determined by quadrupole ICP-MS (at the ultraclean SWAMP lab, University of Alberta, Canada) in each sample throughout the first 100 cm, and in each odd-numbered slice for the remaining 300 cm. The 14C age dating of organic sediments (silty peat) isolated from the sample at 385 cm of depth revealed that the island probably formed ca. 700 yrs ago. Lead concentration trend shows at least two main zones of interest, i.e., a clear peak (ranging from 200 to 1600 ppm) between 110-115 cm of depth, probably corresponding to early 1960's - late 1970's, and a broad band (80-160 ppm) between 295-320 cm of depth, corresponding to approximately AD 1480-1650. Lead concentrations were normalized to those of Th, a conservative, lithophile element often used as an indicator of the abundance of mineral particles. Crustal enrichment factor values, calculated by normalizing the Pb/Th ratio in peat samples to the corresponding ratio for the Upper Continental Crust, clearly show that almost all the Pb reaching this floating isle in the last seven centuries is of anthropogenic origin. In particular, while the big peak around 100-115 cm of depth is associated with that of Sb, the band around 300 cm characterized also the trend of several other major and trace elements (i.e., Ag, Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr, Th, Tl, U, V, Y, Zn) with the exception of Sb. Although γ-spectrometry measurement (210Pb, 137Cs and 241Am) for the first 100 cm of this core is still on-going, at the best of our knowledge, this work may provide the first Pb chronology obtained from a (4 m) deep floating mire. Furthermore, it is to note that a) this floating mire could consist of the southernmost European population of Sphagnum, and b) this core shows a great potential to be used as archive of environmental changes, especially considering its high resolution (1 cm = 0.5 yr in the first 100 cm, and 2-2.5 yrs in the remaining 300 cm of depth). The Authors thank the Municipality of Posta Fibreno, Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling.
Occurrence of organic arsenic species in a 4-m deep free-floating mire
NASA Astrophysics Data System (ADS)
Lobianco, Daniela; Zaccone, Claudio; Raber, Georg; D'Orazio, Valeria; Miano, Teodoro; Francesconi, Kevin
2017-04-01
Wetlands play a key role in the fate of major and trace elements, affecting their environmental mobility and ecotoxicity. Arsenic (As) is a chalcophile element that is recognized as a serious health risk worldwide. Inorganic forms of this metalloid are dominant in soils, whereas the organic forms generally occur only in trace amounts. Nevertheless, methylation processes are responsible for the mobilization of As in several ecosystems, especially in anoxic conditions. Peat cores from ombrotrophic bogs have been used to determine atmospheric depositional fluxes of total As over centuries, although the contribution of organic vs inorganic As species has been rarely considered. Here, 47 peat samples collected throughout a 400-cm deep, free-floating mire have been analysed for total As and for its organic species, including dimethylarsinic acid (DMA), methylarsonic acid (MA), trimethylarsine oxide (TMAO) and arsenobetaine (AB) by HPLC-ICP-MS. Total As concentration throughout the profile ranged between 0.20 and 9.79 mg/kg (1.41±1.36 mg/kg; mean ± st. dev.), showing values that are quite low compared to other mire ecosystems. Organic As species (DMA+MA+TMAO+AB) account, on average, for 28±10% of total As (range 6-47%; median 28%), and for 41±14% of the extracted As (range 7-73%; median 42%). The relative abundance of organoarsenicals generally followed the order DMA>TMAO˜MA>>AB, and was not correlated with main physical and chemical properties of peat, including its degree of decomposition. There was, however, a highly significant (p <0.001) statistical correlation among all organic As compounds. This result provides new insights into the occurrence of organic As species in floating mires, suggesting a possible common biological pathway for their formation.
Treatment of Bell's Palsy Using Monochromatic Infrared Energy: A Report of 2 Cases.
Ng, Shu Yan; Chu, Ming Him E
2014-06-01
The purpose of the study is to describe the use of monochromatic infrared energy (MIRE) therapy in the management of 2 patients with Bell's palsy. Two patients presented to a chiropractic clinic with Bell's palsy that was diagnosed by a medical physician. Both patients were treated using MIRE. The acute patient was a 32-year-old male. He presented with left facial palsy 1 day before the consultation. He was unable to puff the left cheek and close the left eyelid. He had difficulty raising the left eyebrow. The chronic case was a 46-year-old lady. Prior to the first consultation, she was treated with corticosteroid and electro-acupuncture for one and a half years, with incomplete recovery. When first seen, the left corner of mouth drooped and she had difficulty raising her left eyebrow. Monochromatic infrared energy therapy, emitting 890 nm infrared light, was placed on the post-auricular area, pre-auricular area, the temple and mandibular area of the affected side. Each treatment lasted 30 minutes. Photographs were taken every week to document changes. The acute case received 19 treatments in 6 weeks. He reported an improvement of 95%. The chronic case received a total of 45 treatments in 9 months. She rated an improvement of 50%. At the conclusion of treatment, she was able to close her left eyelid and puff her left cheek but still could not raise her left eyebrow. These 2 patients seemed to respond to a different degree to the MIRE therapy. As 71% of patients with Bell's palsy recover uneventfully without any treatment, the present study describes the course of care but cannot confirm the effectiveness of MIRE therapy in the management of Bell's palsy.
Treatment of Bell's Palsy Using Monochromatic Infrared Energy: A Report of 2 Cases
Ng, Shu Yan; Chu, Ming Him E.
2014-01-01
Objective The purpose of the study is to describe the use of monochromatic infrared energy (MIRE) therapy in the management of 2 patients with Bell's palsy. Clinical features Two patients presented to a chiropractic clinic with Bell's palsy that was diagnosed by a medical physician. Both patients were treated using MIRE. The acute patient was a 32-year-old male. He presented with left facial palsy 1 day before the consultation. He was unable to puff the left cheek and close the left eyelid. He had difficulty raising the left eyebrow. The chronic case was a 46-year-old lady. Prior to the first consultation, she was treated with corticosteroid and electro-acupuncture for one and a half years, with incomplete recovery. When first seen, the left corner of mouth drooped and she had difficulty raising her left eyebrow. Intervention and outcome Monochromatic infrared energy therapy, emitting 890 nm infrared light, was placed on the post-auricular area, pre-auricular area, the temple and mandibular area of the affected side. Each treatment lasted 30 minutes. Photographs were taken every week to document changes. The acute case received 19 treatments in 6 weeks. He reported an improvement of 95%. The chronic case received a total of 45 treatments in 9 months. She rated an improvement of 50%. At the conclusion of treatment, she was able to close her left eyelid and puff her left cheek but still could not raise her left eyebrow. Conclusion These 2 patients seemed to respond to a different degree to the MIRE therapy. As 71% of patients with Bell's palsy recover uneventfully without any treatment, the present study describes the course of care but cannot confirm the effectiveness of MIRE therapy in the management of Bell's palsy. PMID:25685117
Four years of UAS Imagery Reveals Vegetation Change Due to Permafrost Thaw
NASA Astrophysics Data System (ADS)
DelGreco, J. L.; Herrick, C.; Varner, R. K.; McArthur, K. J.; McCalley, C. K.; Garnello, A.; Finnell, D.; Anderson, S. M.; Crill, P. M.; Palace, M. W.
2017-12-01
Warming trends in sub-arctic regions have resulted in thawing of permafrost which in turn induces change in vegetation across peatlands. Collapse of palsas (i.e. permafrost plateaus) has also been correlated to increases in methane (CH4) emissions to the atmosphere. Vegetation change provides new microenvironments that promote CH4 production and emission, specifically through plant interactions and structure. By quantifying the changes in vegetation at the landscape scale, we will be able to understand the impact of thaw on CH4 emissions in these complex and climate sensitive northern ecosystems. We combine field-based measurements of vegetation composition and high resolution Unmanned Aerial Systems (UAS) imagery to characterize vegetation change in a sub-arctic mire. At Stordalen Mire (1 km x 0.5 km), Abisko, Sweden, we flew a fixed-wing UAS in July of each year between 2014 and 2017. High precision GPS ground control points were used to georeference the imagery. Seventy-five randomized square-meter plots were measured for vegetation composition and individually classified into one of five cover types, each representing a different stage of permafrost degradation. With this training data, each year of imagery was classified by cover type. The developed cover type maps were also used to estimate CH4 emissions across the mire based on average flux CH4 rates from each cover type obtained from flux chamber measurements collected at the mire. This four year comparison of vegetation cover and methane emissions has indicated a rapid response to permafrost thaw and changes in emissions. Estimation of vegetation cover types is vital in our understanding of the evolution of northern peatlands and its future role in the global carbon cycle.
NASA Astrophysics Data System (ADS)
Goring, S. J.; McLachlan, J. S.; Jackson, S. T.; Blaauw, M.; Christen, J.; Marlon, J.; Blois, J.; Williams, J. W.
2011-12-01
PalEON is a multidisciplinary project that combines paleo and modern ecological data with state-of-the-art statistical and modelling tools to examine the interactions between climate, fire and vegetation during the past two millennia in the northeastern United States. A fundamental challenge for PalEON (and paleo research more broadly) is to improve age modelling to yield more accurate sediment-core chronologies. To address this challenge, we assessed sedimentation rates and their controls for 218 lakes and mires in the northeastern U.S. Sedimentation rates (yr/cm) were calculated from age-depth models, which were obtained from the Neotoma database (www.neotomadb.org) and other contributed pollen records. The age models were recalibrated to IntCal09 and augmented in some cases using biostratigraphic markers (Picea decline, 16 kcal BP - 10.5 kcal BP; Quercus rise, 12 - 9.1 kcal BP; and Alnus decline, 11.5 - 10.6 kcal BP) as described in Blois et al. (2011). Relationships between sedimentation rates and sediment age, site longitude, and depositional environment (lacustrine or mire) are significant but weak. There are clear and significant links between variations in the NGRIP record of δ18O and sedimentation in mires across the PalEON region, but no links to lacustrine sedimentation rates. This result indicates that super-regional climatic control of primary productivity, and thus autochthonic sediment deposition, dominates in mires while deposition in lacustrine basins may be driven primarily by local and regional factors including watershed size, surficial materials,and regional vegetation. The shape of the gamma probability functions that best describe sedimentation rate distributions are calculated and presented here for use as priors in Bayesian age modelling applications such as BACON (Blaauw and Christen, in press). Future applications of this research are also discussed.
Dózsa-Farkas, Klára; Csitári, Bianka; Felföldi, Tamás
2017-04-18
Results of a comparative investigation on five Cernosvitoviella species from Hungarian Sphagnum mires including their distribution and the description of a new species, Cernosvitoviella farkasi sp. n., are presented in this paper. Cernosvitoviella atrata, C. aggtelekiensis, C. crassoductus and C. farkasi sp. n. could be easily distinguished from each other based on both morphological and molecular taxonomic analyses. However, C. minor seems to be a species complex on the basis of these investigations, so it was referred as C. minor sensu lato. The status of the C. minor variants requires further studies.
Characterization of Vegetation Change in a Sub-Arctic Mire using Remotely Sensed Imagery
NASA Astrophysics Data System (ADS)
DelGreco, J. L.; McArthur, K. J.; Palace, M. W.; Herrick, C.; Garnello, A.; Finnell, D.; McCalley, C. K.; Anderson, S. M.; Varner, R. K.
2015-12-01
Climate change is impacting northern ecosystems through the thawing of the permafrost, which has resulted in changes to plant communities and greenhouse gas emissions, such as carbon dioxide (CO2) and methane (CH4). These greenhouse gases are of concern due to their potential feedbacks which create a warmer climate, thus increasing permafrost thawing. Our study focuses on how vegetation type differs in areas that have been impacted by thawing permafrost at Stordalen Mire located in Abisko, Sweden. To estimate change in vegetation communities, field-based measurements combined with remotely sensed image data was used. 75 randomized square-meter plots were measured for vegetation composition and classified into one of five site-types, each representing a different stage of permafrost degradation. New high-resolution imagery (1 cm) was collected using Unmanned Aerial Vehicles (UAV) providing insight into the spatial patterning, characterizations, and changes of these communities. The UAV imagery was georectified using high precision GPS points collected across the mire. The imagery was then examined using a neural network analysis to estimate cover type across the mire. This 2015 cover type classification was then compared to previous UAV imagery taken on July 2014 to analyze changes in vegetation distribution as an indication of permafrost thaw. Hummock sites represent intact permafrost and have lost 21.5% coverage since 2014, while tall gramminoid sites, which indicate fully thawed sites, have increased coverage by 12.1%. A discriminate function analysis showed that site types can be differentiated based on species composition, thus showing that vegetation differs significantly across the thaw gradient. Using average flux rates of CH4 from each cover type reported previously, the percent of CH4 emitted over the mire was estimated for 2014 and 2015. Comparing both estimates, CH4 emissions increased with a flux change of 5604.5 g CH4/day. Our estimates of vegetation change may be used to parameterize simulation models and create future scenarios of how the vegetation cover will change in response to climate change. Data from this study will also help to explain how the ecology of the subarctic peatlands, now a carbon sink, may be on its way to changing into a source of carbon.
Understanding the structure of Exmoor's peatland ecosystems using laser-scanning technologies
NASA Astrophysics Data System (ADS)
Luscombe, D. J.; Anderson, K.; Wetherelt, A.; Grand-Clement, E.; Le-Feuvre, N.; Smith, D.; Brazier, R. E.
2012-04-01
Upland blanket peatlands in the UK are of high conservation value and in an intact state, provide important landscape services, such as carbon sequestration and flood attenuation. The drainage of many such wetlands for agricultural reclamation has resulted in changes to upland blanket mire topography, ecology, hydrological processes and carbon fluxes. There is a need for spatially explicit monitoring approaches at peatland sites in the UK as although there has been a national effort to restore drained peat uplands, baseline and post restoration monitoring of changes to ecosystem structure and function is largely absent. Climate change policy and the emerging carbon markets also necessitate the need for enhanced system understanding to inform carbon targets and understand the impacts of restoration. Exmoor is the focus of this research because many areas of upland peat have, in the past, been extensively drained through government "moorland reclamation" programs. A large restoration project funded by South West Water is currently underway in association with Exmoor National Park, The Environment Agency and Natural England. Exmoor also provides an analogue for other westerly peatlands in the British Isles in terms of its climate, ecology and drainage characteristics. Our approach employed airborne LiDAR data gathered by the Environment Agency Geomatics Group coupled with Terrestrial Laser Scanning (TLS) surveys. LiDAR data were processed to produce digital surface models (DSM) of the peatland surface at a 0.5m resolution. These data were further interrogated to separate vegetation structures and geomorphic features such as man-made drainage channels which have damaged the peatland. Over small extents the LiDAR derived DSM surface was then compared to a TLS derived DSM to examine the ability of these models to describe fine scale vegetation and geomorphic structure, which could then be extrapolated to larger spatial extents. Exploration of the data has shown that ecosystem structure can be described at a fine resolution (>10 million measurements, resolution
Dissolved organic carbon in soil solution of peat-moorsh soils on Kuwasy Mire
NASA Astrophysics Data System (ADS)
Jaszczyński, J.; Sapek, A.
2009-04-01
Key words: peat-moorsh soils, soil solution, dissolved organic carbon (DOC), temperature of soil, redox potential. The objective this study was the dissolved organic carbon concentration (DOC) in soil solution on the background of soil temperature, moisture and redox potential. The investigations were localized on the area of drained and agricultural used Kuwasy Mire, which are situated in the middle basin of Biebrza River, in North-East Poland. Research point was placed on a low peat soil of 110 cm depth managed as extensive grassland. The soil was recognized as peat-moorsh with the second degree of the moorshing process (with 20 cm of moorsh layer). The ceramic suction cups were installed in three replications at 30 cm depth of soil profile. The soil solution was continuously sampled by pomp of the automatic field station. The successive samples comprised of solution collected at the intervals of 21 days. Simultaneously, at the 20, 30 and 40 cm soil depths the measurements of temperature and determination of soil moisture and redox potential were made automatically. The mean twenty-four hours data were collected. The concentrations of DOC were determined by means of the flow colorimeter using the Skalar standard methods. Presented observations were made in 2001-2006. Mean DOC concentration in soil solution was 66 mg.dm-3 within all research period. A significant positive correlation between studied compound concentration and temperature of soil at 30 cm depth was observed; (correlation coefficient - r=0.55, number of samples - n=87). The highest DOC concentrations were observed during the season from July to October, when also a lower ground water level occurred. The DOC concentration in soil solution showed as well a significant correlation with the soil redox potential at 20 cm level. On this depth of describing soil profile a frontier layer between moorshing layer and peat has been existed. This layer is the potentially most active in the respect to biochemical transformation. On the other hand it wasn't possible to shown dependences on the DOC concentration from soil moisture. That probably results from a huge water-holding capacity of these type of peat soils, which are keeping a high moisture content even at a long time after decreasing of the groundwater table.
Vegetation of eastern Unalaska Island, Aleutian Islands, Alaska
Talbot, Stephen S.; Schofield, Wilfred B.; Talbot, Sandra L.; Daniëls, Fred J. A.
2010-01-01
Plant communities of Unalaska Island in the eastern Aleutian Islands of western Alaska, and their relationship to environmental variables, were studied using a combined Braun-Blanquet and multivariate approach. Seventy relevés represented the range of structural and compositional variation in the matrix of vegetation and landform zonation. Eleven major community types were distinguished within six physiognomic–ecological groups: I. Dry coastal meadows: Honckenya peploides beach meadow, Leymus mollis dune meadow. II. Mesic meadows: Athyrium filix-femina – Aconitum maximum meadow, Athyrium filix-femina – Calamagrostis nutkaensis meadow, Erigeron peregrinus – Thelypteris quelpaertensis meadow. III. Wet snowbed meadow: Carex nigricans snowbed meadow. IV. Heath: Linnaea borealis – Empetrum nigrum heath, Phyllodoce aleutica heath, Vaccinium uliginosum – Thamnolia vermicularis fellfield. V. Mire: Carex pluriflora – Plantago macrocarpa mire. VI. Deciduous shrub thicket: Salix barclayi – Athyrium filix-femina thicket. These were interpreted as a complex gradient primarily influenced by soil moisture, elevation, and pH. Phytogeographical and syntaxonomical analysis of the plant communities indicated that the dry coastal meadows, most of the heaths, and the mire vegetation belonged, respectively, to the widespread classes Honckenyo–Elymetea, Loiseleurio–Vaccinietea, and Scheuchzerio–Caricetea, characterized by their circumpolar and widespread species. Amphi-Beringian species were likely diagnostic of amphi-Beringian syntaxa, many of these yet to be described.
NASA Astrophysics Data System (ADS)
Dudová, Lydie; Hájková, Petra; Opravilová, Věra; Hájek, Michal
2014-07-01
We discovered the first peat section covering the entire Holocene in the Hrubý Jeseník Mountains, representing an island of unique alpine vegetation whose history may display transitional features between the Hercynian and Carpathian regions. We analysed pollen, plant macrofossils (more abundant in bottom layers), testate amoebae (more abundant in upper layers), peat stratigraphy and chemistry. We found that the landscape development indeed differed from other Hercynian mountains located westward. This is represented by Pinus cembra and Larix during the Pleistocene/Holocene transition, the early expansion of spruce around 10,450 cal yr BP, and survival of Larix during the climatic optimum. The early Holocene climatic fluctuations are traced in our profile by species compositions of both the mire and surrounding forests. The mire started to develop as a calcium-rich percolation fen with some species recently considered to be postglacial relicts (Meesia triquetra, Betula nana), shifted into ombrotrophy around 7450 cal yr BP by autogenic succession and changed into a pauperised, nutrient-enriched spruce woodland due to modern forestry activities. We therefore concluded that its recent vegetation is not a product of natural processes. From a methodological viewpoint we demonstrated how using multiple biotic proxies and extensive training sets in transfer functions may overcome taphonomic problems.
Flores, R.M.; Sykes, R.
1996-01-01
The Buller Coalfield on the West Coast of the South Island, New Zealand, contains the Eocene Brunner Coal Measures. The coal measures unconformably overlie Paleozoic-Cretaceous basement rocks and are conformably overlain by, and laterally interfinger with, the Eocene marine Kaiata Formation. This study examines the lithofacies frameworks of the coal measures in order to interpret their depositional environments. The lower part of the coal measures is dominated by conglomeratic lithofacies that rest on a basal erosional surface and thicken in paleovalleys incised into an undulating peneplain surface. These lithofacies are overlain by sandstone, mudstone and organic-rich lithofacies of the upper part of the coal measures. The main coal seam of the organic-rich lithofacies is thick (10-20 m), extensive, locally split, and locally absent. This seam and associated coal seams in the Buller Coalfield are of low- to high-volatile bituminous rank (vitrinite reflectance between 0.65% and 1.75%). The main seam contains a variable percentage of ash and sulphur. These values are related to the thickening and areal distribution of the seam, which in turn, were controlled by the nature of clastic deposition and peat-forming mire systems, marine transgression and local tidal incursion. The conglomeratic lithofacies represent deposits of trunk and tributary braided streams that rapidly aggraded incised paleovalleys during sea-level stillstands. The main seam represents a deposit of raised mires that initially developed as topogenous mires on abandoned margins of inactive braidbelts. Peat accumulated in mires as a response to a rise in the water table, probably initially due to gradual sea-level rise and climate, and the resulting raised topography served as protection from floods. The upper part of the coal measures consists of sandstone lithofacies of flu vial origin and bioturbated sandstone, mudstone and organic-rich lithofacies, which represent deposits of paralic (deltaic, barrier shoreface, tidal and mire) and marine environments. The fluvial sandstone lithofacies accumulated in channels during a sea-level stillstand. The channels were infilled by coeval braided and meandering streams prior to transgression. Continued transgression, ranging from tidal channel-estuarine incursions to widespread but uneven paleoshoreline encroachment, accompanied by moderate basin subsidence, is marked by a stacked, back-stepping geometry of bioturbated sandstone and marine mudstone lithofacies. Final retrogradation (sea-level highstand) is marked by backfilling of estuaries and by rapid landward deposition of the marine Kaiata Formation in the late Eocene.
NASA Astrophysics Data System (ADS)
Oestmann, Jan; Tiemeyer, Bärbel
2017-04-01
Drainage of peatlands for agriculture, forestry and peat extraction turned these landscapes into hotspots of greenhouse gas emissions. Climate protection now fosters rewetting projects to restore the natural peatland function as a sink of atmospheric carbon. One possible way to combine ecological and economical goals is Sphagnum farming, i.e. the cultivation of Sphagnum mosses as high-quality substrates for horticulture. This project scientifically evaluates the attempt of commercial Sphagnum farming on former peat extraction sites in north-western Germany. The exchange of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) of the whole peatland-based production chain comprising a donor mire, a propagation area, an irrigation polder and a cultivation site will be determined in a high temporal resolution for two years using manual chambers. This will allow evaluating the greenhouse gas balance of Sphagnum farming sites in comparison to near-natural sites and the potential of Sphagnum farming for restoring drained peatlands to sinks of atmospheric carbon. The influence of different irrigation techniques will also be tested. Additionally, selected plots will be equipped with open top chambers in order to examine the greenhouse gas exchange under potential future climate change conditions. Finally, a 13C pulse labeling experiment will make it possible to trace the newly sequestered CO2 in biomass, soil, respiration and dissolved organic carbon.
Modelling Seasonal Carbon Dynamics on Fen Peatlands
NASA Astrophysics Data System (ADS)
Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Roppel, Mario; Juszczak, Radoszlav; Serba, Tomasz
2010-05-01
In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges between soil and atmosphere on several fen peatland use areas at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements on our site of varying types of agricultural land use. There we found significant differences in the annual carbon balances depending on the genesis of the observed sites and the seasonal dynamics. Annual balances were constructed by applying single respiration and photosynthesis CO2 models for each measurement campaign. These models were based on LLOYD-TAYLOR (1994) and Michaelis-Menten-Kinetics respectively. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the identification of main flux driving parameters. Based on this procedure we developed a specific methane efflux model, mainly driven by the observed groundwater fluctuation and soil temperature. Depending on the observed timescale initial starting points of the model showed up to be remarkably different. We also will present suggestions for an advanced CO2 modelling as the present approaches are both based on single parameters. Generally our experiences from our field studies show that mono-parameterized models often fail in reproducing measured flux values. References: Augustin, J., Merbach, W., Käding, H., Schnidt, W. & Schalitz, G. 1996. Lachgas- und Methanemissionen aus degradierten Niedermoorstandorten Nordostdeutschlands unter dem Einfluß unterschiedlicher Bewirtschaftung. Alfed-Wegener-Stiftung (ed.): Von den Ressourcen zum Recycling: Geoanalytik-Geomanagement-Geoinformatik. Ernst & Sohn Verlag. Berlin Charman, D. 2002: Peatland and environmental change. John Wiley & Sons, LTD, Chichester Droesler, M. 2005. Trace Gas Exchange and climatic relevance of bog ecosystems, Southern Germany, phD-thesis, TU München, München Joosten, H. & Clarke, D. 2002: Wise use of mires and peatlands-background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society (eds.), Finland Kuntze 1993: Moore als Senken und Quellen für C und N, Mitt. Deutsche Bodenkundliche Gesellschaft 69, 277-280 Lloyd, J., Taylor, J. A. 1994. On the Temperature Dependence of Soil Respiration, Functional Ecology, Vol. 8, No. 3, pp. 315-323 Succow, M. & Joosten, H. 2001: Landschaftsökologische Moorkunde, 2nd edition, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart
NASA Astrophysics Data System (ADS)
Byers, A.; Harpold, A. A.; Barnard, H. R.
2011-12-01
The hydrologic cycle plays a central role in regulating ecosystem structure and function. Linked studies of both subsurface and aboveground processes are needed to improve understanding of ecosystem changes that could result from climate change and disturbance in Colorado's subalpine forests. Here, we present data from plots dominated by lodgepole pine (Pinus contorta) at the Niwot Ridge LTER site on the Colorado Front Range that improves the process-level understanding of the source and fate of water between subsurface storage and plant uptake. This study utilized event-based sampling during the 2011 growing season to investigate a paradox between water sources and rooting depth in lodgepole pine. Findings from Niwot Ridge have shown that lodgepole, typically believed to be a shallow-rooted species, appear to be strongly dependent on water from snowmelt for the entire growing season. These results suggested that conifer species were accessing water from deeper in the soil than summer monsoon rain typically penetrated. In our study, the relationship between precipitation event size and depth of infiltration on a seasonal and event basis, the effective rooting depth of lodgepole pine, and hysteretic responses of transpiration to soil moisture over a growing season were examined using measurements of tree physiological processes (sap flux and water stress) and hydrological parameters (precipitation, soil moisture) as well as stable water isotope composition of xylem water, mobile and immobile soil water, snow, precipitation, and stream water. Analysis of data shows that soil moisture in deep layers (60 and 70 cm) responds to large summer rain events of 0.7 mm and greater, and that lodgepole sap flux increases by 15-30% within 24 hours of monsoon events and decreases over 72 hours or until subsequent rain. Water isotope analysis will further elucidate the source and event response of these trees. This research helps us understand whether processes known to occur in Mediterranean climate regimes, such as the "two water worlds" theory that tightly bound water in soil is available to trees but is separate from mobile water that drains to streams, also applies to continental mountainous climates. Furthermore, understanding the mediation of hydrologic processes by trees like lodgepole pine will improve modeling of hydrological and ecological processes and knowledge of forest susceptibility to climate change and other disturbance impacts.
Water and Energy Balances of Loblolly Pine Plantation Forests during a Full Stand Rotation
NASA Astrophysics Data System (ADS)
Sun, G.; Mitra, B.; Domec, J. C.; Gavazi, M.; Yang, Y.; Tian, S.; Zietlow, D.; McNulty, S.; King, J.; Noormets, A.
2017-12-01
Loblolly pine (Pinus taeda) plantations in the southern U.S. are well recognized for their ecosystem services in supplying clean and stable water and mitigating climate change through carbon sequestration and solar energy partitioning. Since 2004, we have monitored energy, water, and carbon fluxes in a chronosequence of three drained loblolly pine plantations using integrated methods that include eddy covariance, sap flux, watershed hydrometeorology, remote sensing, and process-based simulation modeling. Study sites were located on the eastern North Carolina coastal plain, representing highly productive ecosystems with high groundwater table, and designated in the Ameriflux network as NC1 (0-10 year old), NC2 (12-25 year old) and NC3 (0-3 years old). The 13-year study spanned a wide range of annual precipitation (900-1600 mm/yr) including two exceptionally dry years during 2007-2008. We found that the mature stand (NC2) had higher net radiation (Rn) flux due to its lower albedo (α =0.11-12), compared with the young stands (NC1, NC3) (α=0.15-0.18). Annually about 75%-80% of net radiation was converted to latent heat in the pine plantations. In general, the mature stand had higher latent heat flux (LE) (i.e. evapotranspiration (ET)) rates than the young stands, but ET rates were similar during wet years when the groundwater table was at or near the soil surface. During a historic drought period (i.e., 2007-2008), total stand annual ET exceeded precipitation, but decreased about 30% at NC2 when compared to a normal year (e.g., 2006). Field measurements and remote sensing-based modeling suggested that annual ET rates increased linearly from planting age (about 800 mm) to age 15 (about 1050 mm) and then stabilized as stand leaf area index leveled-off. Over a full stand rotation, approximately 70% (young stand) to 90% (mature stand) of precipitation was returned to the atmosphere through ET. We conclude that both climatic variability and canopy structure controlled the partitioning of precipitation and solar energy in pine forests. In addition, we conclude that accessible groundwater was important factor for stabilizing forest water and energy balances during a drought in the lower coastal ecosystems.
Climate-Induced Mortality of Siberian Pine and Fir in the Lake Baikal Watershed, Siberia
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Im, Sergei T.; Petrova, IIya A.; Golyukov, Alexei S.; Ranson, Kenneth J.; Yagunov, Mikhail N.
2016-01-01
Siberian pine (Pinus sibirica) and fir (Abies sibirica) (so called "dark needle conifers", DNC) showed decreased radial growth increment within the Lake Baikal watershed since the 1980s with increasing mortality recorded since the year 2000. Tree ring width was strongly correlated with vapor pressure deficit, aridity and root zone moisture. Water stress from droughts made trees more susceptible to insect attacks causing mortality in about 10% of DNC stands within the Lake Baikal watershed. Within Siberia DNC mortality increased in the southern part of the DNC range. Biogeographically, tree mortality was located within the DNC - forest-steppes transition. Tree mortality was significantly correlated with drought and soil moisture anomalies. Within the interior of the DNC range mortality occurred within relief features with high water stress risk (i.e., steep convex south facing slopes with shallow well-drained soils). In general, DNC mortality in Siberia was induced by increased aridity and severe drought (inciting factors) in synergy with biotic attacks (contributing factor). In future climate scenarios with predicted increase in aridity DNC could be eliminated from the southern part of its current range and will be replaced by drought-resistant conifers and broadleaf species (e.g., Larix sibirica, Pinus silvestris, and Betula pubescence).
Climate-induced mortality of "dark needle conifer" in Siberian taiga
NASA Astrophysics Data System (ADS)
Kharuk, Viacheslav; Im, Sergei; Petrov, Ilya
2017-04-01
Within Siberia fir (Abies sibirica) and Siberian pine (Pinus sibirica) (so called "dark needle conifers", DNC) mortality increased in the southern part of the DNC range. Siberian pine and fir showed decreased radial growth increment within southern Siberia since the 1980s with increasing mortality recorded since the year 2000. Tree ring width was strongly correlated with vapor pressure deficit, aridity and root zone moisture. Water stress from droughts made trees more susceptible to insect attacks causing mortality in about 10% of DNC stands in southern Siberia. Biogeographically, tree mortality was located within the DNC - forest-steppes transition. Tree mortality was significantly correlated with drought and soil moisture anomalies. Within the interior of the DNC range mortality occurred within relief features with high water stress risk (i.e., steep convex south facing slopes with shallow well-drained soils). In general, DNC mortality in Siberia was induced by increased aridity and severe drought (inciting factors) in synergy with biotic attacks (contributing factor). In particular, bark beetle Polygraphus proximus made a strong input on the fir mortality. In future climate scenarios with predicted increase in aridity DNC could be eliminated from the southern part of its current range and will be replaced by drought-resistant conifers and broadleaf species (e.g., Larix sibirica, Pinus sylvestris, and Betula pubescence).
Climate-Induced Mortality of Siberian Pine and Fir in the Lake Baikal Watershed, Siberia
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Im, Sergei T.; Petrov, Ilya A.; Golyukov, Alexei S.; Ranson, Kenneth J.; Yagunov, Mikhail N.
2016-01-01
Siberian pine (Pinus sibirica) and fir (Abies sibirica) (so called ''dark needle conifers", DNC) showed decreased radial growth increment within the Lake Baikal watershed since the 1980s with increasing mortality recorded since the year 2000. Tree ring width was strongly correlated with vapor pressure deficit, aridity and root zone moisture. Water stress from droughts made trees more susceptible to insect attacks causing mortality in about 10% of DNC stands within the Lake Baikal watershed. Within Siberia DNC mortality increased in the southern part of the DNC range. Biogeographically, tree mortality was located within the DNC - forest-steppes transition. Tree mortality was significantly correlated with drought and soil moisture anomalies. Within the interior of the DNC range mortality occurred within relief features with high water stress risk (i.e., steep convex south facing slopes with shallow well-drained soils). In general, DNC mortality in Siberia was induced by increased aridity and severe drought (inciting factors) in synergy with biotic attacks (contributing factor). In future climate scenarios with predicted increase in aridity DNC could be eliminated from the southern part of its current range and will be replaced by drought-resistant conifers and broadleaf species (e.g., Larix sibirica, Pinus silvestris, and Betula pubescence).
Nichols, D.J.
2005-01-01
Palynology can be effectively used in coal systems analysis to understand the nature of ancient coal-forming peat mires. Pollen and spores preserved in coal effectively reveal the floristic composition of mires, which differed substantially through geologic time, and contribute to determination of depositional environment and paleo- climate. Such applications are most effective when integrated with paleobotanical and coal-petrographic data. Examples of previous studies of Miocene, Carboniferous, and Paleogene coal beds illustrate the methods and results. Palynological age determinations and correlations of deposits are also important in coal systems analysis to establish stratigraphic setting. Application to studies of coalbed methane generation shows potential because certain kinds of pollen are associated with gas-prone lithotypes. ??2005 Geological Society of America.
Biochemical processes of oligotrophic peat deposits of Vasyugan Mire
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Sergeeva, M. A.
2009-04-01
The problem of peat and mire ecosystems functioning and their rational use is the main problem of biosphere study. This problem also refers to forecasting of biosphere changes results which are global and anthropogenic. According to many scientists' research the portion of mires in earth carbon balance is about 15% of world's stock. The aim of this study is to investigate biochemical processes in oligotrophic deposits in North-eastern part of Vasyugan Mire. The investigations were made on the territory of scientific-research ground (56Ë 03´ and 56Ë 57´ NL, 82Ë 22´ and 82Ë 42´ EL). It is situated between two rivers Bakchar and Iksa (in outskirts of the village Polynyanka, Bakchar region, Tomsk oblast). Evolution of investigated mire massif began with the domination of eutrophic phytocenosis - Filicinae, then sedge. Later transfer into oligotrophic phase was accompanied by formation of meter high-moor peat deposit. The age of three-meter peat deposit reaches four thousand years. Biochemical processes of carbon cycle cover the whole peat deposit, but the process activity and its direction in different layers are defined by genesis and duration of peat formation. So, the number of cellulose-fermenting aerobes in researched peat deposits ranges from 16.8 to 75.5 million CFU/g, and anaerobic bacteria from 9.6 to 48.6 million CFU/g. The high number of aerobes is characteristic for high water levels, organizing by raised bog peats. Their number decreases along the profile in 1.7 - 2 times. The number of microflora in peat deposit is defined by the position in the landscape profile (different geneses), by the depth, by hydrothermic conditions of years and individual months. But microflora activity shows along all depth of peat deposit. We found the same in the process of studying of micromycete complex structure. There was revealed either active component micromycete complex - mycelium, or inert one - spores in a meter layer of peat deposit. If mushrooms spores are observed in all deposit layers, mycelium of mushrooms deepens into the peat deposit (to 2 meters) within the limits of aerobic (meter) zone and only in particular months of dry years. The existence of seasonal dynamics of eukaryotic cells, and also capability of yeast and other groups of micromycetes for growth, testifies about vital activity of a number of eukaryotic cells at a depth of 2 meters. Researched peat deposits are biochemically active along the whole profile. But they are different in a microflora number of individual physiological groups either in items of the landscape, or in deposit depth. The largest quantity of aerobic cellulose-fermenting microorganisms is marked during dry years. Anaerobic cellulose-fermenting microorganisms dominate during wet years. The quantity of microbe biomass increases in bottom lifts of peat deposits. This fact testifies about viable condition of microbe complex at depth. The formation process of carbon dioxide in peat deposits of Vasyugan Mire actively occurs during dry years and is defined by hydrothermic conditions of a meter layer of peat deposit. The intensity of CO2 isolation for certain correlates with the temperature in horizon of 0 - 50 sm. and with bog waters level. The study of gas composition for the three years showed that the largest concentration of carbon dioxide in peat soils is marked along the whole profile during a dryer year (0.08 - 2.65 millimole/l), increasing other years' level in about 1.5 0 2 times. Emission of carbon dioxide in peat
NASA Astrophysics Data System (ADS)
Bosiö, Julia; Johansson, Margareta; Njuabe, Herbert; Christensen, Torben R.
2013-04-01
This study was initiated to analyze the effect of snow cover on photosynthesis and plant growth in subarctic mires underlain by permafrost. Due to their narrow environmental window these raised bogs, often referred to as palsa mires, are highly sensitive to climatic changes. In Fennoscandia palsa mires are currently subjected to climate related thawing and shift in vegetational and hydrological patterns. Yet, we know little of how these subarctic permafrost mires react and feed back to such changes. By using snow fences to hinder snow drift the accumulation of snow was increased in six plots (10x20 m) in a snow manipulation experiment on a subarctic permafrost mire in northern Sweden. The thicker snow pack prolongs the duration of the snow cover in spring, causing a delay in the onset, as well as an overall shortening of the growing season. By measuring incoming and reflected photosynthetic active radiation (PAR) we wanted to address the question whether the increased snow thickness and associated delay of the growing season start affected the absorbed PAR and the accumulated gross primary production (GPP) over the season. The reflected PAR was measured at twelve plots where six of the plots experienced increased snow accumulation (treatment), and remaining six plots were untreated (control). Minikin QT sensors with integrated data loggers logged incoming and reflected PAR hourly throughout the growing seasons of 2011 and 2012. In July - September 2010 PAR measurements were coupled with flux chamber measurements to assess GPP and light use efficiency of the plots. The increased accumulation of snow prolonged the duration of the snow cover in spring, causing a delay in the onset, as well as an overall shortening of the growing season in the treated plots. The end of the growing season was not affected by the snow manipulation. The delay of the growing season start and hence overall shortening of the growing season in the treatment plots was 18 days in 2011 and 3 days in 2012 in relation to control plots. Results show higher PAR absorption together with almost 50% higher light use efficiency in treatment plots compared with control plots. Estimations of GPP suggest that the loss in early season photosynthesis due to the shortening of the growing season in the treatment plots is well compensated for by the increased absorption of PAR and higher light use efficiency throughout the whole growing seasons. This compensation is likely to be explained by increased soil moisture and nutrient availability together with a shift in vegetation composition associated with the accelerated permafrost thaw in the treatment plots. In our presentation implications and possible feedbacks of the increased absorbed PAR and estimated change in GPP will be discussed.
Acoustic Monitoring of Ebullitive Flux from a Mire Ecosystem in Subarctic Sweden
NASA Astrophysics Data System (ADS)
Burke, S. A.; Varner, R. K.; Palace, M. W.; Wik, M.; Crill, P. M.; McCalley, C. K.; Amante, J.
2012-12-01
Methane (CH4) is a potent green house gas with wetlands being the largest natural source to the atmosphere. Studies in the Stordalen Mire, a dynamic peatland complex 11km east of the Abisko Scientific Research Station (ANS) in northern Sweden, that focused on CH4 transport to the atmosphere from peatlands have shown increased emissions over the past decades. Ebullitive flux (bubbling) is a potentially significant pathway of CH4 from mire/lake ecosystems. Ebullitive fluxes were successfully monitored acoustically in peat and lakes in 2011. This work expands those measurements with installation of sensors in ponds and permafrost thaw margins in 2012. Eighteen acoustic sensors were installed in peat (6), pond (6), and lake (6) sites at Stordalen Mire. Recorders collected acoustic data continuously from each sensor and gas samples were collected from the traps at least once per week beginning 7 July. The CH4 concentration in the gas was measured using gas chromatography and selected samples were also analyzed for 13C-CH4 using a Quantum Cascade Laser (QCL). The acoustic data were evaluated using a MATLAB program for determine the timing and volume of each ebullition event. The CH4 ebullitive flux from the peat was greater in July 2011 than during the same period in 2012. In comparison, the ponds and thaw margins released CH4 at a faster rate in 2012 than was observed in the peat and lake sensors in 2011. Inter-annual differences in ebullitive rates suggest that weather scale differences between years may control CH4 ebullitive flux. 13C-CH4 measured in the pore waters of pond sediment suggests that not all ponds are dominated by the same production processes. However, 13C-CH4 measured in bubbles and sediments are not different, implying little or no oxidation of CH4 during transport to the water surface. Our data suggests that changes in atmospheric pressure and water table height correlated with the ebullitive release in all three sub-ecosystems.
Global change shifts vegetation and plant-parasite interactions in a boreal mire.
Wiedermann, Magdalena M; Nordin, Annika; Gunnarsson, Urban; Nilsson, Mats B; Ericson, Lars
2007-02-01
The aim of this study was to detect vegetation change and to examine trophic interactions in a Sphagnum-dominated mire in response to raised temperature and nitrogen (N) addition. A long-term global-change experiment was established in 1995, with monthly additions of N (30 kg x ha(-1) x yr(-1)) and sulfur (20 kg x ha(-1) x yr(-1)) during the vegetation period. Mean air temperature was raised by 3.6 degrees C with warming chambers. Vegetation responses were negligible for all treatments for the first four years, and no sulfur effect was seen during the course of the experiment. However, after eight years of continuous treatments, the closed Sphagnum carpet was drastically reduced from 100% in 1995 down to 41%, averaged over all N-treated plots. Over the same period, total vascular plant cover (of the graminoid Eriophorum vaginatum and the two dwarf-shrubs Andromeda polifolia and Vaccinium oxycoccos) increased from 24% to an average of 70% in the N plots. Nitrogen addition caused leaf N concentrations to rise in the two dwarf-shrubs, while for E. vaginatum, leaf N remained unchanged, indicating that the graminoid to a larger extent than the dwarf-shrubs allocated supplemented N to growth. Concurrent with foliar N accumulation of the two dwarf-shrubs, we observed increased disease incidences caused by parasitic fungi, with three species out of 16 showing a significant increase. Warming caused a significant decrease in occurrence of three parasitic fungal species. In general, decreased disease incidences were found in temperature treatments for A. polifolia and in plots without N addition for V. oxycoccos. The study demonstrates that both bryophytes and vascular plants at boreal mires, only receiving background levels of nitrogen of about 2 kg x ha(-1) x yr(-1), exhibit a time lag of more than five years in response to nitrogen and temperature rise, emphasizing the need for long-term experiments. Moreover, it shows that trophic interactions are likely to differ markedly in response to climate change and increased N deposition, and that these interactions might play an important role in controlling the change in mire vegetation composition, with implications for both carbon sequestration and methane emission.
Zaccone, Claudio; Lobianco, Daniela; Shotyk, William; Ciavatta, Claudio; Appleby, Peter G.; Brugiapaglia, Elisabetta; Casella, Laura; Miano, Teodoro M.; D’Orazio, Valeria
2017-01-01
Floating islands mysteriously moving around on lakes were described by several Latin authors almost two millennia ago. These fascinating ecosystems, known as free-floating mires, have been extensively investigated from ecological, hydrological and management points of view, but there have been no detailed studies of their rates of accumulation of organic matter (OM), organic carbon (OC) and total nitrogen (TN). We have collected a peat core 4 m long from the free-floating island of Posta Fibreno, a relic mire in Central Italy. This is the thickest accumulation of peat ever found in a free-floating mire, yet it has formed during the past seven centuries and represents the greatest accumulation rates, at both decadal and centennial timescale, of OM (0.63 vs. 0.37 kg/m2/yr), OC (0.28 vs. 0.18 kg/m2/yr) and TN (3.7 vs. 6.1 g/m2/yr) ever reported for coeval peatlands. The anomalously high accretion rates, obtained using 14C age dating, were confirmed using 210Pb and 137Cs: these show that the top 2 m of Sphagnum-peat has accumulated in only ~100 years. As an environmental archive, Posta Fibreno offers a temporal resolution which is 10x greater than any terrestrial peat bog, and promises to provide new insight into environmental changes occurring during the Anthropocene. PMID:28230066
Wojtuń, Bronisław; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Klink, Agnieszka; Kempers, Alexander J
2013-01-01
Concentrations of the elements Cd, Cr, Cu, Fe, Li, Mn, N, Ni, Pb and Zn in Andromeda polifolia, Oxycoccus microcarpus and in the peat in which these plants grew were measured in the Western Sudety (Karkonosze and Izerskie Mts., SW Poland). Of both the investigated plant fruit, O. microcarpus harvested from wild populations are commonly used as medicines. Samples from ombrotrophic bogs were investigated within the area influenced by exhausts of the former Black Triangle, one of the most heavily industrialized and polluted areas in Europe. A. polifolia and O. microcarpus growing at the highest elevations contained the highest Cu, Li, Ni, Mn and Zn concentrations and in addition O. microcarpus also contained the highest Cr concentrations. Both the investigated species have wide circumpolar distribution in ombrotrophic mires of the Northern hemisphere. As this type of mires is nourished solely by atmospheric deposition, the increased metal concentrations in A. polifolia and O. microcarpus may be an indication that their habitats receive an atmospheric input of long-range transported pollution. Our investigation proves that both species are able to accumulate elevated metal levels and may be used in the bioindication of the metal status in ombrotrophic mires. Controlling the collection of O. microcarpus fruit for consumption and medicinal purposes is recommended as this species can accumulate increased metal levels. However, further more detailed studies are necessary to verify the inner translocation of metals into fruit.
Powell, Mark W; Carnegie, Dale H; Burke, Thomas J
2006-01-01
to determine whether restoration of sensation, impaired due to diabetic peripheral neuropathy (DPN), would reduce the number of falls and the fear of falling and improve activities of daily living (ADL) in a Medicare-aged population. retrospective cohort study of patients with documented, monochromatic near-infrared phototherapy (MIRE)-mediated, symptomatic reversal of DPN. responses to a health status questionnaire following symptomatic reversal of DPN. 252 patients (mean age 76 years) provided health information following symptomatic reversal of diabetic neuropathy (mean duration 8.6 months). incidence of falls and fear of falling decreased within 1 month after reversal of peripheral neuropathy and remained low after 1 year. Likewise, improved ADL were evident soon after reversal of peripheral neuropathy and showed further improvement after 1 year. Overall, reversal of peripheral neuropathy in a clinician's office and subsequent use of MIRE at home was associated with a 78% reduction in falls, a 79% decrease in balance-related fear of falling and a 72% increase in ADL (P < 0.0002 for all results). reversal of peripheral neuropathy is associated with an immediate reduction in the absolute number of falls, a reduced fear of falling and improved ADL. These results suggest that symptomatic reversal of diabetic neuropathy will have a substantial favourable, long-term socioeconomic impact on patients with DPN and the Medicare system, and improve the quality of life for elderly patients with diabetes and peripheral neuropathy.
Contrasting impact of forestry-drainage on CO2 balance at two adjacent peatlands in Finland
NASA Astrophysics Data System (ADS)
Lohila, Annalea; Minkkinen, Kari; Penttilä, Timo; Launiainen, Samuli; Koskinen, Markku; Ojanen, Paavo; Laurila, Tuomas
2014-05-01
Fate of carbon in peatlands after drainage has been a subject of many studies, particularly at agriculturally managed sites, but also at sites prepared for forestry. In general, the drainage of peatlands has been considered to trigger the decomposition rate of peat and to cause carbon dioxide (CO2) emissions from the peat into the atmosphere. However, there is not yet full consensus on what are the main regulating factors of the carbon balances in forested peatlands, and do all the forested peatland even act as a source of carbon into the atmosphere. In this study we compare the CO2 exchange rates at two adjacent peatland sites in southern Finland, drained for forestry about 40 years earlier. The pair of sites with similar climatic conditions offer an excellent case for studying the mechanisms controlling the carbon balances of forestry-drained peatlands. The sites differ from each other only by fertility, which has an impact on, e.g., tree growth rate. At both sites, CO2 and energy fluxes have been measured with the eddy covariance method over the course of 4 years, but not simultaneously. We have also built at both sites an automatic system consisting of six transparent closed chambers which collect data on the CO2 exchange of the forest floor vegetation (including tree roots) and soil around the year. This enables us to quantify the carbon uptake potential of the ground layer and the peat decomposition rates and helps us to understand the differences between the sites. The results show that the pine and dwarf-shrub-dominated site (nutrient-poor) is a large CO2 sink. The site with a mixture of spruce, birch and pine and lesser ground vegetation (nutrient-rich), on the contrary, has a close-to-neutral CO2 balance, despite the much higher tree growth rate there. In this presentation we will compare the general dynamics and climatic responses of CO2 exchange at the sites, compare the magnitude and factors causing interannual variation, and discuss potential reasons for the different carbon balances.
Carbon balance of a fertile forestry-drained peatland in southern Finland
NASA Astrophysics Data System (ADS)
Lohila, Annalea; Korkiakoski, Mika; Tuovinen, Juha-Pekka; Minkkinen, Kari; Penttilä, Timo; Ojanen, Paavo; Launiainen, Samuli; Laurila, Tuomas
2016-04-01
Forestry on peatlands is a significant land use form and has been economically important during the last decades particularly in the Nordic countries. While nutrient-poor forests are generally able to maintain their carbon sink status even after drainage, the peat soil at the fertile sites is typically considered as a large carbon dioxide (CO2) source. This means that despite of high timber production capacity, the fertile peatland forests gradually lose their peat carbon store. In addition, many of the nutrient-rich sites emit considerable amount of nitrous oxide (N2O) into the atmosphere. While the current estimates of the greenhouse gas (GHG) balance of forestry-drained peatlands are largely based on soil inventories or on data combining soil GHG fluxes and tree growth litter input measurements and modelling, only few studies have utilized the high-resolution, continuous eddy covariance (EC) data to address the short-term dynamics of the net CO2 fluxes covering both the soil, forest floor vegetation and the trees. Hence, little is known about the factors which control the year-to-year variation in fluxes. Here we present a 5-year dataset of CO2 fluxes measured with the EC method above a nutrient-rich forestry-drained peatland in southern Finland. The site, drained in the beginning of 1970's, is a well growing pine forest with some spruces and birches, the tree volume and carbon fixation rate equaling 8.0 kg C m-2 and 0.273 kg C m-2 yr-1, respectively. The average summer-time water level depth is -50 cm. By combining the gap-filled half-hourly net ecosystem exchange (NEE) data, the tree growth measurements, and the measurements on dissolved organic carbon (DOC) losses and soil methane (CH4) exchange, we will in this presentation estimate the total annual loss of peat carbon of this fertile peatland forest. In addition, using the N2O flux data we will estimate the contribution of different gases to the total GHG balance. Factors controlling the carbon balance and its seasonal and inter-annual variation are discussed.
Screening bioactivity and bioactive constituents of Nordic unifloral honeys.
Salonen, Anneli; Virjamo, Virpi; Tammela, Päivi; Fauch, Laure; Julkunen-Tiitto, Riitta
2017-12-15
The objective of this study was to screen the antibacterial and antioxidant activity of thirty nine honey samples from Finland, Sweden, Norway and Denmark. Their physicochemical properties were analysed, antioxidant activity was evaluated by DPPH assay and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus was assessed by microdilution assay. The honey samples obtained were buckwheat, caraway, clover, dandelion, fireweed, heather, lime tree, lingonberry, rape, raspberry, sweet clover, willow, mire, honeydew and polyfloral. Eleven honey samples showed high antioxidant activity. With 15% honey dilution, three unifloral honeys had over 85% inhibition against growth of P. aeruginosa and ten honey samples against S. aureus. The buckwheat, raspberry and honeydew honeys showed the highest antibacterial and antioxidant activity. An unexpectedly high amount of methylglyoxal was found in mire and forest honeys. Some phenolic compounds are shown to be plant species-specific floral markers due to their appearance in specific unifloral honey samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Russian scientists decry savage job cuts
NASA Astrophysics Data System (ADS)
Stafford, Ned
2016-09-01
More than 100 scientists in Russia have signed an open letter to the country's president, Vladimir Putin, protesting over a lack of funding for research and reforms that they say have left Russian science mired in a chronic state of crisis.
A temporal study of permafrost thaw for a subarctic peatland in northern Sweden
NASA Astrophysics Data System (ADS)
Connolly, John; Persson, Andreas; Giljum, Marco; Crill, Patrick; Roulet, Nigel; Eklundh, Lars; Pilesjö, Petter
2014-05-01
Peatlands or mires contain about one third of the global terrestrial carbon pool and are located on between 3-6% of the global land area. In boreal and sub-arctic regions peatland cover about 3.5 million km2 and are underlain with continuous, discontinuous, sporadic and isolated patches of permafrost. In these areas the soil organic carbon (SOC) pools are stable and decomposition is suspended only as long as the soil is frozen or in an anaerobic state. Climate warming is projected to be greater in the high latitudes where most northern peatlands are found. Observed mean annual air temperatures in northern Sweden have increased by 2-3oC since the 1950s. This is causing permafrost thaw and increasing the vulnerability of peatland C, especially in discontinuous and sporadic permafrost area. A growing number of studies have examined the impact of climate-induced thaw and the potential vulnerability of carbon stored in frozen peatlands. Thawing permafrost leads to changes in the form and function of northern peatlands. This is characterised by the transition of dry palsa mires to wetter peatland pits, depressions and pools. These new hydrological regimes also lead to increased production of methane through subsequent decomposition of plant material. Increases in temperature therefore leads to changes in permafrost distribution, receding palsa areas, geomorphology (thermokarst terrain), hydrology (thus affecting plant community structure, productivity, increased wetter vegetation communities) and C efflux. An increasing number of studies examining the impact of climate change on peatlands in these regions and measurement of CO2 and CH4 fluxes occurs at several discrete peatland sites across the sub-Arctic. However, regional estimations of these fluxes are limited. Geospatial technologies may be used to aid the understanding of the patterns and processes that are occurring in these transition mires over space and time. Several satellite and airborne images have been acquired for Stordalen mire, a palsa peatland in northern Sweden, over a temporal period of 40 years. The imagery database comprises of aerial and satellite imagery from 1970 to 2013. Two studies in the mid-2000s found that the palsa peatland had become wetter in the period from 1970 to 2000. We are continuing this work to see if that trend has continued and to determine if the rate of thaw has increased in the period between 2000 and 2013.
Characterization of subarctic vegetation using ground based remote sensing methods
NASA Astrophysics Data System (ADS)
Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.
2014-12-01
Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from <0.0001 to 0.0461. A stepwise discriminant analysis on site type vs. texture yielded a 10% misclassification rate. Through the use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future work will involve scaling up from the 50 plots through the use of data collected from two unmanned aerial systems (UAS), as well as WorldView-2 satellite imagery collected during the years 2012-2014. Identification of methane flux regions will later be analyzed based on vegetation coverage to aid classification of increased emission zones within the mire.
Hedwall, Per-Ola; Brunet, Jörg; Rydin, Håkan
2017-01-01
Mires (bogs and fens) are nutrient-limited peatland ecosystems, the vegetation of which is especially sensitive to nitrogen deposition and climate change. The role of mires in the global carbon cycle, and the delivery of different ecosystem services can be considerably altered by changes in the vegetation, which has a strong impact on peat-formation and hydrology. Mire ecosystems are commonly open with limited canopy cover but both nitrogen deposition and increased temperatures may increase the woody vegetation component. It has been predicted that such an increase in tree cover and the associated effects on light and water regimes would cause a positive feed-back loop with respect to the ground vegetation. None of these effects, however, have so far been confirmed in large-scale spatiotemporal studies. Here we analyzed data pertaining to mire vegetation from the Swedish National Forest Inventory collected from permanent sample plots over a period of 20 yr along a latitudinal gradient covering 14°. We hypothesized that the changes would be larger in the southern parts as a result of higher nitrogen deposition and warmer climate. Our results showed an increase in woody vegetation with increases in most ericaceous dwarf-shrubs and in the basal area of trees. These changes were, in contrast to our expectations, evenly distributed over most of the latitudinal gradient. While nitrogen deposition is elevated in the south, the increase in temperatures during recent decades has been larger in the north. Hence, we suggest that different processes in the north and south have produced similar vegetation changes along the latitudinal gradient. There was, however, a sharp increase in compositional change at high deposition, indicating a threshold effect in the response. Instead of a positive feed-back loop caused by the tree layer, an increase in canopy cover reduced the changes in composition of the ground vegetation, whereas a decrease in canopy cover lead to larger changes. Increased natural disturbances of the tree layer due to, for example, pathogens or climate is a predicted outcome of climate change. Hence, these results may have important implications for predictions of long-term effects of increased temperature on peatland vegetation. © 2016 by the Ecological Society of America.
Nitrogen retention in contrasting temperate forests exposed to high nitrogen deposition
NASA Astrophysics Data System (ADS)
Staelens, J.; Adriaenssens, S.; Wuyts, K.; Verheyen, K.; Boeckx, P. F.
2011-12-01
A better understanding of factors affecting nitrogen (N) retention is needed to assess the impact of changing anthropogenic N emissions and climatic conditions on N cycling and N loss by terrestrial ecosystems. Retention of N has been demonstrated for a wide range of forests, including ecosystems exposed to chronically enhanced N deposition, but it is still unclear which factors determine this N retention capacity. Therefore, we examined the possible effects of forest type on N retention using stable N isotopes. The study was carried out in adjacent equal-aged deciduous (pedunculate oak (Quercus robur L.)) and coniferous (Scots pine (Pinus sylvestris L.)) stands with a similar stand history and growing on a well-drained sandy soil in a region with enhanced N deposition (Belgium). The N input-output budgets and gross soil N transformation rates differed significantly between the two stands. The forest floor was exposed to a high inorganic N input from atmospheric deposition, which was nearly twice as high in the pine stand (33 ± 2 kg N ha-1 yr-1; mean ± standard error) as in the oak stand (18 ± 1 kg N ha-1 yr-1). The N input was reflected in the soil solution under the rooting zone, but the mean nitrate concentration was eight times higher under pine (19 ± 5 mg N L-1) than under oak (2.3 ± 0.9 mg N L-1). Gross N dynamics in the mineral topsoil were determined by in situ 15N labelling of undisturbed soil cores combined with numerical data analysis. Gross N mineralization was two times faster in the oak soil while nitrate production was two times faster in the pine soil, indicating a dominant effect of vegetation cover on soil N cycling. The higher gross nitrification, particularly due to oxidation of organic N, in the pine soil compared to the oak soil, combined with negligible nitrate immobilization, was in line with the higher nitrate leaching under the pine forest. On a larger spatial and temporal scale, the fate of dissolved inorganic N within these forests was studied by spraying three pulses of 15N onto the forest floor during the growing season, either as ammonium or as nitrate. Four months and one year after the first application, 15N recovery was determined in the organic and mineral soil layers, fine tree roots, soil water percolate, ferns, and tree foliage. As hypothesized, N retention in the forest floor and mineral soil horizons was lower in the pine stand compared to oak, while N retention was lower for nitrate than for ammonium in both stands. The differences in 15N retention confirm that tree species affect the N balance of ecosystems under high anthropogenic N inputs and agree with the findings on gross soil N dynamics and N input-output budgets. Overall, the research underlines the importance of considering the interaction between tree species and carbon and N turnover when assessing the response of forest ecosystems to global change scenarios.
Geologic Map of the Upper Parashant Canyon and Vicinity, Mohave County, Northwestern Arizona
Billingsley, George H.; Harr, Michelle L.; Wellmeyer, Jessica L.
2000-01-01
Introduction The geologic map of the upper Parashant Canyon area covers part of the Colorado Plateau and several large tributary canyons that make up the western part of Arizona's Grand Canyon. The map is part of a cooperative U.S. Geological Survey and National Park Service project to provide geologic information for areas within the newly established Grand Canyon/Parashant Canyon National Monument. Most of the Grand Canyon and parts of the adjacent plateaus have been geologically mapped; this map fills in one of the remaining areas where uniform quality geologic mapping was needed. The geologic information presented may be useful in future related studies as to land use management, range management, and flood control programs for federal and state agencies, and private concerns. The map area is in a remote region of the Arizona Strip, northwestern Arizona about 88 km south of the nearest settlement of St. George, Utah. Elevations range from about 1,097 m (3,600 ft) in Parashant Canyon (south edge of map area) to 2,145 m (7,037 ft) near the east-central edge of the map area. Primary vehicle access is by dirt road locally known as the Mount Trumbull road; unimproved dirt roads and jeep trails traverse various parts of the map area. Travel on the Mount Trumbull road is possible with 2-wheel-drive vehicles except during wet conditions. Extra fuel, two spare tires and extra food and water are highly recommended when traveling in this remote area. The map area includes about 26 sections of land belonging to the State of Arizona, about 40 sections of private land, and a small strip of the Lake Mead National Recreation Area (southeast edge of the map area). The private land is mainly clustered around the abandoned settlement of Mt. Trumbull, locally known as Bundyville, and a few sections are scattered in the upper Whitmore Canyon area just south of Bundyville. Lower elevations within the canyons support a sparse growth of sagebrush, cactus, grass, creosote bush, and a variety of desert shrubs. Sagebrush, grass, cactus, cliffrose bush, pinyon pine trees, juniper trees, and some ponderosa pines thrive at higher elevations. Surface runoff in the north half of the map area drains northward towards the Virgin River in Utah via Hurricane Wash. In the south half of the area, it drains towards the Colorado River in Grand Canyon via Parashant and Whitmore Canyons. Upper Parashant and Whitmore Canyons are part of the physiography of the western Grand Canyon, but are not included within Grand Canyon National Park. The entire map area is now within the newly established Grand Canyon/Parashant Canyon National Monument (as of January, 2000), and is jointly managed by the Lake Mead National Recreational Area, Boulder City, Nevada, and the Bureau of Land Management, Arizona Strip District, St. George, Utah. Surface runoff in the north half of the map area drains northward towards the Virgin River in Utah via Hurricane Wash. In the south half of the area, it drains towards the Colorado River in Grand Canyon via Parashant and Whitmore Canyons. Upper Parashant and Whitmore Canyons are part of the physiography of the western Grand Canyon, but are not included within Grand Canyon National Park. The entire map area is now within the newly established Grand Canyon/Parashant Canyon National Monument (January, 2000), and is jointly managed by the Lake Mead National Recreational Area, Boulder City, Nevada, and the Bureau of Land Management, Arizona Strip District, St. George, Utah.
Even in Public Television, Ownership Changes Matter.
ERIC Educational Resources Information Center
Lashley, Marilyn E.
1992-01-01
Shows that executive turnover through four administrations (1967-89) has kept public broadcasting mired in budgetary crises, transforming its goals, structure, and programing content over time. Describes policy preferences imposed by administrators, identifies attendant modifications in organizational structure, and delineates effects of these…
Combating Daesh: A Socially Unconventional Strategy
2015-06-01
is relying on a minimalist strategy through military partnerships and air support. This research contends that this fairly conventional approach is...ultimately destroy Daesh, yet afraid to mire itself in another Middle Eastern conflict, the United States is relying on a minimalist strategy through
NASA Astrophysics Data System (ADS)
Golovatskaya, Eugenia; Dyukarev, Egor
2010-05-01
Role of peatlands in the global greenhouse gases budget is highly relevant. According to present estimates peatlands in undisturbed conditions act as a sink for the atmospheric carbon. Anthropogenic impact on peatlands (melioration, changes in land use, influence of underground water catchments) results in water table lowering, changing in vegetation cover, and degradation of peat deposit. Peatlands could provide a significant positive feedback for climate changes if warming and peatlands drying stimulates bulk soil organic matter decomposition which enhances CO2 release to the atmosphere. Western Siberian peatlands usually represented big bog massifs. Big peatlands have higher stability to external influence. Small peatlands have all signs of big bogs but react on changes in environmental variables more quickly. The present study is devoted to investigation of primary carbon fluxes (CO2 emission and net primary productivity) and carbon balance at oligotrophic bogs in native condition (key area "Bakchar") and under anthropogenic impact (key area "Ob'-Tom'"). The key area "Bakchar" is located between the Iksa and Bakchar rivers (56o58`N 82o36`E) at the Bakcharskoe bog (area 1400 km2). The key area "Ob'-Tom'"is located in the northern part of Ob' and Tom' interfluve (56o21`N 82o31`E). The "Bakchar" key area includes the following ecosystems: pine- shrub-sphagnum community, a similar community with stunted (low) pine trees, and sedge-sphagnum fen. Two small peatlands were studied at Ob' and Tom' interfluve. Kirsanovskoe bog includes pine- shrub-sphagnum community and sedge fen. Timiryazevskoe bog was represented by pine- shrub-sphagnum (TPSS) community and sedge fen. An infrared gas analyzer OPTOGAS 500.4 (OPTEC Corp., St.-Petersburg, Russia) attached to a static opaque plastic been used for carbon dioxide emission measurements. The net primary productivity was measured by clipping method (Golovatskaya and Dyukarev, Plant Soil 2009). Peatlands at "Ob'-Tom'" key area are under impact of water catchments for Tomsk city supply. Changes in deep waters results in changes of hydrological regime and environment transformations. Water level drawdown leads to increase of aerobic layer thickness, intensification of plant remains decomposition, peat layers compacting and rises of CO2 emission from the surface. Carbon dioxide emission from bogs of "Ob'-Tom'" key area is about two times higher than emission from pristine bogs ("Bakchar" key area). Aboveground net primary productivity determined without tree layer at all studied peatlands has similar values. Belowground net primary productivity at "Ob'-Tom'" key area if 4-7 times higher than at "Bakchar" key area depending on the ecosystem type. An essential increase in root density after water level depletion results in increase on total net productivity by 2.4 times. Carbon budget for pristine peatlands ("Bakchar" key area) varies from 27 (open fen) to 46 (low ryam) gC/m2/yr. Peatlands of "Ob'-Tom'" key area accumulates about 210 gC/m2/yr in average. Our observations of the elements of carbon exchange have shown that at present all studied peatlands act as carbon sinks. Long-term water table lowering at least at first stage stipulates carbon removing from the atmosphere and accumulation in a form of peat. Work was partially supported by Russian Fund of Basic Researches (08-05-00426/a, 08-05-92501).
Community heterogeneity of Early Pennsylvanian peat mires
Gastaldo, Robert A.; Stevanovic-Walls, I. M.; Ware, W.N.; Greb, S.F.
2004-01-01
Reconstructions of Pennsylvanian coal swamps are some of the most common images of late Paleozoic terrestrial ecosystems. All reconstructions to date are based on data from either time-averaged permineralized peats or single-site collections. An erect, in situ Early Pennsylvanian forest preserved above the Blue Creek Coal, Black Warrior Basin, Alabama, was sampled in 17 localities over an area of >0.5 km2, resulting in the first temporally and spatially constrained Pennsylvanian mire data set. This three-tiered forest was heterogeneous. Lycopsid and calamitean trees composed the canopy, and lepidodendrids, Lepidophloios, and sigillarians grew together at most sites. More juvenile than mature lycopsid biomass occurs in the forest-floor litter, indicating a mixed-age, multicohort canopy. Pteridophytes (tree fern) and pteridosperms (seed fern) dominated as understory shrubs, whereas sphenophyllaleans, pteridophytes, and pteridosperms composed the ground-cover and liana tier. The proportion of canopy, understory, and ground-cover biomass varied across the forest. Low proportions of ground-cover and liana taxa existed where canopy fossils accounted for >60% of the litter. There is a distinct spatial clustering of sites with more or less understory (or ground cover) where canopy contribution was <60%. Where canopy biomass was low (<50%), understory shrubs contributed more biomass, indicative of light interception and/or competition strategies. Sphenopteris pottsvillea, a ubiquitous ground-cover plant, is abundant in all sites except one, where pteridosperm creepers and lianas dominate the litter, interpreted to indicate total suppression of other ground-cover growth. Ecological wet-dry gradients identified in other Pennsylvanian swamps do not exist in the Blue Creek mire, with the interpreted wettest (Lepidophloios), driest (Sigillaria), and intermediate (Lepidodendron sensu latu) taxa coexisting in most assemblages. ?? 2004 Geological Society of America.
Review of the inorganic geochemistry of peats and peatland waters
NASA Astrophysics Data System (ADS)
Shotyk, William
1988-06-01
The major floristic and geochemical differences between bogs, fens, and swamps are summarized, and the most common peat types described. This is followed by a critical, historical review of the literature. The methods used to measure the pH of peatland (mire) waters are examined, and the pH range of various peatland types is reported. In addition, horizontal and vertical pH variations are illustrated, and factors affecting the pH of these waters reviewed. The cause of the low pH of surface waters of Sphagnum bogs (approximately pH 4) is critically investigated, and the relative importance of dissolved CO 2 and other inorganic acids, and organic acids to the low pH is assessed. Cation exchange on the surfaces of Sphagnum mosses is found to be a relatively unimportant acidification mechanism, but important to the chemical ecology of the plants. The redox chemistry of mire waters is described in terms of the geochemistry of such redox indicators as O 2, CO 2, CH 4, CO, H 2, H 2S, SO 42-, native Cu, and siderite (FeCO 3). Published studies of Eh in peatlands are cited, and the problems of Eh measurement and interpretation are explored. The chemical composition of mire waters (major and trace metals, and nonmetallic species) is examined, and factors affecting their composition reported. The abundance and distribution of mineral matter in peats is described, and the occurrence and formation of minerals of Fe (pyrite and other sulphides, siderite, vivianite), Cu (chalcopyrite, native Cu, covellite) and Zn (smithsonite and wurtzite) investigated. The abundance and distribution of major elements (Si, Al, Na, K, Mg, Ca) and trace metals (Ni, V, Cr, Fe, Mn, Cu, U, Zn, Pb) is described, and factors affecting their solubility examined.
NASA Astrophysics Data System (ADS)
Resende, Laysa Cristina Araujo; Batista, Inez Staciarini; Denardini, Clezio Marcos; Batista, Paulo Prado; Carrasco, Alexander José; Andrioli, Vânia Fátima; Moro, Juliano
2018-06-01
This work analysis the blanketing sporadic layers (Esb) behavior over São Luís, Brazil (2° 31‧ S, 44° 16‧ W, dip: -4.80) which is classified as a transition region between equatorial and low-latitude. Hence, some peculiarities can appear as Esb occurrence instead of the common Esq, which is a non-blanketing irregularity layer. The analysis presented here was obtained using a modified version of a theoretical model for the E region (MIRE), which computes the densities of the metallic ions (Fe+ and Mg+) and the densities of the main molecular ions (NO+, O2+, N2+) by solving the continuity and momentum equations for each one of them. In that model, the Es layer physics driven by both diurnal and semidiurnal tidal winds are taken into account and it was extended in height coverage by adding a novel neutral wind model derived from the all-sky meteor radar measurements. Thus, we provide more trustworthy results related to the Es layer formation in the equatorial region. We verified the contribution of each tidal wind component to the Esb layer formation in this equatorial region. Additionally, we compared the Es layer electron density computed by MIRE with the data obtained by using the blanketing frequency parameter (fbEs) deduced from ionograms. The results show that the diurnal component of the tidal wind is more important in the Esb layer formation whereas the semidiurnal component has a little contribution in our simulations. Finally, it was verified that the modified MIRE presented here can be used to study the Esb layers occurrence over the equatorial region in the Brazilian sector.
Goldmann tonometry tear film error and partial correction with a shaped applanation surface.
McCafferty, Sean J; Enikov, Eniko T; Schwiegerling, Jim; Ashley, Sean M
2018-01-01
The aim of the study was to quantify the isolated tear film adhesion error in a Goldmann applanation tonometer (GAT) prism and in a correcting applanation tonometry surface (CATS) prism. The separation force of a tonometer prism adhered by a tear film to a simulated cornea was measured to quantify an isolated tear film adhesion force. Acrylic hemispheres (7.8 mm radius) used as corneas were lathed over the apical 3.06 mm diameter to simulate full applanation contact with the prism surface for both GAT and CATS prisms. Tear film separation measurements were completed with both an artificial tear and fluorescein solutions as a fluid bridge. The applanation mire thicknesses were measured and correlated with the tear film separation measurements. Human cadaver eyes were used to validate simulated cornea tear film separation measurement differences between the GAT and CATS prisms. The CATS prism tear film adhesion error (2.74±0.21 mmHg) was significantly less than the GAT prism (4.57±0.18 mmHg, p <0.001). Tear film adhesion error was independent of applanation mire thickness ( R 2 =0.09, p =0.04). Fluorescein produces more tear film error than artificial tears (+0.51±0.04 mmHg; p <0.001). Cadaver eye validation indicated the CATS prism's tear film adhesion error (1.40±0.51 mmHg) was significantly less than that of the GAT prism (3.30±0.38 mmHg; p =0.002). Measured GAT tear film adhesion error is more than previously predicted. A CATS prism significantly reduced tear film adhesion error bŷ41%. Fluorescein solution increases the tear film adhesion compared to artificial tears, while mire thickness has a negligible effect.
Chemical quality of surface water in the West Branch Susquehanna River basin, Pennsylvania
McCarren, Edward F.
1964-01-01
The West Branch Susquehanna River is 228 miles long and drains 6,913 square miles of mountainous area in central Pennsylvania. Much of this area is forestcovered wilderness, part of which is reserved as State game land. Wild animals, such as deer, bear, turkey and grouse, are sheltered there, and many streams contain trout and other game fish. This helps to make the region one of the best hunting and fishing areas in Pennsylvania. The Congress has approved Federal funds for the construction of several reservoirs to prevent flooding of the main river and several of its tributaries. Water stored behind the dams will not be withdrawn below a minimum level designated as conservation pools. These pools will be available for recreation. Several headwater streams, such as Clearfield, Moshannon, and at times Sinnemahoning Creek, that carry drainage from coal mines are acid and contain high concentrations of dissolved solids, especially sulfates. These streams acidify the West Branch Susquehanna River downstream as far as Jersey Shore. One of the most influential tributaries affecting the quality of the West Branch Susquehanna River after they merge is Bald Eagle Creek. Bald Eagle Creek enters the main river downstream from Lock Haven which is approximately 100 river miles from the river's source. Because of its alkaline properties, water of Bald Eagle Creek can neutralize acidic water. Many streams draining small areas and several draining large areas such as Pine Creek, Lycoming Creek, and Loyalsock Creek are clear nearly neutral water low in dissolved solids whose pH is about 7.0 most of the time. These streams have a diluting and neutralizing effect on the quality of the West Branch Susquehanna River, so that from Williamsport downstream the river water is rarely acid, and for most of the time it is of good chemical quality.
Angstmann, J L; Ewers, B E; Kwon, H
2012-05-01
Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had ∼ 50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.
Tree CH4 fluxes in forestry drained peatland in southern Finland
NASA Astrophysics Data System (ADS)
Haikarainen, Iikka; Putkinen, Anuliina; Pyykkö, Petteri; Halmeenmäki, Elisa; Pihlatie, Mari
2017-04-01
Methane (CH4) is among the most important greenhouse gases and its atmospheric concentration is increasing. Boreal forests are commonly considered a net sink of atmospheric CH4 due to CH4 consuming bacteria in aerated soil layers. Recent studies have, however, demonstrated that trees are capable of emitting CH4 from their stems and shoots by transporting anaerobically produced CH4 from deeper soil layers to the atmosphere. Furthermore, trees may act as independent sources of CH4. We have measured tree stem CH4 exchange of boreal tree species at Lettosuo, a nutrient rich peatland forest in Tammela, southern Finland (60˚ 38' N, 23˚ 57' E), using the static chamber technique. Three species, downy birch (Betula pubescens), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), were selected under investigation as they represent common boreal tree species. Fluxes of CH4 were measured during 7.6.2016 - 17.10.2016 from in total 25 sample trees growing on two different plots: a treatment plot where all the pines were removed to raise the water table level (WTL) and a control plot. Three birches from the treatment plot were selected to measure CH4 flux variation within vertical profile of the trees. Characterization of microbial communities, quantification of methanogenic and methanotrophic functional genes, and measurements of potential CH4 production and consumption from peat profile and forest floor moss samples were also carried out to obtain insight to the CH4 flux dynamics at the studied sites. The pine removal treatment did not markedly change the average WTL, but it made the WTL more variable with frequently 10-15 cm closer to soil surface compared to the WTL on the control plot. We found small and variable CH4 emissions from the stems of trees on both of the plots, while occasional consumption of CH4 was also present. Generally the CH4 emissions were higher and more dominant at the treatment plot compared to the control plot, and the fluxes were significantly different between the plots (p < 0.001). The CH4 emission rates from the birches at the treatment plot decreased exponentially in the stem vertical profile. Clear seasonal flux dynamics or significant differences in the CH4 flux between the species were not found at either of the plots. Microbial experiments showed that anaerobic CH4 production, CH4 oxidation potential (under 1000 ppm CH4) and the amount of methanogens were higher in the peat of the treatment site. The difference in the CH4 flux rates between the plots indicates that the WTL is a major regulator of tree CH4 emissions on forestry drained peatlands, supporting our hypothesis that the stem emitted CH4 originates from anaerobic soil conditions. This hypothesis is further supported by the results of the microbial analysis and by the observation that more CH4 is emitting from the lower parts of the stems compared to the upper stem.
Johnson, Ronald C.
2007-01-01
Detailed measured sections and regional stratigraphic cross sections are used to reconstruct facies maps and interpret paleogeographic settings for the interval from the base of Upper Cretaceous Mesaverde Formation to top of lower member of the Paleocene Fort Union Formation in the Wind River Basin, Wyoming. The Mesaverde Formation spans the time during which the Upper Cretaceous seaway retreated eastward out of central Wyoming in Campanian time and the initial stages of the Lewis transgression in earliest Maastrichtian time. This retreat stalled for a considerable period of time during deposition of the lower part of the Mesaverde, creating a thick buildup of marginal marine sandstones and coaly coastal plain deposits across the western part of the basin. The Lewis sea transgressed into the northeast part of Wind River Basin, beginning in early Maastrichtian time during deposition of the Teapot Sandstone Member of the Mesaverde Formation. The Meeteetse Formation, which overlies the Teapot, was deposited in a poorly-drained coastal plain setting southwest of the Lewis seaway. The Lewis seaway, at maximum transgression, covered much of the northeast half of the Wind River Basin area but was clearly deflected around the present site of the Wind River Range, southwest of the basin, providing the first direct evidence of Laramide uplift on that range. Uplift of the Wind River Range continued during deposition of the overlying Maastrichtian Lance Formation. The Granite Mountains south of the basin also became a positive feature during this time. A rapidly subsiding trough during the Maastrichtian time formed near the presentday trough of the Wind River Basin in which more than 6,000 feet of Lance was deposited. The development of this trough appears to have begun before the adjacent Owl Creek Mountains to the north started to rise; however, a muddy facies in the upper part of Lance in the deep subsurface, just to the south, might be interpreted to indicate that the Cretaceous Cody Shale was being eroded off a rising Owl Creek Mountains in latest Cretaceous time. The Paleocene Fort Union Formation unconformably overlies older units but with only slight angular discordance around much of the margins of the Wind River Basin. Pre-Fort Union erosion was most pronounced toward the Wind River Range to the southwest, where the Fort Union ultimately overlies strata as old as the upper part of the Cretaceous Cody Shale. The unconformity appears to die out toward the basin center. Coal-forming mires developed throughout the western part of the basin near the beginning of the Paleocene. River systems entering the basin from the Wind River Range to the southwest and the Granite Mountains to the south produced areas of sandy fluvial deposition along mountain fronts. A major river system appears to have entered the basin from about the same spot along the Wind River Range throughout much of the Paleocene, probably because it became incised and could not migrate laterally. The muddy floodplain facies that developed along the deep basin trough during latest Cretaceous time, expanded during the early part of the Paleocene. Coal-forming mires that characterize part of the lower Fort Union Formation reached maximum extent near the beginning of the late Paleocene and just prior to the initial transgression of Lake Waltman. From the time of initial flooding, Lake Waltman expanded rapidly, drowning the coal-forming mires in the central part of the basin and spreading to near basin margins. Outcrop studies along the south margin of the basin document that once maximum transgression was reached, the lake was rapidly pushed basinward and replaced by fluvial environments.
Online Assistants in Children's Hypermedia Software
ERIC Educational Resources Information Center
Garcia, Penny Ann
2002-01-01
The classroom teacher's comfort and familiarity with computers and software influences student-computer use in the classroom. Teachers remain mired in repetitive introduction of basic software mechanics and rarely progress with students to advanced concepts or complex applications. An Online Assistant (OLA) was developed to accompany the…
Fir Decline and Mortality in the Southern Siberian Mountains
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Im, Sergei T.; Petrov, Ilya A.; Dvinskaya, Mariya, L.; Fedotova, Elena V.; Ranson, Kenneth J.
2016-01-01
Increased dieback and mortality of dark needle conifer (DNC) stands (composed of fir (Abies sibirica),Siberian pine (Pinus sibirica) and spruce (Picea obovata))were documented in Russia during recent decades. Here we analyzed spatial and temporal patterns of fir decline and mortality in the southern Siberian Mountains based on satellite, in situ and dendrochronological data. The studied stands are located within the boundary between DNC taiga to the north and forest-steppe to the south. Fir decline and mortality were observed to originate where topographic features contributed to maximal water-stress risk, i.e., steep (1825),convex, south-facing slopes with a shallow well-drained root zone. Fir regeneration survived droughts and increased stem radial growth, while upper canopy trees died. Tree ring width(TRW) growth negatively correlated with vapor pressure deficit (VPD), drought index and occurrence of late frosts, and positively with soil water content. Previous year growth conditions (i.e., drought index, VPD, soil water anomalies)have a high impact on current TRW (r 0.600.74). Fir mortality was induced by increased water stress and severe droughts (as a primary factor) in synergy with bark-beetles and fungi attacks (as secondary factors). Dendrochronology data indicated that fir mortality is a periodic process. In a future climate with increased aridity and drought frequency, fir (and Siberian pine) may disappear from portions of its current range (primarily within the boundary with the forest steppe)and is likely to be replaced by drought-tolerant species such as Pinus sylvestris and Larix sibirica.
Changes in ice dynamics and mass balance of the Antarctic ice sheet.
Rignot, Eric
2006-07-15
The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.
Seasonal Trace Gas Dynamics on Minerotrophic Fen Peatlands in NE-Germany
NASA Astrophysics Data System (ADS)
Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Minke, Merten; Juszczak, Radoszlav; Serba, Tomasz
2010-05-01
In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges of several fen peatland use areas between soil and atmosphere at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements and show significant differences in their annual trace gas balances depending on the genesis of the observed sites and the seasonal dynamics. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the identification of main flux driving parameters. That is that a reduced intensity in land use as a supposed mitigating treatment did not show the expected effect, though a normal meadow treatment surprisingly resulted in the lowest balances in both years. For implementing a further trace gas flux model observations will proceed at least until the end of year 2011. Regarding restoration sites we present newly installed locations of observing especially methane fluxes. To assure our results (presented at last years EGU conference, GIEBELS et al. 2009) from our in 2005 rewetted site we started observations at sites with advanced states of rewetting and alternative management respectively. I.e. one alternative aim to mitigate the heavy methane efflux after rewetting is observed at a site with removed canopy. Other experiments are conducted by freshly reforested alders and reed grass. References: Augustin, J., Merbach, W., Käding, H., Schnidt, W. & Schalitz, G. 1996. Lachgas- und Methanemissionen aus degradierten Niedermoorstandorten Nordostdeutschlands unter dem Einfluß unterschiedlicher Bewirtschaftung. Alfed-Wegener-Stiftung (ed.): Von den Ressourcen zum Recycling: Geoanalytik-Geomanagement-Geoinformatik. Ernst & Sohn Verlag. Berlin Charman, D. 2002: Peatland and environmental change. John Wiley & Sons, LTD, Chichester Droesler, M. 2005. Trace Gas Exchange and climatic relevance of bog ecosystems, Southern Germany, phD-thesis, TU München, München Giebels, M., Augustin, J., Minke, M., Halle, E., Beyer, M., Ehrig, B., Leitholdt, E., Chojnicki, B., Juszczak, R., Serba, T. 2009. Anthropogenic impact on the carbon cycle of fen peatlands in NE-Germany, EGU General Assembly 2009 Joosten, H. & Clarke, D. 2002: Wise use of mires and peatlands-background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society (eds.), Finland Kuntze 1993: Moore als Senken und Quellen für C und N, Mitt. Deutsche Bodenkundliche Gesellschaft 69, 277-280 Succow, M. & Joosten, H. 2001: Landschaftsökologische Moorkunde, 2nd edition, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart
Seasonal Carbon Dynamics on Selected Fen Peatland Sites in NE-Germany
NASA Astrophysics Data System (ADS)
Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Minke, Merten; Juszczak, Radoszlav; Serba, Tomasz
2010-05-01
In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges of several fen peatland use areas between soil and atmosphere at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements and show significant differences in their annual carbon balances depending on the genesis of the observed sites and the seasonal dynamics. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the identification of main flux driving parameters. That is that a reduced intensity in land use as a supposed mitigating treatment did not show the expected effect, though a normal meadow treatment surprisingly resulted in the lowest CO2 balances in both years. For implementing a further trace gas flux model observations will proceed at least until the end of year 2011. Regarding restoration sites we present newly installed locations of observing especially methane fluxes. To assure our results (presented at last years EGU conference, GIEBELS et al. 2009) from our in 2005 rewetted site we started observing carbon exchange at sites with advanced states of rewetting and alternative management respectively. I.e. one alternative aim to mitigate the heavy methane efflux after rewetting is observed at a site with removed canopy. Other experiments are conducted by freshly reforested alders and reed grass. References: Augustin, J., Merbach, W., Käding, H., Schnidt, W. & Schalitz, G. 1996. Lachgas- und Methanemissionen aus degradierten Niedermoorstandorten Nordostdeutschlands unter dem Einfluß unterschiedlicher Bewirtschaftung. Alfed-Wegener-Stiftung (ed.): Von den Ressourcen zum Recycling: Geoanalytik-Geomanagement-Geoinformatik. Ernst & Sohn Verlag. Berlin Charman, D. 2002: Peatland and environmental change. John Wiley & Sons, LTD, Chichester Droesler, M. 2005. Trace Gas Exchange and climatic relevance of bog ecosystems, Southern Germany, phD-thesis, TU München, München Giebels, M., Augustin, J., Minke, M., Halle, E., Beyer, M., Ehrig, B., Leitholdt, E., Chojnicki, B., Juszczak, R., Serba, T. 2009. Anthropogenic impact on the carbon cycle of fen peatlands in NE-Germany, EGU General Assembly 2009 Joosten, H. & Clarke, D. 2002: Wise use of mires and peatlands-background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society (eds.), Finland Kuntze 1993: Moore als Senken und Quellen für C und N, Mitt. Deutsche Bodenkundliche Gesellschaft 69, 277-280 Succow, M. & Joosten, H. 2001: Landschaftsökologische Moorkunde, 2nd edition, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart
NASA Astrophysics Data System (ADS)
Kravchenko, Irina; Sukhacheva, Marina; Menko, Ekaterina; Sirin, Andrey
2014-05-01
Northern peatlands are one of the key sources of atmospheric methane. Process-based studies of methane dynamic are based on the hypothesis of the balance between microbial methane production and oxidation, but this doesn't explain all variations in and constraints on peatland CH4 emissions. One of the reasons for this discrepancy could be anaerobic methane oxidation (AOM) - the process which is still poorly studied and remained controversial. Very little is known about AOM in peatlands, where it could work as an important 'internal' sink for CH4. This lack of knowledge primarily originated from researchers who generally consider AOM quantitatively insignificant or even non-existent in northern peatland ecosystems. But not far ago, Smemo and Yavitt (2007) presented evidence for AOM in freshwater peatlands used indirect techniques including isotope dilution assays and selective methanogenic inhibitors. Nitrite-dependent anaerobic methane oxidation NC10 group bacteria (n-damo) were detected in a minerotrophic peatland in the Netherlands that is infiltrated by nitrate-rich ground water (Zhu et al., 2012). Present study represents the first, to our knowledge, characterization of AOM in human disturbed peatlands, including hydrological elements of artificial drainage network. The experiments were conducted with samples of peat from drained peatlands, as well as of water and bottom sediments of ditches from drained Dubnensky mire massif, Moscow region (Chistotin et al., 2006; Sirin et al., 2012). This is the key testing area of our research group in European part of Russia for the long-term greenhouse gases fluxes measurements supported by testing physicochemical parameters, intensity and genomic diversity of CH4-cycling microbial communities. Only in sediments of drainage ditches the transition anaerobic zone was found, where methane and nitrate occurred, suggested the possible ecological niche for n-damo bacteria. The NC10 group methanotrophs were analyzed by PCR amplification of 16S rRNA (Ettwig et al. 2009) and pmoA (Luesken et al. 2011) genes followed by construction of clone libraries. Phylogenetic analysis revealed only one n-damo bacterium distantly related to uncultured anaerobic methanotrophs found in situ. It may represent a new cluster of NC10 bacteria with an identity of less than 96 and 86% to the 16S rRNA and pmoA genes of "Ca. Methylomirabilis oxyfera," respectively. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained from this sample in a static anaerobic culture with methane and nitrite at an in situ pH of 6.3. The bacterial abundance in enrichment was estimated using quantitative PCR and FISH (DBACT-0193-a-A probe) analysis and was found to increase up to 10 times for 120 days. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and their potential contribution to nitrogen and methane cycles in northern peatland ecosystems. We think that AOM may be more active in anthropogenic disturbed peatlands with greater supply of elements that could potentially serve as electron acceptors. In spite of generally low concentration, seasonal increases in nitrate content in drained peatlands may work as an important control of CH4 fluxes. The study was partially supported by RFBR research project # 12-05-01029_a.
2014-06-13
their rich history, strong economy and a powerful military. All this was done at a time when the rest of the world was mired in the Great Depression ...the use of internet social networking. Companies such as YouTube , Facebook, and Google+ provide internet users the ability to interact through photo
Tools for Building on Youth Strengths
ERIC Educational Resources Information Center
Cox, Kathy
2008-01-01
While rhetoric about strength-based approaches abounds, this perspective has not penetrated the front lines of practice. Many programs serving troubled youngsters are still mired in a deficit and deviance orientation. This article provides practical strategies for assessing the strengths of children and developing interventions to tap their assets…
ERIC Educational Resources Information Center
Cherin, Patricia
The English Department and the composition class are mired in the trappings of Romanticism. Romanticism ingratiates itself, mostly in infatuation with the writing process, but with some other fetishes as well. The "whitecentric" character of that Romanticism imbues instruction; it is not just innocuous and "old hat," but really damaging. Students…
NASA Astrophysics Data System (ADS)
Persson, A.; Connolly, J.
2016-12-01
Peatlands or mires contain about one third of the global terrestrial carbon pool and are located on between 3-6% of the global land area. In boreal and sub-arctic permafrost peatlands the soil organic carbon (SOC) pools are stable and decomposition is suspended only as long as the soil is frozen. Climate warming is projected to be greater in the high latitudes, observed mean annual air temperatures in northern Sweden have increased by 2-3oC since the 1950s. Thawing permafrost leads to new hydrological regimes potentially leading to increased production of methane. In this study, two sets of data were analysed: (i) a stereo-pair of black and white aerial photographs acquired in August 1943 by the Swedish Airforce, with a spatial resolution of 50cm, and (ii) a geo-rectified Worldview2 (WV2) multispectral image acquired on the 24th of July, 2013. The aerial photographs were digitized using a very high resolution camera, georeferenced and incorporated into a geodatabase. The analysis of image areas was performed by heads-up visual interpretation both on a computer monitor and through stereoscopes. The aim was to identify wet and dry areas in the palsa peatland. Feature Analyst (FA) object oriented image analysis (OBIA) was used with the WV2 dataset to extract features that are related to the hydrological state of the mire. Feature Analyst is an extension to ArcGIS. The method uses a black box algorithm that can be adjusted with several parameters to aid classification and feature extraction in an image. Previous studies that analysed aerial photographs from 1970 and 2000 showed that there was an increase in the amount of wet areas on the Swedish palsa bog mire Stordalen. In this study we determine the change in wet areas over a seventy-year period. The central part of the palsa mire has been extensively studied as it has been presumed that it has collapsed due to warmer temperatures in recent decades. However, our analysis shows that much of the internal hydrological patterns on this part of the palsa bog seem to be temporally stable, at least since 1943. Macro changes not identified in previous studies are observed here where it can be seen that the extent of the palsa has retreated, in areas contiguous to streamflow, possibly in response to contact with relatively warmer streamflow.
NASA Astrophysics Data System (ADS)
Dinsmore, Kerry; Drewer, Julia; Leeson, Sarah; Skiba, Ute; Levy, Pete; George, Charles
2014-05-01
Arctic and sub arctic wetlands are a major source of atmospheric CH4 and therefore have the potential to be important in controlling global radiative forcing. Furthermore, the strong links between wetland CH4 emissions and vegetation community, hydrology and temperature suggest potentially large feedbacks between climate change and future emissions. Quantifying current emissions over large spatial scales and predicting future climatic feedbacks requires a fundamental understanding of the ground based drivers of plot scale emissions. The MAMM project (Methane in the Arctic: Measurements and Modelling) aims to understand and quantify current CH4 emissions and future climatic impacts by combining both ground and aircraft measurements across the European Arctic with regional computer modelling. Here we present results from the ground-based MAMM measurement campaigns, analysing chamber-measured CH4 emissions from two sites in the European Arctic/Sub-Arctic region (Sodankylä, Finland; Stordalen Mire, Sweden) from growing seasons in 2012 and 2013. A total of 85 wetland static chambers were deployed across the two field sites; 39 at Sodankylä (67° 22'01' N, 26° 3'06' E) in 2012 and 46 at Stordalen Mire (68° 21'20' N, 19° 02'56' E) in 2013. Chamber design, protocol and deployment were the same across both sites. Chambers were located at sites chosen strategically to cover the local range of water table depths and vegetation communities. A total of 18 and 15 repeated measurements were made at each chamber in Sodankylä and Stordalen Mire, respectively, over the snow-free season. Preliminary results show a large range of CH4 fluxes across both sites ranging from a CH4 uptake of up to 0.07 and 0.06 mg CH4-C m-2 hr-1 to emissions of 17.3 and 44.2 mg CH4-C m-2 hr-1 in Sodankylä and Stordalen Mire, respectively. Empirical models based on vegetation community, water table depth, temperature and soil nutrient availability (Plant Root Simulator Probes, PRSTM) have been constructed with the aim of understanding the drivers of chamber scale fluxes. By combining measurements made at two different sites, >300km apart, using the same experimental setup, we are uniquely able to investigate whether CH4 emissions are driven by common parameters. Furthermore we are able to determine if plot scale empirical models and parameterisations can be used effectively to upscale emissions to landscape and whole Arctic scale.
An Investigative Approach to Teaching Primary Mathematics
ERIC Educational Resources Information Center
Sangster, Margaret
2012-01-01
As with much in life the term "investigative", when used to describe an approach to teaching and learning, can have many interpretations. Some might consider that the term "investigations" is somehow "mired in the past", others might consider "investigations" to be a "credo" that sustains their own mathematics teaching and learning. With…
Failure to Learn from Failure: Evaluating Computer Systems in Medicine
Grann, Richard P.
1980-01-01
Evaluation of ADP systems in medicine frequently becomes mired in problems of tenuous cost measurement, of proving illusory cost savings, of false precision, and of dubious discounting methods, while giving only superficial treatment to non-dollar benefits. It would frequently be more advantageous to study non-dollar impacts with greater care and rigor.
Is it Time to Take a Courageous Leap?
ERIC Educational Resources Information Center
Dickmeyer, Nathan
2006-01-01
In this article, the author observes that while university officials believe that strategic planning will help them look past the day-to-day housekeeping and meet the challenges of a volatile environment, much of such planning appears mired in competitive self-replication and is vulnerable to distrust from the public and government. Too often, the…
ERIC Educational Resources Information Center
Stuart, Reginald
2011-01-01
When Dr. James Ammons took the helm of his alma mater, Florida A&M University (FAMU), he inherited a nationally recognized school facing numerous crises. Ammons, who served as provost of FAMU during its heyday in the 1990s, knew the school was mired in trouble with the state, having accumulated dozens of state auditor questions about its…
Process and Product Explanations for What Works for LD and Why
ERIC Educational Resources Information Center
Womack, Sid T.; Hanna, Shellie L.; Woodall, Peggy; Callaway, Rebecca
2011-01-01
In the history of learning disabilities education, practitioners and researchers alike have been mired in controversies about product and process approaches. This review of literature attempts to identify the most useful research about product and process approaches and to suggest situations in which each may be most appropriate. Some literature…
Revisiting Differential Grading Standards Anno 2014: An Exploration in Dutch Higher Education
ERIC Educational Resources Information Center
Godor, Brian P.
2017-01-01
The role that teachers have in assessing student coursework is crucial. Their "determination" that a particular piece of student's work is "acceptable" has many serious consequences. With a lack of debate surrounding assessment, practices may become mired in conventions and disconnected from issues such as knowledge, power and…
The State of Black America 1990.
ERIC Educational Resources Information Center
Dewart, Janet, Ed.
This report, the 15th in a series, contains papers by 10 outstanding scholars concerning the state of black America in 1990; it concludes that while many African Americans have made significant economic and political gains, half of the black population is still mired in poverty, joblessness, and hardship caused by racial discrimination. The…
Collision Course: Embracing Politics to Succeed in District-Charter Collaboration
ERIC Educational Resources Information Center
Jochim, Ashley; Yatsko, Sarah; Opalka, Alice
2018-01-01
Many who attempt district-charter collaboration point to "politics" as a constraint that affects their work, but little is understood about why some collaborations enjoy broad support while others become mired in conflict. Drawing upon CRPE's multiyear study of district-charter collaborations in dozens of cities as well as research on…
Academic Mentoring and Dropout Prevention for Students in Math, Science and Technology
ERIC Educational Resources Information Center
Larose, Simon; Cyrenne, Diane; Garceau, Odette; Harvey, Marylou; Guay, Frederic; Godin, Fanny; Tarabulsy, George M; Deschenes, Claire
2011-01-01
In this study, we examined the impact of a new academic mentoring program aimed at preventing student dropout in math, science and technology. The MIRES program entails bimonthly meetings between students entering college and university students completing their undergraduate degree in science and engineering. A randomized pretest-posttest control…
USDA-ARS?s Scientific Manuscript database
It was back in 1982, when the United States was mired in the Cold War and a recession, that the National Institutes of Health awarded a five-year, $3.2 million grant to a group of scientists at the Los Alamos National Laboratory to develop GenBank. It now houses nearly 200 billion bases from 178 mil...
ERIC Educational Resources Information Center
Rutherford, Alexandra; Vaughn-Blount, Kelli; Ball, Laura C.
2010-01-01
Feminist psychology began as an avowedly political project with an explicit social change agenda. However, over the last two decades, a number of critics have argued that feminist psychology has become mired in an epistemological impasse where positivist commitments effectively mute its political project, rendering the field acceptable to…
Accreditation in Kinesiology: The Process, Criticism and Controversy, and the Future
ERIC Educational Resources Information Center
Templin, Thomas J.; Blankenship, Bonnie Tjeerdsma
2007-01-01
The question of accreditation has been quite controversial in higher education. Some consider accreditation as a necessary "evil" while others reject it outright. It is a process designed to promote quality assurance and improvement in institutions and programs, yet one mired in various issues. While accreditation is controversial in a number of…
Beyond Compliance: Making Assessment Matter
ERIC Educational Resources Information Center
Kuh, George D.; Ikenberry, Stanley O.; Jankowski, Natasha A.; Cain, Timothy Reese; Ewell, Peter T.; Hutchings, Pat; Kinzie, Jillian
2015-01-01
The expectation for accountability is legitimate. In order to have the desired effects, evidence of what students know and can do must respond to genuine institutional needs and priorities. Far too often, that condition is not met. On too many campuses, assessment activity is mired in a culture of compliance rather than driven by collective…
NASA Astrophysics Data System (ADS)
Napreenko-Dorokhova, T. V.; Napreenko, M. G.; Lisitzin, A. P.
2017-08-01
The results of complex investigations that have been carried out since 2007 in large bog ecosystems (Zehlau, Bolshoe Mokhovoe, and Koz'e) located in Kaliningrad oblast in two largest landscape areas, glaciolacustrine plains in the central part of the region and coastal lowlands of the southern coast of Curonian Lagoon and the delta of the Neman River, are presented. It is established that the intensive development of mires and their transition to the raised bog stage occurred in the territory of Kaliningrad oblast later than in most of the forest zone in European Russia, where this process was noted as early as during the Atlantic. On the glaciolacustrine flat plains in the central part of Kaliningrad oblast, where there were no deep depressions, the mire formation process was manifested weakly for a long time. A colder and more humid climate, which is a condition necessary for the raised bog peat accumulation and rapid expansion of bogs to the adjacent forest area, occurred only in the Subatlantic.
Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss
NASA Astrophysics Data System (ADS)
Golubev, V.; Whittington, P.
2018-04-01
Due to the non-vascular nature of Sphagnum mosses, the capitula (growing surface) of the moss must rely solely on capillary action to receive water from beneath. Moss subsides and swells in accordance with water table levels, an effect called "mire-breathing", which has been thought to be a self-preservation mechanism, although no systematic studies have been done to demonstrate exactly how volume change affects hydrophysical properties of moss. In this study, the unsaturated hydraulic conductivity (Kunsat) and water content of two different species of Sphagnum moss were measured at different compression rates, up to the maximum of 77%. The findings show that the Kunsat increases by up to an order of magnitude (10×) with compression up to a certain bulk density of the moss, after which higher levels of compression result in lowered unsaturated hydraulic conductivity. This was coupled with an increase in soil water retention with increased compression. The increase of the Kunsat with compression suggests that the mire-breathing effect should be considered a self-preservation mechanism to provide sufficient amount of water to growing moss in times of low water availability.
Mass Balance of the West Antarctic Ice-Sheet from ICESat Measurements
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Li, Jun; Robins, John; Saba, Jack L.; Yi, Donghui
2011-01-01
Mass balance estimates for 2003-2008 are derived from ICESat laser altimetry and compared with estimates for 1992-2002 derived from ERS radar altimetry. The net mass balance of 3 drainage systems (Pine Island, Thwaites/Smith, and the coast of Marie Bryd) for 2003-2008 is a loss of 100 Gt/yr, which increased from a loss of 70 Gt/yr for the earlier period. The DS including the Bindschadler and MacAyeal ice streams draining into the Ross Ice Shelf has a mass gain of 11 Gt/yr for 2003-2008, compared to an earlier loss of 70 Gt/yr. The DS including the Whillans and Kamb ice streams has a mass gain of 12 Gt/yr, including a significant thickening on the upper part of the Kamb DS, compared to a earlier gain of 6 Gt/yr (includes interpolation for a large portion of the DS). The other two DS discharging into the Ronne Ice Shelf and the northern Ellsworth Coast have a mass gain of 39 Gt/yr, compared to a gain of 4 Gt/yr for the earlier period. Overall, the increased losses of 30 Gt/yr in the Pine Island, Thwaites/Smith, and the coast of Marie Bryd DSs are exceeded by increased gains of 59 Gt/yr in the other 4 DS. Overall, the mass loss from the West Antarctic ice sheet has decreased to 38 Gt/yr from the earlier loss of 67 Gt/yr, reducing the contribution to sea level rise to 0.11 mm/yr from 0.19 mm/yr
Fir Decline and Mortality in the Southern Siberian Mountains
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Im, Sergei T.; Petrov, Ilya A.; Dvinskaya, Mariya, L.; Fedotova, Elena V.; Ranson, Kenneth J.
2016-01-01
Increased dieback and mortality of dark needle conifer (DNC) stands (composed of fir (Abies sibirica),Siberian pine (Pinus sibirica) and spruce (Picea obovata)) were documented in Russia during recent decades. Here we analyzed spatial and temporal patterns of fir decline and mortality in the southern Siberian Mountains based on satellite, in situ and dendrochronological data. The studied stands are located within the boundary between DNC taiga to the north and forest-steppe to the south. Fir decline and mortality were observed to originate where topographic features contributed to maximal water-stress risk, i.e., steep (18 deg to 25 deg), convex, south-facing slopes with a shallow well-drained root zone. Fir regeneration survived droughts and increased stem radial growth, while upper canopy trees died. Tree ring width (TRW) growth negatively correlated with vapor pressure deficit (VPD), drought index and occurrence of late frosts, and positively with soil water content. Previous year growth conditions (i.e., drought index, VPD, soil water anomalies) have a high impact on current TRW (r = 0.60 to 0.74). Fir mortality was induced by increased water stress and severe droughts (as a primary factor) in synergy with bark-beetles and fungi attacks (as secondary factors). Dendrochronology data indicated that fir mortality is a periodic process. In a future climate with increased aridity and drought frequency, fir (and Siberian pine) may disappear from portions of its current range (primarily within the boundary with the forest- steppe) and is likely to be replaced by drought-tolerant species such as Pinus sylvestris and Larix sibirica.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porcelli, D.; Wasserburg, G.J.; Andersson, P.S.
The importance of colloids and organic deposits for the transport of uranium isotopes from continental source regions and through the estuarine environment was investigated in the mire-rich Kalix River drainage basin in northern Sweden and the Baltic Sea. Ultrafiltration techniques were used to separate uranium and other elements associated with colloids > 10 kD and >3 kD from {open_quotes}solute{close_quotes} uranium and provided consistent results and high recovery rates for uranium as well as for other elements from large volume samples. Uranium concentrations in 0.45 {mu}m-filtered Kalix River water samples increased by a factor of 3 from near the headwaters inmore » the Caledonides to the river mouth while major cation concentrations were relatively constant. {sup 234}U {sup 238}U ratios were high ({delta}{sup 234}U = 770-1500) throughout the basin, without showing any simple pattern, and required a supply of {sup 234}U-rich water. Throughout the Kalix River, a large fraction (30-90%) of the uranium is carried by >10 kD colloids, which is compatible with uranium complexation with humic acids. No isotopic differences were found between colloid-associated and solute uranium. Within the Baltic Sea, about half of the uranium is removed at low salinities. The proportion that is lost is equivalent to that of river-derived colloid-bound uranium, suggesting that while solute uranium behaves conservatively during estuarine mixing, colloid-bound uranium is lost due to rapid flocculation of colloidal material. The association of uranium with colloids therefore may be an important parameter in determining uranium estuarine behavior. Mire peats in the Kalix River highly concentrate uranium and are potentially a significant source of recoil {sup 234}U to the mirewaters and river waters. However, mirewater data clearly demonstrate that only small {sup 234}U/{sup 238}U shifts are generated relative to inflowing groundwater. 63 refs., 8 figs., 3 tabs.« less
Greb, S.F.; Eble, C.F.; Hower, J.C.
2005-01-01
The Lower Broas-Stockton coal is a heavily mined coal of the Central Appalachian Basin. Coal thickness, distribution, composition, and stratigraphic position were compared with basement structure, gas and oil field trends, and sequence strat- igraphic and paleoclimate interpretations to better understand the geology of the Stockton coal bed in eastern Kentucky. The thickest coal occurs south of the Warfield structural trend and east of the Paint Creek Uplift, two basement-related structures. Along the Warfield trend, coal beds in the underlying Peach Orchard coal zone locally merge with the Stockton coal to form a seam more than 3 m thick. Other areas of thick coal occur in elongate trends. Two pairs of elongate, conjugate trends in Stockton coal thickness are interpreted as regional paleofractures that influenced paleotopography and groundwater during peat accumulation. Compositional group analyses indicate that the Stockton peat infilled depressions in the paleotopography as a topogenous to soligenous mire codominated by tree ferns and lycopsid trees. Flooding from adjacent paleochannels is indicated by partings and seam splits along the margins of the mineable coal body. One or more increments of low-vitrinite coal, dominated by tree ferns and shrubby, Densosporites-producing lycopsids occur at all sample sites. Similar assemblages have been previously used to identify ombrogenous, domed mire origins for Early and Middle Pennsylvanian coals in which ash yields were less than 10%. It is difficult, however, to reconcile ombrogenous conditions with the partings in the Stockton coal in this area. Low-ash, low-vitrinite increments may have been formed in topogenous to soligenous mires with periodic drying or water-table fluctuations, rather than widespread doming. This is consistent with interpretations of increasingly seasonal paleoclimates in the late Middle and Late Pennsylvanian and fracture-influenced groundwater conditions. ??2005 Geological Society of America.
Sphagnum growth and ecophysiology during mire succession.
Laine, Anna M; Juurola, Eija; Hájek, Tomáš; Tuittila, Eeva-Stiina
2011-12-01
Sphagnum mosses are widespread in areas where mires exist and constitute a globally important carbon sink. Their ecophysiology is known to be related to the water level, but very little is currently known about the successional trend in Sphagnum. We hypothesized that moss species follow the known vascular plant growth strategy along the successional gradient (i.e., decrease in production and maximal photosynthesis while succession proceeds). To address this hypothesis, we studied links between the growth and related ecophysiological processes of Sphagnum mosses from a time-since-initiation chronosequence of five wetlands. We quantified the rates of increase in biomass and length of different Sphagnum species in relation to their CO(2) assimilation rates, their photosynthetic light reaction efficiencies, and their physiological states, as measured by the chlorophyll fluorescence method. In agreement with our hypothesis, increase in biomass and CO(2) exchange rate of Sphagnum mosses decreased along the successional gradient, following the tactics of more intensely studied vascular plants. Mosses at the young and old ends of the chronosequence showed indications of downregulation, measured as a low ratio between variable and maximum fluorescence (F(v)/F(m)). Our study divided the species into three groups; pioneer species, hollow species, and ombrotrophic hummock formers. The pioneer species S. fimbriatum is a ruderal plant that occurred at the first sites along the chronosequence, which were characterized by low stress but high disturbance. Hollow species are competitive plants that occurred at sites with low stress and low disturbance (i.e., in the wet depressions in the middle and at the old end of the chronosequence). Ombrotrophic hummock species are stress-tolerant plants that occurred at sites with high stress and low disturbance (i.e., at the old end of the chronosequence). The three groups along the mire successional gradient appeared to be somewhat analogous to the three primary strategies suggested by Grime.
NASA Astrophysics Data System (ADS)
Osterwalder, Stefan; Fritsche, Johannes; Nilsson, Mats B.; Alewell, Christine; Bishop, Kevin
2015-04-01
The fate of anthropogenic emissions to the atmosphere is influenced by the exchange of elemental mercury (Hg0) with the earth surface. However, it remains challenging to quantify these exchanges which hold the key to a better understanding of mercury cycling at different scales, from the entire earth to specific environments. To better test hypotheses about land-atmosphere Hg interactions, we applied dynamic flux chambers (DFCs) for short term measurements and developed a novel Relaxed Eddy Accumulation (REA) design for continuous flux monitoring. Accurate determination of Hg0 fluxes has proven difficult due to the technical challenges presented by the small concentration differences (< 1 ng m-3) between updrafts and downdrafts. To address this we present a dual-intake, single analyzer REA system including a calibration module for periodic quality-control measurements with reference gases. To demonstrate the system performance, we present results from two contrasting environments: In February 2012 REA monitored a heterogeneous urban surface in the center of Basel, Switzerland where an average flux of 14 ng m-2 h-1 was detected with a distinct diurnal pattern. In May 2012, the REA monitored a boreal mire in northern Sweden with different turbulence regimes and Hg0 sink/source characteristics. During the snowmelt period in May 2012 the Hg0 flux averaged at 2 ng m-2 h-1. In order to better quantify inputs and outputs of Hg from boreal landscapes, we subsequently monitored the land-atmosphere exchange of Hg0 during a course of a year and compared the fluxes occasionally with DFC measurements. The amount of Hg0 volatilized from boreal mires was at a similar level as the annual export of Hg in stream water, identifying the mire as net source of Hg to neighboring environments. We believe that this dual-inlet, single detector approach is a significant innovation which can help realize the potential of REA for continuous, long-term determination of land-atmosphere Hg0 exchange.
The role of Sphagnum mosses in the methane cycling of a boreal mire.
Larmola, Tuula; Tuittila, Eeva-Stiina; Tiirola, Marja; Nykänen, Hannu; Martikainen, Pertti J; Yrjälä, Kim; Tuomivirta, Tero; Fritze, Hannu
2010-08-01
Peatlands are a major natural source of atmospheric methane (CH4). Emissions from Sphagnum-dominated mires are lower than those measured from other mire types. This observation may partly be due to methanotrophic (i.e., methane-consuming) bacteria associated with Sphagnum. Twenty-three of the 41 Sphagnum species in Finland can be found in the peatland at Lakkasuo. To better understand the Sphagnum-methanotroph system, we tested the following hypotheses: (1) all these Sphagnum species support methanotrophic bacteria; (2) water level is the key environmental determinant for differences in methanotrophy across habitats; (3) under dry conditions, Sphagnum species will not host methanotrophic bacteria; and (4) methanotrophs can move from one Sphagnum shoot to another in an aquatic environment. To address hypotheses 1 and 2, we measured the water table and CH4 oxidation for all Sphagnum species at Lakkasuo in 1-5 replicates for each species. Using this systematic approach, we included Sphagnum spp. with narrow and broad ecological tolerances. To estimate the potential contribution of CH4 to moss carbon, we measured the uptake of delta13C supplied as CH4 or as carbon dioxide dissolved in water. To test hypotheses 2-4, we transplanted inactive moss patches to active sites and measured their methanotroph communities before and after transplantation. All 23 Sphagnum species showed methanotrophic activity, confirming hypothesis 1. We found that water level was the key environmental factor regulating methanotrophy in Sphagnum (hypothesis 2). Mosses that previously exhibited no CH4 oxidation became active when transplanted to an environment in which the microbes in the control mosses were actively oxidizing CH4 (hypothesis 4). Newly active transplants possessed a Methylocystis signature also found in the control Sphagnum spp. Inactive transplants also supported a Methylocystis signature in common with active transplants and control mosses, which rejects hypothesis 3. Our results imply a loose symbiosis between Sphagnum spp. and methanotrophic bacteria that accounts for potentially 10-30% of Sphagnum carbon.
Human-induced changes on wetlands: a study case from NW Iberia
NASA Astrophysics Data System (ADS)
López-Merino, Lourdes; Cortizas, Antonio Martínez; López-Sáez, José Antonio
2011-09-01
Wetlands are exceptional ecosystems that contribute to biodiversity and play a key role in the hydrological and carbon cycles. Knowledge of their long-term ecology is essential for a proper understanding of these valuable ecosystems. We present the application of multi-proxy analyses to a 115 cm-thick core from La Molina mire (Alto de la Espina) located in NW Iberia, with a chronology spanning since ˜500 BC. The mire is located in an area intensively mined for gold during the Roman period, and close to a water-canalization system used for mining operations at that time. Our aim was to get insights into the development of the wetland by combining palynological records of hydro-hygrophytes, non-pollen palynomorphs and geochemical analyses, supported by 14C datings and multivariate statistics. The results indicate a complex pattern of ecological succession. During the local Iron Age the wetland was minerotrophic. Since ˜20 AD it was subjected to dramatic hydrological changes due to a rise of the water-table, fluctuating between the presence of open water and phases of drawdown. Finally, by ˜745 AD, the wetland experienced a rapid evolution towards ombrotrophic conditions. High grazing pressure was detected for the last decades. The significant change occurred during Early Roman Empire seems to have been the consequence of the direct use of the wetland as a water-reservoir of the canalisation system used for gold-mining. Thus, the current nature of the mire may be the result of human impact, although multiple human- and climate-induced causes were potentially linked to the detected shifts. However, the system seems to have been resilient, successfully buffering the changes without substantial alterations of its functioning. Our investigation shows that palaeoecological research is necessary to understand modifications in the structure of wetland ecosystems, their long-term ecology and the role of human-induced changes.
Investigating the potential of floating mires as record of palaeoenvironmental changes
NASA Astrophysics Data System (ADS)
Zaccone, C.; Adamo, P.; Giordano, S.; Miano, T. M.
2012-04-01
Peat-forming floating mires could provide an exceptional resource for palaeoenvironmental and environmental monitoring studies, as much of their own history, as well as the history of their surrounds, is recorded in their peat deposits. In his Naturalis historia (AD 77-79), Pliny the Elder described floating islands on Lake Vadimonis (now Posta Fibreno Lake, Italy). Actually, a small floating island (ca. 35 m of diameter and 3 m of submerged thickness) still occurs on this calcareous lake fed by karstic springs at the base of the Apennine Mountains. Here the southernmost Italian populations of Sphagnum palustre occur on the small surface of this floating mire known as "La Rota", i.e., a cup-formed core of Sphagnum peat and rhizomes of Helophytes, erratically floating on the water-body of a submerged doline, annexed to the easternmost edge of the lake, characterised by the extension of a large reed bed. Geological evidence point out the existence in the area of a large lacustrine basin since Late Pleistocene. The progressive filling of the lake caused by changing in climatic conditions and neotectonic events, brought about the formation of peat deposits in the area, following different depositional cycles in a swampy environment. Then, a round-shaped portion of fen, originated around lake margins in waterlogged areas, was somehow isolated from the bank and started to float. Coupling data about concentrations and fluxes of several major and trace elements of different origin (i.e., dust particles, volcanic emissions, cosmogenic dusts and marine aerosols), with climate records (plant micro- and macrofossils, pollens, isotopic ratios), biomolecular records (e.g., lipids), detailed age-depth modelling (i.e., 210Pb, 137Cs, 14C), and humification indexes, the present work is hoped to identify and better understand the reliability of this particular "archive", and thus possible relationships between biogeochemical processes occurring in this floating bog and environmental changes.
Thickening and Thinning of Antarctic Ice Shelves and Tongues and Mass Balance Estimates
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Li, Jun; Giovinetto, Mario; Robbins, John; Saba, Jack L.; Yi, Donghui
2011-01-01
Previous analysis of elevation changes for 1992 to 2002 obtained from measurements by radar altimeters on ERS-l and 2 showed that the shelves in the Antarctic Peninsula (AP) and along the coast of West Antarctica (WA), including the eastern part of the Ross Ice Shelf, were mostly thinning and losing mass whereas the Ronne Ice shelf also in WA was mostly thickening. The estimated total mass loss for the floating ice shelves and ice tongues from ice draining WA and the AP was 95 Gt/a. In contrast, the floating ice shelves and ice tongues from ice draining East Antarctica (EA), including the Filchner, Fimbul, Amery, and Western Ross, were mostly thickening with a total estimated mass gain of 142 Gt/a. Data from ICESat laser altimetry for 2003-2008 gives new surface elevation changes (dH/dt) with some similar values for the earlier and latter periods, including -27.6 and -26.9 cm a-Ion the West Getz ice shelf and -42.4 and - 27.2 cm/a on the East Getz ice shelf, and some values that indicate more thinning in the latter period, including -17.9 and -36.2 cm/a on the Larsen C ice shelf, -35.5 and -76.0 cm/a on the Pine Island Glacier floating, -60.5 and -125.7 .cm/a on the Smith Glacier floating, and -34.4 and -108.9 cm/a on the Thwaites Glacier floating. Maps of measured dH/dt and estimated thickness change are produced along with mass change estimates for 2003 - 2008.
Climate impact on the tree growth, vigor and productivity in Siberia
NASA Astrophysics Data System (ADS)
Kharuk, V.; Im, S.; Petrov, I.; Dvinskaya, M.
2017-12-01
Changing climate has an impact on the Siberian taiga forests. We analyzed GPP and NPP trends, growth index, and stands mortality within the Central Siberia (48°- 75°N/80°-115°E). Considered forests included larch-dominant (Larix sibirica, L. dahurica) and "dark needle conifer" (DNC: Abies sibirica, Pinus sibirica, Picea obovata) stands. GPP and NPP trends calculated based on the Terra/MODIS products. Growth index calculations based on dendrochronology data. Water stress analysis based on the gravimetric and microwave satellite data and MERRA-2 database. Analyzed variables included precipitation, air temperature, VPD, drought index SPEI, and root zone wetness. We found positive GPP trends within majority (>90%) of larch-dominant and DNC ranges, whereas NPP trends are positive on the <40% territory. Negative NPP trends correlated with growth index within key-sites. Siberian pine and fir growth index increase since late 1970th, turning to depression since late 1980th. Within permafrost zone larch growth correlated with sum of positive (t>+10C°) temperatures and vegetation period length. During recent years larch experience water stress in the beginning of vegetation period. Tree decline and mortality observed within DNC stands, and that phenomenon regularly coincided with zones of negative NPP trends. Mortality correlated with VPD, SPEI, and root zone moisture content. Bark beetles (including aggressive species Polygraphus proximus, similar to Dendroctonus ponderosae in American forests) attacked water-stressed trees. Geographically, mortality began on the margins of the DNC range (e.g., within the forest-steppe ecotone) and on terrain features with maximal water stress risk (narrow-shaped hilltops, convex steep south facing slopes, shallow well-drained soils). Currently, Siberian pine and fir decline observed within southern range of these species. In addition, air temperature and aridity increase promotes Siberian silkmoth (Dendrolimus sibiricus) outbreak that occurred about one degree northward of formerly range. Observing and predicting aridity increase will lead to the replacement of Siberian pine and fir within southern range of these species with more tolerant species (e.g., Pinus sylvestris, Larix spp.).
Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area
Trumbore, S.E.; Harden, J.W.
1997-01-01
Rates of input, accumulation, and turnover of C differ markedly within soil profiles and in soils with different drainage in the BOREAS northern study area. Soil C storage increases from ???3 kg C m-2 in well-drained, sandy soils to greater than 100 kg C m-2 in wetlands. Two modes of C accumulation were observed in upland soil profiles. Large annual C inputs (0.06-0.1 kg C m-2 yr-1) and slow decomposition (turnover times of 6-250 years) lead to rapid C accumulation in regrowing surface moss and detrital layers following fire. Deep organic layers that have accumulated over the millennia since the initiation of soil development, and are located below the most recent charred horizon, show slower rates of input (0.015-0.03 kg C m-2 yr-1) and turnover (100-1600 years) and accumulate C about 10 times slower than surface detrital layers. Rates of C input to soils derived from C and 14C data were in accord with net primary production estimates, with highest rates of input (0.14-0.6 kg C m-2 yr-1) in wetlands. Turnover times for C in surface detrital layers were 6-15 years for well-drained sand soils that showed highest soil temperatures in summer, 30-40 years for wetlands, and 36-250 years for uplands with thick moss cover and black spruce trees. Long (>100 years) turnover times in upland black spruce/clay soils most likely reflect the influence of woody debris incorporated into detrital layers. Turnover times for deep organic and mineral layer C were controlled by drainage, with fastest turnover (80-130 years) in well-drained sand soils and slowest turnover (>3000 years) in wetlands. Total C accumulation rates, which account for C losses from both deep organic and surface detrital layers, are close to zero for sand/jack pine soils, 0.003-0.01 kg C m-2 yr-1 for moderately to poorly drained sites in mature forest stands, and 0.03 kg C m-2 yr-1 for a productive fen. Decomposition of organic matter more than several decades old accounts for 9-22% of total heterotrophic respiration at these sites. The rates of C accumulation derived here are decadal averages for specific stands and will vary as stands age or undergo disturbance. Extrapolation to larger regions and longer timescales, where burning offsets C gains in moss layers, will yield smaller rates of C storage.
Wallflowers at the Revolution: Evolving Faculty Perspectives on Online Education
ERIC Educational Resources Information Center
Halfond, Jay A.
2013-01-01
For the past decade, higher education has mired in generalizations in debating online education. Broad, often anecdotal and generally unsubstantiated comparisons have been made about the virtual and physical classroom--often taking the worst of one in contrast to the best of the other. The "2013 Inside Higher Ed Survey of Faculty Attitudes on…
Streamflow response from an ombrotrophic mire
E.S. Verry; K.N. Brooks; P.K. Barten
1988-01-01
Streamflow response to a rainstorm exceeding a 100-year return interval is documented in relation to the peat profile and microtopography. The water tab1e:discharge relation is corrected for specific yield and found to closely parallel the stage:discharge relationship for a level reservoir for flows up to a 25-year return interval. A faster water table:discharge...
Homing in: Mothers at the Heart of Health and Literacy in Coastal Kenya
ERIC Educational Resources Information Center
Mount-Cors, Mary Faith
2010-01-01
An economics-driven discourse about early literacy (Trudell, 2009) in sub-Saharan African settings often includes a list of reasons for poor levels of literacy that remain mired in deficit thinking or a deficiencies model in which the problem lies within the non-literate people themselves. Meanwhile, the established post-colonial educational…
New Bedford, Sampling and Analysis Data: References 34-60, 1976-1983
2012-04-22
... HIV u;nM in in :;i inn 'in iraii'MiLncniii, !i,i IB ii i T 11^1,111:111 imii«'; ncnl.Mr; i': 'ii ... r ii |: 'nii>i>eiri I: ji; I: :i vnn CD II: |M:I|:'',I. lu I: i i:>i: ej:p» i; Mire ILu nn ...
History Lessons Blend Content Knowledge, Literacy
ERIC Educational Resources Information Center
Gewertz, Catherine
2012-01-01
For years, educators have been trying to free history instruction from the mire of memorization and propel it with the kinds of inquiry that drive historians themselves. The common core standards may offer more impetus for districts and schools to adopt that brand of instruction. A study of one such approach suggests that it can yield a triple…
Hospital-School Collaboration to Serve the Needs of Children with Traumatic Brain Injury
ERIC Educational Resources Information Center
Chesire, David J.; Canto, Angela I.; Buckley, Valerie A.
2011-01-01
Traumatic brain injuries are the leading cause of death and disability for children and adolescents each year in the United States. Children who survive these injuries often suffer from a range of impairments including intellectual, academic, behavioral, affective, and social problems, but they often become mired in a slow-moving process while…
Surprise and Deception in the Early War Years, 1940-1942
1993-04-15
second plan was tu be a iariation of the "Haversack Ruse". The terrain around the Alam Haifa ridge contained an area known as the Ragil depression, which...encountered the soft sands of the Ragil . His armored vehicles were mired in the sand and made easy targets for the RAF fighters. For three days, the
Unruly Affect in the Kindergarten Classroom: A Critical Analysis of Social-Emotional Learning
ERIC Educational Resources Information Center
Stearns, Clio
2018-01-01
This article offers a critique of social-emotional learning programs through the lens of psychoanalytic theory and with a particular focus on the theoretical contributions of Kleinian psychoanalysis. In particular, the article draws on concepts of affective positions to show that social-emotional learning is mired in a paranoid-schizoid mentality…
NOAA Photo Library - It's A Small World Collection
words Geodesy For children the world can seem like a huge place. For those lucky enough to have a back larger neighborhood and discover the outside world. Until a few short centuries ago, mankind was locked in a figurative backyard, mired in superstition and ignorance of the nature of the world about us
Viscoelastic Behavior of a Polyetheretherketone (PEEK) Composite.
1987-12-01
Nonlinear viscoelastic behavior has been observed with increasing crystallinity. Other measured properties are listed in Table 2. An acid digestion tech...I. ’ -- ’~mire .nzic at all.,-;; temperatu : r- ,,,r-,- ", 71 ". -ct.: f f: r n e :7 r y... ... tr 1. 1 i - -f t ’. -.. L-e er: i-; -_ re until :;e
Empowering Youth Work Supervisors with Action Research Strategies
ERIC Educational Resources Information Center
Herman, Margo
2012-01-01
Supervising youth workers is a challenging, demanding job in a complex field. Too frequently youth workers get mired in reacting to the everyday crises that dominate their work, finding it difficult to rise above the daily demands to reach a place where reflection can help guide their work. Strategies based in action research can empower youth…
ERIC Educational Resources Information Center
Tipping, Alan
2013-01-01
On taking power the coalition government embarked on what many commentators believe is a radical programme of public policy reform. Under Michael Gove, education policy has become totemic to those arguing that Britain's classrooms are mired in academic mediocrity and behavioural failure. One policy response by the government has been to propose…
ERIC Educational Resources Information Center
Mirci, Philip S.; Hensley, Phyllis A.
2010-01-01
We live in an era of unique challenges requiring us to face a new reality mired in information overload for the 21st Century. This new reality emphasizes the critical need for educational leaders who can think and act systemically rather than bureaucratically. The bureaucratic model inherited from the Industrial Era still prevails in many…
Public Relations for Rural and Village Teachers. Bulletin, 1946, No. 17
ERIC Educational Resources Information Center
US Office of Education, Federal Security Agency, 1946
1946-01-01
There is wide agreement among educational leaders that as a group the rural schools are still the "mired wheel" of American education. Rural communities have never been in greater need of trained educational leaders than at the present time. Teachers are needed who are trained to serve rural youth, to help solve farm problems, and to enrich rural…
Taking Action for America: A CEO Plan for Jobs and Economic Growth
ERIC Educational Resources Information Center
Business Roundtable, 2012
2012-01-01
America faces many challenges in working together to restore the promise of economic growth and security for the country, U.S. families and the American worker. The challenges are both real and serious. Despite hopeful signs of economic recovery, America remains mired in the deepest jobs crisis since the 1930s. One out of every 12 Americans who…
ERIC Educational Resources Information Center
d'Alessio, Matthew; Lundquist, Loraine
2013-01-01
Each year our physical science class for pre-service elementary teachers launches water-powered rockets based on the activity from NASA. We analyze the rocket flight using data from frame-by-frame video analysis of the launches. Before developing the methods presented in this paper, we noticed our students were mired in calculation details while…
ERIC Educational Resources Information Center
McWilliam, R. A.
2015-01-01
Early intervention for infants and toddlers began with high hopes, but became mired in overspecialization, bureaucracy, and turf guarding. Nevertheless, two important advances in the field have been (a) a recognition that the child's natural caregivers are in the best position to be the intervention agents and, concomitantly, (b) a rethinking…
Dreesen, Roland; Bossiroy, Dominique; Dusar, Michiel; Flores, R.M.; Verkaeren, Paul; Whateley, M. K. G.; Spears, D.A.
1995-01-01
The Westphalian C strata found in the northeastern part of the former Belgian coal district (Campine Basin), which is part of an extensive northwest European paralic coal basin, are considered. The thickness and lateral continuity of the Westphalian C coal seams vary considerably stratigraphically and areally. Sedimentological facies analysis of borehole cores indicates that the deposition of Westphalian C coal-bearing strata was controlled by fluvial depositional systems whose architectures were ruled by local subsidence rates. The local subsidence rates may be related to major faults, which were intermittently reactivated during deposition. Lateral changes in coal seam groups are also reflected by marked variations of their seismic signatures. Westphalian C fluvial depositional systems include moderate to low sinuosity braided and anastomosed river systems. Stable tectonic conditions on upthrown, fault-bounded platforms favoured deposition by braided rivers and the associated development of relatively thick, laterally continuous coal seams in raised mires. In contrast, rapidly subsiding downthrown fault blocks favoured aggradation, probably by anastomosed rivers and the development of relatively thin, highly discontinuous coal seams in topogenous mires.
Increased terrestrial methane cycling at the Palaeocene-Eocene thermal maximum.
Pancost, Richard D; Steart, David S; Handley, Luke; Collinson, Margaret E; Hooker, Jerry J; Scott, Andrew C; Grassineau, Nathalie V; Glasspool, Ian J
2007-09-20
The Palaeocene-Eocene thermal maximum (PETM), a period of intense, global warming about 55 million years ago, has been attributed to a rapid rise in greenhouse gas levels, with dissociation of methane hydrates being the most commonly invoked explanation. It has been suggested previously that high-latitude methane emissions from terrestrial environments could have enhanced the warming effect, but direct evidence for an increased methane flux from wetlands is lacking. The Cobham Lignite, a recently characterized expanded lacustrine/mire deposit in England, spans the onset of the PETM and therefore provides an opportunity to examine the biogeochemical response of wetland-type ecosystems at that time. Here we report the occurrence of hopanoids, biomarkers derived from bacteria, in the mire sediments from Cobham. We measure a decrease in the carbon isotope values of the hopanoids at the onset of the PETM interval, which suggests an increase in the methanotroph population. We propose that this reflects an increase in methane production potentially driven by changes to a warmer and wetter climate. Our data suggest that the release of methane from the terrestrial biosphere increased and possibly acted as a positive feedback mechanism to global warming.
Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry
2016-01-01
Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation efforts. Using tree-level observations, the National Park Service-led Greater Yellowstone Interagency Whitebark Pine Long-term Monitoring Program provided important ecological insight on the size-dependent effects of white pine blister rust, mountain pine beetle, and water availability on whitebark pine mortality. This ongoing monitoring campaign will continue to offer observations that advance conservation in the Greater Yellowstone Ecosystem.
Organic matter evolution throughout a 100-cm ombrotrophic profile from an Italian floating mire
NASA Astrophysics Data System (ADS)
Zaccone, Claudio; D'Orazio, Valeria; Lobianco, Daniela; Miano, Teodoro M.
2015-04-01
The curious sight of an island floating and moving on a lake naturally, already described by Pliny the Elder in his Naturalis historia (AD 77-79), fascinated people from time immemorial. Floating mires are defined by the occurrence of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Peat-forming floating mires could provide an exceptional tool for environmental studies, since much of their evolution, as well as the changes of the surrounding areas, is recorded in their peat deposits. A complete, 4-m deep peat core was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum centre. Here, some of the southernmost Italian populations of Sphagnum palustre occur. The 14C age dating of macrofossils removed from the sample at 360 cm of depth revealed that the island probably formed more than 500 yrs ago (435±20 yr BP). In the present work, we show preliminary results regarding the evolution of the organic matter along the first, ombrotrophic 100 cm of depth, hoping also to provide some insight into the possible mechanism of the evolution of this floating island. The 100 cm monolith was collected using a Wardenaar corer and cut frozen in 1-cm layers. It consists almost exclusively of Sphagnum mosses, often spaced out, in the top 20-30 cm, by leaves of Populus tremula that annually fell off. This section shows a very low bulk density, ranging from 0.017 and 0.059 g cm-3 (avg. value, 0.03±0.01 g cm-3), an average water content of 96.1±1.1%, and a gravimetric water content ranging between 14.3 and 41.5 gwater gdrypeat-1. The pH of porewaters was in the range 5-5.5. The C content along the profile ranged between 35 and 47% (avg., 41±1%), whereas the N between 0.3 and 0.9% (avg., 0.6±0.1%). Main atomic ratios seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as 'peat'. In fact, the F14C age dating suggests that the first 95 cm of Sphagnum material accumulate in less than 55 yrs, thus resulting in an average growing rate of ca. 1.7-1.8 cm yr-1. At the same time, C/N, H/C and O/C ratios show their lowest values between 20 and 55 cm of depth, corresponding to the section with highest bulk density (0.025-0.059 g cm-3). This seems to suggest a slightly more decomposed material. Consequently, the depth of 55-60 cm could represent the emerged (i.e., less anaerobic) section of this floating mire. Finally, the first 100 cm of the core show a great potential to be used as archive of environmental changes, especially considering their high resolution (1 cm = 0.5 yr ca.), although the short time-space covered could be a limiting factor. The Authors thank the Municipality of Posta Fibreno (FR), Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling. C.Z. is indebted to the Staff of the Regional Natural Reserve for the help during samplings and for their continuous feedbacks.
Shaver, S.A.; Eble, C.F.; Hower, J.C.; Saussy, F.L.
2006-01-01
Stratigraphy, palynology, petrography, and geochemistry of the Bon Air coal from the Armfield, Dotson, Rutledge, and Shakerag mine sites of Franklin County, Tennessee suggest that Bon Air seams at all sites were small (??? 1.0 mile, 1.6 km), spatially distinct paleomires that evolved from planar to domed within the fluviodeltaic Lower Pennsylvanian Raccoon Mountain Formation. Of observed palynoflora, 88-97% are from lycopsids prevalent in the Westphalian. Densosporites palynomorphs of small lycopsids (e.g., Omphalophloios) dominate at the shale-hosted Armfield site, while Lycospora palynoflora of large arboreous lycopsids (especially Lepidodendron, with lesser Lepidophloios harcourtii and Lepidophloios hallii) dominate where intercalated siltstone/sandstone/shale hosts the coal (all other sites). Palynoflora of other lycopsids (Sigillaria and Paralycopodites), tree ferns, seed ferns, small ferns, calamites, and cordaites are generally minor. Genera of clastic-associated Paralycopodites are most common in Shakerag's coal (??? 10%), yet quite rare in Rutledge or Dotson coals. Overall, the palynomorph assemblages suggest that the Bon Air paleomires were forest swamps, and Early Pennsylvanian in age (Westphalian A, Langsettian). Dominant macerals at all sites are vitrinites, with fine collodetrinite (from strongly decomposed plant debris) more common than coarser collotelinite (from well-preserved plant fragments), and with lesser inertinites (fusinite and semifusinite) and liptinites (dominantly sporinite). Shakerag's coal has greatest abundance (mineral-matter-free) of collotelinite (up to 47%) and total vitrinite (74-79%) of any sites, but lowest liptinite (12-14.5%) and inertinite (7-11%). The Dotson and Rutledge seams contain moderate liptinite (21-23%) and highest inertinite (36-37%), lowest vitrinite (??? 41%), and lowest collotelinite (13-15%). Armfield's seam has relatively high liptinite (26-28%) and vitrinite (56.5-62%), but rather low inertinite (12-15%). Moderately high ash (11.0-20.0%) and low to moderate sulfur (1.24% avg.) are typical, but ash may locally be up to 38% and sulfur up to 2.9%. Volatile matter (32.1-41.3%), calorific value (33.3-34.9 MJ/kg MAF), moisture (2.2-3.4%), and vitrinite reflectance (0.70-0.84% Rmax; 0.64-0.79% Rrandom) place the Bon Air's rank as high-volatile-A bituminous (hvAb). The Armfield coal was probably a channel-distal paleomire, perhaps an oxbow lake or floodplain depression, which domed and then subsided back to planarity prior to burial. Features of its basal and uppermost benches suggest low-lying, often-flooded (but periodically dry) mires marked by fluvial influxes and diverse lycopsid growth. These include variable inertinite, common palynoflora of both small lycopsids (Omphalophloios-like) and large arboreous ones (Lepidophloios and Lepidodendron), minor but significant palynoflora of subaerial levee or levee/mire transition species (especially Paralycopodites), moderate to high ash, variable sulfur, and elevated levels of commonly fluvial trace elements (e.g., Al, Cr, REEs, Rb, Sr, Th, V, Y, and Zr). These benches also contain high total vitrinite, high collotelinite/collodetrinite ratios, and clays with moderate to low kaolinite/quartz ratios, all consistent with the near-neutral pH and limited peat degradation that typify such planar mires. By contrast, middle benches at Armfield reflect mires domed above the land surface, less-often flooded, less-preservational, and of lower pH: coals have lower ash, vitrinite, and collotelinite, less palynoflora of both large arboreous lycopsids and Paralycopodites, and high proportions of kaolinite, liptinite, and Densosporites. Similar data at Shakerag suggest that its mire also grew from planar to domed. However, more abundant Paralycopodites, a kaolinite-poor but quartz-and-illite-rich underclay, benches alternately ash-rich and ash-poor, and an upper bench truncated by channel sandstone, suggest that it was channel-proximal and pron
NASA Astrophysics Data System (ADS)
Burke, M. P.; Foreman, C. S.
2014-12-01
Development of the Watershed Restoration and Protection Strategies (WRAPS) for the Pine and Leech Lake River Watersheds is underway in Minnesota. Project partners participating in this effort include the Minnesota Pollution Control Agency (MPCA), Crow Wing Soil and Water Conservation District (SWCD), Cass County, and other local partners. These watersheds are located in the Northern Lakes and Forest ecoregion of Minnesota and drain to the Upper Mississippi River. To support the Pine and Leech Lake River WRAPS, watershed-scale hydrologic and water-quality models were developed with Hydrological Simulation Program-FORTRAN (HSPF). The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and provide predictions at points of interest within the watersheds, such as observation gages, management boundaries, compliance points, and impaired water body endpoints. The model applications were used to evaluate phosphorus loads to surface waters under resource management scenarios, which were based on water quality threats that were identified at stakeholder meetings. Simulations of land use changes including conversion of forests to agriculture, shoreline development, and full build-out of cities show a watershed-wide phosphorus increases of up to 80%. The retention of 1.1 inches of runoff from impervious surfaces was not enough to mitigate the projected phosphorus load increases. Changes in precipitation projected by climate change models led to a 20% increase in annual watershed phosphorus loads. The scenario results will inform the implementation strategies selected for the WRAPS.
Hydraulic architecture and tracheid allometry in mature Pinus palustris and Pinus elliottii trees.
Gonzalez-Benecke, C A; Martin, T A; Peter, G F
2010-03-01
Pinus palustris Mill. (longleaf pine, LL) and Pinus elliottii Engelm. var. elliottii (slash pine, SL) frequently co-occur in lower coastal plain flatwoods of the USA, with LL typically inhabiting slightly higher and better-drained microsites than SL. The hydraulic architecture and tracheid dimensions of roots, trunk and branches of mature LL and SL trees were compared to understand their role in species microsite occupation. Root xylem had higher sapwood-specific hydraulic conductivity (k(s)) and was less resistant to cavitation compared with branches and trunk sapwood. Root k(s) of LL was significantly higher than SL, whereas branch and trunk k(s) did not differ between species. No differences in vulnerability to cavitation were observed in any of the organs between species. Across all organs, there was a significant but weak trade-off between water conduction efficiency and safety. Tracheid hydraulic diameter (D(h)) was strongly correlated with k(s) across all organs, explaining >73% of the variation in k(s). In contrast, tracheid length (L(t)) explained only 2.4% of the variability. Nevertheless, for trunk xylem, k(s) was 39.5% higher at 20 m compared with 1.8 m; this increase in k(s) was uncorrelated with D(h) and cell-wall thickness but was strongly correlated with the difference in L(t). Tracheid allometry markedly changed between sapwood of roots, trunks and branches, possibly reflecting different mechanical constraints. Even though vulnerability to cavitation was not different for sapwood of roots, branches or the trunks of LL and SL, higher sapwood to leaf area ratio and higher maximum sapwood-specific hydraulic conductivity in roots of LL are functional traits that may provide LL with a competitive advantage on drier soil microsites.
Riparian zones attenuate nitrogen loss following bark beetle-induced lodgepole pine mortality
NASA Astrophysics Data System (ADS)
Biederman, Joel A.; Meixner, Thomas; Harpold, Adrian A.; Reed, David E.; Gutmann, Ethan D.; Gaun, Janelle A.; Brooks, Paul D.
2016-03-01
A North American bark beetle infestation has killed billions of trees, increasing soil nitrogen and raising concern for N loss impacts on downstream ecosystems and water resources. There is surprisingly little evidence of stream N response in large basins, which may result from surviving vegetation uptake, gaseous loss, or dilution by streamflow from unimpacted stands. Observations are lacking along hydrologic flow paths connecting soils with streams, challenging our ability to determine where and how attenuation occurs. Here we quantified biogeochemical concentrations and fluxes at a lodgepole pine-dominated site where bark beetle infestation killed 50-60% of trees. We used nested observations along hydrologic flow paths connecting hillslope soils to streams of up to third order. We found soil water NO3 concentrations increased 100-fold compared to prior research at this and nearby southeast Wyoming sites. Nitrogen was lost below the major rooting zone to hillslope groundwater, where dissolved organic nitrogen (DON) increased by 3-10 times (mean 1.65 mg L-1) and NO3-N increased more than 100-fold (3.68 mg L-1) compared to preinfestation concentrations. Most of this N was removed as hillslope groundwater drained through riparian soils, and NO3 remained low in streams. DON entering the stream decreased 50% within 5 km downstream, to concentrations typical of unimpacted subalpine streams (~0.3 mg L-1). Although beetle outbreak caused hillslope N losses similar to other disturbances, up to 5.5 kg ha-1y-1, riparian and in-stream removal limited headwater catchment export to <1 kg ha-1y-1. These observations suggest riparian removal was the dominant mechanism preventing hillslope N loss from impacting streams.
Eidson, Erika L; Mock, Karen E; Bentz, Barbara J
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.
Mock, Karen E.; Bentz, Barbara J.
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks. PMID:29715269
Limber Pine Dwarf Mistletoe (FIDL)
Jane E. Taylor; Robert L. Mathiason
1999-01-01
Limber pine dwarf mistletoe (Arceuthobium cyanocarpum (A. Nelson ex Rydberg) Coulter & Nelson) is a damaging parasite of limber pine (Pinus flexilis James), whitebark pine (P. albicaulis Engelm.), Rocky Mountain bristlecone pine (P. aristata Engelm.) and Great Basin bristlecone pine (P. longaeva D.K. Bailey). Limber pine dwarf mistletoe occurs in the Rocky...
7 CFR 301.50-10 - Treatments and management method.
Code of Federal Regulations, 2013 CFR
2013-01-01
... chapter to neutralize the pine shoot beetle. (b) Management method for pine bark products. The following... pine (P. sylvestris), red pine (P. resinosa), and jack pine (P. banksiana) trees. Pine bark products... following procedures are followed: (1) For pine bark products produced from trees felled during the period...
7 CFR 301.50-10 - Treatments and management method.
Code of Federal Regulations, 2014 CFR
2014-01-01
... chapter to neutralize the pine shoot beetle. (b) Management method for pine bark products. The following... pine (P. sylvestris), red pine (P. resinosa), and jack pine (P. banksiana) trees. Pine bark products... following procedures are followed: (1) For pine bark products produced from trees felled during the period...
7 CFR 301.50-10 - Treatments and management method.
Code of Federal Regulations, 2011 CFR
2011-01-01
... chapter to neutralize the pine shoot beetle. (b) Management method for pine bark products. The following... pine (P. sylvestris), red pine (P. resinosa), and jack pine (P. banksiana) trees. Pine bark products... following procedures are followed: (1) For pine bark products produced from trees felled during the period...
7 CFR 301.50-10 - Treatments and management method.
Code of Federal Regulations, 2012 CFR
2012-01-01
... chapter to neutralize the pine shoot beetle. (b) Management method for pine bark products. The following... pine (P. sylvestris), red pine (P. resinosa), and jack pine (P. banksiana) trees. Pine bark products... following procedures are followed: (1) For pine bark products produced from trees felled during the period...
Modeling the Differential Sensitivity of Loblolly Pine to Climatic Change Using Tree Rings
Edward R. Cook; Warren L. Nance; Paul J. Krusic; James Grissom
1998-01-01
The Southwide Pine Seed Source Study (SPSSS) was undertaken in 1951 to determine to what extent inherent geographic variation in four southern pine species (loblolly pine, Pinus taeda L.; slash pine, P. elliottii Engelm. var. elliottii; longleaf pine, P. palutris Mill.; and shortleaf pine,
Effect of freeze-thaw cycling on grain size of biochar.
Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A; Wahab, Leila M; Gonnermann, Helge M; Nittrouer, Jeffrey A
2018-01-01
Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle.
Effect of freeze-thaw cycling on grain size of biochar
Dugan, Brandon; Masiello, Caroline A.; Wahab, Leila M.; Gonnermann, Helge M.; Nittrouer, Jeffrey A.
2018-01-01
Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle. PMID:29329343
2013-01-01
Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205
Richard A. Sniezko; Angelia Kegley; Robert Danchok; Anna W. Schoettle; Kelly S. Burns; Dave Conklin
2008-01-01
All nine species of white pines (five-needle pines) native to the United States are highly susceptible to Cronartium ribicola, the fungus causing white pine blister rust. The presence of genetic resistance will be the key to maintaining or restoring white pines in many ecosystems and planning gene conservation activities. Operational genetic...
Pine Gene Discovery Project - Final Report - 08/31/1997 - 02/28/2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whetten, R. W.; Sederoff, R. R.; Kinlaw, C.
2001-04-30
Integration of pines into the large scope of plant biology research depends on study of pines in parallel with study of annual plants, and on availability of research materials from pine to plant biologists interested in comparing pine with annual plant systems. The objectives of the Pine Gene Discovery Project were to obtain 10,000 partial DNA sequences of genes expressed in loblolly pine, to determine which of those pine genes were similar to known genes from other organisms, and to make the DNA sequences and isolated pine genes available to plant researchers to stimulate integration of pines into the widermore » scope of plant biology research. Those objectives have been completed, and the results are available to the public. Requests for pine genes have been received from a number of laboratories that would otherwise not have included pine in their research, indicating that progress is being made toward the goal of integrating pine research into the larger molecular biology research community.« less
Uncaging the Dragon: Vietnam and the Middle-Income Trap
2013-11-01
compete with high- income advanced economies because it lacks the institutions necessary to continue economic growth . The author suggests that...but then cannot compete with high- income advanced economies because it lacks the institutions necessary to continue economic growth . The author...Vietnam modifies its current economic strategy, the factors that limit economic growth will leave it mired in the middle- income trap. The Communist
ERIC Educational Resources Information Center
Ajmani, Nisha; Webster, Erica
2016-01-01
From its inception in 1891 to present day, California's state youth corrections system has been mired in violence and abuse. In 1914, IQ testing and eugenics at state juvenile facilities resulted in the forced sterilization of poor, primarily non-white youth. In 1939, the suspicious suicide of a 13-year-old boy, the maltreatment of Latino youth,…
Battle for Ulster. A Study of Internal Security
1987-06-01
More than twenty-three nations sent television crews, with American networks alone assigning sixteen. Over 400 journalists -were present. It=was, for...Independence. Another settlement option is in- dependence for Northern Ireland. This initiative, de- signed to outflank loyalists and- republicans mired in...One such variation is the new Anglo-Irish accord, signed in November -1985, which is perhaps the most important political initiative in the province
Bergman, Inger; Bishop, Kevin; Tu, Qiang; Frech, Wolfgang; Åkerblom, Staffan; Nilsson, Mats
2012-01-01
In this paper we investigate the hypothesis that long-term sulphate (SO(4) (2-)) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO(4) (2-) on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO(4) (2-) started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha(-1) yr(-1) of sulphur (S) addition (1.3±0.08 ng L(-1), SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha(-1) yr(-1) of ambient S deposition (0.6±0.02 ng L(-1), SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L(-1) compared to +/-0.5 ng L(-1) in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r(2) = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO(4) (2-) to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO(4) (2-) deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO(4) (2-) in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands.
NASA Astrophysics Data System (ADS)
Pihlaja, Jouni; Johansson, Peter; Lauri, Laura
2015-04-01
Barents Tour for Geotourists is a guidebook for a circular route locating in northern Finland, northern Norway and north-western Russia. The targets along the route are all connected with different aspects of geology: there are localities presenting rare rock types and minerals, potholes, gorges, eskers, raised beaches and palsa mires. Total number of sites along the route is 26, 14 of them are locating in Finland, 4 in Norway and 8 in the Kola Peninsula, Russia. In addition to geological information on the sites, the guidebook features directions and information on local tourism services in four languages: English, Finnish, Russian and Norwegian. Good examples of the geological sites in northern Finland are the potholes at Aholanvaara, Salla. The largest pothole is called the "Drinking pot". With a diameter of 15.5 m and a depth of 9.5 m it is the largest known pothole in Finland. One famous target in northern Finland is also the Gold Prospector Museum and geological nature trail at Tankavaara, Sodankylä. The museum has an impressive mineral and jewellery stone collection and it is the only international museum in the world displaying past and present items of gold panning and prospecting. The Khibiny Tundra is the largest mountain massif on the Kola Peninsula, Russia. These mountains are best known for their unique landscapes, geology and mineralogy. With an experienced guide, minerals like apatite, nepheline, titanite, eudialyte and lamprophyllite can be found there. In north-eastern Norway, the palsas at Øvre Neiden and Færdesmyra are examples of a specific mire type in the cold climate area. The palsa mires are characterized by the presence of 2-5 m high peat mounds that consist of interleaved peat and ice layers. The route was planned and implemented in the ABCGheritage project (Arctic Biological, Cultural and Geological Heritage) partly funded by the Kolarctic ENPI CBC program of the European Union. The guidebook was written by researchers of the Geological Survey of Finland and the Geological Institute of the Kola Science Centre of the Russian Academy of Sciences. It is available in electronic format on the websites of Metsähallitus, the Geological Survey of Finland and the Geological Institute.
Calder, J.H.; Gibling, M.R.; Eble, C.F.; Scott, A.C.; MacNeil, D.J.
1996-01-01
Strata of Westphalian D age on the western coast of the Sydney Basin expose a fossil forest of approximately 30 lepidodendrid trees within one of several clastic splits of the Harbour Seam. A mutidisciplinary approach was employed to interpret the origins of the coal bed, the depositional history of the site and the response of the fossil forest to changing edaphic conditions. The megaspore and miospore records indicate that the mire vegetation was dominated by arboreous lycopsids, especially Paralycopodites, with subdominant tree ferns. Petrographic, palynological and geochemical evidence suggest that the Harbour coal bed at Table Head originated as a rheotrophic (cf. planar) mire (eutric histosol). The mire forest is interpreted to have been engulfed by prograding distributary-channel sediments; sparse protist assemblages are suggestive of a freshwater delta-plain lake environment occasionally in contact with brackish waters. Lepidodendrids persisted as site colonizers of clastic substrates even after burial of the rheotrophic peatland and influenced the morphology of deposited sediment, but apparently were unable to colonize distributary channels. Equivocal taxonomic data (compression fossils) show the fossil forest to have been composed of both monocarpic (Lepidodendron) and polycarpic (Diaphorodendron, Paralycopodites, ?Sigillaria) lycopsids, genera recorded in the palynology of the uppermost ply of the underlying coal bed. Comparatively rare within the clastic beds of the fossil forest, however, is the stem compression of Paralycopodites, whose dispersed megapores and miospores dominate the underlying coal bed. Tree diameter data recorded equivalent to breast height indicate a forest of mixed age. These data would appear to suggest that some lepidodendrids employing a polycarpic reproductive strategy were better able to cross the ecological barrier imposed between peat and clastic substrates. Foliar compressions indicate that an understory or stand of Psaronius type tree ferns co-existed with the lepidodendrids on clastic substrates, which developed as incipient gleysol soils. The entombment of the forest can be ascribed to its distributary coastal setting, local subsidence and a seasonal climate that fostered wildfire and increased sedimentation.
On the relative contributions of wind vs. animals to seed dispersal of four Sierra Nevada pines.
Vander Wall, Stephen B
2008-07-01
Selective pressures that influence the form of seed dispersal syndromes are poorly understood. Morphology of plant propagules is often used to infer the means of dispersal, but morphology can be misleading. Several species of pines, for example, have winged seeds adapted for wind dispersal but owe much of their establishment to scatter-hoarding animals. Here the relative importance of wind vs. animal dispersal is assessed for four species of pines of the eastern Sierra Nevada that have winged seeds but differed in seed size: lodgepole pine (Pinus contorta murrayana, 8 mg); ponderosa pine (Pinus ponderosa ponderosa, 56 mg); Jeffrey pine (Pinus jeffreyi, 160 mg); and sugar pine (Pinus lambertiana, 231 mg). Pre-dispersal seed mortality eliminated much of the ponderosa pine seed crop (66%), but had much less effect on Jeffrey pine (32% of seeds destroyed), lodgepole pine (29%), and sugar pine (7%). When cones opened most filled seeds were dispersed by wind. Animals removed > 99% of wind-dispersed Jeffrey and sugar pine seeds from the ground within 60 days, but animals gathered only 93% of lodgepole pine seeds and 38% of ponderosa pine seeds during the same period. Animals gathered and scatter hoarded radioactively labeled ponderosa, Jeffrey, and sugar pine seeds, making a total of 2103 caches over three years of study. Only three lodgepole pine caches were found. Caches typically contained 1-4 seeds buried 5-20 mm deep, depths suitable for seedling emergence. Although Jeffrey and sugar pine seeds are initially wind dispersed, nearly all seedlings arise from animal caches. Lodgepole pine is almost exclusively wind dispersed, with animals acting as seed predators. Animals treated ponderosa pine in an intermediate fashion. Two-phased dispersal of large, winged pine seeds appears adaptive; initial wind dispersal helps to minimize pre-dispersal seed mortality whereas scatter hoarding by animals places seeds in sites with a higher probability of seedling establishment.
Slash Pine (Pinus Elliottii), Including South Florida Slash Pine: Nomenclature and Description
Elbert L. Little; Keith W. Dorman
1954-01-01
Slash pine (Pinus elliottii Engelm.), including its variation South Florida slash pine recently distinguished as a new botanical variety, has been known by several different scientific names. As a result, the common name slash pine is more precise and clearer than scientific names. The slash pine of southern Florida differs from typical slash pine in a few characters...
Ecological roles of five-needle pine in Colorado: Potential consequences of their loss
Anna Schoettle
2004-01-01
Limber pine (Pinus flexilis James) and Rocky Mountain bristlecone pine (Pinus aristata Engelm.) are two white pines that grow in Colorado. Limber pine has a broad distribution throughout western North America while bristlecone pineâs distribution is almost entirely within the state of Colorado. White pine blister rust (Cronartium ribicola J. C. Fisch.) was...
Shortleaf pine hybrids: growth and tip moth damage in southeast Mississippi
Larry H. Lott; Maxine T. Highsmith; C. Dana Nelson
2007-01-01
It is well known that shortleaf pine (Pinus echinata Mill.), loblolly pine (Pinus taeda L.), and Virginia pine (Pinus virginiana Mill.) sustain significantly more Nantucket pine tip moth (Rhyacionia frustrana Comst.) damage than do slash pine (Pinus elliotti var. ...
Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan
2016-01-01
Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle...
C. Weng; Thomas L. Kubisiak; C. Dana Nelson; M. Stine
2002-01-01
Random amplified polymorphic DNA (RAPD) markers were employed to map the genome and quantitative trait loci controlling the early growth of a pine hybrid F1 tree (Pinus palustris Mill. à P. elliottii Engl.) and a recurrent slash pine tree (P. ellottii Engl.) in a (longleaf pine à slash pine...
Curtis A. Gray; Justin B. Runyon; Michael J. Jenkins; Andrew D. Giunta
2015-01-01
The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not...
Freeze injury to southern pine seedlings
David B. South
2006-01-01
Freeze injury to roots and shoots of pines is affected by genotype and nursery practices. Local sources of shortleaf pine and Virginia pine that are grown in nurseries in USDA hardiness Zones 6 and 7a are relatively freeze tolerant. However, loblolly pine, slash pine, and longleaf pine seedlings have been injured by a number of freeze events (0 to 24 °F) in hardiness...
Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica
NASA Astrophysics Data System (ADS)
Konrad, Hannes; Gilbert, Lin; Cornford, Stephen L.; Payne, Antony; Hogg, Anna; Muir, Alan; Shepherd, Andrew
2017-01-01
We combine measurements acquired by five satellite altimeter missions to obtain an uninterrupted record of ice sheet elevation change over the Amundsen Sea Embayment, West Antarctica, since 1992. Using these data, we examine the onset of surface lowering arising through ice-dynamical imbalance, and the pace at which it has propagated inland, by tracking elevation changes along glacier flow lines. Surface lowering has spread slowest (<6 km/yr) along the Pope, Smith, and Kohler (PSK) Glaciers, due to their small extent. Pine Island Glacier (PIG) is characterized by a continuous inland spreading of surface lowering, notably fast at rates of 13 to 15 km/yr along tributaries draining the southeastern lobe, possibly due to basal conditions or tributary geometry. Surface lowering on Thwaites Glacier (THG) has been episodic and has spread inland fastest (10 to 12 km/yr) along its central flow lines. The current episodes of surface lowering started approximately 10 years before the first measurements on PSK, around 1990 on PIG, and around 2000 on THG. Ice-dynamical imbalance across the sector has therefore been uneven during the satellite record.
Accelerating ice loss from the fastest Greenland and Antarctic glaciers
NASA Astrophysics Data System (ADS)
Thomas, R.; Frederick, E.; Li, J.; Krabill, W.; Manizade, S.; Paden, J.; Sonntag, J.; Swift, R.; Yungel, J.
2011-05-01
Ice discharge from the fastest glaciers draining the Greenland and Antarctic ice sheets - Jakobshavn Isbrae (JI) and Pine Island Glacier (PIG)- continues to increase, and is now more than double that needed to balance snowfall in their catchment basins. Velocity increase probably resulted from decreased buttressing from thinning (and, for JI, breakup) of their floating ice tongues, and from reduced basal drag as grounding lines on both glaciers retreat. JI flows directly into the ocean as it becomes afloat, and here creep rates are proportional to the cube of bed depth. Rapid thinning of the PIG ice shelf increases the likelihood of its breakup, and subsequent rapid increase in discharge velocity. Results from a simple model indicate that JI velocities should almost double to >20 km a-1 by 2015, with velocities on PIG increasing to >10 km a-1 after breakup of its ice shelf. These high velocities would probably be sustained over many decades as the glaciers retreat within their long, very deep troughs. Resulting sea-level rise would average about 1.5 mm a-1.
Accelerating Ice Loss from the Fastest Greenland and Antarctic Glaciers
NASA Technical Reports Server (NTRS)
Thomas, R.; Frederick, E.; Li, J.; Krabill, W.; Manizade, S.; Paden, J.; Sonntag, J.; Swift, R.; Yungel, J.
2011-01-01
Ice discharge from the fastest glaciers draining the Greenland and Antarctic ice sheets . Jakobshavn Isbrae (JI) and Pine Island Glacier (PIG). continues to increase, and is now more than double that needed to balance snowfall in their catchment basins. Velocity increase probably resulted from decreased buttressing from thinning (and, for JI, breakup) of their floating ice tongues, and from reduced basal drag as grounding lines on both glaciers retreat. JI flows directly into the ocean as it becomes afloat, and here creep rates are proportional to the cube of bed depth. Rapid thinning of the PIG ice shelf increases the likelihood of its breakup, and subsequent rapid increase in discharge velocity. Results from a simple model indicate that JI velocities should almost double to >20 km/a by 2015, with velocities on PIG increasing to >10 km/a after breakup of its ice shelf. These high velocities would probably be sustained over many decades as the glaciers retreat within their long, very deep troughs. Resulting sea ]level rise would average about 1.5 mm/a.
Pine nut use in the Early Holocene and beyond: The danger cave archaeobotanical record
Rhode, D.; Madsen, D.B.
1998-01-01
Nuts of limber pine (Pinus flexilis) from Early Holocene strata in Danger Cave, Utah, are distinguishable by seed-coat sculpturing from pine nuts of single-needled pinyon (Pinus monophylla), which occur in strata dating <7000 years BP. Owls and other taphonomic agents may deposit pine nuts in archaeological sites, but the morphology of the pine nuts in Danger Cave strongly indicate they were deposited by human foragers who brought small quantities with them for food for at least the last 7500 years. Large-scale transport of pine nuts to Danger Cave from distant hinterlands is unlikely, however. The seamless transition from limber pine to pinyon pine nuts in the Danger Cave record suggests that foragers who had utilized limber pine as a food resource easily switched to using pinyon pine nuts when pinyon pine migrated into the region at the close of the Early Holocene.
How the pine seeds attach to/detach from the pine cone scale?
Song, Kahye; Chang, Shyr-Shea; Lee, Sang Joon
2017-01-01
One of the primary purposes of pine cones is the protection and distant dispersal of pine seeds. Pine cones open and release their embedded seeds on dry and windy days for long-distance dispersal. In this study, how the pine seed attach to/ detach from the pine cone scale for efficient seed dispersal were experimentally investigated by using X-ray micro-imaging technique. The cone and seeds adhere to one another in the presence of water, which could be explained by the surface tension and the contact angle hysteresis. Otherwise, without water, the waterproof seed wing surface permits rapid drying for detach and dispersion. On the other hand, during wildfires, pine cones open their seed racks and detach the pine seeds from pine cones for rapid seed dispersal. Due to these structural advantages, pine seeds are released safely and efficiently on adjust condition. These advantageous structure could be mimicked in practical applications.
Gray, Curtis A.; Runyon, Justin B.; Jenkins, Michael J.; Giunta, Andrew D.
2015-01-01
The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not suitable hosts and are rarely attacked. How pioneering females locate host trees is not well understood, with prevailing theory involving random landings and/or visual cues. Here we show that female mountain pine beetles orient toward volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from co-occurring limber and Great Basin bristlecone pine trees revealed only a few quantitative differences. Noticeable differences included the monoterpenes 3-carene and D-limonene which were produced in greater amounts by host limber pine. We found no evidence that 3-carene is important for beetles when selecting trees, it was not attractive alone and its addition to Great Basin bristlecone pine VOCs did not alter female selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs disrupted the ability of beetles to distinguish between tree species. When presented alone, D-limonene did not affect behavior, suggesting that the response is mediated by multiple compounds. A better understanding of host selection by mountain pine beetles could improve strategies for managing this important forest insect. Moreover, elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles could provide insight into mechanisms underlying the incredible longevity of this tree species. PMID:26332317
Degnim, Amy C.; Scow, Jeffrey S.; Hoskin, Tanya L.; Miller, Joyce P.; Loprinzi, Margie; Boughey, Judy C.; Jakub, James W.; Throckmorton, Alyssa; Patel, Robin; Baddour, Larry M.
2014-01-01
Objective To determine if bacterial colonization of drains can be reduced by local antiseptic interventions. Summary Background Drains are a potential source of bacterial entry into surgical wounds and may contribute to surgical site infection (SSI) after breast surgery. Methods Following IRB approval, patients undergoing total mastectomy and/or axillary lymph node dissection were randomized to standard drain care (control) or drain antisepsis (treated). Standard drain care comprised twice daily cleansing with alcohol swabs. Antisepsis drain care included 1) a chlorhexidine disc at the drain exit site and 2) irrigation of the drain bulb twice daily with dilute sodium hypochlorite (Dakin’s) solution. Cultures results of drain fluid and tubing were compared between control and antisepsis groups. Results Overall, 100 patients with 125 drains completed the study with 48 patients (58 drains) in the control group and 52 patients (67 drains) in the antisepsis group. Cultures of drain bulb fluid at one week were positive (1+ or greater growth) in 66% (38/58) of control drains compared to 21% of antisepsis drains (14/67), (p=0.0001). Drain tubing cultures demonstrated >50 CFU in 19% (8/43) of control drains versus 0% (0/53) of treated drains (p=0.004). SSI was diagnosed in 6 patients (6%) - 5 patients in the control group and 1 patient in the antisepsis group (p=0.06). Conclusions Simple and inexpensive local antiseptic interventions with a chlorhexidine disc and hypochlorite solution reduce bacterial colonization of drains. Based on these data, further study of drain antisepsis and its potential impact on SSI rate is warranted. PMID:23518704
Hurricane Katrina winds damaged longleaf pine less than loblolly pine
Kurt H. Johnsen; John R. Butnor; John S. Kush; Ronald C. Schmidtling; C. Dana Nelson
2009-01-01
Some evidence suggests that longleaf pine might be more tolerant of high winds than either slash pine (Pinus elliotii Englem.) or loblolly pine (Pinus taeda L.). We studied wind damage to these three pine species in a common garden experiment in southeast Mississippi following Hurricane Katrina,...
Pine needle abortion biomarker detected in bovine fetal fluids
USDA-ARS?s Scientific Manuscript database
Pine needle abortion is a naturally occurring condition in free-range cattle caused by the consumption of pine needles from select species of cypress, juniper, pine, and spruce trees. Confirmatory diagnosis of pine needle abortion has previously relied on a combined case history of pine needle cons...
Successional trends of six mature shortleaf pine forests in Missouri
Michael C. Stambaugh; Rose-Marie Muzika
2007-01-01
Many of Missouri's mature oak-shortleaf pine (Quercus-Pinus echinata) forests are in a mid-transition stage characterized by partial pine overstory, limited pine recruitment, and minimal pine regeneration. Restoration of shortleaf pine communities at a large scale necessitates the understanding and management of natural regeneration. To...
Ronald E. Masters
2007-01-01
Shortleaf pine, by virtue of its wide distribution and occurrence in many forest types in eastern North America, is an important species that provides high habitat value for many wildlife species. Shortleaf pine functions as a structural habitat element in both mixed oak-pine forests and in pine-grassland woodlands. It also adds diversity throughout all stages of plant...
Establishing Longleaf Pine Seedlings Under a Loblolly Pine Canopy (User’s Guide)
2017-02-01
converting loblolly pine stands to longleaf pine dominance ..................... 5 3. WHERE DO THE GUIDELINES APPLY? GEOGRAPHIC, EDAPHIC, AND STAND STRUCTURE ...watching, hunting, and off-road vehicle use, and yield valuable products including quality saw- timber and pine needles for landscaping. Longleaf pines...U.S. Fish and Wildlife Service 2003). The foraging habitat guidelines specify characteristics of the pine canopy structure , the abundance of
Shiqin Xu; C.G. Tauer; C. Dana Nelson
2008-01-01
Shortleaf pine (n=93) and loblolly pine (n=112) trees representing 22 seed sources or 16 physiographic populations were sampled from Southwide Southern Pine Seed Source Study plantings located in Oklahoma, Arkansas and Mississippi. The sampled trees were grown from shortleaf pine and loblolly pine seeds formed in 1951 and 1952, prior to the start of intensive forest...
Anne Marie Casper; William R. Jacobi; Anna W. Schoettle; Kelly S. Burns
2010-01-01
Limber Pine (Pinus flexilis) populations in the southern Rock Mountains are severely threatened by the combined impacts of mountain pine beetles and white pine blister rust. Limber pineâs critical role these high elevation ecosystems heightens the importance of mitigating impacts. To develop forest-scale planting methods six seedling planting trial sites were installed...
Year-round measurements of CH4 exchange in a forested drained peatland using automated chambers
NASA Astrophysics Data System (ADS)
Korkiakoski, Mika; Koskinen, Markku; Penttilä, Timo; Arffman, Pentti; Ojanen, Paavo; Minkkinen, Kari; Laurila, Tuomas; Lohila, Annalea
2016-04-01
Pristine peatlands are usually carbon accumulating ecosystems and sources of methane (CH4). Draining peatlands for forestry increases the thickness of the oxic layer, thus enhancing CH4 oxidation which leads to decreased CH4 emissions. Closed chambers are commonly used in estimating the greenhouse gas exchange between the soil and the atmosphere. However, the closed chamber technique alters the gas concentration gradient making the concentration development against time non-linear. Selecting the correct fitting method is important as it can be the largest source of uncertainty in flux calculation. We measured CH4 exchange rates and their diurnal and seasonal variations in a nutrient-rich drained peatland located in southern Finland. The original fen was drained for forestry in 1970s and now the tree stand is a mixture of Scots pine, Norway spruce and Downy birch. Our system consisted of six transparent polycarbonate chambers and stainless steel frames, positioned on different types of field and moss layer. During winter, the frame was raised above the snowpack with extension collars and the height of the snowpack inside the chamber was measured regularly. The chambers were closed hourly and the sample gas was sucked into a cavity ring-down spectrometer and analysed for CH4, CO2 and H2O concentration with 5 second time resolution. The concentration change in time in the beginning of a closure was determined with linear and exponential fits. The results show that linear regression systematically underestimated the CH4 flux when compared to exponential regression by 20-50 %. On the other hand, the exponential regression seemed not to work reliably with small fluxes (< 3.5 μg CH4 m-2 h-1): using exponential regression in such cases typically resulted in anomalously large fluxes and high deviation. Due to these facts, we recommend first calculating the flux with the linear regression and, if the flux is high enough, calculate the flux again using the exponential regression and use this value in later analysis. The forest floor at the site (including the ground vegetation) acted as a CH4 sink most of the time. CH4 emission peaks were occasionally observed, particularly in spring during the snow melt, and during rainfall events in summer. Diurnal variation was observed mainly in summer. The net CH4 exchange for the two year measurement period in the six chambers varied from -31 to -155 mg CH4 m-2 yr-1, the average being -67 mg CH4 m-2 yr-1. However, this does not include the ditches which typically act as a significant source for CH4.
R.A. Sniezko; A.J. Kegley
2017-01-01
Whitebark pine (Pinus albicaulis) and foxtail pine (P. balfouriana) are conifers native to western North America. Due to several threats, including a non-native pathogen (Cronartium ribicola) and a changing climate, whitebark pine and foxtail pine are classified on the IUCN Red List as âendangeredâ and â...
Jim Hanson; Michelle Cram
2004-01-01
Pine wilt is a disease of pine (Pinus spp.) caused by the pinewood nematode, Bursaphelenchus xylophilus. The pinewood nematode is native to North America and is not considered a primary pathogen of native pines, but is the cause of pine wilt in some non-native pines. In countries where the pinewood nematode has been introduced, such as Japan and China, pine wilt is an...
Underplanting shortleaf pine at Coldwater Conservation Area in Missouri
Jason Jensen; David Gwaze
2007-01-01
Restoring shortleaf pine throughout its native range in the Ozark Highlands is a high priority in Missouri. Restoring shortleaf pine on former pine and oak-pine sites is a longterm strategy for mitigating chronic oak decline (Law et al. 2004). Underplanting or preharvest planting is one method that has potential for restoring shortleaf pine.
White-pine weevil attack: susceptibility of western white pine in the Northeast
Ronald C. Wilkinson
1981-01-01
Heights were measured and white-pine weevil (Pissodes strobi (Peck)) attacks were recorded on 668 western white pines (Pinus monticola Douglas) interplanted among 109 eastern white pines (Pinus strobus L.) in a 10-year-old plantation in southern Maine. Less than 13 percent of the western white pines were...
Whitebark and limber pine restoration and monitoring in Glacier National Park
Jennifer M. Asebrook; Joyce Lapp; Tara. Carolin
2011-01-01
Whitebark pine (Pinus albicaulis) and limber pine (Pinus flexilis) are keystone species important to watersheds, grizzly and black bears, squirrels, birds, and other wildlife. Both high elevation five-needled pines have dramatically declined in Glacier National Park primarily due to white pine blister rust (Cronartium ribicola) and fire exclusion, with mountain pine...
Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L
2013-09-01
Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.
Buotte, Polly C; Hicke, Jeffrey A; Preisler, Haiganoush K; Abatzoglou, John T; Raffa, Kenneth F; Logan, Jesse A
2016-12-01
Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood than in lodgepole pine, by quantifying climate-beetle relationships, analyzing climate influences during the recent outbreak, and estimating the suitability of future climate for beetle outbreaks. We developed a statistical model of the probability of whitebark pine mortality in the GYE that included temperature effects on beetle development and survival, precipitation effects on host tree condition, beetle population size, and stand characteristics. Estimated probability of whitebark pine mortality increased with higher winter minimum temperature, indicating greater beetle winter survival; higher fall temperature, indicating synchronous beetle emergence; lower two-year summer precipitation, indicating increased potential for host tree stress; increasing beetle populations; stand age; and increasing percent composition of whitebark pine within a stand. The recent outbreak occurred during a period of higher-than-normal regional winter temperatures, suitable fall temperatures, and low summer precipitation. In contrast to lodgepole pine systems, area with mortality was linked to precipitation variability even at high beetle populations. Projections from climate models indicate future climate conditions will likely provide favorable conditions for beetle outbreaks within nearly all current whitebark pine habitat in the GYE by the middle of this century. Therefore, when surviving and regenerating trees reach ages suitable for beetle attack, there is strong potential for continued whitebark pine mortality due to mountain pine beetle. © 2016 by the Ecological Society of America.
Monsanto may bypass NIH in microbe test.
Sun, Marjorie
1985-01-11
The Monsanto Company is planning to ask the Environmental Protection Agency for clearance to field test a genetically engineered microbial pesticide, bypassing the traditional approval process of the National Institutes of Health. Although only federally funded institutions are required to obtain NIH approval for genetic engineering tests, Monsanto is the first company to bypass the NIH regulatory process, which has become mired in a lawsuit brought by Jeremy Rifkin.
Scaling isotopic emissions and microbes across a permafrost thaw landscape
NASA Astrophysics Data System (ADS)
Varner, R. K.; Palace, M. W.; Saleska, S. R.; Bolduc, B.; Braswell, B. H., Jr.; Crill, P. M.; Chanton, J.; DelGreco, J.; Deng, J.; Frolking, S. E.; Herrick, C.; Hines, M. E.; Li, C.; McArthur, K. J.; McCalley, C. K.; Persson, A.; Roulet, N. T.; Torbick, N.; Tyson, G. W.; Rich, V. I.
2017-12-01
High latitude peatlands are a significant source of atmospheric methane. This source is spatially and temporally heterogeneous, resulting in a wide range of emission estimates for the atmospheric budget. Increasing atmospheric temperatures are causing degradation of underlying permafrost, creating changes in surface soil moisture, the surface and sub-surface hydrological patterns, vegetation and microbial communities, but the consequences to rates and magnitudes of methane production and emissions are poorly accounted for in global budgets. We combined field observations, multi-source remote sensing data and biogeochemical modeling to predict methane dynamics, including the fraction derived from hydrogenotrophic versus acetoclastic microbial methanogenesis across Stordalen mire, a heterogeneous discontinuous permafrost wetland located in northernmost Sweden. Using the field measurement validated Wetland-DNDC biogeochemical model, we estimated mire-wide CH4 and del13CH4 production and emissions for 2014 with input from field and unmanned aerial system (UAS) image derived vegetation maps, local climatology and water table from insitu and remotely sensed data. Model simulated methanogenic pathways correlate with sequence-based observations of methanogen community composition in samples collected from across the permafrost thaw landscape. This approach enables us to link below ground microbial community composition with emissions and indicates a potential for scaling across broad areas of the Arctic region.
NASA Astrophysics Data System (ADS)
Mulder, Christian; Sakorafa, Vasiliki; Burragato, Francesco; Visscher, Henk
2000-06-01
A consensus about the development of freshwater wetlands in relation to time and space is urgently required. Our study aims to address this issue by providing additional data for a fine-scaled comparison of local depositional settings of Greek mires during the Pliocene and Pleistocene. Lignite profiles exhibit phytogenic organic components (macerals) that have been used to investigate the past peat-forming vegetation structure and their succession series. The organic petrology of lignite samples from the opencast mines of Komanos (Ptolemais) and Choremi (Megalopolis) was achieved to assess the water supply, wetland type, nutrient status and vegetation physiognomy. A holistic approach (a study of ecosystems as complete entities) was carried out for a paleoecological reconstruction of the mires. Huminite, liptinite and inertinite were traced by means of their chemical and morphological differences together with the morphogenic and taphonomic affinities. The problem of combining independent information from different approaches in a multivariate calibration setup has been considered. Linear regression, non-metric multidimensional scaling and one-way analysis of variance tested the occurrence of palynological and petrological proxies. Although the lignite formation and deposition are less related to humid periods than expected, the resulting differences occurring in the reconstructed development stages appear to be related to astronomically forced climate fluctuations.
Milius, Robert P; Heuer, Michael; Valiga, Daniel; Doroschak, Kathryn J; Kennedy, Caleb J; Bolon, Yung-Tsi; Schneider, Joel; Pollack, Jane; Kim, Hwa Ran; Cereb, Nezih; Hollenbach, Jill A; Mack, Steven J; Maiers, Martin
2015-12-01
We present an electronic format for exchanging data for HLA and KIR genotyping with extensions for next-generation sequencing (NGS). This format addresses NGS data exchange by refining the Histoimmunogenetics Markup Language (HML) to conform to the proposed Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines (miring.immunogenomics.org). Our refinements of HML include two major additions. First, NGS is supported by new XML structures to capture additional NGS data and metadata required to produce a genotyping result, including analysis-dependent (dynamic) and method-dependent (static) components. A full genotype, consensus sequence, and the surrounding metadata are included directly, while the raw sequence reads and platform documentation are externally referenced. Second, genotype ambiguity is fully represented by integrating Genotype List Strings, which use a hierarchical set of delimiters to represent allele and genotype ambiguity in a complete and accurate fashion. HML also continues to enable the transmission of legacy methods (e.g. site-specific oligonucleotide, sequence-specific priming, and Sequence Based Typing (SBT)), adding features such as allowing multiple group-specific sequencing primers, and fully leveraging techniques that combine multiple methods to obtain a single result, such as SBT integrated with NGS. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Mondav, Rhiannon; McCalley, Carmody K; Hodgkins, Suzanne B; Frolking, Steve; Saleska, Scott R; Rich, Virginia I; Chanton, Jeff P; Crill, Patrick M
2017-08-01
Biogenic production and release of methane (CH 4 ) from thawing permafrost has the potential to be a strong source of radiative forcing. We investigated changes in the active layer microbial community of three sites representative of distinct permafrost thaw stages at a palsa mire in northern Sweden. The palsa site (intact permafrost and low radiative forcing signature) had a phylogenetically clustered community dominated by Acidobacteria and Proteobacteria. The bog (thawing permafrost and low radiative forcing signature) had lower alpha diversity and midrange phylogenetic clustering, characteristic of ecosystem disturbance affecting habitat filtering. Hydrogenotrophic methanogens and Acidobacteria dominated the bog shifting from palsa-like to fen-like at the waterline. The fen (no underlying permafrost, high radiative forcing signature) had the highest alpha, beta and phylogenetic diversity, was dominated by Proteobacteria and Euryarchaeota and was significantly enriched in methanogens. The Mire microbial network was modular with module cores consisting of clusters of Acidobacteria, Euryarchaeota or Xanthomonodales. Loss of underlying permafrost with associated hydrological shifts correlated to changes in microbial composition, alpha, beta and phylogenetic diversity associated with a higher radiative forcing signature. These results support the complex role of microbial interactions in mediating carbon budget changes and climate feedback in response to climate forcing. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
William E. Miller; Arthur R. Hastings; John F. Wootten
1961-01-01
In the United States, the European pine shoot moth has caused much damage in young, plantations of red pine. It has been responsible for reduced planting of red pine in many areas. Although attacked trees rarely if ever die, their growth is inhibited and many are, deformed. Scotch pine and Austrian pine (Pinus nigra Arnold) are usually not so badly damaged. Swiss...
A ponderosa pine-lodgepole pine spacing study in central Oregon: results after 20 years.
K.W. Seidel
1989-01-01
The growth response after 20 years from an initial spacing study established in a ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and lodgepole pine (Pinus contorta Dougl. ex Loud.) plantation was measured in central Oregon. The study was designed to compare the growth rates of pure ponderosa pine, pure lodgepole pine, and a...
Jessica S. Veysey; Matthew P. Ayres; Maria J. Lombardero; Richard W. Hofstetter; Kier D. Klepzig
2003-01-01
Dendroctonus frontalis is a major disturbance agent in American pine forests, but attack preferences for various host species, and their relative suitability for reproduction, are poorly knowi). We studied patterns of beetle attack and reproduction during an infestation of stands contairiing Virginia pine and lol~lolly pine. Nearly all Virginia pine...
Restoration planting options for limber pines in Colorado and Wyoming
Anne Marie Casper; William R. Jacobi; Anna W. Schoettle; Kelly S. Burns
2011-01-01
Limber Pine (Pinus flexilis) populations in the southern Rocky Mountains are severely threatened by the combined impacts of mountain pine beetles and white pine blister rust. Limber pineʼs critical role in these high elevation ecosystems heightens the importance of mitigating these impacts. To develop forest-scale planting methods, six limber pine seedling...
James D. Haywood
2009-01-01
This research was initiated in a 34-year-old, direct-seeded stand of longleaf pine (Pinus palustris Mill.) to study how pine straw management practices (harvesting, fire, and fertilization) affected the longleaf pine overstory and pine straw yields. A randomized complete block split-plot design was installed with two main plot treatments...
Kännaste, Astrid; Laanisto, Lauri; Pazouki, Leila; Copolovici, Lucian; Suhorutšenko, Marina; Azeem, Muhammad; Toom, Lauri; Borg-Karlson, Anna-Karin; Niinemets, Ülo
2018-03-01
Diterpenoids constitute an important part of oleoresin in conifer needles, but the environmental and genetic controls on diterpenoid composition are poorly known. We studied the presence of diterpenoids in four pine populations spanning an extensive range of nitrogen (N) availability. In most samples, isoabienol was the main diterpenoid. Additionally, low contents of (Z)-biformene, abietadiene isomers, manoyl oxide isomers, labda-7,13,14-triene and labda-7,14-dien-13-ol were quantified in pine needles. According to the occurrence and content of diterpenoids it was possible to distinguish 'non diterpenoid pines', 'high isoabienol pines', 'manoyl oxide - isoabienol pines' and 'other diterpenoid pines'. 'Non diterpenoid pines', 'high isoabienol pines' and 'other diterpenoid pines' were characteristic to the dry forest, yet the majority of pines (>80%) of the bog Laeva represented 'high isoabienol pines'. 'Manoyl oxide - isoabienol pines' were present only in the wet sites. Additionally, orthogonal partial least-squares analysis showed, that in the bogs foliar nitrogen content per dry mass (N M ) correlated to diterpenoids. Significant correlations existed between abietadienes, isoabienol and foliar N M in 'manoyl oxide - isoabienol pines', and chemotypic variation was also associated by population genetic distance estimated by nuclear microsatellite markers. Previously, the presence of low and high Δ-3-carene pines has been demonstrated, but the results of the current study indicate that also diterpenoids form an independent axis of chemotypic differentiation. Further studies are needed to understand whether the enhanced abundance of diterpenoids in wetter sites reflects a phenotypic or genotypic response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Limber pine forests on the leading edge of white pine blister rust distribution in Northern Colorado
Jennifer G. Klutsch; Betsy A. Goodrich; Anna W. Schoettle
2011-01-01
The combined threats of the current mountain pine beetle (Dendroctonus ponderosae, MPB) epidemic with the imminent invasion of white pine blister rust (caused by the non-native fungus Cronartium ribicola, WPBR) in limber pine (Pinus flexilis) forests in northern Colorado threatens the limber pine's regeneration cycle and ecosystem function. Over one million...
Shiqin Xu; C.G. Tauer; C. Dana Nelson
2008-01-01
Shortleaf and loblolly pine trees (n=93 and 102, respectively) from 22 seed sources of the Southwide Southern Pine Seed Source Study plantings or equivalent origin were evaluated for amplified fragment length polymorphism (AFLP) variation. These sampled trees represent shortleaf pine and loblolly pine, as they existed across their native geographic ranges before...
J.-P. Berrill; C.M. Dagley
2010-01-01
A compact experimental design and analysis is presented of longleaf pine (Pinus palustris) survival and growth in a restoration project in the Piedmont region of Georgia, USA. Longleaf pine seedlings were planted after salvage logging and broadcast burning in areas of catastrophic southern pine beetle (Dendroctonus frontalis) attacks on even-aged mixed pine-hardwood...
Scar markers in a longleaf pine x slash pine F1 family
C. Weng; Thomas L. Kubisiak; M. Stine
1998-01-01
Sequence characterized amplified region (SCAR) markers were derived from random amplified polymorphic DNAs (RAPDs) that segregate in a longleaf pine x slash pine F1 family. Nine RAPD fragments, five from longleaf pine and four from slash pine, were cloned and end sequenced. A total of 13 SCAR primer pairs, with lengths between 17 and 24...
Species hybridization in the genus Pinus
Peter W. Garrett
1979-01-01
Results of a breeding program in which a large number of pine species were tested indicate that a number of species and hybrids may be useful in the northeastern United States. Austrian black pine x Japanese black pine and hybrids containing Japanese red pine all had good growth rates. While none of the soft pines grew faster than eastern white pine, a number of...
Putting white pine in its place on the Hiawatha National Forest
Allen D. Saberniak
1995-01-01
White pine was once a very important part of the ecosysystem in the northern lake states. Turn of the century logging and wildfires removed white pine from many of the ecosystems of which it was an integral part. Early reforestation efforts were largely unsuccessful. The native white pine weevil and the exotic white pine blister rust made white pine establishment...
Nantucket Pine Tip Moth Control and Loblolly Pine Growth in Intensive Pine Culture: Two-Year Results
David L. Kulhavy; Jimmie L. Yeiser; L. Allen Smith
2004-01-01
Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L. on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana (Comstock), and effects on pine growth over 2 years. Treatments were combinations of Velpar, Oust, and Arsenal...
Field Tests of Pine Oil as a Repellent for Southern Pine Bark Beetles
J.C. Nod; F.L. Hastings; A.S. Jones
1990-01-01
An experimental mixture of terpene hydrocarbons derived from wood pulping, BBR-2, sprayed on the lower 6 m of widely separated southern pine trees did not protect nearby trees from southern pine beetle attacks. Whether treated trees were protected from southern pine beetle was inconclusive. The pine oil mixture did not repellpsfrom treated trees or nearby untreated...
Four Pine Species Grown at Four Spacings on the Eastern Highland Rim, Tennessee, After 30 Years
Martin R. Schubert; John C. Rennie; Scott E. Schlarbaum
2004-01-01
In 1966, four pine species [loblolly pine (Pinus taeda L.), Virginia pine (P. virginiana Mill.), shortleaf pine (P. echinata Mill.) and eastern white pine (P. strobus L.)] were planted at four spacings (6 x 6 foot 9 x 9 foot 12 x 12 feet and 15 x 15 feet) on the eastern Highland Rim near...
The evolution of the New Jersey Pine Plains.
Ledig, F Thomas; Hom, John L; Smouse, Peter E
2013-04-01
Fire in the New Jersey Pine Plains has selectively maintained a dwarf growth form of pitch pine (Pinus rigida), which is distinct from the surrounding tall forest of the Pine Barrens and has several other inherited adaptations that enable it to survive in an environment dominated by fire. Pitch pine progeny from two Pine Plains sites, the West and East Pine Plains, were grown in common garden environments with progeny from two Pine Barrens stands, Batsto and Great Egg Harbor River. The tests were replicated in five locations: in New Jersey, Connecticut, two sites in Massachusetts, and Korea. One of the tests was monitored for up to 36 yr. Progeny of Pine Plains origin were, in general, shorter, more crooked, precocious, bore more cones, had a higher frequency of serotinous cones, and had a higher frequency of stem cones than did Pine Barrens progeny, wherever they were grown. The Pine Plains is an ecotype that has evolved in response to disturbance. The several characters that distinguish it from the surrounding tall forest of the Pine Barrens are inherited. The dwarf stature and crooked form not only enable the ecotype to persist in an environment of frequent fires but also increase its flammability.
Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W
2014-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in this new host.
Burger, J; Boarman, W; Kurzava, L; Gochfeld, M
1991-01-01
The abilities of hatchling pine snakes (Pituophis melanoleucus) and king snakes (Lampropeltis getulus) to discriminate the chemical trails of pine and king snakes was investigated inY-maze experiments. Pine snakes were housed for 17 days either with shavings impregnated with pine snake odor, king snake odor, or no odor to test for the effect of experience on choice. Both pine and king snake hatchlings entered the arm with the pine snake odor and did not enter the arm with the king snake odor. The data support the hypothesis that hatchlings of both species can distinguish conspecific odors from other odors and that our manipulation of previous experience was without effect for pine snake hatchlings.
NASA Astrophysics Data System (ADS)
Raymond, Anne
2016-04-01
Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes and experience significant evaporation. Paleotropical coals with coal balls are under- and overlain by siliciclastic sediments, and, if fresh, would have required ever-wet climatic conditions for peat to accumulate. Pervasive freshwater diagenesis, with low magnesium calcite enveloping individual grains of high-magnesium calcite, results in most coal-ball carbonates having a freshwater or mixed isotopic signature. In some coal balls, cell walls in the root cortex (a soft tissue) separate carbonate of differing magnesium content, resulting in cells filled with low-magnesium (freshwater) calcite adjacent to cells filled with high-magnesium (marine) calcite, suggesting that these cements formed in recently dead or dying roots. The juxtaposition of high-magnesium (marine) calcite and low-magnesium (freshwater) calcite in coal balls suggests that they formed at the marine/freshwater interface in mires that contained salt-tolerant plants. This model of coal-ball formation suggests that coals bearing coal balls accumulated early in marine transgression as glaciers melted and sea level rose. In modern coastal mires, tidal incursion of salt water can maintain high freshwater tables, enabling domed freshwater peat to form in climates that normally would be too dry for tropical freshwater peat accumulation. Peat accumulation in these mires may be due to marine transgression rather than the ever-wet paleoclimates.
TTC Dyeing for Evaluation of Wetland Vegetation Activity in Sarobetsu Mire, Northern Japan
NASA Astrophysics Data System (ADS)
Hayashida, K.; Murakami, Y.; Mizugaki, S.; Yano, M.
2011-12-01
Reduced groundwater levels cause drying and shrinkage of mires, resulting in rapid changes in wetland vegetation. To conserve pre-existing wetland vegetation, it is important to clarify its behavior in relation to groundwater level fluctuations. Sarobetsu Mire, the biggest high moor in Japan, is experiencing a transition of its wetland vegetation due to increased invasion by dwarf bamboo (Sasa (Eusasa)). Previous studies have been limited to qualitative assessment concluding that the reduction of wetland vegetation areas is taking place. The invasion of dwarf bamboo was found to be inhibited in areas with high groundwater levels, but few studies have sought to quantitatively assess the responses of individual plants to groundwater variations. Growth activity has often been measured using the triphenyl-tetrazolium-chloride (TTC) method, which is a simple approach. The purpose of this study is to develop a quantitative method to assess the response (in terms of activity) of wetland vegetation to groundwater levels. To examine the relationship between the two (i.e., whether plants are dead or alive), a pair of laboratory experiments was conducted using the TTC method and absorptimetry with dwarf bamboo collected from Sarobetsu Mire. The first experiment was to investigate the activity of wetland vegetation in an inundated environment, and the second was to investigate annual fluctuations in such activity. The results showed that the activity (in terms of absorbance) of dwarf bamboo continued to decrease immediately after collection, and that the absorbance peak at a wavelength of 480 nm was also smaller. However, after the submersion period exceeded 30 days, there were no significant changes in absorbance as the submersion period went on. This indicates that dwarf bamboo underwent activity loss and died when the submersion period exceeded 30 days. Dwarf bamboo was considered dead when absorbance (480 nm) was 0.2 or lower and the peak became unclear. Since the change in absorbance was the largest for dwarf bamboo at 480 nm, comparison at this wavelength was considered effective for activity judgment. This result indicated the feasibility of quantitative assessment for the activity of underground rhizomes of dwarf bamboo using TTC dyeing. The activity of dwarf bamboo is at its lowest in July, rises from July to December, is flat or shows a falling tendency from December to May, and falls sharply from June to July. The activity of rhizomes was low from June to August because their processes (in terms of nutrition) moved to the aerial parts of plants to supply nutrients to shoots. The growth of the aerial parts then subsided, suggesting that nutrients were stored in rhizomes from September onward. In the future, groundwater levels are expected to increase due to the restoration of river meanders as part of nature restoration projects, as well as in response to changes in hydrological environments caused by influences such as climate change. It will be necessary to verify the response of plant activity to groundwater levels using the TTC assessment method for various types of wetland vegetation and to promote verification in field tests.
Charles G. Tauer; John F. Stewart; Rodney E. Will; Curtis J. Lilly; James M. Guldin; C. Dana Nelson
2012-01-01
Hybridization between shortleaf pine and loblolly pine is causing loss of genetic integrity (the tendency of a population to maintain its genotypes over generations) in shortleaf pine, a species already exhibiting dramatic declines due to land-use changes. Recent findings indicate hybridization has increased in shortleaf pine stands from 3% during the 1950s to 45% for...
Richard A. Sniezko; Angelia Kegley; Robert Danchok
2012-01-01
Western white pine (Pinus monticola Dougl. ex D. Don) and whitebark pine (P. albicaulis Engelm.) are white pine species with similar latitudinal and longitudinal geographic ranges in Oregon and Washington (figs. 1 and 2). Throughout these areas, whitebark pine generally occurs at higher elevations than western white pine. Both...
Deer prefer pine seedlings growing near black locust
Walter H. Davidson
1970-01-01
The presence of volunteer black locust seems to make some pine species on a bituminous coal spoil more palatable to white-tailed deer. Seedlings of jack pine, pitch pine, and Austrian pine were browsed more heavily when within 10 feet of a black locust than when farther away. The nitrogen produced by the black locust may have caused more succulent tissue in the pines....
Non-Ribes alternate hosts of white pine blister rust: What this discovery means to whitebark pine
Paul J. Zambino; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein; Mee-Sook Kim
2006-01-01
From early to present-day outbreaks, white pine blister rust caused by the fungus Cronartium ribicola, in combination with mountain pine beetle outbreaks and fire exclusion has caused ecosystem-wide effects for all five-needled pines (McDonald and Hoff 2001). To be successful, efforts to restore whitebark pine will require sound management decisions that incorporate an...
Katherine J. Elliott; James M. Vose; Barton D. Clinton
2002-01-01
Chainsaw felling, burning, and planting of eastern white pine (Pinus strobus L.) have been prescribed on degraded pine/hardwood stands in the Southern Appalachians to improve overstory composition and productivity. The desired future condition of the overstory is a productive pine/hardwood mixture, with white pine, which is resistant to southern pine...
Final Environmental Assessment, Construct Guard House at Cape Cod Air Force Station, Massachusetts
2004-01-01
Pine - Scrub Oak Forest Northern Pine Barren with Oak Forest... barren vegetation communities were identified on Cape Cod AFS, pitch pine – scrub oak barren and northern pine barren with oak trees. The majority of...area on the east side of the access road just north of the installation is northern pine barren with oak trees. Pitch pine and scarlet oak
Anna W. Schoettle; Richard A. Sniezko; Angelia Kegley; Kelly S. Burns
2011-01-01
Limber pine ( Pinus flexilis James) and Rocky Mountain bristlecone pine (P. aristata Engelm.; hereafter referred to as bristlecone pine) are the dominant pines that occupy high elevation habitats of the southern Rockies. Bristlecone pine is primarily a subalpine and tree-line species while limber pine in the southern Rocky Mountains grows from 1600 m in the short grass...
A comparison of loblolly pine growth and yield on pure pine and mixed pine-hardwood sites
James D. Haywood; John R. Toliver
1989-01-01
The case histories of four loblolly pine (Pinus taeda L.) sites were examined to determine if differences in growth and yield could be associated with stand type. The stand types were pure loblolly pine and mixed loblolly pine-hardwood. All sites were located on silt loam soils and mechanical site preparation was carried out on all sites before...
Michael I. Haverty; Patrick J. Shea; James T. Hoffman; John M. Wenz; Kenneth E. Gibson
1998-01-01
The effectiveness of registered and experimental application rates of insecticides esfenvalerate (Asana XL), cyfluthrin (Tempo WP and Tempo 2), and carbaryl (Sevimol and Sevin SL) was assessed for protection of individual high-value lodgepole pines from mountain pine beetles in Montana and ponderosa pines from western pine beetles in Idaho and California. This field...
Red Pine in the Northern Lake States
Thomas L. Schmidt
2003-01-01
Red pine is an important tree species for the Northern Lake States. About 4 percent of the total area of timberland is dominated by red pine but most other forest types also have red pine as a component. The red pine forest type in the region has dramatically increased in area since the 1930s. Stand-size class distribution of the red pine forest type has changed over...
Jonathan D. Coop; Anna W. Schoettle
2009-01-01
Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) are important highelevation pines of the southern Rockies that are forecast to decline due to the recent spread of white pine blister rust (Cronartium ribicola) into this region. Proactive management strategies to promote the evolution of rust resistance and maintain ecosystem function...
Strategies for managing whitebark pine in the presence of white pine blister rust [Chapter 17
Raymond J. Hoff; Dennis E. Ferguson; Geral I. McDonald; Robert E. Keane
2001-01-01
Whitebark pine (Pinus albicaulis) is one of many North American white pine species (Pinus subgenus Strobus) susceptible to the fungal disease white pine blister rust (Cronartium ribicola). Blister rust has caused severe mortality (often reaching nearly 100 percent) in many stands of white bark pine north of 45° latitude in western North America. The rust is slowly...
Ecophysiological comparison of 50-year-old longleaf pine, slash pine and loblolly pine.
Lisa Samuelson; Tom Stokes; Kurt Johnsen
2012-01-01
Longleaf pine (Pinus palustris Mill.), a species that once dominated the southeastern USA, is considered to be more drought tolerant than the principle plantation species in the South, loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.), and so is predicted to better cope with increases in drought frequency associated with climate change. To...
Tall oil precursors in three western pines: ponderosa, lodgepole, and limber pine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, A.H.; Diehl, M.A.; Rowe, J.W.
1980-01-01
The nonvolatile diethyl ether extracts (NVEE) from ponderosa, lodgepole, and limber pines were analyzed to determine the amounts and chemical composition of the tall oil precursors (resin acids, fatty acids, and nonsaponifiables) and turpentine precursors available from these species. The results showed that crude tall oil compositions would be approximately as follows (% resin acids, % fatty acids, % nonsaponifiables); ponderosa pine - sapwood (15, 75, 10), heartwood (78, 7, 15); lodgepole pine - sapwood (24, 57, 19), heartwood (51, 26, 23); limber pine - sapwood (10, 82, 8), heartwood (23, 60, 17). The larger nonsaponifiables content, as compared tomore » southern pines, is the major factor in explaining the greater difficulty in the distillative refining of tall oil from these western species. Eight resin acids were found in ponderosa and lodgepole pine: palustric, isopimaric, abietic, dehydroabietic, and neoabietic acids predominated. Seven resin acids were identified from limber pine: anticopalic, isopimaric, abietic, and dehydroabietic acids predominated. The free and esterfied fatty acids from these species contained predominantly oleic and linoleic acids. In addition limber pine contained major amounts of 5, 9, 12-octadecatrienoic acid. The nonsaponifiables contained mostly diterpenes and the sterols, sitosterol and campesterol. The major turpentine components were: ponderosa pine - ..beta..-pinene and 3-carene; lodgepole pine - ..beta..-phellandrene; and limber pine - 3-carene, ..beta..-phellandrene, ..cap alpha..-piene, and ..beta..-pinene.« less
Naturally Occurring Compound Can Protect Pines from the Southern Pine Beetle
B.L. Strom; R.A. Goyer; J.L. Hayes
1995-01-01
The southern pine beetle (SPB), Dendroctonus frontalis, is the most destructive insect pest of southern pine forests. This tiny insect, smaller than a grain of rice, is responsible for killing pine timber worth millions of dollars on a periodic basis in Louisiana.
Restoration planting options for limber pines in the southern Rocky Mountains
Anne Marie Casper; William R. Jacobi; Anna W. Schoettle; Kelly S. Burns
2011-01-01
Limber Pine (Pinus flexilis) populations in the southern Rocky Mountains are severely threatened by the combined impacts of mountain pine beetles and white pine blister rust. Limber pine's critical role in these high elevation ecosystems heightens the importance of mitigating these impacts.
Southern Pine Beetle Handbook: Southern Pine Beetles Can Kill Your Ornamental Pine
Robert C. Thatcher; Jack E. Coster; Thomas L. Payne
1974-01-01
Southern pine beetles are compulsive eaters. Each year in the South from Texas to Virginia the voracious insects conduct a movable feast across thousands of acres of pine forests. Most trees die soon after the beetles sink their teeth into them.
Fardin-Kia, Ali Reza; Handy, Sara M; Rader, Jeanne I
2012-03-14
Taste disturbances following consumption of pine nuts, referred to as "pine mouth", have been reported by consumers in the United States and Europe. Nuts of Pinus armandii have been associated with pine mouth, and a diagnostic index (DI) measuring the content of Δ5-unsaturated fatty acids relative to that of their fatty acid precursors has been proposed for identifying nuts from this species. A 100 m SLB-IL 111 GC column was used to improve fatty acid separations, and 45 pine nut samples were analyzed, including pine mouth-associated samples. This study examined the use of a DI for the identification of mixtures of pine nut species and showed the limitation of morphological characteristics for species identification. DI values for many commercial samples did not match those of known reference species, indicating that the majority of pine nuts collected in the U.S. market, including those associated with pine mouth, are mixtures of nuts from different Pinus species.
Jeffrey Stone; Anna Schoettle; Richard Sniezko; Angelia Kegley
2011-01-01
Resistance to white pine blister rust based on a hypersensitive response (HR) that is conferred by a dominant gene has been identified as functioning in needles of blister rust-resistant families of sugar pine, western white pine and southwestern white pine. The typical HR response displays a characteristic local necrosis at the site of infection in the needles during...
HOW to Manage Eastern White Pine to Minimize Damage from Blister Rust and White Pine Weevil
Steven Katovich; Manfred E. Mielke
1993-01-01
White pine was once a dominant forest species in the north central and northeastern United States. Following logging in the late 1800's and the early part of this century, two major pests, white pine blister rust, Cronartium ribicola J.C.Fisch., and white pine weevil, Pissodes strobi (Peck), combined to reduce the value of white pine. Blister rust was introduced...
James D. Haywood
1993-01-01
Three herbicide products, Roundup© (glyphosate), Pronone© 10G (hexazinone), and Velpar© L (hexazinone), were applied aerially to release a 4-year-old loblolly pine plantation from hardwood competition. Herbicide damage to pines was not excessive. Post-treatment growth of pines in herbicide-treated plots was not significantly different from growth of pines in untreated...
Michael E. Day; Jessica L. Schedlbauer; William H. Livingston; Michael S. Greenwood; Alan S. White; John C. Brissette
2005-01-01
Jack pine (Pinus banksiana Lamb.) and pitch pine (Pinus rigida Mill.) are two autecologically similar species that occupy generally disjunct ranges in eastern North America. Jack pine is boreal in distribution, while pitch pine occurs at temperate latitudes. The two species co-occur in a small number of stands along a 'tension...
Peter M. Brown; Anna W. Schoettle
2008-01-01
We developed fire-scar and tree-recruitment chronologies from two stands dominated by limber pine and Rocky Mountain bristlecone pine in central and northern Colorado. Population structures in both sites exhibit reverse-J patterns common in uneven-aged forests. Bristlecone pine trees were older than any other at the site or in the limber pine stand, with the oldest...
A. W. Schoettle
2004-01-01
Limber pine and Rocky Mountain bristlecone pine are currently threatened by the non-native pathogen white pine blister rust (WPBR). Limber pine is experiencing mortality in the Northern Rocky Mountains and the infection front continues to move southward. The first report of WPBR on Rocky Mountain bristlecone pine was made in 2003 (Blodgett and Sullivan 2004), at a site...
Teresa J. Lorenz; Carol Aubry; Robin. Shoal
2008-01-01
Whitebark pine is a critical component of subalpine ecosystems in western North America, where it contributes to biodiversity and ecosystem function and in some communities is considered a keystone species. Whitebark pine is undergoing rangewide population declines attributed to the combined effects of mountain pine beetle, white pine blister rust, and fire suppression...
Impact of weed control and fertilization on growth of four species of pine in the Virginia Piedmont
Dzhamal Y. Amishev; Thomas R. Fox
2006-01-01
During 1999, a mixed stand of Virginia pine and hardwoods in the Piedmont of Virginia was clearcut and site prepared by burning. Three replications, containing strips of loblolly pine, shortleaf pine, Virginia pine, and Eastern white pine, were planted at a 3 m x 1.5 m spacing during February to June, 2000. The strips were subsequently split to accommodate four...
Scientific designs of pine seeds and pine cones for species conservation
NASA Astrophysics Data System (ADS)
Song, Kahye; Yeom, Eunseop; Kim, Hyejeong; Lee, Sang Joon
2015-11-01
Reproduction and propagation of species are the most important missions of every living organism. For effective species propagation, pine cones fold their scales under wet condition to prevent seeds from short-distance dispersal. They open and release their embedded seeds on dry and windy days. In this study, the micro-/macro-scale structural characteristics of pine cones and pine seeds are studied using various imaging modalities. Since the scales of pine cones consist of dead cells, the folding motion is deeply related to structural changes. The scales of pine cones consist of three layers. Among them, bract scales are only involved in collecting water. This makes pine cones reduce the amount of water and minimize the time spent on structural changes. These systems also involve in drying and recovery of pine cones. In addition, pine cones and pine seeds have advantageous structures for long-distance dispersal and response to natural disaster. Owing to these structural features, pine seeds can be released safely and efficiently, and these types of structural advantages could be mimicked for practical applications. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).
Lerch, Andrew P.; Pfammatter, Jesse A.
2016-01-01
Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks. PMID:27783632
Lerch, Andrew P; Pfammatter, Jesse A; Bentz, Barbara J; Raffa, Kenneth F
2016-01-01
Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.
W. B. Critchfield; B. B. Kinloch
1986-01-01
Unlike most white pines, sugar pine (Pinus lambertiana) is severely restricted in its ability to hybridize with other species. It has not been successfully crossed with any other North American white pine, nor with those Eurasian white pines it most closely resembles. Crosses with the dissimilar P. koraiensis and P....
NASA Astrophysics Data System (ADS)
Smith, David; Grand-Clement, Emile; Brazier, Richard
2014-05-01
Replacing Concrete with Natural and Social Engineering: Learning the Lessons of Stakeholder Engagement from South West Water's Upland Catchment Management Programme Smith, D., Grand-Clement, E., Anderson, K., Luscombe, D., G, N., Bratis, Brazier, R.E Peatlands in the South West of the British Isles have been extensively drained for agricultural reclamation and peat cutting. The improvement in food production resulting from this management practice has never clearly been observed. Instead, we are now faced with several detrimental consequences on a whole suite of ecosystem services, such as the delivery of water, water quality, biodiversity and carbon storage. Alongside the direct environmental implications, poor water quality is increasing water treatment costs and will drive significant future investment. As a result, water companies now need to find appropriate solutions to varying water levels and decreasing water quality through catchment management. The Mires Project, the catchment management programme used by South West Water (SWW) is working with a wide range of stakeholders to restore the hydrological functioning of peatlands, and the ecosystem services they provide. This programme is driven by overarching legal requirements (i.e. the water framework directive, Natura 2000), future climate change predictions, corporate responsibility and commercial needs. Post-restoration scientific monitoring is at the heart of the project improving of our understanding of the eco-hydrological and chemical process driving changes in management practice. The challenges faced from the involvement of a wide range of stakeholders will be explored, focusing on the benefits from stakeholder involvement in catchment management and hydrological research, but also considering the difficulties to be overcome. SWW is working with private land-owners, government agencies, local and national park Authorities, community and single interest groups and research institutions to achieve its catchment management objectives. To achieve this it has replaced the traditional water company approach of hard engineering solutions with a mixture of softer natural and social engineering.
West, Daniel R.; Briggs, Jennifer S.; Jacobi, William R.; Negrón, José F.
2014-01-01
Eruptive mountain pine beetle (Dendroctonus ponderosae, MPB) populations have caused widespread mortality of pines throughout western North America since the late 1990s. Early work by A.D. Hopkins suggested that when alternate host species are available, MPB will prefer to breed in the host to which it has become adapted. In Colorado, epidemic MPB populations that originated in lodgepole pine expanded into mixed-conifer stands containing ponderosa pine, a related host. We evaluated the susceptibility of both hosts to successful MPB colonization in a survey of 19 sites in pine-dominated mixed-conifer stands spanning 140 km of the Front Range, CO, USA. In each of three 0.2-ha plots at each site, we (1) assessed trees in the annual flights of 2008–2011 to compare MPB-caused mortality between lodgepole and ponderosa pine; (2) recorded previous MPB-caused tree mortality from 2004–2007 to establish baseline mortality levels; and (3) measured characteristics of the stands (e.g. tree basal area) and sites (e.g. elevation, aspect) that might be correlated with MPB colonization. Uninfested average live basal area of lodgepole and ponderosa pine was 74% of total basal area before 2004. We found that for both species, annual percent basal area of attacked trees was greatest in one year (2009), and was lower in all other years (2004–2007, 2008, 2010, and 2011). Both pine species had similar average total mortality of 38–39% by 2011. Significant predictors of ponderosa pine mortality in a given year were basal area of uninfested ponderosa pine and the previous year’s mortality levels in both ponderosa and lodgepole pine. Lodgepole pine mortality was predicted by uninfested basal areas of both lodgepole and ponderosa pine, and the previous year’s lodgepole pine mortality. These results indicate host selection by MPB from lodgepole pine natal hosts into ponderosa pine the following year, but not the reverse. In both species, diameters of attacked trees within each year were similar, and were progressively smaller the last four years of the study period. Our results suggest that, in contrast to previous reports, ponderosa and lodgepole pine were equally susceptible to MPB infestation in the CO Front Range during our study period. This suggests that forest managers may anticipate similar impacts in both hosts during similar environmental conditions when epidemic-level MPB populations are active in mixed-pine stands.
NASA Astrophysics Data System (ADS)
Gaskova, L. P.
2018-01-01
The article discusses the change in biogeochemical activity of plant species in bogs under the influence of various types of human impact (roads, cities, drainage of mires, fire). It has been established that ericaceous shrubs, depending on the species, react with varying degrees of intensity to anthropogenic influences. The biogeochemical activity of species increased by 2.5 to 4.8 times in polluted sites.
Design of the TMT Mid-Infrared Echelle: Science Drivers and Design Overview
2006-01-01
plausibility of an extra-terrestrial origin for the prebiotic compounds that led to the emergence of life on Earth. MIRES imaging of debris disks will...explore mechanisms by which water and prebiotic organic compounds may have been delivered to planetary surfaces. These studies will be highly synergistic...that are precursors to complex prebiotic compounds. The high sensitivity also allows the exploration of a wider range of wavelengths, including those
Area Handbook Series: Ecuador: A Country Study
1989-12-01
and replaced them with colonists who were brought from as far away as Chile . This wholesale movement of populations helped spread Quechua, the language...prosperity resulting primarily from increased maritime activity while Peru, Bolivia, and Chile were mired in the War of the Pacific. Jos6 Maria Plicido...with Chile . Cordero allowed the warship Esmeralda, which Chile was selling to Japan, to fly the Ecuadorian flag briefly in order to protect Chile’s
The health of loblolly pine stands at Fort Benning, GA
Soung-Ryoul Ryu; G. Geoff Wang; Joan L. Walker
2013-01-01
Approximately two-thirds of the red-cockaded woodpecker (Picoides borealis) (RCW) groups at Fort Benning, GA, depend on loblolly pine (Pinus taeda) stands for nesting or foraging. However, loblolly pine stands are suspected to decline. Forest managers want to replace loblolly pine with longleaf pine (P. palustris...
Silvical characteristics of Jeffrey pine
William E. Hallin
1957-01-01
The most noteworthy feature of Jeffrey pine (Pinus jeffreyi Grev. & Balf. ) is its similarity in appearance and behavior to ponderosa pine (Pinus ponderosa Laws.), a much more widespread and better known species. At one time Jeffrey pine was considered to be a variety of ponderosa pine, and lumber markets make no...
Verbenone decreases whitebark pine mortality throughout a mountain pine beetle outbreak
USDA-ARS?s Scientific Manuscript database
Mountain pine beetle [Dendroctonus ponderosae (Hopkins)] outbreaks are killing large numbers of pine trees on millions of hectares in the western U.S. The ranges, impacts and frequencies of mountain pine beetle outbreaks are increasing, perhaps due to climate change. One of the species being impacte...
R.A. Progar; D.C. Blackford; D.R. Cluck; S. Costello; L.B. Dunning; T. Eager; C.L. Jorgensen; A.S. Munson; B. Steed; M.J. Rinella
2013-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: CurcuIionidae: Scolytinae), is among the primary causes of mature lodgepole pine, Pinus contorta variety latifolia mortality. Verbenone is the only antiaggregant semiochemical commercially available for reducing mountain pine beetle infestation of...
Effect of sulfuryl fluoride on the pinewood nematode in pine wood
L. David Dwinell; E. Thoms; S. Prabhakaran
2003-01-01
The pinewood nematode (PUTN) (Bursaphelenchus xylophilus), the causal agent of pine wilt disease, has been intercepted in pine chips, unseasoned pine lumber, and wood packing material (WPM). Likewise, the PWN's insect vectors, Monochamus spp. (pine sawyers), have been found in pallets, crates and dunnage. The PWN, which is...
Pinus glabra Walt. Spruce Pine
Susan V. Kossuth; J.L. Michael
1991-01-01
Spruce pine (Pinus glabra), also called cedar pine, Walter pine, or bottom white pine, is a medium-sized tree that grows in limited numbers in swamps, river valleys, on hummocks, and along river banks of the southern Coastal Plain. Its wood is brittle, close-grained, nondurable, and is of limited commercial importance.
Estimating red pine site index in northern Minnesota.
1976-01-01
Methods are presented for estimating red pine site index from the height growth of red pine, site index of several associated species (jack pine, white pine, white spruce, or quaking aspen), and from easily measured soil properties. The restrictions and limitations of each method and their relative precision are discussed.
Timber management guide for shortleaf pine and oak-pine types in Missouri.
K.A. Brinkman; N.F. Rogers
1967-01-01
Summarizes recommended management practices for the shortleaf pine and oak-pine types in Missouri. Describes sites and soils, and silvical characteristics of pine; discusses rotations, cutting cycles, stocking levels, growing space requirements, and regeneration techniques; and prescribes treatments for stands with specified characteristics to maximize returns from...
The Austrian x red pine hybrid
W. B. Critchfield
1963-01-01
The genetic improvement of red pine (Pinus resinosa Ait.) presents tree breeders with one of their most difficult problems. Not only is this valuable species remarkably uniform, but until 1955 it resisted all attempts to cross it with other pines. In that year red pine and Austrian pine (P. nigra var. austriaca [...
Ben Knapp; Wang Geoff; Huifeng Hu; Joan Walker; Carsyn Tennant
2011-01-01
Historical land use and management practices in the southeastern United States have resulted in the dominance of loblolly pine on many upland sites that historically were occupied by longleaf pine. There is currently much interest in restoring high quality longleaf pine habitats to such areas, but managers may also desire the retention of some existing canopy trees to...
John F. Stewart; Charles G. Tauer; James M. Guldin; C. Dana Nelson
2013-01-01
The natural range of shortleaf pine encompasses 22 states from New York to Texas, second only to eastern white pine in the eastern United States. It is a species of minor and varying occurrence in most of these states usually found in association with other pines, but it is the only naturally occurring pine in the northwestern part of its range in Oklahoma, Arkansas,...
Detlev R. Vogler; Patricia E. Maloney; Tom Burt; Jacob W. Snelling
2017-01-01
In 2013, while surveying for five-needle white pine cone crops in northeastern Nevada, we observed white pine blister rust, caused by the rust pathogen Cronartium ribicola Fisch., infecting branches and stems of limber pines (Pinus flexilis James) on Pine Mountain (41.76975°N, 115.61622°W), Humboldt National Forest,...
Role of Phytotoxins in Pine Wilt Diseases
Oku, Hachiro
1988-01-01
Characteristic rapid death of pines after infection by Bursaphelenchus xylophilus suggests the involvement of phytotoxins in the pine wilt disease syndrome. Crude extract from diseased pine is toxic to pine seedlings, whereas an extract from healthy pine is not. The response of seedlings to the crude toxin is more prominent in susceptible pine species than in resistant ones. Benzoic acid, catechol, dihydroconiferyl alcohol, 8-hydroxycarvotanacetone (carvone hydrate), and 10-hydroxyverbenone, which are toxic, low molecular weight metabolites, can be isolated from diseased pines. Other unidentified toxins are also found. The toxicity of some of these metabolites correlates positively to the susceptibility of pines to B. xylophilus. Some of these abnormal metabolites show synergistic toxicity when in combination. The D-isomer of 8-hydroxycarvotanacetone, dihydroconiferylalcohol, and 10-hydroxyverbenone inhibited the reproduction of B. xylophilus. Cellulase excreted by pinewood nematode also may be involved in rapid wilting. PMID:19290208
Growth of longleaf and loblolly pine planted on South Carolina Sandhill sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cram, Michelle, M.; Outcalt, Kenneth, W.; Zarnoch, Stanley, J.
2010-07-01
Performance of longleaf (Pinus palustris Mill.) and loblolly pine (P. taeda L.) were compared 15–19 years after outplanting on 10 different sites in the sandhillsof South Carolina. The study was established from 1988 to 1992 with bareroot seedlings artificially inoculated with Pisolithus tinctorius (Pt) or naturally inoculated with mycorrhizae in the nursery. A containerized longleaf pine treatment with and without Pt inoculation was added to two sites in 1992. Effects of the Pt nursery treatment were mixed, with a decrease in survival of bareroot longleaf pine on two sites and an increase in survival on another site. The containerized longleafmore » pine treatment substantially increased survival, which led to greater volume compared with bareroot longleaf pine. Loblolly pine yielded more volume than longleaf pine on all sites but one, where survival was negatively affected by fire. Depth of sandy surface horizon affected mean annual height growth of both loblolly and longleaf pine. Height growth per year decreased with an increase in sand depth for both species. Multiple regression analysis of volume growth(ft3/ac per year) for both species indicated a strong relationship to depth of sandy soil and survival. After 15–19 years, loblolly pine has been more productive than longleaf pine, although longleaf pine productivity may be equal to or greater than that of loblolly pine on the soils with the deepest sandy surface layers over longer rotations.« less
14 CFR 23.1021 - Oil system drains.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil system drains. 23.1021 Section 23.1021 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain...
14 CFR 23.1021 - Oil system drains.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil system drains. 23.1021 Section 23.1021 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain...
Singh, Amit Kumar; Suryanarayanan, Bhaskar; Choudhary, Ajay; Prasad, Akhila; Singh, Sachin; Gupta, Laxmi Narayan
2014-01-01
Chronic subdural hematoma (CSDH) recurs after surgical evacuation in 5-30% of patients. Inserting subdural drain might reduce the recurrence rate, but is not commonly practiced. There are few prospective studies to evaluate the effect of subdural drains. A prospective randomized study to investigate the effect of subdural drains in the on recurrence rates and clinical outcome following burr-hole drainage (BHD) of CSDH was undertaken. During the study period, 246 patients with CSDH were assessed for eligibility. Among 200 patients fulfilling the eligibility criteria, 100 each were assigned to "drain group" (drain inserted into the subdural space following BHD) and "without drain group" (subdural drain was not inserted following BHD) using random allocation software. The primary end point was recurrence needing re-drainage up to a period of 6 months from surgery. Recurrence occurred in 9 of 100 patients with a drain, and 26 of 100 patients in without drain group (P = 0.002). The mortality was 5% in patients with drain and 4% in patients without drain group (P = 0.744). The medical and surgical complications were comparable between the two study groups. Use of a subdural drain after burr-hole evacuation of a CSDH reduces the recurrence rate and is not associated with increased complications.
Brian W. Geils; Ned B. Klopfenstein; Mee-Sook Kim; Pauline Spaine; Bryce A. Richardson; Paul J. Zambino; Charles G. Shaw; James Walla; Russ Bulluck; Laura Redmond; Kent Smith
2009-01-01
The sexually reproducing form of Scots pine blister rust, C. flaccidum, completes its life cycle alternating between pines of the subgenus Pinus and seed-plants of various families. Scots pine blister rust is also caused by a form of the rust that spreads directly from pine to pine and is named, Peridermium pini...
Franklin R. Ward; David V. Sandberg
1981-01-01
This publication presents tables on the behavior of fire and the resistance of fuels to control. The information is to be used with the publication, "Photo Series for Quantifying Forest Residues in the Ponderosa Pine Type, Ponderosa Pine and Associated Species Type, Lodgepole Pine Type" (Maxwell, Wayne G.; Ward, Franklin R. 1976. Gen. Tech. Rep. PNW-GTR-052....
Bentz, Barbara J; Hood, Sharon M; Hansen, E Matthew; Vandygriff, James C; Mock, Karen E
2017-01-01
Mountain pine beetle (MPB, Dendroctonus ponderosae) is a significant mortality agent of Pinus, and climate-driven range expansion is occurring. Pinus defenses in recently invaded areas, including high elevations, are predicted to be lower than in areas with longer term MPB presence. MPB was recently observed in high-elevation forests of the Great Basin (GB) region, North America. Defense and susceptibility in two long-lived species, GB bristlecone pine (Pinus longaeva) and foxtail pine (P. balfouriana), are unclear, although they are sympatric with a common MPB host, limber pine (P. flexilis). We surveyed stands with sympatric GB bristlecone-limber pine and foxtail-limber pine to determine relative MPB attack susceptibility and constitutive defenses. MPB-caused mortality was extensive in limber, low in foxtail and absent in GB bristlecone pine. Defense traits, including constitutive monoterpenes, resin ducts and wood density, were higher in GB bristlecone and foxtail than in limber pine. GB bristlecone and foxtail pines have relatively high levels of constitutive defenses which make them less vulnerable to climate-driven MPB range expansion relative to other high-elevation pines. Long-term selective herbivore pressure and exaptation of traits for tree longevity are potential explanations, highlighting the complexity of predicting plant-insect interactions under climate change. No claim to original US Government works. New Phytologist © 2016 New Phytologist Trust.
Options for the management of white pine blister rust in the Rocky Mountain Region
Kelly S. Burns; Anna W. Schoettle; William R. Jacobi; Mary F. Mahalovich
2008-01-01
This publication synthesizes current information on the biology, distribution, and management of white pine blister rust (WPBR) in the Rocky Mountain Region. In this Region, WPBR occurs within the range of Rocky Mountain bristlecone pine (Pinus aristata), limber pine (P. flexilis), and whitebark pine (P. albicaulis...
75 FR 29686 - Proposed Establishment of the Pine Mountain-Mayacmas Viticultural Area
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... states that local growers report that Pine Mountain vineyards are naturally free of mildew, a vineyard... often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other areas. Pine..., these mountain soils include large amounts of sand and gravel. Pine Mountain soils are generally less...
Health of whitebark pine forests after mountain pine beetle outbreaks
Sandra Kegley; John Schwandt; Ken Gibson; Dana Perkins
2011-01-01
Whitebark pine (Pinus albicaulis), a keystone high-elevation species, is currently at risk due to a combination of white pine blister rust (WPBR) (Cronartium ribicola), forest succession, and outbreaks of mountain pine beetle (MPB) (Dendroctonus ponderosae). While recent mortality is often quantified by aerial detection surveys (ADS) or ground surveys, little...
Mountain pine beetle in high-elevation five-needle white pine ecosystems
Barbara Bentz; Elizabeth Campbell; Ken Gibson; Sandra Kegley; Jesse Logan; Diana Six
2011-01-01
Across western North America mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae), populations are growing at exponential rates in pine ecosystems that span a wide range of elevations. As temperature increased over the past several decades, the flexible, thermally-regulated life-history strategies of mountain pine beetle have allowed...
Should ponderosa pine be planted on lodgepole pine sites?
P.H. Cochran
1984-01-01
Repeated radiation frosts caused no apparent harm to the majority of lodgepole pine (Pinus contorta Dougl.) seedlings planted on a pumice flat in south-central Oregon. For most but not all of the ponderosa pine (Pinus ponderosa Dougl.) seedlings planted with the lodgepole pine, however, damage from radiation frost resulted in...
Gypsy moth impacts in pine-hardwood mixtures
Kurt W. Gottschalk; Mark J. Twery
1989-01-01
Gypsy moth has affected pine-hardwood mixtures, especially oak-pine stands, since the late 1800's. Several old and new studies on impacts in mixed stands are reviewed. When pines are heavily defoliated, considerable growth loss and mortality can occur. Mortality is heaviest in understory white pine trees, Impact information is used to suggest silvicultural...
Southern Pine Beetle Information System (SPBIS)
Valli Peacher
2011-01-01
The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....
Gene D. Amman; Mark D. McGregor; Robert E. Jr. Dolph
1989-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a member of a group of beetles known as bark beetles: Except when adults emerge and attack new trees, the mountain pine beetle completes its life cycle under the bark. The beetle attacks and kills lodgepole, ponderosa, sugar, and western white pines. Outbreaks frequently develop in lodgepole pine stands that...
Monitoring limber pine health in the Rocky Mountains and North Dakota
Kelly Burns; Jim Blodgett; Marcus Jackson; Brian Howell; William Jacobi; Anna Schoettle; Anne Marie Casper; Jennifer Klutsch
2011-01-01
Ecological impacts are occurring as white pine blister rust spreads and intensifies through ecologically and culturally important limber pine ecosystems of the Rocky Mountains and surrounding areas. The imminent threat of mountain pine beetle has heightened concerns. Therefore, information on the health status of limber pine is needed to facilitate management and...
Ralph E. Willard; L. Max Schmollinger
1989-01-01
Pines that occur naturally in parts of the region, as well as those that do not, have been introduced throughout. Pines usually produce greater volumes of wood faster than hardwoods, but in many parts of the region there is no market for pine stumpage or logs. Aside from wood production, pines are established for Christmas trees, windbreaks, landscaping, erosion...
Guidelines for regenerating southern pine beetle spots
J.C.G. Goelz; B.L. Strom; J.P. Barnett; M.A. Sword Sayer
2012-01-01
Southern pine forests are of exceptional commercial and ecological importance to the United States, and the southern pine beetle is their most serious insect pest. The southern pine beetle generally kills overstory pines, causing spots of tree mortality that are unpredictable in time and space and frequently disruptive to management activities and goals. The canopy...
Soil moisture and the distribution of lodgepole and ponderosa pine: a review of the literature.
Robert F. Tarrant
1953-01-01
Despite a number of published studies and observations of the factors affecting the distribution of lodgepole pine (Pinus contorta var, latifolia) and Ponderosa pine (Pinus ponderosa), some misunderstanding still exists as to the significance of the extensive stands of lodgepole pine in the ponderosa pine...
Pleistocene Refugia for Longleaf and Loblolly Pines
Ronald C. Schmidtling; V. Hipkins; E. Carroll
2000-01-01
Longleaf pine (P. palustris Mill.) and loblolly pine (P. taeda L.) are two species that are common to the coastal plain of the southeastern United States. The current natural range of the two species is largely overlapping. Loblolly pine occurs in 13 southeastern states. Longleaf pine is the more austral of the two species,...
Re-measurement of whitebark pine infection and mortality in the Canadian Rockies
Cyndi M. Smith; Brenda Shepherd; Cameron Gillies; Jon Stuart-Smith
2011-01-01
Whitebark pine (Pinus albicaulis) populations are under threat across the species' range from white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), fire exclusion and climate change (Tomback and Achuff 2010). Loss of whitebark pine is predicted to have cascading effects on the following ecological services: provision of...
State of pine decline in the southeastern United States
Lori Eckhardt; Mary Anne Sword Sayer; Don Imm
2010-01-01
Pine decline is an emerging forest health issue in the southeastern United States. Observations suggest pine decline is caused by environmental stress arising from competition, weather, insects and fungi, anthropogenic disturbances, and previous management. The problem is most severe for loblolly pine on sites that historically supported longleaf pine, are highly...
White pine blister rust resistance research in Minnesota and Wisconsin
Andrew David; Paul Berrang; Carrie Pike
2012-01-01
The exotic fungus Cronartium ribicola causes the disease white pine blister rust on five-needled pines throughout North America. Although the effects of this disease are perhaps better known on pines in the western portion of the continent, the disease has also impacted regeneration and growth of eastern white pine (Pinus strobus L. ...
Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp
2012-01-01
A field study was installed to test silvicultural treatments for establishing longleaf pine (Pinus palustris Mill) in loblolly pine (P. taeda L.) stands. Harvesting was used to create seven canopy treatments, four with uniformly distributed canopies at different residual basal areas [Control (16.2 m2/ha),...
14 CFR 23.1021 - Oil system drains.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil system drains. 23.1021 Section 23.1021... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain...
14 CFR 29.1021 - Oil system drains.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil system drains. 29.1021 Section 29.1021... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...
14 CFR 27.1021 - Oil system drains.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil system drains. 27.1021 Section 27.1021... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible; and (b...
14 CFR 25.1021 - Oil system drains.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil system drains. 25.1021 Section 25.1021... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...
14 CFR 25.1021 - Oil system drains.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil system drains. 25.1021 Section 25.1021... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...
14 CFR 23.1021 - Oil system drains.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil system drains. 23.1021 Section 23.1021... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain...
14 CFR 29.1021 - Oil system drains.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil system drains. 29.1021 Section 29.1021... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...
14 CFR 27.1021 - Oil system drains.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil system drains. 27.1021 Section 27.1021... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible; and (b...
Lusebrink, Inka; Evenden, Maya L; Blanchet, F Guillaume; Cooke, Janice E K; Erbilgin, Nadir
2011-09-01
The mountain pine beetle (Dendroctonus ponderosae, MPB) has killed millions of lodgepole pine (Pinus contorta) trees in Western Canada, and recent range expansion has resulted in attack of jack pine (Pinus banksiana) in Alberta. Establishment of MPB in the Boreal forest will require use of jack pine under a suite of environmental conditions different from those it typically encounters in its native range. Lodgepole and jack pine seedlings were grown under controlled environment conditions and subjected to either water deficit or well watered conditions and inoculated with Grosmannia clavigera, a MPB fungal associate. Soil water content, photosynthesis, stomatal conductance, and emission of volatile organic compounds (VOCs) were monitored over the duration of the six-week study. Monoterpene content of bark and needle tissue was measured at the end of the experiment. β-Phellandrene, the major monoterpene in lodgepole pine, was almost completely lacking in the volatile emission profile of jack pine. The major compound in jack pine was α-pinene. The emission of both compounds was positively correlated with stomatal conductance. 3-Carene was emitted at a high concentration from jack pine seedlings, which is in contrast to monoterpene profiles of jack pine from more southern and eastern parts of its range. Fungal inoculation caused a significant increase in total monoterpene emission in water deficit lodgepole pine seedlings right after its application. By 4 weeks into the experiment, water deficit seedlings of both species released significantly lower levels of total monoterpenes than well watered seedlings. Needle tissue contained lower total monoterpene content than bark. Generally, monoterpene tissue content increased over time independent from any treatment. The results suggest that monoterpenes that play a role in pine-MPB interactions differ between lodgepole and jack pine, and also that they are affected by water availability.
Boselli, Mauro; Pellizzari, Giuseppina
2016-02-19
The Asiatic Kuwana pine mealybug, Crisicoccus pini (Kuwana, 1902) (Hemiptera, Pseudococcidae), is reported in Italy for the first time. It was detected in September 2015 on maritime pine, Pinus pinaster, and stone pine, Pinus pinea, trees growing in the town of Cervia (Ravenna Province), Northern Italy. The mealybug has caused yellowing and decline of the pine trees. Pinus pinea is recorded here as a new host for C. pini.
Kuznetsova, Tatjana; Tilk, Mari; Pärn, Henn; Lukjanova, Aljona; Mandre, Malle
2011-12-01
The investigation was carried out in 8-year-old Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) plantations on post-mining area, Northeast Estonia. The aim of the study was to assess the suitability of lodgepole pine for restoration of degraded lands by comparing the growth, biomass, and nutrient concentration of studied species. The height growth of trees was greater in the Scots pine stand, but the tree aboveground biomass was slightly larger in the lodgepole pine stand. The aboveground biomass allocation to the compartments did not differ significantly between species. The vertical distribution of compartments showed that 43.2% of the Scots pine needles were located in the middle layer of the crown, while 58.5% of the lodgepole pine needles were in the lowest layer of the crown. The largest share of the shoots and stem of both species was allocated to the lowest layer of the crown. For both species, the highest NPK concentrations were found in the needles and the lowest in the stems. On the basis of the present study results, it can be concluded that the early growth of Scots pine and lodgepole pine on oil shale post-mining landscapes is similar.
Bergman, Inger; Bishop, Kevin; Tu, Qiang; Frech, Wolfgang; Åkerblom, Staffan; Nilsson, Mats
2012-01-01
In this paper we investigate the hypothesis that long-term sulphate (SO4 2−) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO4 2− on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO4 2− started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha−1 yr−1 of sulphur (S) addition (1.3±0.08 ng L−1, SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha−1 yr−1 of ambient S deposition (0.6±0.02 ng L−1, SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L−1 compared to +/−0.5 ng L−1 in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r2 = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO4 2− to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO4 2− deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO4 2− in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands. PMID:23029086
A Mediterranean free-floating peat mire hosts microbial communities shared by cold latitude habitats
NASA Astrophysics Data System (ADS)
Concheri, Giuseppe; Stevanato, Piergiorgio; Zaccone, Claudio; Shotyk, William; D'Orazio, Valeria; Miano, Teodoro; Lobianco, Daniela; Piffanelli, Pietro; Rizzi, Valeria; Ferrandi, Chiara; Squartini, Andrea
2017-04-01
The microbiological features of a peculiar and hitherto unexplored environment, i.e., a 4m-deep, free-floating peat island located within the Posta Fibreno lake (central Italy), were analyzed via DNA-based techniques. Methods included RealTime PCR targeting for nitrogen (N) cycle genes (nitrification from eubacteria and archaea, denitrification, N fixation), and Next Generation Sequencing (NGS) using an Illumina platform of prokaryotic (16S) and eukaryotic (ITS) amplicons to assess community members identity and abundance. Two depths were sampled at ca. 40 and 280 cm from the surface, the former corresponding to a portion of Sphagnum residues accumulated less than 30 yrs ago above the water level, and the latter mainly consisting of silty peat belonging to the deeply submerged part of the island, dating back to 1520-1660 AD. Bacterial gene abundances for the N cycle were consistently higher in the deeper sample. Sequencing analyses allowed identifying for the surface sample 1738 prokaryotic and 310 eukaryotic Operational Taxonomic Units (OTUs), while, for the deeper sample, the corresponding values were 2026 and 291 respectively. There was a very limited taxa overlap between the two layers' communities in which dominant taxa featured two different sulphate-reducing Deltaproteobacteria for prokaryotes. For eukaryotes, the surface sample was dominated by the Neobulgaria (Ascomycota) genus, while in the deeper one three quarters of the ITS reads were featured by a taxon observed in Antarctic lakes. The functional guilds represented pertain mostly to species involved in slow organic matter degradation and contexts in which dissolved organic carbon contains one-atom compounds, supportive of methylotrophy and methanogenesis. The identity of taxa partitioning between the acidic surface layer and the neutral core is very reminiscent of the differences reported between bogs and fens peatland types respectively, supporting the view of Posta Fibreno as a hybrid between the two main models. A remarkable feature is the coincidence of most taxa observed with database subjects isolated from mires and lakes in boreal/polar environments in spite of the fact that Posta Fibreno is located in sub-Mediterranean climate conditions. This instance suggests a common ecological feature linking peat-forming mires and habitats alike, in which the process factor would rule in determining the biotic composition in spite of the macroclimatic and geographical variables. The principle offers interpretive clues for a deeper understanding of a number of other biotic-environmental interplay contexts.
Carbon sequestration and natural longleaf pine ecosystems
Ralph S. Meldahl; John S. Kush
2006-01-01
A fire-maintained longleaf pine (Pinus palustris Mill.) ecosystem may offer the best option for carbon (C) sequestration among the southern pines. Longleaf is the longest living of the southern pines, and products from longleaf pine will sequester C longer than most since they are likely to be solid wood products such as structural lumber and poles....
Southern Pine Beetle Behavior and Semiochemistry
Brian T. Sullivan
2011-01-01
The southern pine beetle (SPB) feeds both as adults and larvae within the inner bark of pine trees, which invariably die as a result of colonization. Populations of the SPB erupt periodically and produce catastrophic losses of pines, while at other times the beetles persist almost undetectably in the environment. The southern pine beetle has evolved behaviors that...
Nancy E. Gillette; Constance J. Mehmel; Sylvia R. Mori; Jeffrey N. Webster; David L. Wood; Nadir Erbilgin; Donald R. Owen
2012-01-01
In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (...
Forest development and carbon dynamics after mountain pine beetle outbreaks
E. Matthew Hansen
2014-01-01
Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...
Tomicus piniperda (Coleoptera: Scolytidae) Emergence in Relation to Burial Depth of Brood Logs
Robert A. Haack; Toby R. Petrice; Therese M. Poland
2000-01-01
The pine shoot beetle, Tomicus piniperda (L.), is an exotic pest of pines, Pinus spp., that was first found in the United States in 1992. A federal quarantine currently regulates movement of pine Christmas trees and pine nursery stock from infested to uninfested counties. The current national Pine Shoot Beetle Compliance Management...
Michael G. Shelton; Michael D. Cain
1996-01-01
Monitoring seed production in mixed loblolly pine - shortleaf pine (Pinus taeda L. and Pinus echinata Mill. respectively) stands may require identifying individual seeds by species. Although loblolly pine seeds are on average heavier and larger than those of shortleaf pine, there is considerable overlap in these properties for...
Zhen Sui; Zhaofei Fan; Michael K. Crosby; Xingang Fan
2015-01-01
Longleaf pine (Pinus palustris Mill.) has irreplaceable ecological value in the southeastern United States. However, longleaf pine-grassland ecosystems have been dramatically declining since European settlement. From the aspect of longleaf pine restoration and management, this study calculated longleaf pine importance values in each southern county and then conducted...
Marion Page; Michael I. Haverty; Charles E. Richmond
1985-01-01
The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive insect that attacks lodgepole pine (Pinus contorta Dougl.), a species valued for multiple uses throughout North America. The effective residual life of carbaryl, applied as a 2 percent suspension of Sevimol to the bark of lodgepole pine to prevent...
B. J. Bentz; D. Endreson
2004-01-01
Spatial accuracy in the detection and monitoring of mountain pine beetle populations is an important aspect of both forest research and management. Using ground-collected data, classification models to predict mountain pine beetle-caused lodgepole pine mortality were developed for Landsat TM, ETM+, and IKONOS imagery. Our results suggest that low-resolution imagery...
Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?
Cathy L. Cripps; Robert K. Antibus
2011-01-01
Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....
Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)
Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie
2013-01-01
Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...
Erika L. Eidson; Karen E. Mock; Barbara J. Bentz
2017-01-01
Over the last two decades, mountain pine beetle (Dendroctonus ponderosae) populations reached epidemic levels across much of western North America, including high elevations where cool temperatures previously limited mountain pine beetle persistence. Many high-elevation pine species are susceptible hosts and experienced high levels of mortality in recent outbreaks, but...
Hardwood-pine mixedwoods stand dynamics following thinning and prescribed burning
Callie Jo Schweitzer; Daniel C. Dey; Yong Wang
2016-01-01
Restoration of hardwood-pine (Pinus L.) mixedwoods is an important man-agement goal in many pine plantations in the southern Cumberland Plateau in north-central Alabama, USA. Pine plantations have been relatively un-managed since initiation, and thus include a diversity of hardwoods developing in the understory. These unmanaged pine plantations...
An Old-Growth Definition for Wet Pine Forests, Woodlands, and Savannas
William R. Harms
1996-01-01
The ecological, site, and vegetation characteristics of pine wetland forests of the flatwoods region of the Southeastern United States are described. Provisional working definitions of old-growth characteristics are provided for longleaf pine, slash pine, and pond pine forests. These definitions can be used to identify and evaluate stands for retention in old-growth...
Tip moth control and loblolly pine growth in intensive pine culture: four year results
David L. Kulhavy; Jimmie L. Yeiser; L. Allen Smith
2006-01-01
Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L., on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana Comstock, and effects on pine growth over 2 years. Treatments were combinations of Velpar®,...
Biogeography and diversity of pines in the Madrean Archipelago
George M. Ferguson; Aaron D. Flesch; Thomas R. Van Devender
2013-01-01
Pines are important dominants in pine-oak, pine and mixed-conifer forests across the Colorado Plateau, southern Rocky Mountains, Sierra Madre Occidental, and in the intervening Sky Islands of the United States-Mexico borderlands. All 17 native species of pines in the Sky Islands region or their adjacent mountain mainlands reach the northern or southern margins of their...
Potting Media Affect Growth and Disease Development of Container-Grown Southern Pines
William H. Pawuk
1981-01-01
Longleaf pine (Pinus palustris Mill.) and shortleaf pine (P. echinata Mill.) seedlings grew best in equal parts of peat and vermiculite with a low pH. Seedlings grew better in shredded pine cone media than pine bark media. Growth increased when soil or vermiculite was added to cone or bark chips. Commercial bark-vermiculite...
White pine blister rust in the interior Mountain West
Kelly Burns; Jim Blodgett; Dave Conklin; Brian Geils; Jim Hoffman; Marcus Jackson; William Jacobi; Holly Kearns; Anna Schoettle
2010-01-01
White pine blister rust is an exotic, invasive disease of white, stone, and foxtail pines (also referred to as white pines or five-needle pines) in the genus Pinus and subgenus Strobus (Price and others 1998). Cronartium ribicola, the fungus that causes WPBR, requires an alternate host - currants and gooseberries in the genus Ribes and species of Pedicularis...
USDA-ARS?s Scientific Manuscript database
RATIONALE: Pine nut allergy cases have been reported, but pine nut allergens remain to be identified and characterized. Korean pine nut is one of the major varieties of pine nuts that are widely consumed. Vicilins belong to one of a few protein families that contain more than 85% of the known food a...
D. Craig Rudolph; Shirley J. Burgdorf; Richard N. Conner; Christopher S. Collins; Daniel Saenz; Richard R. Schaefer; Toni Trees; C. Michael Duran; Marc Ealy; John G. Himes
2002-01-01
Diet and prey handling behavior were determined for Louisiana pine snakes (Pituophis ruthveni) and black pine snakes (P. melanoleucus lodingi). Louisiana pine snakes prey heavily on Baird's pocket gophers (Geomys breviceps), with which they are sympatric, and exhibit specialized behaviors that facilitate...
Southern Pine Beetle Competitors
Fred M. Stephen
2011-01-01
When southern pine beetles mass attack a living pine tree, if colonization is successful the tree dies and its phloem becomes immediately available to a complex of other bark beetles and long-horned beetles, all of which, in order to reproduce, compete for the new resource. In southern pines the phloem-inhabiting guild is composed of the southern pine beetle...
Influence of seed weight on early development of eastern white pine
M. E., Jr. Demeritt; H. W., Jr. Hocker
1975-01-01
In the Northeast, eastern white pine (Pinus strobus L.) cannot be relied upon to consistently regenerate naturally due to the destruction of the cone crops by the white pine cone beetle (Conopthorus coniperda Schwarz). The white pine cone beetle has been reported to have destroyed the white pine cone crops for nine consecutive...
Children monosensitized to pine nuts have similar patterns of sensitization.
Novembre, Elio; Mori, Francesca; Barni, Simona; Ferrante, Giuliana; Pucci, Neri; Ballabio, Cinzia; Uberti, Francesca; Penas, Elena; Restani, Patrizia
2012-12-01
Several cases of pine nut allergies and anaphylaxis have been reported in the literature, but only few pine nut allergens have been characterized. The aim of this research is to identify through immunoelectrophoretic techniques the major pine nut allergens in a group of children monosensitized to pine nuts. We studied five children with pine nut allergies and no other sensitization to food except to pine nuts, confirmed by in vivo (prick test, prick-to-prick) and in vitro tests (specific IgE determinations [CAP-FEIA]). The protein profile of pine nuts was analyzed by Sodium Dodecyl sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Immunoblotting was performed after incubation of membranes with the sera from the children included in the present study. Immunoblotting (SDS-PAGE) demonstrated five similar bands between 6 and 47 kDa in all the subjects studied. These bands should be considered the potential allergens for pine nut allergic children. © 2012 John Wiley & Sons A/S.
Pine as Fast Food: Foraging Ecology of an Endangered Cockatoo in a Forestry Landscape
Stock, William D.; Finn, Hugh; Parker, Jackson; Dods, Ken
2013-01-01
Pine plantations near Perth, Western Australia have provided an important food source for endangered Carnaby’s Cockatoos (Calyptorhynchus latirostris) since the 1940s. Plans to harvest these plantations without re-planting will remove this food source by 2031 or earlier. To assess the impact of pine removal, we studied the ecological association between Carnaby’s Cockatoos and pine using behavioural, nutritional, and phenological data. Pine plantations provided high densities of seed (158 025 seeds ha−1) over a large area (c. 15 000 ha). Carnaby’s Cockatoos fed throughout these plantations and removed almost the entire annual crop of pine cones. Peak cockatoo abundance coincided with pine seed maturation. Pine seed had energy and protein contents equivalent to native food sources and, critically, is available in summer when breeding pairs have young offspring to feed. This strong and enduring ecological association clearly suggests that removing pine will have a significant impact on this endangered species unless restoration strategies, to establish alternative food sources, are implemented. PMID:23593413
Biodiversity losses: The downward spiral
Tomback, Diana F.; Kendall, Katherine C.; Tomback, Diana F.; Arno, Stephen F.; Keane, Robert E.
2001-01-01
The dramatic decline of whitebark pine (Pinus albicaulis) populations in the northwestern United States and southwestern Canada from the combined effects of fire exclusion, mountain pine beetles (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola), and the projected decline of whitebark pine populations rangewide (Chapters 10 and 11) do not simply add up to local extirpations of a single tree species. Instead, the loss of whitebark pine has broad ecosystem-level consequences, eroding local plant and animal biodiversity, changing the time frame of succession, and altering the distribution of subalpine vegetation (Chapter 1). One potential casualty of this decline may be the midcontinental populations of the grizzly bear (Ursus arctos horribilis), which use whitebark pine seeds as a major food source (Chapter 7). Furthermore, whitebark pine is linked to other white pine ecosystems in the West through its seed-disperser, Clark's nutcracker (Nucifraga columbiana) (Chapter 5). Major declines in nutcracker populations ultimately seal the fate of several white pine ecosystems, and raise the question of whether restoration is possible once a certain threshold of decline is reached.
Microbial nitrogen cycling response to forest-based bioenergy production.
Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H
2015-12-01
Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine-switchgrass treatment compared to those of the pine-native treatment, potentially alleviating any negative effects of N competition between pine and switchgrass. We expect that reduced soil C in the pine-switchgrass treatment, effects of pine and switchgrass rooting on soil C availability, and plant N demand are major factors influencing soil N transformations. Future research should examine rooting architecture in-intercropped systems and the effects on soil microbial communities and function.
Workshop proceedings: research and management in whitebark pine ecosystems
Kendall, Katherine C.; Coen, Brenda
1994-01-01
The purpose of this workshop is to exchange information on on-going and soon-to-be-initiated whitebark pine research and management projects. By doing so we hope to encourage future work on this valuable species. We also hope to promote the use of consistent methods for evaluation and investigation of whitebark pine, and to provide avenues of collaboration. Speakers will present information on a variety of topics related to whitebark pine management and research. Featured presentation topics include anthropomorphic utilization of whitepark pine forests, whitebark pine natural regeneration, blister rust and the decline of whitebark pine, blister rust resistance studies, ecological mapping of the species, restoration and management projects, and survey/monitoring techniques. Information gained from these presentations may hopefully be used in the planning of future projects for the conservation of whitebark pine.
Timing of Re-Transfusion Drain Removal Following Total Knee Replacement
Leeman, MF; Costa, ML; Costello, E; Edwards, D
2006-01-01
INTRODUCTION The use of postoperative drains following total knee replacement (TKR) has recently been modified by the use of re-transfusion drains. The aim of our study was to investigate the optimal time for removal of re-transfusion drains following TKR. PATIENTS AND METHODS The medical records of 66 patients who had a TKR performed between October 2003 and October 2004 were reviewed; blood drained before 6 h and the total volume of blood drained was recorded. RESULTS A total of 56 patients had complete records of postoperative drainage. The mean volume of blood collected in the drain in the first 6 h was 442 ml. The mean total volume of blood in the drain was 595 ml. Therefore, of the blood drained, 78% was available for transfusion. CONCLUSION Re-transfusion drains should be removed after 6 h, when no further re-transfusion is permissible. PMID:16551400
A Brief History of Two Common Surgical Drains.
Meyerson, Joseph M
2016-01-01
The use of surgical drains is commonplace in all types of surgical procedures, and rarely do we take the time to contemplate or investigate the origins of these critical devices. Every surgeon should be familiar with the Jackson-Pratt drain and Blake drain, 2 of the most frequently used closed suction, negative-pressure drainage devices in surgery. These drains are used throughout the body in a wide variety of surgical procedures. The development and differences between these 2 devices are seldom known by the practicing surgeon. In this article, we delve into the ancient history of drains, the creation and alterations of the closed suction, negative-pressure drain that paved the way for the Jackson-Pratt and Blake drain. Finally, we will discuss the variety of reservoirs that attach to these drains and the origin of the well-known adage of when to pull a drain.
The Political Economy of Post-Conflict Development: A Comparative Assessment of Burundi and Rwanda
2017-06-01
economy of post-conflict economic recovery in Rwanda and Burundi. These two countries, located in the Great Lakes region of East Africa, are commonly...has been more successful in recovering economically from civil war, while Burundi has been in a cycle of civil strife mired with poverty. Why has...Rwanda been more successful than Burundi in post-conflict economic growth and development? This thesis argues that the differences between Rwanda and
Mishra, Sundeep
The scientific discourse of chronic total occlusions interventions is mired in a technical jargon so confusing that it prevents an average interventional cardiologist from pursuing this field so much so that it has become a domain of a few. This review attempts to simplify this vernacular and present it in a manner that this procedure comes within the scope of a mainstream interventionist. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Korkin, S.; Talyneva, O.; Kail, E.
2018-03-01
In the presented work we consider mire landscapes in the context of temperature monitoring. The mire landscapes in engineering development of the territory are very sensitive to anthropogenic impact that leads to a change in surface conditions, changes in natural succession and, as a rule, to changes in soil temperature and properties, which in turn may develop a complex of hostile geodynamic processes. For this study we used recording systems for field measurement of peat and subsoil temperatures. The measurements were made in two key areas: the territory of the north-taiga landscapes of Western Siberia (the Siberian Ridges), and the territory of the middle-taiga landscapes of Western Siberia (the Ob middle-river lowland). The paper analyses the data obtained from five observation sites (3, 5, 5a, 6 and 8) referred to hydromorphic landscapes. For the territory of the Siberian Ridges the 5-year average soil temperature was 3°C. For the Ob middle-river lowland the 6-year average soil temperature was 4.2°C. The annual soil temperature in the period 2015-2016 for Site 5a (man-disturbed area) was 8.3°C at all depths, which is 3.8°C higher than in a natural bog (Site 5 was a control area).
7 CFR 160.91 - Meaning of words “pine” and “pine tree.”
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Meaning of words âpineâ and âpine tree.â 160.91...” and “pine tree.” The words “pine” or “pine tree,” when used to designate the source of spirits of..., growing trees, the source of gum spirits of turpentine. ...
Benjamin A. Crabb; James A. Powell; Barbara J. Bentz
2012-01-01
Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...
7 CFR 160.91 - Meaning of words “pine” and “pine tree.”
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Meaning of words âpineâ and âpine tree.â 160.91...” and “pine tree.” The words “pine” or “pine tree,” when used to designate the source of spirits of..., growing trees, the source of gum spirits of turpentine. ...
7 CFR 160.91 - Meaning of words “pine” and “pine tree.”
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Meaning of words âpineâ and âpine tree.â 160.91...” and “pine tree.” The words “pine” or “pine tree,” when used to designate the source of spirits of..., growing trees, the source of gum spirits of turpentine. ...
7 CFR 160.91 - Meaning of words “pine” and “pine tree.”
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Meaning of words âpineâ and âpine tree.â 160.91...” and “pine tree.” The words “pine” or “pine tree,” when used to designate the source of spirits of..., growing trees, the source of gum spirits of turpentine. ...
7 CFR 160.91 - Meaning of words “pine” and “pine tree.”
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Meaning of words âpineâ and âpine tree.â 160.91...” and “pine tree.” The words “pine” or “pine tree,” when used to designate the source of spirits of..., growing trees, the source of gum spirits of turpentine. ...
Kristen Pelz; C. C. Rhoades; R. M. Hubbard; M. A. Battaglia; F. W. Smith
2015-01-01
Mountain pine beetle outbreaks have killed lodgepole pine on more than one million hectares of Colorado and southern Wyoming forest during the last decade and have prompted harvest operations throughout the region. In northern Colorado, lodgepole pine commonly occurs in mixed stands with subalpine fir, Engelmann spruce, and aspen. Variation in tree species composition...
Site preparation as an aid to sugar pine regeneration
H.A. Fowells
1944-01-01
On many thousands of acres of cut-over timber lands in California, brush of various species has gained such control of the soil that the success of natural reproduction is problematical. This condition is particularly serious in the high site quality sugar pine-white fir and sugar pine-ponderosa pine types, where the maintenance of sugar pine in the stands is a...
Christy M. Cleaver; Kelly S. Burns; Anna W. Schoettle
2017-01-01
Limber pine, designated by Rocky Mountain National Park (RMNP) as a Species of Management Concern, is a keystone species that maintains ecosystem structure, function, and biodiversity. Limber pine is declining in the park due to the interacting effects of recent severe droughts and the climate-exasperated mountain pine beetle (Dendroctonus ponderosae) outbreak, and is...
The climatic distribution of blister rust on white pine in Wisconsin
E.P. Van Arsdel; A.J. Riker; T.F. Kouba; V.E. Suomi; R.A. Bryson
1961-01-01
White pine blister rust limits the reproduction of white pine in many areas by killing young trees. In other extensive areas unjustified fear of the disease limits white pine planting. An ability to differentiate the sites on which white pine blister rust (caused by Cronartium ribicola Fischer) might be serious from those on which the disease might...
Peter H Anderson; Kurt H. Johnsen
2009-01-01
Evidence is mixed on how well longleaf pine (Pinus palustris Mill.) responds to increased soil nitrogen via fertilization. We examined growth and physiological responses of volunteer longleaf pine trees within an intensive loblolly pine (Pinus taeda L.) fertilization experiment. Fertilizer was applied annually following thinning at age 8 years (late 1992) at rates...
John T. Kliejunas
1989-01-01
A historical perspective and description of recent studies on the use of borax to treat pine stumps against infection by Heterobasidion annosum in eastside pine stands of northeastern California are presented. The studies indicate that boraxing of pines in eastside pine stands is an effective means of preventing annosus infection. Data and...
Geographic variation in shortleaf pine (Pinus echinata Mill.) - cortical monoterpenes
R.C. Schmidtling; J.H. Myszewski; C.E. McDaniel
2005-01-01
Cortical monoterpenes were assayed in bud tissue from 16 Southwide Southern Pine Seed Source Study (SSPSS) sources and from 6 seed orchard sources fiom across the natural range of the species, to examine geogaphic variation in shortleaf pine. Spruce pine and pond pine were also sampled. The results show geographic differences in all of the major terpenes. There was no...
Patrick J. Vogan; Anna W. Schoettle
2015-01-01
Limber pine (Pinus flexilis) mortality is increasing across the West as a result of the combined stresses of white pine blister rust (Cronartium ribicola; WPBR), mountain pine beetle (Dendroctonus ponderosae), and dwarf mistletoe (Arceuthobium cyanocarpum) in a changing climate. With the continued spread of WPBR, extensive mortality will continue with strong selection...
HOW to Identify and Minimize Red Pine Shoot Moth Damage
Steven Katovich; David J. Hall
1992-01-01
The red pine shoot moth, Dioryctria resinosella, feeds on newly expanding shoots and cones of red pine, Pinus resinosa. Damage has been reported from Maine, Michigan, Minnesota, Wisconsin, and southern Ontario. The red pine shoot moth is now considered a pest due to the large increase in the number and overall acreage of red pine plantations greater than 20 years of...
Loblolly pine: the ecology and culture of loblolly pine (Pinus taeda L.)
Robert P. Schultz
1997-01-01
Loblolly pine ranks as a highly valuable tree for its pulp, paper, and lumber products. In the South, loblolly is planted more than any other conifer. Loblolly Pine: The Ecology and Culture of Loblolly Pine (Pinus taeda L.) adds to the technical foundations laid by Ashe (1915) and Wahlenberg (1960). Agriculture Handbook 713 encompasses genetics, tree...
Determining fire history from old white pine stumps in an oak-pine forest
Richard P. Guyette; Daniel C. Dey; Chris McDonell
1995-01-01
Fire scars on stumps of white pine (Pinus strobus L.) in a red oak (Quercus rubra L.) white pine forest near Bracebridge, Ontario, were dated using dendrochronological methods. A chronological record of fires that caused basal scarring is preserved in the remnant white pine stumps, which were estimated to be up to 135 years old...
Cathie Jean; Erin Shanahan; Rob Daley; Gregg DeNitto; Dan Reinhart; Chuck Schwartz
2011-01-01
There is a critical need for information on the status and trend of whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). Concerns over the combined effects of white pine blister rust (WPBR, Cronartium ribicola), mountain pine beetle (MPB, Dendroctonus ponderosae), and climate change prompted an interagency working group to design and implement...
HOW to Manage Jack Pine to Reduce Damage from Jack Pine Budworm
Deborah G. McCullough; Steven Katovich; Robert L. Heyd; Shane Weber
1994-01-01
Jack pine budworm, Choristoneura pinus pinus Freeman, is a needle feeding caterpillar that is generally considered the most significant pest of jack pine. Vigorous young jack pine stands are rarely damaged during outbreaks. The most vigorous stands are well stocked, evenly spaced, fairly uniform in height, and less than 45 years old. Stands older than 45 years that are...
Maxine T. Highsmith; John Frampton; David 0' Malley; James Richmond; Martesa Webb
2001-01-01
Tip moth damage arnong families of parent pine species and their interspecific F1 hybrids was quantitatively assessed in a coastal planting in North Carolina. Three slash pine (Pinus elliotti var. elliotti Engelm.), two loblolly pine (Pinus taeda L.), and four interspecific F1 hybrid pine families were used. The...
Growth and Yield of Slash Pine Plantations
Frank A. Bennett
1963-01-01
Although slash pine has the most limited range of the major southern pines, more has been planted than any other southern pine, or for that matter, than any timber species in North America. More acres of planted slash pine are also approaching a merchantable condition than any other species, even though the bulk of the plantings has been in the last 20 years....
Using fire to restore pine/hardwood ecosystems in the Southern Appalachians of North Carolina
James M. Vose; Wayne T. Swank; Barton D. Clinton; Ronald L. Hendrick; Amy E. Major
1997-01-01
In the Southern Appalachians, mixed pine/hardwood ecosystems occupy the most xeric sites (i.e., south/west aspect ridge sites). They are typically comprised of varying proportions of pitch pine (Pinus rigida), Virginia pine (Pinus virginiana), and/or shortleaf pine (Pinus echinata) and a mixture of hardwoods, including scarlet oak (Quercus coccinea), chestnut oak (...
Timothy B. Harrington
2011-01-01
To develop silvicultural strategies for restoring longleaf pine (Pinus palustris Mill.) savannas, mortality and growth of overstory pines and midstory hardwoods and abundance and species richness of herbs were studied for 14 years after pine thinning and nonpine woody control. Pine cover in thinned stands was about half of that in nonthinned stands...
Anup KC; Thomas B. Lynch; James M. Guldin
2016-01-01
Understory pine and hardwood regeneration in the Ozark and Ouachita National Forests were measured in 1995 for the first time following thinning and hardwood control at plot establishment 1985-87. Red maple (Acer rubrum), shortleaf pine and flowering dogwood (Cornus florida) were the most frequently recorded species. Understory shortleaf pine stems have declined...
William H. McWilliams
1992-01-01
A shrinking of Alabama's nonindustrial private pine forest prompted an analysis of recent trends in afforestation and regeneration. There has been an 828,100-acre addition to the nonindustrial pine-site timberland base from nonforest land uses. Planting has replaced natural seeding as the major cause of afforestation to pine. The area of nonindustrial pine-site...
Paul E. Trusty; Cathy L. Cripps
2011-01-01
Whitebark pine (Pinus albicaulis) is a threatened keystone species in subalpine zones of Western North America that plays a role in watershed dynamics and maintenance of high elevation biodiversity (Schwandt, 2006). Whitebark pine has experienced significant mortality due to white pine blister rust, mountain pine beetle outbreaks and successional replacement possibly...
Some recent developments in white-pine weevil research in the Northeast
H. A. Jaynes
1958-01-01
Eastern white pine is one of the most important sawtimber species in the Northeast. This species would have still greater potential value were it not for the white-pine weevil, Pissodes strobi (Peck), its most serious insect pest. This is a native insect that occurs throughout the range of eastern white pine. A large percentage of the white pines in...
Limber pine seed and seedling planting experiment in Waterton Lakes National Park, Canada
Cyndi M. Smith; Graeme Poll; Cameron Gillies; Celina Praymak; Eileen Miranda; Justin Hill
2011-01-01
Limber pine plays an important role in the harsh environments in which it lives, providing numerous ecological services, especially because its large, wingless seeds serve as a high energy food source for many animals. Limber pine populations are declining due to a combination of white pine blister rust, mountain pine beetle, drought, and fire suppression. Outplanting...
Western yellow pine in Arizona and New Mexico
Theodore S. Woolsey
1911-01-01
Western yellow pine is to the Southwest what white pine is to the Northeast, or longleaf pine to the Southeast. The commercial forests of Arizona and New Mexico are three-fourths western yellow pine, which furnishes by far the greater part of the lumber used locally as well as that shipped to outside markets. To describe the characteristics of the species and to...
James M. Guldin; James B. Baker; Michael G. Shelton
2004-01-01
Abstract - Density, milacre stocking, and height of shortleaf pine ( Pinus echinata Mill.) regeneration under 13 reproduction cutting methods were measured after 5 growing seasons across a range of reproduction cutting treatments in shortleaf pine and pine-hardwood stands in the Interior Highlands of Arkansas and Oklahoma. A subset...
Christopher M. Oswalt; Sonja N. Oswalt; Jason R. Meade
2016-01-01
The southern pine beetle (Dendroctonus frontalis) is a bark beetle that is native to the Southern United States, including Tennessee. The beetle is periodically epidemic and can cause high levels of mortalityduring epidemic years, particularly in dense or aging pine (Pinus spp.) stands. An epidemic outbreak of the Southern pine...
Attractants for longhorn beetles in the southeastern U.S. - pine volatiles and engraver pheromones
Daniel R. Miller; Chris Asaro; Christopher M. Crowe; James R. Meeker; Donald A. Duerr
2011-01-01
Our objective was to determine the effect of adding the binary combination of pine engraver pheromones, ipsenol and ipsdienol, to the binary combination of pine volatiles, ethanol and ()-α-pinene, on catches of some common pine longhorn beetles (Cerambycidae) in the southeastern U.S. Six trapping experiments were conducted in stands of mature pine in...
Are high elevation pines equally vulnerable to climate change-induced mountain pine beetle attack?
Barbara J. Bentz; Erika L. Eidson
2016-01-01
Mountain pine beetle (Dendroctonus ponderosae) (MPB), a native insect to western North America, caused extensive tree mortality in pine ecosystems during a recent warm and dry period. More than 24 million acres were affected, including in the relatively low elevation lodgepole (Pinus contorta) and ponderosa (P. ponderosa) pines, and the high-elevation whitebark (P....
Lauren E. Barringer; Diana F. Tomback; Michael B. Wunder
2011-01-01
Whitebark pine (Pinus albicaulis) is declining in the central and northern Rocky Mountains from infection by the exotic pathogen Cronartium ribicola, which causes white pine blister rust, and from outbreaks of mountain pine beetle (Dendroctonus ponderosae). White pine blister rust has been present in Glacier and Waterton Lakes National Parks (NP) about two decades...
Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan
2017-01-01
Recent mountain pine beetle outbreaks in whitebark pine forests have been extensive and severe. Understanding the climate influences on these outbreaks is essential for developing management plans that account for potential future mountain pine beetle outbreaks, among other threats, and informing listing decisions under the Endangered Species Act. Prior research has...
Richard A. Sniezko; Robert Danchok; Jim Hamlin; Angelia Kegley; Sally Long; James Mayo
2012-01-01
Western white pine (Pinus monticola Douglas ex D. Don) is highly susceptible to the non-native, invasive pathogen Cronartium ribicola, the causative agent of white pine blister rust. The susceptibility of western white pine to blister rust has limited its use in restoration and reforestation throughout much of western North...
Patrick H. Brose; Thomas A. Waldrop
2006-01-01
A dendrochronology study was conducted in four upland yellow pine communities in Georgia, South Carolina, and Tennessee to determine whether the number and frequency of stand-level disturbances had changed since 1900. Increment cores of Table Mountain pine (Pinus pungens Lamb.), pitch pine (P. rigida Mill.), shortleaf pine (
James D. Haywood
2012-01-01
Pine straw harvesting can provide an economic benefit to landowners, but the practice may also change the composition of plant communities. This research was initiated in a 34-year-old stand of longleaf pine (Pinus palustris Mill.) established in 1956 to study how pine straw management practices (fertilization, prescribed fire, and straw harvesting) affected plant...
A study of the complications of small bore 'Seldinger' intercostal chest drains.
Davies, Helen E; Merchant, Shairoz; McGown, Anne
2008-06-01
Use of small bore chest drains (<14F), inserted via the Seldinger technique, has increased globally over the last few years. They are now used as first line interventions in most acute medical situations when thoracostomy is required. Limited data are available on the associated complications. In this study, the frequency of complications associated with 12F chest drains, inserted using the Seldinger technique, was quantified. A retrospective case note audit was performed of consecutive patients requiring pleural drainage over a 12-month period. One hundred consecutive small bore Seldinger (12F) chest drain insertions were evaluated. Few serious complications occurred. However, 21% of the chest drains were displaced ('fell out') and 9% of the drains became blocked. This contributed to high morbidity rates, with 13% of patients requiring repeat pleural procedures. The frequency of drain blockage in pleural effusion was reduced by administration of regular normal saline drain flushes (odds ratio for blockage in flushed drains compared with non-flushed drains 0.04, 95% CI: 0.01-0.37, P < 0.001). Regular chest drain flushes are advocated in order to reduce rates of drain blockage, and further studies are needed to determine optimal fixation strategies that may reduce associated patient morbidity.
Comparison of a large and small-calibre tube drain for managing spontaneous pneumothoraces.
Benton, Ian J; Benfield, Grant F A
2009-10-01
To compare treatment success of large- and small-bore chest drains in the treatment of spontaneous pneumothoraces the case-notes were reviewed of those admitted to our hospital with a total of 73 pneumothoraces and who were treated by trainee doctors of varying experience. Both a large- and a small-bore intercostal tube drain system were in use during the two-year period reviewed. Similar pneumothorax profile and numbers treated with both drains were recorded, resulting in a similar drain time and numbers of successful and failed re-expansion of pneumothoraces. Successful pneumothorax resolution was the same for both drain types and the negligible tube drain complications observed with the small-bore drain reflected previously reported experiences. However the large-bore drain was associated with a high complication rate (32%) with more infectious complications (24%). The small-bore drain was prone to displacement (21%). There was generally no evidence of an increased failure and morbidity, reflecting poorer expertise, in the non-specialist trainees managing the pneumothoraces. A practical finding however was that in those large pneumothoraces where re-expansion failed, the tip of the drain had not been sited at the apex of the pleural cavity irrespective of the drain type inserted.
NASA Astrophysics Data System (ADS)
Luna Ramos, Lourdes; Miralles, Isabel; Lázaro-Suau, Roberto; Solé-Benet, Albert
2017-04-01
The use of pine woodchips in soil restoration in calcareous quarries is a relatively low-cost mulching technique to improve soil water conservation and decrease soil erosion, contributing to improve soil quality. Besides these two important effects, woodchip mulch is also a potential source of seeds which can germinate if environmental conditions during earlier stages are adequate. Pine germination has been observed in experimental plots treated with pine woodchips used as mulch in one of the driest regions in Europe (SE Spain). This side-effect provided an interesting opportunity to analyse the influence of topsoil and two organic wastes (compost from domestic organic waste and sewage sludge from urban water treatment plant) in mine soils on the germinated pines (Pinus halepensis Mill.) and the plant cover (revegetated native plants and spontaneous vegetation). Number, height and basal diameter of pines and the total plant cover were measured 6 years after the applications of topsoil and organic amendments. Results showed that organic wastes increased the pine growth and the total plant cover which could favour in turn the physico-chemical soil properties and its quality in the medium-long term. However, organic amendments negatively influencing the number of germinated pines. The likely growth of pine seedlings derived from the pine cones which come with pine woodchips used as mulch, when enhanced by organic amendments, adds a positive value in quarry restoration even under very dry climatic conditions. However, it is necessary to continue monitoring the development of vegetation to form a more precise idea about whether the development of the pines is globally beneficial, since the pines could outcompete the local native plants.
Needle oils of three pine species and species hybrids
Robert Z. Callaham
1956-01-01
The composition and characteristics of the needle oils of western pines may provide criteria for distinguishing pine hybrids and may help explain why some needle-feeding insects select certain pine species as hosts.
Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain.
Carlo, Nicholas J; Renninger, Heidi J; Clark, Kenneth L; Schäfer, Karina V R
2016-08-01
A comparative analysis of the impacts of prescribed fire on three upland forest stands in the Northeastern Atlantic Plain, NJ, USA, was conducted. Effects of prescribed fire on water use and gas exchange of overstory pines were estimated via sap-flux rates and photosynthetic measurements on Pinus rigida Mill. Each study site had two sap-flux plots, one experiencing prescribed fire and one control (unburned) plot for comparison before and after the fire. We found that photosynthetic capacity in terms of Rubisco-limited carboxylation rate and intrinsic water-use efficiency was unaffected, while light compensation point and dark respiration rate were significantly lower in the burned vs control plots post-fire. Furthermore, quantum yield in pines in the pine-dominated stands was less affected than pines in the mixed oak/pine stand, as there was an increase in quantum yield in the oak/pine stand post-fire compared with the control (unburned) plot. We attribute this to an effect of forest type but not fire per se. Average daily sap-flux rates of the pine trees increased compared with control (unburned) plots in pine-dominated stands and decreased in the oak/pine stand compared with control (unburned) plots, potentially due to differences in fuel consumption and pre-fire sap-flux rates. Finally, when reference canopy stomatal conductance was analyzed, pines in the pine-dominated stands were more sensitive to changes in vapor pressure deficit (VPD), while stomatal responses of pines in the oak/pine stand were less affected by VPD. Therefore, prescribed fire affects physiological functioning and water use of pines, but the effects may be modulated by forest stand type and fuel consumption pattern, which suggests that these factors may need to be taken into account for forest management in fire-dominated systems. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Excavation of red squirrel middens by grizzly bears in the whitebark pine zone
Mattson, D.J.; Reinhart, Daniel P.
1997-01-01
Whitebark pine seeds Pinus albicaulis are an important food of grizzly Ursus arctos horribilis bears wherever whitebark pine is abundant in the contiguous United States of America; availability of seeds affects the distribution of bears, and the level of conflict between bears and humans. Almost all of the seeds consumed by bears are excavated from middens where red squirrels Tamiasciurus hudsonicus have cached whitebark pine cones.Relationships among the occupancy of middens by squirrels, the excavation of middens by bears, and site features were investigated in this study. Data were collected from radio-marked bears and from middens located from line transects on two study sites in the Yellowstone ecosystem.Densities of active middens were positively related to lodgepole pine Pinus contorta basal area and negatively related to steepness of slope.The probability that a midden was occupied by a squirrel (i.e. active) was positively related to lodgepole pine basal area in the surrounding stand, size of the midden and size of the whitebark pine cone crop, and negatively related to elevation and to bear excavation during the previous 2-12 months.The probability that a midden had been excavated by a bear during the previous 12 months was positively related to size of the midden, and to whitebark pine basal area and cone crop, and negatively related to nearness of roads and town sites.The influence of midden size on bear use was attributable to a positive relationship with the number of excavated cones. The positive association between bear excavations and whitebark pine basal area or cone crops was attributable to availability of pine seeds.Grizzly bears would benefit from the minimization of roads and other human facilities in the whitebark pine zone and from increases in the availability of whitebark pine seeds, potentially achieved by increasing the numbers of cone-producing whitebark pine trees, especially in lower elevations of the whitebark pine zone where red squirrels are more abundant.
Growing season burns for control of hardwoods in longleaf pine stands
William D. Boyer
1990-01-01
Summer fires in existing longleaf pine stands carry undue risk of pine mortality. One summer fire caused as much mortality among pines in the l- through 4-inch d.b.h. classes as two successive summer fires among hardwoods of the same size. Mortality among mature pines was also excessive. Hardwood top-kill following a spring fire seemed affected more by fire intensity...
Natural regeneration in relation to environment in the mixed conifer forest type of California
H. A. Fowells; N. B Stark
1965-01-01
Germination, survival, and growth of ponderosa pine, sugar pine, white fir, and incense-cedar were studied in relation to such environmental factors as air and soil temperatures, light intensity, and soil moisture. The germination of ponderosa pine was best, followed by sugar pine, incense-cedar, and white fir. After 5 years, sugar pine had the highest survival rate,...
Use of Chemicals for Prevention and Control of Southern Pine Beetle Infestations
Ronald F. Billings
2011-01-01
The southern pine beetle (SPB) is a major threat to pine forests in the Southeastern United States, Mexico, and Central America. In concert with one or more species of southern pine engraver beetles, SPB also may attack and kill pines in residential, recreational, or urban settings. Different control strategies and tactics have been used over the years to try to...
Harvest Activity and Residual Pine Stocking on Prvate Timberland in Arkansas, 1978-88
William H. McWilliams
1989-01-01
Commercial harvesting, carried out on 39 percent of the privately owned timberland (5.3 million acres) in Arkansas from 1978-88, had a heavy impact on forest industry timberland. On a percentage basis, cutting was heaviest in pine forest types. Fifty-four percent of the heavily cut pine and mixed pine-hardwood stands were at least 60 percent stocked with pine following...
Lynn M. Roovers; Stephen R. Shifley
2003-01-01
A relict population of eastern white pine (Pinus strobus L.) occurs at White Pine Hollow State Preserve in northeastern Iowa, USA. White pine was not self-replacing in our study plots here, and without disturbances that alter the successional trend the species will eventually disappear from the flat to rolling uplands where most pines currently occur...
Key to utilization of hardwoods on pine sites: the shaping-lathe headrig
P. Koch
1976-01-01
In past years, only 30% of southern pine biomass (above- and below-ground parts) ended as primary product. Moreover, hardwoods on pine sites were, and in many cases still are, destroyed with no thought of utilization. Now, however, processes have been invented that can raise utilization of each tree- pine and hardwood on pine sites a like to 67% of total biomass,...
Shortleaf pine reproduction abundance and growth in pine-oak stands in the Missouri Ozarks
Elizabeth M. Blizzard; Doyle Henken; John M. Kabrick; Daniel C. Dey; David R. Larsen; David Gwaze
2007-01-01
We conducted an operational study to evaluate effect of site preparation treatments on pine reproduction density and the impact of overstory basal area and understory density on pine reproduction height and basal diameter in pine-oak stands in the Missouri Ozarks. Stands were harvested to or below B-level stocking, but patchiness of the oak decline lead to some plots...
Jose F. Negron; Wayne A. Shepperd; Steve A. Mata; John B. Popp; Lance A. Asherin; Anna W. Schoettle; John M. Schmid; David A. Leatherman
2001-01-01
Three experiments were conducted to evaluate the use of solar radiation for reducing survival of mountain pine beetle populations in infested logs. Ponderosa pine logs were used in experiments 1 and 2 and lodgepole pine logs were used in experiment 3. Experiment 1 comprised three treatments: (1) one-layer solar treatment without plastic sheeting and logs rotated one-...
Thomas L. Eberhardt; Philip M. Sheridan; Karen G. Reed
2009-01-01
Measurements of pith and second growth ring diameters were used by Koehler in 1932 to separate longleaf pine (Pinus palustris Mill.) timbers from those of several southern pines (e.g., loblolly, shortleaf). In the current study, measurements were taken from plantation-grown longleaf, loblolly and shortleaf pine trees, as well as old growth longleaf pine, lightwood, and...
John C. Moser; Bobbe A. Fitzgibbon; Kier D. Klepzig
2005-01-01
The Mexican pine beetle (XPB) Dendroctonus mexicanus, is recorded here for the first time as a new introduction for the United States (US). Individuals of XPB and its sibling species, the southern pine beetle (SPB) Dendroctonus frontalis, were found infesting the same logs of Chihuahua pine, Pinus...
Richard Cutler; Leslie Brown; James Powell; Barbara Bentz; Adele Cutler
2003-01-01
Mountain pine beetles (Dendroctonus ponderosae Hopkins) are a pest indigenous to the pine forests of the western United States. Capable of exponential population growth, mountain pine beetles can destroy thousands of acres of trees in a short period of time. The research reported here is part of a larger project to demonstrate the application of, and evaluate,...
Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron
2011-01-01
A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...
Jennifer Klutsch; Nadir Erbilgin
2012-01-01
In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...
Changren Weng; Thomas L. Kubisiak; C. Dana Nelson; James P. Geaghan; Michael Stine
1999-01-01
Single marker regression and single marker maximum likelihood estimation were tied to detect quantitative trait loci (QTLs) controlling the early height growth of longleaf pine and slash pine using a ((longleaf pine x slash pine) x slash pine) BC, population consisting of 83 progeny. Maximum likelihood estimation was found to be more power than regression and could...
John Bishir; James Roberds; Brian Strom; Xiaohai Wan
2009-01-01
SPLOB is a computer simulation model for the interaction between loblolly pine (Pinus taeda L.), the economically most important forest crop in the United States, and the southern pine beetle (SPB: Dendroctonus frontalis Zimm.), the major insect pest for this species. The model simulates loblolly pine stands from time of planting...
Clyde G. Vidrine; John C. Adams
2002-01-01
Thirteen year growth results of 1-0 out-planted loblolly pine seedlings on nonintensively prepared up-land mixed pine-hardwood sites receiving machine applied cut-stump treatment (CST) herbicides onto hardwood stumps at the time of harvesting is presented. Plantation pine growth shows significantly higher growth for pine in the CST treated plots compared to non-CST...
J. Dunlap
2011-01-01
White pine blister rust (caused by the non-native pathogen Cronartium ribicola) reached northern California about 80 years ago. Over the years its spread southward had been primarily recorded on sugar pine. However, observations on its occurrence had also been reported in several of the higher elevation five-needled white pine species in California. Since the late...