Sample records for dramatic climate change

  1. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation

    EPA Science Inventory

    Climate change in the circumpolar region is causing dramatic environmental change that increases the vulnerability of the built environment. We quantified the economic impacts of climate change on Alaska’s public infrastructure under relatively high and low climate forcing scenar...

  2. Some guidelines for helping natural resources adapt to climate change

    Treesearch

    Jill S. Baron; Susan Herrod Julius; Jordan M. West; Linda A. Joyce; Geoffrey Blate; Charles H. Peterson; Margaret Palmer; Brian D. Keller; Peter Kareiva; J. Michael Scott; Brad Griffith

    2008-01-01

    The changes occurring in mountain regions are an epitome of climate change. The dramatic shrinkage of major glaciers over the past century - and especially in the last 30 years - is one of several iconic images that have come to symbolize climate change.

  3. Approaches to predicting potential impacts of climate change on forest disease: An example with Armillaria root disease

    Treesearch

    Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Bryce A. Richardson; John E. Lundquist

    2011-01-01

    Climate change will likely have dramatic impacts on forest health because many forest trees could become maladapted to climate. Furthermore, climate change will have additional impacts on forest health through changes in the distribution and severity of forest disease. Methods are needed to predict the influence of climate change on forest disease so that appropriate...

  4. Taking Up the Security Challenge of Climate Change

    DTIC Science & Technology

    2009-05-26

    Climate change , in which man-made global warming is a major factor, will likely have dramatic and long-lasting consequences with profound security...effects of climate change are greatest, particularly in weak states that are already vulnerable to environmental destabilization. Two things are vitally...important: stemming the tide of climate change and adapting to its far-reaching consequences. This project examines the destabilizing effects of climate

  5. Ecosystem vulnerability assessment and synthesis: a report from the Climate Change Response Framework Project in northern Wisconsin

    Treesearch

    Chris Swanston; Maria Janowiak; Louis Iverson; Linda Parker; David Mladenoff; Leslie Brandt; Patricia Butler; Matt St. Pierre; Anantha Prasad; Stephen Matthews; Matthew Peters; Dale Higgins; Avery Dorland

    2011-01-01

    The forests of northern Wisconsin will likely experience dramatic changes over the next 100 years as a result of climate change. This assessment evaluates key forest ecosystem vulnerabilities to climate change across northern Wisconsin under a range of future climate scenarios. Warmer temperatures and shifting precipitation patterns are expected to influence ecosystem...

  6. Multiple-scale proximal sensor and remote imagery technology for sustaining agricultural productivity during climate change

    USDA-ARS?s Scientific Manuscript database

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California’s San Joaquin Valley. Climate change has impacted water availability, which subsequently has impacted so...

  7. Impacts of land use and climate change on carbon dynamics in south-central Senegal

    USGS Publications Warehouse

    Liu, Shu-Guang; Kaire, M.; Wood, Eric C.; Diallo, O.; Tieszen, Larry L.

    2004-01-01

    Total carbon stock in vegetation and soils was reduced 37% in south-central Senegal from 1900 to 2000. The decreasing trend will continue during the 21st century unless forest clearing is stopped, selective logging dramatically reduced, and climate change, if any, relatively small. Developing a sustainable fuelwood and charcoal production system could be the most feasible and significant carbon sequestration project in the region. If future climate changes dramatically as some models have predicted, cropland productivity will drop more than 65% around 2100, posing a serious threat to food security and the efficiency of carbon sequestration projects.

  8. Assessing climate change impacts on soil salinity development with proximal and satellite sensors

    USDA-ARS?s Scientific Manuscript database

    Changes in climate patterns have dramatically influenced some agricultural areas. Examples include the historic 5-year drought in California’s San Joaquin Valley (SJV) and the 20-year above average annual rainfall in the Red River Valley (RRV) of the Midwestern USA. Climate change may have impacted ...

  9. Adapting to and Coping with the Threat and Impacts of Climate Change

    ERIC Educational Resources Information Center

    Reser, Joseph P.; Swim, Janet K.

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to…

  10. A Cooperative Classroom Investigation of Climate Change

    ERIC Educational Resources Information Center

    Constible, Juanita; Sandro, Luke; Lee, Richard E., Jr.

    2007-01-01

    Scientists have a particularly difficult time explaining warming trends in Antarctica--a region with a relatively short history of scientific observation and a highly variable climate (Clarke et al. 2007). Regardless of the mechanism of warming, however, climate change is having a dramatic impact on Antarctic ecosystems. In this article, the…

  11. Global warming: China’s contribution to climate change

    NASA Astrophysics Data System (ADS)

    Spracklen, Dominick V.

    2016-03-01

    Carbon dioxide emissions from fossil-fuel use in China have grown dramatically in the past few decades, yet it emerges that the country's relative contribution to global climate change has remained surprisingly constant. See Letter p.357

  12. Changing times, changing stories: Generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    Treesearch

    Nicole M. Herman-Mercer; Elli Matkin; Melinda J. Laituri; Ryan C. Toohey; Maggie Massey; Kelly Elder; Paul F. Schuster; Edda A. Mutter

    2016-01-01

    Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation...

  13. Will extreme climatic events facilitate biological invasions?

    USDA-ARS?s Scientific Manuscript database

    Extreme climatic events, such as intense heat waves, hurricanes, floods and droughts, can dramatically affect ecological and evolutionary processes, and more extreme events are projected with ongoing climate change. However, the implications of these events for biological invasions, which themselves...

  14. Accounting for multiple climate components when estimating climate change exposure and velocity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  15. Mountain landscapes offer few opportunities for high-elevation tree species migration

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes.

  16. Burning Fossil Fuels: Impact of Climate Change on Health.

    PubMed

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases. © The Author(s) 2015.

  17. Forest responses to changing climate: lessons from the past and uncertainty for the future

    Treesearch

    Donald H. DeHayes; George L., Jr. Jacobson; Paul G. Schaberg; Bruce Bongarten; Louis Iverson; Ann C. Dieffenbacher-Krall

    2000-01-01

    The earth's climate has undergone dramatic and long-term changes through natural processes many millennia before humans influenced global climate. Considerable evidence indicates that increasing concentrations of carbon dioxide and other greenhouse gases in the earth's atmosphere will lead to near-term warming, perhaps as much as 2 to 4°C in...

  18. Interactions of forest disturbance-recovery dynamics with a changing climate

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Miller, A. D.; Tepley, A. J.; Bennett, A. C.; Wang, M.

    2015-12-01

    As the climate changes, altered disturbance-recovery dynamics in forests worldwide are likely to result in significant biogeochemical and biophysical feedbacks to the climate system. Climate shapes forest disturbance events including tree mortality and fire, with consequent climate feedbacks. For instance, in forests globally, drought increases tree mortality rates, having a stronger impact on larger trees and resulting in greater feedbacks to climate change than would occur if drought sensitivities were equal across tree size classes. Forest regeneration and associated biogeochemical and biophysical feedbacks are also shaped by climate: across the tropics the rate of biomass accumulation is faster in everwet than in seasonally dry climates, and in the Klamath region (N California / S Oregon), post-fire vegetation dynamics and microclimate are shaped by aridity. Forest recovery dynamics will be affected by elevated CO2 and climate change; for instance, models predict that forest regeneration rate, successional dynamics, and climate feedbacks will all be altered under elevated CO2. In combination, climatic impacts on disturbance and recovery can result in dramatic shifts in forest cover on the landscape level. For instance, in fire-prone forested landscapes, forest cover decreases with increasing frequency of high-severity fire and decreasing forest recovery rate, both of which could be altered by climate change, producing rapid loss of forest on the landscape level. Such effects may be amplified by the existence of alternative stable states, which can cause systems to experience non-reversible changes in cover type. Critical transitions in landscape-level forest cover would have significant biogeochemical and biophysical feedbacks. Thus, altered disturbance-recovery dynamics under a changing climate may have sudden and dramatic impacts on forest-climate interactions.

  19. Characterizing the "Time of Emergence" of Air Quality Climate Penalties

    NASA Astrophysics Data System (ADS)

    Rothenberg, D. A.; Garcia-Menendez, F.; Monier, E.; Solomon, S.; Selin, N. E.

    2017-12-01

    By driving not only local changes in temperature, but also precipitation and regional-scale changes in seasonal circulation patterns, climate change can directly and indirectly influence changes in air quality and its extremes. These changes - often referred to as "climate penalties" - can have important implications for human health, which is often targeted when assessing the potential co-benefits of climate policy. But because climate penalties are driven by slow, spatially-varying, temporal changes in the climate system, their emergence in the real world should also have a spatio-temporal component following regional variability in background air quality. In this work, we attempt to estimate the spatially-varying "time of emergence" of climate penalty signals by using an ensemble modeling framework based on the MIT Integrated Global System Model (MIT IGSM). With this framework we assess three climate policy scenarios assuming three different underlying climate sensitivities, and conduct a 5-member ensemble for each case to capture internal variability within the model. These simulations are used to drive offline chemical transport modeling (using CAM-Chem and GEOS-Chem). In these simulations, we find that the air quality response to climate change can vary dramatically across different regions of the globe. To analyze these regionally-varying climate signals, we employ a hierarchical clustering technique to identify regions with similar seasonal patterns of air quality change. Our simulations suggest that the earliest emergence of ozone climate penalties would occur in Southern Europe (by 2035), should the world neglect climate change and rely on a "business-as-usual" emissions policy. However, even modest climate policy dramatically pushes back the time of emergence of these penalties - to beyond 2100 - across most of the globe. The emergence of climate-forced changes in PM2.5 are much more difficult to detect, partially owing to the large role that changes in the frequency and spatial distribution of precipitation play in limiting the accumulation and duration of particulate pollution episodes.

  20. Terrestrial ecosystems and their change

    Treesearch

    Anatoly Z. Shvidenko; Eric Gustafson; A. David McGuire; Vjacheslav I. Kharuk; Dmitry G. Schepaschenko; Herman H. Shugart; Nadezhda M. Tchebakova; Natalia N. Vygodskaya; Alexander A. Onuchin; Daniel J. Hayes; Ian McCallum; Shamil Maksyutov; Ludmila V. Mukhortova; Amber J. Soja; Luca Belelli-Marchesini; Julia A. Kurbatova; Alexander V. Oltchev; Elena I. Parfenova; Jacquelyn K. Shuman

    2012-01-01

    This chapter considers the current state of Siberian terrestrial ecosystems, their spatial distribution, and major biometric characteristics. Ongoing climate change and the dramatic increase of accompanying anthropogenic pressure provide different but mostly negative impacts on Siberian ecosystems. Future climates of the region may lead to substantial drying on large...

  1. Towards more accurate vegetation mortality predictions

    DOE PAGES

    Sevanto, Sanna Annika; Xu, Chonggang

    2016-09-26

    Predicting the fate of vegetation under changing climate is one of the major challenges of the climate modeling community. Here, terrestrial vegetation dominates the carbon and water cycles over land areas, and dramatic changes in vegetation cover resulting from stressful environmental conditions such as drought feed directly back to local and regional climate, potentially leading to a vicious cycle where vegetation recovery after a disturbance is delayed or impossible.

  2. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    NASA Astrophysics Data System (ADS)

    Winslow, Anne

    2011-06-01

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels—particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a "nuclear renaissance", this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.

  3. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winslow, Anne

    2011-06-28

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels--particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittencymore » of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a ''nuclear renaissance'', this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.« less

  4. Some guidelines for helping natural resources adapt to climate change

    USGS Publications Warehouse

    Baron, Jill S.; Julius, Susan Herrod; West, Jordan M.; Joyce, Linda A.; Blate, Geoffrey; Peterson, Charles H.; Palmer, Margaret; Keller, Brian D.; Kareiva, Peter; Scott, J. Michael; Griffith, Brad

    2008-01-01

    The changes occurring in mountain regions are an epitome of climate change. The dramatic shrinkage of major glaciers over the past century – and especially in the last 30 years – is one of several iconic images that have come to symbolize climate change. Climate creates the context for ecosystems, and climate variables strongly influence the structure, composition, and processes that characterize distinct ecosystems. Climate change, therefore, is having direct and indirect effects on species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue regardless of emissions mitigation, management strategies to enhance the resilience of ecosystems will become increasingly important. It is essential that management responses to climate change proceed using the best available science despite uncertainties associated with the future path of climate change, the response of ecosystems to climate effects, and the effects of management. Given these uncertainties, management adaptation will require flexibility to reflect our growing understanding of climate change impacts and management effectiveness.

  5. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    USDA-ARS?s Scientific Manuscript database

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California’s San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minn...

  6. Effects of climate change on forest insect and disease outbreaks

    Treesearch

    David W. Williams; Robert P. Long; Philip M. Wargo; Andrew M. Liebhold

    2000-01-01

    General circulation models (GCMs) predict dramatic future changes in climate for the northeastern and north central United States under doubled carbon dioxide (CO2) levels (Hansen et al., 1984; Manabe and Wetherald, 1987; Wilson and Mitchell, 1987; Cubasch and Cess, 1990; Mitchell et al., 1990). January temperatures are projected to rise as much...

  7. Maintenance of forest ecosystem health and vitality

    Treesearch

    Ryan D. DeSantis; W. Keith Moser

    2016-01-01

    Forest health will likely be threatened by a number of factors - including fragmentation, fire regime alteration, and a variety of diseases, insects, and invasive plants - along with global climate change (Krist et al. 2007, Tkacz et al. 2008). By itself, global climate change could dramatically and rapidly alter forest composition and structure (Allen and Breshears...

  8. Climate change induced invasions by native and exotic pests

    Treesearch

    Jesse A. Logan

    2007-01-01

    The importance of effective risk assessment for introduction and establishment of exotic pest species has dramatically increased with an expanded global economy and the accompanying increase in international trade. Concurrently, recent climate warming has resulted in potential invasion of new habitats by native pest species. The time frame of response to changing...

  9. Detecting mortality induced structural and functional changes in a pinon-juniper woodland using Landsat and RapidEye time series

    Treesearch

    Dan J. Krofcheck; Jan U. H. Eitel; Lee A. Vierling; Urs Schulthess; Timothy M. Hilton; Eva Dettweiler-Robinson; Rosemary Pendleton; Marcy E. Litvak

    2014-01-01

    Pinon-juniper (PJ) woodlands have recently undergone dramatic drought-induced mortality, triggering broad scale structural changes in this extensive Southwestern US biome. Given that climate projections for the region suggest widespread conifer mortality is likely to continue into the next century, it is critical to better understand how this climate-induced change in...

  10. Rapid climate change did not cause population collapse at the end of the European Bronze Age

    PubMed Central

    Armit, Ian; Swindles, Graeme T.; Becker, Katharina; Plunkett, Gill; Blaauw, Maarten

    2014-01-01

    The impact of rapid climate change on contemporary human populations is of global concern. To contextualize our understanding of human responses to rapid climate change it is necessary to examine the archeological record during past climate transitions. One episode of abrupt climate change has been correlated with societal collapse at the end of the northwestern European Bronze Age. We apply new methods to interrogate archeological and paleoclimate data for this transition in Ireland at a higher level of precision than has previously been possible. We analyze archeological 14C dates to demonstrate dramatic population collapse and present high-precision proxy climate data, analyzed through Bayesian methods, to provide evidence for a rapid climatic transition at ca. 750 calibrated years B.C. Our results demonstrate that this climatic downturn did not initiate population collapse and highlight the nondeterministic nature of human responses to past climate change. PMID:25404290

  11. Rapid climate change did not cause population collapse at the end of the European Bronze Age.

    PubMed

    Armit, Ian; Swindles, Graeme T; Becker, Katharina; Plunkett, Gill; Blaauw, Maarten

    2014-12-02

    The impact of rapid climate change on contemporary human populations is of global concern. To contextualize our understanding of human responses to rapid climate change it is necessary to examine the archeological record during past climate transitions. One episode of abrupt climate change has been correlated with societal collapse at the end of the northwestern European Bronze Age. We apply new methods to interrogate archeological and paleoclimate data for this transition in Ireland at a higher level of precision than has previously been possible. We analyze archeological (14)C dates to demonstrate dramatic population collapse and present high-precision proxy climate data, analyzed through Bayesian methods, to provide evidence for a rapid climatic transition at ca. 750 calibrated years B.C. Our results demonstrate that this climatic downturn did not initiate population collapse and highlight the nondeterministic nature of human responses to past climate change.

  12. Changing the School Climate Is the First Step to Reform in Many Schools with Federal Improvement Grants

    ERIC Educational Resources Information Center

    McMurrer, Jennifer

    2012-01-01

    School Improvement Grants (SIGs) financed through the economic stimulus package are intended to spur dramatic change in persistently low-performing schools. Many state and local officials charged with implementing SIGs view the creation of a safe, orderly, collegial, and productive school climate as an essential step in raising student…

  13. Wildfire risk and home purchase decisions.

    Treesearch

    Patricia Champ; Geoffrey Donovan; Christopher Barth

    2008-01-01

    In the last 20 years, wildfire damages and the costs of wildfire suppression have risen dramatically. This trend has been attributed to three main factors: climate change, increased fuel loads from a century of wildfire suppression, and increased housing development in fire-prone areas., There is little that fire managers can do about climate change, and current fuel...

  14. The ARGO Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2004

    DTIC Science & Technology

    2004-01-01

    international Argo practices. Data appropriate for research applications and for comparison with climate change models are not available for several...global ocean heat and fresh water storage and the detection and attribution of climate change . These presentations can be accessed at http...stresses on ocean ecosystems have serious consequences, and sometimes dramatic ones, such as coral reef bleaching . In the future, the impacts of a

  15. Potential Environmental and Ecological Effects of Global Climate Change on Venomous Terrestrial Species in the Wilderness.

    PubMed

    Needleman, Robert K; Neylan, Isabelle P; Erickson, Timothy

    2018-06-01

    Climate change has been scientifically documented, and its effects on wildlife have been prognosticated. We sought to predict the overall impact of climate change on venomous terrestrial species. We hypothesize that given the close relationship between terrestrial venomous species and climate, a changing global environment may result in increased species migration, geographical redistribution, and longer seasons for envenomation, which would have repercussions on human health. A retrospective analysis of environmental, ecological, and medical literature was performed with a focus on climate change, toxinology, and future modeling specific to venomous terrestrial creatures. Species included venomous reptiles, snakes, arthropods, spiders, and Hymenoptera (ants and bees). Animals that are vectors of hemorrhagic infectious disease (eg, mosquitos, ticks) were excluded. Our review of the literature indicates that changes to climatic norms will have a potentially dramatic effect on terrestrial venomous creatures. Empirical evidence demonstrates that geographic distributions of many species have already shifted due to changing climatic conditions. Given that most terrestrial venomous species are ectotherms closely tied to ambient temperature, and that climate change is shifting temperature zones away from the equator, further significant distribution and population changes should be anticipated. For those species able to migrate to match the changing temperatures, new geographical locations may open. For those species with limited distribution capabilities, the rate of climate change may accelerate faster than species can adapt, causing population declines. Specifically, poisonous snakes and spiders will likely maintain their population numbers but will shift their geographic distribution to traditionally temperate zones more often inhabited by humans. Fire ants and Africanized honey bees are expected to have an expanded range distribution due to predicted warming trends. Human encounters with these types of creatures are likely to increase, resulting in potential human morbidity and mortality. Temperature extremes and changes to climatic norms may have a dramatic effect on venomous terrestrial species. As climate change affects the distribution, populations, and life histories of these organisms, the chance of encounters could be altered, thus affecting human health and the survivability of these creatures. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  16. Spatial and temporal variation in climate change: A bird’s eye view

    USGS Publications Warehouse

    Fontaine, Joseph J.; Decker, Karie L.; Skagen, Susan K.; van Riper, Charles

    2009-01-01

    Recent changes in global climate have dramatically altered worldwide temperatures and the corresponding timing of seasonal climate conditions. Recognizing the degree to which species respond to changing climates is therefore an area of increasing conservation concern as species that are unable to respond face increased risk of extinction. Here we examine spatial and temporal heterogeneity in the rate of climate change across western North America and discuss the potential for conditions to arise that may limit the ability of western migratory birds to adapt to changing climates. Based on 52 years of climate data, we show that changes in temperature and precipitation differ significantly between spring migration habitats in the desert southwest and breeding habitats throughout western North America. Such differences may ultimately increase costs to individual birds and thereby threaten the long-term population viability of many species.

  17. Increasing ENSO-Driven Drought and Wildfire Risks in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Fasullo, J.; Otto-Bliesner, B. L.; Stevenson, S.

    2015-12-01

    ENSO-related teleconnections occurring in the transient climate states of the 20th and 21st centuries are examined using the NCAR CESM1-CAM5 Large Ensemble (LE). A focus is given to quantifying the changing nature of related variability in a warming climate, the statistical robustness of which is enhanced by the numerous members of the LE (presently ~40). It is found that while the dynamical components of ENSO's teleconnections weaken considerably in a warming world, associated variability over land is in many cases sustained by changes in the background state, such as for rainfall due to the background rise in specific humidity. In some fields, particularly those associated with associated with thermal stress (e.g. drought and wildfire), ENSO-related variance increases dramatically. This, combined with the fact that ENSO variance itself increases in a warming climate in the LE, contributes to dramatic projected increases in ENSO-driven drought and wildfire risks in a warming world.

  18. Land-cover change detection

    USGS Publications Warehouse

    Chen, Xuexia; Giri, Chandra; Vogelmann, James

    2012-01-01

    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.

  19. Climate change games as tools for education and engagement

    NASA Astrophysics Data System (ADS)

    Wu, Jason S.; Lee, Joey J.

    2015-05-01

    Scientists, educators and policymakers continue to face challenges when it comes to finding effective strategies to engage the public on climate change. We argue that games on the subject of climate change are well-suited to address these challenges because they can serve as effective tools for education and engagement. Recently, there has been a dramatic increase in the development of such games, many featuring innovative designs that blur traditional boundaries (for example, those that involve social media, alternative reality games, or those that involve direct action upon the real world). Here, we present an overview of the types of climate change game currently available, the benefits and trade-offs of their use, and reasons why they hold such promise for education and engagement regarding climate change.

  20. The Douglas-fir seed-source movement trial yields early results

    Treesearch

    Constance A. Harrington; Brad St. Clair

    2017-01-01

    Climate change in the 21st century is likely to dramatically alter the growing conditions that Pacific Northwest tree species experience. It has been suggested that foresters plan for these changes by moving seed sources to locations where the seed-source environment and the future climate will be similar. Some people have called this type of seed-source movement “...

  1. Climate Change and Health: A Position Paper of the American College of Physicians.

    PubMed

    Crowley, Ryan A

    2016-05-03

    Climate change could have a devastating effect on human and environmental health. Potential effects of climate change on human health include higher rates of respiratory and heat-related illness, increased prevalence of vector-borne and waterborne diseases, food and water insecurity, and malnutrition. Persons who are elderly, sick, or poor are especially vulnerable to these potential consequences. Addressing climate change could have substantial benefits to human health. In this position paper, the American College of Physicians (ACP) recommends that physicians and the broader health care community throughout the world engage in environmentally sustainable practices that reduce carbon emissions; support efforts to mitigate and adapt to the effects of climate change; and educate the public, their colleagues, their community, and lawmakers about the health risks posed by climate change. Tackling climate change is an opportunity to dramatically improve human health and avert dire environmental outcomes, and ACP believes that physicians can play a role in achieving this goal.

  2. Consequences of a warming climate for social organisation in sweat bees.

    PubMed

    Schürch, Roger; Accleton, Christopher; Field, Jeremy

    The progression from solitary living to caste-based sociality is commonly regarded as a major evolutionary transition. However, it has recently been shown that in some taxa, sociality may be plastic and dependent on local conditions. If sociality can be environmentally driven, the question arises as to how projected climate change will influence features of social organisation that were previously thought to be of macroevolutionary proportions. Depending on the time available in spring during which a foundress can produce worker offspring, the sweat bee Halictus rubicundus is either social or solitary. We analysed detailed foraging data in relation to climate change predictions for Great Britain to assess when and where switches from a solitary to social lifestyle may be expected. We demonstrate that worker numbers should increase throughout Great Britain under predicted climate change scenarios, and importantly, that sociality should appear in northern areas where it has never before been observed. This dramatic shift in social organisation due to climate change should lead to a bigger workforce being available for summer pollination and may contribute towards mitigating the current pollinator crisis. The sweat bee Halictus rubicundus is socially polymorphic, expressing both solitary and social forms, and is socially plastic, capable of transitioning from solitary to social forms, depending on local environmental conditions. Here, we analyse detailed foraging data in relation to climate change predictions for Great Britain to show that worker numbers and sociality both increase under predicted climate change scenarios. Especially dramatic will be the appearance of social H. rubicundus nests in the north of Britain, where previously only solitary forms are found. Particularly, if more taxa are found to be socially plastic, environmentally driven shifts in social organisation may help to mitigate future pollinator crises by providing more individuals for pollination.

  3. Adapting to and coping with the threat and impacts of climate change.

    PubMed

    Reser, Joseph P; Swim, Janet K

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to adequately communicate and explain how a more psychological framing of the human dimensions of global environmental change can greatly inform and enhance effective and collaborative climate change adaptation and mitigation policies and research. An integrative framework is provided that identifies and considers important mediating and moderating parameters and processes relating to climate change adaptation, with particular emphasis given to environmental stress and stress and coping perspectives. This psychological perspective on climate change adaptation highlights crucial aspects of adaptation that have been neglected in the arena of climate change science. Of particular importance are intra-individual and social "psychological adaptation" processes that powerfully mediate public risk perceptions and understandings, effective coping responses and resilience, overt behavioral adjustment and change, and psychological and social impacts. This psychological window on climate change adaptation is arguably indispensable to genuinely multidisciplinary and interdisciplinary research and policy initiatives addressing the impacts of climate change.

  4. Climate change and physical disturbance cause similar community shifts in biological soil crusts.

    PubMed

    Ferrenberg, Scott; Reed, Sasha C; Belnap, Jayne

    2015-09-29

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. Although there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrust communities and compared the effects of altered climate with those of long-term physical disturbance (>10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study.

  5. Climate change and physical disturbance cause similar community shifts in biological soil crusts

    USGS Publications Warehouse

    Ferrenberg, Scott; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. While there has been long-standing concern over impacts of 5 physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is also increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, USA, we examined the effects of 10 years of experimental warming and altered precipitation (in full-factorial design) on biocrust communities, and compared the effects of altered climate with those of long-term physical 10 disturbance (>10 years of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increased cyanobacteria cover, with more variable effects 15 on lichens. While the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed by the climate treatments used in our study.

  6. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species.

    PubMed

    Quintero, Ignacio; Wiens, John J

    2013-08-01

    A key question in predicting responses to anthropogenic climate change is: how quickly can species adapt to different climatic conditions? Here, we take a phylogenetic approach to this question. We use 17 time-calibrated phylogenies representing the major tetrapod clades (amphibians, birds, crocodilians, mammals, squamates, turtles) and climatic data from distributions of > 500 extant species. We estimate rates of change based on differences in climatic variables between sister species and estimated times of their splitting. We compare these rates to predicted rates of climate change from 2000 to 2100. Our results are striking: matching projected changes for 2100 would require rates of niche evolution that are > 10,000 times faster than rates typically observed among species, for most variables and clades. Despite many caveats, our results suggest that adaptation to projected changes in the next 100 years would require rates that are largely unprecedented based on observed rates among vertebrate species. © 2013 John Wiley & Sons Ltd/CNRS.

  7. Air Pollution: Current and Future Challenges

    EPA Pesticide Factsheets

    Despite the dramatic progress to date, air pollution continues to threaten Americans’ health and welfare. The main obstacles are climate change, conventional air pollution, and ozone layer depletion.

  8. Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

    USGS Publications Warehouse

    ,

    2009-01-01

    Fifty years of U.S. Geological Survey (USGS) research on glacier change shows recent dramatic shrinkage of glaciers in three climatic regions of the United States. These long periods of record provide clues to the climate shifts that may be driving glacier change. The USGS Benchmark Glacier Program began in 1957 as a result of research efforts during the International Geophysical Year (Meier and others, 1971). Annual data collection occurs at three glaciers that represent three climatic regions in the United States: South Cascade Glacier in the Cascade Mountains of Washington State; Wolverine Glacier on the Kenai Peninsula near Anchorage, Alaska; and Gulkana Glacier in the interior of Alaska (fig. 1).

  9. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    Evidence on a broad range of time scales, from Proterozoic to the most recent periods, shows that the Earth's climate responds sensitively to global forcings. In the past few decades the Earth's surface has warmed rapidly, apparently in response to increasing anthropogenic greenhouse gases in the atmosphere. The conventional view is that the current global warming rate will continue or accelerate in the 21st century. I will describe an alternate scenario that would slow the rate of global warming and reduce the danger of dramatic climate change. But reliable prediction of future climate change requires improved knowledge of the carbon cycle and global observations that allow interpretation of ongoing climate change.

  10. An assessment of climate change in the Luquillo Mountains of Puerto Rico.

    Treesearch

    F. N. Scatena

    1998-01-01

    Change in the surface temperature of the coastal plain of 1 to 2C and/or a 11 to 33% change in annual rainfall could dramatically alter the distribution of forest vegetation within the Luquillo Experimental Forest(LEF) of northeastern Puerto Rico.

  11. Rapid Vegetational Change in Coastal North America: The Response to Climate Since the LGM

    NASA Technical Reports Server (NTRS)

    Peteet, Dorothy; Kneller, Margaret

    1999-01-01

    The late-glacial interval provided rapid shifts in climate which are mirrored by dramatic vegetational changes in North America. Through a transect of lake and mire sites from Connecticut to Virginia on the east coast and Kodiak Island on the western coast, we trace the warming following the LGM with the response of forests and tundra. A brief cold reversal in Virginia is seen from 12,260 to 12,200. The subsequent longer and extreme Younger Dryas event is marked in the southern New England - New Jersey region by dramatic boreal and deciduous forest changes. In the southeastern US, forests also change rapidly, with hemlock forest expansion suggesting increased moisture. In Kodiak Island, the warm, moist tundra of the Bolling/Allerod is replaced by colder, windswept Empetrum-dominated tundra during the Younger Dryas. The Pleistocene/Holocene shift in vegetation is remarkably pronounced in eastern North America as well as the Alaskan coastline. Response time of vegetation to climate change appears to be on the order of decades throughout these coastal locations, probably because of the proximity of sites to important ecotonal boundaries, and the magnitude of the events. Even in Virginia's Holocene record, a cold reversal inferred from increases in spruce and fir is noted at 7500 C14 yr BP. This response of the forests to a short-lived cooling shows the sensitivity of the biosphere to a rapid climate shifts.

  12. Regional climatic warming drives long-term community changes of British marine fish.

    PubMed Central

    Genner, Martin J.; Sims, David W.; Wearmouth, Victoria J.; Southall, Emily J.; Southward, Alan J.; Henderson, Peter A.; Hawkins, Stephen J.

    2004-01-01

    Climatic change has been implicated as the cause of abundance fluctuations in marine fish populations worldwide, but the effects on whole communities are poorly understood. We examined the effects of regional climatic change on two fish assemblages using independent datasets from inshore marine (English Channel, 1913-2002) and estuarine environments (Bristol Channel, 1981-2001). Our results show that climatic change has had dramatic effects on community composition. Each assemblage contained a subset of dominant species whose abundances were strongly linked to annual mean sea-surface temperature. Species' latitudinal ranges were not good predictors of species-level responses, however, and the same species did not show congruent trends between sites. This suggests that within a region, populations of the same species may respond differently to climatic change, possibly owing to additional local environmental determinants, interspecific ecological interactions and dispersal capacity. This will make species-level responses difficult to predict within geographically differentiated communities. PMID:15156925

  13. Assessment of climate impacts on the karst-related carbon sink in SW China using MPD and GIS

    NASA Astrophysics Data System (ADS)

    Zeng, Sibo; Jiang, Yongjun; Liu, Zaihua

    2016-09-01

    Riverine carbon fluxes of some catchments in the world have significantly changed due to contemporary climate change and human activities. As a large region with an extensive karstic area of nearly 7.5 × 105 km2, Southwest (SW) China has experienced dramatic climate changes during recent decades. Although some studies have investigated the karst-related carbon sink in some parts of this region, the importance of climate impacts have not been assessed. This research examined the impacts of recent climate change on the karst-related carbon sink in the SW China for the period 1970-2013, using a modified maximal potential dissolution (MPD) method and GIS. We first analyzed the major determinants of carbonate dissolution at a spatial scale, calculated the total karst-related carbon sink (TCS) and carbon sink fluxes (CSFs) in the SW China karst region with different types of carbonate rocks, and then compared with other methods, and analyzed the causes of CSFs variations under the changed climate conditions. The results show that the TCS in SW China experienced a dramatic change with regional climate, and there was a trend with TCS decreasing by about 19% from 1970s to 2010s. This decrease occurred mostly in Guizhou and Yunnan provinces, which experienced larger decreases in runoff depth in the past 40 years (190 mm and 90 mm, respectively) due to increased air temperature (0.33 °C and 1.04 °C, respectively) and decreased precipitation (156 mm and 106 mm, respectively). The mean value of CSFs in SW China, calculated by the modified MPD method, was approximately 9.36 t C km- 2 a- 1. In addition, there were large differences in CSFs among the provinces, attributed to differences in regional climate and to carbonate lithologies. These spatiotemporal changes depended mainly on hydrological variations (i.e., discharge or runoff depth). This work, thus, suggests that the karst-related carbon sink could respond to future climate change quickly, and needs to be considered in the modern global carbon cycle model.

  14. Archived DNA reveals fisheries and climate induced collapse of a major fishery.

    PubMed

    Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg

    2015-10-22

    Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.

  15. Archived DNA reveals fisheries and climate induced collapse of a major fishery

    PubMed Central

    Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg

    2015-01-01

    Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change. PMID:26489934

  16. Archived DNA reveals fisheries and climate induced collapse of a major fishery

    NASA Astrophysics Data System (ADS)

    Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg

    2015-10-01

    Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.

  17. Climate change and physical disturbance cause similar community shifts in biological soil crusts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrenberg, Scott; Reed, Sasha C.; Belnap, Jayne

    In biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface— fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover are present.Though there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, in this paper we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrustmore » communities and compared the effects of altered climate with those of long-term physical disturbance (>10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, these results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. Finally, this is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study.« less

  18. Climate change and physical disturbance cause similar community shifts in biological soil crusts

    DOE PAGES

    Ferrenberg, Scott; Reed, Sasha C.; Belnap, Jayne

    2015-09-14

    In biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface— fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover are present.Though there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, in this paper we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrustmore » communities and compared the effects of altered climate with those of long-term physical disturbance (>10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, these results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. Finally, this is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study.« less

  19. Climate impacts on connectivity of snowmelt to flow in the Willamette River using water stable isotopes

    EPA Science Inventory

    Much of the water that people in Western Oregon rely on comes from snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past 6 years have shown dramatic variation in snowpack, from a high of 174% of normal in ...

  20. The ecology of climate change and infectious diseases

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2009-01-01

    The projected global increase in the distribution and prevalence of infectious diseases with climate change suggests a pending societal crisis. The subject is increasingly attracting the attention of health professionals and climate-change scientists, particularly with respect to malaria and other vector-transmitted human diseases. The result has been the emergence of a crisis discipline, reminiscent of the early phases of conservation biology. Latitudinal, altitudinal, seasonal, and interannual associations between climate and disease along with historical and experimental evidence suggest that climate, along with many other factors, can affect infectious diseases in a nonlinear fashion. However, although the globe is significantly warmer than it was a century ago, there is little evidence that climate change has already favored infectious diseases. While initial projections suggested dramatic future increases in the geographic range of infectious diseases, recent models predict range shifts in disease distributions, with little net increase in area. Many factors can affect infectious disease, and some may overshadow the effects of climate.

  1. History and Progress of GCM Simulations on Recent Mars Climate Change

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    2004-01-01

    The Mars Global Surveyor and Odyssey spacecraft reveal evidence that Mars may have experienced significant climate change in the recent past (105-106 Myr ago). Examples include gullies [1], cold-based tropical glaciers [2], paleolakes [3], and youthful near-surface ice [4]. Except for the gullies, the evidence for recent climate change requires ice and/or liquid water at low latitudes. An obvious question, therefore, is how is it possible for ice and/or liquid water to exist at low latitudes which is not possible in the present climate system? There are several mechanisms to consider. An episode of intense volcanic activity could alter the mean composition of the atmosphere and, therefore, the climate system. Impacts, depending on the size, composition, and velocity of the impactor are another way to dramatically alter the climate system. Polar wander and solar variability are also possibilities. However, the most promising way to change the climate is through changes in orbital properties. Mars, because of its proximity to Jupiter and lack of a large stabilizing moon, experiences much greater changes in its orbit properties than the Earth.

  2. History and Progress of GCM Simulations on Recent Mars Climate Change

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    2004-01-01

    The Mars Global Surveyor and Odyssey spacecraft reveal evidence that Mars may have experienced significant climate change in the recent past (10(exp 5) - 10(exp 6) Myr ago). Examples include gullies, cold-based tropical glaciers, paleolakes, and youthful near-surface ice. Except for the gullies, the evidence for recent climate change requires ice and/or liquid water at low latitudes. An obvious question, therefore, is how is it possible for ice and/or liquid water to exist at low latitudes which is not possible in the present climate system? There are several mechanisms to consider. An episode of intense volcanic activity could alter the mean composition of the atmosphere and, therefore, the climate system. Impacts, depending on the size, composition, and velocity of the impactor are another way to dramatically alter the climate system. Polar wander and solar variability are also possibilities. However, the most promising way to change the climate is through changes in orbital properties. Mars, because of its proximity to Jupiter and lack of a large stabilizing moon, experiences much greater changes in its orbit properties than the Earth.

  3. Drought stress suppresses phytoalexin production against Fusarium verticilliodes

    USDA-ARS?s Scientific Manuscript database

    Global climate change involves rising temperatures and potentially decreased rainfall or changes in rainfall patterns, which could dramatically decrease the yield of food crops. Drought alone can impair plant growth and development, but in nature plants are continuously exposed to both abiotic and b...

  4. Constant Chinese Loess Plateau dust source since the Late Miocene

    NASA Astrophysics Data System (ADS)

    Bird, Anna; Millar, Ian; Stevens, Thomas; Rodenburg, Tanja; Rittner, Martin; Vermeesch, Pieter; Lu, Huayu

    2017-04-01

    The dramatic deepening of northern hemisphere glaciation at the Pliocene-Pleistocene boundary is accompanied by major changes in global climate. The role of the global atmospheric dust cycle in this event is not clear; in particular, whether, changes in the dust cycle influenced climates change, or resulted from it. Miocene and Quaternary wind-blown Chinese loess records past dust-cycle history, influences of aridification and monsoon circulation. Previous work on the vast Chinese Loess Plateau is in conflict over whether changes in dust source occur at the Pliocene-Pleistocene boundary (2.59 Ma), or at 1.2 Ma, despite these intervals marking major shifts in monsoon dynamics (Sun 2005; Nie et al. 2014a). Here we present Sr, Nd and Hf isotopic data from multiple sites and show that the dust source remains the same across these boundaries. The use of isotope tracers from multiple sites allows us to demonstrate that shifts in sediment geochemistry can be explained by grain-size and weathering changes. Nd and Hf isotopes show that the dust was dominantly sourced from the Tibetan Plateau, with some input from bedrock underlying the Badain Jaran/Tengger deserts. This shows that a major established and constant dust source on the northern Tibetan Plateau has been active and unchanged since the late Miocene, despite dramatically changing climate conditions. Changes in loess accumulation are therefore a function of climate change in the Tibetan Plateau source regions rather than due to expanding source areas controlled by aridification over a widening area over the Pliocene and Quaternary.

  5. The threat of climate change to freshwater pearl mussel populations.

    PubMed

    Hastie, Lee C; Cosgrove, Peter J; Ellis, Noranne; Gaywood, Martin J

    2003-02-01

    Changes in climate are occurring around the world and the effects on ecosystems will vary, depending on the extent and nature of these changes. In northern Europe, experts predict that annual rainfall will increase significantly, along with dramatic storm events and flooding in the next 50-100 years. Scotland is a stronghold of the endangered freshwater pearl mussel, Margaritifera margaritifera (L.), and a number of populations may be threatened. For example, large floods have been shown to adversely affect mussels, and although these stochastic events were historically rare, they may now be occurring more often as a result of climate change. Populations may also be affected by a number of other factors, including predicted changes in temperature, sea level, habitat availability, host fish stocks and human activity. In this paper, we explain how climate change may impact M. margaritifera and discuss the general implications for the conservation management of this species.

  6. Leveraging the Novel Climates of Arboreta to Understand Tree Responses to Climate Change

    NASA Astrophysics Data System (ADS)

    Ettinger, A.; Wolkovich, E. M.; Joly, S.

    2016-12-01

    Rising global temperatures are expected to cause large-scale changes to forests, including altered mortality and recruitment rates, and dramatic changes in species composition, but exactly how tree growth will be affected by climate change is uncertain. Studies to date suggest that temperate and boreal tree responses to warming range from growing faster, slower, or at unchanged rates. Here we present an approach and preliminary findings that will improve predictions of tree responses to climate change by studying how tree traits, including phenology (e.g. the timing of leaf-out), wood density, leaf mass area, and height, relate to climate sensitivity (i.e. growth responses to annual changes in climate, Figure 1). We demonstrate how arboreta can be used to understand tree responses to climate change using 500 individuals across 65 tree species growing at the Arnold Arboretum, Boston, Massachusetts. Arboretum provide a unique opportunities for understanding temperate tree responses to climate change: they provide large collections of woody species growing together that enable traits to be studied across diverse species in a phylogenetic context. Furthermore, many species in arboreta are nonnative and have been exposed to "novel" climates that may resemble future conditions in their native distributions. We use a phylogenetic approach to understand how annual growth and climate sensitivity relate to focal traits, and asses what these findings may tell us about tree responses to climate change.

  7. Communicating climate change and health in the media.

    PubMed

    Depoux, Anneliese; Hémono, Mathieu; Puig-Malet, Sophie; Pédron, Romain; Flahault, Antoine

    2017-01-01

    The translation of science from research to real-world change is a central goal of public health. Communication has an essential role to play in provoking a response to climate change. It must first raise awareness, make people feel involved and ultimately motivate them to take action. The goal of this research is to understand how the information related to this issue is being addressed and disseminated to different audiences-public citizens, politicians and key climate change stakeholders. Initial results show that the scientific voice struggles to globally highlight this issue to a general audience and that messages that address the topic do not meet the challenges, going from a dramatic framing to a basic adaptation framing. Communication experts can help inform scientists and policy makers on how to best share information about climate change in an engaging and motivating way. This study gives an insight about the key role of the media and communications in addressing themes relating to climate change and transmitting information to the public in order to take action.

  8. Accessible ecology: Synthesis of the long, deep, and broad

    USDA-ARS?s Scientific Manuscript database

    Dramatic changes in climate, land cover, and habitat availability have occurred over the past several centuries to influence every ecosystem on Earth. Large amounts of data have been collected to document changes. Solutions to these environmental problems have been more elusive, in large part becaus...

  9. 75 FR 30383 - NOAA's Arctic Vision and Strategy; Comment Period Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... evidence of widespread and dramatic ongoing change. As a result, critical environmental, economic, and... public comment period by fifteen days. The Arctic has profound significance for climate and functioning of ecosystems around the globe. The region is particularly vulnerable and prone to rapid change...

  10. Species-specific responses of Late Quaternary megafauna to climate and humans

    PubMed Central

    Lorenzen, Eline D.; Nogués-Bravo, David; Orlando, Ludovic; Weinstock, Jaco; Binladen, Jonas; Marske, Katharine A.; Ugan, Andrew; Borregaard, Michael K.; Gilbert, M. Thomas P.; Nielsen, Rasmus; Ho, Simon Y. W.; Goebel, Ted; Graf, Kelly E.; Byers, David; Stenderup, Jesper T.; Rasmussen, Morten; Campos, Paula F.; Leonard, Jennifer A.; Koepfli, Klaus-Peter; Froese, Duane; Zazula, Grant; Stafford, Thomas W.; Aaris-Sørensen, Kim; Batra, Persaram; Haywood, Alan M.; Singarayer, Joy S.; Valdes, Paul J.; Boeskorov, Gennady; Burns, James A.; Davydov, Sergey P.; Haile, James; Jenkins, Dennis L.; Kosintsev, Pavel; Kuznetsova, Tatyana; Lai, Xulong; Martin, Larry D.; McDonald, H. Gregory; Mol, Dick; Meldgaard, Morten; Munch, Kasper; Stephan, Elisabeth; Sablin, Mikhail; Sommer, Robert S.; Sipko, Taras; Scott, Eric; Suchard, Marc A.; Tikhonov, Alexei; Willerslev, Rane; Wayne, Robert K.; Cooper, Alan; Hofreiter, Michael; Sher, Andrei; Shapiro, Beth; Rahbek, Carsten; Willerslev, Eske

    2014-01-01

    Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary remain contentious. We use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, underscoring the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change. PMID:22048313

  11. Late Glacial to Early Holocene socio-ecological responses to climatic instability within the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Fernández-López de Pablo, Javier; Jones, Samantha E.; Burjachs, Francesc

    2018-03-01

    The period spanning the Late Glacial and the Early Holocene (≈19-8.2 ka) witnessed a dramatic sequence of climate and palaeoenvironmental changes (Rasmussen et al., 2014). Interestingly, some of the most significant transformations ever documented in human Prehistory took place during this period such as the intensification of hunter-gatherer economic systems, the domestication process of wild plants and animals, and the spread of farming across Eurasia. Understanding the role of climate and environmental dynamics on long-term cultural and economic trajectories, as well as specific human responses to episodes of rapid climate change, still remains as one of the main challenges of archaeological research (Kintigh et al., 2014).

  12. Climate Change Conceptual Change: Scientific Information Can Transform Attitudes.

    PubMed

    Ranney, Michael Andrew; Clark, Dav

    2016-01-01

    Of this article's seven experiments, the first five demonstrate that virtually no Americans know the basic global warming mechanism. Fortunately, Experiments 2-5 found that 2-45 min of physical-chemical climate instruction durably increased such understandings. This mechanistic learning, or merely receiving seven highly germane statistical facts (Experiment 6), also increased climate-change acceptance-across the liberal-conservative spectrum. However, Experiment 7's misleading statistics decreased such acceptance (and dramatically, knowledge-confidence). These readily available attitudinal and conceptual changes through scientific information disconfirm what we term "stasis theory"--which some researchers and many laypeople varyingly maintain. Stasis theory subsumes the claim that informing people (particularly Americans) about climate science may be largely futile or even counterproductive--a view that appears historically naïve, suffers from range restrictions (e.g., near-zero mechanistic knowledge), and/or misinterprets some polarization and (noncausal) correlational data. Our studies evidenced no polarizations. Finally, we introduce HowGlobalWarmingWorks.org--a website designed to directly enhance public "climate-change cognition." Copyright © 2016 Cognitive Science Society, Inc.

  13. A Review on Climate Change in Weather Stations of Guilan Province Using Mann-Kendal Methodand GIS

    NASA Astrophysics Data System (ADS)

    Behzadi, Jalal

    2016-07-01

    Climate has always been changing during the life time of the earth, and has appeared in the form of ice age, hurricanes, severe and sudden temperature changes, precipitation and other climatic elements, and has dramatically influenced the environment, and in some cases has caused severe changes and even destructions. Some of the most important aspects of climate changes can be found in precipitation types of different regions in the world and especially Guilan, which is influenced by drastic land conversions and greenhouse gases. Also, agriculture division, industrial activities and unnecessary land conversions are thought to have a huge influence on climate change. Climate change is a result of abnormalcies of metorologyl parameters. Generally, the element of precipitation is somehow included in most theories about climate change. The present study aims to reveal precipitation abnormalcies in Guilan which lead to climate change, and possible deviations of precipitation parameter based on annual, seasonal and monthly series have been evaluated. The Mann-Kendal test has been used to reveal likely deviations leading to climate change. The trend of precipitation changes in long-term has been identifiedusing this method. Also, the beginning and end of these changes have been studied in five stations as representatives of all the thirteen weather stations. Then,the areas which have experienced climate change have been identified using the GIS software along with the severity of the changes with an emphasis on drought. These results can be used in planning and identifying the effects of these changes on the environment. Keywords: Climate Change, Guilan, Mann-Kendal, GIS

  14. The international politics of geoengineering: The feasibility of Plan B for tackling climate change

    PubMed Central

    Corry, Olaf

    2017-01-01

    Geoengineering technologies aim to make large-scale and deliberate interventions in the climate system possible. A typical framing is that researchers are exploring a ‘Plan B’ in case mitigation fails to avert dangerous climate change. Some options are thought to have the potential to alter the politics of climate change dramatically, yet in evaluating whether they might ultimately reduce climate risks, their political and security implications have so far not been given adequate prominence. This article puts forward what it calls the ‘security hazard’ and argues that this could be a crucial factor in determining whether a technology is able, ultimately, to reduce climate risks. Ideas about global governance of geoengineering rely on heroic assumptions about state rationality and a generally pacific international system. Moreover, if in a climate engineered world weather events become something certain states can be made directly responsible for, this may also negatively affect prospects for ‘Plan A’, i.e. an effective global agreement on mitigation. PMID:29386754

  15. Informal Education and Climate Change: An Example From The Miami Science Museum

    NASA Astrophysics Data System (ADS)

    Delaughter, J.

    2007-12-01

    The Miami Science Museum recently took part in the National Conversation on Climate Action, held on October 4, 2007. This nationwide event encouraged members of the general public to explore local climate policy options. It provided an opportunity for citizens to discuss the issues and science of climate change with experts and policy makers, as well as neighbors and friends. During the day, the Miami Science Museum hosted a variety of events with something for everyone. Local school groups played DECIDE games and competed to find the most "treasure" in trash. Members and visitors were encouraged to leave their mark by posting comments and ideas about climate change. A "Gates of Change" exhibit provided dramatic visual indication of the effects of climate change and sea level rise. And a special "Meet the scientists" forum allowed the general public to discuss the facts and fictions of climate change with experts from Miami University's Rosenstiel School of Marine and Atmospheric Science. This activity was part of the Association of Science and Technology Centers' (ASTC) International action on Global Warming (IGLO) program. ASTC is the largest association of public science venues, and has 540 member institutions in 40 countries.

  16. Projected asymmetric response of Adélie penguins to Antarctic climate change

    NASA Astrophysics Data System (ADS)

    Cimino, Megan A.; Lynch, Heather J.; Saba, Vincent S.; Oliver, Matthew J.

    2016-06-01

    The contribution of climate change to shifts in a species’ geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century.

  17. Structural Enhancements to Adapt to Impacts of Climate Change

    DOT National Transportation Integrated Search

    2016-06-01

    With the apparent evolution towards more extreme weather including hurricanes and tropical storms, state transportation agencies are realizing the need for adaptive infrastructure systems that can react and adapt to these events. However, dramatic ch...

  18. Heat Transport Compensation in Atmosphere and Ocean over the Past 22,000 Years

    PubMed Central

    Yang, Haijun; Zhao, Yingying; Liu, Zhengyu; Li, Qing; He, Feng; Zhang, Qiong

    2015-01-01

    The Earth’s climate has experienced dramatic changes over the past 22,000 years; however, the total meridional heat transport (MHT) of the climate system remains stable. A 22,000-year-long simulation using an ocean-atmosphere coupled model shows that the changes in atmosphere and ocean MHT are significant but tend to be out of phase in most regions, mitigating the total MHT change, which helps to maintain the stability of the Earth’s overall climate. A simple conceptual model is used to understand the compensation mechanism. The simple model can reproduce qualitatively the evolution and compensation features of the MHT over the past 22,000 years. We find that the global energy conservation requires the compensation changes in the atmosphere and ocean heat transports. The degree of compensation is mainly determined by the local climate feedback between surface temperature and net radiation flux at the top of the atmosphere. This study suggests that an internal mechanism may exist in the climate system, which might have played a role in constraining the global climate change over the past 22,000 years. PMID:26567710

  19. A climate trend analysis of Sudan

    USGS Publications Warehouse

    Funk, Christopher C.; Eilerts, Gary; Verdin, Jim; Rowland, Jim; Marshall, Michael

    2011-01-01

    Summer rains in western and southern Sudan have declined by 10-20 percent since the mid-1970s. Observed warming of more than 1 degree Celsius is equivalent to another 10-20 percent reduction in rainfall for crops. The warming and drying have impacted southern Darfur and areas around Juba. Rainfall declines west of Juba threaten southern Sudan's future food production prospects. In many cases, areas with changing climate are coincident with zones of substantial conflict, suggesting some degree of association; however, the contribution of climate change to these conflicts is not currently understood. Rapid population growth and the expansion of farming and pastoralism under a more variable climate regime could dramatically increase the number of at-risk people in Sudan over the next 20 years.

  20. A view of Antarctic ice-sheet evolution from sea-level and deep-sea Isotope Changes During the Late Cretaceous-Cenozoic

    USGS Publications Warehouse

    Miller, K.G.; Wright, J.D.; Katz, M.E.; Browning, J.V.; Cramer, B.S.; Wade, B.S.; Mizintseva, S.F.

    2007-01-01

    18O increase. This large ice sheet became a driver of climate change, not just a response to it, causing increased latitudinal thermal gradients and a spinning up of the oceans that, in turn, caused a dramatic reorganization of ocean circulation and chemistry.

  1. Seasonal and elevational variation of δ18O and δ2H in the Willamette River basin

    EPA Science Inventory

    Climate change is expected to dramatically alter the timing and quantity of water within the nation’s river systems. These changes are driven by variation in the form, location and amount of precipitation that will affect the temporal and spatial distribution of river source wat...

  2. The ice record of greenhouse gases: a view in the context of future changes

    NASA Astrophysics Data System (ADS)

    Raynaud, D.; Barnola, J.-M.; Chappellaz, J.; Blunier, T.; Indermühle, A.; Stauffer, B.

    2000-01-01

    Analysis of air trapped in polar ice provides the most direct information on the natural variability of Greenhouse Trace Gases (GTG). It gives the context for the dramatic change in their atmospheric concentrations induced by anthropogenic activities over the last 200 yr, leading to present-day levels which have been unprecedented over the last 400,000 yr. The GTG ice record also provides insight into the processes generally involved in the interplay between these trace gases and the climate and in particular those which are likely to take place in the next centuries in terms of climate changes and climate feedbacks on ecosystems. The paper gives selected examples of the GTG record, taken during different climatic periods in the past, and illustrating what we can learn in terms of processes.

  3. Considerations of Socio-Economic and Global Change Effects on Eurasian Steppes Ecosystem and Land-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Chuluun, T.; Temirbekov, S. S.; Mahowald, N.; Hicke, J.

    2004-12-01

    Dramatic changes occurred in pastoral systems of Eurasia ranging from Mongolia, China and Central Asia for the past decades. Recently, evaluation of the pastoral systems has been conducted in the region. Pastoral systems, where humans depend on livestock, exist largely in arid or semi-arid ecosystems where climate is highly variable. Interaction between ecosystems and nomadic land use systems co-shaped them in mutual adaptive ways for hundreds of years, thus making both the Mongolian rangeland ecosystem and nomadic pastoral system resilient and sustainable. Current changes in environmental conditions are affecting land-atmosphere interactions. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which affect regional climate. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. This set of drivers is orthogonal to the above described climate drivers. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces.

  4. The impacts of climate change on the annual cycles of birds

    PubMed Central

    Carey, Cynthia

    2009-01-01

    Organisms living today are descended from ancestors that experienced considerable climate change in the past. However, they are currently presented with many new, man-made challenges, including rapid climate change. Migration and reproduction of many avian species are controlled by endogenous mechanisms that have been under intense selection over time to ensure that arrival to and departure from breeding grounds is synchronized with moderate temperatures, peak food availability and availability of nesting sites. The timing of egg laying is determined, usually by both endogenous clocks and local factors, so that food availability is near optimal for raising young. Climate change is causing mismatches in food supplies, snow cover and other factors that could severely impact successful migration and reproduction of avian populations unless they are able to adjust to new conditions. Resident (non-migratory) birds also face challenges if precipitation and/or temperature patterns vary in ways that result in mismatches of food and breeding. Predictions that many existing climates will disappear and novel climates will appear in the future suggest that communities will be dramatically restructured by extinctions and changes in range distributions. Species that persist into future climates may be able to do so in part owing to the genetic heritage passed down from ancestors who survived climate changes in the past. PMID:19833644

  5. Climate Change in the Arctic, Moving from Acceptance to Adaptation (Invited)

    NASA Astrophysics Data System (ADS)

    Hinzman, L. D.

    2009-12-01

    In Alaska, we no longer discuss climate change using words such as “possible” or “potential”. It has arrived. There is ample evidence of impacts from a changing climate in Alaska, primarily due to the predominance of snow, ice and permafrost. The presence or absence of frozen ground or water will dominate the local ecology, hydrology, physical characteristics and surface energy balance. As the soil or ice progresses through thawing, threshold changes occur that may initiate a cascade of events resulting in substantial changes to the regional character. If one examines any individual scientific discipline, evidence of climate change in arctic regions offers only pieces of the puzzle. This presentation will include a broad array of evidence to provide a convincing case of change in the arctic climate and a system-wide response of terrestrial processes. The thermal regime of the Arctic holds unique characteristics and consequently will display marked changes in response to climate warming. In many cases, threshold changes will occur in physical systems proceeding from permanently frozen to periodically thawed. Dramatic changes also accompany biological systems adapting to an evolving environment. It is expected that the effects and consequences of a warming climate will become even more evident within the next 10 to 50 years so our society must now consider actions related to adaptation and preparation for change.

  6. Health and Climate Impacts of Rural Residential Energy Transition in China

    NASA Astrophysics Data System (ADS)

    Tao, Shu; Ru, Muye; Du, Wei; Zhu, Xi; Zhong, Qirui

    2017-04-01

    Over the last two to three decades, energy mix in rural China transit dramatically owing to rapid socioeconomic development. It is expected that such transition can result in changes in emissions of climate forcing components and air pollutants, consequently environmental and climate impacts. Such impacts were quantified by a nationwide survey on rural residential energy consumption, compilation of a series of emission inventories, modeling of atmospheric transport of pollutants, assessment on health risk induced by exposure to ambient air pollutants, and evaluation on rural residential emission originated climate forcing components. Co-benefit of the transition on both health and climate is demonstrated.

  7. The Roles of Dispersal, Fecundity, and Predation in the Population Persistence of an Oak (Quercus engelmannii) under Global Change

    PubMed Central

    Conlisk, Erin; Lawson, Dawn; Syphard, Alexandra D.; Franklin, Janet; Flint, Lorraine; Flint, Alan; Regan, Helen M.

    2012-01-01

    A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species - Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors – climate change, land use change, and altered fire frequency – emphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations. PMID:22623955

  8. Infectious Diseases, Urbanization and Climate Change: Challenges in Future China.

    PubMed

    Tong, Michael Xiaoliang; Hansen, Alana; Hanson-Easey, Scott; Cameron, Scott; Xiang, Jianjun; Liu, Qiyong; Sun, Yehuan; Weinstein, Philip; Han, Gil-Soo; Williams, Craig; Bi, Peng

    2015-09-07

    China is one of the largest countries in the world with nearly 20% of the world's population. There have been significant improvements in economy, education and technology over the last three decades. Due to substantial investments from all levels of government, the public health system in China has been improved since the 2003 severe acute respiratory syndrome (SARS) outbreak. However, infectious diseases still remain a major population health issue and this may be exacerbated by rapid urbanization and unprecedented impacts of climate change. This commentary aims to explore China's current capacity to manage infectious diseases which impair population health. It discusses the existing disease surveillance system and underscores the critical importance of strengthening the system. It also explores how the growing migrant population, dramatic changes in the natural landscape following rapid urbanization, and changing climatic conditions can contribute to the emergence and re-emergence of infectious disease. Continuing research on infectious diseases, urbanization and climate change may inform the country's capacity to deal with emerging and re-emerging infectious diseases in the future.

  9. Does Polar Research Matter? (Invited)

    NASA Astrophysics Data System (ADS)

    Holmes, R.

    2009-12-01

    Climate change is one of the most serious challenges facing humanity. The polar regions are being disproportionately impacted, particularly in the Arctic where warming is greatly amplified. Moreover, there are strong feedbacks from the polar regions to the global climate system and sea level, so changes at the poles have global ramifications. Not surprisingly, polar research is often justified because of its relevance to global climate change. In spite of this, where are the “solutions” in the polar regions? For example, a scientist interested in climate change who studies tropical forests can work toward preserving the forests since deforestation is one of the main contributors to anthropogenic climate change. Are there similar direct solutions in polar regions? I will suggest that the answer is no, since the human controlled causes of climate change take place far removed from the poles. On the other hand, polar research has been absolutely essential for educating the public about climate change: the combination of important science and dramatic stories and images have captured the public’s attention more than for science originating in other regions. I will draw examples from several IPY projects that reached a broad public audience, and suggest that public education and outreach is the most important thing polar scientists can do to “make a difference” with respect to solving the climate crisis because environmental literacy (and an educated electorate) has been the factor that has most limited progress.

  10. The place of drama in science

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Lewandowsky, S.

    2016-12-01

    Title: The place of drama in scienceAbstract: Many climate scientists have been reluctant to speak strongly about climate change for fear of being viewed as alarmist or dramatic. Equating drama with bias and lack of objectivity, some consider that there is "no place for drama in science." Many scientists strive to present their findings in an undramatic manner that will not provoke a strong response in the reader. Several studies have demonstrated that climate scientists have tended to under-estimate and under-state the threat of climate change—what has been labelled "Erring on the Side of Least Drama" (ESLD) (Brysse et al., 2012). ESLD is a bias in science, one that leads us to under-predict outcomes and under-state threats. Downplaying alarming results in order to avoid provoking emotion in others is not objective. Under-predicting the severity of climate change can also be interpreted as an optimistic bias: it suggests that things are not as bad as they might be. A related phenomenon is when climate scientists and researchers in allied disciplines have expressed considerable optimism about unproven `breakthrough' technologies, such as carbon dioxide removal from the atmosphere, and their capacity to yield the net negative emissions that will likely be required to keep global temperature increases within the window agreed at Paris." The changes unfolding in the climate system are already significant, and threaten to become truly dramatic. What is our responsibility in this situation? Scientists should move neither toward nor away from drama, optimism or pessimism, but rather toward full and objective articulation of the entire range of scientific findings. Scientists should encourage the public and policy makers to mitigate the climate crisis, and to this end some optimism may be a legitimate motivating tool, but only insofar as it is evidence-based. Unless we find a way to satisfy those twin requirements, our legacy may be that we failed adequately to warn society of what was about to unfold and what action was required.

  11. Ocean circulation and climate during the past 120,000 years

    NASA Astrophysics Data System (ADS)

    Rahmstorf, Stefan

    2002-09-01

    Oceans cover more than two-thirds of our blue planet. The waters move in a global circulation system, driven by subtle density differences and transporting huge amounts of heat. Ocean circulation is thus an active and highly nonlinear player in the global climate game. Increasingly clear evidence implicates ocean circulation in abrupt and dramatic climate shifts, such as sudden temperature changes in Greenland on the order of 5-10 °C and massive surges of icebergs into the North Atlantic Ocean - events that have occurred repeatedly during the last glacial cycle.

  12. Global situational awareness and early warning of high-consequence climate change.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Carr, Martin J.; Boslough, Mark Bruce Elrick

    2009-08-01

    Global monitoring systems that have high spatial and temporal resolution, with long observational baselines, are needed to provide situational awareness of the Earth's climate system. Continuous monitoring is required for early warning of high-consequence climate change and to help anticipate and minimize the threat. Global climate has changed abruptly in the past and will almost certainly do so again, even in the absence of anthropogenic interference. It is possible that the Earth's climate could change dramatically and suddenly within a few years. An unexpected loss of climate stability would be equivalent to the failure of an engineered system on amore » grand scale, and would affect billions of people by causing agricultural, economic, and environmental collapses that would cascade throughout the world. The probability of such an abrupt change happening in the near future may be small, but it is nonzero. Because the consequences would be catastrophic, we argue that the problem should be treated with science-informed engineering conservatism, which focuses on various ways a system can fail and emphasizes inspection and early detection. Such an approach will require high-fidelity continuous global monitoring, informed by scientific modeling.« less

  13. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    NASA Astrophysics Data System (ADS)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2018-06-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  14. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    NASA Astrophysics Data System (ADS)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2017-07-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  15. Climate change and ecosystem disruption: the health impacts of the North American Rocky Mountain pine beetle infestation.

    PubMed

    Embrey, Sally; Remais, Justin V; Hess, Jeremy

    2012-05-01

    In the United States and Canada, pine forest ecosystems are being dramatically affected by an unprecedented pine beetle infestation attributed to climate change. Both decreased frequency of extremely cold days and warmer winter temperature averages have led to an enphytotic devastating millions of acres of pine forest. The associated ecosystem disruption has the potential to cause significant health impacts from a range of exposures, including increased runoff and water turbidity, forest fires, and loss of ecosystem services. We review direct and indirect health impacts and possible prevention strategies. The pine beetle infestation highlights the need for public health to adopt an ecological, systems-oriented view to anticipate the full range of potential health impacts from climate change and facilitate effective planned adaptation.

  16. Climate Change and Ecosystem Disruption: The Health Impacts of the North American Rocky Mountain Pine Beetle Infestation

    PubMed Central

    Remais, Justin V.; Hess, Jeremy

    2012-01-01

    In the United States and Canada, pine forest ecosystems are being dramatically affected by an unprecedented pine beetle infestation attributed to climate change. Both decreased frequency of extremely cold days and warmer winter temperature averages have led to an enphytotic devastating millions of acres of pine forest. The associated ecosystem disruption has the potential to cause significant health impacts from a range of exposures, including increased runoff and water turbidity, forest fires, and loss of ecosystem services. We review direct and indirect health impacts and possible prevention strategies. The pine beetle infestation highlights the need for public health to adopt an ecological, systems-oriented view to anticipate the full range of potential health impacts from climate change and facilitate effective planned adaptation. PMID:22420788

  17. Countering Climate Confusion in the Classroom: New Methods and Initiatives

    NASA Astrophysics Data System (ADS)

    McCaffrey, M.; Berbeco, M.; Reid, A. H.

    2014-12-01

    Politicians and ideologues blocking climate education through legislative manipulation. Free marketeers promoting the teaching of doubt and controversy to head off regulation. Education standards and curricula that skim over, omit, or misrepresent the causes, effects, risks and possible responses to climate change. Teachers who unknowingly foster confusion by presenting "both sides" of a phony scientific controversy. All of these contribute to dramatic differences in the quality and quantity of climate education received by U.S. students. Most U.S. adults and teens fail basic quizzes on energy and climate basics, in large part, because climate science has never been fully accepted as a vital component of a 21st-century science education. Often skipped or skimmed over, human contributions to climate change are sometimes taught as controversy or through debate, perpetuating a climate of confusion in many classrooms. This paper will review recent history of opposition to climate science education, and explore initial findings from a new survey of science teachers on whether, where and how climate change is being taught. It will highlight emerging effective pedagogical practices identified in McCaffrey's Climate Smart & Energy Wise, including the role of new initiatives such as the Next Generation Science Standards and Green Schools, and detail efforts of the Science League of America in countering denial and doubt so that educators can teach consistently and confidently about climate change.

  18. Climate Change Impacts on North Dakota: Agriculture and Hydrology

    NASA Technical Reports Server (NTRS)

    Kirilenko, Andrei; Zhang, Xiaodong; Lim, Yeo Howe; Teng, William L.

    2011-01-01

    North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed; one of the most dramatic examples of the consequences of this change is the Devils Lake flooding. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for multiple locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing.

  19. Global environmental effects of impact-generated aerosols: Results from a general circulation model

    NASA Technical Reports Server (NTRS)

    Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.

    1989-01-01

    Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to the three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans, not included in the one-dimensional model, substantially mitigates land surface cooling. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stages of cooling than in the one-dimensional model study. GCM-simulated climatic changes in the scenario of asteroid/comet winter are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though of course less severe, climatic changes, according to the GCM. An asteroid or comet impact would not lead to anything approaching complete global freezing, but quite reasonable to assume that impacts would dramatically alter the climate in at least a patchy sense.

  20. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  1. Heinrich Events as an integral part of glacial-interglacial climate dynamics

    NASA Astrophysics Data System (ADS)

    Barker, S.; Knorr, G.; Zhang, X.; Gong, X.; Lohmann, G.; Bazin, L.

    2017-12-01

    Since their discovery in the 1980s Heinrich Events have provided a playground for climate scientists trying to understand the interactions between ice sheets and the ocean. Subsequently it has become clear that these interactions extend to almost all parts of the global climate system, from temperature, winds and rainfall to deep ocean currents and atmospheric CO2. Furthermore it remains unclear as to whether these dramatic events are a cause or consequence (or both) of regional to global perturbations in a range of parameters, including meridional overturning circulation within the Atlantic. Here we will discuss some of these aspects to highlight ongoing and future research related to Heinrich events and abrupt change more generally. We will discuss some of the possible triggers for H-events, including abrupt versus more gradual forcing mechanisms and conversely the potential influence of such events on the wider climate system, including deglacial climate change.

  2. Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration

    USGS Publications Warehouse

    Pinter, N.; Fiedel, S.; Keeley, J.E.

    2011-01-01

    Across North and South America, the final millennia of the Pleistocene saw dramatic changes in climate, vegetation, fauna, fire regime, and other local and regional paleo-environmental characteristics. Rapid climate shifts following the Last Glacial Maximum (LGM) exerted a first-order influence, but abrupt postglacial shifts in vegetation composition, vegetation structure, and fire regime also coincided with human arrival and transformative faunal extinctions in the Americas. We propose a model of post-glacial vegetation change in response to climatic drivers, punctuated by local fire regime shifts in response to megaherbivore-driven fuel changes and anthropogenic ignitions. The abrupt appearance of humans, disappearance of megaherbivores, and resulting changes in New World fire systems were transformative events that should not be dismissed in favor of climate-only interpretations of post-glacial paleo-environmental shifts in the Americas. Fire is a mechanism by which small human populations can have broad impacts, and growing evidence suggests that early anthropogenic influences on regional, even global, paleo-environments should be tested alongside other potential causal mechanisms.

  3. Reassessing Pliocene temperature gradients

    NASA Astrophysics Data System (ADS)

    Tierney, J. E.

    2017-12-01

    With CO2 levels similar to present, the Pliocene Warm Period (PWP) is one of our best analogs for climate change in the near future. Temperature proxy data from the PWP describe dramatically reduced zonal and meridional temperature gradients that have proved difficult to reproduce with climate model simulations. Recently, debate has emerged regarding the interpretation of the proxies used to infer Pliocene temperature gradients; these interpretations affect the magnitude of inferred change and the degree of inconsistency with existing climate model simulations of the PWP. Here, I revisit the issue using Bayesian proxy forward modeling and prediction that propagates known uncertainties in the Mg/Ca, UK'37, and TEX86 proxy systems. These new spatiotemporal predictions are quantitatively compared to PWP simulations to assess probabilistic agreement. Results show generally good agreement between existing Pliocene simulations from the PlioMIP ensemble and SST proxy data, suggesting that exotic changes in the ocean-atmosphere are not needed to explain the Pliocene climate state. Rather, the spatial changes in SST during the Pliocene are largely consistent with elevated CO2 forcing.

  4. Climate Hazard Assessment for Stakeholder Adaptation Planning in New York City

    NASA Technical Reports Server (NTRS)

    Horton, Radley M.; Gornitz, Vivien; Bader, Daniel A.; Ruane, Alex C.; Goldberg, Richard; Rosenzweig, Cynthia

    2011-01-01

    This paper describes a time-sensitive approach to climate change projections, developed as part of New York City's climate change adaptation process, that has provided decision support to stakeholders from 40 agencies, regional planning associations, and private companies. The approach optimizes production of projections given constraints faced by decision makers as they incorporate climate change into long-term planning and policy. New York City stakeholders, who are well-versed in risk management, helped pre-select the climate variables most likely to impact urban infrastructure, and requested a projection range rather than a single 'most likely' outcome. The climate projections approach is transferable to other regions and consistent with broader efforts to provide climate services, including impact, vulnerability, and adaptation information. The approach uses 16 Global Climate Models (GCMs) and three emissions scenarios to calculate monthly change factors based on 30-year average future time slices relative to a 30- year model baseline. Projecting these model mean changes onto observed station data for New York City yields dramatic changes in the frequency of extreme events such as coastal flooding and dangerous heat events. Based on these methods, the current 1-in-10 year coastal flood is projected to occur more than once every 3 years by the end of the century, and heat events are projected to approximately triple in frequency. These frequency changes are of sufficient magnitude to merit consideration in long-term adaptation planning, even though the precise changes in extreme event frequency are highly uncertain

  5. Middle Holocene rapid environmental changes and human adaptation in Greece

    NASA Astrophysics Data System (ADS)

    Lespez, Laurent; Glais, Arthur; Lopez-Saez, José-Antonio; Le Drezen, Yann; Tsirtsoni, Zoï; Davidson, Robert; Biree, Laetitia; Malamidou, Dimitra

    2016-03-01

    Numerous researchers discuss of the collapse of civilizations in response to abrupt climate change in the Mediterranean region. The period between 6500 and 5000 cal yr BP is one of the least studied episodes of rapid climate change at the end of the Late Neolithic. This period is characterized by a dramatic decline in settlement and a cultural break in the Balkans. High-resolution paleoenvironmental proxy data obtained in the Lower Angitis Valley enables an examination of the societal responses to rapid climatic change in Greece. Development of a lasting fluvio-lacustrine environment followed by enhanced fluvial activity is evident from 6000 cal yr BP. Paleoecological data show a succession of dry events at 5800-5700, 5450 and 5000-4900 cal yr BP. These events correspond to incursion of cold air masses to the eastern Mediterranean, confirming the climatic instability of the middle Holocene climate transition. Two periods with farming and pastural activities (6300-5600 and 5100-4700 cal BP) are evident. The intervening period is marked by environmental changes, but the continuous occurrence of anthropogenic taxa suggests the persistence of human activities despite the absence of archaeological evidence. The environmental factors alone were not sufficient to trigger the observed societal changes.

  6. Managing the unexpected in prescribed fire and fire use operations: a workshop on the High Reliability Organization

    Treesearch

    Paul (tech. ed.) Keller

    2004-01-01

    Fire management, and forest and rangeland fuels management, over the past century have altered the wildland fire situation dramatically, thus also altering the institutional approach to how to deal with the changing landscape. Also, climate change, extended drought, increased insect and disease outbreaks, and invasions of exotic plant species have added complications...

  7. Atmospheric and biospheric interactions of gases and energy in the Pacific region of the United States, Mexico, and Brazil

    Treesearch

    Andrzej Bytnerowicz

    1997-01-01

    Anthropogenic activities of the past century have caused a dramatic increase in global air pollution. This process has accelerated in the past few decades, and emissions of carbon dioxide, nitrogen oxides, or chlorofluorocarbons caused serious changes in the earth's climate, e.g., increased temperatures or elevated ultraviolet-B radiation. These changes, together...

  8. Climatic Effects of Regional Nuclear War

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.

    2011-01-01

    We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.

  9. Life history trade-off moderates model predictions of diversity loss from climate change.

    PubMed

    Moor, Helen

    2017-01-01

    Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species' overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence mechanisms may increase community resilience to future climate change and are useful guides for model development.

  10. Climate change and amphibians

    USGS Publications Warehouse

    Corn, P.S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  11. Effects of global climate change on maize volatile production

    USDA-ARS?s Scientific Manuscript database

    Increasing atmospheric CO2 concentrations [CO2] are projected to have critical impacts on precipitation patterns, potentially leading to a dramatic increase in the frequency and duration of drought across the North American Corn Belt and other agriculturally relevant areas around the world (IPCC2007...

  12. 'Changing climate, changing health, changing stories' profile: using an EcoHealth approach to explore impacts of climate change on inuit health.

    PubMed

    Harper, S L; Edge, V L; Cunsolo Willox, A

    2012-03-01

    Global climate change and its impact on public health exemplify the challenge of managing complexity and uncertainty in health research. The Canadian North is currently experiencing dramatic shifts in climate, resulting in environmental changes which impact Inuit livelihoods, cultural practices, and health. For researchers investigating potential climate change impacts on Inuit health, it has become clear that comprehensive and meaningful research outcomes depend on taking a systemic and transdisciplinary approach that engages local citizens in project design, data collection, and analysis. While it is increasingly recognised that using approaches that embrace complexity is a necessity in public health, mobilizing such approaches from theory into practice can be challenging. In 2009, the Rigolet Inuit Community Government in Rigolet, Nunatsiavut, Canada partnered with a transdisciplinary team of researchers, health practitioners, and community storytelling facilitators to create the Changing Climate, Changing Health, Changing Stories project, aimed at developing a multi-media participatory, community-run methodological strategy to gather locally appropriate and meaningful data to explore climate-health relationships. The goal of this profile paper is to describe how an EcoHealth approach guided by principles of transdisciplinarity, community participation, and social equity was used to plan and implement this climate-health research project. An overview of the project, including project development, research methods, project outcomes to date, and challenges encountered, is presented. Though introduced in this one case study, the processes, methods, and lessons learned are broadly applicable to researchers and communities interested in implementing EcoHealth approaches in community-based research.

  13. Human Responses to Climate Variability: The Case of South Africa

    NASA Astrophysics Data System (ADS)

    Oppenheimer, M.; Licker, R.; Mastrorillo, M.; Bohra-Mishra, P.; Estes, L. D.; Cai, R.

    2014-12-01

    Climate variability has been associated with a range of societal and individual outcomes including migration, violent conflict, changes in labor productivity, and health impacts. Some of these may be direct responses to changes in mean temperature or precipitation or extreme events, such as displacement of human populations by tropical cyclones. Others may be mediated by a variety of biological, social, or ecological factors such as migration in response to long-term changes in crops yields. Research is beginning to elucidate and distinguish the many channels through which climate variability may influence human behavior (ranging from the individual to the collective, societal level) in order to better understand how to improve resilience in the face of current variability as well as future climate change. Using a variety of data sets from South Africa, we show how climate variability has influenced internal (within country) migration in recent history. We focus on South Africa as it is a country with high levels of internal migration and dramatic temperature and precipitation changes projected for the 21st century. High poverty rates and significant levels of rain-fed, smallholder agriculture leave large portions of South Africa's population base vulnerable to future climate change. In this study, we utilize two complementary statistical models - one micro-level model, driven by individual and household level survey data, and one macro-level model, driven by national census statistics. In both models, we consider the effect of climate on migration both directly (with gridded climate reanalysis data) and indirectly (with agricultural production statistics). With our historical analyses of climate variability, we gain insights into how the migration decisions of South Africans may be influenced by future climate change. We also offer perspective on the utility of micro and macro level approaches in the study of climate change and human migration.

  14. Novel competitors shape species' responses to climate change.

    PubMed

    Alexander, Jake M; Diez, Jeffrey M; Levine, Jonathan M

    2015-09-24

    Understanding how species respond to climate change is critical for forecasting the future dynamics and distribution of pests, diseases and biological diversity. Although ecologists have long acknowledged species' direct physiological and demographic responses to climate, more recent work suggests that these direct responses can be overwhelmed by indirect effects mediated via other interacting community members. Theory suggests that some of the most dramatic impacts of community change will probably arise through the assembly of novel species combinations after asynchronous migrations with climate. Empirical tests of this prediction are rare, as existing work focuses on the effects of changing interactions between competitors that co-occur today. To explore how species' responses to climate warming depend on how their competitors migrate to track climate, we transplanted alpine plant species and intact plant communities along a climate gradient in the Swiss Alps. Here we show that when alpine plants were transplanted to warmer climates to simulate a migration failure, their performance was strongly reduced by novel competitors that could migrate upwards from lower elevation; these effects generally exceeded the impact of warming on competition with current competitors. In contrast, when we grew the focal plants under their current climate to simulate climate tracking, a shift in the competitive environment to novel high-elevation competitors had little to no effect. This asymmetry in the importance of changing competitor identity at the leading versus trailing range edges is best explained by the degree of functional similarity between current and novel competitors. We conclude that accounting for novel competitive interactions may be essential to predict species' responses to climate change accurately.

  15. Climate change adaptation strategies for resource management and conservation planning.

    PubMed

    Lawler, Joshua J

    2009-04-01

    Recent rapid changes in the Earth's climate have altered ecological systems around the globe. Global warming has been linked to changes in physiology, phenology, species distributions, interspecific interactions, and disturbance regimes. Projected future climate change will undoubtedly result in even more dramatic shifts in the states of many ecosystems. These shifts will provide one of the largest challenges to natural resource managers and conservation planners. Managing natural resources and ecosystems in the face of uncertain climate requires new approaches. Here, the many adaptation strategies that have been proposed for managing natural systems in a changing climate are reviewed. Most of the recommended approaches are general principles and many are tools that managers are already using. What is new is a turning toward a more agile management perspective. To address climate change, managers will need to act over different spatial and temporal scales. The focus of restoration will need to shift from historic species assemblages to potential future ecosystem services. Active adaptive management based on potential future climate impact scenarios will need to be a part of everyday operations. And triage will likely become a critical option. Although many concepts and tools for addressing climate change have been proposed, key pieces of information are still missing. To successfully manage for climate change, a better understanding will be needed of which species and systems will likely be most affected by climate change, how to preserve and enhance the evolutionary capacity of species, how to implement effective adaptive management in new systems, and perhaps most importantly, in which situations and systems will the general adaptation strategies that have been proposed work and how can they be effectively applied.

  16. Ecohydrology of adjacent sagebrush and lodgepole pine ecosystems: the consequences of climate change and disturbance

    USGS Publications Warehouse

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.

    2014-01-01

    Sagebrush steppe and lodgepole pine forests are two of the most widespread vegetation types in the western United States and they play crucial roles in the hydrologic cycle of these water-limited regions. We used a process-based ecosystem water model to characterize the potential impact of climate change and disturbance (wildfire and beetle mortality) on water cycling in adjacent sagebrush and lodgepole pine ecosystems. Despite similar climatic and topographic conditions between these ecosystems at the sites examined, lodgepole pine, and sagebrush exhibited consistent differences in water balance, notably more evaporation and drier summer soils in the sagebrush and greater transpiration and less water yield in lodgepole pine. Canopy disturbances (either fire or beetle) have dramatic impacts on water balance and availability: reducing transpiration while increasing evaporation and water yield. Results suggest that climate change may reduce snowpack, increase evaporation and transpiration, and lengthen the duration of dry soil conditions in the summer, but may have uncertain effects on drainage. Changes in the distribution of sagebrush and lodgepole pine ecosystems as a consequence of climate change and/or altered disturbance regimes will likely alter ecosystem water balance.

  17. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Fedorov, Vadim B.; Goropashnaya, Anna V.; Talbot, Sandra; Cook, Joseph A.

    2011-01-01

    Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.

  18. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Fedorov, V.B.; Goropashnaya, A.V.; Talbot, Sandra; Cook, Joseph A.

    2014-01-01

    Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.

  19. Linking climate change projections for an Alaskan watershed to future coho salmon production.

    PubMed

    Leppi, Jason C; Rinella, Daniel J; Wilson, Ryan R; Loya, Wendy M

    2014-06-01

    Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three-dimensional hydrology model, we simulated coho smolt production over a 20-year span at the end of the century (2080-2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg-to-fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate-change-related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  20. Infectious Diseases, Urbanization and Climate Change: Challenges in Future China

    PubMed Central

    Tong, Michael Xiaoliang; Hansen, Alana; Hanson-Easey, Scott; Cameron, Scott; Xiang, Jianjun; Liu, Qiyong; Sun, Yehuan; Weinstein, Philip; Han, Gil-Soo; Williams, Craig; Bi, Peng

    2015-01-01

    China is one of the largest countries in the world with nearly 20% of the world’s population. There have been significant improvements in economy, education and technology over the last three decades. Due to substantial investments from all levels of government, the public health system in China has been improved since the 2003 severe acute respiratory syndrome (SARS) outbreak. However, infectious diseases still remain a major population health issue and this may be exacerbated by rapid urbanization and unprecedented impacts of climate change. This commentary aims to explore China’s current capacity to manage infectious diseases which impair population health. It discusses the existing disease surveillance system and underscores the critical importance of strengthening the system. It also explores how the growing migrant population, dramatic changes in the natural landscape following rapid urbanization, and changing climatic conditions can contribute to the emergence and re-emergence of infectious disease. Continuing research on infectious diseases, urbanization and climate change may inform the country’s capacity to deal with emerging and re-emerging infectious diseases in the future. PMID:26371017

  1. Morphological evolution, ecological diversification and climate change in rodents.

    PubMed

    Renaud, Sabrina; Michaux, Jacques; Schmidt, Daniela N; Aguilar, Jean-Pierre; Mein, Pierre; Auffray, Jean-Christophe

    2005-03-22

    Among rodents, the lineage from Progonomys hispanicus to Stephanomys documents a case of increasing size and dental specialization during an approximately 9 Myr time-interval. On the contrary, some contemporaneous generalist lineages like Apodemus show a limited morphological evolution. Dental shape can be related to diet and can be used to assess the ecological changes along the lineages. Consequently, size and shape of the first upper molar were measured in order to quantify the patterns of morphological evolution along both lineages and compare them to environmental trends. Climatic changes do not have a direct influence on evolution, but they open new ecological opportunities by changing vegetation and allow the evolution of a specialist like Stephanomys. On the other hand, environmental changes are not dramatic enough to destroy the habitat of a long-term generalist like Apodemus. Hence, our results exemplify a case of an influence of climate on the evolution of specialist species, although a generalist species may persist without change.

  2. Morphological evolution, ecological diversification and climate change in rodents

    PubMed Central

    Renaud, Sabrina; Michaux, Jacques; Schmidt, Daniela N; Aguilar, Jean-Pierre; Mein, Pierre; Auffray, Jean-Christophe

    2005-01-01

    Among rodents, the lineage from Progonomys hispanicus to Stephanomys documents a case of increasing size and dental specialization during an approximately 9 Myr time-interval. On the contrary, some contemporaneous generalist lineages like Apodemus show a limited morphological evolution. Dental shape can be related to diet and can be used to assess the ecological changes along the lineages. Consequently, size and shape of the first upper molar were measured in order to quantify the patterns of morphological evolution along both lineages and compare them to environmental trends. Climatic changes do not have a direct influence on evolution, but they open new ecological opportunities by changing vegetation and allow the evolution of a specialist like Stephanomys. On the other hand, environmental changes are not dramatic enough to destroy the habitat of a long-term generalist like Apodemus. Hence, our results exemplify a case of an influence of climate on the evolution of specialist species, although a generalist species may persist without change. PMID:15817435

  3. Integrative assessment of climate change for fast-growing urban areas: Measurement and recommendations for future research

    PubMed Central

    Haase, Dagmar; Volk, Martin

    2017-01-01

    Over the 20th century, urbanization has substantially shaped the surface of Earth. With population rapidly shifting from rural locations towards the cities, urban areas have dramatically expanded on a global scale and represent crystallization points of social, cultural and economic assets and activities. This trend is estimated to persist for the next decades, and particularly the developing countries are expected to face rapid urban growth. The management of this growth will require good governance strategies and planning. By threatening the livelihoods, assets and health as foundations of human activities, another major global change contributor, climate change, became an equally important concern of stakeholders. Based on the climate trends observed over the 20th century, and a spatially explicit model of urbanization, this paper investigates the impacts of climate change in relation to different stages of development of urban areas, thus evolving a more integrated perspective on both processes. As a result, an integrative measure of climate change trends and impacts is proposed and estimated for urban areas worldwide. We show that those areas facing major urban growth are to a large extent also hotspots of climate change. Since most of these hotspots are located in the Global South, we emphasize the need for stakeholders to co-manage both drivers of global change. The presented integrative perspective is seen as a starting point to foster such co-management, and furthermore as a means to facilitate communication and knowledge exchange on climate change impacts. PMID:29232695

  4. Integrative assessment of climate change for fast-growing urban areas: Measurement and recommendations for future research.

    PubMed

    Scheuer, Sebastian; Haase, Dagmar; Volk, Martin

    2017-01-01

    Over the 20th century, urbanization has substantially shaped the surface of Earth. With population rapidly shifting from rural locations towards the cities, urban areas have dramatically expanded on a global scale and represent crystallization points of social, cultural and economic assets and activities. This trend is estimated to persist for the next decades, and particularly the developing countries are expected to face rapid urban growth. The management of this growth will require good governance strategies and planning. By threatening the livelihoods, assets and health as foundations of human activities, another major global change contributor, climate change, became an equally important concern of stakeholders. Based on the climate trends observed over the 20th century, and a spatially explicit model of urbanization, this paper investigates the impacts of climate change in relation to different stages of development of urban areas, thus evolving a more integrated perspective on both processes. As a result, an integrative measure of climate change trends and impacts is proposed and estimated for urban areas worldwide. We show that those areas facing major urban growth are to a large extent also hotspots of climate change. Since most of these hotspots are located in the Global South, we emphasize the need for stakeholders to co-manage both drivers of global change. The presented integrative perspective is seen as a starting point to foster such co-management, and furthermore as a means to facilitate communication and knowledge exchange on climate change impacts.

  5. Recent climate and air pollution impacts on Indian agriculture.

    PubMed

    Burney, Jennifer; Ramanathan, V

    2014-11-18

    Recent research on the agricultural impacts of climate change has primarily focused on the roles of temperature and precipitation. These studies show that India has already been negatively affected by recent climate trends. However, anthropogenic climate changes are a result of both global emissions of long-lived greenhouse gases (LLGHGs) and other short-lived climate pollutants (SLCPs). Two potent SLCPs, tropospheric ozone and black carbon, have direct effects on crop yields beyond their indirect effects through climate; emissions of black carbon and ozone precursors have risen dramatically in India over the past three decades. Here, to our knowledge for the first time, we present results of the combined effects of climate change and the direct effects of SLCPs on wheat and rice yields in India from 1980 to 2010. Our statistical model suggests that, averaged over India, yields in 2010 were up to 36% lower for wheat than they otherwise would have been, absent climate and pollutant emissions trends, with some densely populated states experiencing 50% relative yield losses. [Our point estimates for rice (-20%) are similarly large, but not statistically significant.] Upper-bound estimates suggest that an overwhelming fraction (90%) of these losses is due to the direct effects of SLCPs. Gains from addressing regional air pollution could thus counter expected future yield losses resulting from direct climate change effects of LLGHGs.

  6. Recent climate and air pollution impacts on Indian agriculture

    PubMed Central

    Burney, Jennifer; Ramanathan, V.

    2014-01-01

    Recent research on the agricultural impacts of climate change has primarily focused on the roles of temperature and precipitation. These studies show that India has already been negatively affected by recent climate trends. However, anthropogenic climate changes are a result of both global emissions of long-lived greenhouse gases (LLGHGs) and other short-lived climate pollutants (SLCPs). Two potent SLCPs, tropospheric ozone and black carbon, have direct effects on crop yields beyond their indirect effects through climate; emissions of black carbon and ozone precursors have risen dramatically in India over the past three decades. Here, to our knowledge for the first time, we present results of the combined effects of climate change and the direct effects of SLCPs on wheat and rice yields in India from 1980 to 2010. Our statistical model suggests that, averaged over India, yields in 2010 were up to 36% lower for wheat than they otherwise would have been, absent climate and pollutant emissions trends, with some densely populated states experiencing 50% relative yield losses. [Our point estimates for rice (−20%) are similarly large, but not statistically significant.] Upper-bound estimates suggest that an overwhelming fraction (90%) of these losses is due to the direct effects of SLCPs. Gains from addressing regional air pollution could thus counter expected future yield losses resulting from direct climate change effects of LLGHGs. PMID:25368149

  7. Influence of shelterbelts on organic matter of chernozems in the light of global climate change

    USDA-ARS?s Scientific Manuscript database

    Achieving the ambitious cellulosic biofuel production goals currently in place in the United States will require a dramatic increase in cellulosic feedstock supply. One strategy to meet this need is to utilize perennial species including short-rotation woody species on marginal agricultural lands. F...

  8. MORPHOGENESIS OF DOUGLAS-FIR BUDS IN ALTERED AT ELEVATED TEMPERATURE BUT NOT AT ELEVATED CO21

    EPA Science Inventory

    Global climatic change as expressed by increased CO2 and temperature has the potential for dramatic effects on trees. To determine what its effects may be on Pacific Northwest forests, Douglas-fir (Pseudotsuga menziesii) seedlings were grown in sun-lit controlled environment cham...

  9. Remote Sensing of Climate-Driven Range Shifts of Vegetation across North American Mountain Ranges

    NASA Astrophysics Data System (ADS)

    Kendrick, J. A.; Sax, D. F.; Kellner, J. R.

    2015-12-01

    Global climate change is driving shifts in local environmental conditions, and many organisms are projected to become poorly adapted to their current ranges. Some species may respond by gradually shifting their range limits to track environmental change. This adaptation strategy is expected to be most feasible in regions with sharp climatic gradients, such as mountain ranges. However, the extent to which this process is taking place is poorly understood, and some evidence suggests that shifts upwards in elevation might be more difficult than expected. Direct empirical evidence of range shifts in response to recent climate change could inform models and conservation strategies. Here we used Monte Carlo spectral unmixing of Landsat surface reflectance data to characterize changes in vegetation cover across major North American mountain ranges over the past 30 years. This approach allows us to observe changes in photosynthetic and nonphotosynthetic vegetation as well as absolute change in vegetation cover. We found evidence of a gradual increase in total vegetation cover at increasing elevations, but this pattern varied in its strength both within and among mountain ranges. We also observed more dramatic changes in vegetation type which differed strongly between regions with different climates. Our analysis shows that upslope range shift is a possible climate response in many cases, but that this process does not occur uniformly.

  10. Changing times, changing stories: Generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    USGS Publications Warehouse

    Herman-Mercer, Nicole M.; Matkin, Elli; Laituri, Melinda J.; Toohey, Ryan C; Massey, Maggie; Elder, Kelly; Schuster, Paul F.; Mutter, Edda A.

    2016-01-01

    Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1) intergenerational observations of change were common among interview participants in all four communities, (2) older generations observed more overall change than younger generations interviewed by us, and (3) how change was perceived varied between generations. We defined “observations” as the specific examples of environmental and weather change that were described, whereas “perceptions” referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.

  11. Impacts of climate change and establishing a vegetation cover on water erosion of contaminated spoils for two contrasting United Kingdom regional climates: a case study approach.

    PubMed

    De Munck, Cécile S; Hutchings, Tony R; Moffat, Andy J

    2008-10-01

    This study examines how pollutant linkage of contaminants will be influenced by predicted changes in precipitation and subsequent rainfall erosion of soils and spoils in the United Kingdom during the 21st century. Two contrasting regional climates were used in conjunction with 2 extreme emissions scenarios (low and high greenhouse gas emissions) to run the Revised Universal Soil Loss Equation 2 (RUSLE2) model for a case study that represents a high risk of pollutant linkage through water erosion. Results for the 2 scenarios and the 2 regions showed a significant and gradual increase in erosion rates with time as a consequence of climate change, by up to 32% for the southwest and 6.6% for the southeast regions by the 2080s. Revegetation of the site showed a dramatic reduction in predicted future amounts of sediment production and subsequent contaminant movement, well below existing levels. Limitations and future improvements of the methodology are discussed.

  12. Vertical climatic belts in the Tatra Mountains in the light of current climate change

    NASA Astrophysics Data System (ADS)

    Łupikasza, Ewa; Szypuła, Bartłomiej

    2018-04-01

    The paper discusses temporal changes in the configuration of vertical climatic belts in the Tatra Mountains as a result of current climate change. Meteorological stations are scarce in the Tatra Mountains; therefore, we modelled decadal air temperatures using existing data from 20 meteorological stations and the relationship between air temperature and altitude. Air temperature was modelled separately for northern and southern slopes and for convex and concave landforms. Decadal air temperatures were additionally used to delineate five climatic belts previously distinguished by Hess on the basis of threshold values of annual air temperature. The spatial extent and location of the borderline isotherms of 6, 4, 2, 0, and - 2 °C for four decades, including 1951-1960, 1981-1990, 1991-2000, and 2001-2010, were compared. Significant warming in the Tatra Mountains, uniform in the vertical profile, started at the beginning of the 1980s and led to clear changes in the extent and location of the vertical climatic belts delineated on the basis of annual air temperature. The uphill shift of the borderline isotherms was more prominent on southern than on northern slopes. The highest rate of changes in the extent of the climatic belts was found above the isotherm of 0 °C (moderately cold and cold belts). The cold belt dramatically diminished in extent over the research period.

  13. Predicting impacts of climate change on habitat connectivity of Kalopanax septemlobus in South Korea

    NASA Astrophysics Data System (ADS)

    Kang, Wanmo; Minor, Emily S.; Lee, Dowon; Park, Chan-Ryul

    2016-02-01

    Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.

  14. Post-glacial Paleo-oceanographic and Paleo-climatic Conditions and Linkages Along the West Coast of Canada

    NASA Astrophysics Data System (ADS)

    Dallimore, A.; Enkin, R. J.; McKechnie, I.

    2006-12-01

    Along the west coast of Canada, our continuing studies of annually laminated marine sediments in anoxic fjords illustrate the changing environment as glaciers retreated from this area about 12 ka y BP. New data from mid-coastal British Columbia expands our knowledge of the interplay between climate and ocean dynamics in the northeastern Pacific Ocean, and defines the evolution of modern climate conditions as ice receded from the coast, followed by the establishment of modern oceanographic and climatic conditions about 6,000 ky BP. The Late Pleistocene and Holocene record also marks dramatic changes in sea level, climate, coastal oceanographic dynamics and glacial sedimentary source and transport, with implications for the possibility of early human migration routes and glacial refugia. Changes in pre-historical aboriginal settlement sites and food sources also give indications of a dynamic Holocene land and seascape as modern conditions became established. Excellent chronological control is provided by complementary yet independent dating methods including radiocarbon dates on both plants and shells, identification of the Mazama Ash, varve counting and paleomagnetic/paleosecular variation correlations.

  15. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology

    NASA Astrophysics Data System (ADS)

    Lei, Yanbin; Yao, Tandong; Yang, Kun; Sheng, Yongwei; Kleinherenbrink, Marcel; Yi, Shuang; Bird, Broxton W.; Zhang, Xiaowen; Zhu, La; Zhang, Guoqing

    2017-01-01

    The recent growth and deepening of inland lakes in the Tibetan Plateau (TP) may be a salient indicator of the consequences of climate change. The seasonal dynamics of these lakes is poorly understood despite this being potentially crucial for disentangling contributions from glacier melt and precipitation, which are all sensitive to climate, to lake water budget. Using in situ observations, satellite altimetry and gravimetry data, we identified two patterns of lake level seasonality. In the central, northern, and northeastern TP, lake levels are characterized by considerable increases during warm seasons and decreases during cold seasons, which is consistent with regional mass changes related to monsoon precipitation and evaporation. In the northwestern TP, however, lake levels exhibit dramatic increases during both warm and cold seasons, which deviate from regional mass changes. This appears to be more connected with high spring snowfall and large summer glacier melt. The variable lake level response to different drivers indicates heterogeneous sensitivity to climate change between the northwestern TP and other regions.

  16. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Doyle, Thomas W.; Enwright, Nicholas

    2013-01-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.

  17. Vulnerability of two European lakes in response to future climatic changes

    NASA Astrophysics Data System (ADS)

    Danis, Pierre-Alain; von Grafenstein, Ulrich; Masson-Delmotte, Valérie; Planton, S.; Gerdeaux, D.; Moisselin, J.-M.

    2004-11-01

    Temperate deep freshwater lakes are important resources of drinking water and fishing, and regional key recreation areas. Their deep water often hosts highly specialised fauna surviving since glacial times. Theoretical and observational studies suggest a vulnerability of these hydro-ecosystems to reduced mixing and ventilation within the ongoing climatic change. Here we use a numerical thermal lake model, verified over the 20th century, to quantify the transient thermal behaviour of two European lakes in response to the observed 20th-century and predicted 21th-century climate changes. In contrast to Lac d'Annecy (France) which, after adaptation, maintains its modern mixing behaviour, Ammersee (Germany) is expected to undergo a dramatic and persistent lack of mixing starting from ~2020, when European air temperatures should be ~1°C warmer. The resulting lack of oxygenation will irreversibly destroy the deepwater fauna prevailing since 15 kyrs.

  18. Elevation-induced climate change as a dominant factor causing the late Miocene C(4) plant expansion in the Himalayan foreland.

    PubMed

    Wu, Haibin; Guo, Zhengtang; Guiot, Joël; Hatté, Christine; Peng, Changhui; Yu, Yanyan; Ge, Junyi; Li, Qin; Sun, Aizhi; Zhao, Deai

    2014-05-01

    During the late Miocene, a dramatic global expansion of C4 plant distribution occurred with broad spatial and temporal variations. Although the event is well documented, whether subsequent expansions were caused by a decreased atmospheric CO2 concentration or climate change is a contentious issue. In this study, we used an improved inverse vegetation modeling approach that accounts for the physiological responses of C3 and C4 plants to quantitatively reconstruct the paleoclimate in the Siwalik of Nepal based on pollen and carbon isotope data. We also studied the sensitivity of the C3 and C4 plants to changes in the climate and the atmospheric CO2 concentration. We suggest that the expansion of the C4 plant distribution during the late Miocene may have been primarily triggered by regional aridification and temperature increases. The expansion was unlikely caused by reduced CO2 levels alone. Our findings suggest that this abrupt ecological shift mainly resulted from climate changes related to the decreased elevation of the Himalayan foreland. © 2013 John Wiley & Sons Ltd.

  19. Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration

    NASA Astrophysics Data System (ADS)

    Pinter, Nicholas; Fiedel, Stuart; Keeley, Jon E.

    2011-02-01

    Across North and South America, the final millennia of the Pleistocene saw dramatic changes in climate, vegetation, fauna, fire regime, and other local and regional paleo-environmental characteristics. Rapid climate shifts following the Last Glacial Maximum (LGM) exerted a first-order influence, but abrupt post-glacial shifts in vegetation composition, vegetation structure, and fire regime also coincided with human arrival and transformative faunal extinctions in the Americas. We propose a model of post-glacial vegetation change in response to climatic drivers, punctuated by local fire regime shifts in response to megaherbivore-driven fuel changes and anthropogenic ignitions. The abrupt appearance of humans, disappearance of megaherbivores, and resulting changes in New World fire systems were transformative events that should not be dismissed in favor of climate-only interpretations of post-glacial paleo-environmental shifts in the Americas. Fire is a mechanism by which small human populations can have broad impacts, and growing evidence suggests that early anthropogenic influences on regional, even global, paleo-environments should be tested alongside other potential causal mechanisms.

  20. Useful and Usable Climate Science: Frameworks for Bridging the Social and Physical domains.

    NASA Astrophysics Data System (ADS)

    Buja, L.

    2016-12-01

    Society is transforming the Earth's system in unprecedented ways, often with significant variations across space and time. In turn, the impacts of climate change on the human system vary dramatically due to differences in cultural, socioeconomic, institutional, and physical processes at the local level. The Climate Science and Applications Program (CSAP) at the National Center for Atmospheric Research in Boulder Colorado addresses societal vulnerability, impacts and adaptation to climate change through the development of frameworks and methods for analyzing current and future vulnerability, and integrated analyses of climate impacts and adaptation at local, regional and global scales. CSAP relies heavily on GIS-based scientific data and knowledge systems to bridge social and physical science approaches in its five focus areas: Governance of inter-linked natural and managed resource systems. The role of urban areas in driving emissions of climate change Weather, climate and global human health, GIS-based science data & knowledge systems. Regional Climate Science and Services for Adaptation Advanced methodologies and frameworks for assessing current and future risks to environmental hazards through the integration of physical and social science models, research results, and remote sensing data are presented in the context of recent national and international projects on climate change and food/water security, urban carbon emissions, metropolitan extreme heat and global health. In addition, innovative CSAP international capacity building programs teaching interdisciplinary approaches for using geospatial technologies to integrate multi-scale spatial information of weather, climate change into important sectors such as disaster reduction, agriculture, tourism and society for decision-making are discussed.

  1. A walk on the tundra: Host-parasite interactions in an extreme environment.

    PubMed

    Kutz, Susan J; Hoberg, Eric P; Molnár, Péter K; Dobson, Andy; Verocai, Guilherme G

    2014-08-01

    Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host-parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host-parasite interactions elsewhere. We specifically examine the impacts of climate change on host-parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host-parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems.

  2. A walk on the tundra: Host–parasite interactions in an extreme environment

    PubMed Central

    Kutz, Susan J.; Hoberg, Eric P.; Molnár, Péter K.; Dobson, Andy; Verocai, Guilherme G.

    2014-01-01

    Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host–parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host–parasite interactions elsewhere. We specifically examine the impacts of climate change on host–parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host–parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems. PMID:25180164

  3. Future frequencies of extreme weather events in the National Wildlife Refuges of the conterminous U.S.

    USGS Publications Warehouse

    Martinuzzi, Sebastian; Allstadt, Andrew J.; Bateman, Brooke L.; Heglund, Patricia J.; Pidgeon, Anna M.; Thogmartin, Wayne E.; Vavrus, Stephen J.; Radeloff, Volker C.

    2016-01-01

    Climate change is a major challenge for managers of protected areas world-wide, and managers need information about future climate conditions within protected areas. Prior studies of climate change effects in protected areas have largely focused on average climatic conditions. However, extreme weather may have stronger effects on wildlife populations and habitats than changes in averages. Our goal was to quantify future changes in the frequency of extreme heat, drought, and false springs, during the avian breeding season, in 415 National Wildlife Refuges in the conterminous United States. We analyzed spatially detailed data on extreme weather frequencies during the historical period (1950–2005) and under different scenarios of future climate change by mid- and late-21st century. We found that all wildlife refuges will likely experience substantial changes in the frequencies of extreme weather, but the types of projected changes differed among refuges. Extreme heat is projected to increase dramatically in all wildlife refuges, whereas changes in droughts and false springs are projected to increase or decrease on a regional basis. Half of all wildlife refuges are projected to see increases in frequency (> 20% higher than the current rate) in at least two types of weather extremes by mid-century. Wildlife refuges in the Southwest and Pacific Southwest are projected to exhibit the fastest rates of change, and may deserve extra attention. Climate change adaptation strategies in protected areas, such as the U.S. wildlife refuges, may need to seriously consider future changes in extreme weather, including the considerable spatial variation of these changes.

  4. Learning Sustainability by Developing a Solar Dryer for Microalgae Retrieval

    ERIC Educational Resources Information Center

    Malheiro, Benedita; Ribeiro, Cristina; Silva, Manuel F.; Caetano, Nídia; Paulo Ferreira,; Guedes, Pedro

    2015-01-01

    The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather…

  5. FOLLOW-UP ANALYSIS OF MADISON JUNIOR HIGH SCHOOL.

    ERIC Educational Resources Information Center

    CLAYTON, THOMAS E.; AND OTHERS

    OVER A PERIOD OF 2 YEARS, A DRAMATIC TRANSFORMATION HAS OCCURRED IN THE LEARNING CLIMATE OF THE SCHOOL. THE TENSION AND HOSTILITY, PRESENT IN MANY OF THE CLASSES OBSERVED IN 1961, HAVE LARGELY DISAPPEARED. WITH A MINIMUM OF STRUCTURAL CHANGES, THE PHYSICAL FACILITIES HAVE BEEN GREATLY IMPROVED. BRIGHT COLORS, LARGE BULLETIN BOARDS, AND DISPLAYS OF…

  6. Tropical forests and the changing earth system.

    PubMed

    Lewis, Simon L

    2006-01-29

    Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.

  7. Ozone depletion, greenhouse gases, and climate change

    NASA Technical Reports Server (NTRS)

    Mooney, Harold A.; Baker, D. James, Jr.; Bretherton, Francis P.; Burke, Kevin C.; Clark, William C.; Davis, Margaret B.; Dickinson, Robert E.; Imbrie, John; Malone, Thomas F.; Mcelroy, Michael B.

    1989-01-01

    This symposium was organized to study the unusual convergence of a number of observations, both short and long term that defy an integrated explanation. Of particular importance are surface temperature observations and observations of upper atmospheric temperatures, which have declined significantly in parts of the stratosphere. There has also been a dramatic decline in ozone concentration over Antarctica that was not predicted. Significant changes in precipitation that seem to be latitude dependent have occurred. There has been a threefold increase in methane in the last 100 years; this is a problem because a source does not appear to exist for methane of the right isotopic composition to explain the increase. These and other meteorological global climate changes are examined in detail.

  8. Life history trade-off moderates model predictions of diversity loss from climate change

    PubMed Central

    2017-01-01

    Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species’ overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence mechanisms may increase community resilience to future climate change and are useful guides for model development. PMID:28520770

  9. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts.

    PubMed

    Rutherford, William A; Painter, Thomas H; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S; Flagg, Cody; Reed, Sasha C

    2017-03-10

    Drylands represent the planet's largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness-changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  10. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    NASA Astrophysics Data System (ADS)

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody; Reed, Sasha C.

    2017-03-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  11. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    USGS Publications Warehouse

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody B.; Reed, Sasha C.

    2017-01-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  12. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change

    USGS Publications Warehouse

    Hope, A.G.; Waltari, Eric; Fedorov, V.B.; Goropashnaya, A.V.; Talbot, S.L.; Cook, J.A.

    2011-01-01

    Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes. ?? 2011 Blackwell Publishing Ltd.

  13. Attributing Human Mortality During Extreme Heat Waves to Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B. P.; Frumhoff, P. C.; Bowery, A.; Allen, M. R.

    2015-12-01

    Climate change is the biggest global health threat of the 21st century (Costello et al, 2009; Watts et al, 2015). Perhaps one of the clearest examples of this is the summer heat wave of 2003, which saw up to seventy thousand excess deaths across Europe (Robine et al, 2007). The extreme temperatures are now thought to be significantly enhanced due to anthropogenic climate change (Stott et al, 2004; Christidis et al, 2015). Here, we consider not only the Europe-wide temperature response of the heat wave, but the localised response using a high-resolution regional model simulating 2003 climate conditions thousands of times. For the first time, by employing end-to-end attribution, we attribute changes in mortality to the increased radiative forcing from climate change, with a specific focus on London and Paris. We show that in both cities, a sizable proportion of the excess mortality can be attributed to human emissions. With European heat waves projected to increase into the future, these results provide a worrying reality for what may lie ahead. Christidis, Nikolaos, Gareth S. Jones, and Peter A. Stott. "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave." Nature Climate Change (2014). Costello, Anthony, et al. "Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission." The Lancet 373.9676 (2009): 1693-1733. Stott, Peter A., Dáithí A. Stone, and Myles R. Allen. "Human contribution to the European heatwave of 2003." Nature 432.7017 (2004): 610-614 Watts, N., et al. "Health and climate change: policy responses to protect public health." Lancet. 2015.

  14. Climate, Water and Renewable Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2004-05-01

    Climate and Energy (CE) is a new Nordic research project with funding from Nordic Energy Research (NEFP) and the Nordic energy sector. The project has the objective of a comprehensive assessment of the impact of climate variability and change on Nordic renewable energy resources including hydropower, wind power, bio-fuels and solar energy. This will include assessment of the power production of the hydropower dominated Nordic energy system and its sensitivity and vulnerability to climate change on both temporal and spatial scales; assessment of the impacts of extremes including floods, droughts, storms, seasonal patterns and variability. Within the CE project several thematic groups work on specific issues of climatic change and their impacts on renewable energy. A primary aim of the CE climate group is to supply a standard set of common scenarios of climate change in northern Europe and Greenland, based on recent global and regional climate change experiments. The snow and ice group has chosen glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. Preliminary work with dynamic modelling and climate scenarios shows a dramatic response of glacial runoff to increased temperature and precipitation. The statistical analysis group has reported on the status of time series analysis in the Nordic countries. The group has selected and quality controlled time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. Preliminary work using multivariate analysis on stream flow and climate variables shows strong linkages with the long term atmospheric circulation in the North Atlantic. The hydrological modelling group has already reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different approaches of transferring the climate change signal into hydrological models and discuss uncertainties in models and climate scenarios. Furthermore, comprehensive assessment and mapping of impact of climate change will be produced for the whole Nordic region based on the scenarios from the CE-climate group.

  15. Understanding the causes of changing grassland use and productivity in Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Gao, L.; Qiao, G.; Chen, J.

    2012-12-01

    Some dramatic changes of grassland use and productivity have been taking place in Inner Mongolia in the past half century. While the changes are apparently driven by both socio-economic factors and climate, their contribution and interaction are largely unknown. We hypothesize that population growth is an important driving force behind the loss and degradation of the grassland, the market forces and institutional factors such as de-collectivization are become more important factors as the economy is moving from planned economy to market economy. This paper assesses the effects of socio-economic, demographic, institutional and climate factors on grassland use and productivity using a panel data set. The panel data compose the years from 1970s to 2000s and all prefectures in Inner Mongolia. A generalized least squares estimation method, allowing individual effects for prefecture level are applied to the examination. The effect of climate change is tested as well and the coupled socio-economic system and the natural system are investigated.

  16. Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M.

    2018-05-01

    Mean annual ground temperature (MAGT) and active layer thickness (ALT) are key to understanding the evolution of the ground thermal state across the Arctic under climate change. Here a statistical modeling approach is presented to forecast current and future circum-Arctic MAGT and ALT in relation to climatic and local environmental factors, at spatial scales unreachable with contemporary transient modeling. After deploying an ensemble of multiple statistical techniques, distance-blocked cross validation between observations and predictions suggested excellent and reasonable transferability of the MAGT and ALT models, respectively. The MAGT forecasts indicated currently suitable conditions for permafrost to prevail over an area of 15.1 ± 2.8 × 106 km2. This extent is likely to dramatically contract in the future, as the results showed consistent, but region-specific, changes in ground thermal regime due to climate change. The forecasts provide new opportunities to assess future Arctic changes in ground thermal state and biogeochemical feedback.

  17. Assessment of the impact of climate shifts on malaria transmission in the Sahel.

    PubMed

    Bomblies, Arne; Eltahir, Elfatih A B

    2009-09-01

    Climate affects malaria transmission through a complex network of causative pathways. We seek to evaluate the impact of hypothetical climate change scenarios on malaria transmission in the Sahel by using a novel mechanistic, high spatial- and temporal-resolution coupled hydrology and agent-based entomology model. The hydrology model component resolves individual precipitation events and individual breeding pools. The impact of future potential climate shifts on the representative Sahel village of Banizoumbou, Niger, is estimated by forcing the model of Banizoumbou environment with meteorological data from two locations along the north-south climatological gradient observed in the Sahel--both for warmer, drier scenarios from the north and cooler, wetter scenarios from the south. These shifts in climate represent hypothetical but historically realistic climate change scenarios. For Banizoumbou climatic conditions (latitude 13.54 N), a shift toward cooler, wetter conditions may dramatically increase mosquito abundance; however, our modeling results indicate that the increased malaria transmissibility is not simply proportional to the precipitation increase. The cooler, wetter conditions increase the length of the sporogonic cycle, dampening a large vectorial capacity increase otherwise brought about by increased mosquito survival and greater overall abundance. Furthermore, simulations varying rainfall event frequency demonstrate the importance of precipitation patterns, rather than simply average or time-integrated precipitation, as a controlling factor of these dynamics. Modeling results suggest that in addition to changes in temperature and total precipitation, changes in rainfall patterns are very important to predict changes in disease susceptibility resulting from climate shifts. The combined effect of these climate-shift-induced perturbations can be represented with the aid of a detailed mechanistic model.

  18. Phylogeny predicts future habitat shifts due to climate change.

    PubMed

    Kuntner, Matjaž; Năpăruş, Magdalena; Li, Daiqin; Coddington, Jonathan A

    2014-01-01

    Taxa may respond differently to climatic changes, depending on phylogenetic or ecological effects, but studies that discern among these alternatives are scarce. Here, we use two species pairs from globally distributed spider clades, each pair representing two lifestyles (generalist, specialist) to test the relative importance of phylogeny versus ecology in predicted responses to climate change. We used a recent phylogenetic hypothesis for nephilid spiders to select four species from two genera (Nephilingis and Nephilengys) that match the above criteria, are fully allopatric but combined occupy all subtropical-tropical regions. Based on their records, we modeled each species niche spaces and predicted their ecological shifts 20, 40, 60, and 80 years into the future using customized GIS tools and projected climatic changes. Phylogeny better predicts the species current ecological preferences than do lifestyles. By 2080 all species face dramatic reductions in suitable habitat (54.8-77.1%) and adapt by moving towards higher altitudes and latitudes, although at different tempos. Phylogeny and life style explain simulated habitat shifts in altitude, but phylogeny is the sole best predictor of latitudinal shifts. Models incorporating phylogenetic relatedness are an important additional tool to predict accurately biotic responses to global change.

  19. Identifying legal, ecological and governance obstacles and opportunities for adapting to climate change

    USGS Publications Warehouse

    Cosens, Barbara; Gunderson, Lance; Allen, Craig R.; Benson, Melinda H.

    2014-01-01

    Current governance of regional scale water management systems in the United States has not placed them on a path toward sustainability, as conflict and gridlock characterize the social arena and ecosystem services continue to erode. Changing climate may continue this trajectory, but it also provides a catalyst for renewal of ecosystems and a window of opportunity for change in institutions. Resilience provides a bridging concept that predicts that change in ecological and social systems is often dramatic, abrupt, and surprising. Adapting to the uncertainty of climate driven change must be done in a manner perceived as legitimate by the participants in a democratic society. Adaptation must begin with the current hierarchical and fragmented social-ecological system as a baseline from which new approaches must be applied. Achieving a level of integration between ecological concepts and governance requires a dialogue across multiple disciplines, including ecologists with expertise in ecological resilience, hydrologists and climate experts, with social scientists and legal scholars. Criteria and models that link ecological dynamics with policies in complex, multi-jurisdictional water basins with adaptive management and governance frameworks may move these social-ecological systems toward greater sustainability.

  20. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    USGS Publications Warehouse

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.

    2005-01-01

    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability of the river to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river ecosystems might experience under future climates. Copyright ?? 2005 John Wiley & Sons, Ltd.

  1. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    PubMed

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  2. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    Treesearch

    E.E. Jafarov; V.E. Romanovsky; H. Genet; A.D. McGuire; S.S. Marchenko

    2013-01-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1)...

  3. Dryland feedbacks to climatic change: Results from a climate manipulation experiment on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Reed, S.; Belnap, J.; Ferrenberg, S.; Wertin, T. M.; Darrouzet-Nardi, A.; Tucker, C.; Rutherford, W. A.

    2015-12-01

    Arid and semiarid ecosystems cover ~40% of Earth's terrestrial surface and make up ~35% of the U.S., yet we know surprisingly little about how climate change will affect these widespread landscapes. Like many dryland regions, the Colorado Plateau in the southwestern U.S. is predicted to experience climate change as elevated temperature and altered timing and amount of annual precipitation. We are using a long-term (>10 yr) factorial warming and supplemental rainfall experiment on the Colorado Plateau to explore how predicted changes in climate will affect vascular plant and biological soil crust community composition, biogeochemical cycling, and energy balance (biocrusts are a surface soil community of moss, lichen, and cyanobacteria that can make up as much as 70% of the living cover in drylands). While some of the responses we have observed were expected, many of the results are surprising. For example, we documented biocrust community composition shifts in response to altered climate that were significantly faster and more dramatic than considered likely for these soil communities that typically change over decadal and centennial timescales. Further, while we continue to observe important climate change effects on carbon cycling - including reduced net photosynthesis in vascular plants, increased CO2 losses from biocrust soils during some seasons, and changes to the interactions between water and carbon cycles - we have also found marked treatment effects on the albedo and spectral signatures of dryland soils. In addition to demonstrating the effects of these treatments, the strong relationships we observed in our experiments between biota and climate provide a quantitative framework for improving our representation of dryland responses to climate change. In this talk we will cover a range of datasets that, taken together, show: (1) large climate-driven changes to dryland biogeochemical cycling may be the result of both effects on existing communities, as well of relatively rapid shifts in community composition; (2) drylands could provide feedbacks to future climate not only though altered carbon cycling but also via changes to surface albedo; and (3) models of dryland responses to climate change may need significant revision, but such a revision is well within reach.

  4. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal eutrophication and hypoxia.

  5. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach.

    PubMed

    Moyle, Peter B; Kiernan, Joseph D; Crain, Patrick K; Quiñones, Rebecca M

    2013-01-01

    Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1) current status of each species (baseline vulnerability to extinction) and (2) likely future impacts of climate change (vulnerability to extinction). Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California's native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C) are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish species. It should be useful for setting conservation priorities in many different regions.

  6. Climate Change Vulnerability of Native and Alien Freshwater Fishes of California: A Systematic Assessment Approach

    PubMed Central

    Moyle, Peter B.; Kiernan, Joseph D.; Crain, Patrick K.; Quiñones, Rebecca M.

    2013-01-01

    Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1) current status of each species (baseline vulnerability to extinction) and (2) likely future impacts of climate change (vulnerability to extinction). Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California’s native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C) are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish species. It should be useful for setting conservation priorities in many different regions. PMID:23717503

  7. Urbanization dramatically altered the water balances of a paddy field dominated basin in southern China

    Treesearch

    L. Hao; G. Sun; Y. Liu; J. Wan; M. Qin; H. Qian; C. Liu; R. John; P. Fan; J. Chen

    2015-01-01

    Rice paddy fields provide important ecosystem services (e.g., food production, water retention, carbon sequestration) to a large population globally. However, these benefits are declining as a result of rapid environmental and socioeconomic transformations characterized by population growth, urbanization, and climate change in many Asian countries. This case study...

  8. Effects of Classroom Humor Climate and Acceptance of Humor Messages on Adolescents' Expressions of Humor

    ERIC Educational Resources Information Center

    Chiang, Yi-Chen; Lee, Chun-Yang; Wang, Hong-Huei

    2016-01-01

    Background: To adapt to dramatic changes from physical growth, physical development and the increasing demand of significant others, humor has been found to be an effective coping strategy. However, previous studies have found that adolescents start to express their humor styles with aggressive components which causes negative consequences, such…

  9. Consequences of salinity and freezing stress for two populations of Quercus virginiana Mill

    Treesearch

    Cassandra M. Kurtz; Jessica A. Savage; I-Yu Huang; Jeannine Cavender-Bares

    2013-01-01

    Climate change is of increasing concern in coastal forests where rising sea levels could lead to dramatic shifts in ecosystem composition. To investigate how inundation may impact coastal ecosystems, we examined the sensitivity of Quercus virginiana Mill., a dominant tree in the southeastern U.S., to increased soil salinity and examined whether high...

  10. Parents and Sex Education--Looking beyond "The Birds and the Bees"

    ERIC Educational Resources Information Center

    Walker, Joy

    2004-01-01

    The social and political climate of sex education over the last two decades has dramatically changed, with parents now being encouraged to work in partnership with professionals. This paper seeks to further the argument that involving parents in their child's sex education does matter and can have an impact on their child's future sexual health.…

  11. The influence of global climate change on the scientific foundations and applications of Environmental Toxicology and Chemistry: introduction to a SETAC international workshop.

    PubMed

    Stahl, Ralph G; Hooper, Michael J; Balbus, John M; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S Jannicke

    2013-01-01

    This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled "The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry." The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners. Copyright © 2013 SETAC.

  12. The influence of global climate change on the scientific foundations and applications of Environmental Toxicology and Chemistry: Introduction to a SETAC international workshop

    USGS Publications Warehouse

    Stahl, Ralph G.; Hooper, Michael J.; Balbus, John M.; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S. Jannicke

    2013-01-01

    This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled “The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry.” The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners.

  13. Eucalypts face increasing climate stress

    PubMed Central

    Butt, Nathalie; Pollock, Laura J; McAlpine, Clive A

    2013-01-01

    Global climate change is already impacting species and ecosystems across the planet. Trees, although long-lived, are sensitive to changes in climate, including climate extremes. Shifts in tree species' distributions will influence biodiversity and ecosystem function at scales ranging from local to landscape; dry and hot regions will be especially vulnerable. The Australian continent has been especially susceptible to climate change with extreme heat waves, droughts, and flooding in recent years, and this climate trajectory is expected to continue. We sought to understand how climate change may impact Australian ecosystems by modeling distributional changes in eucalypt species, which dominate or codominate most forested ecosystems across Australia. We modeled a representative sample of Eucalyptus and Corymbia species (n = 108, or 14% of all species) using newly available Representative Concentration Pathway (RCP) scenarios developed for the 5th Assessment Report of the IPCC, and bioclimatic and substrate predictor variables. We compared current, 2025, 2055, and 2085 distributions. Overall, Eucalyptus and Corymbia species in the central desert and open woodland regions will be the most affected, losing 20% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. The least affected species, in eastern Australia, are likely to lose 10% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. Range shifts will be lateral as well as polewards, and these east–west transitions will be more significant, reflecting the strong influence of precipitation rather than temperature changes in subtropical and midlatitudes. These net losses, and the direction of shifts and contractions in range, suggest that many species in the eastern and southern seaboards will be pushed toward the continental limit and that large tracts of currently treed landscapes, especially in the continental interior, will change dramatically in terms of species composition and ecosystem structure. PMID:24455132

  14. Climate change impacts on North Dakota: agriculture and hydrology

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Zhang, X.; Lim, Y.; Teng, W. L.

    2011-12-01

    North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed. One of the most dramatic examples of the consequences of this change is the Devils Lake flooding. Devils Lake is a terminal lake with a surface area of about 500 km2 in a 9,867 km2 closed watershed, located in the northeastern part of the state. The recent changes in climate interrupted the 5-7 year long wet/dry cycle, resulting in a persistently wet state. The change in the water balance has led to a substantial increase in the lake level from 427.0 m in 1940 to 434.6 m in 1993 to 443.2 m in 2011. The resulting flooding has threatened the local communities, costing $450 million in mitigation efforts thus far. If the elevation reaches 444.4 m, the saline, eutrophic lake will naturally spill into the Sheyenne River, eventually flowing into Lake Winnipeg. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for eight different locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing. For projections of climate change impacts on the hydrology of the Devils Lake basin, we additionally used the information on the spatial distribution of precipitation over the basin from the NASA TRMM TMPA 3B42-V6 product, which combines measurements from multiple satellites with rain gauge data and is available over a 0.25° × 0.25° grid. We used the DSSAT package to simulate the impact of climate change on wheat yields in eight locations in North Dakota, using the outputs of the six GCMs, as described above. For each time period, we ran the DSSAT 10 times, under different synthetic weather conditions, to adequately take into account climate variability. In general, averaged across the simulations and across all locations, the simulations demonstrate a decline in yields: -3.6% -4.0% in 2020s and still more substantial in 2050s and 2080s. However, the decline differs dramatically among the outputs from different GCMs and among the scenarios. In the Devils Lake basin, the simulations show increasing amount of winter precipitation, and also increasing potential evapotranspiration. Together with longer warm seasons, these changes in climate will likely reduce earlier estimates (Vecchia, 2008) of the risks of Devils Lake spillage. In the report, we provide details on the research of climate change impacts on the Devils Lake watershed, and on the agriculture of North Dakota.

  15. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Ruedy, Reto; Lacis, Andrew; Oinas, Valdar

    2000-01-01

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven by non-CO2 greenhouse gases (GHGs), such as CFCs, CH4 and N2O, not by the products of fossil fuel burning, CO2 and aerosols, whose positive and negative climate forcings are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change of climate forcing by non-CO2 GHGs In the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific longterm global monitoring of aerosol properties.

  16. Marine biodiversity–ecosystem functions under uncertain environmental futures

    PubMed Central

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  17. Climate modelling of mass-extinction events: a review

    NASA Astrophysics Data System (ADS)

    Feulner, Georg

    2009-07-01

    Despite tremendous interest in the topic and decades of research, the origins of the major losses of biodiversity in the history of life on Earth remain elusive. A variety of possible causes for these mass-extinction events have been investigated, including impacts of asteroids or comets, large-scale volcanic eruptions, effects from changes in the distribution of continents caused by plate tectonics, and biological factors, to name but a few. Many of these suggested drivers involve or indeed require changes of Earth's climate, which then affect the biosphere of our planet, causing a global reduction in the diversity of biological species. It can be argued, therefore, that a detailed understanding of these climatic variations and their effects on ecosystems are prerequisites for a solution to the enigma of biological extinctions. Apart from investigations of the paleoclimate data of the time periods of mass extinctions, climate-modelling experiments should be able to shed some light on these dramatic events. Somewhat surprisingly, however, only a few comprehensive modelling studies of the climate changes associated with extinction events have been undertaken. These studies will be reviewed in this paper. Furthermore, the role of modelling in extinction research in general and suggestions for future research are discussed.

  18. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    PubMed

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  19. Exploring the implication of climate process uncertainties within the Earth System Framework

    NASA Astrophysics Data System (ADS)

    Booth, B.; Lambert, F. H.; McNeal, D.; Harris, G.; Sexton, D.; Boulton, C.; Murphy, J.

    2011-12-01

    Uncertainties in the magnitude of future climate change have been a focus of a great deal of research. Much of the work with General Circulation Models has focused on the atmospheric response to changes in atmospheric composition, while other processes remain outside these frameworks. Here we introduce an ensemble of new simulations, based on an Earth System configuration of HadCM3C, designed to explored uncertainties in both physical (atmospheric, oceanic and aerosol physics) and carbon cycle processes, using perturbed parameter approaches previously used to explore atmospheric uncertainty. Framed in the context of the climate response to future changes in emissions, the resultant future projections represent significantly broader uncertainty than existing concentration driven GCM assessments. The systematic nature of the ensemble design enables interactions between components to be explored. For example, we show how metrics of physical processes (such as climate sensitivity) are also influenced carbon cycle parameters. The suggestion from this work is that carbon cycle processes represent a comparable contribution to uncertainty in future climate projections as contributions from atmospheric feedbacks more conventionally explored. The broad range of climate responses explored within these ensembles, rather than representing a reason for inaction, provide information on lower likelihood but high impact changes. For example while the majority of these simulations suggest that future Amazon forest extent is resilient to the projected climate changes, a small number simulate dramatic forest dieback. This ensemble represents a framework to examine these risks, breaking them down into physical processes (such as ocean temperature drivers of rainfall change) and vegetation processes (where uncertainties point towards requirements for new observational constraints).

  20. [Health consequences of environmental temperature and climate variations].

    PubMed

    Swynghedauw, Bernard

    2012-01-01

    Recent climate change is a consequence of the greenhouse effect and human activity, and is directly responsible for extreme events such as heatwaves (see report of the French Académie des Sciences). Human thermoregulation depends more on behavior than on biology Air conditioning and building structure play an essential role. The 2003 heatwave was not a unique event. Preventive measures reduced mortality during subsequent heatwaves. Most deaths were due to heat stroke associated with dehydration. During strenuous exercise, especially during military training, heat stroke requires specific treatment. Temperature/ global mortality and temperature/cardiovascular mortality curves are both U-shaped. Usually, global mortality increases winter and is linked to temperature. During summer, global mortality increases only when heatwaves occur. Climate change participates in the spread of infectious diseases. Nevertheless, in continental France, for the moment, climate change is not a major factor in the incidence of infectious diseases, despite the fact that several bacteria, viruses and vectors are temperature-sensitive. The situation in Reunion, French Polynesia and French Departments of America is more complicated, due to their geographic heterogeneity. Some areas are more exposed to the climatic risk and could act as a gateway for new infections and mutations. The dramatic loss of biodiversity is partly a consequence of climate change. It increases the transmissibility of some pathogens and can also potentially lead to an increase in autoimmune diseases and obesity. Climate change plays a important role in allergic diseases, through changes in the diffusion and composition of pollens. These modifications are being monitored by several observatories. Six different veterinary diseases, including several zoonoses, are of particular concern.

  1. Global environmental effects of impact-generated aerosols: Results from a general circulation model, revision 1

    NASA Technical Reports Server (NTRS)

    Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.

    1989-01-01

    Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to our three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans substantially mitigates land surface cooling, an effect that one-dimensional models cannot quantify. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stage of cooling than in the one-dimensional model study. These two differences between three-dimensional and one-dimensional model simulations were noted previously in studies of nuclear winter; GCM-simulated climatic changes in the Alvarez-inspired scenario of asteroid/comet winter, however, are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though less severe, climatic changes, according to our GCM. Our conclusion is that it is difficult to imagine an asteroid or comet impact leading to anything approaching complete global freezing, but quite reasonable to assume that impacts at the Alvarez level, or even smaller, dramatically alter the climate in at least a patchy sense.

  2. Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean.

    PubMed

    Auth, Toby D; Daly, Elizabeth A; Brodeur, Richard D; Fisher, Jennifer L

    2018-01-01

    Understanding changes in the migratory and reproductive phenology of fish stocks in relation to climate change is critical for accurate ecosystem-based fisheries management. Relocation and changes in timing of reproduction can have dramatic effects upon the success of fish populations and throughout the food web. During anomalously warm conditions (1-4°C above normal) in the northeast Pacific Ocean during 2015-2016, we documented shifts in timing and spawning location of several pelagic fish stocks based on larval fish samples. Total larval concentrations in the northern California Current (NCC) during winter (January-March) 2015 and 2016 were the highest observed since annual collections first occurred in 1998, primarily due to increased abundances of Engraulis mordax (northern anchovy) and Sardinops sagax (Pacific sardine) larvae, which are normally summer spawning species in this region. Sardinops sagax and Merluccius productus (Pacific hake) exhibited an unprecedented early and northward spawning expansion during 2015-16. In addition, spawning duration was greatly increased for E. mordax, as the presence of larvae was observed throughout the majority of 2015-16, indicating prolonged and nearly continuous spawning of adults throughout the warm period. Larvae from all three of these species have never before been collected in the NCC as early in the year. In addition, other southern species were collected in the NCC during this period. This suggests that the spawning phenology and distribution of several ecologically and commercially important fish species dramatically and rapidly changed in response to the warming conditions occurring in 2014-2016, and could be an indication of future conditions under projected climate change. Changes in spawning timing and poleward migration of fish populations due to warmer ocean conditions or global climate change will negatively impact areas that were historically dependent on these fish, and change the food web structure of the areas that the fish move into with unforeseen consequences. © 2017 John Wiley & Sons Ltd.

  3. Climate Change Impact Uncertainties for Maize in Panama: Farm Information, Climate Projections, and Yield Sensitivities

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Cecil, L. Dewayne; Horton, Radley M.; Gordon, Roman; McCollum, Raymond (Brown, Douglas); Brown, Douglas; Killough, Brian; Goldberg, Richard; Greeley, Adam P.; Rosenzweig, Cynthia

    2011-01-01

    We present results from a pilot project to characterize and bound multi-disciplinary uncertainties around the assessment of maize (Zea mays) production impacts using the CERES-Maize crop model in a climate-sensitive region with a variety of farming systems (Panama). Segunda coa (autumn) maize yield in Panama currently suffers occasionally from high water stress at the end of the growing season, however under future climate conditions warmer temperatures accelerate crop maturation and elevated CO (sub 2) concentrations improve water retention. This combination reduces end-of-season water stresses and eventually leads to small mean yield gains according to median projections, although accelerated maturation reduces yields in seasons with low water stresses. Calibrations of cultivar traits, soil profile, and fertilizer amounts are most important for representing baseline yields, however sensitivity to all management factors is reduced in an assessment of future yield changes (most dramatically for fertilizers), suggesting that yield changes may be more generalizable than absolute yields. Uncertainty around General Circulation Model (GCM)s' projected changes in rainfall gain in importance throughout the century, with yield changes strongly correlated with growing season rainfall totals. Climate changes are expected to be obscured by the large inter-annual variations in Panamanian climate that will continue to be the dominant influence on seasonal maize yield into the coming decades. The relatively high (A2) and low (B1) emissions scenarios show little difference in their impact on future maize yields until the end of the century. Uncertainties related to the sensitivity of CERES-Maize to carbon dioxide concentrations have a substantial influence on projected changes, and remain a significant obstacle to climate change impacts assessment. Finally, an investigation into the potential of simple statistical yield emulators based upon key climate variables characterizes the important uncertainties behind the selection of climate change metrics and their performance against more complex process-based crop model simulations, revealing a danger in relying only on long-term mean quantities for crop impact assessment.

  4. Observed Changes in Upper-Tropospheric Water Vapor Transport From Satellite Measurements During the Summers of 1987 and 1988

    NASA Technical Reports Server (NTRS)

    Lerner, Jeffrey A.; Jedlovee, Gary J.; Atkinson, Robert J.

    1998-01-01

    The research described below focuses on the use of satellite measurements to monitor both monthly and interannual changes in UT (upper tropospheric) water vapor transport. The GOES-7 Pathfinder data set is used to estimate both winds and humidity during the summers (JJA) of 1987 and 1988. These two summers are of particular importance to climate variability since they were characterized by a dramatic shift in the Southern Oscillation index (i.e., 1987 as a warm ENSO event and 1988 as a cold La-Nina period) (Arkin, 1988; Ropelewski 1988). The contrasting features of the summers of '87 and '88 are exploited to demonstrate the utility of satellite wind and humidity estimates to analyze the role of water vapor in climate change.

  5. The relationship between climate change and the endangered rainforest shrub Triunia robusta (Proteaceae) endemic to southeast Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Shimizu-Kimura, Yoko; Accad, Arnon; Shapcott, Alison

    2017-04-01

    Threatened species in rainforests may be vulnerable to climate change, because of their potentially narrow thermal tolerances, small population sizes and restricted distributions. This study modelled climate induced changes on the habitat distribution of the endangered rainforest plant Triunia robusta, endemic to southeast Queensland, Australia. Species distribution models were developed for eastern Australia at 250 m grids and southeast Queensland at 25 m grids using ground-truthed presence records and environmental predictor data. The species’ habitat distribution under the current climate was modelled, and the future potential habitat distributions were projected for the epochs 2030, 2050 and 2070. The eastern Australia model identified several spatially disjunct, broad habitat areas of coastal eastern Australia consistent with the current distribution of rainforests, and projected a southward and upslope contraction driven mainly by average temperatures exceeding current range limits. The southeast Queensland models suggest a dramatic upslope contraction toward locations where the majority of known populations are found. Populations located in the Sunshine Coast hinterland, consistent with past rainforest refugia, are likely to persist long-term. Upgrading the level of protection for less formal nature reserves containing viable populations is a high priority to better protect refugial T. robusta populations with respect to climate change.

  6. The relationship between climate change and the endangered rainforest shrub Triunia robusta (Proteaceae) endemic to southeast Queensland, Australia

    PubMed Central

    Shimizu-Kimura, Yoko; Accad, Arnon; Shapcott, Alison

    2017-01-01

    Threatened species in rainforests may be vulnerable to climate change, because of their potentially narrow thermal tolerances, small population sizes and restricted distributions. This study modelled climate induced changes on the habitat distribution of the endangered rainforest plant Triunia robusta, endemic to southeast Queensland, Australia. Species distribution models were developed for eastern Australia at 250 m grids and southeast Queensland at 25 m grids using ground-truthed presence records and environmental predictor data. The species’ habitat distribution under the current climate was modelled, and the future potential habitat distributions were projected for the epochs 2030, 2050 and 2070. The eastern Australia model identified several spatially disjunct, broad habitat areas of coastal eastern Australia consistent with the current distribution of rainforests, and projected a southward and upslope contraction driven mainly by average temperatures exceeding current range limits. The southeast Queensland models suggest a dramatic upslope contraction toward locations where the majority of known populations are found. Populations located in the Sunshine Coast hinterland, consistent with past rainforest refugia, are likely to persist long-term. Upgrading the level of protection for less formal nature reserves containing viable populations is a high priority to better protect refugial T. robusta populations with respect to climate change. PMID:28422136

  7. Systematic Conservation Planning in the Face of Climate Change: Bet-Hedging on the Columbia Plateau

    PubMed Central

    Schloss, Carrie A.; Lawler, Joshua J.; Larson, Eric R.; Papendick, Hilary L.; Case, Michael J.; Evans, Daniel M.; DeLap, Jack H.; Langdon, Jesse G. R.; Hall, Sonia A.; McRae, Brad H.

    2011-01-01

    Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts. PMID:22174897

  8. Global Climate Change: Valuable Insights from Concordant and Discordant Ice Core Histories

    NASA Astrophysics Data System (ADS)

    Mosley-Thompson, E.; Thompson, L. G.; Porter, S. E.; Goodwin, B. P.; Wilson, A. B.

    2014-12-01

    Earth's ice cover is responding to the ongoing large-scale warming driven in part by anthropogenic forces. The highest tropical and subtropical ice fields are dramatically shrinking and/or thinning and unique climate histories archived therein are now threatened, compromised or lost. Many ice fields in higher latitudes are also experiencing and recording climate system changes although these are often manifested in less evident and spectacular ways. The Antarctic Peninsula (AP) has experienced a rapid, widespread and dramatic warming over the last 60 years. Carefully selected ice fields in the AP allow reconstruction of long histories of key climatic variables. As more proxy climate records are recovered it is clear they reflect a combination of expected and unexpected responses to seemingly similar climate forcings. Recently acquired temperature and precipitation histories from the Bruce Plateau are examined within the context provided by other cores recently collected in the AP. Understanding the differences and similarities among these records provides a better understanding of the forces driving climate variability in the AP over the last century. The Arctic is also rapidly warming. The δ18O records from the Bona-Churchill and Mount Logan ice cores from southeast Alaska and southwest Yukon Territory, respectively, do not record this strong warming. The Aleutian Low strongly influences moisture transport to this geographically complex region, yet its interannual variability is preserved differently in these cores located just 110 km apart. Mount Logan is very sensitive to multi-decadal to multi-centennial climate shifts in the tropical Pacific while low frequency variability on Bona-Churchill is more strongly connected to Western Arctic sea ice extent. There is a natural tendency to focus more strongly on commonalities among records, particularly on regional scales. However, it is also important to investigate seemingly poorly correlated records, particularly those from geographically complex settings that appear to be dominated by similar large-scale climatological processes. Better understanding of the spatially and temporally diverse responses in such regions will expand our understanding of the mechanisms forcing climate variability in meteorologically complex environments.

  9. Gray Wolves as Climate Change Buffers in Yellowstone

    PubMed Central

    Getz, Wayne M

    2005-01-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change. PMID:15757363

  10. Gray wolves as climate change buffers in Yellowstone.

    PubMed

    Wilmers, Christopher C; Getz, Wayne M

    2005-04-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change.

  11. Is nuance possible in climate change communication?

    NASA Astrophysics Data System (ADS)

    Donner, S. D.

    2015-12-01

    One of the core challenges of climate communication is finding the balance between honestly portraying the science, with all its complexity, and effectively engaging the audience. At a time when all politics are partisan and the media measures value in clicks, complicated stories can become black-and-white. This loss of nuance is acute in tales told of climate change impacts in the developing world, particularly in the low-lying island states of the Pacific. Atoll countries like Kiribati, Tuvalu, the Marshall Islands and the Maldives are certainly existentially threatened by climate change and sea-level rise. Yet the islands and their residents are also more resilient than the dramatic headlines about sinking islands would have you think. Casting the people as helpless victims, however well-intentioned, can actually hurt their ability to respond to climate change. This presentation examines the risks and benefits of providing such nuance on a climate issue that the public and policy-makers generally view as black-and-white. Drawing on efforts a decade of research in Kiribati and other small island developing states in the Pacific, I describe how a mix of cultural differences, geopolitics, and the legacy of colonialism has made the Pacific Islands a narrative device in a western discussion about climate change. I then describe in detail the challenging process of writing a popular magazine story which questions that narrative - but not the long-term threat of sea-level rise - and the personal and political aftermath of its publication. Building upon this humbling experience and findings from psychology, communications and science and technology studies, I outline the key benefits and risks of engaging publicly with the nuances of a climate change issue, and provide a template for effectively communicating nuance in a politically charged atmosphere.

  12. Disease Risk in a Dynamic Environment: The Spread of Tick-Borne Pathogens in Minnesota, USA

    PubMed Central

    Robinson, Stacie J.; Neitzel, David F.; Moen, Ronald A.; Craft, Meggan E.; Hamilton, Karin E.; Johnson, Lucinda B.; Mulla, David J.; Munderloh, Ulrike G.; Redig, Patrick T.; Smith, Kirk E.; Turner, Clarence L.; Umber, Jamie K.; Pelican, Katharine M.

    2015-01-01

    As humans and climate change alter the landscape, novel disease risk scenarios emerge. Understanding the complexities of pathogen emergence and subsequent spread as shaped by landscape heterogeneity is crucial to understanding disease emergence, pinpointing high-risk areas, and mitigating emerging disease threats in a dynamic environment. Tick-borne diseases present an important public health concern and incidence of many of these diseases are increasing in the United States. The complex epidemiology of tick-borne diseases includes strong ties with environmental factors that influence host availability, vector abundance, and pathogen transmission. Here, we used 16 years of case data from the Minnesota Department of Health to report spatial and temporal trends in Lyme disease (LD), human anaplasmosis, and babesiosis. We then used a spatial regression framework to evaluate the impact of landscape and climate factors on the spread of LD. Finally, we use the fitted model, and landscape and climate datasets projected under varying climate change scenarios, to predict future changes in tick-borne pathogen risk. Both forested habitat and temperature were important drivers of LD spread in Minnesota. Dramatic changes in future temperature regimes and forest communities predict rising risk of tick-borne disease. PMID:25281302

  13. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness.

    PubMed

    Lemoine, Nathan P; Burkepile, Deron E

    2012-11-01

    As physiological processes of ectotherms are coupled to environmental temperature, climate change will likely alter their fundamental biological rates, including metabolism, consumption, growth, and reproduction. Here we combine the metabolic theory of ecology (MTE) with metabolism and consumption measurements of a model organism, the urchin Lytechinus variegatus, to test how climate change will affect consumer fitness. Unexpectedly, we found that metabolism and consumption exhibit different scaling relationships with temperature and are mismatched at high temperatures. This led to a dramatic reduction in ingestion efficiency and potentially in consumer fitness. Using metaanalysis, we showed that such temperature-driven mismatches between consumption and metabolism are common across taxa and frequently lead to reduced consumer fitness. Our empirical and synthetic analyses identify a mechanism by which climate change reduces the fitness of ectotherm consumers that may be applied to a broad array of taxonomic groups. Moreover, we showed that the assumptions of MTE do not hold at temperatures near the upper range of species' thermal tolerances for a wide array of taxa. Models using MTE to predict the effects of climate change on consumer-resource dynamics may therefore be underestimating the consequences of rising temperatures on population and community dynamics.

  14. Disease risk in a dynamic environment: the spread of tick-borne pathogens in Minnesota, USA.

    PubMed

    Robinson, Stacie J; Neitzel, David F; Moen, Ronald A; Craft, Meggan E; Hamilton, Karin E; Johnson, Lucinda B; Mulla, David J; Munderloh, Ulrike G; Redig, Patrick T; Smith, Kirk E; Turner, Clarence L; Umber, Jamie K; Pelican, Katharine M

    2015-03-01

    As humans and climate change alter the landscape, novel disease risk scenarios emerge. Understanding the complexities of pathogen emergence and subsequent spread as shaped by landscape heterogeneity is crucial to understanding disease emergence, pinpointing high-risk areas, and mitigating emerging disease threats in a dynamic environment. Tick-borne diseases present an important public health concern and incidence of many of these diseases are increasing in the United States. The complex epidemiology of tick-borne diseases includes strong ties with environmental factors that influence host availability, vector abundance, and pathogen transmission. Here, we used 16 years of case data from the Minnesota Department of Health to report spatial and temporal trends in Lyme disease (LD), human anaplasmosis, and babesiosis. We then used a spatial regression framework to evaluate the impact of landscape and climate factors on the spread of LD. Finally, we use the fitted model, and landscape and climate datasets projected under varying climate change scenarios, to predict future changes in tick-borne pathogen risk. Both forested habitat and temperature were important drivers of LD spread in Minnesota. Dramatic changes in future temperature regimes and forest communities predict rising risk of tick-borne disease.

  15. Seasonal differences in the response of Arctic cyclones to climate change in CESM1

    NASA Astrophysics Data System (ADS)

    Day, Jonathan J.; Holland, Marika M.; Hodges, Kevin I.

    2017-06-01

    The dramatic warming of the Arctic over the last three decades has reduced both the thickness and extent of sea ice, opening opportunities for business in diverse sectors and increasing human exposure to meteorological hazards in the Arctic. It has been suggested that these changes in environmental conditions have led to an increase in extreme cyclones in the region, therefore increasing this hazard. In this study, we investigate the response of Arctic synoptic scale cyclones to climate change in a large initial value ensemble of future climate projections with the CESM1-CAM5 climate model (CESM-LE). We find that the response of Arctic cyclones in these simulations varies with season, with significant reductions in cyclone dynamic intensity across the Arctic basin in winter, but with contrasting increases in summer intensity within the region known as the Arctic Ocean cyclone maximum. There is also a significant reduction in winter cyclogenesis events within the Greenland-Iceland-Norwegian sea region. We conclude that these differences in the response of cyclone intensity and cyclogenesis, with season, appear to be closely linked to changes in surface temperature gradients in the high latitudes, with Arctic poleward temperature gradients increasing in summer, but decreasing in winter.

  16. Climate warming affects biological invasions by shifting interactions of plants and herbivores.

    PubMed

    Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing

    2013-08-01

    Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change. © 2013 John Wiley & Sons Ltd.

  17. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    USGS Publications Warehouse

    Werner, B.A.; Johnson, W. Carter; Guntenspergen, Glenn R.

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  18. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region.

    PubMed

    Werner, Brett A; Johnson, W Carter; Guntenspergen, Glenn R

    2013-09-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946-1975; 1976-2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  19. Regionalizing Africa: Patterns of Precipitation Variability in Observations and Global Climate Models

    NASA Technical Reports Server (NTRS)

    Badr, Hamada S.; Dezfuli, Amin K.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.

    2016-01-01

    Many studies have documented dramatic climatic and environmental changes that have affected Africa over different time scales. These studies often raise questions regarding the spatial extent and regional connectivity of changes inferred from observations and proxies and/or derived from climate models. Objective regionalization offers a tool for addressing these questions. To demonstrate this potential, applications of hierarchical climate regionalizations of Africa using observations and GCM historical simulations and future projections are presented. First, Africa is regionalized based on interannual precipitation variability using Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data for the period 19812014. A number of data processing techniques and clustering algorithms are tested to ensure a robust definition of climate regions. These regionalization results highlight the seasonal and even month-to-month specificity of regional climate associations across the continent, emphasizing the need to consider time of year as well as research question when defining a coherent region for climate analysis. CHIRPS regions are then compared to those of five GCMs for the historic period, with a focus on boreal summer. Results show that some GCMs capture the climatic coherence of the Sahel and associated teleconnections in a manner that is similar to observations, while other models break the Sahel into uncorrelated subregions or produce a Sahel-like region of variability that is spatially displaced from observations. Finally, shifts in climate regions under projected twenty-first-century climate change for different GCMs and emissions pathways are examined. A projected change is found in the coherence of the Sahel, in which the western and eastern Sahel become distinct regions with different teleconnections. This pattern is most pronounced in high-emissions scenarios.

  20. How are recent changes in Southern Hemisphere Westerly Winds affecting East Antarctic terrestrial plants?

    NASA Astrophysics Data System (ADS)

    Robinson, S. A.; Waterman, M. J.; Bramley-Alves, J.; Clarke, L. J.; Hua, Q.

    2017-12-01

    Antarctica has experienced major changes in temperature, wind speed, stratospheric ozone levels and ultraviolet-B radiation over the last century. However, because East Antarctica has shown little climate warming, biological changes were predicted to be relatively slow, compared to the rapid changes observed on the warmer Antarctic Peninsula. Detecting the biological effects of Antarctic climate change has been hindered by the paucity of long-term data sets, particularly for organisms that have been exposed to these changes throughout their lives. Recent studies using radiocarbon signals preserved along the shoots of individual mosses, as well as peat cores, enables accurate determination of the growth rates of the dominant Antarctic moss flora over the last century. This allows us to explore the influence of environmental variables on growth providing a dramatic demonstration of the effects of climate change on Antarctic biodiversity. We generated detailed 50-year growth records for four Antarctic moss species, Ceratodon purpureus, Bryum pseudotriquetrum, Schistidium antarctici and Bryoerythrophyllum recurvirostre using the 1960s radiocarbon bomb spike. Ceratodon purpureus' growth rates are positively correlated with ozone depth and temperature and negatively correlated with wind speed. Carbon stable isotopic measurements (∂13C) suggest that the observed effects of climate variation on growth are mediated through changes in water availability and mostly likely linked to the more positive phase of the Southern Annular Mode (SAM) and changing westerly wind patterns. For cold remote locations like Antarctica, where climate records are limited and of relatively short duration, this illustrates that mosses can act as microclimate proxies and have the potential to increase our knowledge of coastal Antarctic climate change.

  1. How Are Fishing Patterns and Fishing Communities Responding to Climate Change? A Test Case from the Northwest Atlantic

    NASA Astrophysics Data System (ADS)

    Young, T.; Fuller, E.; Coleman, K.; Provost, M.; Pinsky, M. L.; St Martin, K.

    2016-02-01

    We know climate is changing and fish are moving in response to those changes. But we understand less about how harvesters are responding to these changes in fish distribution and the ramifications of those changes for fishing communities. Ecological and evolutionary theory suggests that organisms must move, adapt, or die in response to environmental changes, and a related frame may be relevant for human harvesters in the face of climate change. Furthermore, research suggests that there may be a portfolio effect: a wider diversity of catch may buffer harvesters from some effects of climate change. To get at these questions, we explored changes in fishing patterns among commercial fishing communities in the northeast US from 1997-2014 using NOAA-collected logbook data. We found that communities using more mobile gear (large trawl vessels) demonstrated a greater range of latitudinal shift than communities using any other gear. Latitudinal shift was also inversely related to species diversity of catch and port latitude in those communities: southern communities that caught few species shifted dramatically northward, and northern communities that caught many species did not demonstrate marked latitudinal shifts. Those communities that demonstrated larger latitudinal shifts also demonstrated smaller changes in catch composition than their more stationary counterparts. We also found that vessels are indeed leaving many, but not all, fisheries in this region. These results suggest that harvesters are moving, adapting, and leaving fisheries, and that there does appear to be a portfolio effect, with catch diversity mediating some of these responses. While these changes in fishing patterns cannot all be directly attributed to climate change per se, marine fishes in this region are shifting north rapidly, as is expected under climate change. This study provides a valuable test case for exploring the potential ramifications of climate change on coastal socio-ecological systems.

  2. Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau.

    PubMed

    Luo, Zhenhua; Jiang, Zhigang; Tang, Songhua

    2015-01-01

    Climate change has significant impacts on species' distributions and diversity patterns. Understanding range shifts and changes in richness gradients under climate change is crucial for conservation. The Tibetan Plateau, home to wild yak, chiru, and kiang, contains a biome with many endemic ungulates. It is highly sensitive to climate change and a region that merits particular attention with regard to the impacts of global climate change on its biomes. Maximum entropy approaches were used to estimate current and future potential distributions, in response to climate change, for 22 ungulate species. We used three general circulation (MK3, HADCM3, MIROC3_2-MED) and three emissions scenarios (Bl, A1B, A2) to derive estimated future measurements of 14 environmental variables over three time periods (2020, 2050, 2080), and then modeled species distributions using these predicted environmental measurements for each time period under two dispersal hypotheses (full and zero, respectively). This resulted in a total of 6160 prediction models. We found that these ungulates, on average, may lose 30-50% of their distributional areas, depending on the dispersal scenarios. In addition, 55-68% of the ungulate species were predicted to become locally endangered under the different dispersal assumptions, 23-32% to become locally critically endangered, and 4-7 endemic species to become globally endangered. Furthermore, ungulate species ranges may experience average poleward shifts of ~300 km. We also predict west-to-east reductions in species richness: southeastern mountainous areas currently have the highest species richness, but are predicted to face the greatest diversity losses, whereas the northern areas are predicted to see increasing numbers of ungulate species in the 21st century. Our study indicates much more severe range reductions of ungulates on the Tibetan Plateau than those anticipated elsewhere in the world, and species richness patterns will change dramatically with climate change. For conservation, we suggest (1) securing existing protected areas, and (2) establishing new nature reserves to counterbalance climate change impacts.

  3. Climate change impacts on water availability: developing regional scenarios for agriculture of the Former Soviet Union countries of Central Asia

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Dronin, N.

    2010-12-01

    Water is the major factor, limiting agriculture of the five Former Soviet Union (FSU) of Central Asia. Elevated topography prevents moist and warm air from the Atlantic and Indian Oceans from entering the region.With exception of Kazakhstan, agriculture is generally restricted to oases and irrigated lands along the major rivers and canals. Availability of water for irrigation is the major factor constraining agriculture in the region, and conflicts over water are not infrequent. The current water crisis in the region is largely due to human activity; however the region is also strongly impacted by the climate. In multiple locations, planned and autonomous adaptations to climate change have already resulted in changes in agriculture, such as a dramatic increase in irrigation, or shift in crops towards the ones better suited for warmer and dryer climate; however, it is hard to differentiate between the effects of overall management improvement and the avoidance of climate-related losses. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and discuss the impact of climate change on future development of the region.

  4. Using Immersion to teach Global Climate Change

    NASA Astrophysics Data System (ADS)

    Sumners, C. T.; Handron, K.; Reiff, P. H.; Law, C. C.

    2004-12-01

    Students are increasingly jaded to programs that preach, and museums are increasingly finding it difficult to attract students who can retrieve information quickly from the internet or cable TV. A new medium of immersive theater can now engulf the viewer in the subject, bringing a novel view to the exciting new data sets and images now available. By telling a compelling story with characters they can identify with, global climate change can be experienced and its effects brought home in a dramatic and effective way. We have developed several shows highlighting climate change (Powers of Time, Secrets of the Dead Sea), and are developing new shows (Earth's Wild Ride, Earth in the Balance) which can be used to take the visitor into the past or into the future. Clips from the shows and evidence of their effectiveness as an educational tool for Earth science will be shown. If possible, our new portable dome system will be set up in the poster hall for longer live demos of our shows.

  5. In Brief: Arctic Report Card

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-11-01

    The 2009 annual update of the Arctic Report Card, issued on 22 October, indicates that “warming of the Arctic continues to be widespread, and in some cases dramatic. Linkages between air, land, sea, and biology are evident.” The report, a collaborative effort of 71 national and international scientists initiated in 2006 by the Climate Program Office of the U.S. National Oceanic and Atmospheric Administration (NOAA), highlights several concerns, including a change in large-scale wind patterns affected by the loss of summer sea ice; the replacement of multiyear sea ice by first-year sea ice; warmer and fresher water in the upper ocean linked to new ice-free areas; and the effects of the loss of sea ice on Arctic plant, animal, and fish species. “Climate change is happening faster in the Arctic than any other place on Earth-and with wide-ranging consequences,” said NOAA administrator Jane Lubchenco. “This year“s Arctic Report Card underscores the urgency of reducing greenhouse gas pollution and adapting to climate changes already under way.”

  6. Cross influences of ozone and sulfate precursor emissions changes on air quality and climate

    PubMed Central

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2006-01-01

    Tropospheric O3 and sulfate both contribute to air pollution and climate forcing. There is a growing realization that air quality and climate change issues are strongly connected. To date, the importance of the coupling between O3 and sulfate has not been fully appreciated, and thus regulations treat each pollutant separately. We show that emissions of O3 precursors can dramatically affect regional sulfate air quality and climate forcing. At 2030 in an A1B future, increased O3 precursor emissions enhance surface sulfate over India and China by up to 20% because of increased levels of OH and gas-phase SO2 oxidation rates and add up to 20% to the direct sulfate forcing for that region relative to the present day. Hence, O3 precursors impose an indirect forcing via sulfate, which is more than twice the direct O3 forcing itself (compare −0.61 vs. +0.35 W/m2). Regulatory policy should consider both air quality and climate and should address O3 and sulfate simultaneously because of the strong interaction between these species. PMID:16537360

  7. Coralline alga reveals first marine record of subarctic North Pacific climate change

    USGS Publications Warehouse

    Halfar, J.; Steneck, R.; Schone, B.; Moore, G.W.K.; Joachimski, M.; Kronz, A.; Fietzke, J.; Estes, James A.

    2007-01-01

    While recent changes in subarctic North Pacific climate had dramatic effects on ecosystems and fishery yields, past climate dynamics and teleconnection patterns are poorly understood due to the absence of century-long high-resolution marine records. We present the first 117-year long annually resolved marine climate history from the western Bering Sea/Aleutian Island region using information contained in the calcitic skeleton of the long-lived crustose coralline red alga Clathromorphum nereostratum, a previously unused climate archive. The skeletal ??18O-time series indicates significant warming and/or freshening of surface waters after the middle of the 20th century. Furthermore, the time series is spatiotemporally correlated with Pacific Decadal Oscillation (PDO) and tropical El Nio??-Southern Oscillation (ENSO) indices. Even though the western Bering Sea/Aleutian Island region is believed to be outside the area of significant marine response to ENSO, we propose that an ENSO signal is transmitted via the Alaskan Stream from the Eastern North Pacific, a region of known ENSO teleconnections. Copyright 2007 by the American Geophysical Union.

  8. The fate of threatened coastal dune habitats in Italy under climate change scenarios.

    PubMed

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T R

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.

  9. The Fate of Threatened Coastal Dune Habitats in Italy under Climate Change Scenarios

    PubMed Central

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T. R.

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an “indirect” plant-species-based one and a simple “direct” one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the “direct” approach was unsatisfactory, “indirect” models had a good predictive performance, highlighting the importance of using species’ responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats’ distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future. PMID:23874787

  10. On the Edge: the Impact of Climate Change, Climate Extremes, and Climate-driven Disturbances on the Food-Energy-Water Nexus in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; McDowell, N. G.; Tidwell, V. C.; Xu, C.; Solander, K.; Jonko, A. K.; Wilson, C. J.; Middleton, R. S.

    2016-12-01

    The Colorado River Basin (CRB) is a critical watershed in terms of vulnerability to climate change and supporting the food-energy-water nexus. Climate-driven disturbances in the CRB—including wildfire, drought, and pests—threaten the watershed's ability to reliably support a wide array of ecosystem services while meeting the interrelated demands of the food-energy-water nexus. Our work illustrates future changes for upper Colorado River headwater basins using the Variable Infiltration Capacity hydrologic model driven by downscaled CMIP5 global climate data coupled with pseudo-dynamic vegetation shifts associated with changing fire and drought conditions. We examine future simulated streamflow within the context of an operational model framework to consider the impacts on water operators and managers who rely upon the timely and continual delivery of streamflow. We focus on results for a large case study basin within the CRB—the San Juan River—showing future scenarios where this ecosystem is pushed towards the extremes. Our findings illustrate that landscape change in the CRB cause delayed snowmelt and increased evapotranspiration from shrublands, which leads to increases in the frequency and magnitude of both droughts and floods within disturbed systems. By 2080, coupled climate and landscape change produces a dramatically altered hydrograph resulting in larger peak flows, reduced lower flows, and lower overall streamflow. Operationally, this results in increased future water delivery challenges and lower reservoir storages driven by changes in the headwater basins. Ultimately, our work shows that the already-stressed CRB ecosystem could, in the future, be pushed over a tipping point, significantly impacting the basin's ability to reliably supply water for food, energy, and urban uses.

  11. Hurricane Sandy and Adaptation Pathways in New York: Lessons from a First-Responder City

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Solecki, William

    2014-01-01

    Two central issues of climate change have become increasingly evident: Climate change will significantly affect cities; and rapid global urbanization will increase dramatically the number of individuals, amount of critical infrastructure, and means of economic production that are exposed and vulnerable to dynamic climate risks. Simultaneously, cities in many settings have begun to emerge as early adopters of climate change action strategies including greenhouse gas mitigation and adaptation. The objective of this paper is to examine and analyze how officials of one city - the City of New York - have integrated a flexible adaptation pathways approach into the municipality's climate action strategy. This approach has been connected with the City's ongoing response to Hurricane Sandy, which struck in the October 2012 and resulted in damages worth more than US$19 billion. A case study narrative methodology utilizing the Wise et al. conceptual framework (see this volume) is used to evaluate the effectiveness of the flexible adaptation pathways approach in New York City. The paper finds that Hurricane Sandy serves as a ''tipping point'' leading to transformative adaptation due to the explicit inclusion of increasing climate change risks in the rebuilding effort. The potential for transferability of the approach to cities varying in size and development stage is discussed, with elements useful across cities including the overall concept of flexible adaptation pathways, the inclusion of the full metropolitan region in the planning process, and the co-generation of climate-risk information by stakeholders and scientists.

  12. Multiple-scale Proximal Sensor and Remote Imagery Technology for Sustaining Agricultural Productivity During Climate Change

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.; Scudiero, E.

    2016-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley. Climate change has impacted water availability, which subsequently has impacted soil salinity levels in the root zone, especially on the west side of the San Joaquin Valley (WSJV). Inventorying and monitoring the extent of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation management strategies that will sustain the agricultural productivity of the WSJV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for the WSJV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Land resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  13. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30years.

    PubMed

    Zhang, Zengxin; Chang, Juan; Xu, Chong-Yu; Zhou, Yang; Wu, Yanhong; Chen, Xi; Jiang, Shanshan; Duan, Zheng

    2018-09-01

    Lakes and vegetation are important factors of the Earth's hydrological cycle and can be called an "indicator" of climate change. In this study, long-term changes of lakes' area and vegetation coverage in the Qinghai-Tibetan Plateau (QTP) and their relations to the climate change were analyzed by using Mann-Kendall method during the past 30years. Results showed that: 1) the lakes' area of the QTP increased significantly during the past 30years as a whole, and the increasing rates have been dramatically sped up since the year of 2000. Among them, the area of Ayakekumu Lake has the fastest growing rate of 51.35%, which increased from 618km 2 in the 1980s to 983km 2 in the 2010s; 2) overall, the Normalized Difference Vegetation Index (NDVI) increased in the QTP during the past 30years. Above 79% of the area in the QTP showed increasing trend of NDVI before the year of 2000; 3) the air temperature increased significantly, the precipitation increased slightly, and the pan evaporation decreased significantly during the past 30years. The lake area and vegetation coverage changes might be related to the climate change. The shifts in the temporal climate trend occurred around the year 2000 had led the lake area and vegetation coverage increasing. This study is of importance in further understanding the environmental changes under global warming over the QTP. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Social acceptability of bioenergy in the U.S

    Treesearch

    J. Peter Brosius; John Schelhas; Sarah Hitchner

    2013-01-01

    Global interest in bioenergy development has increased dramatically in recent years, due to its promise to reduce dependence on fossil fuel energy supplies, its contribution to global and national energy security, its potential to produce a carbon negative or neutral fuel source and to mitigate climate change, and its potential as a vehicle for rural development....

  15. An Examination of Intrinsic Existence Value towards Wildlife of Columbus Zoo and Aquariums Tourists: Evaluating the Impact of behind the Scenes Programming

    ERIC Educational Resources Information Center

    Lakes, Robert Maxwell

    2016-01-01

    Changes in climate and the corresponding environmental issues are major concerns facing the world today. Human consumption, which is leading the rapid depletion of the earth's finite resources and causing a dramatic loss of biodiversity, is largely to blame (Pearson, Lowry, Dorrian, & Litchfield, 2014). American zoos and aquariums are…

  16. Addressing Challenging Behaviours in the General Education Setting: Conducting a Teacher-Based Functional Behavioural Assessment (FBA)

    ERIC Educational Resources Information Center

    Moreno, Gerardo

    2011-01-01

    When a student demonstrates a challenging or problematic behaviour in the classroom, the climate and the instructional experience can change dramatically for both the students and the classroom teacher. Before resorting to sanctions and punitive consequences, there is a series of steps a classroom teacher can conduct to reduce and replace the…

  17. A five year view on the contribution of snowmelt to flow in the Willamette River using water stable isotopes

    EPA Science Inventory

    Much of the water that people in Western Oregon rely on come from the snowpack in the Cascade Mountains, and this snowpack is expected to decrease in coming years with climate change. In fact, the past five years have shown dramatic variation in snowpack from a high of 174% of n...

  18. The importance of planetary rotation period for ocean heat transport.

    PubMed

    Cullum, J; Stevens, D; Joshi, M

    2014-08-01

    The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier--the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability.

  19. The origins of computer weather prediction and climate modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Peter

    2008-03-20

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. Amore » fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.« less

  20. The origins of computer weather prediction and climate modeling

    NASA Astrophysics Data System (ADS)

    Lynch, Peter

    2008-03-01

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.

  1. Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China

    NASA Astrophysics Data System (ADS)

    Li, Zhiying; Fang, Haiyan

    2017-09-01

    Climate change is expected to impact discharge and sediment yield in watersheds. The purpose of this paper is to assess the potential impacts of climate change on water discharge and sediment yield for the Yi'an watershed of the black soil region, northeastern China, based on the newly released Representative Concentration Pathways (RCPs) during 2071-2099. For this purpose, the TETIS model was implemented to simulate the hydrological and sedimentological responses to climate change. The model calibration (1971-1977) and validation (1978-1987) performances were rated as satisfactory. The modeling results for the four RCP scenarios relative to the control scenario under the same land use configuration indicated an increase in discharge of 16.3% (RCP 2.6), 14.3% (RCP 4.5), 36.7% (RCP 6.0) and 71.4% (RCP 8.5) and an increase in the sediment yield of 16.5% (RCP 2.6), 32.4% (RCP 4.5), 81.8% (RCP 6.0) and 170% (RCP 8.5). This implies that the negative impact of climate change on sediment yield is generally greater than that on discharge. At the monthly scale, both discharge and sediment yield increased dramatically in April to June and August to September. A more vigorous hydrological cycle and an increase in high values of sediment yield are also expected. These changes in annual discharge and sediment yield were closely linked with changes in precipitation, whereas monthly changes in late spring and autumn were mainly related to temperature. This study highlights the possible adverse impact of climate change on discharge and sediment yield in the black soil region of northeastern China and could provide scientific basis for adaptive management.

  2. Modeling the Evolution of Riparian Woodlands Facing Climate Change in Three European Rivers with Contrasting Flow Regimes

    PubMed Central

    Rivaes, Rui P.; Rodríguez-González, Patricia M.; Ferreira, Maria Teresa; Pinheiro, António N.; Politti, Emilio; Egger, Gregory; García-Arias, Alicia; Francés, Felix

    2014-01-01

    Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change. PMID:25330151

  3. Determining the response of African biota to climate change: using the past to model the future.

    PubMed

    Willis, K J; Bennett, K D; Burrough, S L; Macias-Fauria, M; Tovar, C

    2013-01-01

    Prediction of biotic responses to future climate change in tropical Africa tends to be based on two modelling approaches: bioclimatic species envelope models and dynamic vegetation models. Another complementary but underused approach is to examine biotic responses to similar climatic changes in the past as evidenced in fossil and historical records. This paper reviews these records and highlights the information that they provide in terms of understanding the local- and regional-scale responses of African vegetation to future climate change. A key point that emerges is that a move to warmer and wetter conditions in the past resulted in a large increase in biomass and a range distribution of woody plants up to 400-500 km north of its present location, the so-called greening of the Sahara. By contrast, a transition to warmer and drier conditions resulted in a reduction in woody vegetation in many regions and an increase in grass/savanna-dominated landscapes. The rapid rate of climate warming coming into the current interglacial resulted in a dramatic increase in community turnover, but there is little evidence for widespread extinctions. However, huge variation in biotic response in both space and time is apparent with, in some cases, totally different responses to the same climatic driver. This highlights the importance of local features such as soils, topography and also internal biotic factors in determining responses and resilience of the African biota to climate change, information that is difficult to obtain from modelling but is abundant in palaeoecological records.

  4. The Post-Glacial Species Velocity of Picea glauca following the Last Glacial Maximum in Alaska.

    NASA Astrophysics Data System (ADS)

    Morrison, B. D.; Napier, J.; Kelly, R.; Li, B.; Heath, K.; Hug, B.; Hu, F.; Greenberg, J. A.

    2015-12-01

    Anthropogenic climate change is leading to dramatic fluctuations to Earth's biodiversity that has not been observed since past interglacial periods. There is rising concern that Earth's warming climate will have significant impacts to current species ranges and the ability of a species to persist in a rapidly changing environment. The paleorecord provides information on past species distributions in relation to climate change, which can illuminate the patterns of potential future distributions of species. Particularly in areas where there are multiple potential limiting factors on a species' range, e.g. temperature, radiation, and evaporative demand, the spatial patterns of species migrations may be particularly complex. In this study, we assessed the change in the distributions of white spruce (Picea glauca) from the Last Glacial Maxima (LGM) to present-day for the entire state of Alaska. To accomplish this, we created species distribution models (SDMs) calibrated from modern vegetation data and high-resolution, downscaled climate surfaces at 60m. These SDMs were applied to downscaled modern and paleoclimate surfaces to produce estimated ranges of white spruce during the LGM and today. From this, we assessed the "species velocity", the rate at which white spruce would need to migrate to keep pace with climate change, with the goal of determining whether the expansion from the LGM to today originated from microclimate refugia. Higher species velocities indicate locations where climate changed drastically and white spruce would have needed to migrate rapidly to persist and avoid local extinction. Conversely, lower species velocities indicated locations where the local climate was changing less rapidly or was within the center of the range of white spruce, and indicated locations where white spruce distributions were unlikely to have changed significantly. Our results indicate the importance of topographic complexity in buffering the effects of climate change, particularly near the edges of the species' range.

  5. Response of northern hemisphere environmental and atmospheric conditions to climate changes using Greenland aerosol records from the Eemian to the Holocene

    NASA Astrophysics Data System (ADS)

    Fischer, H.

    2017-12-01

    The Northern Hemisphere experienced dramatic climate changes over the last glacial cycle, including vast ice sheet expansion and frequent abrupt climate events. Moreover, high northern latitudes during the last interglacial (Eemian) were warmer than today and may provide guidance for future climate change scenarios. However, little evidence exists regarding the environmental alterations connected to these climate changes. Using aerosol concentration records in decadal resolution from the North Greenland Eemian Ice Drilling (NEEM) over the last 128,000 years we extract quantitative information on environmental changes, including the first comparison of northern hemisphere environmental conditions between the warmer than present Eemian and the early Holocene. Separating source changes from transport effects, we find that changes in the ice concentration greatly overestimate the changes in atmospheric concentrations in the aerosol source region, the latter mirroring changes in aerosol emissions. Glacial times were characterized by a strong reduction in terrestrial biogenic emissions (only 10-20% of the early Holocene value) reflecting the net loss of vegetated area in mid to high latitudes, while rapid climate changes during the glacial had essentially no effect on terrestrial biogenic aerosol emissions. An increase in terrestrial dust emissions of approximately a factor of eight during peak glacial and cold stadial intervals indicates higher aridity and dust storm activity in Asian deserts. Glacial sea salt aerosol emissions increased only moderately (by approximately 50%), likely due to sea ice expansion, while marked stadial/interstadial variations in sea salt concentrations in the ice reflect mainly changes in wet deposition en route. Eemian ice contains lower aerosol concentrations than ice from the early Holocene, due to shortened atmospheric residence time during the warmer Eemian, suggesting that generally 2°C warmer climate in high northern latitudes did not change environmental conditions controlling aerosol formation in the source regions significantly.

  6. Climate change and marine ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Chavez, F.

    2013-12-01

    Impacts of climate variability on marine ecosystems are pervasive. Those associated with the interannual El Ni~no phenomena are the most studied and better understood. Longer term variations associated with the Atlantic Multidecadal Oscillation (AMO), the Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO) have become more evident as the present-day instrumental record has increased in length. The biological (chlorophyll to fish) and chemical (nutrients, oxygen, carbon) consequences of these climate-driven variations are discussed with an emphasis on the eastern and equatorial Pacific. During warmer periods biological productivity in the eastern Pacific is reduced and larger mobile organisms dramatically change their abundance and/or geographic distributions. At the same time biological productivity in the western Pacific increases highlighting that present (and future) climate-driven changes in biological productivity and chemical distributions are not (and will not) be uniform. The presentation documents present day variations using global scale information from satellites and in situ databases, model simulations and data collected by intensive local time series. Paradoxically longer term changes associated with phenomena like the Little Ice Age (LIA), captured in the sedimentary record, do not seem to follow the same warm (poor), cold (productive) patterns in the eastern Pacific, in fact these are reversed. The presentation ends with speculation regarding long term changes associated with a warmer world.

  7. Land Management in the Anthropocene: Is History Still Relevant?

    NASA Astrophysics Data System (ADS)

    Safford, Hugh D.; Betancourt, Julio L.; Hayward, Gregory D.; Wiens, John A.; Regan, Claudia M.

    2008-09-01

    Incorporating Historical Ecology and Climate Change Into Land Management; Lansdowne, Virginia, 22-25 April 2008; Ecological restoration, conservation, and land management are often based on comparisons with reference sites or time periods, which are assumed to represent ``natural'' or ``properly functioning'' conditions. Such reference conditions can provide a vision of the conservation or management goal and a means to measure progress toward that vision. Although historical ecology has been used successfully to guide resource management in many parts of the world, the continuing relevance of history is now being questioned. Some scientists doubt that lessons from the past can inform management in what may be a dramatically different future, given profound climate change, accelerated land use, and an onslaught of plant and animal invasions.

  8. Record-Breaking Early Flowering in the Eastern United States

    PubMed Central

    Ellwood, Elizabeth R.; Temple, Stanley A.; Primack, Richard B.; Davis, Charles C.

    2013-01-01

    Flowering times are well-documented indicators of the ecological effects of climate change and are linked to numerous ecosystem processes and trophic interactions. Dozens of studies have shown that flowering times for many spring-flowering plants have become earlier as a result of recent climate change, but it is uncertain if flowering times will continue to advance as temperatures rise. Here, we used long-term flowering records initiated by Henry David Thoreau in 1852 and Aldo Leopold in 1935 to investigate this question. Our analyses demonstrate that record-breaking spring temperatures in 2010 and 2012 in Massachusetts, USA, and 2012 in Wisconsin, USA, resulted in the earliest flowering times in recorded history for dozens of spring-flowering plants of the eastern United States. These dramatic advances in spring flowering were successfully predicted by historical relationships between flowering and spring temperature spanning up to 161 years of ecological change. These results demonstrate that numerous temperate plant species have yet to show obvious signs of physiological constraints on phenological advancement in the face of climate change. PMID:23342001

  9. THE INFLUENCE OF GLOBAL CLIMATE CHANGE ON THE SCIENTIFIC FOUNDATIONS AND APPLICATIONS OF ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY: INTRODUCTION TO A SETAC INTERNATIONAL WORKSHOP

    PubMed Central

    Stahl, Ralph G; Hooper, Michael J; Balbus, John M; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S Jannicke

    2013-01-01

    This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled “The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry.” The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners. Environ. Toxicol. Chem. 2013;32:13–19. © 2012 SETAC PMID:23097130

  10. Graptolite community responses to global climate change and the Late Ordovician mass extinction.

    PubMed

    Sheets, H David; Mitchell, Charles E; Melchin, Michael J; Loxton, Jason; Štorch, Petr; Carlucci, Kristi L; Hawkins, Andrew D

    2016-07-26

    Mass extinctions disrupt ecological communities. Although climate changes produce stress in ecological communities, few paleobiological studies have systematically addressed the impact of global climate changes on the fine details of community structure with a view to understanding how changes in community structure presage, or even cause, biodiversity decline during mass extinctions. Based on a novel Bayesian approach to biotope assessment, we present a study of changes in species abundance distribution patterns of macroplanktonic graptolite faunas (∼447-444 Ma) leading into the Late Ordovician mass extinction. Communities at two contrasting sites exhibit significant decreases in complexity and evenness as a consequence of the preferential decline in abundance of dysaerobic zone specialist species. The observed changes in community complexity and evenness commenced well before the dramatic population depletions that mark the tipping point of the extinction event. Initially, community changes tracked changes in the oceanic water masses, but these relations broke down during the onset of mass extinction. Environmental isotope and biomarker data suggest that sea surface temperature and nutrient cycling in the paleotropical oceans changed sharply during the latest Katian time, with consequent changes in the extent of the oxygen minimum zone and phytoplankton community composition. Although many impacted species persisted in ephemeral populations, increased extinction risk selectively depleted the diversity of paleotropical graptolite species during the latest Katian and early Hirnantian. The effects of long-term climate change on habitats can thus degrade populations in ways that cascade through communities, with effects that culminate in mass extinction.

  11. Graptolite community responses to global climate change and the Late Ordovician mass extinction

    NASA Astrophysics Data System (ADS)

    Sheets, H. David; Mitchell, Charles E.; Melchin, Michael J.; Loxton, Jason; Štorch, Petr; Carlucci, Kristi L.; Hawkins, Andrew D.

    2016-07-01

    Mass extinctions disrupt ecological communities. Although climate changes produce stress in ecological communities, few paleobiological studies have systematically addressed the impact of global climate changes on the fine details of community structure with a view to understanding how changes in community structure presage, or even cause, biodiversity decline during mass extinctions. Based on a novel Bayesian approach to biotope assessment, we present a study of changes in species abundance distribution patterns of macroplanktonic graptolite faunas (˜447-444 Ma) leading into the Late Ordovician mass extinction. Communities at two contrasting sites exhibit significant decreases in complexity and evenness as a consequence of the preferential decline in abundance of dysaerobic zone specialist species. The observed changes in community complexity and evenness commenced well before the dramatic population depletions that mark the tipping point of the extinction event. Initially, community changes tracked changes in the oceanic water masses, but these relations broke down during the onset of mass extinction. Environmental isotope and biomarker data suggest that sea surface temperature and nutrient cycling in the paleotropical oceans changed sharply during the latest Katian time, with consequent changes in the extent of the oxygen minimum zone and phytoplankton community composition. Although many impacted species persisted in ephemeral populations, increased extinction risk selectively depleted the diversity of paleotropical graptolite species during the latest Katian and early Hirnantian. The effects of long-term climate change on habitats can thus degrade populations in ways that cascade through communities, with effects that culminate in mass extinction.

  12. Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean

    PubMed Central

    Favier, V.; Verfaillie, D.; Berthier, E.; Menegoz, M.; Jomelli, V.; Kay, J. E.; Ducret, L.; Malbéteau, Y.; Brunstein, D.; Gallée, H.; Park, Y.-H.; Rinterknecht, V.

    2016-01-01

    The ongoing retreat of glaciers at southern sub-polar latitudes is particularly rapid and widespread. Akin to northern sub-polar latitudes, this retreat is generally assumed to be linked to warming. However, no long-term and well-constrained glacier modeling has ever been performed to confirm this hypothesis. Here, we model the Cook Ice Cap mass balance on the Kerguelen Islands (Southern Indian Ocean, 49°S) since the 1850s. We show that glacier wastage during the 2000s in the Kerguelen was among the most dramatic on Earth. We attribute 77% of the increasingly negative mass balance since the 1960s to atmospheric drying associated with a poleward shift of the mid-latitude storm track. Because precipitation modeling is very challenging for the current generation of climate models over the study area, models incorrectly simulate the climate drivers behind the recent glacier wastage in the Kerguelen. This suggests that future glacier wastage projections should be considered cautiously where changes in atmospheric circulation are expected. PMID:27580801

  13. Reemergence of sea ice cover anomalies and the role of the sea ice-albedo feedback in CCSM simulations

    NASA Astrophysics Data System (ADS)

    Deweaver, E. T.

    2008-12-01

    The dramatic sea ice decline of 2007 and lack of recovery in 2008 raise the question of a "tipping point" for Arctic sea ice, beyond which the transition to a seasonal sea ice state becomes abrupt and irreversible. The tipping point is essentially a "memory catastrophe", in which a dramatic loss of sea ice in one summer is "remembered" in reduced ice thickness over the winter season and leads to a comparably dramatic loss the following summer. The dominant contributor to this memory is presumably the sea ice - albedo feedback (SIAF), in which excess insolation absorbed due to low summer ice cover leads to a shorter ice growth season and hence thinner ice. While these dynamics are clearly important, they are difficult to quantify given the lack of long-term observations in the Arctic and the suddenness of the recent loss. Alternatively, we attempt to quantify the contribution of the SIAF to the year-to-year memory of sea ice cover anomalies in simulations of the NCAR Community Climate System Model (CCSM) under 20th century conditions. Lagged autocorrelation plots of sea ice area anomalies show that anomalies in one year tend to "reemerge" in the following year. Further experiments using a slab ocean model (SOM) are used to assess the contribution of oceanic processes to the year-to-year reemergence. This contribution is substantial, particularly in the winter season, and includes memory due to the standard mixed layer reemergence mechanism and low-frequency ocean heat transport anomalies. The contribution of the SIAF to persistence in the SOM experiment is determined through additional experiments in which the SIAF is disabled by fixing surface albedo to its climatological value regardless of sea ice concentration anomalies. SIAF causes a 50% increase in the magnitude of the anomalies but a relatively small increase in their persistence. Persistence is not dramatically increased because the enhancement of shortwave flux anomalies by SIAF is compensated by stronger turbulent heat flux losses in the cold season. The role of turbulent heat fluxes is somewhat inconsistent with the retrospective 20th century simulations from PIOMAS, in which increased insolation is balanced by longwave heat loss. By fitting the area anomaly time series for the SIAF and no-SIAF integrations to an AR1 process, the change in net feedback due to SIAF is calculated. The change in net feedback implies that SIAF increases the climate sensitivity of September sea ice to external forcing (greenhouse gas increases) by about 20%. The modest increase in sea ice sensitivity is confirmed by further climate change experiments with and without SIAF with the CCSM/SOM model. The small role for SIAF is somewhat surprising given the prevalence of "abrupt loss" events in CCSM climate change simulations. However, it is consistent with claims that the dominant factor in abrupt loss events is the sea ice thickness at the event onset.

  14. Anticipating changes to future connectivity within a network of marine protected areas.

    PubMed

    Coleman, Melinda A; Cetina-Heredia, Paulina; Roughan, Moninya; Feng, Ming; van Sebille, Erik; Kelaher, Brendan P

    2017-09-01

    Continental boundary currents are projected to be altered under future scenarios of climate change. As these currents often influence dispersal and connectivity among populations of many marine organisms, changes to boundary currents may have dramatic implications for population persistence. Networks of marine protected areas (MPAs) often aim to maintain connectivity, but anticipation of the scale and extent of climatic impacts on connectivity are required to achieve this critical conservation goal in a future of climate change. For two key marine species (kelp and sea urchins), we use oceanographic modelling to predict how continental boundary currents are likely to change connectivity among a network of MPAs spanning over 1000 km of coastline off the coast of eastern Australia. Overall change in predicted connectivity among pairs of MPAs within the network did not change significantly over and above temporal variation within climatic scenarios, highlighting the need for future studies to incorporate temporal variation in dispersal to robustly anticipate likely change. However, the intricacies of connectivity between different pairs of MPAs were noteworthy. For kelp, poleward connectivity among pairs of MPAs tended to increase in the future, whereas equatorward connectivity tended to decrease. In contrast, for sea urchins, connectivity among pairs of MPAs generally decreased in both directions. Self-seeding within higher-latitude MPAs tended to increase, and the role of low-latitude MPAs as a sink for urchins changed significantly in contrasting ways. These projected changes have the potential to alter important genetic parameters with implications for adaptation and ecosystem vulnerability to climate change. Considering such changes, in the context of managing and designing MPA networks, may ensure that conservation goals are achieved into the future. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  15. Energy flow and functional compensation in Great Basin small mammals under natural and anthropogenic environmental change

    PubMed Central

    Terry, Rebecca C.; Rowe, Rebecca J.

    2015-01-01

    Research on the ecological impacts of environmental change has primarily focused at the species level, leaving the responses of ecosystem-level properties like energy flow poorly understood. This is especially so over millennial timescales inaccessible to direct observation. Here we examine how energy flow within a Great Basin small mammal community responded to climate-driven environmental change during the past 12,800 y, and use this baseline to evaluate responses observed during the past century. Our analyses reveal marked stability in energy flow during rapid climatic warming at the terminal Pleistocene despite dramatic turnover in the distribution of mammalian body sizes and habitat-associated functional groups. Functional group turnover was strongly correlated with climate-driven changes in regional vegetation, with climate and vegetation change preceding energetic shifts in the small mammal community. In contrast, the past century has witnessed a substantial reduction in energy flow caused by an increase in energetic dominance of small-bodied species with an affinity for closed grass habitats. This suggests that modern changes in land cover caused by anthropogenic activities—particularly the spread of nonnative annual grasslands—has led to a breakdown in the compensatory dynamics of energy flow. Human activities are thus modifying the small mammal community in ways that differ from climate-driven expectations, resulting in an energetically novel ecosystem. Our study illustrates the need to integrate across ecological and temporal scales to provide robust insights for long-term conservation and management. PMID:26170294

  16. Interactions of climate change with biological invasions and land use in the Hawaiian Islands: Modeling the fate of endemic birds using a geographic information system.

    PubMed

    Benning, Tracy L; LaPointe, Dennis; Atkinson, Carter T; Vitousek, Peter M

    2002-10-29

    The Hawaiian honeycreepers (Drepanidae) represent a superb illustration of evolutionary radiation, with a single colonization event giving rise to 19 extant and at least 10 extinct species [Curnutt, J. & Pimm, S. (2001) Stud. Avian Biol. 22, 15-30]. They also represent a dramatic example of anthropogenic extinction. Crop and pasture land has replaced their forest habitat, and human introductions of predators and diseases, particularly of mosquitoes and avian malaria, has eliminated them from the remaining low- and mid-elevation forests. Landscape analyses of three high-elevation forest refuges show that anthropogenic climate change is likely to combine with past land-use changes and biological invasions to drive several of the remaining species to extinction, especially on the islands of Kauai and Hawaii.

  17. Using Internet of Things inspired wireless sensor networks to monitor cryospheric processes

    NASA Astrophysics Data System (ADS)

    Hart, J. K.; Martinez, K.

    2017-12-01

    In order to understand how modern climate change is effecting cryospheric environments we need to monitor these remote environments. There are few measurements of current day conditions because of the logistical difficulties. In particular, the whole year needs to be monitored, as well as accessing challenging environments (such as beneath the glacier). We demonstrate from Norway, Iceland and Scotland how embedded sensors along with geophysical (GPR)and surveying data (dGPS, TLS, UAV and time-lapse photography) can be used to investigate recent dramatic environmental changes associated with climate change. This includes: i) a comparison between stable and unstable glacier retreat (the subglacial hydrology, glacier motion, englacial structure and till behaviour of a rapid subaqueous glacier break-up compared with slower terrestrial retreat); and iii) an investigation of future ground stability and greenhouse gas release associated with periglacial conditions.

  18. Interactions of climate change with biological invasions and land use in the Hawaiian Islands: Modeling the fate of endemic birds using a geographic information system

    PubMed Central

    Benning, Tracy L.; LaPointe, Dennis; Atkinson, Carter T.; Vitousek, Peter M.

    2002-01-01

    The Hawaiian honeycreepers (Drepanidae) represent a superb illustration of evolutionary radiation, with a single colonization event giving rise to 19 extant and at least 10 extinct species [Curnutt, J. & Pimm, S. (2001) Stud. Avian Biol. 22, 15–30]. They also represent a dramatic example of anthropogenic extinction. Crop and pasture land has replaced their forest habitat, and human introductions of predators and diseases, particularly of mosquitoes and avian malaria, has eliminated them from the remaining low- and mid-elevation forests. Landscape analyses of three high-elevation forest refuges show that anthropogenic climate change is likely to combine with past land-use changes and biological invasions to drive several of the remaining species to extinction, especially on the islands of Kauai and Hawaii. PMID:12374870

  19. Potential 21st century changes to the mammal fauna of Denmark - implications of climate change, land-use, and invasive species

    NASA Astrophysics Data System (ADS)

    Fløjgaard, Camilla; Morueta-Holme, Naia; Skov, Flemming; Madsen, Aksel Bo; Svenning, Jens-Christian

    2009-11-01

    The moderate temperature increase of 0.74 °C in the 20th century has caused latitudinal and altitudinal range shifts in many species including mammals. Therefore, given the more dramatic temperature increase predicted for the 21st century, we can therefore expect even stronger range shifts as well. However, European mammals are already faced with other anthropogenic pressures, notably habitat loss, pollution, overexploitation, and invasive species, and will have to face the combined challenge posed by climate change in a landscape highly influenced by human activities. As an example of the possible consequences of land use, invasive species, and climate change for the regional-scale mammal species composition, we here focus on the potential 21st century changes to the mammal fauna of Denmark. Supported by species distribution modelling, we present a discussion of the possible changes to the Danish mammal fauna: Which species are likely to become locally extinct? Which new species are most likely to immigrate? And, what is the potential threat from invasive species? We find that future climate change is likely to cause a general enrichment of the Danish mammal fauna by the potential immigration of seventeen new species. Only the northern birch mouse (Sicista betulina) is at risk of extinction from climate change predicted. The European native mammals are not anticipated to contribute to the invasive-species problem as they coexist with most Danish species in other parts of Europe. However, non-European invasive species are also likely to enter the Danish fauna and may negatively impact the native species.

  20. The Nested Regional Climate Model: An Approach Toward Prediction Across Scales

    NASA Astrophysics Data System (ADS)

    Hurrell, J. W.; Holland, G. J.; Large, W. G.

    2008-12-01

    The reality of global climate change has become accepted and society is rapidly moving to questions of consequences on space and time scales that are relevant to proper planning and development of adaptation strategies. There are a number of urgent challenges for the scientific community related to improved and more detailed predictions of regional climate change on decadal time scales. Two important examples are potential impacts of climate change on North Atlantic hurricane activity and on water resources over the intermountain West. The latter is dominated by complex topography, so that accurate simulations of regional climate variability and change require much finer spatial resolution than is provided with state-of-the-art climate models. Climate models also do not explicitly resolve tropical cyclones, even though these storms have dramatic societal impacts and play an important role in regulating climate. Moreover, the debate over the impact of global warming on tropical cyclones has at times been acrimonious, and the lack of hard evidence has left open opportunities for misinterpretation and justification of pre-existing beliefs. These and similar topics are being assessed at NCAR, in partnership with university colleagues, through the development of a Nested Regional Climate Model (NRCM). This is an ambitious effort to combine a state of the science mesoscale weather model (WRF), a high resolution regional ocean modeling system (ROMS), and a climate model (CCSM) to better simulate the complex, multi-scale interactions intrinsic to atmospheric and oceanic fluid motions that are limiting our ability to predict likely future changes in regional weather statistics and climate. The NRCM effort is attracting a large base of earth system scientists together with societal groups as diverse as the Western Governor's Association and the offshore oil industry. All of these groups require climate data on scales of a few kilometers (or less), so that the NRCM program is producing unique data sets of climate change scenarios of immense interest. In addition, all simulations are archived in a form that will be readily accessible to other researchers, thus enabling a wider group to investigate these important issues.

  1. Will a warmer and wetter future cause extinction of native Hawaiian forest birds?

    PubMed

    Liao, Wei; Elison Timm, Oliver; Zhang, Chunxi; Atkinson, Carter T; LaPointe, Dennis A; Samuel, Michael D

    2015-12-01

    Isolation of the Hawaiian archipelago produced a highly endemic and unique avifauna. Avian malaria (Plasmodium relictum), an introduced mosquito-borne pathogen, is a primary cause of extinctions and declines of these endemic honeycreepers. Our research assesses how global climate change will affect future malaria risk and native bird populations. We used an epidemiological model to evaluate future bird-mosquito-malaria dynamics in response to alternative climate projections from the Coupled Model Intercomparison Project. Climate changes during the second half of the century accelerate malaria transmission and cause a dramatic decline in bird abundance. Different temperature and precipitation patterns produce divergent trajectories where native birds persist with low malaria infection under a warmer and dryer projection (RCP4.5), but suffer high malaria infection and severe reductions under hot and dry (RCP8.5) or warm and wet (A1B) futures. We conclude that future global climate change will cause significant decreases in the abundance and diversity of remaining Hawaiian bird communities. Because these effects appear unlikely before mid-century, natural resource managers have time to implement conservation strategies to protect this unique avifauna from further decimation. Similar climatic drivers for avian and human malaria suggest that mitigation strategies for Hawai'i have broad application to human health. © 2015 John Wiley & Sons Ltd.

  2. Forest expansion and climate change in the Mountain Hemlock (Tsuga mertensiana) zone, Lassen Volcanic National Park, California, U.S.A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A.H.

    1995-08-01

    The relationship between climate change and the dynamics of ecotonal populations of mountain hemlock (Tsuga mertensiana [Bong.] Carr.) was determined by comparing climate and the age structure of trees from 24 plots and seedlings from 13 plots in the subalpine zone of Lassen Volcanic National Park, California. Tree establishment was greatest during periods with above normal annual and summer temperatures, and normal or above normal precipitation. Seedling establishment was positively correlated with above normal annual and summer temperatures and negatively correlated with April snowpack depth. The different responses of trees and seedlings to precipitation variation is probably related to sitemore » soil moisture conditions. Mountain hemlock populations began to expand in 1842 and establishment increased dramatically after 1880 and peaked during a warm mesic period between 1895 and 1910. The onset of forest expansion coincides with warming that began at the end of the Little Ice Age (1850-1880). These data indicate that stability of the mountain hemlock ecotone is strongly influenced by climate. If warming induced by greenhouse gases does occur as climate models predict, then the structure and dynamics of near timberline forests in the Pacific Northwest will change. 52 refs., 8 figs., 3 tabs.« less

  3. Groundwater-surface water interactions in the hyporheic zone under climate change scenarios.

    PubMed

    Zhou, Shangbo; Yuan, Xingzhong; Peng, Shuchan; Yue, Junsheng; Wang, Xiaofeng; Liu, Hong; Williams, D Dudley

    2014-12-01

    Slight changes in climate, such as the rise of temperature or alterations of precipitation and evaporation, will dramatically influence nearly all freshwater and climate-related hydrological behavior on a global scale. The hyporheic zone (HZ), where groundwater (GW) and surface waters (SW) interact, is characterized by permeable sediments, low flow velocities, and gradients of physical, chemical, and biological characteristics along the exchange flows. Hyporheic metabolism, that is biogeochemical reactions within the HZ as well as various processes that exchange substances and energy with adjoining systems, is correlated with hyporheic organisms, habitats, and the organic matter (OM) supplied from GW and SW, which will inevitably be influenced by climate-related variations. The characteristics of the HZ in acting as a transition zone and in filtering and purifying exchanged water will be lost, resulting in a weakening of the self-purification capacity of natural water bodies. Thus, as human disturbances intensify in the future, GW and SW pollution will become a greater challenge for mankind than ever before. Biogeochemical processes in the HZ may favor the release of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) under climate change scenarios. Future water resource management should consider the integrity of aquatic systems as a whole, including the HZ, rather than independently focusing on SW and GW.

  4. Will a warmer and wetter future cause extinction of native Hawaiian forest birds?

    USGS Publications Warehouse

    Liao, Wei; Timm, Oliver Elison; Zhang, Chunxi; Atkinson, Carter T.; LaPointe, Dennis; Samuel, Michael D.

    2015-01-01

    Isolation of the Hawaiian archipelago produced a highly endemic and unique avifauna. Avian malaria (Plasmodium relictum), an introduced mosquito-borne pathogen, is a primary cause of extinctions and declines of these endemic honeycreepers. Our research assesses how global climate change will affect future malaria risk and native bird populations. We used an epidemiological model to evaluate future bird-mosquito-malaria dynamics in response to alternative climate projections from the Coupled Model Intercomparison Project (CMIP). Climate changes during the second half of the century accelerate malaria transmission and cause a dramatic decline in bird abundance. Different temperature and precipitation patterns produce divergent trajectories where native birds persist with low malaria infection under a warmer and dryer projection (RCP4.5), but suffer high malaria infection and severe reductions under hot and dry (RCP8.5) or warm and wet (A1B) futures. We conclude that future global climate change will cause significant decreases in the abundance and diversity of remaining Hawaiian bird communities. Because these effects appear unlikely before mid-century, natural resource managers have time to implement conservation strategies to protect this unique avifauna from further decimation. Similar climatic drivers for avian and human malaria suggest that mitigation strategies for Hawai'i have broad application to human health.

  5. When the Writing Is on the Wall. A Legal Memorandum: Quarterly Law Topics for School Leaders. Vol. 6, No. 1, Fall 2005

    ERIC Educational Resources Information Center

    Gesmonde, John M.

    2005-01-01

    Because of the dramatic changes in the education climate of school districts, the so-called schoolmaster, like the dinosaur, has vanished and the plenipotentiary school administrator, who the public now perceives as the school's chief executive officer (CEO), has emerged. A school administrator is not merely an education leader. Rather, like a…

  6. Wildfires in Chernobyl-contaiminated forests and risks to the population and the environment: A new nuclear disaster about to happen?

    Treesearch

    Nikolaos Evangeliou; Yves Balkanski; Anne Cozic; Wei Min Hao; Anders Pape Moller

    2014-01-01

    Radioactive contamination in Ukraine, Belarus and Russia after the Chernobyl accident left large rural and forest areas to their own fate. Forest succession in conjunction with lack of forest management started gradually transforming the landscape. During the last 28 years dead wood and litter have dramatically accumulated in these areas, whereas climate change has...

  7. Understanding the Uncertainties in Consequences of Climate Change for the United States Power Sector Infrastructure when Considering a Realistic Mitigation Pace and Adaptation Needs.

    NASA Astrophysics Data System (ADS)

    Anderson, N. J.; Whiteford, E. J.; Jones, V.; Fritz, S. C.; Yang, H.; Appleby, P.; Bindler, R.

    2014-12-01

    In order to overcome the potential damages associated with climate change, a massive reduction in greenhouse gas emissions is necessary. Achieving these levels of emissions reductions will require dramatic changes in the U.S. electricity generating infrastructure: almost all of the fossil-generation fleet will need to be replaced with low-carbon sources and society would have to maintain a high build rate of new capacity for decades. Because the build rate of new electricity generating capacity may be limited, the timing of regulation is critical—the longer the U.S. waits to start reducing emissions, the faster the turnover in the electricity sector must occur in order to meet the same target. We investigate the relationship between climate policy timing and infrastructure turnover in the electricity sector. How long can we wait before constraints on infrastructure turnover in the electricity sector make achieving our climate goals impossible? We show that delaying climate change policy increases average construction rates by 25% to 85% and increases maximum construction rates by 50% to 300%. We also show that delaying climate policy has little effect on the age of retired plants or the stranded costs associated with premature retirement. We show that as we delay policy action, some goals won't be possible for attain. For example, unless we enable emissions reductions today, reducing cumulative emissions between now and 2040 by 50% when compared to a no-policy scenario is not possible.

  8. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach.

    PubMed

    Budy, Phaedra; Luecke, Chris

    2014-09-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.

  9. Detection and attribution of climate change at regional scale: case study of Karkheh river basin in the west of Iran

    NASA Astrophysics Data System (ADS)

    Zohrabi, Narges; Goodarzi, Elahe; Massah Bavani, Alireza; Najafi, Husain

    2017-11-01

    This research aims at providing a statistical framework for detection and attribution of climate variability and change at regional scale when at least 30 years of observation data are available. While extensive research has been done on detecting significant observed trends in hydroclimate variables and attribution to anthropogenic greenhouse gas emissions in large continents, less attention has been paid for regional scale analysis. The latter is mainly important for adaptation to climate change in different sectors including but not limited to energy, agriculture, and water resources planning and management, and it is still an open discussion in many countries including the West Asian ones. In the absence of regional climate models, an informative framework is suggested providing useful insights for policymakers. It benefits from general flexibility, not being computationally expensive, and applying several trend tests to analyze temporal variations in temperature and precipitation (gradual and step changes). The framework is implemented for a very important river basin in the west of Iran. In general, some increasing and decreasing trends of the interannual precipitation and temperature have been detected. For precipitation annual time series, a reducing step was seen around 1996 compared with the gradual change in most of the stations, which have not experience a dramatical change. The range of natural forcing is found to be ±76 % for precipitation and ±1.4 °C for temperature considering a two-dimensional diagram of precipitation and temperature anomalies from 1000-year control run of global climate model (GCM). Findings out of applying the proposed framework may provide useful insights into how to approach structural and non-structural climate change adaptation strategies from central governments.

  10. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: A multi-faceted approach.

    USGS Publications Warehouse

    Budy, Phaedra; Luecke, Chris

    2014-01-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure.

  11. The Impacts of Climate Change on the Frozen Soil and Eco-hydrology in the Source Region of Yellow River, China

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Yang, D.; Gao, B.

    2016-12-01

    The source region of Yellow River, located in the transition zone of discontinuous and continuous permafrost on the northeastern Tibetan Plateau, has experienced dramatic climate change during the past decades. The long-term changes in the seasonally frozen ground remarkably affected the eco-hydrological processes in the source region and the water availability in the middle and lower reaches. In this study, we employed a geomorphology-based eco-hydrological model (GBEHM) to quantitatively assess the impacts of climate change on the frozen soil and regional eco-hydrology. It was found that the air temperature has increased by 2.1 °C since the 1960s and most significantly during the recent decade (0.67 °C /10a), while there was no significant trend of the precipitation. Based on a 34-year (1981-2014) simulation, the maximum frozen soil depth was in the range of 0.7-2.1 m and decreased by 1.5-7.9 cm/10a because of the warming climate. The model simulation adequately reproduced the observed streamflow changes, including the drought period in the 1990s and wet period in the 2000s, and the variability in hydrological behavior was closely associated with the climate and landscape conditions. The vegetation responses to climate changes manifested as advancing green-up dates and increasing leaf area index at the initial stage of growing season. Our study shows that the ecohydrological processes are changing along with the frozen soil degradation in headwater areas on the Tibetan Plateau, which could influence the availability of water resources in the middle and lower reaches.

  12. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Li, Xia; Mitra, Chandana; Dong, Li; Yang, Qichun

    2018-02-01

    To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.

  13. Global Warming in the Twenty-First Century: An Alternative Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lacis, Andrew; Oinas, Valdar; Travis, Larry (Technical Monitor)

    2000-01-01

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven mainly by non-CO2 greenhouse gases (GHGs), such as chlorofluorocarbons, CH4, and N2O, not by the products of fossil fuel burning, CO2 and aerosols, the positive and negative climate forcings of which are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change in climate forcing by non-CO2 GHGs in the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this reduction of non-CO2 GHGs could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition specific long-term global monitoring of aerosol properties.

  14. Global warming in the twenty-first century: an alternative scenario.

    PubMed

    Hansen, J; Sato, M; Ruedy, R; Lacis, A; Oinas, V

    2000-08-29

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven mainly by non-CO(2) greenhouse gases (GHGs), such as chlorofluorocarbons, CH(4), and N(2)O, not by the products of fossil fuel burning, CO(2) and aerosols, the positive and negative climate forcings of which are partially offsetting. The growth rate of non-CO(2) GHGs has declined in the past decade. If sources of CH(4) and O(3) precursors were reduced in the future, the change in climate forcing by non-CO(2) GHGs in the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO(2) emissions, this reduction of non-CO(2) GHGs could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific long-term global monitoring of aerosol properties.

  15. Global warming in the twenty-first century: An alternative scenario

    PubMed Central

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lacis, Andrew; Oinas, Valdar

    2000-01-01

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven mainly by non-CO2 greenhouse gases (GHGs), such as chlorofluorocarbons, CH4, and N2O, not by the products of fossil fuel burning, CO2 and aerosols, the positive and negative climate forcings of which are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change in climate forcing by non-CO2 GHGs in the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this reduction of non-CO2 GHGs could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific long-term global monitoring of aerosol properties. PMID:10944197

  16. Toward evaluating the effect of climate change on investments in the water resources sector: insights from the forecast and analysis of hydrological indicators in developing countries

    NASA Astrophysics Data System (ADS)

    Strzepek, Kenneth; Jacobsen, Michael; Boehlert, Brent; Neumann, James

    2013-12-01

    The World Bank has recently developed a method to evaluate the effects of climate change on six hydrological indicators across 8951 basins of the world. The indicators are designed for decision-makers and stakeholders to consider climate risk when planning water resources and related infrastructure investments. Analysis of these hydrological indicators shows that, on average, mean annual runoff will decline in southern Europe; most of Africa; and in southern North America and most of Central and South America. Mean reference crop water deficit, on the other hand, combines temperature and precipitation and is anticipated to increase in nearly all locations globally due to rising global temperatures, with the most dramatic increases projected to occur in southern Europe, southeastern Asia, and parts of South America. These results suggest overall guidance on which regions to focus water infrastructure solutions that could address future runoff flow uncertainty. Most important, we find that uncertainty in projections of mean annual runoff and high runoff events is higher in poorer countries, and increases over time. Uncertainty increases over time for all income categories, but basins in the lower and lower-middle income categories are forecast to experience dramatically higher increases in uncertainty relative to those in the upper-middle and upper income categories. The enhanced understanding of the uncertainty of climate projections for the water sector that this work provides strongly support the adoption of rigorous approaches to infrastructure design under uncertainty, as well as design that incorporates a high degree of flexibility, in response to both risk of damage and opportunity to exploit water supply ‘windfalls’ that might result, but would require smart infrastructure investments to manage to the greatest benefit.

  17. Quantifying the magnitude of the impact of climate change and human activity on runoff decline in Mian River Basin, China.

    PubMed

    Fan, Jing; Tian, Fei; Yang, Yonghui; Han, Shumin; Qiu, Guoyu

    2010-01-01

    Runoff in North China has been dramatically declining in recent decades. Although climate change and human activity have been recognized as the primary driving factors, the magnitude of impact of each of the above factors on runoff decline is still not entirely clear. In this study, Mian River Basin (a watershed that is heavily influenced by human activity) was used as a proxy to quantify the contributions of human and climate to runoff decline in North China. SWAT (Soil and Water Assessment Tool) model was used to isolate the possible impacts of man and climate. SWAT simulations suggest that while climate change accounts for only 23.89% of total decline in mean annual runoff, human activity accounts for the larger 76.11% in the basin. The gap between the simulated and measured runoff has been widening since 1978, which can only be explained in terms of increasing human activity in the region. Furthermore, comparisons of similar annual precipitation in 3 dry-years and 3 wet-years representing hydrological processes in the 1970s, 1980s, and 1990s were used to isolate the magnitude of runoff decline under similar annual precipitations. The results clearly show that human activity, rather than climate, is the main driving factor of runoff decline in the basin.

  18. Exploring adaptations to climate change with stakeholders: A participatory method to design grassland-based farming systems.

    PubMed

    Sautier, Marion; Piquet, Mathilde; Duru, Michel; Martin-Clouaire, Roger

    2017-05-15

    Research is expected to produce knowledge, methods and tools to enhance stakeholders' adaptive capacity by helping them to anticipate and cope with the effects of climate change at their own level. Farmers face substantial challenges from climate change, from changes in the average temperatures and the precipitation regime to an increased variability of weather conditions and the frequency of extreme events. Such changes can have dramatic consequences for many types of agricultural production systems such as grassland-based livestock systems for which climate change influences the seasonality and productivity of fodder production. We present a participatory design method called FARMORE (FARM-Oriented REdesign) that allows farmers to design and evaluate adaptations of livestock systems to future climatic conditions. It explicitly considers three climate features in the design and evaluation processes: climate change, climate variability and the limited predictability of weather. FARMORE consists of a sequence of three workshops for which a pre-existing game-like platform was adapted. Various year-round forage production and animal feeding requirements must be assembled by participants with a computerized support system. In workshop 1, farmers aim to produce a configuration that satisfies an average future weather scenario. They refine or revise the previous configuration by considering a sample of the between-year variability of weather in workshop 2. In workshop 3, they explicitly take the limited predictability of weather into account. We present the practical aspects of the method based on four case studies involving twelve farmers from Aveyron (France), and illustrate it through an in-depth description of one of these case studies with three dairy farmers. The case studies shows and discusses how workshop sequencing (1) supports a design process that progressively accommodates complexity of real management contexts by enlarging considerations of climate change to climate variability and low weather predictability, and (2) increases the credibility and salience of the design method. Further enhancements of the method are outlined, especially the selection of pertinent weather scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Human disturbance and upward expansion of plants in a warming climate

    NASA Astrophysics Data System (ADS)

    Dainese, Matteo; Aikio, Sami; Hulme, Philip E.; Bertolli, Alessio; Prosser, Filippo; Marini, Lorenzo

    2017-08-01

    Climate change is expected to trigger an upward expansion of plants in mountain regions and, although there is strong evidence that many native species have already shifted their distributions to higher elevations, little is known regarding how fast non-native species might respond to climate change. By analysing 131,394 occurrence records of 1,334 plant species collected over 20 years in the European Alps, we found that non-natives are spreading upwards approximately twice as fast as natives. Whereas the spread of natives was enhanced by traits favouring longer dispersal distances, this was not the case for non-natives. This was due to the non-native species pool already being strongly biased towards species that had traits facilitating spread. A large proportion of native and non-native species seemed to be able to spread upwards faster than the current velocity of climate change. In particular, long-distance dispersal events and proximity to roads proved to be key drivers for the observed rapid spread. Our findings highlight that invasions by non-native species into native alpine communities are a potentially significant additional pressure on these vulnerable ecosystems that are already likely to suffer dramatic vegetation changes with ongoing warming and increasing human activity in mountain regions.

  20. Multilocus Analyses Reveal Postglacial Demographic Shrinkage of Juniperus morrisonicola (Cupressaceae), a Dominant Alpine Species in Taiwan

    PubMed Central

    Chiu, Chi-Te; Huang, Chao-Li; Hung, Kuo-Hsiang; Chiang, Tzen-Yuh

    2016-01-01

    Postglacial climate changes alter geographical distributions and diversity of species. Such ongoing changes often force species to migrate along the latitude/altitude. Altitudinal gradients represent assemblage of environmental, especially climatic, variable factors that influence the plant distributions. Global warming that triggered upward migrations has therefore impacted the alpine plants on an island. In this study, we examined the genetic structure of Juniperus morrisonicola, a dominant alpine species in Taiwan, and inferred historical, demographic dynamics based on multilocus analyses. Lower levels of genetic diversity in north indicated that populations at higher latitudes were vulnerable to climate change, possibly related to historical alpine glaciers. Neither organellar DNA nor nuclear genes displayed geographical subdivisions, indicating that populations were likely interconnected before migrating upward to isolated mountain peaks, providing low possibilities of seed/pollen dispersal across mountain ranges. Bayesian skyline plots suggested steady population growth of J. morrisonicola followed by recent demographic contraction. In contrast, most lower-elevation plants experienced recent demographic expansion as a result of global warming. The endemic alpine conifer may have experienced dramatic climate changes over the alternation of glacial and interglacial periods, as indicated by a trend showing decreasing genetic diversity with the altitudinal gradient, plus a fact of upward migration. PMID:27561108

  1. Predicting the Affects of Climate Change on Evapotranspiration and Agricultural Productivity of Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Peri, L.; Tyler, S. W.; Zheng, C.; Pohll, G. M.; Yao, Y.

    2013-12-01

    Many arid and semi-arid regions around the world are experiencing water shortages that have become increasingly problematic. Since the late 1800s, upstream diversions in Nevada's Walker River have delivered irrigation supply to the surrounding agricultural fields resulting in a dramatic water level decline of the terminal Walker Lake. Salinity has also increased because the only outflow from the lake is evaporation from the lake surface. The Heihe River basin of northwestern China, a similar semi-arid catchment, is also facing losses from evaporation of terminal locations, agricultural diversions and evapotranspiration (ET) of crops. Irrigated agriculture is now experiencing increased competition for use of diminishing water resources while a demand for ecological conservation continues to grow. It is important to understand how the existing agriculture in these regions will respond as climate changes. Predicting the affects of climate change on groundwater flow, surface water flow, ET and agricultural productivity of the Walker and Heihe River basins is essential for future conservation of water resources. ET estimates from remote sensing techniques can provide estimates of crop water consumption. By determining similarities of both hydrologic cycles, critical components missing in both systems can be determined and predictions of impacts of climate change and human management strategies can be assessed.

  2. Multilocus Analyses Reveal Postglacial Demographic Shrinkage of Juniperus morrisonicola (Cupressaceae), a Dominant Alpine Species in Taiwan.

    PubMed

    Huang, Chi-Chun; Hsu, Tsai-Wen; Wang, Hao-Ven; Liu, Zin-Huang; Chen, Yi-Yen; Chiu, Chi-Te; Huang, Chao-Li; Hung, Kuo-Hsiang; Chiang, Tzen-Yuh

    2016-01-01

    Postglacial climate changes alter geographical distributions and diversity of species. Such ongoing changes often force species to migrate along the latitude/altitude. Altitudinal gradients represent assemblage of environmental, especially climatic, variable factors that influence the plant distributions. Global warming that triggered upward migrations has therefore impacted the alpine plants on an island. In this study, we examined the genetic structure of Juniperus morrisonicola, a dominant alpine species in Taiwan, and inferred historical, demographic dynamics based on multilocus analyses. Lower levels of genetic diversity in north indicated that populations at higher latitudes were vulnerable to climate change, possibly related to historical alpine glaciers. Neither organellar DNA nor nuclear genes displayed geographical subdivisions, indicating that populations were likely interconnected before migrating upward to isolated mountain peaks, providing low possibilities of seed/pollen dispersal across mountain ranges. Bayesian skyline plots suggested steady population growth of J. morrisonicola followed by recent demographic contraction. In contrast, most lower-elevation plants experienced recent demographic expansion as a result of global warming. The endemic alpine conifer may have experienced dramatic climate changes over the alternation of glacial and interglacial periods, as indicated by a trend showing decreasing genetic diversity with the altitudinal gradient, plus a fact of upward migration.

  3. Complex climatic and CO2 controls on net primary productivity of temperate dryland ecosystems over central Asia during 1980-2014

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Ren, Wei

    2017-09-01

    Central Asia covers a large land area of 5 × 106 km2 and has unique temperate dryland ecosystems, with over 80% of the world's temperate deserts, which has been experiencing dramatic warming and drought in the recent decades. How the temperate dryland responds to complex climate change, however, is still far from clear. This study quantitatively investigates terrestrial net primary productivity (NPP) in responses to temperature, precipitation, and atmospheric CO2 during 1980-2014, by using the Arid Ecosystem Model, which can realistically predict ecosystems' responses to changes in climate and atmospheric CO2 according to model evaluation against 28 field experiments/observations. The simulation results show that unlike other middle-/high-latitude regions, NPP in central Asia declined by 10% (0.12 × 1015 g C) since the 1980s in response to a warmer and drier climate. The dryland's response to warming was weak, while its cropland was sensitive to the CO2 fertilization effect (CFE). However, the CFE was inhibited by the long-term drought from 1998 to 2008 and the positive effect of warming on photosynthesis was largely offset by the enhanced water deficit. The complex interactive effects among climate drivers, unique responses from diverse ecosystem types, and intensive and heterogeneous climatic changes led to highly complex NPP changing patterns in central Asia, of which 69% was dominated by precipitation variation and 20% and 9% was dominated by CO2 and temperature, respectively. The Turgay Plateau in northern Kazakhstan and southern Xinjiang in China are hot spots of NPP degradation in response to climate change during the past three decades and in the future.

  4. A Way Forward: Cooperative Solutions to Our Climate Challenges

    NASA Astrophysics Data System (ADS)

    Little, L. J.; Byrne, J. M.

    2014-12-01

    Solving the global climate crisis is a multidisciplinary challenge. The world is seeking solutions to climate change. The climate research and education community must move beyond the realm of debating the science - we MUST provide the solutions. The research community understands the science and many of the solutions very well. This project will address the specifics of solutions involving social, political and science disciplines. The content is targeted to multidisciplinary education at the senior undergraduate and graduate levels in universities and colleges. Humanity has already changed the climate and current greenhouse gas emission (GHG) projections indicate our world will warm 2-6° C within a young person's lifetime. We must coordinate societal mitigation and adaptation policies, programs and technology transformations. There is now a dramatic need for many, many highly trained multidisciplinary climate change solutions professionals that understand the complexities of the challenges and can work through the social, political and science tribulations needed to sustain communities around the world. This proposed education project: Provides an introduction to the social, political, technical, health and well-being challenges of climate change; Defines and describes the unprecedented changes to personal and community lifestyle, and consumption of energy and other resources; Examines ways and means for rapid transition of energy systems from fossil fuels to clean renewable technologies. Evaluates redevelopment of our infrastructure to withstand increasing weather extremes; Inventories possible abandonment and/or protection of infrastructure that cannot be redeveloped or reworked, particularly with respect to coastal zones where substantial populations currently live. We propose an online living textbook project. Chapter contributions will be invited from outstanding solutions research professionals from around the world. The online presence is the best means to facilitate a multimedia presentation of the core content of the proposed text.

  5. Detecting Anthropogenic and Climate Change Induced Land Cover and Land Use Change in the Vicinity of an Oil/gas Facility in Northwestern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Shiklomanov, N. I.; Streletskiy, D. A.; Engstrom, R.; Epstein, H. E.

    2015-12-01

    Arctic ecosystems are changing dramatically due to changes in climate, vegetation and human activities. Northwestern Siberia is one of the regions which has been undergoing various land cover and land use changes associated primarily with animal husbandry and oil/gas development. These changes have been exacerbated by warming climatic conditions over the last fifty years. In this study, we investigated land cover and land use changes associated with oil and gas development southeast of the city of Nadym within the context of climate change based on multi-source and multi-temporal remote sensing imagery. The impacts of land use on surface vegetation, radiation, and hydrological properties were evaluated using the Normalized Difference Vegetation Index (NDVI), albedo and the Normalized Difference Water Index (NDWI). The results from a comparison between high spatial resolution imagery acquired in1968 and 2006 indicate that the vegetation cover was reduced in areas disturbed by oil and gas development. Vegetation cover increased in natural landscapes over the same period,. Water logging was found along the linear structures near the oil/gas development, while in natural landscapes the drying of thermokarst lakes is evident due to permafrost degradation. Derived indices suggest that the direct impacts associated with infrastructure development are mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance.

  6. Understanding and monitoring the consequences of human impacts on intraspecific variation.

    PubMed

    Mimura, Makiko; Yahara, Tetsukazu; Faith, Daniel P; Vázquez-Domínguez, Ella; Colautti, Robert I; Araki, Hitoshi; Javadi, Firouzeh; Núñez-Farfán, Juan; Mori, Akira S; Zhou, Shiliang; Hollingsworth, Peter M; Neaves, Linda E; Fukano, Yuya; Smith, Gideon F; Sato, Yo-Ichiro; Tachida, Hidenori; Hendry, Andrew P

    2017-02-01

    Intraspecific variation is a major component of biodiversity, yet it has received relatively little attention from governmental and nongovernmental organizations, especially with regard to conservation plans and the management of wild species. This omission is ill-advised because phenotypic and genetic variations within and among populations can have dramatic effects on ecological and evolutionary processes, including responses to environmental change, the maintenance of species diversity, and ecological stability and resilience. At the same time, environmental changes associated with many human activities, such as land use and climate change, have dramatic and often negative impacts on intraspecific variation. We argue for the need for local, regional, and global programs to monitor intraspecific genetic variation. We suggest that such monitoring should include two main strategies: (i) intensive monitoring of multiple types of genetic variation in selected species and (ii) broad-brush modeling for representative species for predicting changes in variation as a function of changes in population size and range extent. Overall, we call for collaborative efforts to initiate the urgently needed monitoring of intraspecific variation.

  7. Land management in the Anthropocene: is history still relevant?: Incorporating historical ecology and climate change into land management; Lansdowne, Virginia, 22–25 April 2008

    USGS Publications Warehouse

    Safford, Hugh D.; Betancourt, Julio L.; Hayward, Gregory D.; Wiens, John A.; Regan, Claudia M.

    2008-01-01

    Ecological restoration, conservation, and land management are often based on comparisons with reference sites or time periods, which are assumed to represent “natural” or “properly functioning” conditions. Such reference conditions can provide a vision of the conservation or management goal and a means to measure progress toward that vision. Although historical ecology has been used successfully to guide resource management in many parts of the world, the continuing relevance of history is now being questioned. Some scientists doubt that lessons from the past can inform management in what may be a dramatically different future, given profound climate change, accelerated land use, and an onslaught of plant and animal invasions.

  8. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    USGS Publications Warehouse

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The second cross-cutting topic is the rapidly advancing field of climate adaptation, where there has been significant progress in developing the conceptual framework, planning approaches, and strategies for safeguarding biodiversity and other ecological resources. At the same time, ecosystem-based adaptation is becoming more prominent as a way to utilize ecosystem services to help human systems adapt to climate change. In this summary, we present key findings of the technical input, focusing on themes that can be found throughout the report. Thus, this summary takes a more integrated look at the question of how climate change is affecting our ecological resources, the implications for humans, and possible response strategies. This integrated approach better reflects the impacts of climate in the real world, where changes in ecosystem structure or function will alter the viability of different species and the efficacy of ecosystem services. Likewise, adaptation to climate change will simultaneously address a range of conservation goals. Case studies are used to illustrate this complete picture throughout the report; a snapshot of one case study, 2011 Las Conchas, New Mexico Fire, is included in this summary.

  9. Projected vegetation changes for the American Southwest: combined dynamic modeling and bioclimatic-envelope approach.

    PubMed

    Notaro, Michael; Mauss, Adrien; Williams, John W

    2012-06-01

    This study focuses on potential impacts of 21st century climate change on vegetation in the Southwest United States, based on debiased and interpolated climate projections from 17 global climate models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Among these models a warming trend is universal, but projected changes in precipitation vary in sign and magnitude. Two independent methods are applied: a dynamic global vegetation model to assess changes in plant functional types and bioclimatic envelope modeling to assess changes in individual tree and shrub species and biodiversity. The former approach investigates broad responses of plant functional types to climate change, while considering competition, disturbances, and carbon fertilization, while the latter approach focuses on the response of individual plant species, and net biodiversity, to climate change. The dynamic model simulates a region-wide reduction in vegetation cover during the 21st century, with a partial replacement of evergreen trees with grasses in the mountains of Colorado and Utah, except at the highest elevations, where tree cover increases. Across southern Arizona, central New Mexico, and eastern Colorado, grass cover declines, in some cases abruptly. Due to the prevalent warming trend among all 17 climate models, vegetation cover declines in the 21st century, with the greatest vegetation losses associated with models that project a drying trend. The inclusion of the carbon fertilization effect largely ameliorates the projected vegetation loss. Based on bioclimatic envelope modeling for the 21st century, the number of tree and shrub species that are expected to experience robust declines in range likely outweighs the number of species that are expected to expand in range. Dramatic shifts in plant species richness are projected, with declines in the high-elevation evergreen forests, increases in the eastern New Mexico prairies, and a northward shift of the Sonoran Desert biodiversity maximum.

  10. Asynchronous east-west climate changes over the southwestern United States driven by competing moisture sources during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Shanahan, T. M.; Wicks, T.; Jimmie, J. A.

    2013-12-01

    During the last deglaciation, the climate of the southwestern US changed dramatically, reflecting large-scale shifts in atmospheric circulation that were driven largely by changing temperature and ice cover in the high latitudes of the Northern Hemisphere. While a great deal has been learned about the nature of these changes in the desert southwest from speleothem, lake sediment and other proxy climate records, much less is known about deglacial changes in atmospheric circulation to the east, where continuous high-resolution proxy records are rare. Here we present a new record of changing vegetation and atmospheric moisture in central Texas from the δ13C of bulk organic matter and the δD of plant waxes preserved in the sediments of Hall's Cave. The record shows that Northern Hemisphere cold intervals were characterized by dry conditions, with a decreased proportion of winter grasses, trees and shrubs, whereas during warm intervals conditions were wetter and the proportion of C3 plants increased. These changes are opposite of those recorded elsewhere in the arid southwest, and particularly at sites in Arizona and New Mexico where the glacial was wet and the Bølling-Allerød was exceptionally dry. δDwax variations suggest that these east-west differences in deglacial climate change reflect differences in the relative importance of westerly storm tracks and the low level jet (LLJ) for delivering moisture to these areas. Terminal Pleistocene drought during the Bølling-Allerød appears to have been restricted to the desert southwest, while sites in Texas and the Great Plains became wetter. The asynchronous nature of these changes is seemingly at odds with a climatic origin for the late Pleistocene extinction of North American land mammals.

  11. Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene.

    PubMed

    Schüpbach, S; Fischer, H; Bigler, M; Erhardt, T; Gfeller, G; Leuenberger, D; Mini, O; Mulvaney, R; Abram, N J; Fleet, L; Frey, M M; Thomas, E; Svensson, A; Dahl-Jensen, D; Kettner, E; Kjaer, H; Seierstad, I; Steffensen, J P; Rasmussen, S O; Vallelonga, P; Winstrup, M; Wegner, A; Twarloh, B; Wolff, K; Schmidt, K; Goto-Azuma, K; Kuramoto, T; Hirabayashi, M; Uetake, J; Zheng, J; Bourgeois, J; Fisher, D; Zhiheng, D; Xiao, C; Legrand, M; Spolaor, A; Gabrieli, J; Barbante, C; Kang, J-H; Hur, S D; Hong, S B; Hwang, H J; Hong, S; Hansson, M; Iizuka, Y; Oyabu, I; Muscheler, R; Adolphi, F; Maselli, O; McConnell, J; Wolff, E W

    2018-04-16

    The Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America. Rapid climate changes during the glacial have little effect on terrestrial biogenic aerosol emissions. A strong increase in terrestrial dust emissions during the coldest intervals indicates higher aridity and dust storm activity in East Asian deserts. Glacial sea salt aerosol emissions in the North Atlantic region increase only moderately (50%), likely due to sea ice expansion. Lower aerosol concentrations in Eemian ice compared to the Holocene are mainly due to shortened atmospheric residence time, while emissions changed little.

  12. Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies

    PubMed Central

    Winkler, Isaac S.; Mitter, Charles; Scheffer, Sonja J.

    2009-01-01

    A central but little-tested prediction of “escape and radiation” coevolution is that colonization of novel, chemically defended host plant clades accelerates insect herbivore diversification. That theory, in turn, exemplifies one side of a broader debate about the relative influence on clade dynamics of intrinsic (biotic) vs. extrinsic (physical-environmental) forces. Here, we use a fossil-calibrated molecular chronogram to compare the effects of a major biotic factor (repeated shift to a chemically divergent host plant clade) and a major abiotic factor (global climate change) on the macroevolutionary dynamics of a large Cenozoic radiation of phytophagous insects, the leaf-mining fly genus Phytomyza (Diptera: Agromyzidae). We find one of the first statistically supported examples of consistently elevated net diversification accompanying shift to new plant clades. In contrast, we detect no significant direct effect on diversification of major global climate events in the early and late Oligocene. The broader paleoclimatic context strongly suggests, however, that climate change has at times had a strong indirect influence through its effect on the biotic environment. Repeated rapid Miocene radiation of these flies on temperate herbaceous asterids closely corresponds to the dramatic, climate-driven expansion of seasonal, open habitats. PMID:19805134

  13. A new eco-hydrological distributed model for the predictions of the climate change impact on water resources of Mediterranean water-limited basins: the Mulargia basin case study in Sardinia.

    NASA Astrophysics Data System (ADS)

    Sarigu, Alessio; Montaldo, Nicola

    2017-04-01

    In the last three decades, climate change and human activities increased desertification process in Mediterranean regions, with dramatic consequences for agriculture and water availability. For instance in the main reservoir systems in Sardinia the average annual runoff in the latter part of the 20th century decreased of more than 50% compared with the previous period, while the precipitation over the Sardinia basin has decreased, but not at such a drastic rate as the discharge, with an high precipitation elasticity to streamflow, highlighting the key role of the rainfall seasonality on runoff production. IPCC climate change scenarios predict a further decrease of winter rainfall, which is the key term for runoff production in these typical Mediterranean climate basins, and air temperature increase, which can potentially impact on evapotranspiration, soil moisture and runoff. Only the use of an accurate ecohydrological physically based distributed model allow to well predict the impact of the climate change scenarios on the basin water resources. A new eco-hydrological model is developed that couples a distributed hydrological model of and a vegetation dynamic model (VDM). The hydrological model estimates the soil water balance of each basin cell using the force-restore method, the Philips model for infiltration estimate and the Penman-Monteith equation for evapotranspiration estimate. The VDM evaluates the changes in biomass over time for each cell and provides the leaf area index (LAI), which is then used by the hydrological model for evapotranspiration and rainfall interception estimates. Case study is the Mulargia basin (Sardinia, basin area of about 70 km2), where an extended field campaign started from 2003, with rain and discharge data observed at the basin outlet, periodic field measurements of soil moisture and LAI all over the basin, and evapotraspiration estimates using an eddy correlation based tower. The Mulargia basin case study is a very interesting laboratory of Mediterranean basins, thanks to its typical Mediterranean climate, its typical physiografic characteristics, its low human activities and influences and its attractive hydrologic database. The model has been successfully and deeply calibrated for the 2003 and validated for the 2004-2005 period, using both field data and satellite Modis data. Three future climate change scenarios has been generated using a stochastic model (Richardson, 1991), opportunely adapted for accounting the future changes of climate conditions. The scenarios (A1-A1B-A2) assume that in the next century there will be a drastic reduction of precipitation (with maximum reduction of 30% in A2) and that will continue the warming process. A reduction of soil moisture (about 40%) is predicted, especially during winter month and also the LAI will drastically decrease (more than 50% for woody vegetation and 75% for grass especially during the spring). Runoff will decrease even more (up to 70%) during the winter season, which is the key season for the water resource management and planning of these Mediterranean basins. These results anticipate a dramatic reduction of water resources availability, a change of vegetation species and ecosystems, increasing the desertification process in this typical Mediterranean area.

  14. [Climate change and Kyoto protocol].

    PubMed

    Ergasti, G; Pippia, V; Murzilli, G; De Luca D'Alessandro, E

    2009-01-01

    Due to industrial revolution and the heavy use of fossil fuels, the concentration of greenhouse gases in the atmosphere has increased dramatically during the last hundred years, and this has lead to an increase in mean global temperature. The environmental consequences of this are: the melting of the ice caps, an increase in mean sea-levels, catastrophic events such as floodings, hurricanes and earthquakes, changes to the animal and vegetable kingdoms, a growth in vectors and bacteria in water thus increasing the risk of infectious diseases and damage to agriculture. The toxic effects of the pollution on human health are both acute and chronic. The Kyoto Protocol is an important step in the campaign against climatic changes but it is not sufficient. A possible solution might be for the States which produce the most of pollution to adopt a better political stance for the environment and to use renewable resources for the production of energy.

  15. Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: The different responses of bogs and fens

    NASA Astrophysics Data System (ADS)

    Wu, Jianghua; Roulet, Nigel T.

    2014-10-01

    The carbon (C) storage of northern peatlands is equivalent to ~34-46% of the ~795 T g C currently held in the atmosphere as CO2. Most studies report that northern peatlands are a sink of between 20 and 60 g CO2-C m-2 yr-1. Since peatland hydrology and biogeochemistry are very closely related to climate, there is concern whether northern peatlands will continue to function as C sinks with climate change. We used a coupled land surface scheme and peatland C model, called CLASS3W-MWM, to examine the sensitivity of peatland C to climate change. Based on the data available to constrain our model, we simulated the C dynamics of the Mer Bleue (MB) bog in eastern Canada and the Degerö Stormyr (DS) poor fen in northern Sweden for four Intergovernmental Panel on Climate Change (IPCC) climate change scenarios, i.e., A1B, A2, B1, and Commit, over four time periods, i.e., present day, 2030, 2060, and 2100. When the simulated future C fluxes were compared to the baseline fluxes under the present climate conditions, we found that fens were much more sensitive to climate change than bogs. Gross primary production (GPP) at MB significantly increased by 4-44% up to 2100 for all scenarios except Commit. GPP at DS significantly decreased by 34-39% for A1B and A2, and slightly increased by 6-10% for B1 and Commit. Total ecosystem respiration (TER) significantly increased by 7-57% for MB and 4-34% for DS up to 2100 for all scenarios except Commit. Net ecosystem production (NEP), therefore, significantly decreased. The bog, however, was still a C sink up to 2100, though much reduced, but the fen switched to a C source for A1B and A2 scenarios. Additional experiments where we climatically transplanted the study peatlands or forced vegetation changes when the fen became too dry showed similar but less dramatic results as the standard runs. Our results indicate that northern peatlands should be included in the C-coupled climate model to fully understand the response of C cycling in terrestrial ecosystems to climate change and to reduce the uncertainties for projecting the future climate.

  16. Past and future weather-induced risk in crop production

    NASA Astrophysics Data System (ADS)

    Elliott, J. W.; Glotter, M.; Russo, T. A.; Sahoo, S.; Foster, I.; Benton, T.; Mueller, C.

    2016-12-01

    Drought-induced agricultural loss is one of the most costly impacts of extreme weather and may harm more people than any other consequence of climate change. Improvements in farming practices have dramatically increased crop productivity, but yields today are still tightly linked to climate variation. We report here on a number of recent studies evaluating extreme event risk and impacts under historical and near future conditions, including studies conducted as part of the Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Inter-Sectoral Impacts Model Intercomparison Project (ISI-MIP) and the UK-US Taskforce on Extreme Weather and Global Food System Resilience.

  17. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest.

    PubMed

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli-Pekka; Kouki, Jari; Strandman, Harri; Mönkkönen, Mikko

    2015-02-01

    Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the intensity of climate change. Our results indicate that the Finnish landscape is likely to be dominated by a very high proportion of sensitive and susceptible forest patches, thereby increasing uncertainty for landscape managers in the choice of conservation strategies. © 2014 John Wiley & Sons Ltd.

  18. Spatial heterogeneity in ecologically important climate variables at coarse and fine scales in a high-snow mountain landscape.

    PubMed

    Ford, Kevin R; Ettinger, Ailene K; Lundquist, Jessica D; Raleigh, Mark S; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change.

  19. Spatial Heterogeneity in Ecologically Important Climate Variables at Coarse and Fine Scales in a High-Snow Mountain Landscape

    PubMed Central

    Ford, Kevin R.; Ettinger, Ailene K.; Lundquist, Jessica D.; Raleigh, Mark S.; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change. PMID:23762277

  20. Climate and Physical Disturbance Effects on the Spectral Signatures of Biological Soil Crusts: Implications for Future Dryland Energy Balance

    NASA Astrophysics Data System (ADS)

    Rutherford, W. A.; Flagg, C.; Painter, T. H.; Okin, G. S.; Belnap, J.; Reed, S.

    2014-12-01

    Drylands comprise ≈40% of the terrestrial Earth surface and observations suggest they can respond markedly to climate change. A vital component of dryland ecosystems are biological soil crusts (biocrusts) - a network of surface soil lichens, mosses, and cyanobacteria - that perform critical ecosystem functions, such as stabilizing soil and fixing carbon and nitrogen. Yet, our understanding of the role biocrusts play in dryland energy balance remains poor. Changes in climate can rapidly affect biocrust communities and we have long known that biocrusts respond dramatically to physical disturbance, such as human trampling and grazing animals. Associated changes in biocrust cover often result in increased bare soil; creating higher surface reflectance. We used spectral solar reflectance measurements in two manipulative experiments to compare the effects of climate and physical disturbance on biocrusts of the Colorado Plateau We measured reflectance at two heights: at crust surface and 1 m above. The climate disturbance site has four treatments: control, warming (4°C), altered precipitation, and warming plus altered precipitation. The physical disturbance site was trampled by foot annually since 1998. At the climate experiment, the largest change in reflectance was in the altered precipitation treatment (35% increase) at the surface-level, and the smallest difference was in the warmed (17% increase) at the meter-level. Physical disturbance differences were 10% at meter-level and 25% at surface-level. Unexpectedly, these results suggest that, via effects on biocrust communities, climate change could have a larger effect on dryland energy balance relative to physical disturbance, and result in more radiation from drylands returned to the atmosphere. Biocrusts cover large portions of the Earth's surface and, to our knowledge, these are the first data showing climate-induced changes to biocrust reflectance, with negative feedback in the global energy balance.

  1. The Importance of Planetary Rotation Period for Ocean Heat Transport

    PubMed Central

    Stevens, D.; Joshi, M.

    2014-01-01

    Abstract The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier—the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability. Key Words: Exoplanet—Oceans—Rotation—Climate—Habitability. Astrobiology 14, 645–650. PMID:25041658

  2. Impact of climate change upon vector born diseases in Europe and Africa using ENSEMBLES Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Caminade, Cyril; Morse, Andy

    2010-05-01

    Climate variability is an important component in determining the incidence of a number of diseases with significant human/animal health and socioeconomic impacts. The most important diseases affecting health are vector-borne, such as malaria, Rift Valley Fever and including those that are tick borne, with over 3 billion of the world population at risk. Malaria alone is responsible for at least one million deaths annually, with 80% of malaria deaths occurring in sub-Saharan Africa. The climate has a large impact upon the incidence of vector-borne diseases; directly via the development rates and survival of both the pathogen and the vector, and indirectly through changes in the environmental conditions. A large ensemble of regional climate model simulations has been produced within the ENSEMBLES project framework for both the European and African continent. This work will present recent progress in human and animal disease modelling, based on high resolution climate observations and regional climate simulations. Preliminary results will be given as an illustration, including the impact of climate change upon bluetongue (disease affecting the cattle) over Europe and upon malaria and Rift Valley Fever over Africa. Malaria scenarios based on RCM ensemble simulations have been produced for West Africa. These simulations have been carried out using the Liverpool Malaria Model. Future projections highlight that the malaria incidence decreases at the northern edge of the Sahel and that the epidemic belt is shifted southward in autumn. This could lead to significant public health problems in the future as the demography is expected to dramatically rise over Africa for the 21st century.

  3. Assessing, Modeling, and Monitoring the Impacts of Extreme Climate Events

    NASA Astrophysics Data System (ADS)

    Murnane, Richard J.; Diaz, Henry F.

    2006-01-01

    Extreme weather and climate events provide dramatic content for the news media, and the past few years have supplied plenty of material. The 2004 and 2005 Atlantic hurricane seasons were very active; the United States was struck repeatedly by landfalling major hurricanes. A five-year drought in the southwestern United States was punctuated in 2003 by wildfires in southern California that caused billions of dollars in losses. Ten cyclones of at least tropical storm strength struck Japan in 2004, easily breaking the 1990 and 1993 records of six cyclones each year. Hurricane Catarina was the first recorded hurricane in the South Atlantic. Europe's summer of 2003 saw record-breaking heat that caused tens of thousands of deaths. These events have all been widely publicized, and they naturally raise several questions: Is climate changing, and if so, why? What can we expect in the future? How can we better respond to climate variability regardless of its source?

  4. ENSO-driven climate variability promotes periodic major outbreaks of dengue in Venezuela.

    PubMed

    Vincenti-Gonzalez, M F; Tami, A; Lizarazo, E F; Grillet, M E

    2018-04-10

    Dengue is a mosquito-borne viral disease of global impact. In Venezuela, dengue has emerged as one of the most important public health problems of urban areas with frequent epidemics since 2001. The long-term pattern of this disease has involved not only a general upward trend in cases but also a dramatic increase in the size and frequency of epidemic outbreaks. By assuming that climate variability has a relevant influence on these changes in time, we quantified the periodicity of dengue incidence in time-series of data from two northern regions of Venezuela. Disease cycles of 1 and 3-4 years (p < 0.05) were detected. We determined that dengue cycles corresponded with local climate and the El Niño Southern Oscillation (ENSO) variation at both seasonal and inter-annual scales (every 2-3 years). Dengue incidence peaks were more prevalent during the warmer and dryer years of El Niño confirming that ENSO is a regional climatic driver of such long-term periodicity through local changes in temperature and rainfall. Our findings support the evidence of the effect of climate on dengue dynamics and advocate the incorporation of climate information in the surveillance and prediction of this arboviral disease in Venezuela.

  5. Increasing climate whiplash in 21st century California

    NASA Astrophysics Data System (ADS)

    Swain, D. L.; Langenbrunner, B.; Neelin, J. D.; Hall, A. D.

    2017-12-01

    Temperate "Mediterranean" climate regimes across the globe are particularly susceptible to wide swings between drought and flood—of which California's rapid transition from record multi-year dryness between 2012-2016 to extreme wetness during 2016-2017 provides a dramatic example. The wide-ranging human and environmental impacts of this recent "climate whiplash" event in a highly-populated, economically critical, and biodiverse region highlight the importance of understanding weather and climate extremes at both ends of the hydroclimatic spectrum. Previous studies have examined the potential contribution of anthropogenic warming to recent California extremes, but findings to date have been mixed and primarily drought-focused. Here, we use specific historical California flood and drought events as thresholds for quantifying long-term changes in precipitation extremes using a large ensemble of multi-decadal climate model simulations (CESM-LENS). We find that greenhouse gas emissions are already responsible for a detectable increase in both wet and dry extremes across portions of California, and that increasing 21st century "climate whiplash" will likely yield large increases in the frequency of both rapid "dry-to-wet" transitions and severe flood events over a wide range of timescales. This projected intensification of California's hydrological cycle would seriously challenge the region's existing water storage, conveyance, and flood control infrastructure—even absent large changes in mean precipitation.

  6. Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.

    2011-12-01

    Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This work demonstrates the importance of land use in shaping future patterns of climate change, both globally and regionally.

  7. Holocene environmental changes recorded in Dicksonfjorden and Woodfjorden, Svalbard: impacts of global climate changes in a glacial-marine system

    NASA Astrophysics Data System (ADS)

    Joo, Y. J.; Nam, S. I.; Son, Y. J.; Forwick, M.

    2017-12-01

    Fjords in the Svalbard archipelago are characterized by an extreme environmental gradient between 1) the glacial system affected by tidewater glaciers and seasonal sea ice inside the fjords and 2) the warm Atlantic Water intrusion by the West Spitsbergen Current from open ocean. As sediment is largely supplied from the terrestrial source area exposed along the steep slopes of the fjords, the changes in the surface processes affected by glaciers are likely preserved in the sediments in the inner fjords. On the other hand, variations in the influence of the warm Atlantic Water in the marine realm (e.g. marine productivity) can be archived in the sediment deposited in the vicinity of the entrance to the fjords. Since the last deglaciation of the Svalbard-Barents ice sheet ( 13000 yrs BP), the Svalbard fjords have faced dramatic climate changes including the early Holocene Climate Optimum (HCO) and subsequent cooling that eventually led to the current cold and dry climate. We investigate the Holocene environmental changes in both terrestrial and marine realms based on stable isotopic and inorganic geochemical analyses of sediments deposited in Dicksonfjorden and Woodfjorden in the western and northern Spitsbergen, respectively. The two fjords are expected to provide intriguing information regarding how terrestrial and marine realms of the Arctic fjords system responded to regional and global climate changes. Being a branch of the larger Isfjorden, Dicksonfjorden penetrates deeply to the land, whereas Woodfjorden is rather directly connected to the open ocean. Accordingly, the results suggest that the Dicksonfjorden sediment records mainly terrestrial signals with marked fluctuations in sediment composition that coincide with major climate changes (e.g. HCO). On the contrary, the two Woodfjorden cores collected from different parts of the fjord exhibit contrasting results, likely illustrating differing response of terrestrial and marine realms to the climate changes in terms of behavior of tidewater glaciers and inflow of the warm West Spitsbergen Current and their possible interactions. This study aims to disentangle the interaction between the fjords and the global climate changes and provide a holistic view to the Arctic fjords system with strong environmental gradients.

  8. Impacts of Land use change on air quality and climate of Hangzhou City, South Eastern parts of China

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Zheng, S.

    2016-12-01

    Land use and land cover change (LUCC) influence the weather and climate conditions at local, regional and global scales. It has dramatically altered the Earth's landscape, chemical fluxes and influences the Earth's climate. The rapid land use change is often related to urban sprawl, farmland displacement, and deforestation. In the last two decades, land use land cover has rapidly changed in China especially along the eastern coastal region. Earlier studies have shown frequent (160 days in a year) occurrence of haze, fog and smog during 2003-2010 in and around Hangzhou city which lies in the south east coast region of China. An analysis of ground observed air quality and trace gases from 11 stations in Hangzhou city and satellite retrieved atmospheric parameters from 2011-2015 show increasing air quality and atmospheric pollution. The pollutants show very dynamic nature especially during winter season associated with the mixing with the influx of air mass from the surrounding regions. The frequent occurrences of fog, haze and smog over Hangzhou city is associated with the land use and land cover change of 16596 km2 areas, home of 9.02 million people. The spatial-temporal characteristics of land use change and air quality in response to rapid urbanization will be presented.

  9. Sensitivity of a high-elevation Rocky Mountain watershed to altered climate and CO2

    USGS Publications Warehouse

    Baron, Jill S.; Hartman, Melannie D.; Band, L.E.; Lammers, R.B.

    2000-01-01

    We explored the hydrologic and ecological responses of a headwater mountain catchment, Loch Vale watershed, to climate change and doubling of atmospheric CO2 scenarios using the Regional Hydro-Ecological Simulation System (RHESSys). A slight (2°C) cooling, comparable to conditions observed over the past 40 years, led to greater snowpack and slightly less runoff, evaporation, transpiration, and plant productivity. An increase of 2°C yielded the opposite response, but model output for an increase of 4°C showed dramatic changes in timing of hydrologic responses. The snowpack was reduced by 50%, and runoff and soil water increased and occurred 4–5 weeks earlier with 4°C warming. Alpine tundra photosynthetic rates responded more to warmer and wetter conditions than subalpine forest, but subalpine forest showed a greater response to doubling of atmospheric CO2 than tundra. Even though water use efficiency increased with the double CO2 scenario, this had little effect on basin-wide runoff because the catchment is largely unvegetated. Changes in winter and spring climate conditions were more important to hydrologic and vegetation dynamics than changes that occurred during summer.

  10. Ichthyoplankton Time Series: A Potential Ocean Observing Network to Provide Indicators of Climate Impacts on Fish Communities along the West Coast of North America

    NASA Astrophysics Data System (ADS)

    Koslow, J. A.; Brodeur, R.; Duffy-Anderson, J. T.; Perry, I.; jimenez Rosenberg, S.; Aceves, G.

    2016-02-01

    Ichthyoplankton time series available from the Bering Sea, Gulf of Alaska and California Current (Oregon to Baja California) provide a potential ocean observing network to assess climate impacts on fish communities along the west coast of North America. Larval fish abundance reflects spawning stock biomass, so these data sets provide indicators of the status of a broad range of exploited and unexploited fish populations. Analyses to date have focused on individual time series, which generally exhibit significant change in relation to climate. Off California, a suite of 24 midwater fish taxa have declined > 60%, correlated with declining midwater oxygen concentrations, and overall larval fish abundance has declined 72% since 1969, a trend based on the decline of predominantly cool-water affinity taxa in response to warming ocean temperatures. Off Oregon, there were dramatic differences in community structure and abundance of larval fishes between warm and cool ocean conditions. Midwater deoxygenation and warming sea surface temperature trends are predicted to continue as a result of global climate change. US, Canadian, and Mexican fishery scientists are now collaborating in a virtual ocean observing network to synthesize available ichthyoplankton time series and compare patterns of change in relation to climate. This will provide regional indicators of populations and groups of taxa sensitive to warming, deoxygenation and potentially other stressors, establish the relevant scales of coherence among sub-regions and across Large Marine Ecosystems, and provide the basis for predicting future climate change impacts on these ecosystems.

  11. USGS Arctic Science Strategy

    USGS Publications Warehouse

    Shasby, Mark; Smith, Durelle

    2015-07-17

    The United States is one of eight Arctic nations responsible for the stewardship of a polar region undergoing dramatic environmental, social, and economic changes. Although warming and cooling cycles have occurred over millennia in the Arctic region, the current warming trend is unlike anything recorded previously and is affecting the region faster than any other place on Earth, bringing dramatic reductions in sea ice extent, altered weather, and thawing permafrost. Implications of these changes include rapid coastal erosion threatening villages and critical infrastructure, potentially significant effects on subsistence activities and cultural resources, changes to wildlife habitat, increased greenhouse-gas emissions from thawing permafrost, threat of invasive species, and opening of the Arctic Ocean to oil and gas exploration and increased shipping. The Arctic science portfolio of the U.S. Geological Survey (USGS) and its response to climate-related changes focuses on landscapescale ecosystem and natural resource issues and provides scientific underpinning for understanding the physical processes that shape the Arctic. The science conducted by the USGS informs the Nation's resource management policies and improves the stewardship of the Arctic Region.

  12. Communicating Uncertainty about Climate Change for Application to Security Risk Management

    NASA Astrophysics Data System (ADS)

    Gulledge, J. M.

    2011-12-01

    The science of climate change has convincingly demonstrated that human activities, including the release of greenhouse gases, land-surface changes, particle emissions, and redistribution of water, are changing global and regional climates. Consequently, key institutions are now concerned about the potential social impacts of climate change. For example, the 2010 Quadrennial Defense Review Report from the U.S. Department of Defense states that "climate change, energy security, and economic stability are inextricably linked." Meanwhile, insured losses from climate and weather-related natural disasters have risen dramatically over the past thirty years. Although these losses stem largely from socioeconomic trends, insurers are concerned that climate change could exacerbate this trend and render certain types of climate risk non-diversifiable. Meanwhile, the climate science community-broadly defined as physical, biological, and social scientists focused on some aspect of climate change-remains largely focused scholarly activities that are valued in the academy but not especially useful to decision makers. On the other hand, climate scientists who engage in policy discussions have generally permitted vested interests who support or oppose climate policies to frame the discussion of climate science within the policy arena. Such discussions focus on whether scientific uncertainties are sufficiently resolved to justify policy and the vested interests overstate or understate key uncertainties to support their own agendas. Consequently, the scientific community has become absorbed defending scientific findings to the near exclusion of developing novel tools to aid in risk-based decision-making. For example, the Intergovernmental Panel on Climate Change (IPCC), established expressly for the purpose of informing governments, has largely been engaged in attempts to reduce unavoidable uncertainties rather than helping the world's governments define a science-based risk-management framework for climate security. The IPCC's Fourth Assessment Report concluded that "Responding to climate change involves an iterative risk management process that includes both adaptation and mitigation and takes into account climate change damages, co-benefits, sustainability, equity and attitudes to risk." In risk management, key uncertainties guide action aimed at reducing risk and cannot be ignored or used to justify inaction. Security policies such as arms control and counter-terrorism demonstrate that high-impact outcomes matter to decision makers even if they are likely to be rare events. In spite of this fact, the long tail on the probability distribution of climate sensitivity was largely ignored by the climate science community until recently and its implications for decision making are still not receiving adequate attention. Informing risk management requires scientists to shift from a singular aversion to type I statistical error (i.e. false positive) to a balanced presentation of both type I error and type II error (i.e. false negative) when the latter may have serious consequences. Examples from national security, extreme weather, and economics illustrate these concepts.

  13. A Dramatic Regime Shift in Rainfall Predictability Related to the Ningaloo Niño/Niña in the Late 1990s

    NASA Astrophysics Data System (ADS)

    Doi, T.; Behera, S. K.; Yamagata, T.

    2014-12-01

    The global warming and the Interdecadal Pacific Oscillation (IPO) started influencing the coastal ocean off Western Australia, leading to a dramatic change in the regional climate predictability. The warmed ocean started driving rainfall regionally there after the late 1990s. Because of this, rainfall predictability off Western Australia on a seasonal time scale was drastically enhanced in the late 1990s; it is significantly predictable 5 months ahead after the late 1990s. The high prediction skill of the rainfall in recent decades encourages development of an early warning system of Ningaloo Niño/Niña events to mitigate possible societal as well as agricultural impacts in the granary.

  14. Potential ecological and economic consequences of climate-driven agricultural and silvicultural transformations in central Siberia

    NASA Astrophysics Data System (ADS)

    Tchebakova, Nadezhda M.; Zander, Evgeniya V.; Pyzhev, Anton I.; Parfenova, Elena I.; Soja, Amber J.

    2014-05-01

    Increased warming predicted from general circulation models (GCMs) by the end of the century is expected to dramatically impact Siberian forests. Both natural climate-change-caused disturbance (weather, wildfire, infestation) and anthropogenic disturbance (legal/illegal logging) has increased, and their impact on Siberian boreal forest has been mounting over the last three decades. The Siberian BioClimatic Model (SiBCliM) was used to simulate Siberian forests, and the resultant maps show a severely decreased forest that has shifted northwards and a changed composition. Predicted dryer climates would enhance the risks of high fire danger and thawing permafrost, both of which challenge contemporary ecosystems. Our current goal is to evaluate the ecological and economic consequences of climate warming, to optimise economic loss/gain effects in forestry versus agriculture, to question the relative economic value of supporting forestry, agriculture or a mixed agro-forestry at the southern forest border in central Siberia predicted to undergo the most noticeable landcover and landuse changes. We developed and used forest and agricultural bioclimatic models to predict forest shifts; novel tree species and their climatypes are introduced in a warmer climate and/or potential novel agriculture are introduced with a potential variety of crops by the end of the century. We applied two strategies to estimate climate change effects, motivated by forest disturbance. One is a genetic means of assisting trees and forests to be harmonized with a changing climate by developing management strategies for seed transfer to locations that are best ecologically suited to the genotypes in future climates. The second strategy is the establishment of agricultural lands in new forest-steppe and steppe habitats, because the forests would retreat northwards. Currently, food, forage, and biofuel crops primarily reside in the steppe and forest-steppe zones which are known to have favorable climatic and soil resources. During this century, traditional Siberian crops are predicted to gradually shift northwards and new crops, which are currently non-existent but potentially important in a warmer climate, could be introduced in the extreme south. In a future warmer climate, the economic effect of climate change impacts on agriculture was estimated based on a production function approach and the Ricardian model. The production function estimated climate impacts of temperature, precipitation and carbon dioxide levels. The Ricardian model examined climate impacts on the net rent or value of farmland at various regions. The models produced the optimal distribution of agricultural lands between crop, livestock, and forestry sectors to compensate economic losses in forestry in potential landuse areas depending on climatic change.

  15. Climate change and Ixodes tick-borne diseases of humans

    PubMed Central

    Ostfeld, Richard S.; Brunner, Jesse L.

    2015-01-01

    The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease. PMID:25688022

  16. Climate Adaptation is About More Than Climate: Value-Driven Science Delivery

    NASA Astrophysics Data System (ADS)

    Swanston, C.

    2015-12-01

    Efforts to deliver relevant scientific information and tools to diverse stakeholders have dramatically increased in recent years with the intention of promoting climate change adaptation. Much work has been done to understand the barriers to action, but these largely overlook the need to frame the discussion in terms of stakeholder values and co-create innovative solutions that meet their individual needs. A partnership-based effort in the upper Midwest and Northeast called the Climate Change Response Framework (CCRF; www.forestadaptation.org) ensures relevance, breadth, and credibility of its products through stakeholder inclusion at all levels. The fundamental role of the CCRF is to help people meet their land stewardship goals while minimizing climate risk. This represents a subtle but important shift in focus to people and their values, as opposed to climate change and its effects. The CCRF uses a climate planning tool, the Adaptation Workbook (www.adaptationworkbook.org), along with ecosystem vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit conservation objectives. These tools are integrated into an Adaptation Planning and Practices workshop that leads organizations through this structured process of designing adaptation tactics for their projects and plans. All of these tools were developed with stakeholders, or in response to their direct and continuing feedback. The CCRF has involved thousands of people and over 100 organizations, published six ecoregional vulnerability assessments with more than 130 authors, and generated more than 125 intentional adaptation demonstrations in real-world land management projects on federal, state, tribal, county, conservancy, and private lands. The CCRF contributes strongly to the USDA Regional Climate Hubs, working on the applied end of the continuum of climate services occupied by providers such as the CSCs, LCCs, RISAs, and RCCs.

  17. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    DOE PAGES

    Li, Xia; Mitra, Chandana; Dong, Li; ...

    2017-02-02

    In order to explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Our results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under themore » urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. Our study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.« less

  18. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xia; Mitra, Chandana; Dong, Li

    In order to explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Our results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under themore » urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. Our study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.« less

  19. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xia; Mitra, Chandana; Dong, Li

    To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, butmore » expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region. (C) 2017 Elsevier Ltd. All rights reserved.« less

  20. Spatiotemporal patterns of evapotranspiration along the North American east coast as influenced by multiple environmental changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Tian, Hanqin; Li, Xia

    The North American east coast has experienced significant land-use and climate changes since the beginning of the 20th century. In this study, using the Dynamic Land Ecosystem Model 2.0 driven by time-series input data of land use, climate and atmospheric CO 2, we examined how these driving forces have affected the spatiotemporal trends and variability of evapotranspiration (ET) in this region during 1901–2008. Annual ET in the North American east coast during this period was 648.3 ± 38.6 mm/year and demonstrated an increasing trend. Factorial model simulations indicated that climate variability explained 76% of the inter-annual ET variability. Although land-usemore » change only explained 16% of the ET temporal variability, afforestation induced the upward trend of ET and increased annual ET by 12.8 mm/year. Elevated atmospheric CO 2 reduced annual ET by 0.84 mm, and its potential impacts under future atmospheric CO 2 levels could be much larger than estimates for the historical 1901–2008 period. Climate change determined the spatial pattern of ET changes across the entire study area, whereas land-use changes dramatically affected ET in watersheds with significant land conversions. In spite of the multiple benefits from afforestation, its impacts on water resources should be considered in future land-use policy making. As a result, elevated ET may also affect fresh water availability for the increasing social and economic water demands.« less

  1. Spatiotemporal patterns of evapotranspiration along the North American east coast as influenced by multiple environmental changes

    DOE PAGES

    Yang, Qichun; Tian, Hanqin; Li, Xia; ...

    2014-08-08

    The North American east coast has experienced significant land-use and climate changes since the beginning of the 20th century. In this study, using the Dynamic Land Ecosystem Model 2.0 driven by time-series input data of land use, climate and atmospheric CO 2, we examined how these driving forces have affected the spatiotemporal trends and variability of evapotranspiration (ET) in this region during 1901–2008. Annual ET in the North American east coast during this period was 648.3 ± 38.6 mm/year and demonstrated an increasing trend. Factorial model simulations indicated that climate variability explained 76% of the inter-annual ET variability. Although land-usemore » change only explained 16% of the ET temporal variability, afforestation induced the upward trend of ET and increased annual ET by 12.8 mm/year. Elevated atmospheric CO 2 reduced annual ET by 0.84 mm, and its potential impacts under future atmospheric CO 2 levels could be much larger than estimates for the historical 1901–2008 period. Climate change determined the spatial pattern of ET changes across the entire study area, whereas land-use changes dramatically affected ET in watersheds with significant land conversions. In spite of the multiple benefits from afforestation, its impacts on water resources should be considered in future land-use policy making. As a result, elevated ET may also affect fresh water availability for the increasing social and economic water demands.« less

  2. Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Mohammad, Aqilah B.; Halley, John M.; Gange, Alan C.

    2015-09-01

    Very little is known about the impact of climate change on fungi and especially on spore production. Fungal spores can be allergenic, thus being important for human health. The aim of this study was to investigate how climate change influences the responsive ability of fungi by simulating differing environmental regimes. Fungal species with high spore allergenic potential and atmospheric abundance were grown and experimentally examined under a variety of temperatures and different nutrient availability. Each represented the average decadal air temperature of the 1980s, 1990s and 2000s in the UK, along with an Intergovernmental Panel on Climate Change (IPCC) climate change scenario for 2100. All tests were run on six fungal species: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Cladosporium cladosporioides, Cladosporium oxysporum and Epicoccum purpurascens. Mycelium growth rate and spore production were examined on each single species and competitive capacity among species combinations in pairs. All fungal species grew faster at higher temperatures, and this was more pronounced for the temperature projection in 2100. Most species grew faster when there was lower nutrient availability. Exceptions were the species with the highest growth rate ( E. purpurascens) and with the highest competition capacity ( A. alternata). Most species (except for E. purpurascens) produced more spores in the richer nutrient medium but fewer as temperature increased. C. cladosporioides was an exception, exponentially increasing its spore production in the temperature of the 2100 scenario. Regarding competitive capacity, no species displayed any significant alterations within the environmental range checked. It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential.

  3. The Hydrological Evolution of Mars as Recorded at Gale Crater

    NASA Astrophysics Data System (ADS)

    Andrews-Hanna, J. C.; Horvath, D. G.

    2017-12-01

    The sedimentary deposits making up the Aeolis Mons sedimentary mound within Gale Crater preserve a record of the evolving hydrology and climate of Mars during the Late Noachian and Hesperian epochs. Aqueous sedimentary deposits including mudstones, deltaic deposits, and sulfate-cemented sediments indicate the past presence of liquid water on the surface. However, these observations alone do not strictly constrain the nature of the hydrology and climate at the time of deposition. We use models of the subsurface and surface hydrology to shed light on the conditions required to reproduce the observed deposits. Changes in the nature and composition of the deposits reflect changes in the balance between the surface and subsurface components of the hydrological cycle, driven by climate changes. Mudstones observed by the MSL rover at the base of the crater reflect lacustrine deposition under semi-arid conditions, with substantial fluid supply from both the surface (overland flow and direct precipitation) and subsurface. A transition at higher stratigraphic levels to sulfate-cemented sandstones required a change to a more arid climate, with the hydrology dominated by long-distance subsurface transport. Near the top of the mound, unaltered deposits indicate deposition under dry conditions, though this transition coincides with the natural limit on the rise of the water table imposed by the surrounding topography and does not require a change in climate. Erosion of the crater-filling sedimentary deposits to their present mound shape required a dramatic drop in the water table under hyper-arid conditions. Evidence for later lake stands in the Hesperian indicates transient returns to semi-arid conditions similar to those that prevailed during the Late Noachian. By coupling surface and orbital observations with hydrological modeling, we are able to make more specific constraints on the evolving climate and aridity of early Mars.

  4. Analysis of climate change impact on runoff and sediment delivery in a Great Lake watershed using SWAT

    NASA Astrophysics Data System (ADS)

    Verma, S.; Bhattarai, R.; Cooke, R.

    2011-12-01

    The green house gas loading of the atmosphere has been increasing since the mid 19th century which threatens to dramatically change the earth's climate in the 21st Century. Scientific evidences show that earth's global average surface temperature has risen some 0.75°C (1.3°F) since 1850. Third Assessment Report (TAR) from the Intergovernmental Panel on Climate Change (IPCC) concluded that human activities have increased the atmospheric concentration of greenhouse gases (GHGs), which will result in a warming world and other changes in the climate. TAR has projected an increase in globally average surface temperature of 1.4 to 5.8 °C and an increase in precipitation of 5 to 20 % over the period of 1990 to 2100. Assuming a global temperature increase of between 2.8 and 5.2 °C, it was estimated a 7-15% increase in global evaporation and precipitation rates. Global warming and subsequent climate change could raise sea level by several tens of centimeters in the next fifty years. Such a rise may erode beaches, worsen coastal flooding and threaten water quality in estuaries and aquifers. With the climate already changing and further change in climate highly likely to happen, study of impact of climate and the adaptation is a necessary component of any response to climate change. The objective of this study is to analyze the impact of climate change on runoff and sediment delivery in a Great Lake watershed located in Northern Ohio. Maumee River watershed is predominantly an agricultural watershed with an area of 6330 sq mile and drains to Lake Erie. Agricultural area covers about 89.9% of the watershed while wooded area covers 7.3%, 1.2% is urban area and other land uses account for 1.6%. Water Quality Laboratory, Heidelberg College has monitored the watershed for last 25 years. The Soil and Water Assessment Tool (SWAT) model is used for both water quantity and water quality simulations for past and future scenarios. SWAT is a continuous, long-term watershed scale simulation model which operates on a daily time step. The model is physically based, computationally efficient, and capable of assessing the impact of climate and watershed management on water, sediment, and nutrient/chemical yields. SWAT model has been calibrated for flow and sediment yield from 1982 to 2002 for the watershed. The calibrated model will be used to predict future flow and sediment delivery scenarios due to climate change (increase in temperature).

  5. Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity

    NASA Astrophysics Data System (ADS)

    Lyons, Robert P.; Scholz, Christopher A.; Cohen, Andrew S.; King, John W.; Brown, Erik T.; Ivory, Sarah J.; Johnson, Thomas C.; Deino, Alan L.; Reinthal, Peter N.; McGlue, Michael M.; Blome, Margaret W.

    2015-12-01

    The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9-15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world's largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species.

  6. Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity

    PubMed Central

    Lyons, Robert P.; Scholz, Christopher A.; Cohen, Andrew S.; King, John W.; Brown, Erik T.; Ivory, Sarah J.; Johnson, Thomas C.; Deino, Alan L.; Reinthal, Peter N.; McGlue, Michael M.; Blome, Margaret W.

    2015-01-01

    The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9–15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world’s largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species. PMID:26644580

  7. Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity.

    PubMed

    Lyons, Robert P; Scholz, Christopher A; Cohen, Andrew S; King, John W; Brown, Erik T; Ivory, Sarah J; Johnson, Thomas C; Deino, Alan L; Reinthal, Peter N; McGlue, Michael M; Blome, Margaret W

    2015-12-22

    The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9-15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world's largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species.

  8. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.; Scudiero, E.

    2017-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minnesota's Red River Valley (RRV). Climate change has impacted water availability with an under or over abundance, which subsequently has impacted soil salinity levels in the root zone primarily from the upward movement of salts from shallow water tables. Inventorying and monitoring the impact of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation, drainage, and crop management strategies that will sustain the agricultural productivity of the SJV and RRV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for SJV and RRV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Decision makers in state and federal agencies, irrigation and drainage district managers, soil and water resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  9. Warming and Resource Availability Shift Food Web Structure and Metabolism

    PubMed Central

    O'Connor, Mary I.; Piehler, Michael F.; Leech, Dina M.; Anton, Andrea; Bruno, John F.

    2009-01-01

    Climate change disrupts ecological systems in many ways. Many documented responses depend on species' life histories, contributing to the view that climate change effects are important but difficult to characterize generally. However, systematic variation in metabolic effects of temperature across trophic levels suggests that warming may lead to predictable shifts in food web structure and productivity. We experimentally tested the effects of warming on food web structure and productivity under two resource supply scenarios. Consistent with predictions based on universal metabolic responses to temperature, we found that warming strengthened consumer control of primary production when resources were augmented. Warming shifted food web structure and reduced total biomass despite increases in primary productivity in a marine food web. In contrast, at lower resource levels, food web production was constrained at all temperatures. These results demonstrate that small temperature changes could dramatically shift food web dynamics and provide a general, species-independent mechanism for ecological response to environmental temperature change. PMID:19707271

  10. “Our vanishing glaciers”: One hundred years of glacier retreat in Three Sisters Area, Oregon Cascade Range

    USGS Publications Warehouse

    O'Connor, James E.

    2014-01-01

    In August 1910, thirty-nine members of the Mazamas Mountaineering Club ascended the peaks of the Three Sisters in central Oregon. While climbing, geologist Ira A. Williams photographed the surrounding scenery, including images of Collier Glacier. One hundred years later, U.S. Geological Survey research hydrologist Jim E. O’Connor matched those documented photographs with present day images — the result of which is a stunning lapse of glacial change in the Three Sister region. O’Connor asserts that “glaciers exist by the grace of climate,” and through a close examination of the history of the region’s glaciers, he provides an intriguing glimpse into the history of geological surveys and glacial studies in the Pacific Northwest, including their connection to significant scientific advances of the nineteenth century. The work of scientists and mountaineers who have monitored and recorded glacier changes for over a century allows us to see dramatic changes in a landscape that is especially sensitive to ongoing climate change.

  11. Review and synthesis: Changing permafrost in a warming world and feedbacks to the Earth System

    USGS Publications Warehouse

    Grosse, Guido; Goetz, Scott; McGuire, A. David; Romanovsky, Vladimir E.; Schuur, Edward A.G.

    2016-01-01

    The permafrost component of the cryosphere is changing dramatically, but the permafrost region is not well monitored and the consequences of change are not well understood. Changing permafrost interacts with ecosystems and climate on various spatial and temporal scales. The feedbacks resulting from these interactions range from local impacts on topography, hydrology, and biology to complex influences on global scale biogeochemical cycling. This review contributes to this focus issue by synthesizing its 28 multidisciplinary studies which provide field evidence, remote sensing observations, and modeling results on various scales. We synthesize study results from a diverse range of permafrost landscapes and ecosystems by reporting key observations and modeling outcomes for permafrost thaw dynamics, identifying feedbacks between permafrost and ecosystem processes, and highlighting biogeochemical feedbacks from permafrost thaw. We complete our synthesis by discussing the progress made, stressing remaining challenges and knowledge gaps, and providing an outlook on future needs and research opportunities in the study of permafrost–ecosystem–climate interactions.

  12. Challenges of reforestation in a water limited world under climate change

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Sun, Ge

    2014-05-01

    The debate on the ecological benefits of planted forests at the sensitive lower edge of the closed forest belt (at the "xeric limits") is still unresolved. Forests sequester atmospheric carbon dioxide, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously predominantly occupied by grassland or agriculture can dramatically alter the energy and water balance at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts under future climate change and variability due to its high ecohydrological sensitivity. The study investigates some of the relevant aspects of the ecological and climatic role of plantation forests and potential impacts at the dryland edges of the temperate zone, using case studies from three countries/regions on three continents. We found that, contrary to popular expectations, the effect of forest cover on regional climate might be limited and the influence of reforestation on water resources might turn into negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events likely reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest policy on management, silviculture and reforestation planning requires the consideration of local hydrologic conditions, future climatic conditions, and also of non-forest alternatives of land use. Keywords: drylands, xeric limits, trailing limits, ecohydrology, climate forcing, land use change, forest policy

  13. The scaling law of climate change and its relevance to assessing (palaeo)biological responses

    NASA Astrophysics Data System (ADS)

    Kiessling, Wolfgang; Eichenseer, Kilian

    2014-05-01

    It is often argued that current rates of climate change are unprecedented in the geological past. At the same time, the magnitudes of change were often much greater in deep time than they are in history. The most severe global warming in the Phanerozoic, with dramatic consequences for life, probably occurred across the Permian-Triassic (P-T) boundary when an increase of tropical water temperatures of 15° C has been observed to occur over a timespan 0.8 myr (Sun et al. 2012), whereas global ocean warming over the last 50 years was 0.35° C (Burrows et al. 2011). When transforming these data into rates of change the P-T rate was roughly 370 times smaller than the current rate. We argue that the smaller rates of change inferred from geological proxy records are due to a scaling effect, that is, rates of climate change generally decrease with timespan of observation. We compiled from the published literature data on measured or inferred temperature changes and the timespans over which these changes were assessed. Our compilation currently comprises 120 values and covers timespans from 20 to 107 years. A log-log plot of timespan versus rate of temperature change depicts a highly significant correlation (r2 = 0.95) of a power-law relationship with an exponent of -0.87. Warming trends show a slightly lower exponent (-0.84) than cooling trends (-0.89) but the explained variance is better for the scaling of warming trends. Importantly, the scaled warming trend across the P-T boundary is higher than the current rates of warming. Similar scaling effects are well explored for sediment accumulation rates (Sadler 1981) and evolutionary rates (Gingerich 1993). These have been interpreted as being due to breaks in sedimentation and periods of stasis or transient reversals, respectively. In case of climate change, transient reversals in general trends are the most likely explanation for the scaling relationship. Even relatively rapid intervals of warming, such as the Pleistocene interglacials, are not monotonic, but punctuated by short-term cooling intervals. The fossil record tells us that biodiversity responded dramatically to ancient intervals of climate warming. We can now see that the apparently slower rates of change in some mass extinctions (Permian-Triassic, Triassic-Jurassic) were greater than today when the scaling law is considered. This reassures us that studying deep time patterns of organismic response to climate change is a worthwhile endeavor that is relevant for predicting the future. References Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. S., Brander, K. M., Brown, C., Bruno, J. F., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F. B., Sydeman, W. J., and Richardson, A. J.: The pace of shifting climate in marine and terrestrial ecosystems, Science, 334, 652-655, 2011. Gingerich, P. D.: Quantification and comparison of evolutionary rates, American Journal of Science, 293A, 453-478, 1993. Sadler, P. M.: Sediment accumulation rates and the completeness of stratigraphic sections, Journal of Geology, 89, 569-584, 1981. Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X.: Lethally hot temperatures during the Early Triassic greenhouse, Science, 338, 366-370, 2012.

  14. Future drying of the southern Amazon and central Brazil

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Zeng, N.; Cook, B.

    2008-12-01

    Recent climate modeling suggests that the Amazon rainforest could exhibit considerable dieback under future climate change, a prediction that has raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable. However, the periphery, notably the southern edge, is in danger of drying out, driven by two main processes. First, a decline in precipitation of 24% in the southern Amazon lengthens the dry season and reduces soil moisture, despite of an increase in precipitation during the wet season, due to the nonlinear response in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season precipitation: (1) a stronger north-south tropical Atlantic sea surface temperature gradient; (2) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure. Secondly, evaporation will increase due to the general warming, thus also reducing soil moisture. As a consequence, the median of the models projects a reduction of vegetation by 20%, and enhanced fire carbon flux by 10-15% in the southern Amazon, central Brazil, and parts of the Andean Mountains. Because the southern Amazon is also under intense human influence, the double pressure of deforestation and climate change may subject the region to dramatic changes in the 21st century.

  15. The response of European and Asian climate to global and regional aerosol emissions

    NASA Astrophysics Data System (ADS)

    Wilcox, Laura; Dunstone, Nick; Highwood, Eleanor; Bollasina, Massimo; Dong, Buwen; Sutton, Rowan

    2017-04-01

    Asia has the world's highest anthropogenic aerosol loading and has experienced a dramatic increase in emissions since the 1950s, which has continued in the 21st century, in stark contrast with European (and North American) emissions which started to decrease in the 1970s. We use a set of transient coupled model experiments (HadGEM2-GC2) to explore the regional climate effects of anthropogenic aerosol changes since the 1980s, with a focus on the European and Asian responses. Comparing simulations with globally varying aerosol emissions to an equivalent set with Asian emissions fixed at their 1971-1980 mean over Asia, we identify the contribution of Asian emissions to the total impact. Identifying thermodynamic and dynamic responses to global and regional aerosol changes, we diagnose atmospheric teleconnections and their interactions with local processes, and the mechanisms by which aerosol affects both European and Asian climate. It is found that Asian aerosols led to substantial changes in Asian climate, weakening the summer monsoon, which is a key driver of the observed precipitation changes there in recent decades. Asian emissions are also able to induce planetary-scale teleconnection patterns in both winter and summer. The impact of the regional diabatic heating anomaly propagates remotely by exciting northern hemisphere wave-trains which, enhanced by regional feedbacks, cause changes in near-surface climate over Europe. To examine the robustness of the mechanisms we identify in HadGEM2, we analyse similar sets of experiments from NorESM1-M and GFDL-CM3: models with very different climatologies and representations of aerosol processes.

  16. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  17. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    PubMed Central

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5–10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage. PMID:27994158

  18. Geological Society of London Issues Statement on Climate Change

    NASA Astrophysics Data System (ADS)

    Summerhayes, Colin

    2011-02-01

    On 1 November the Geological Society of London (GSL) published a statement (http://www.geolsoc.org.uk/gsl/site//GSL//lang/en/climatechange) about the geological evidence relating to past climates, atmospheric carbon levels, and their interrelationships. The online version also carries a list of recommendations for further reading. The GSL's Geoscientist magazine (http://www.geolsoc.org.uk/gsl/site/GSL/lang/en/page8578.html) reported Bryan Lovell, GSL president, as saying, “Climate change is a defining issue of our time, whose full understanding needs geology's long perspective. Earth scientists can read…the geological record of changes in climate that occurred long before we were around to light so much as a camp fire, let alone burn coal, gas and oil. A dramatic global warming event 55 million years ago gives us a particularly clear indication of what happens when there is a sudden release of 1500 billion tonnes of carbon into Earth's atmosphere. It gets hot, the seas become more acid, and there is widespread extinction of life. We are a third of the way to repeating that ancient natural input of carbon through our own agency. The message from the rocks is that it would be a good idea to stop pulling that carbon trigger.”

  19. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    PubMed

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  20. Late Glacial and Early Holocene Climatic Changes Based on a Multiproxy Lacustrine Sediment Record from Northeast Siberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokorowski, H D; Anderson, P M; Sletten, R S

    Palynological (species assemblage, pollen accumulation rate), geochemical (carbon to nitrogen ratios, organic carbon and biogenic silica content), and sedimentological (particle size, magnetic susceptibility) data combined with improved chronology and greater sampling resolution from a new core from Elikchan 4 Lake provide a stronger basis for defining paleoenvironmental changes than was previously possible. Persistence of herb-dominated tundra, slow expansion of Betula and Alnus shrubs, and low percentages of organic carbon and biogenic silica suggest that the Late-Glacial transition (ca. 16,000-11,000 cal. yr BP) was a period of gradual rather than abrupt vegetation and climatic change. Consistency of all Late-Glacial data indicatesmore » no Younger Dryas climatic oscillation. A dramatic peak in pollen accumulation rates (ca. 11,000-9800 cal. yr BP) suggests a possible summer temperature optimum, but finer grain-sizes, low magnetic susceptibility, and greater organic carbon and biogenic silica, while showing significant warming at ca. 11,000 cal. yr BP, offer no evidence of a Holocene thermal maximum. When compared to trends in other paleo-records, the new Elikchan data underscore the apparent spatial complexity of climatic responses in Northeast Siberia to global forcings between ca. 16,000-9000 cal. yr BP.« less

  1. Coupled impacts of climate and land use change across a river-lake continuum: insights from an integrated assessment model of Lake Champlain’s Missisquoi Basin, 2000-2040

    NASA Astrophysics Data System (ADS)

    Zia, Asim; Bomblies, Arne; Schroth, Andrew W.; Koliba, Christopher; Isles, Peter D. F.; Tsai, Yushiou; Mohammed, Ibrahim N.; Bucini, Gabriela; Clemins, Patrick J.; Turnbull, Scott; Rodgers, Morgan; Hamed, Ahmed; Beckage, Brian; Winter, Jonathan; Adair, Carol; Galford, Gillian L.; Rizzo, Donna; Van Houten, Judith

    2016-11-01

    Global climate change (GCC) is projected to bring higher-intensity precipitation and higher-variability temperature regimes to the Northeastern United States. The interactive effects of GCC with anthropogenic land use and land cover changes (LULCCs) are unknown for watershed level hydrological dynamics and nutrient fluxes to freshwater lakes. Increased nutrient fluxes can promote harmful algal blooms, also exacerbated by warmer water temperatures due to GCC. To address the complex interactions of climate, land and humans, we developed a cascading integrated assessment model to test the impacts of GCC and LULCC on the hydrological regime, water temperature, water quality, bloom duration and severity through 2040 in transnational Lake Champlain’s Missisquoi Bay. Temperature and precipitation inputs were statistically downscaled from four global circulation models (GCMs) for three Representative Concentration Pathways. An agent-based model was used to generate four LULCC scenarios. Combined climate and LULCC scenarios drove a distributed hydrological model to estimate river discharge and nutrient input to the lake. Lake nutrient dynamics were simulated with a 3D hydrodynamic-biogeochemical model. We find accelerated GCC could drastically limit land management options to maintain water quality, but the nature and severity of this impact varies dramatically by GCM and GCC scenario.

  2. Escalating impacts of climate extremes on critical infrastructures in Europe.

    PubMed

    Forzieri, Giovanni; Bianchi, Alessandra; Silva, Filipe Batista E; Marin Herrera, Mario A; Leblois, Antoine; Lavalle, Carlo; Aerts, Jeroen C J H; Feyen, Luc

    2018-01-01

    Extreme climatic events are likely to become more frequent owing to global warming. This may put additional stress on critical infrastructures with typically long life spans. However, little is known about the risks of multiple climate extremes on critical infrastructures at regional to continental scales. Here we show how single- and multi-hazard damage to energy, transport, industrial, and social critical infrastructures in Europe are likely to develop until the year 2100 under the influence of climate change. We combine a set of high-resolution climate hazard projections, a detailed representation of physical assets in various sectors and their sensitivity to the hazards, and more than 1100 records of losses from climate extremes in a prognostic modelling framework. We find that damages could triple by the 2020s, multiply six-fold by mid-century, and amount to more than 10 times present damage of €3.4 billion per year by the end of the century due only to climate change. Damage from heatwaves, droughts in southern Europe, and coastal floods shows the most dramatic rise, but the risks of inland flooding, windstorms, and forest fires will also increase in Europe, with varying degrees of change across regions. Economic losses are highest for the industry, transport, and energy sectors. Future losses will not be incurred equally across Europe. Southern and south-eastern European countries will be most affected and, as a result, will probably require higher costs of adaptation. The findings of this study could aid in prioritizing regional investments to address the unequal burden of impacts and differences in adaptation capacities across Europe.

  3. Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100.

    PubMed

    Alter, S Elizabeth; Meyer, Matthias; Post, Klaas; Czechowski, Paul; Gravlund, Peter; Gaines, Cork; Rosenbaum, Howard C; Kaschner, Kristin; Turvey, Samuel T; van der Plicht, Johannes; Shapiro, Beth; Hofreiter, Michael

    2015-04-01

    Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. © 2015 John Wiley & Sons Ltd.

  4. Changing Climate Drives Lagging and Accelerating Glacier Responses and Accelerating Adjustments of the Hazard Regime

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey

    2013-04-01

    It is virtually universally recognized among climate and cryospheric scientists that climate and greenhouse gas abundances are closely correlated. Disagreements mainly pertain to the fundamental triggers for large fluctuations in climate and greenhouse gases during the pre-industrial era, and exactly how coupling is achieved amongst the dynamic solid Earth, the Sun, orbital and rotational dynamics, greenhouse gas abundances, and climate. Also unsettled is the climate sensitivity defined as the absolute linkage between the magnitude of climate warming/cooling and greenhouse gas increase/decrease. Important questions concern lagging responses (either greenhouse gases lagging climate fluctuations, or vice versa) and the causes of the lags. In terms of glacier and ice sheet responses to climate change, there also exist several processes causing lagging responses to climate change inputs. The simplest parameterization giving a glacier's lagging response time, τ, is that given by Jóhanneson et al. (1989), modified slightly here as τ = b/h, where b is a measure of ablation rate and h is a measure of glacier thickness. The exact definitions of τ, b, and h are subject to some interpretive license, but for a back-of-the-envelope approximation, we may take b as the magnitude of the mean ablation rate over the whole ablation area, and h as the mean glacier thickness in the glacier ablation zone. τ remains a bit ambiguous but may be considered as an exponential time scale for a decreasing response of b to a climatic step change. For some climate changes, b and h can be taken as the values prior to the climate change, but for large climatic shifts, this parameterization must be iterated. The actual response of a glacier at any time is the sum of exponentially decreasing responses from past changes. (Several aspects of glacier dynamics cause various glacier responses to differ from this idealized glacier-response theory.) Some important details relating to the retreat (or advances) of glaciers due to historic and future anthropogenic and longer term climate change relate to a changing glacier hazard regime. Climate change is connected to changes in the geographic distribution and magnitudes of potentially hazardous glacier lakes, large rock and ice avalanches, ice-dammed rivers, and surges. I shall consider these changes in hazard environment in relation to response-time theory and dynamical divergences from idealized response-time theory. Case histories of certain hazard-prone regions, including developments in fast-response-type glaciers and slow-response glaciers and ice sheets will also be discussed. In short, there will be a strong tendency of the hazard regimes of glacierized regions to shift far more rapidly in the 21st century than they did in the 20th century. The magnitude of the shifts will be more dramatic than any simple linear scaling to climate warming would suggest; this is largely because, due to lagging responses, glaciers are still trying to catch up to a new equilibrium for 20th century climate, while climate change remains a moving target that will drive accelerating glacier responses (including responses in hazard environments) in most glacierized regions.

  5. The relationship between mammal faunas and climatic instability since the Last Glacial Maximum: A Nearctic vs. Western Palearctic comparison

    NASA Astrophysics Data System (ADS)

    Torres-Romero, Erik Joaquín; Varela, Sara; Fisher, Jason T.; Olalla-Tárraga, Miguel Á.

    2017-07-01

    Climate has played a key role in shaping the geographic patterns of biodiversity. The imprint of Quaternary climatic fluctuations is particularly evident on the geographic distribution of Holarctic faunas, which dramatically shifted their ranges following the alternation of glacial-interglacial cycles during the Pleistocene. Here, we evaluate the existence of differences between climatically stable and unstable regions - defined on the basis of climatic change velocity since the Last Glacial Maximum - in the geographic distribution of several biological attributes of extant terrestrial mammals of the Nearctic and Western Palearctic regions. Specifically, we use a macroecological approach to assess the dissimilarities in species richness, range size, body size, longevity and litter size of species that inhabit regions with contrasting histories of climatic stability. While several studies have documented how the distributional ranges of animals can be affected by long-term historic climatic fluctuations, there is less evidence on the species-specific traits that determine their responsiveness under such climatic instability. We find that climatically unstable areas have more widespread species and lower mammal richness than stable regions in both continents. We detected stronger signatures of historical climatic instability on the geographic distribution of body size in the Nearctic region, possibly reflecting lagged responses to recolonize deglaciated regions. However, the way that animals respond to climatic fluctuations varies widely among species and we were unable to find a relationship between climatic instability and other mammal life-history traits (longevity and litter size) in any of the two biogeographic regions. We, therefore, conclude that beyond some biological traits typical of macroecological analyses such as geographic range size and body size, it is difficult to infer the responsiveness of species distributions to climate change solely based on particular life-history traits.

  6. Climate change and the Rocky Mountains: Chapter 20

    USGS Publications Warehouse

    Byrne, James M.; Fagre, Daniel B.; MacDonald, Ryan; Muhlfeld, Clint C.

    2014-01-01

    For at least half of the year, the Rocky Mountains are shrouded in snow that feeds a multitude of glaciers. Snow and ice eventually melt into rivers that have eroded deep valleys that contain rich aquatic and terrestrial ecosystems. Because the Rocky Mountains are the major divide on the continent, rainfall and melt water from glaciers and snowfields feed major river systems that run to the Pacific, Atlantic, and Arctic oceans. The Rockies truly are the water tower for much of North America, and part of the Alpine backbone of North and South America. For purposes of this chapter, we limit our discussion to the Rocky Mountains of the Canadian provinces of Alberta and British Columbia, and the U.S. states of Montana, Idaho, Wyoming, and Colorado. Similar to other mountain systems, the altitude of the Rocky Mountains condenses the weather, climate and ecosystems of thousands of kilometres of latitude into very short vertical distances. In one good day, a strong hiker can journey by foot from the mid-latitude climates of the great plains of North America to an arctic climate near the top of Rocky Mountain peaks. The steep climatic gradients of mountain terrain create some of the most diverse ecosystems in the world, but it is those rapid changes in microclimate and ecology that make mountains sensitive to climate change. The energy budget in mountains varies dramatically not only with elevation but with slope and aspect. A modest change in the slope of the terrain over short distances may radically change the solar radiation available in that location. Shaded or north facing slopes have very different microclimates than the same elevations in a sunlit location, or for a hill slope facing south. The complexities associated with the mountain terrain of the Rockies compound complexities of weather and climate to create diverse, amazing ecosystems. This chapter addresses the impacts of climate change on Rocky Mountain ecosystems in light of their complexities and sensitivities. The chapter emphasizes how climate change affects aquatic resources of the Rockies because they are impacted so directly by the changing snow and ice regimes. The chapter also suggests some approaches for coping with these impacts. Climate change is real and ever present, and the role of each of us in changing the climate is also real and present. The Rocky Mountains are a vast and complex region that is valuable both for resources and ecosystems, but the Rockies cannot provide the valuable resources we need, unless we protect and conserve mountain ecosystems. Hopefully this discussion of the major changes ongoing in the Rocky Mountains due to climate change will add to the collective societal will to minimize this change in the future.

  7. Climatic Changes on Tibetan Plateau Based on Ice Core Records

    NASA Astrophysics Data System (ADS)

    Yao, T.

    2008-12-01

    Climatic changes have been reconstructed for the Tibetan Plateau based on ice core records. The Guliya ice core on the Tibetan Plateau presents climatic changes in the past 100,000 years, thus is comparative with that from Vostok ice core in Antarctica and GISP2 record in Arctic. These three records share an important common feature, i.e., our climate is not stable. It is also evident that the major patterns of climatic changes are similar on the earth. Why does climatic change over the earth follow a same pattern? It might be attributed to solar radiation. We found that the cold periods correspond to low insolation periods, and warm periods to high insolation periods. We found abrupt climatic change in the ice core climatic records, which presented dramatic temperature variation of as much as 10 °C in 50 or 60 years. Our major challenge in the study of both climate and environment is that greenhouse gases such as CO2, CH4 are possibly amplifying global warming, though at what degree remains unclear. One of the ways to understand the role of greenhouse gases is to reconstruct the past greenhouse gases recorded in ice. In 1997, we drilled an ice core from 7100 m a.s.l. in the Himalayas to reconstruct methane record. Based on the record, we found seasonal cycles in methane variation. In particular, the methane concentration is high in summer, suggestiing active methane emission from wet land in summer. Based on the seasonal cycle, we can reconstruct the methane fluctuation history in the past 500 years. The most prominent feature of the methane record in the Himalayan ice core is the abrupt increase since 1850 A.D.. This is closely related to the industrial revolution worldwide. We can also observe sudden decrease in methane concentration during the World War I and World War II. It implies that the industrial revolution has dominated the atmospheric greenhouse gas emission for about 100 years. Besides, the average methane concentration in the Himalayan ice core is higher than that in polar regions, indicating that the low latitude wet land is a major natural source of atmospheric methane.

  8. Science Curriculum in the Market Liberal Society of the Twenty-first Century: `Re-visioning' the Idea of Science for All

    NASA Astrophysics Data System (ADS)

    Smith, Dorothy V.; Gunstone, Richard F.

    2009-01-01

    The period since the 1960s has seen dramatic change in the nature and practice of science, science education and secondary school education itself. This paper examines changes in the Science for All movement, setting these changes in the context of the societal shift towards market liberalism and the advancement of a new style of individualism. We argue that the climate of today requires a re-focusing of the priorities of secondary school science education, with a new emphasis on what Science for All implies for the education of those who will go on to be our scientific elite.

  9. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century.

    PubMed

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R S; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8-56.4) PgC yr(-1) as a result of multiple factors during 2000-2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010-2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5 °C (until the 2030s) and then level-off or decline after it increases by more than 1.5 °C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2 °C may not be sufficient and the need to potentially aim for staying below 1.5 °C. The CO2 fertilization effect would result in a 12%-13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2.

  10. Complex Spatiotemporal Responses of Global Terrestrial Primary Production to Climate Change and Increasing Atmospheric CO2 in the 21st Century

    PubMed Central

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R. S.; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2. PMID:25401492

  11. Composition and structure of Pinus koraiensis mixed forest respond to spatial climatic changes.

    PubMed

    Zhang, Jingli; Zhou, Yong; Zhou, Guangsheng; Xiao, Chunwang

    2014-01-01

    Although some studies have indicated that climate changes can affect Pinus koraiensis mixed forest, the responses of composition and structure of Pinus koraiensis mixed forests to climatic changes are unknown and the key climatic factors controlling the composition and structure of Pinus koraiensis mixed forest are uncertain. Field survey was conducted in the natural Pinus koraiensis mixed forests along a latitudinal gradient and an elevational gradient in Northeast China. In order to build the mathematical models for simulating the relationships of compositional and structural attributes of the Pinus koraiensis mixed forest with climatic and non-climatic factors, stepwise linear regression analyses were performed, incorporating 14 dependent variables and the linear and quadratic components of 9 factors. All the selected new models were computed under the +2°C and +10% precipitation and +4°C and +10% precipitation scenarios. The Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month were observed to be key climatic factors controlling the stand densities and total basal areas of Pinus koraiensis mixed forest. Increased summer temperatures and precipitations strongly enhanced the stand densities and total basal areas of broadleaf trees but had little effect on Pinus koraiensis under the +2°C and +10% precipitation scenario and +4°C and +10% precipitation scenario. These results show that the Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month are key climatic factors which shape the composition and structure of Pinus koraiensis mixed forest. Although the Pinus koraiensis would persist, the current forests dominated by Pinus koraiensis in the region would all shift and become broadleaf-dominated forests due to the dramatic increase of broadleaf trees under the future global warming and increased precipitation.

  12. Functional Resilience against Climate-Driven Extinctions – Comparing the Functional Diversity of European and North American Tree Floras

    PubMed Central

    Liebergesell, Mario; Stahl, Ulrike; Freiberg, Martin; Welk, Erik; Kattge, Jens; Cornelissen, J. Hans C.; Peñuelas, Josep

    2016-01-01

    Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America. We used variation in 26 traits for 154 North American and 66 European tree species and grid-based co-occurrences derived from distribution maps to compare functional diversity patterns of the two continents. First, we identified similar regions with respect to contemporary climate in the temperate zone of North America and Europe. Second, we compared the functional diversity of both continents and for the climatically similar sub-regions using the functional dispersion-index (FDis) and the functional richness index (FRic). Third, we accounted in these comparisons for grid-scale differences in species richness, and, fourth, investigated the associated trait spaces using dimensionality reduction. For gymnosperms we find similar functional diversity on both continents, whereas for angiosperms functional diversity is significantly greater in Europe than in North America. These results are consistent across different scales, for climatically similar regions and considering species richness patterns. We decomposed these differences in trait space occupation into differences in functional diversity vs. differences in functional identity. We show that climate-driven species loss on a continental scale might be decoupled from or at least not linearly related to changes in functional diversity. This might be important when analyzing the effects of climate-driven biodiversity change on ecosystem functioning. PMID:26848836

  13. Disturbance Hydrology in the Tropics: The Galápagos Islands as a Case Study

    NASA Astrophysics Data System (ADS)

    Riveros-Iregui, D. A.; Schmitt, S.; Percy, M.; Hu, J.; Singha, K.; Mirus, B. B.

    2015-12-01

    Tropical Latin America has shown the largest acceleration in land use change in recent decades. It is well established that changes in vegetation cover can lead to changes in water demand, evapotranspiration, and eventually soil textural characteristics. Given the projected changes in the intensity and distribution of rainfall in tropical regions in the coming decades, it is critical to characterize how changes in land use change across different climatic zones may fundamentally reshape water availability and storage, soil composition and associated hydraulic properties, and overall watershed hydrologic behavior. This study evaluates the role of anthropogenic disturbance on hydrological processes across different climatic zones in the tropics. We focus specifically on San Cristobal Island, the second most populated island of the iconic Galapagos archipelago, which is currently undergoing severe anthropogenic transformation. The island contains a spectrum of climates, ranging from very humid to arid, and has seen a dramatic increase in tourism and an increase in the permanent population of greater than 1000% in the last 40 years. Over 70% of the landscape of San Cristobal has been altered by land use change and invasive species. Our study identifies the complex interactions among hydrological, geological, economic, and social variables that tropical island systems will face in the years ahead, and the role and effects of a dynamic hydrologic cycle across multiple scales.

  14. Climate change and physical disturbance manipulations result in distinct biological soil crust communities.

    PubMed

    Steven, Blaire; Kuske, Cheryl R; Gallegos-Graves, La Verne; Reed, Sasha C; Belnap, Jayne

    2015-11-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remains poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2°C soil warming, altered summer precipitation [wetting], and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional changes. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in the cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased Cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities, and the communities' functional profiles can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Climate change and physical disturbance manipulations result in distinct biological soil crust communities

    USGS Publications Warehouse

    Steven, Blaire; Kuske, Cheryl R.; Gallegos-Graves, La Verne; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remain poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2 °C soil warming, altered summer precipitation (wetting), and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional change. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities and the community functional profile can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands.

  16. Extrinsic regime shifts drive abrupt changes in regeneration dynamics at upper treeline in the Rocky Mountains, U.S.A.

    PubMed

    Elliott, Grant P

    2012-07-01

    Given the widespread and often dramatic influence of climate change on terrestrial ecosystems, it is increasingly common for abrupt threshold changes to occur, yet explicitly testing for climate and ecological regime shifts is lacking in climatically sensitive upper treeline ecotones. In this study, quantitative evidence based on empirical data is provided to support the key role of extrinsic, climate-induced thresholds in governing the spatial and temporal patterns of tree establishment in these high-elevation environments. Dendroecological techniques were used to reconstruct a 420-year history of regeneration dynamics within upper treeline ecotones along a latitudinal gradient (approximately 44-35 degrees N) in the Rocky Mountains. Correlation analysis was used to assess the possible influence of minimum and maximum temperature indices and cool-season (November-April) precipitation on regional age-structure data. Regime-shift analysis was used to detect thresholds in tree establishment during the entire period of record (1580-2000), temperature variables significantly Correlated with establishment during the 20th century, and cool-season precipitation. Tree establishment was significantly correlated with minimum temperature during the spring (March-May) and cool season. Regime-shift analysis identified an abrupt increase in regional tree establishment in 1950 (1950-1954 age class). Coincident with this period was a shift toward reduced cool-season precipitation. The alignment of these climate conditions apparently triggered an abrupt increase in establishment that was unprecedented during the period of record. Two main findings emerge from this research that underscore the critical role of climate in governing regeneration dynamics within upper treeline ecotones. (1) Regional climate variability is capable of exceeding bioclimatic thresholds, thereby initiating synchronous and abrupt changes in the spatial and temporal patterns of tree establishment at broad regional scales. (2) The importance of climate parameters exceeding critical threshold values and triggering a regime shift in tree establishment appears to be contingent on the alignment of favorable temperature and moisture regimes. This research suggests that threshold changes in the climate system can fundamentally alter regeneration dynamics within upper treeline ecotones and, through the use of regime-shift analysis, reveals important climate-vegetation linkages.

  17. Effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    USGS Publications Warehouse

    Jafarov, Elchin E.; Romanovsky, Vladimir E.; Genet, Helene; McGuire, Anthony David; Marchenko, Sergey S.

    2013-01-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ~80 cm) and upland (with thin organic layers, ~30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.

  18. Challenges to Sierra Nevada forests and their local communities: An observational and modeling perspective

    NASA Astrophysics Data System (ADS)

    Schmidt, Cynthia L.

    Global forests are experiencing dramatic changes due to changes in climate as well as anthropogenic activities. Increased warming is causing the advancement of some species upslope and northward, while it is also causing widespread mortality due to increased drought conditions. In addition, increasing human population in mountain regions is resulting in elevated risk of human life and property loss due to larger and more severe wildfires. My research focuses on assessing the current vulnerability of forests and their communities in the Sierra Nevada, and how forests are projected to change in the future based on different climate change scenarios. In the first chapter I use Landsat satellite imagery to identify and attribute cause of forest disturbance between 1985 and 2011, primarily focusing on disturbances due to insect, diseases and drought. The change-detection algorithm, Landtrendr, was successfully used to identify forest disturbance, but identifying cause of disturbance was challenging due to the spectral similarities between disturbance types. Landtrendr was most successful in identifying disturbance due to insect, disease and drought in the San Bernardino National Forest, where there is little forest management activity. In the second chapter, I assess whether state or local land use policies in high-fire prone regions exist to reduce the vulnerability of residential developments to wildfire. Three specific land-use tools associated with reducing wildfire vulnerability are identified: (1) buffers around developments; (2) clustered developments; (3) restricting construction on slopes greater than 25%. The study also determines whether demographic and physical characteristics of selected California counties were related to implementing land use policies related to reducing wildfire vulnerability. Results indicate that land use policies related to preventing wildfire-related losses focus on building materials, road access, water availability and vegetation management, not the three identified land-use tools. San Diego County, the county that has experienced the most devastating fires, had the highest percentage of residential developments with both clustering and buffering. The third chapter focuses on future forest conditions. I used a Dynamic Global Vegetation Model (DGVM) to assess future vegetation dynamics and productivity under changing climate and atmospheric CO2 concentrations in the Sierra Nevada. Model results suggest that Temperate Broadleaved Evergreen Plant Functional Types (PFTs) will move upslope and eastward, replacing Temperate Needleleaved PFTs. Boreal Needleleaved Evergreen PFTs, found primarily at higher elevations, will decline dramatically as temperatures continue to increase. Gross Primary Productivity (GPP) will increase as atmospheric CO2 concentration increases, due primarily to the increase in the more productive broadleaved PFTs. Forest ecosystems play an important role in maintaining climate stability at the regional and global scales as a vital carbon sink, so understanding the role of disturbance and climate change will be vital to both scientists and policy makers in the future.

  19. Do changes in climate and land use pose a risk to the future water availability of Mediterranean Lakes?

    NASA Astrophysics Data System (ADS)

    Bucak, T.; Trolle, D.; Andersen, H. E.; Thodsen, H.; Erdoğan, Ş.; Levi, E. E.; Filiz, N.; Jeppesen, E.; Beklioğlu, M.

    2016-12-01

    Inter- and intra-annual water level fluctuations and change in water flow regime are intrinsic characteristics of Mediterranean lakes. However, considering the climate change projections for the water-limited Mediterranean region where potential evapotranspiration exceeds precipitation and with increased air temperatures and decreased precipitation, more dramatic water level declines in lakes and severe water scarcity problems are expected to occur in the future. Our study lake, Lake Beyşehir, the largest freshwater lake in the Mediterranean basin, is - like other Mediterranean lakes - under pressure due to water abstraction for irrigated crop farming and climatic changes, and integrated water level management is therefore required. We used an integrated modeling approach to predict the future lake water level of Lake Beyşehir in response to the future changes in both climate and, potentially, land use by linking the catchment model Soil and Water Assessment Tool (SWAT) with a Support Vector Machine Regression model (ɛ-SVR). We found that climate change projections caused enhanced potential evapotranspiration and reduced total runoff, whereas the effects of various land use scenarios within the catchment were comparatively minor. In all climate scenarios applied in the ɛ-SVR model, changes in hydrological processes caused a water level reduction, predicting that the lake may dry out already in the 2040s with the current outflow regulation considering the most pessimistic scenario. Based on model runs with optimum outflow management, a 9-60% reduction in outflow withdrawal is needed to prevent the lake from drying out by the end of this century. Our results indicate that shallow Mediterranean lakes may face a severe risk of drying out and loss of ecosystem value in near future if the current intense water abstraction is maintained. Therefore, we conclude that outflow management in water-limited regions in a warmer and drier future and sustainable use of water sources are vitally important to sustain lake ecosystems and their ecosystem services.

  20. Environmental and Ecological Effects of Climate Change on Venomous Marine and Amphibious Species in the Wilderness.

    PubMed

    Needleman, Robert K; Neylan, Isabelle P; Erickson, Timothy B

    2018-06-25

    Recent analyses of data show a warming trend in global average air and sea surface ocean temperatures. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, the sea level has risen, and the concentrations of greenhouse gases have increased. This article will focus on climate change and projected effects on venomous marine and amphibious creatures with the potential impact on human health. Retrospective analysis of environmental, ecological, and medical literature with a focus on climate change, toxinology, and future modeling specific to venomous aquatic and amphibious creatures. Species included venomous jellyfish, poisonous fish, crown-of-thorns starfish, sea snakes, and toxic frogs. In several projected scenarios, rising temperatures, weather extremes, and shifts in seasons will increase poisonous population numbers, particularly with certain marine creatures like jellyfish and crown-of-thorns starfish. Habitat expansions by lionfish and sea snakes are projected to occur. These phenomena, along with increases in human populations and coastal development will likely increase human-animal encounters. Other species, particularly amphibious toxic frogs, are declining rapidly due to their sensitivity to any temperature change or subtle alterations in the stability of their environment. If temperatures continue to rise to record levels over the next decades, it is predicted that the populations of these once plentiful and critically important animals to the aquatic ecosystem will decline and their geographic distributions will shrink. Review of the literature investigating the effect and forecasts of climate change on venomous marine and amphibious creatures has demonstrated that temperature extremes and changes to climatic norms will likely have a dramatic effect on these toxicological organisms. The effects of climate change on these species through temperature alteration and rising coastal waters will influence each species differently and in turn potentially affect commercial industries, travel, tourism, and human health. Published by Elsevier Inc.

  1. The potential effects of climate change on the distribution and productivity of Cunninghamia lanceolata in China.

    PubMed

    Liu, Yupeng; Yu, Deyong; Xun, Bin; Sun, Yun; Hao, Ruifang

    2014-01-01

    Climate changes may have immediate implications for forest productivity and may produce dramatic shifts in tree species distributions in the future. Quantifying these implications is significant for both scientists and managers. Cunninghamia lanceolata is an important coniferous timber species due to its fast growth and wide distribution in China. This paper proposes a methodology aiming at enhancing the distribution and productivity of C. lanceolata against a background of climate change. First, we simulated the potential distributions and establishment probabilities of C. lanceolata based on a species distribution model. Second, a process-based model, the PnET-II model, was calibrated and its parameterization of water balance improved. Finally, the improved PnET-II model was used to simulate the net primary productivity (NPP) of C. lanceolata. The simulated NPP and potential distribution were combined to produce an integrated indicator, the estimated total NPP, which serves to comprehensively characterize the productivity of the forest under climate change. The results of the analysis showed that (1) the distribution of C. lanceolata will increase in central China, but the mean probability of establishment will decrease in the 2050s; (2) the PnET-II model was improved, calibrated, and successfully validated for the simulation of the NPP of C. lanceolata in China; and (3) all scenarios predicted a reduction in total NPP in the 2050s, with a markedly lower reduction under the a2 scenario than under the b2 scenario. The changes in NPP suggested that forest productivity will show a large decrease in southern China and a mild increase in central China. All of these findings could improve our understanding of the impact of climate change on forest ecosystem structure and function and could provide a basis for policy-makers to apply adaptive measures and overcome the unfavorable influences of climate change.

  2. Regional Approach for Linking Ecosystem Services and Livelihood Strategies Under Climate Change of Pastoral Communities in the Mongolian Steppe Ecosystem

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Galvin, K.; Togtohyn, C.

    2012-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau affecting ecosystem services and agro-pastoral systems in Mongolia. Recently, market forces and development strategies are affecting land and water resources of the pastoral communities which are being further stressed due to climatic changes. Evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the social-economic forces. The analysis incorporates information about the social-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia. Our research indicate that sustainability of pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate integrated analysis of landscape management and livelihood strategies provides a framework which links ecosystem services to critical resource assets. Analysis of the available livelihood assets provides insights to the adaptive capacity of various agents in a region or in a community. Sustainable development pathways which enable the development of these adaptive capacity elements will lead to more effective adaptive management strategies for pastoral land use and herder's living standards. Pastoralists will have the opportunity to utilize seasonal resources and enhance their ability to process and manufacture products from the available ecosystem services in these dynamic social-ecological systems.

  3. Transitions between multiple equilibria of paleo climate: a glimpse in to the dynamics of abrupt climate change

    NASA Astrophysics Data System (ADS)

    Ferreira, David; Marshall, John; Ito, Takamitsu; McGee, David; Moreno-Chamarro, Eduardo

    2017-04-01

    The dynamics regulating large climatic transitions such as glacial-interglacial cycles or DO events remains a puzzle. Forcings behind these transitions are not robustly identified and potential candidates (e.g. Milankovitch cycles, freshwater perturbations) often appear too weak to explain such dramatic transitions. A potential solution to this long-standing puzzle is that Earth's climate is endowed with multiple equilibrium states of global extent. Such states are commonly found in low-order or conceptual climate models, but it is unclear whether a system as complex as Earth's climate can sustain multiple equilibrium states. Here we report that multiple equilibrium states of the climate system are also possible in a complex, fully dynamical coupled ocean-atmosphere-sea ice GCM with idealized Earth-like geometry, resolved weather systems and a hydrological cycle. In our model, two equilibrium states coexist for the same parameters and external forcings: a Warm climate with a small Northern hemisphere sea ice cap and a large southern one and a Cold climate with large ice caps at both poles. The dynamical states of the Warm and Cold solutions exhibit striking similarities with our present-day climate and the climate of the Last Glacial Maximum, respectively. A carbon cycle model driven by the two dynamical states produces an atmospheric pCO2 draw-down of about 110 pm between the Warm and Cold states, close to Glacial-Interglacial differences found in ice cores. Mechanism controlling the existence of the multiple states and changes in the atmospheric CO2 will be briefly presented. Finally we willdescribe transition experiments from the Cold to the Warm state, focusing on the lead-lags in the system, notably between the Northern and Southern Hemispheres climates.

  4. Extrapolar climate reversal during the last deglaciation.

    PubMed

    Asmerom, Yemane; Polyak, Victor J; Lachniet, Matthew S

    2017-08-02

    Large ocean-atmosphere and hydroclimate changes occurred during the last deglaciation, although the interplay between these changes remains ambiguous. Here, we present a speleothem-based high resolution record of Northern Hemisphere atmospheric temperature driven polar jet variability, which matches the Greenland ice core records for the most of the last glacial period, except during the last deglaciation. Our data, combined with data from across the globe, show a dramatic climate reversal during the last deglaciation, which we refer to as the Extrapolar Climate Reversal (ECR). This is the most prominent feature in most tropical and subtropical hydroclimate proxies. The initiation of the ECR coincides with the rapid rise in CO 2 , in part attributed to upwelling in the Southern Ocean and the near collapse of the Atlantic Meridional Overturning Circulation. We attribute the ECR to upwelling of cold deep waters from the Southern Ocean. This is supported by a variety of proxies showing the incursion of deep Southern Ocean waters into the tropics and subtropics. Regional climate variability across the extropolar regions during the interval previously referred to as the "Mystery Interval" can now be explained in the context of the ECR event.

  5. Abrupt decadal-to-centennial hydroclimate changes in the Mediterranean region since the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Hu, Hsun-Ming; Shen, Chuan-Chou; Jiang, Xiuyang; Wang, Yongjin; Mii, Horng-Sheng; Michel, Véronique

    2016-04-01

    A series of severe drought events in the Mediterranean region over the past two decades has posed a threat on both human society and biosystem. Holocene hydrological dynamics can offer valuable clues for understanding future climate and making proper adaption strategy. Here, we present a decadal-resolved stalagmite record documenting various hydroclimatic fluctuations in the north central Mediterranean region since the middle Holocene. The stalagmite δ18O sequence shows dramatic instability, characterized by abrupt shifts between dry and wet conditions <50 years. The timing of regional culture demises, such as the Hittite Kingdom, Mycenaean Greece, Akkadian Empire, Egyptian Old Kingdom, and Uruk, occurred during the drought events, suggesting an important role of climate impact on human civilization. The unstable hydroclimate evolution is related to transferred North Atlantic Oscillation states. Rate of rapid transfer of precipitation patterns, which can be pin-pointed by our good chronology, improves the prediction to future climate changes in North Atlantic region. We also found that a strong correlation between this stalagmite δ18O and sea surface temperatures especially in Pacific Ocean. This agreement suggests a distant interregional climate teleconnection.

  6. High invasion potential of Hydrilla verticillata in the Americas predicted using ecological niche modeling combined with genetic data.

    PubMed

    Zhu, Jinning; Xu, Xuan; Tao, Qing; Yi, Panpan; Yu, Dan; Xu, Xinwei

    2017-07-01

    Ecological niche modeling is an effective tool to characterize the spatial distribution of suitable areas for species, and it is especially useful for predicting the potential distribution of invasive species. The widespread submerged plant Hydrilla verticillata (hydrilla) has an obvious phylogeographical pattern: Four genetic lineages occupy distinct regions in native range, and only one lineage invades the Americas. Here, we aimed to evaluate climatic niche conservatism of hydrilla in North America at the intraspecific level and explore its invasion potential in the Americas by comparing climatic niches in a phylogenetic context. Niche shift was found in the invasion process of hydrilla in North America, which is probably mainly attributed to high levels of somatic mutation. Dramatic changes in range expansion in the Americas were predicted in the situation of all four genetic lineages invading the Americas or future climatic changes, especially in South America; this suggests that there is a high invasion potential of hydrilla in the Americas. Our findings provide useful information for the management of hydrilla in the Americas and give an example of exploring intraspecific climatic niche to better understand species invasion.

  7. Numerical Modeling of Climatic Change from the Terminus Record of Lewis Glacier, Mount Kenya.

    NASA Astrophysics Data System (ADS)

    Kruss, Phillip Donald

    Over the last 100 years, the glaciers and lakes of East Africa have undergone dramatic change in response to climatic forcing. However, the available conventional meterological series have not proven sufficient to explain these environmental events. The secular climatic change at Lewis Glacier, Mount Kenya (0(DEGREES)9'S, 37(DEGREES)19'E), is reconstructed from its terminus record documented since 1893. The short-time-step numerical model developed for this study consists of climate and ice dynamics segments. The climate segment directly computes the effect on the net balance of change in the four forcings: precipitation, albedo, cloudiness, and temperature. The flow segment calculates the dynamic glacier response to net balance variation. Climatic change occurs over a wide range of time scales. Each glacier responds in a unique fashion to this spectrum of climatic forcings. The response of the Lewis terminus extent to repeated sinusoidal fluctuation in the net balance is calculated. The net balance versus elevation profile is separately translated along the orthogonal balance and elevation axes. Net balance amplitudes of 0.1 to 0.5 m a('-1) of ice and 10 to 50 m elevation, respectively, and periods ranging from 20 to 1000 years are covered. Consideration of the Lewis response is perspective with similar results for Hintereisferner, Storglaciaren, and Berendon and South Cascade Glaciers identifies general characteristics of the time lag and amplitude of the terminus response. The magnitude and timing of the change in only one of the climatic forcings precipitation, albedo, cloudiness, or temperature necessary to produce the retreat of the Lewis terminus from its late 19th century maximum are computed. Equivalent changes for two scenarios of simultaneous variation, namely precipitation/albedo/cloudiness and temperature/albedo, are also estimated. These numerical results are interpreted in the light of long-term lake level, river flow, and instrumental information. A decrease in the annual precipitation of about 160 (+OR-) 70 mm between the early 1880's and the very beginning of the 20th century followed by a secular air temperature rise of 0.35 (+OR-) 0.2(DEGREES)C during the first half of the 1900's, with most warming occurring after about 1920--these climatic changes together with associated albedo and cloudiness variation constitute the most likely cause of the Lewis Glacier wastage during the last 100 years. The modeling and interpretation techniques developed offer the potential for deriving climatic information from the long terminus records and dated geological evidence of past ice extents available for other glaciers. Given the difficulty of documenting climatic change by conventional techniques, the possible role for glaciers and other climate -sensitive environmental components in the monitoring of recent climatic change should be explored.

  8. Regional climate response collaboratives: Multi-institutional support for climate resilience

    USDA-ARS?s Scientific Manuscript database

    Federal investments by U.S. agencies to enhance climate resilience at regional scales have grown dramatically over the last five years. This leads to questions about how best to leverage existing agency-specific research, infrastructure, and capacity while avoiding redundancy. This article discusses...

  9. Dramatic response to climate change in the Southwest: Robert Whittaker's 1963 Arizona Mountain plant transect revisited

    PubMed Central

    Brusca, Richard C; Wiens, John F; Meyer, Wallace M; Eble, Jeff; Franklin, Kim; Overpeck, Jonathan T; Moore, Wendy

    2013-01-01

    Models analyzing how Southwestern plant communities will respond to climate change predict that increases in temperature will lead to upward elevational shifts of montane species. We tested this hypothesis by reexamining Robert Whittaker's 1963 plant transect in the Santa Catalina Mountains of southern Arizona, finding that this process is already well underway. Our survey, five decades after Whittaker's, reveals large changes in the elevational ranges of common montane plants, while mean annual rainfall has decreased over the past 20 years, and mean annual temperatures increased 0.25°C/decade from 1949 to 2011 in the Tucson Basin. Although elevational changes in species are individualistic, significant overall upward movement of the lower elevation boundaries, and elevational range contractions, have occurred. This is the first documentation of significant upward shifts of lower elevation range boundaries in Southwestern montane plant species over decadal time, confirming that previous hypotheses are correct in their prediction that mountain communities in the Southwest will be strongly impacted by warming, and that the Southwest is already experiencing a rapid vegetation change. PMID:24223270

  10. Biological response to climate change on a tropical mountain

    NASA Astrophysics Data System (ADS)

    Pounds, J. Alan; Fogden, Michael P. L.; Campbell, John H.

    1999-04-01

    Recent warming has caused changes in species distribution and abundance, but the extent of the effects is unclear. Here we investigate whether such changes in highland forests at Monteverde, Costa Rica, are related to the increase in air temperatures that followed a step-like warming of tropical oceans in 1976 (refs4, 5). Twenty of 50 species of anurans (frogs and toads) in a 30-km2 study area, including the locally endemic golden toad (Bufo periglenes), disappeared following synchronous population crashes in 1987 (refs 6-8). Our results indicate that these crashes probably belong to a constellation of demographic changes that have altered communities of birds, reptiles and amphibians in the area and are linked to recent warming. The changes are all associated with patterns of dry-season mist frequency, which is negatively correlated with sea surface temperatures in the equatorial Pacific and has declined dramatically since the mid-1970s. The biological and climatic patterns suggest that atmospheric warming has raised the average altitude at the base of the orographic cloud bank, as predicted by the lifting-cloud-base hypothesis,.

  11. Climate change, water, and agriculture: a study of two contrasting regions

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Dronin, N.; Zhang, X.

    2009-12-01

    We present a study of potential impacts of climate change on water resources and agriculture in two contrasting regions, the Aral Sea basin in Central Asia and the Northern Great Plains in the United States. The Aral Sea basin is one of the most anthropogenically modified areas of the world; it is also a zone of a water-related ecological crisis. We concentrate on studying water security of five countries in the region, which inherit their water regulation from the planned economy of USSR. Water management was targeted at maximizing agricultural output through diverting the river flow into an extensive and largely ineffective network of irrigation canals. The current water crisis is largely due to human activity; however the region is also strongly impacted by the climate. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and discuss the impact of climate change on future development of the region. In the same way as the Aral Sea basin, the Northern Great Plains is expected to be a region heavily impacted by climate change. We concentrate on studying climate change impact on water resources of the region, and on the impacts of these changes on agriculture. The additional focus of our interest is Devils Lake watershed in North Dakota. Similar to Aral Sea, Devils Lake is an endorheic lake, which is heavily impacted by both the changes in climate and land conversion to agriculture. However, contrasting the dynamics of the Aral Sea, Devils Lake area has been increased dramatically in the past 70 years. We present regional projections of climate change, based on an analysis of a multimodel ensemble of GCM results, and the projections of consequent changes in performance of agriculture. We also discuss the differences in how the scenarios of socio-economic development affect the results of our modeling.

  12. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation

    PubMed Central

    Melvin, April M.; Larsen, Peter; Boehlert, Brent; Neumann, James E.; Chinowsky, Paul; Espinet, Xavier; Martinich, Jeremy; Baumann, Matthew S.; Rennels, Lisa; Bothner, Alexandra; Nicolsky, Dmitry J.; Marchenko, Sergey S.

    2017-01-01

    Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80–100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5. PMID:28028223

  13. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation.

    PubMed

    Melvin, April M; Larsen, Peter; Boehlert, Brent; Neumann, James E; Chinowsky, Paul; Espinet, Xavier; Martinich, Jeremy; Baumann, Matthew S; Rennels, Lisa; Bothner, Alexandra; Nicolsky, Dmitry J; Marchenko, Sergey S

    2017-01-10

    Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80-100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.

  14. Fire, Ice and Water: Glaciologic, Paleoclimate and Anthropogenic Linkages During Past Mega-Droughts in the Uinta Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Power, M. J.; Rupper, S.; Codding, B.; Schaefer, J.; Hess, M.

    2017-12-01

    Alpine glaciers provide a valuable water source during prolonged drought events. We explore whether long-term climate dynamics and associated glacier changes within mountain drainage basins and adjacent landscapes ultimately influence how prehistoric human populations choose settlement locations. The Uinta Mountains of Utah, with a steep present-day precipitation gradient from the lowlands to the alpine zone of 20-100 cm per year, has a rich glacial history related to natural and anthropogenic climate variability. Here we examine how past climate variability has impacted glaciers and ultimately the availability of water over long timescales, and how these changes affected human settlement and subsistence decisions. Through a combination of geomorphologic evidence, paleoclimate proxies, and glacier and climate modelling, we test the hypothesis that glacier-charged hydrologic systems buffer prehistoric populations during extreme drought periods, facilitating long-term landscape management with fire. Initial field surveys suggest middle- and low-elevation glacial valleys contain glacially-derived sediment from meltwater and resulted in terraced river channels and outwash plains visible today. These terraces provide estimates of river discharge during varying stages of glacier advance and retreat. Archaeological evidence from middle- and high-elevations in the Uinta Mountains suggests human populations persisted through periods of dramatic climate change, possibly linked to the persistence of glacially-derived water resources through drought periods. Paleoenvironmental records indicate a long history of fire driven by the combined interaction of climatic variation and human disturbance. This research highlights the important role of moisture variability determining human settlement patterns and landscape management throughout time, and has direct relevance to the impacts of anthropogenic precipitation and glacier changes on vulnerable populations in the coming century, especially in drought-prone regions.

  15. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China.

    PubMed

    Zuo, Depeng; Xu, Zongxue; Yao, Wenyi; Jin, Shuangyan; Xiao, Peiqing; Ran, Dachuan

    2016-02-15

    The changes in runoff and sediment load in the Loess Plateau of China have received considerable attention owing to their dramatic decline during recent decades. In this paper, the impacts of land-use and climate changes on water and sediment yields in the Huangfuchuan River basin (HFCRB) of the Loess Plateau are investigated by combined usage of statistical tests, hydrological modeling, and land-use maps. The temporal trends and abrupt changes in runoff and sediment loads during 1954-2012 are detected by using non-parametric Mann-Kendall and Pettitt tests. The land-use changes between 1980 and 2005 are determined by using transition matrix analysis, and the effects of land-use and climate changes on water and sediment yields are assessed by using the Soil and Water Assessment Tool (SWAT) hydrological model and four scenarios, respectively. The results show significant decreasing trends in both annual runoff and sediment loads, whereas slightly decreasing and significantly increasing trends are detected for annual precipitation and air temperature, respectively. 1984 is identified as the dividing year of the study period. The land-use changes between 1980 and 2005 show significant effects of the Grain for Green Project in China. Both land-use change and climate change have greater impact on the reduction of sediment yield than that of water. Water and sediment yields in the upstream region show more significant decreases than those in the downstream region under different effects. The results obtained in this study can provide useful information for water resource planning and management as well as soil and water conservation in the Loess Plateau region. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. An Coral Ensemble Approach to Reconstructing Central Pacific Climate Change During the Holocene

    NASA Astrophysics Data System (ADS)

    Atwood, A. R.; Cobb, K. M.; Grothe, P. R.; Sayani, H. R.; Southon, J. R.; Edwards, R. L.; Deocampo, D.; Chen, T.; Townsend, K. J.; Hagos, M. M.; Chiang, J. C. H.

    2016-12-01

    The processes that control El Niño-Southern Oscillation (ENSO) variability on long timescales are still poorly understood. As a consequence, limited progress has been made in understanding how ENSO will change under greenhouse gas forcing. The mid-Holocene provides a well-defined target to study the fundamental controls of ENSO variability. A large number of paleo-ENSO records spanning the tropical Pacific indicate that ENSO variability was reduced by as much as 50% between 3000-6000 yr BP, relative to modern times. Dynamical models of ENSO suggest that ENSO properties can shift in response to changes in the tropical Pacific mean state and/or seasonal cycle, but few proxy records can resolve such changes during the interval in question with enough accuracy. While decades of research have demonstrated the fidelity of tropical Pacific coral d18O records to quantify interannual temperature and precipitation anomalies associated with ENSO, substantial mean offsets exist across overlapping coral sequences that have made it difficult to quantify past changes in mean climate. Here, we test a new approach to reconstruct changes in mean climate from coral records using a large ensemble of bulk d18O measurements on radiometrically-dated fossil corals from Christmas Island that span the Holocene. In contrast to the traditional method of high-resolution sampling to reconstruct monthly climate conditions, we implement a bulk approach, which dramatically reduces the analysis time needed to estimate mean coral d18O and enables a large number of corals to be analyzed in the production of an ensemble of mean climate estimates. A pseudo-coral experiment based on simulations with a Linear Inverse Model and a coupled GCM is used to determine the number of bulk coral estimates that are required to resolve a given mean climate perturbation. In addition to these bulk measurements, short transects are sampled at high resolution to constrain changes in the amplitude of the seasonal cycle. We present preliminary results from our joint bulk/high-resolution sampling approach that provide new constraints on changes in mean climate and seasonality in the central equatorial Pacific over the last 6,000 yr BP.

  17. The NorWeST summer stream temperature model and scenarios for the western U.S.: A crowd-sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams

    Treesearch

    Daniel J. Isaak; Seth J. Wenger; Erin E. Peterson; Jay M. Ver Hoef; David E. Nagel; Charles H. Luce; Steven W. Hostetler; Jason B. Dunham; Brett B. Roper; Sherry P. Wollrab; Gwynne L. Chandler; Dona L. Horan; Sharon Parkes-Payne

    2017-01-01

    Thermal regimes are fundamental determinants of aquatic ecosystems, which makes description and prediction of temperatures critical during a period of rapid global change. The advent of inexpensive temperature sensors dramatically increased monitoring in recent decades, and although most monitoring is done by individuals for agency-specific purposes, collectively these...

  18. Climate correlates of 20 years of trophic changes in a high-elevation riparian system

    USGS Publications Warehouse

    Martin, T.E.

    2007-01-01

    The consequences of climate change for ecosystem structure and function remain largely unknown. Here, I examine the ability of climate variation to explain long-term changes in bird and plant populations, as well as trophic interactions in a high-elevation riparian system in central Arizona, USA, based on 20 years of study. Abundances of dominant deciduous trees have declined dramatically over the 20 years, correlated with a decline in overwinter snowfall. Snowfall can affect overwinter presence of elk, whose browsing can significantly impact deciduous tree abundance. Thus, climate may affect the plant community indirectly through effects on herbivores, but may also act directly by influencing water availability for plants. Seven species of birds were found to initiate earlier breeding associated with an increase in spring temperature across years. The advance in breeding time did not affect starvation of young or clutch size. Earlier breeding also did not increase the length of the breeding season for single-brooded species, but did for multi-brooded species. Yet, none of these phenology-related changes was associated with bird population trends. Climate had much larger consequences for these seven bird species by affecting trophic levels below (plants) and above (predators) the birds. In particular, the climate-related declines in deciduous vegetation led to decreased abundance of preferred bird habitat and increased nest predation rates. In addition, summer precipitation declined over time, and drier summers also were further associated with greater nest predation in all species. The net result was local extinction and severe population declines in some previously common bird species, whereas one species increased strongly in abundance, and two species did not show clear population changes. These data indicate that climate can alter ecosystem structure and function through complex pathways that include direct and indirect effects on abundances and interactions of multiple trophic components. ?? 2007 by the Ecological Society of America.

  19. Climate correlates of 20 years of trophic changes in a high-elevation riparian system.

    PubMed

    Martin, Thomas E

    2007-02-01

    The consequences of climate change for ecosystem structure and function remain largely unknown. Here, I examine the ability of climate variation to explain long-term changes in bird and plant populations, as well as trophic interactions in a high-elevation riparian system in central Arizona, USA, based on 20 years of study. Abundances of dominant deciduous trees have declined dramatically over the 20 years, correlated with a decline in overwinter snowfall. Snowfall can affect overwinter presence of elk, whose browsing can significantly impact deciduous tree abundance. Thus, climate may affect the plant community indirectly through effects on herbivores, but may also act directly by influencing water availability for plants. Seven species of birds were found to initiate earlier breeding associated with an increase in spring temperature across years. The advance in breeding time did not affect starvation of young or clutch size. Earlier breeding also did not increase the length of the breeding season for single-brooded species, but did for multi-brooded species. Yet, none of these phenology-related changes was associated with bird population trends. Climate had much larger consequences for these seven bird species by affecting trophic levels below (plants) and above (predators) the birds. In particular, the climate-related declines in deciduous vegetation led to decreased abundance of preferred bird habitat and increased nest predation rates. In addition, summer precipitation declined over time, and drier summers also were further associated with greater nest predation in all species. The net result was local extinction and severe population declines in some previously common bird species, whereas one species increased strongly in abundance, and two species did not show clear population changes. These data indicate that climate can alter ecosystem structure and function through complex pathways that include direct and indirect effects on abundances and interactions of multiple trophic components.

  20. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery

    PubMed Central

    Rick, Torben C.; Reeder-Myers, Leslie A.; Hofman, Courtney A.; Breitburg, Denise; Lockwood, Rowan; Henkes, Gregory; Kellogg, Lisa; Lowery, Darrin; Luckenbach, Mark W.; Mann, Roger; Ogburn, Matthew B.; Southworth, Melissa; Wah, John; Wesson, James; Hines, Anson H.

    2016-01-01

    Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America’s Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning ∼3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries. PMID:27217572

  1. Decadal changes of reference crop evapotranspiration attribution: Spatial and temporal variability over China 1960-2011

    NASA Astrophysics Data System (ADS)

    Fan, Ze-Xin; Thomas, Axel

    2018-05-01

    Atmospheric evaporative demand can be used as a measure of the hydrological cycle and the global energy balance. Its long-term variation and the role of driving climatic factors have received increasingly attention in climate change studies. FAO-Penman-Monteith reference crop evapotranspiration rates were estimated for 644 meteorological stations over China for the period 1960-2011 to analyze spatial and temporal attribution variability. Attribution of climatic variables to reference crop evapotranspiration rates was not stable over the study period. While for all of China the contribution of sunshine duration remained relatively stable, the importance of relative humidity increased considerably during the last two decades, particularly in winter. Spatially distributed attribution analysis shows that the position of the center of maximum contribution of sunshine duration has shifted from Southeast to Northeast China while in West China the contribution of wind speed has decreased dramatically. In contrast relative humidity has become an important factor in most parts of China. Changes in the Asian Monsoon circulation may be responsible for altered patterns of cloudiness and a general decrease of wind speeds over China. The continuously low importance of temperature confirms that global warming does not necessarily lead to rising atmospheric evaporative demand.

  2. Re-Shuffling of Species with Climate Disruption: A No-Analog Future for California Birds?

    PubMed Central

    Stralberg, Diana; Jongsomjit, Dennis; Howell, Christine A.; Snyder, Mark A.; Alexander, John D.; Wiens, John A.; Root, Terry L.

    2009-01-01

    By facilitating independent shifts in species' distributions, climate disruption may result in the rapid development of novel species assemblages that challenge the capacity of species to co-exist and adapt. We used a multivariate approach borrowed from paleoecology to quantify the potential change in California terrestrial breeding bird communities based on current and future species-distribution models for 60 focal species. Projections of future no-analog communities based on two climate models and two species-distribution-model algorithms indicate that by 2070 over half of California could be occupied by novel assemblages of bird species, implying the potential for dramatic community reshuffling and altered patterns of species interactions. The expected percentage of no-analog bird communities was dependent on the community scale examined, but consistent geographic patterns indicated several locations that are particularly likely to host novel bird communities in the future. These no-analog areas did not always coincide with areas of greatest projected species turnover. Efforts to conserve and manage biodiversity could be substantially improved by considering not just future changes in the distribution of individual species, but including the potential for unprecedented changes in community composition and unanticipated consequences of novel species assemblages. PMID:19724641

  3. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery.

    PubMed

    Rick, Torben C; Reeder-Myers, Leslie A; Hofman, Courtney A; Breitburg, Denise; Lockwood, Rowan; Henkes, Gregory; Kellogg, Lisa; Lowery, Darrin; Luckenbach, Mark W; Mann, Roger; Ogburn, Matthew B; Southworth, Melissa; Wah, John; Wesson, James; Hines, Anson H

    2016-06-07

    Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America's Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning ∼3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries.

  4. Climate change and trace gases.

    PubMed

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Russell, Gary; Lea, David W; Siddall, Mark

    2007-07-15

    Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment.

  5. Observational Evidence of Changes in Soil Temperatures across Eurasian Continent

    NASA Astrophysics Data System (ADS)

    Zhang, T.

    2015-12-01

    Soil temperature is one of the key climate change indicators and plays an important role in plant growth, agriculture, carbon cycle and ecosystems as a whole. In this study, variability and changes in ground surface and soil temperatures up to 3.20 m were investigated based on data and information obtained from hydrometeorological stations across Eurasian continent since the early 1950s. Ground surface and soil temperatures were measured daily by using the same standard method and by the trained professionals across Eurasian continent, which makes the dataset unique and comparable over a large study region. Using the daily soil temperature profiles, soil seasonal freeze depth was also obtained through linear interpolation. Preliminary results show that soil temperatures at various depths have increased dramatically, almost twice as much as air temperature increase over the same period. Regionally, soil temperature increase was more dramatically in high northern latitudes than mid/lower latitude regions. Air temperature changes alone may not be able to fully explain the magnitude of changes in soil temperatures. Further study indicates that snow cover establishment started later in autumn and snow cover disappearance occurred earlier in spring, while winter snow depth became thicker with a decreasing trend of snow density. Changes in snow cover conditions may play an important role in changes of soil temperatures over the Eurasian continent.

  6. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    NASA Astrophysics Data System (ADS)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  7. Climate Change Impacts on the Tree of Life: Changes in Phylogenetic Diversity Illustrated for Acropora Corals

    PubMed Central

    Faith, Daniel P.; Richards, Zoe T.

    2012-01-01

    The possible loss of whole branches from the tree of life is a dramatic, but under-studied, biological implication of climate change. The tree of life represents an evolutionary heritage providing both present and future benefits to humanity, often in unanticipated ways. Losses in this evolutionary (evo) life-support system represent losses in “evosystem” services, and are quantified using the phylogenetic diversity (PD) measure. High species-level biodiversity losses may or may not correspond to high PD losses. If climate change impacts are clumped on the phylogeny, then loss of deeper phylogenetic branches can mean disproportionately large PD loss for a given degree of species loss. Over time, successive species extinctions within a clade each may imply only a moderate loss of PD, until the last species within that clade goes extinct, and PD drops precipitously. Emerging methods of “phylogenetic risk analysis” address such phylogenetic tipping points by adjusting conservation priorities to better reflect risk of such worst-case losses. We have further developed and explored this approach for one of the most threatened taxonomic groups, corals. Based on a phylogenetic tree for the corals genus Acropora, we identify cases where worst-case PD losses may be avoided by designing risk-averse conservation priorities. We also propose spatial heterogeneity measures changes to assess possible changes in the geographic distribution of corals PD. PMID:24832524

  8. How sea ice could be the cold beating heart of European weather

    NASA Astrophysics Data System (ADS)

    Margrethe Ringgaard, Ida; Yang, Shuting; Hesselbjerg Christensen, Jens; Kaas, Eigil

    2017-04-01

    The possibility that the ongoing rapid demise of Arctic sea ice may instigate abrupt changes is, however, not tackled by current research in general. Ice cores from the Greenland Ice Sheet (GIS) show clear evidence of past abrupt warm events with up to 15 degrees warming in less than a decade, most likely triggered by rapid disappearance of Nordic Seas sea ice. At present, both Arctic Sea ice and the GIS are in strong transformation: Arctic sea-ice cover has been retreating during most of the satellite era and in recent years, Arctic sea ice experienced a dramatic reduction and the summer extent was in 2012 and 2016 only half of the 1979-2000 average. With such dramatic change in the current sea ice coverage as a point of departure, several studies have linked reduction in wintertime sea ice in the Barents-Kara seas to cold weather anomalies over Europe and through large scale tele-connections to regional warming elsewhere. Here we aim to investigate if, and how, Arctic sea ice impacts European weather, i.e. if the Arctic sea ice works as the 'cold heart' of European weather. To understand the effects of the sea ice reduction on the full climate system, a fully-coupled global climate model, EC-Earth, is used. A new energy-conserving method for assimilating sea ice using the sensible heat flux is implemented in the coupled climate model and compared to the traditional, non-conserving, method of assimilating sea ice. Using this new method, experiments are performed with reduced sea ice cover in the Barents-Kara seas under both warm and cold conditions in Europe. These experiments are used to evaluate how the Arctic sea ice modulates European winter weather under present climate conditions with a view towards favouring both relatively cold and warm conditions.

  9. Informal STEM Education in Antarctica

    NASA Astrophysics Data System (ADS)

    Chell, K.

    2010-12-01

    Tourism in Antarctica has increased dramatically with tens of thousands of tourists visiting the White Continent each year. Tourism cruises to Antarctica offer a unique educational experience for lay people through informal science-technology-engineering-mathematics (STEM) education. Passengers attend numerous scientific lectures that cover topics such as the geology of Antarctica, plate tectonics, glaciology, and climate change. Furthermore, tourists experience the geology and glaciology first hand during shore excursions. Currently, the grand challenges facing our global society are closely connected to the Earth sciences. Issues such as energy, climate change, water security, and natural hazards, are consistently on the legislative docket of policymakers around the world. However, the majority of the world’s population is uninformed about the role Earth sciences play in their everyday lives. Tourism in Antarctica provides opportunities for informal STEM learning and, as a result, tourists leave with a better understanding and greater appreciation for both Antarctica and Earth sciences.

  10. Increasing precipitation volatility in twenty-first-century California

    NASA Astrophysics Data System (ADS)

    Swain, Daniel L.; Langenbrunner, Baird; Neelin, J. David; Hall, Alex

    2018-05-01

    Mediterranean climate regimes are particularly susceptible to rapid shifts between drought and flood—of which, California's rapid transition from record multi-year dryness between 2012 and 2016 to extreme wetness during the 2016-2017 winter provides a dramatic example. Projected future changes in such dry-to-wet events, however, remain inadequately quantified, which we investigate here using the Community Earth System Model Large Ensemble of climate model simulations. Anthropogenic forcing is found to yield large twenty-first-century increases in the frequency of wet extremes, including a more than threefold increase in sub-seasonal events comparable to California's `Great Flood of 1862'. Smaller but statistically robust increases in dry extremes are also apparent. As a consequence, a 25% to 100% increase in extreme dry-to-wet precipitation events is projected, despite only modest changes in mean precipitation. Such hydrological cycle intensification would seriously challenge California's existing water storage, conveyance and flood control infrastructure.

  11. Inequality, communication, and the avoidance of disastrous climate change in a public goods game.

    PubMed

    Tavoni, Alessandro; Dannenberg, Astrid; Kallis, Giorgos; Löschel, Andreas

    2011-07-19

    International efforts to provide global public goods often face the challenges of coordinating national contributions and distributing costs equitably in the face of uncertainty, inequality, and free-riding incentives. In an experimental setting, we distribute endowments unequally among a group of people who can reach a fixed target sum through successive money contributions, knowing that if they fail, they will lose all their remaining money with 50% probability. In some treatments, we give players the option to communicate intended contributions. We find that inequality reduces the prospects of reaching the target but that communication increases success dramatically. Successful groups tend to eliminate inequality over the course of the game, with rich players signaling willingness to redistribute early on. Our results suggest that coordination-promoting institutions and early redistribution from richer to poorer nations are both decisive for the avoidance of global calamities, such as disruptive climate change.

  12. Inequality, communication, and the avoidance of disastrous climate change in a public goods game

    PubMed Central

    Tavoni, Alessandro; Dannenberg, Astrid; Kallis, Giorgos; Löschel, Andreas

    2011-01-01

    International efforts to provide global public goods often face the challenges of coordinating national contributions and distributing costs equitably in the face of uncertainty, inequality, and free-riding incentives. In an experimental setting, we distribute endowments unequally among a group of people who can reach a fixed target sum through successive money contributions, knowing that if they fail, they will lose all their remaining money with 50% probability. In some treatments, we give players the option to communicate intended contributions. We find that inequality reduces the prospects of reaching the target but that communication increases success dramatically. Successful groups tend to eliminate inequality over the course of the game, with rich players signaling willingness to redistribute early on. Our results suggest that coordination-promoting institutions and early redistribution from richer to poorer nations are both decisive for the avoidance of global calamities, such as disruptive climate change. PMID:21730154

  13. The International Arctic Buoy Programme (IABP)

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Ortmeyer, M.

    2003-12-01

    The Arctic has undergone dramatic changes in weather, climate and environment. It should be noted that many of these changes were first observed and studied using data from the International Arctic Buoy Programme (IABP). For example, IABP data were fundamental to Walsh et al. (1996) showing that atmospheric pressure has decreased, Rigor et al. (2000) showing that air temperatures have increased, and to Proshutinsky and Johnson (1997); Steele and Boyd, (1998); Kwok, (2000); and Rigor et al. (2002) showing that the clockwise circulation of sea ice and the ocean has weakened. All these results relied heavily on data from the IABP. In addition to supporting these studies of climate change, the IABP observations are also used to forecast weather and ice conditions, validate satellite retrievals of environmental variables, to force, validate and initialize numerical models. Over 350 papers have been written using data from the IABP. The observations and datasets of the IABP data are one of the cornerstones for environmental forecasting and research in the Arctic.

  14. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    PubMed Central

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  15. Climate change and the oceans--what does the future hold?

    PubMed

    Bijma, Jelle; Pörtner, Hans-O; Yesson, Chris; Rogers, Alex D

    2013-09-30

    The ocean has been shielding the earth from the worst effects of rapid climate change by absorbing excess carbon dioxide from the atmosphere. This absorption of CO2 is driving the ocean along the pH gradient towards more acidic conditions. At the same time ocean warming is having pronounced impacts on the composition, structure and functions of marine ecosystems. Warming, freshening (in some areas) and associated stratification are driving a trend in ocean deoxygenation, which is being enhanced in parts of the coastal zone by upwelling of hypoxic deep water. The combined impact of warming, acidification and deoxygenation are already having a dramatic effect on the flora and fauna of the oceans with significant changes in distribution of populations, and decline of sensitive species. In many cases, the impacts of warming, acidification and deoxygenation are increased by the effects of other human impacts, such as pollution, eutrophication and overfishing. The interactive effects of this deadly trio mirrors similar events in the Earth's past, which were often coupled with extinctions of major species' groups. Here we review the observed impacts and, using past episodes in the Earth's history, set out what the future may hold if carbon emissions and climate change are not significantly reduced with more or less immediate effect. Copyright © 2013. Published by Elsevier Ltd.

  16. Projected poleward shift of king penguins' (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean.

    PubMed

    Péron, Clara; Weimerskirch, Henri; Bost, Charles-André

    2012-07-07

    Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies.

  17. Projected poleward shift of king penguins' (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean

    PubMed Central

    Péron, Clara; Weimerskirch, Henri; Bost, Charles-André

    2012-01-01

    Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies. PMID:22378808

  18. Determining the relative importance of climatic drivers on spring phenology in grassland ecosystems of semi-arid areas.

    PubMed

    Zhu, Likai; Meng, Jijun

    2015-02-01

    Understanding climate controls on spring phenology in grassland ecosystems is critically important in predicting the impacts of future climate change on grassland productivity and carbon storage. The third-generation Global Inventory Monitoring and Modeling System (GIMMS3g) normalized difference vegetation index (NDVI) data were applied to derive the start of the growing season (SOS) from 1982-2010 in grassland ecosystems of Ordos, a typical semi-arid area in China. Then, the conditional Granger causality method was utilized to quantify the directed functional connectivity between key climatic drivers and the SOS. The results show that the asymmetric Gaussian (AG) function is better in reducing noise of NDVI time series than the double logistic (DL) function within our study area. The southeastern Ordos has earlier occurrence and lower variability of the SOS, whereas the northwestern Ordos has later occurrence and higher variability of the SOS. The research also reveals that spring precipitation has stronger causal connectivity with the SOS than other climatic factors over different grassland ecosystem types. There is no statistically significant trend across the study area, while the similar pattern is observed for spring precipitation. Our study highlights the link of spring phenology with different grassland types, and the use of coupling remote sensing and econometric tools. With the dramatic increase in global change research, Granger causality method augurs well for further development and application of time-series modeling of complex social-ecological systems at the intersection of remote sensing and landscape changes.

  19. Postglacial migration supplements climate in determining plant species ranges in Europe

    PubMed Central

    Normand, Signe; Ricklefs, Robert E.; Skov, Flemming; Bladt, Jesper; Tackenberg, Oliver; Svenning, Jens-Christian

    2011-01-01

    The influence of dispersal limitation on species ranges remains controversial. Considering the dramatic impacts of the last glaciation in Europe, species might not have tracked climate changes through time and, as a consequence, their present-day ranges might be in disequilibrium with current climate. For 1016 European plant species, we assessed the relative importance of current climate and limited postglacial migration in determining species ranges using regression modelling and explanatory variables representing climate, and a novel species-specific hind-casting-based measure of accessibility to postglacial colonization. Climate was important for all species, while postglacial colonization also constrained the ranges of more than 50 per cent of the species. On average, climate explained five times more variation in species ranges than accessibility, but accessibility was the strongest determinant for one-sixth of the species. Accessibility was particularly important for species with limited long-distance dispersal ability, with southern glacial ranges, seed plants compared with ferns, and small-range species in southern Europe. In addition, accessibility explained one-third of the variation in species' disequilibrium with climate as measured by the realized/potential range size ratio computed with niche modelling. In conclusion, we show that although climate is the dominant broad-scale determinant of European plant species ranges, constrained dispersal plays an important supplementary role. PMID:21543356

  20. Atmospheric circulation patterns and spatial climatic variations in Beringia

    NASA Astrophysics Data System (ADS)

    Mock, Cary J.; Bartlein, Patrick J.; Anderson, Patricia M.

    1998-08-01

    Analyses of more than 40 years of climatic data reveal intriguing spatial variations in climatic patterns for Beringia (North-eastern Siberia and Alaska), aiding the understanding of the hierarchy of climatic controls that operate at different spatial scales within the Arctic. A synoptic climatology, using a subjective classification methodology on January and July sea level pressure, and July 500 hPa height anomaly patterns, identified 13 major atmospheric circulation patterns (26 pairs consisting of 13 synoptic/temperature and 13 synoptic/precipitation comparisons) that occur over Beringia. Composite anomaly maps of circulation, temperature, and precipitation described the spatial variability of surface climatic responses to circulation. Results indicate that nine synoptic pairs yield homogeneous surface climatic anomaly patterns throughout most of Beringia. However, many of the surface climatic responses illustrate heterogeneous anomaly patterns as a result of variations in circulation controls, such as troughing over East Asia and the Pacific subtropical high superimposed over topography, with small shifts in atmospheric circulation dramatically altering spatial variations of anomaly patterns. Distinctive contrasts in climatic responses, as suggested from ten synoptic pairs, are clearly evident for Western Beringia versus Eastern Beringia. These results offer important implications for scholars interested in assessing late Quaternary climatic change in the region from interannual to millennial timescales.

  1. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE PAGES

    Vahmani, P.; Sun, F.; Hall, A.; ...

    2016-12-15

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  2. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G.

    2016-12-01

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using ‘cool photovoltaics’.

  3. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahmani, P.; Sun, F.; Hall, A.

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  4. Chapter 3. Effects of climate change and commercial fishing on Atlantic cod Gadus morhua.

    PubMed

    Mieszkowska, Nova; Genner, Martin J; Hawkins, Stephen J; Sims, David W

    2009-01-01

    During the course of the last century, populations of Atlantic cod Gadus morhua L. have undergone dramatic declines in abundance across their biogeographic range, leading to debate about the relative roles of climatic warming and overfishing in driving these changes. In this chapter, we describe the geographic distributions of this important predator of North Atlantic ecosystems and document extensive evidence for limitations of spatial movement and local adaptation from population genetic markers and electronic tagging. Taken together, this evidence demonstrates that knowledge of spatial population ecology is critical for evaluating the effects of climate change and commercial harvesting. To explore the possible effects of climate change on cod, we first describe thermal influences on individual physiology, growth, activity and maturation. We then evaluate evidence that temperature has influenced population-level processes including direct effects on recruitment through enhanced growth and activity, and indirect effects through changes to larval food resources. Although thermal regimes clearly define the biogeographic range of the species, and strongly influence many aspects of cod biology, the evidence that population declines across the North Atlantic are strongly linked to fishing activity is now overwhelming. Although there is considerable concern about low spawning stock biomasses, high levels of fishing activity continues in many areas. Even with reduced fishing effort, the potential for recovery from low abundance may be compromised by unfavourable climate and Allee effects. Current stock assessment and management approaches are reviewed, alongside newly advocated methods for monitoring stock status and recovery. However, it remains uncertain whether the rebuilding of cod to historic population sizes and demographic structures will be possible in a warmer North Atlantic.

  5. The Scientist as Sentinel (Invited)

    NASA Astrophysics Data System (ADS)

    Oreskes, N.

    2013-12-01

    Scientists have been warning the world for some time about the risks of anthropogenic interference in the climate system. But we struggle with how, exactly, to express that warning. The norms of scientific behavior enjoin us from the communication strategies normally associated with warnings. If a scientist sounds excited or emotional, for example, it is often assumed that he has lost his capac¬ity to assess data calmly and therefore his conclusions are suspect. If the scientist is a woman, the problem is that much worse. In a recently published article my colleagues and I have shown that scientists have systematically underestimated the threat of climate change (Brysse et al., 2012). We suggested that this occurs for norma¬tive reasons: The scientific values of rationality, dispassion, and self-restraint lead us to demand greater levels of evidence in support of surprising, dramatic, or alarming conclusions than in support of less alarming conclusions. We call this tendency 'err¬ing on the side of least drama.' However, the problem is not only that we err on the side of least drama in our assessment of evidence, it's also that we speak without drama, even when our conclusions are dramatic. We speak without the emotional cadence that people expect to hear when the speaker is worried. Even when we are worried, we don't sound as if we are. In short, we are trying to act as sentinels, but we lack the register with which to do so. Until we find those registers, or partner with colleagues who are able to speak in the cadences that communicating dangers requires, our warnings about climate change will likely continue to go substantially unheeded.

  6. DNA and Flavonoids Leach out from Active Nuclei of Taxus and Tsuga after Extreme Climate Stresses

    PubMed Central

    Feucht, Walter; Schmid, Markus; Treutter, Dieter

    2015-01-01

    Severe over-stresses of climate caused dramatic changes in the intracellular distribution of the flavonoids. This was studied in needles from the current year’s growth of the following species and varieties: Tsuga canadensis, Taxus baccata, T. aurea, T. repens, T. nana, and T. compacta. The mode of steady changes in flavonoids was evaluated by microscopic techniques. Most of the flavonoids stain visibly yellow by themselves. The colorless flavanol subgroup can be stained blue by the DMACA reagent. In mid-summer 2013, outstanding high temperatures and intense photo-oxidative irradiation caused in a free-standing tree of Taxus baccata dramatic heat damage in a limited number of cells of the palisade layers. In these cells, the cytoplasm was burned brown. However, the nucleus maintained its healthy “blue” colored appearance which apparently was a result of antioxidant barrier effects by these flavanols. In late May 2014, excessive rainfall greatly affected all study trees. Collectively, in all study trees, a limited number of the mesophyll nuclei from the needless grown in 2013 and 2014 became overly turgid, enlarged in size and the flavanols leached outward through the damaged nuclear membranes. This diffusive stress event was followed one to three days later by a similar efflux of DNA. Such a complete dissolution of the nuclei in young tissues was the most spectacular phenomenon of the present study. As a common feature, leaching of both flavanols and DNA was markedly enhanced with increasing size and age of the cells. There is evidence that signalling flavonoids are sensitized to provide in nuclei and cytoplasm multiple mutual protective mechanisms. However, this well-orchestrated flavonoid system is broken down by extreme climate events. PMID:27135348

  7. Climate forcing and infectious disease transmission in urban landscapes: integrating demographic and socioeconomic heterogeneity.

    PubMed

    Santos-Vega, Mauricio; Martinez, Pamela P; Pascual, Mercedes

    2016-10-01

    Urbanization and climate change are the two major environmental challenges of the 21st century. The dramatic expansion of cities around the world creates new conditions for the spread, surveillance, and control of infectious diseases. In particular, urban growth generates pronounced spatial heterogeneity within cities, which can modulate the effect of climate factors at local spatial scales in large urban environments. Importantly, the interaction between environmental forcing and socioeconomic heterogeneity at local scales remains an open area in infectious disease dynamics, especially for urban landscapes of the developing world. A quantitative and conceptual framework on urban health with a focus on infectious diseases would benefit from integrating aspects of climate forcing, population density, and level of wealth. In this paper, we review what is known about these drivers acting independently and jointly on urban infectious diseases; we then outline elements that are missing and would contribute to building such a framework. © 2016 New York Academy of Sciences.

  8. The Co-evolution of Climate Models and the Intergovernmental Panel on Climate Change

    NASA Astrophysics Data System (ADS)

    Somerville, R. C.

    2010-12-01

    As recently as the 1950s, global climate models, or GCMs, did not exist, and the notion that man-made carbon dioxide might lead to significant climate change was not regarded as a serious possibility by most experts. Today, of course, the prospect or threat of exactly this type of climate change dominates the science and ranks among the most pressing issues confronting all mankind. Indeed, the prevailing scientific view throughout the first half of the twentieth century was that adding carbon dioxide to the atmosphere would have only a negligible effect on climate. The science of climate change caused by atmospheric carbon dioxide changes has thus undergone a genuine revolution. An extraordinarily rapid development of global climate models has also characterized this period, especially in the three decades since about 1980. In these three decades, the number of GCMs has greatly increased, and their physical and computational aspects have both markedly improved. Modeling progress has been enabled by many scientific advances, of course, but especially by a massive increase in available computer power, with supercomputer speeds increasing by roughly a factor of a million in the three decades from about 1980 to 2010. This technological advance has permitted a rapid increase in the physical comprehensiveness of GCMs as well as in spatial computational resolution. In short, GCMs have dramatically evolved over time, in exactly the same recent period as popular interest and scientific concern about anthropogenic climate change have markedly increased. In parallel, a unique international organization, the Intergovernmental Panel on Climate Change, or IPCC, has also recently come into being and also evolved rapidly. Today, the IPCC has become widely respected and globally influential. The IPCC was founded in 1988, and its history is thus even shorter than that of GCMs. Yet, its stature today is such that a series of IPCC reports assessing climate change science has already been endorsed by many leading scientific professional societies and academies of science worldwide. These reports are considered as definitive summaries of the state of the science. In 2007, in recognition of its exceptional accomplishments, the IPCC shared the Nobel Peace Prize equally with Al Gore. The present era is characterized not only by the reality and seriousness of human-caused climate change, but also by a young yet powerful science that enables us to understand much about the climate change that has occurred already and that awaits in the future. The development of GCMs is a critical part of the scientific story, and the development of the IPCC is a key factor in connecting the science to the perceptions and priorities of the global public and policymakers. GCMs and the IPCC have co-evolved and strongly influenced one another, as both scientists and the world at large have worked to confront the challenge of climate change.

  9. Detection and attribution of vegetation growth change in China during the last thirty years

    NASA Astrophysics Data System (ADS)

    Tan, J.; Wang, X.; Mao, J.; Shi, X.; Peng, S.; Zeng, Z.; Piao, S.

    2013-12-01

    Enhanced terrestrial vegetation growth in China over the past three decades has been proved by satellite observations. During the same period, China has experienced dramatic land use and land cover changes. Those changes can not only strengthen the vegetation growth by afforestation and agricultural management, but also weaken it by urbanization and overgrazing. Compared to global climate changes, the effect of land use and land cover changes (LULCC) in China vegetation growth is still not clear. A further understanding of the mechanisms for this phenomenon is crucial for projecting future ecosystem dynamics. To investigate the variation of vegetation growth in Chinese provinces and evaluate its responses to external driving factors from 1982 to 2009, two mechanistic terrestrial carbon models (CLM and OCHIDEE) have been applied in this paper. The modeled Leaf Area Index (LAI) from the two models has been increasing, which is consistent to the satellite LAI. On that basis, a series of factorial simulations based on the two models were processed to separate independent contributions of external driving factors to LAI. Besides of climate changing and LULCC, other external driving factors were also considered such as CO2 and nitrogen deposition. The results indicate that the distribution of LAI trend is far from homogeneous at provincial scale and highest LAI trend happened in South China. The dominant influential factor varies in different provinces. Climate-only simulation may not explain the vegetation growth change well in all the provinces. CO2 and LULCC seem to play a more important role in South China which matches the region with sharp increase of LAI. This phenomenon shows that the anthropology-oriented impact cannot be ignored under the background of global climate change and it is vital for further exploration of the effect of human society to vegetation growth.

  10. Regional Approach for Managing for Resilience Linking Ecosystem Services and Livelihood Strategies for Agro-Pastoral Communities in the Mongolian Steppe Ecosystem

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Togtohyn, C.; Qi, J.; Galvin, K.

    2011-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau are affecting ecosystem services and agro-pastoral livelihoods in Mongolia and China. Recently, evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which then affect social-ecological systems. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces. The analysis incorporates information of the socio-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia and China to the fertile northeast China plain. Sustainability of agro-pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate landscape management provides a potential framework to link ecosystem services across space and time more effectively to meet the needs of agro-pastoral land use, herd quality, and herder's living standards. Under appropriate adaptation strategies agro-pastoralists will have the opportunity to utilize seasonal resources and enhance their ability to process and manufacture products from the available ecosystem services in these dynamic social-ecological systems.

  11. The Double ITCZ Syndrome in GCMs: A Coupled Problem among Convection, Atmospheric and Ocean Circulations

    NASA Astrophysics Data System (ADS)

    Zhang, G. J.; Song, X.

    2017-12-01

    The double ITCZ bias has been a long-standing problem in coupled atmosphere-ocean models. A previous study indicates that uncertainty in the projection of global warming due to doubling of CO2 is closely related to the double ITCZ biases in global climate models. Thus, reducing the double ITCZ biases is not only important to getting the current climate features right, but also important to narrowing the uncertainty in future climate projection. In this work, we will first review the possible factors contributing to the ITCZ problem. Then, we will focus on atmospheric convection, presenting recent progress in alleviating the double ITCZ problem and its sensitivity to details of convective parameterization, including trigger conditions for convection onset, convective memory, entrainment rate, updraft model and closure in the NCAR CESM1. These changes together can result in dramatic improvements in the simulation of ITCZ. Results based on both atmospheric only and coupled simulations with incremental changes of convection scheme will be shown to demonstrate the roles of convection parameterization and coupled interaction between convection, atmospheric circulation and ocean circulation in the simulation of ITCZ.

  12. The climate and air-quality benefits of wind and solar power in the United States

    NASA Astrophysics Data System (ADS)

    Millstein, Dev; Wiser, Ryan; Bolinger, Mark; Barbose, Galen

    2017-09-01

    Wind and solar energy reduce combustion-based electricity generation and provide air-quality and greenhouse gas emission benefits. These benefits vary dramatically by region and over time. From 2007 to 2015, solar and wind power deployment increased rapidly while regulatory changes and fossil fuel price changes led to steep cuts in overall power-sector emissions. Here we evaluate how wind and solar climate and air-quality benefits evolved during this time period. We find cumulative wind and solar air-quality benefits of 2015 US$29.7-112.8 billion mostly from 3,000 to 12,700 avoided premature mortalities, and cumulative climate benefits of 2015 US$5.3-106.8 billion. The ranges span results across a suite of air-quality and health impact models and social cost of carbon estimates. We find that binding cap-and-trade pollutant markets may reduce these cumulative benefits by up to 16%. In 2015, based on central estimates, combined marginal benefits equal 7.3 ¢ kWh-1 (wind) and 4.0 ¢ kWh-1 (solar).

  13. The Potential Impacts of Climate Change on the Quality and Quantity of Freshwater Available to Humans in the Arctic

    NASA Astrophysics Data System (ADS)

    White, D. M.; Strang, E. T.; Alessa, L.; Hinzman, L.; Kliskey, A.

    2005-12-01

    The objective of this research is to understand how humans rely on freshwater at local and regional scales in selected parts of the Arctic, how these dependencies have changed in the recent past, and how they are likely to change in the future. The study seeks to incorporate likely effects of climate change on the hydrologic cycle and water availability to humans in the Arctic. The human demand for freshwater has risen dramatically over the past hundred years. Communities on the Seward Peninsula currently rely on both treated and traditional water sources for their drinking water. In many cases, availability of freshwater limits the use of both of these types of water sources. Future water demand predictions suggest that the demand for treated water will increase significantly as water systems are upgraded and the population of the area increases. Preliminary research indicates that water quality may by impacted by hydrologic changes, and further research is underway to determine the extent of these changes and how they will affect drinking water supplies on the Seward Peninsula. Understanding how climate change will impact the hydrology of this area will help minimize the impact these changes have on both engineered water systems and traditional water uses in the future. This presentation provides the most recent results of this research program. This study is being funded under the NSF Arctic System Science Program, Human Dimensions of the Arctic (OPP-0328686).

  14. Mechanisms of shrub encroachment into Northern Chihuahuan Desert grasslands and impacts of climate change investigated using a cellular automata model

    NASA Astrophysics Data System (ADS)

    Caracciolo, Domenico; Istanbulluoglu, Erkan; Noto, Leonardo Valerio; Collins, Scott L.

    2016-05-01

    Arid and semiarid grasslands of southwestern North America have changed dramatically over the last 150 years as a result of woody plant encroachment. Overgrazing, reduced fire frequency, and climate change are known drivers of woody plant encroachment into grasslands. In this study, relatively simple algorithms for encroachment factors (i.e., grazing, grassland fires, and seed dispersal by grazers) are proposed and implemented in the ecohydrological Cellular-Automata Tree Grass Shrub Simulator (CATGraSS). CATGraSS is used in a 7.3 km2 rectangular domain located in central New Mexico along a zone of grassland to shrubland transition, where shrub encroachment is currently active. CATGraSS is calibrated and used to investigate the relative contributions of grazing, fire frequency, seed dispersal by herbivores and climate change on shrub abundance over a 150-year period of historical shrub encroachment. The impact of future climate change is examined using a model output that realistically represents current vegetation cover as initial condition, in a series of stochastic CATGraSS future climate simulations. Model simulations are found to be highly sensitive to the initial distribution of shrub cover. Encroachment factors more actively lead to shrub propagation within the domain when the model starts with randomly distributed individual shrubs. However, when shrubs are naturally evolved into clusters, the model response to encroachment factors is muted unless the effect of seed dispersal by herbivores is amplified. The relative contribution of different drivers on modeled shrub encroachment varied based on the initial shrub cover condition used in the model. When historical weather data is used, CATGraSS predicted loss of shrub and grass cover during the 1950 s drought. While future climate change is found to amplify shrub encroachment (∼13% more shrub cover by 2100), grazing remains the dominant factor promoting shrub encroachment. When we modeled future climate change, however, encroachment still occurred at a reduced rate in the absence of grazing along with pre-grazing fire frequency because of lower shrub water stress leading to reduced shrub mortality which increases the probability of shrub establishment.

  15. Dramatic decreases in runoff and sediment load in the Huangfuchuan Basin of the Middle Yellow River, China: historical records and future projections

    NASA Astrophysics Data System (ADS)

    LI, E.; Li, D.; Wang, Y.; Fu, X.

    2017-12-01

    The Yellow River is well known for its high sediment load and serious water shortage. The long-term averaged sediment load is about 1.6´103 million tons per year, resulting in aggrading and perched lower reaches. In recent years, however, dramatic decreases in runoff and sediment load have been observed. The annual sediment load has been less than 150 million tons in the last ten years. Extrapolation of this trend into the future would motivate substantial change in the management strategies of the Lower Yellow River. To understand the possible trend and its coevolving drivers, we performed a case study of the Huangfuchuang River, which is a tributary to the Middle Yellow River, with a drainage area of 3246 km2 and an annual precipitation of 365 mm. Statistical analysis of historical data from 1960s to 2015 showed a significantly decreasing trend in runoff and sediment load since 1984. As potential drivers, the precipitation does not show an obvious change in annual amount, while the vegetation cover and the number of check dams have been increased gradually as a result of the national Grain for Green project. A simulation with the Soil and Water Assessment Tool (SWAT) reproduced the historical evolution processes, and showed that human activities dominated the reduction in runoff and sediment load, with a contribution of around 80%. We then projected the runoff and sediment load for the next 50 years (2016-2066), considering typical scenarios of climate change and accounting for vegetation cover development subject to climate conditions and storage capacity loss of check dams due to sediment deposition. The differences between the projected trend and the historical record were analyzed, so as to highlight the coevolving processes of climate, vegetation, and check dam retention on a time scale of decades. Keywords: Huangfuchuan River Basin, sediment load, vegetation cover, check dams, annual precipitation, SWAT.

  16. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years.

    PubMed

    Wen, Xinyu; Liu, Zhengyu; Wang, Shaowu; Cheng, Jun; Zhu, Jiang

    2016-06-22

    Understanding the past significant changes of the East Asia Summer Monsoon (EASM) and Winter Monsoon (EAWM) is critical for improving the projections of future climate over East Asia. One key issue that has remained outstanding from the paleo-climatic records is whether the evolution of the EASM and EAWM are correlated. Here, using a set of long-term transient simulations of the climate evolution of the last 21,000 years, we show that the EASM and EAWM are positively correlated on the orbital timescale in response to the precessional forcing, but are anti-correlated on millennial timescales in response to North Atlantic melt water forcing. The relation between EASM and EAWM can differ dramatically for different timescales because of the different response mechanisms, highlighting the complex dynamics of the East Asian monsoon system and the challenges for future projection.

  17. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years

    PubMed Central

    Wen, Xinyu; Liu, Zhengyu; Wang, Shaowu; Cheng, Jun; Zhu, Jiang

    2016-01-01

    Understanding the past significant changes of the East Asia Summer Monsoon (EASM) and Winter Monsoon (EAWM) is critical for improving the projections of future climate over East Asia. One key issue that has remained outstanding from the paleo-climatic records is whether the evolution of the EASM and EAWM are correlated. Here, using a set of long-term transient simulations of the climate evolution of the last 21,000 years, we show that the EASM and EAWM are positively correlated on the orbital timescale in response to the precessional forcing, but are anti-correlated on millennial timescales in response to North Atlantic melt water forcing. The relation between EASM and EAWM can differ dramatically for different timescales because of the different response mechanisms, highlighting the complex dynamics of the East Asian monsoon system and the challenges for future projection. PMID:27328616

  18. A High-Resolution Record of Holocene Climate Variability from a Western Canadian Coastal Inlet

    NASA Astrophysics Data System (ADS)

    Dallimore, A.; Thomson, R. E.; Enkin, R. J.; Kulikov, E. A.; Bertram, M. A.; Wright, C. A.; Southon, J. R.; Barrie, J. V.; Baker, J.; Pienitz, R.; Calvert, S. E.; Chang, A. S.; Pedersen, T. F.

    2004-12-01

    Conditions within the Pacific Ocean have a major effect on the climate of northwestern North America. High resolution records of present and past northeast Pacific climate are revealed in our multi-disciplinary study of annually laminated marine sediments from anoxic coastal inlets of British Columbia. Past climate conditions for the entire Holocene are recorded in the sediment record contained in a 40 meter, annually laminated marine sediment core taken in Effingham Inlet, on the west coast of Vancouver Island, British Columbia, from the French ship the Marion Dufresne, as part of the international IMAGES program. By combining our eight year continuous instrument record of modern coastal ocean dynamics and climate with high-resolution analysis of depositional processes, we have been able to develop proxy measurements of past climatic and oceanographic changes on annual to millennial time scales. Results indicate that regional climate has oscillated on a variety of time scales throughout the Holocene. At times, climatic change has been dramatically rapid. We are also developing digital methods for statistical time-series analyses of physical sediment properties through the Holocene in order to obtain a more objective quantitative approach for detecting cyclicity in our data. Results of the time series analysis of lamination thickness reveals statistically significant spectral peaks of climate scale variability at established decadal to century time scales. These in turn may be related to solar cycles and quasi-cyclical ocean processes such as the Pacific Decadal Oscillation. However, the annually laminated time series are periodically interrupted by massive mud intervals which are related to bottom currents and at times paleo-seismic events, illustrating the need for a full understanding of modern oceanographic and sedimentation processes, so an accurate proxy record of past climate can be established.

  19. Long-term species loss and homogenization of moth communities in Central Europe.

    PubMed

    Valtonen, Anu; Hirka, Anikó; Szőcs, Levente; Ayres, Matthew P; Roininen, Heikki; Csóka, György

    2017-07-01

    As global biodiversity continues to decline steeply, it is becoming increasingly important to understand diversity patterns at local and regional scales. Changes in land use and climate, nitrogen deposition and invasive species are the most important threats to global biodiversity. Because land use changes tend to benefit a few species but impede many, the expected outcome is generally decreasing population sizes, decreasing species richness at local and regional scales, and increasing similarity of species compositions across sites (biotic homogenization). Homogenization can be also driven by invasive species or effects of soil eutrophication propagating to higher trophic levels. In contrast, in the absence of increasing aridity, climate warming is predicted to generally increase abundances and species richness of poikilotherms at local and regional scales. We tested these predictions with data from one of the few existing monitoring programmes on biodiversity in the world dating to the 1960s, where the abundance of 878 species of macro-moths have been measured daily at seven sites across Hungary. Our analyses revealed a dramatic rate of regional species loss and homogenization of community compositions across sites. Species with restricted distribution range, specialized diet or dry grassland habitat were more likely than others to disappear from the community. In global context, the contrasting effects of climate change and land use changes could explain why the predicted enriching effects from climate warming are not always realized. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  20. An Analytical Solution for the Impact of Vegetation Changes on Hydrological Partitioning Within the Budyko Framework

    NASA Astrophysics Data System (ADS)

    Zhang, Shulei; Yang, Yuting; McVicar, Tim R.; Yang, Dawen

    2018-01-01

    Vegetation change is a critical factor that profoundly affects the terrestrial water cycle. Here we derive an analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework. This is achieved by deriving an analytical expression between leaf area index (LAI) change and the Budyko land surface parameter (n) change, through the combination of a steady state ecohydrological model with an analytical carbon cost-benefit model for plant rooting depth. Using China where vegetation coverage has experienced dramatic changes over the past two decades as a study case, we quantify the impact of LAI changes on the hydrological partitioning during 1982-2010 and predict the future influence of these changes for the 21st century using climate model projections. Results show that LAI change exhibits an increasing importance on altering hydrological partitioning as climate becomes drier. In semiarid and arid China, increased LAI has led to substantial streamflow reductions over the past three decades (on average -8.5% in 1990s and -11.7% in 2000s compared to the 1980s baseline), and this decreasing trend in streamflow is projected to continue toward the end of this century due to predicted LAI increases. Our result calls for caution regarding the large-scale revegetation activities currently being implemented in arid and semiarid China, which may result in serious future water scarcity issues here. The analytical model developed here is physically based and suitable for simultaneously assessing both vegetation changes and climate change induced changes to streamflow globally.

  1. An Investigation of the Impacts of Climate and Environmental Change on Alpine Lakes in the Uinta Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Moser, K. A.; Hundey, E. J.; Porinchu, D. F.

    2007-12-01

    Aquatic systems in alpine and sub-alpine areas of the western United States are potentially impacted by atmospheric pollution and climate change. Because these mountainous regions are an important water resource for the western United States, it is critical to monitor and protect these systems. The Uinta Mountains are an east- west trending mountain range located on the border between Utah, Wyoming and Colorado and downwind of the Wasatch Front, Utah, which is characterized by a rapidly expanding population, as well as mining and industry. This alpine area provides water to many areas in Utah, and contributes approximately nine percent of the water supply to the Upper Colorado River. Our research is focused on determining the impacts of climate change and pollution on alpine lakes in the Uinta Mountains. The results presented here are based on limnological measurements made at 64 Uinta Mountain lakes spanning a longitude gradient of one degree and an elevation gradient of 3000 feet. At each lake maximum depth, conductivity, salinity, pH, Secchi depth, temperature, alkalinity, and concentrations of major anions, cations and trace metals were measured. Principal Components Analysis (PCA) was performed to determine relationships between these variables and to examine the variability of the values of these variables. Our results indicate that steep climate gradients related to elevation and longitude result in clear differences in limnological properties of the study sites, with high elevation lakes characterized by greater amounts of nitrate and nitrite compared to low elevation sites. As well, diatoms in these lakes indicate that many high elevation sites are mesotrophic to eutrophic, which is unexpected for such remote aquatic ecosystems. We hypothesize that elevated nitrate and nitrite levels at high elevation sites are related to atmospherically derived nitrogen, but are being exacerbated relative to lower elevation sites by greater snow cover and reduced plant cover. Paleolimnological analyses of well dated sediments from selected lakes indicate that some of these high elevation sites have undergone rapid and dramatic change beginning in the late 1800s to early 1900s. Many of these lakes have become more productive as indicated by loss-on-ignition and diatom analyses. Although the exact mechanism of these changes is uncertain, the timing closely follows recent increases in air and chironomid-inferred surface water temperatures, and increased fossil fuel burning in the region. Regardless of the exact mechanism, our results clearly indicate dramatic changes at these high elevation sites, which threaten critical water resources.

  2. Genomic approaches for understanding dengue: insights from the virus, vector, and host.

    PubMed

    Sim, Shuzhen; Hibberd, Martin L

    2016-03-02

    The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host-pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.

  3. A review of the Southern Oscillation - Oceanic-atmospheric circulation changes and related rainfall anomalies

    NASA Technical Reports Server (NTRS)

    Kousky, V. E.; Kagano, M. T.; Cavalcanti, I. F. A.

    1984-01-01

    The region of South America is emphasized in the present consideration of the Southern Oscillation (SO) oceanic and atmospheric circulation changes. The persistence of climate anomalies associated with El Nino-SO events is due to strong atmosphere-ocean coupling. Once initiated, the SO follows a certain sequence of events with clearly defined effects on tropical and subtropical rainfall. Excessive rainfall related to the SO in the central and eastern Pacific, Peru, Ecuador, and southern Brazil, are complemented by drought in Australia, Indonesia, India, West Africa, and northeast Brazil. El Nino-SO events are also associated with dramatic changes in the tropospheric flow pattern over a broad area of both hemispheres.

  4. Broad-scale lake expansion and flooding inundates essential wood bison habitat in northwestern Canada.

    NASA Astrophysics Data System (ADS)

    Blais, J. M.; Korosi, J.; Thienpont, J. R.; Pisaric, M. F.; Kokelj, S.; Smol, J. P.; Simpson, M. J.

    2017-12-01

    Climate change-induced landscape alterations have consequences for vulnerable wildlife. In high-latitude regions, dramatic changes in water levels have been linked to climate warming. While most attention has focused on shrinking Arctic lakes, here, we document the opposite scenario: extensive lake expansion in Canada's Northwest Territories that has implications for the conservation of ecologically-important wood bison. We quantified lake area changes since 1986 using remote sensing techniques, and recorded a net gain of > 500 km2, from 5.7% to 11% total water coverage. Inter-annual variability in water level was significantly correlated to the Pacific/North American pattern teleconnection and the summer sea surface temperature anomaly. Historical reconstructions using proxy data archived in dated sediment cores showed that recent lake expansion is outside the range of natural variability of these ecosystems over at least the last 300 years. Lake expansion resulted in increased allochthonous carbon transport, as shown unequivocally by increases in lignin-derived phenols, but with a greater proportional increase in the contribution of organic matter from phytoplankton, as a result of increased open-water habitat. We conclude that complex hydrological changes occurring as a result of recent climatic change have resulted in rapid and widespread lake expansion that may significantly affect at-risk wildlife populations. This study is based on results we reported in Nature Communications in 2017 (DOI: 10.1038/ncomms14510).

  5. Climate change and alpine stream biology: progress, challenges, and opportunities for the future.

    PubMed

    Hotaling, Scott; Finn, Debra S; Joseph Giersch, J; Weisrock, David W; Jacobsen, Dean

    2017-11-01

    In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from micro- to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism-focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call for increased synthesis across existing approaches to improve understanding of how these imperiled ecosystems are responding to rapid environmental change. We then take a forward-looking viewpoint on how alpine stream biologists can make better use of existing data sets through temporal comparisons, integrate remote sensing and geographic information system (GIS) technologies, and apply genomic tools to refine knowledge of underlying evolutionary processes. We conclude with comments about the future of biodiversity conservation in alpine streams to confront the daunting challenge of mitigating the effects of rapid environmental change in these sentinel ecosystems. © 2017 Cambridge Philosophical Society.

  6. Climate change and alpine stream biology: progress, challenges, and opportunities for the future

    USGS Publications Warehouse

    Hotaling, Scott; Finn, Debra S.; Giersch, J. Joseph; Weisrock, David W.; Jacobsen, Dean

    2017-01-01

    In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from micro- to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism-focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call for increased synthesis across existing approaches to improve understanding of how these imperiled ecosystems are responding to rapid environmental change. We then take a forward-looking viewpoint on how alpine stream biologists can make better use of existing data sets through temporal comparisons, integrate remote sensing and geographic information system (GIS) technologies, and apply genomic tools to refine knowledge of underlying evolutionary processes. We conclude with comments about the future of biodiversity conservation in alpine streams to confront the daunting challenge of mitigating the effects of rapid environmental change in these sentinel ecosystems.

  7. Folgen des Globalen Wandels für das Grundwasser in Süddeutschland - Teil 2: Sozioökonomische Aspekte

    NASA Astrophysics Data System (ADS)

    Barthel, Roland; Krimly, Tatjana; Elbers, Michael; Soboll, Anja; Wackerbauer, Johann; Hennicker, Rolf; Janisch, Stephan; Reichenau, Tim G.; Dabbert, Stephan; Schmude, Jürgen; Ernst, Andreas; Mauser, Wolfram

    2011-12-01

    In order to account for complex interactions between humans climate and the water cycle, the research consortium GLOWA-Danube (www.glowa-danube.de) has developed the simulation system DANUBIA which consists of 17 coupled models. DANUBIA was applied to investigate various impacts of global-change between 2011 and 2060 in the Upper Danube Catchment. This article describes part 2 of an article series with investigations of socio-economic aspects, while part 1 (Barthel et al. in Grundwasser 16(4), doi:10.1007/s007-011-01794, 2011) deals with natural-spatial aspects. The principles of socio-economic actor-modeling and interactions between socio-economic and natural science model components are described here. We present selected simulations that show impacts on groundwater from changes in agriculture, tourism, economy, domestic water users and water supply. Despite decreases in water consumption, the scenario simulations show significant decreases in groundwater quantity. On the other hand, groundwater quality will likely be influenced more severely by land use changes compared to direct climatic causes. However, overall changes will not be dramatic.

  8. Historical Changes and remediation Measures of Agricultural Streams

    NASA Astrophysics Data System (ADS)

    Wörman, Anders; Riml, Joakim; Morén, Ida

    2017-04-01

    Changes in landscapes and climate during the last centuries in Sweden can be tracer in dramatic changes in the runoff pattern over large areas. Particularly, extensive drainage works aimed at expanding arable land and reduce risks for local floods. The availability of long-term monitoring runoff time series make it possible to distinguish the effects of landscape changes from climate fluctuations. However, it is expected that these changes also have an effect on retention and attenuation of nutrients in agricultural streams. This work focuses on design approaches for remediation actions in streams that can restore some of the previous self-purifying capacity and, hence, contribute to improved eutrophication status of the Baltic Sea. For analysis of historical time-series we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. We found periodic fluctuations in runoff all over Sweden that can be explained by various climate indices. In addition, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. Finally, we developed a design approach for stream remediation actions that restored the self-purification capacity while also increasing the risk for local floods. It is shown that step-structures, like check dams, are effective measures for inducing hyporheic exchange and thereby increasing potential for adsorption of phosphorus to soil and denitrification of nitrogen in biofilms.

  9. Implications of climate change for Alaska's seabirds

    USGS Publications Warehouse

    Meehan, Rosa; Byrd, G. Vernon; Divoky, George J.; Piatt, John F.; Weller, Gunter; Anderson, Patricia A.

    1999-01-01

    Seabirds are prominent and highly visible components of marine ecosystems that will be affected by global climate change. The Bering Sea region is particularly important to seabirds; populations there are larger and more diverse than in any similar region in North America—over 90% of seabirds breeding in the continental United States are found in this region. Seabirds, so named because they spend at least 80% of their lives at sea, are dependent upon marine resources for food. As prey availability changes in response to climatically driven factors such as surface sea temperature and extent of sea ice, so will populations of seabirds be affected.Seabirds are valued as indicators of healthy marine ecosystems and provide a “vicarious use value” or existence value—people appreciate and value seabirds simply because they are there and enjoy them through venues such as pictures, nature programs, and written accounts without ever directly observing seabirds in their native environment. A direct measure of this value is demonstrated by Federal legislation that established specific national wildlife refuges to protect seabirds and international treaty obligations that provide additional protection for seabirds. Seabirds are also an important subsistence resource for many who live within the Bering Sea region. Furthermore, the rich knowledge base about seabirds makes them a valuable resource as indicator species for measurement of change in the marine environment. Understanding this latter relationship is particularly important for seabirds as they can be dramatically affected by development-related activities (e.g., oil spills, fishing); understanding the population effects due to climatic change is critical to interpreting the actual effects of specific human activities or events.

  10. A mineralogical record of ocean change: Decadal and centennial patterns in the California mussel.

    PubMed

    McCoy, Sophie J; Kamenos, Nicholas A; Chung, Peter; Wootton, Timothy J; Pfister, Catherine A

    2018-06-01

    Ocean acidification, a product of increasing atmospheric carbon dioxide, may already have affected calcified organisms in the coastal zone, such as bivalves and other shellfish. Understanding species' responses to climate change requires the context of long-term dynamics. This can be particularly difficult given the longevity of many important species in contrast with the relatively rapid onset of environmental changes. Here, we present a unique archival dataset of mussel shells from a locale with recent environmental monitoring and historical climate reconstructions. We compare shell structure and composition in modern mussels, mussels from the 1970s, and mussel shells dating back to 1000-2420 years BP. Shell mineralogy has changed dramatically over the past 15 years, despite evidence for consistent mineral structure in the California mussel, Mytilus californianus, over the prior 2500 years. We present evidence for increased disorder in the calcium carbonate shells of mussels and greater variability between individuals. These changes in the last decade contrast markedly from a background of consistent shell mineralogy for centuries. Our results use an archival record of natural specimens to provide centennial-scale context for altered minerology and variability in shell features as a response to acidification stress and illustrate the utility of long-term studies and archival records in global change ecology. Increased variability between individuals is an emerging pattern in climate change responses, which may equally expose the vulnerability of organisms and the potential of populations for resilience. © 2017 John Wiley & Sons Ltd.

  11. Global change impacts on river ecosystems: A high-resolution watershed study of Ebro river metabolism.

    PubMed

    Val, Jonatan; Chinarro, David; Pino, María Rosa; Navarro, Enrique

    2016-11-01

    Global change is transforming freshwater ecosystems, mainly through changes in basin flow dynamics. This study assessed how the combination of climate change and human management of river flow impacts metabolism of the Ebro River (the largest river basin in Spain, 86,100km(2)), assessed as gross primary production-GPP-and ecosystem respiration-ER. In order to investigate the influence of global change on freshwater ecosystems, an analysis of trends and frequencies from 25 sampling sites of the Ebro river basin was conducted. For this purpose, we examined the effect of anthropogenic flow control on river metabolism with a Granger causality study; simultaneously, took into account the effects of climate change, a period of extraordinary drought (largest in past 140years). We identified periods of sudden flow changes resulting from both human management and global climate effects. From 1998 to 2012, the Ebro River basin was trending toward a more autotrophic condition indicated by P/R ratio. Particularly, the results show that floods that occurred after long periods of low flows had a dramatic impact on the respiration (i.e., mineralization) capacity of the river. This approach allowed for a detailed characterization of the relationships between river metabolism and drought impacts at the watershed level. These findings may allow for a better understanding of the ecological impacts provoked by flow management, thus contributing to maintain the health of freshwater communities and ecosystem services that rely on their integrity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Exploring the impact of co-varying water availability and energy price on productivity and profitability of Alpine hydropower

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Botter, Martina; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Alpine hydropower systems are experiencing dramatic changes both from the point of view of hydrological conditions, e.g., water availability and frequency of extremes events, and of energy market conditions, e.g., partial or total liberalization of the market and increasing share of renewable power sources. Scientific literature has, so far, mostly focused on the analysis of climate change impacts and associated uncertainty on hydropower operation, underlooking the consequences that socio-economic changes, e.g., energy demand and/or price changes, can have on hydropower productivity and profitability. In this work, we analyse how hydropower reservoir operation is affected by changes in both water availability and energy price. We consider stochastically downscaled climate change scenarios of precipitation and temperature to simulate reservoir inflows using a physically explicit hydrological model. We consider different scenarios of energy demand and generation mix to simulate energy prices using an electricity market model, which includes different generation sources, demand sinks, and features of the transmission lines. We then use Multi-Objective optimization techniques to design the operation of hydropower reservoirs for different purposes, e.g. maximization of revenue and/or energy production. The objective of the work is to assess how the tradeoffs between the multiple operating objectives evolve under different co-varying climate change and socio-economic scenarios and to assess the adaptive capacity of the system. The modeling framework is tested on the real-world case study of the Mattmark reservoir in Switzerland.

  13. Accounting for habitat when considering climate: has the niche of the Adonis blue butterfly changed in the UK?

    PubMed

    O'Connor, Rory S; Hails, Rosemary S; Thomas, Jeremy A

    2014-04-01

    The dramatic recovery of three species of grassland specialist butterfly threatened with extinction at their high latitude range limits in the 1980s has been attributed to two factors: increased grazing on calcareous grassland sites and warmer air temperatures. Both result in the warming of soil surface temperatures, favourable to the larvae of these species. We address the influence of both of these factors on the habitat usage of the butterfly Polyommatus bellargus, undergoing recovery at its northern range edge. We test the hypothesis that the larval niche of P. bellargus has become less constrained in the past three decades, whilst controlling for changes in habitat structure. Once habitat change has been accounted for we find no evidence for a broadening of the larval niche of P. bellargus. Further, we show that coincident with the recovery of P. bellargus there have been drastic reductions in average turf height across UK chalk grasslands, but changes in air temperature have been highly variable. We conclude that changes to soil surface temperatures caused by reducing turf heights will have been a more consistent influence than air temperature increases, and so habitat improvements through increased grazing will have been the major driver of recovery in P. bellargus. We consider the need to account for changes in habitat when exploring the impacts of recent climate change on local habitats in thermophilous species, and emphasise the continued importance of habitat management to support such species under variable local climates.

  14. Public health preparedness for the impact of global warming on human health.

    PubMed

    Wassel, John J

    2009-01-01

    To assess the changes in weather and weather-associated disturbances related to global warming; the impact on human health of these changes; and the public health preparedness mandated by this impact. Qualitative review of the literature. Articles will be obtained by searching PubMed database, Google, and Google Scholar search engines using terms such as "global warming," "climate change," "human health," "public health," and "preparedness." Sixty-seven journal articles were reviewed. The projections and signs of global environmental changes are worrisome, and there are reasons to believe that related information may have been conservatively interpreted and presented in the recent past. Although the challenges are great, there are many opportunities for devising beneficial solutions at individual, community, and global levels. It is essential for public health professionals to become involved in advocating for change at all of these levels, as well as through professional organizations. We must begin "greening" our own lives and clinical practice, and start talking about these issues with patients. As we build walkable neighborhoods, change methods of energy production, and make water use and food production and distribution more sustainable, the benefits to improved air quality, a stabilized climate, social support, and individual and community health will be dramatic.

  15. Climate Change Transforms Fire Regimes but Does not Eliminate Forest Carbon Sequestration in the Greater Yellowstone Ecosystem

    NASA Astrophysics Data System (ADS)

    Henne, P. D.; Hawbaker, T. J.; Berryman, E.

    2017-12-01

    Annual area burned in the Rocky Mountains varies with climatic conditions. However, projecting long-term changes in wildfire presents an enduring challenge because climate also constrains vegetation and fuel availability. We combined an aridity-threshold fire model with the Landis-II dynamic landscape vegetation model (NECN extension) to project climate change impacts on vegetation, area burned, and ecosystem carbon balance in the Greater Yellowstone Ecosystem (GYE). We developed a fire model that relates drought stress to area burned by quantifying an aridity threshold separating large and small years in 15 ecoregions in the Intermountain West. A significant positive correlation (r2 = 0.97) exists between mean fire-season aridity and ecoregion-specific aridity thresholds. We simulated vegetation and fire dynamics in the GYE at 250 m spatial resolution with Landis-II, using projections from five climate models and two emissions scenarios for the period 1980-2100 AD. We determined if each simulation year exceeded the regional aridity threshold, then randomly drew the number of fires and size of individual fires from fire-size distributions from large or small fire years. Burned area increases dramatically in most climate scenarios, especially after 2060, when most years exceed the aridity threshold. Productivity gains due to rising temperatures partially offset biomass lost to fire, but C stocks plateau or decline after 2060 in most simulations as burned area increases, and drought stress causes post-fire regeneration to decline at low elevations. However, species level changes (e.g. expansion by drought-tolerant Pseuodotsuga menziesii) help maintain productivity in sites where water becomes limiting. Fire-adapted Pinus contorta occupies less total area, but a greater proportion of remaining forests, and Picea engelmannii and Abies lasiocarpa significantly decline. Although fire and climate change will alter species distributions and forest structure, our results suggest that the GYE can maintain a C sink through 2100. However, C stocks will likely shift to higher elevations, and forests will be less resilient to disturbance, in a warmer future. Our landscape-level approach identifies regions likely to maintain high conservation value and ecosystem services under multiple climate scenarios.

  16. A Bibliometric Analysis of Climate Engineering Research

    NASA Astrophysics Data System (ADS)

    Belter, C. W.; Seidel, D. J.

    2013-12-01

    The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.

  17. A multi-proxy record of hydroclimate, vegetation, fire, and post-settlement impacts for a subalpine plateau, Central Rocky Mountains U.S.A

    USGS Publications Warehouse

    Anderson, Lesleigh; Brunelle, Andrea; Thompson, Robert S.

    2015-01-01

    Apparent changes in vegetation distribution, fire, and other disturbance regimes throughout western North America have prompted investigations of the relative importance of human activities and climate change as potential causal mechanisms. Assessing the effects of Euro-American settlement is difficult because climate changes occur on multi-decadal to centennial time scales and require longer time perspectives than historic observations can provide. Here, we report vegetation and environmental changes over the past ~13,000 years as recorded in a sediment record from Bison Lake, a subalpine lake on a high plateau in northwestern Colorado. Results are based on multiple independent proxies, which include pollen, charcoal, and elemental geochemistry, and are compared with previously reported interpretations of hydroclimatic changes from oxygen isotope ratios. The pollen data indicate a slowly changing vegetation sequence from sagebrush steppe during the late glacial to coniferous forest through the late Holocene. The most dramatic vegetation changes of the Holocene occurred during the ‘Medieval Climate Anomaly’ (MCA) and ‘Little Ice Age’ (LIA) with rapid replacement of conifer forest by grassland followed by an equally rapid return to conifer forest. Late Holocene vegetation responses are mirrored by changes in fire, lake biological productivity, and watershed erosion. These combined records indicate that subsequent disturbance related to Euro-American settlement, although perhaps significant, had acted upon a landscape that was already responding to MCA-LIA hydroclimatic change. Results document both rapid and long-term subalpine grassland ecosystem dynamics driven by agents of change that can be anticipated in the future and simulated by ecosystem models.

  18. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic

    PubMed Central

    Vezzulli, Luigi; Grande, Chiara; Reid, Philip C.; Hélaouët, Pierre; Edwards, Martin; Höfle, Manfred G.; Brettar, Ingrid; Colwell, Rita R.; Pruzzo, Carla

    2016-01-01

    Climate change is having a dramatic impact on marine animal and plant communities but little is known of its influence on marine prokaryotes, which represent the largest living biomass in the world oceans and play a fundamental role in maintaining life on our planet. In this study, for the first time to our knowledge, experimental evidence is provided on the link between multidecadal climatic variability in the temperate North Atlantic and the presence and spread of an important group of marine prokaryotes, the vibrios, which are responsible for several infections in both humans and animals. Using archived formalin-preserved plankton samples collected by the Continuous Plankton Recorder survey over the past half-century (1958–2011), we assessed retrospectively the relative abundance of vibrios, including human pathogens, in nine areas of the North Atlantic and North Sea and showed correlation with climate and plankton changes. Generalized additive models revealed that long-term increase in Vibrio abundance is promoted by increasing sea surface temperatures (up to ∼1.5 °C over the past 54 y) and is positively correlated with the Northern Hemisphere Temperature (NHT) and Atlantic Multidecadal Oscillation (AMO) climatic indices (P < 0.001). Such increases are associated with an unprecedented occurrence of environmentally acquired Vibrio infections in the human population of Northern Europe and the Atlantic coast of the United States in recent years. PMID:27503882

  19. Vegetation controls on weathering intensity during the last deglacial transition in southeast Africa

    USGS Publications Warehouse

    Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Lézine, Anne-Marie; Cohen, Andrew S.; Vincens, Annie

    2015-01-01

    Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (~18–9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation.

  20. Vegetation Controls on Weathering Intensity during the Last Deglacial Transition in Southeast Africa

    PubMed Central

    Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Lézine, Anne-Marie; Cohen, Andrew S.; Vincens, Annie

    2014-01-01

    Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼18–9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation. PMID:25406090

  1. Vegetation controls on weathering intensity during the last deglacial transition in southeast Africa.

    PubMed

    Ivory, Sarah J; McGlue, Michael M; Ellis, Geoffrey S; Lézine, Anne-Marie; Cohen, Andrew S; Vincens, Annie

    2014-01-01

    Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼ 18-9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation.

  2. Arctic climatechange and its impacts on the ecology of the North Atlantic.

    PubMed

    Greene, Charles H; Pershing, Andrew J; Cronin, Thomas M; Ceci, Nicole

    2008-11-01

    Arctic climate change from the Paleocene epoch to the present is reconstructed with the objective of assessing its recent and future impacts on the ecology of the North Atlantic. A recurring theme in Earth's paleoclimate record is the importance of the Arctic atmosphere, ocean, and cryosphere in regulating global climate on a variety of spatial and temporal scales. A second recurring theme in this record is the importance of freshwater export from the Arctic in regulating global- to basin-scale ocean circulation patterns and climate. Since the 1970s, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. In addition, modal shifts in the atmosphere have altered Arctic Ocean circulation patterns and the export of freshwater into the North Atlantic. The combination of these processes has resulted in variable patterns of freshwater export from the Arctic Ocean and the emergence of salinity anomalies that have periodically freshened waters in the North Atlantic. Since the early 1990s, changes in Arctic Ocean circulation patterns and freshwater export have been associated with two types of ecological responses in the North Atlantic. The first of these responses has been an ongoing series of biogeographic range expansions by boreal plankton, including renewal of the trans-Arctic exchanges of Pacific species with the Atlantic. The second response was a dramatic regime shift in the shelf ecosystems of the Northwest Atlantic that occurred during the early 1990s. This regime shift resulted from freshening and stratification of the shelf waters, which in turn could be linked to changes in the abundances and seasonal cycles of phytoplankton, zooplankton, and higher trophic-level consumer populations. It is predicted that the recently observed ecological responses to Arctic climate change in the North Atlantic will continue into the near future if current trends in sea ice, freshwater export, and surface ocean salinity continue. It is more difficult to predict ecological responses to abrupt climate change in the more distant future as tipping points in the Earth's climate system are exceeded.

  3. Climate Change Impairs Nitrogen Cycling in European Beech Forests.

    PubMed

    Dannenmann, Michael; Bimüller, Carolin; Gschwendtner, Silvia; Leberecht, Martin; Tejedor, Javier; Bilela, Silvija; Gasche, Rainer; Hanewinkel, Marc; Baltensweiler, Andri; Kögel-Knabner, Ingrid; Polle, Andrea; Schloter, Michael; Simon, Judy; Rennenberg, Heinz

    2016-01-01

    European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N) limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability) on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this ecosystem and here specifically nitrification is vulnerable to reduced water availability, which can directly lead to nutritional limitations of beech seedlings. This tight link between reduced water availability, drought stress for nitrifiers, decreased gross nitrification rates and nitrate availability and finally nitrate uptake by beech seedlings could represent the Achilles' heel for beech under climate change stresses.

  4. Climate change and early human land-use in a biodiversity hotspot, the Afromontane region

    NASA Astrophysics Data System (ADS)

    Ivory, S.; Russell, J. M.; Sax, D. F.; Early, R.

    2015-12-01

    African ecosystems are at great risk due to climate and land-use change. Paleo-records illustrate that changes in precipitation and temperature have led to dramatic alterations of African vegetation distribution over the Quaternary; however, despite the fact that the link between mankind and the environment has a longer history in the African tropics than anywhere else on earth, very little is known about pre-colonial land-use. Disentangling the influence of each is particularly critical in areas of exceptional biodiversity and endemism, such as the Afromontane forest region. This region is generally considered to be highly sensitive to temperature and thus at risk to future climate change. However, new evidence suggests that some high elevation species may have occupied warmer areas in the past and thus are not strongly limited by temperature and may be at greater risk from intensifying land-use. First, we use species distribution models constructed from modern and paleo-distributions of high elevation forests in order to evaluate differences in the climatic space occupied today compared to the past. We find that although modern Afromontane species ranges occupy very narrow climate conditions, and in particular that most species occur only in cold areas, in the past most species have tolerated warmer conditions. This suggests that many montane tree species are not currently limited by warm temperatures, and that the region has already seen significant reduction in the climate space occupied, possibly from Holocene land-use. Second, to evaluate human impacts on montane populations, we examine paleoecological records from lakes throughout sub-Saharan Africa that capture ecological processes at difference time scales to reconstruct Afromontane forest range changes. Over long time scales, we observe phases of forest expansion in the lowlands associated with climate variability alone where composition varies little from phase to phase but include both modern low and high altitude taxa. We then examine changes in biodiversity and species composition within the Afromontane region related to evidence different types of historical land-use, suggesting significant alteration of montane forest range and lowland forest composition.

  5. Climate Change Impairs Nitrogen Cycling in European Beech Forests

    PubMed Central

    Dannenmann, Michael; Bilela, Silvija; Gasche, Rainer; Hanewinkel, Marc; Baltensweiler, Andri; Kögel-Knabner, Ingrid; Polle, Andrea; Schloter, Michael; Simon, Judy; Rennenberg, Heinz

    2016-01-01

    European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N) limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability) on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this ecosystem and here specifically nitrification is vulnerable to reduced water availability, which can directly lead to nutritional limitations of beech seedlings. This tight link between reduced water availability, drought stress for nitrifiers, decreased gross nitrification rates and nitrate availability and finally nitrate uptake by beech seedlings could represent the Achilles’ heel for beech under climate change stresses. PMID:27410969

  6. Integrated Assessment of Hadley Centre (HadCM2) Climate Change Projections on Agricultural Productivity and Irrigation Water Supply in the Conterminous United States.I. Climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Norman J.; Brown, Robert A.; Izaurralde, R Cesar C.

    This paper describes methodology and results of a study by researchers at PNNL contributing to the water sector study of the U.S. National Assessment of Climate Change. The vulnerability of water resources in the conterminous U.S. to climate change in 10-y periods centered on 2030 and 2095--as projected by the HadCM2 general circulation model--was modeled with HUMUS (Hydrologic Unit Model of the U.S.). HUMUS consists of a GIS that provides data on soils, land use and climate to drive the hydrology model Soil Water Assessment Tool (SWAT). The modeling was done at the scale of the 2101 8-digit USGS hydrologicmore » unit areas (HUA). Results are aggregated to the 4-digit and 2-digit (Major Water Resource Region, MWRR) scales for various purposes. Daily records of temperature and precipitation for 1961-1990 provided the baseline climate. Water yields (WY)--sum of surface and subsurface runoff--increases from the baseline period over most of the U.S. in 2030 and 2095. In 2030, WY increases in the western US and decreases in the central and southeast regions. Notably, WY increases by 139 mm from baseline in the Pacific NW. Decreased WY is projected for the Lower Mississippi and Texas Gulf basins, driven by higher temperatures and reduced precipitation. The HadCM2 2095 scenario projects a climate significantly wetter than baseline, resulting in WY increases of 38%. WY increases are projected throughout the eastern U.S. WY also increases in the western U.S. Climate change also affects the seasonality of the hydrologic cycle. Early snowmelt is induced in western basins, leading to dramatically increased WYs in late winter and early spring. The simulations were run at current (365 ppm) and elevated (560 ppm) atmospheric CO2 concentrations to account for the potential impacts of the CO2-fertilization effect. The effects of climate change scenario were considerably greater than those due to elevated CO2 but the latter, overall, decreased losses and augmented increases in water yield.« less

  7. Forests in a water limited world under climate change

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Sun, Ge

    2014-08-01

    The debate on ecological and climatic benefits of planted forests at the sensitive dry edge of the closed forest belt (i.e. at the ‘xeric limits’) is still unresolved. Forests sequester atmospheric carbon dioxide, accumulate biomass, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously dominated by grassland or cropland can dramatically alter the energy and water balances at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts and growing extremes due to its high ecohydrological sensitivity. We investigated some of the relevant aspects of the ecological and climatic role of forests and potential impacts of climate change at the dryland margins of the temperate-continental zone using case studies from China, the United States and SE Europe (Hungary). We found that, contrary to popular expectations, the effects of forest cover on regional climate might be limited and the influence of forestation on water resources might be negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events is likely to reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest management and forestation planning should be adjusted to the local, projected hydrologic and climatic conditions, and should also consider non-forest alternative land uses.

  8. State-dependent climate sensitivity in past warm climates and its implications for future climate projections.

    PubMed

    Caballero, Rodrigo; Huber, Matthew

    2013-08-27

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow "Earth system" feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or "Charney" climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature.

  9. Mitigating Climate Change with Ocean Pipes: Influencing Land Temperature and Hydrology and Termination Overshoot Risk

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, L.; Caldeira, K.; Ricke, K.

    2014-12-01

    With increasing risk of dangerous climate change geoengineering solutions to Earth's climate problems have attracted much attention. One proposed geoengineering approach considers the use of ocean pipes as a means to increase ocean carbon uptake and the storage of thermal energy in the deep ocean. We use a latest generation Earth System Model (ESM) to perform simulations of idealised extreme implementations of ocean pipes. In our simulations, downward transport of thermal energy by ocean pipes strongly cools the near surface atmosphere - by up to 11°C on a global mean. The ocean pipes cause net thermal energy to be transported from the terrestrial environment to the deep ocean while increasing the global net transport of water to land. By cooling the ocean surface more than the land, ocean pipes tend to promote a monsoonal-type circulation, resulting in increased water vapour transport to land. Throughout their implementation, ocean pipes prevent energy from escaping to space, increasing the amount of energy stored in Earth's climate system despite reductions in surface temperature. As a consequence, our results indicate that an abrupt termination of ocean pipes could cause dramatic increases in surface temperatures beyond that which would have been obtained had ocean pipes not been implemented.

  10. Differential declines in Alaskan boreal forest vitality related to climate and competition.

    PubMed

    Trugman, Anna T; Medvigy, David; Anderegg, William R L; Pacala, Stephen W

    2018-03-01

    Rapid warming and changes in water availability at high latitudes alter resource abundance, tree competition, and disturbance regimes. While these changes are expected to disrupt the functioning of boreal forests, their ultimate implications for forest composition are uncertain. In particular, recent site-level studies of the Alaskan boreal forest have reported both increases and decreases in productivity over the past few decades. Here, we test the idea that variations in Alaskan forest growth and mortality rates are contingent on species composition. Using forest inventory measurements and climate data from plots located throughout interior and south-central Alaska, we show significant growth and mortality responses associated with competition, midsummer vapor pressure deficit, and increased growing season length. The governing climate and competition processes differed substantially across species. Surprisingly, the most dramatic climate response occurred in the drought tolerant angiosperm species, trembling aspen, and linked high midsummer vapor pressure deficits to decreased growth and increased insect-related mortality. Given that species composition in the Alaskan and western Canadian boreal forests is projected to shift toward early-successional angiosperm species due to fire regime, these results underscore the potential for a reduction in boreal productivity stemming from increases in midsummer evaporative demand. © 2017 John Wiley & Sons Ltd.

  11. Effects of a Changing Climate on Seasonal Variation in Natural Recharge of Unconfined Coastal Aquifers

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Nella Mollema, Pauline

    2013-04-01

    Irregular rainfall patterns throughout the year result in the discontinuous natural recharge of coastal aquifers, which has an effect on the size of freshwater lenses present in sandy deposits. The thickness of the freshwater lenses is important in the context of farmland salinization and coastal ecosystems survival. This study presents numerical models that simulate continuous and discontinuous recharge in sandy coastal aquifers and the thickness of resulting fresh water lenses under current and future climate scenarios. Temperature data for the period 1960-1990 from LOCCLIM FAO and from the IPCC SRES A1b scenario for 2070-2100, have been used to calculate the potential evapotranspiration. Potential recharge was defined as the difference between the precipitation and potential evapotranspiration in twelve locations around the world: Ameland (The Netherlands), Auckland and Wellington (New Zealand), Hong Kong, Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. These locations have shallow coastal aquifers along low lying coasts and comparable aquifer structure, which is the result of similar sediment supply and deposition in the Holocene as well as by the sea level changes from the last ice age to the present time. Particular attention has been paid to temporal variations of natural recharge that can vary from continuous recharge throughout the year to discontinuous recharge. The most dramatic reduction in the magnitude of potential annual recharge by the end of this century will occur at lower latitudes (Mumbai, Singapore, Hong Kong and Mekong). The most pronounced change in length of the dry period occurs for Kobe (Japan) and Singapore even though the total annual amount of recharge remains practically the same. The Influence of variable recharge on the size of freshwater lenses surrounded by saline water is simulated with the SEAWAT model. Models where the recharge is applied continuously throughout the year result in thicker freshwater lenses than models with the same amount of potential recharge applied discontinuously. This difference between the discontinuous and the continuous model is relatively small in areas where the total annual recharge is low (Wellington NZ, Ravenna IT, Ameland NL) but in places with Monsoon-dominated climate as Mumbai, the difference is large. Under the IPCC A1b climate scenario, only Tokyo and Singapore appear to change from a continuous to a discontinuous recharge regime whereas in the other locations there is merely a change in the amount of annual recharge, mostly reducing the size of the freshwater lenses (Ameland, Mekong, Mumbai, Hong Kong and Ravenna). In low latitudes settings such as Mumbai, Mekong Delta, and Hong Kong, this change is more dramatic with large losses of freshwater. This study shows that it is important to consider seasonal variations in temperature and precipitation in water resources management in the coastal zone, especially in view of climatic change.

  12. Rapid ocean-atmosphere response to Southern Ocean freshening during the last glacial period

    NASA Astrophysics Data System (ADS)

    Turney, Christian; Jones, Richard; Phipps, Steven; Thomas, Zoë; Hogg, Alan; Kershaw, Peter; Fogwill, Christopher; Palmer, Jonathan; Bronk Ramsey, Christopher; Adolphi, Florian; Muscheler, Raimund; Hughen, Konrad; Staff, Richard; Grosvenor, Mark; Golledge, Nicholas; Rasmussen, Sune; Hutchinson, David; Haberle, Simon; Lorrey, Andrew; Boswijk, Gretel

    2017-04-01

    Contrasting Greenland and Antarctic temperature trends during the late last glacial period (60,000 to 11,703 years ago) are thought to be driven by imbalances in the rate of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'), with cooling in the north leading the onset of warming in the south. Some events, however, appear to have occurred independently of changes in deep water formation but still have a southern expression, implying that an alternative mechanism may have driven some global climatic changes during the glacial. Testing these competing hypotheses is challenging given the relatively large uncertainties associated with correlating terrestrial, marine and ice core records of abrupt change. Here we exploit a bidecadally-resolved 14C calibration dataset obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate datasets spanning 28,400 to 30,400 years ago. We observe no divergence between terrestrial and marine 14C datasets implying limited impact of freshwater hosing on the Atlantic Meridional Overturning Circulation (AMOC). However, an ice-rafted debris event (SA2) in Southern Ocean waters appears to be associated with dramatic synchronous warming over the North Atlantic and contrasting precipitation patterns across the low latitudes. Using a fully coupled climate system model we undertook an ensemble of transient meltwater simulations and find that a southern salinity anomaly can trigger low-latitude temperature changes through barotropic and baroclinic oceanic waves that are atmospherically propagated globally via a Rossby wave train, consistent with contemporary modelling studies. Our results suggest the Antarctic ice sheets and Southern Ocean dynamics may have contributed to some global climatic changes through rapid ocean-atmospheric teleconnections, with implications for past (and future) change.

  13. Metabolic and reproductive plasticity of core and marginal populations of the eurythermic saline water bug Sigara selecta (Hemiptera: Corixidae) in a climate change context.

    PubMed

    Carbonell, J A; Bilton, D T; Calosi, P; Millán, A; Stewart, A; Velasco, J

    2017-04-01

    Ongoing climate change is driving dramatic range shifts in diverse taxa worldwide, and species responses to global change are likely to be determined largely by population responses at geographical range margins. Here we investigate the metabolic and reproductive plasticity in response to water temperature and salinity variation of two populations of the eurythermic saline water bug Sigara selecta: one population located close to the northern edge of its distribution, in a relatively cold, thermally stable region (SE England - 'marginal'), and one close to the range centre, in a warmer and more thermally variable Mediterranean climate (SE Spain - 'core'). We compared metabolic and oviposition rates and egg size, following exposure to one of four different combinations of temperature (15 and 25°C) and salinity (10 and 35gL -1 ). Oviposition rate was significantly higher in the marginal population, although eggs laid were smaller overall. No significant differences in oxygen consumption rates were found between core and marginal populations, although the marginal population showed higher levels of plasticity in both metabolic and reproductive traits. Our results suggest that population-specific responses to environmental change are complex and may be mediated by differences in phenotypic plasticity. In S. selecta, the higher plasticity of the marginal population may facilitate both its persistence in current habitats and northward expansion with future climatic warming. The less plastic core population may be able to buffer current environmental variability with minor changes in metabolism and fecundity, but could be prone to extinction if temperature and salinity changes exceed physiological tolerance limits in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Diversity, Adaptability and Ecosystem Resilience

    NASA Astrophysics Data System (ADS)

    Keribin, Rozenn; Friend, Andrew

    2013-04-01

    Our ability to predict climate change and anticipate its impacts depends on Earth System Models (ESMs) and their ability to account for the high number of interacting components of the Earth System and to gauge both their influence on the climate and the feedbacks they induce. The land carbon cycle is a component of ESMs that is still poorly constrained. Since the 1990s dynamic global vegetation models (DGVMs) have become the main tool through which we understand the interactions between plant ecosystems and the climate. While DGVMs have made it clear the impacts of climate change on vegetation could be dramatic, predicting the dieback of rainforests and massive carbon losses from various ecosystems, they are highly variable both in their composition and their predictions. Their treatment of plant diversity and competition in particular vary widely and are based on highly-simplified relationships that do not account for the multiple levels of diversity and adaptability found in real plant ecosystems. The aim of this GREENCYCLES II project is to extend an individual-based DGVM to treat the diversity of physiologies found in plant communities and evaluate their effect if any on the ecosystem's transient dynamics and resilience. In the context of the InterSectoral Impacts Model Intercomparison Project (ISI-MIP), an initiative coordinated by a team at the Potsdam Institute for Climate Impact Research (PIK) that aims to provide fast-track global impact assessments for the IPCC's Fifth Assessment Report, we compare 6 vegetation models including 4 DGVMs under different climate change scenarios and analyse how the very different treatments of plant diversity and interactions from one model to the next affect the models' results. We then investigate a new, more mechanistic method of incorporating plant diversity into the DGVM "Hybrid" based on ecological tradeoffs mediated by plant traits and individual-based competition for light.

  15. Climate, herbivory, and fire controls on tropical African forest for the last 60ka

    NASA Astrophysics Data System (ADS)

    Ivory, S.; Russell, J. M.

    2016-12-01

    Vegetation history in Africa is generally assumed to be strongly related to climate. However, disturbance by fire, herbivory, and human land use is also important to maintaining vegetation structure and may interact with climate to create tipping points for ecosystems. During the last 60ka, the transition from glacial aridity to increased moisture in much of northern and equatorial Africa led to widespread forest expansion; however, forests in southeastern Africa do not appear to have changed dramatically during arid periods associated with high-latitude cooling, suggesting a more complex biogeographic history. Here we present analyses of fossil pollen, charcoal, and Sporormiella (dung fungus) along with multiproxy climate reconstructions from a 60kyr record from central Lake Tanganyika, southeast Africa, which illustrate the interplay of climate and disturbance regimes in shaping vegetation composition and structure. We observe that forests dominated the region during the last glacial period despite decreased rainfall. At the end of the glacial, forest opening at 17.5 ka followed warming temperatures but preceded wetting, suggesting that water stress and disturbance from fire and herbivory affected initial landscape transformation. Our Sporormiella record indicates that mega-herbivore populations increased in the early Holocene. This higher animal density increased plant species richness and encouraged landscape heterogeneity until the mid-Holocene. At this time, regional drying followed by the onset of the Iron Age in the late Holocene resulted in expansion of thicket, more open woodland, and disturbance taxa that still characterize the landscape today. This work has important implications for the understanding the how climate change will alter the distribution of lowland and highland forests, in particular how disturbance processes influence the rate of vegetation change.

  16. A paradigm shift toward a consistent modeling framework to assess climate impacts

    NASA Astrophysics Data System (ADS)

    Monier, E.; Paltsev, S.; Sokolov, A. P.; Fant, C.; Chen, H.; Gao, X.; Schlosser, C. A.; Scott, J. R.; Dutkiewicz, S.; Ejaz, Q.; Couzo, E. A.; Prinn, R. G.; Haigh, M.

    2017-12-01

    Estimates of physical and economic impacts of future climate change are subject to substantial challenges. To enrich the currently popular approaches of assessing climate impacts by evaluating a damage function or by multi-model comparisons based on the Representative Concentration Pathways (RCPs), we focus here on integrating impacts into a self-consistent coupled human and Earth system modeling framework that includes modules that represent multiple physical impacts. In a sample application we show that this framework is capable of investigating the physical impacts of climate change and socio-economic stressors. The projected climate impacts vary dramatically across the globe in a set of scenarios with global mean warming ranging between 2.4°C and 3.6°C above pre-industrial by 2100. Unabated emissions lead to substantial sea level rise, acidification that impacts the base of the oceanic food chain, air pollution that exceeds health standards by tenfold, water stress that impacts an additional 1 to 2 billion people globally and agricultural productivity that decreases substantially in many parts of the world. We compare the outcomes from these forward-looking scenarios against the common goal described by the target-driven scenario of 2°C, which results in much smaller impacts. It is challenging for large internationally coordinated exercises to respond quickly to new policy targets. We propose that a paradigm shift toward a self-consistent modeling framework to assess climate impacts is needed to produce information relevant to evolving global climate policy and mitigation strategies in a timely way.

  17. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change

    PubMed Central

    Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of ‘wasted’ seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of “wasted” seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities. PMID:28727747

  18. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change.

    PubMed

    Ellis-Soto, Diego; Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, A.

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less

  1. Holocene geologic and climatic history around the Gulf of Alaska

    USGS Publications Warehouse

    Mann, D.H.; Crowell, A.L.; Hamilton, T.D.; Finney, B.P.

    1998-01-01

    Though not as dramatic as during the last Ice Age, pronounced climatic changes occurred in the northeastern Pacific over the last 10,000 years. Summers warmer and drier than today's accompanied a Hypsithermal interval between 9 and 6 ka. Subsequent Neoglaciation was marked by glacier expansion after 5-6 ka and the assembly of modern-type plant communities by 3-4 ka. The Neoglacial interval contained alternating cold and warm intervals, each lasting several hundred years to one millennium, and including both the Medieval Warm Period (ca. AD 900-1350) and the Little Ice Age (ca. AD 1350-1900). Salmon abundance fluctuated during the Little Ice Age in response to local glaciation and probably also to changes in the intensity of the Aleutian Low. Although poorly understood at present, climate fluctuations at all time scales were intimately connected with oceanographic changes in the North Pacific Ocean. The Gulf of Alaska region is tectonically highly active, resulting in a history of frequent geological catastrophes during the Holocene. Twelve to 14 major volcanic eruptions occurred since 12 ka. At intervals of 20-100 years, large earthquakes have raised and lowered sea level instantaneously by meters and generated destructive tsunamis. Sea level has often varied markedly between sites only 50-100 km apart due to tectonism and the isostatic effects of glacier fluctuations.

  2. Distinct germination response of endangered and common arable weeds to reduced water potential.

    PubMed

    Rühl, A T; Eckstein, R L; Otte, A; Donath, T W

    2016-01-01

    Arable weeds are one of the most endangered species groups in Europe. Modern agriculture and intensive land-use management are the main causes of their dramatic decline. However, besides the changes in land use, climate change may further challenge the adaptability of arable weeds. Therefore, we investigated the response pattern of arable weeds to different water potential and temperature regimes during the phase of germination. We expected that endangered arable weeds would be more sensitive to differences in water availability and temperature than common arable weeds. To this end, we set up a climate chamber experiment where we exposed seeds of five familial pairs of common and endangered arable weed species to different temperatures (5/15, 10/20 °C) and water potentials (0.0 to -1.2 MPa). The results revealed a significant relationship between the reaction of arable weed species to water availability and their Red List status. The effects of reduced water availability on total germination, mean germination time and synchrony were significantly stronger in endangered than in common arable weeds. Therefore, global climate change may present a further threat to the survival of endangered arable weed species. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction.

    PubMed

    Finnegan, Seth; Rasmussen, Christian M Ø; Harper, David A T

    2016-04-27

    The Late Ordovician mass extinction (LOME) coincided with dramatic climate changes, but there are numerous ways in which these changes could have driven marine extinctions. We use a palaeobiogeographic database of rhynchonelliform brachiopods to examine the selectivity of Late Ordovician-Early Silurian genus extinctions and evaluate which extinction drivers are best supported by the data. The first (latest Katian) pulse of the LOME preferentially affected genera restricted to deeper waters or to relatively narrow (less than 35°) palaeolatitudinal ranges. This pattern is only observed in the latest Katian, suggesting that it reflects drivers unique to this interval. Extinction of exclusively deeper-water genera implies that changes in water mass properties such as dissolved oxygen content played an important role. Extinction of genera with narrow latitudinal ranges suggests that interactions between shifting climate zones and palaeobiogeography may also have been important. We test the latter hypothesis by estimating whether each genus would have been able to track habitats within its thermal tolerance range during the greenhouse-icehouse climate transition. Models including these estimates are favoured over alternative models. We argue that the LOME, long regarded as non-selective, is highly selective along biogeographic and bathymetric axes that are not closely correlated with taxonomic identity. © 2016 The Author(s).

  4. Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction

    PubMed Central

    Finnegan, Seth; Rasmussen, Christian M. Ø.; Harper, David A. T.

    2016-01-01

    The Late Ordovician mass extinction (LOME) coincided with dramatic climate changes, but there are numerous ways in which these changes could have driven marine extinctions. We use a palaeobiogeographic database of rhynchonelliform brachiopods to examine the selectivity of Late Ordovician–Early Silurian genus extinctions and evaluate which extinction drivers are best supported by the data. The first (latest Katian) pulse of the LOME preferentially affected genera restricted to deeper waters or to relatively narrow (less than 35°) palaeolatitudinal ranges. This pattern is only observed in the latest Katian, suggesting that it reflects drivers unique to this interval. Extinction of exclusively deeper-water genera implies that changes in water mass properties such as dissolved oxygen content played an important role. Extinction of genera with narrow latitudinal ranges suggests that interactions between shifting climate zones and palaeobiogeography may also have been important. We test the latter hypothesis by estimating whether each genus would have been able to track habitats within its thermal tolerance range during the greenhouse–icehouse climate transition. Models including these estimates are favoured over alternative models. We argue that the LOME, long regarded as non-selective, is highly selective along biogeographic and bathymetric axes that are not closely correlated with taxonomic identity. PMID:27122567

  5. Storm-induced changes in coastal geomorphology control estuarine secondary productivity

    NASA Astrophysics Data System (ADS)

    Filgueira, Ramón; Guyondet, Thomas; Comeau, Luc A.; Grant, Jon

    2014-01-01

    Estuarine ecosystems are highly sensitive not only to projected effects of climate change such as ocean warming, acidification, and sea-level rise but also to the incidence of nor'easter storms and hurricanes. The effects of storms and hurricanes can be extreme, with immediate impact on coastal geomorphology and water circulation, which is integral to estuarine function and consequently to provision of ecosystem services. In this article, we present the results of a natural estuarine-scale experiment on the effects of changes in coastal geomorphology on hydrodynamics and aquaculture production. A bay in Prince Edward Island, Canada, was altered when a nor'easter storm eroded a second tidal inlet through a barrier island. Previous field and modeling studies allowed a comparison of prestorm and post-storm circulation, food limitation by cultured mussels, and aquaculture harvest. Dramatic increases in mussel production occurred in the year following the opening of the new inlet. Model studies showed that post-storm circulation reduced food limitation for cultured mussels, allowing greater growth. Climate change is expected to have severe effects on the delivery of marine ecosystem services to human populations by changing the underlying physical-biological coupling inherent to their functioning.

  6. Global climate change: the quantifiable sustainability challenge.

    PubMed

    Princiotta, Frank T; Loughlin, Daniel H

    2014-09-01

    Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the potential for catastrophic climate change will be a monumental challenge, requiring the global community to transform its energy system in an aggressive, coordinated, and timely manner. If this challenge is to be met, new technologies will have to be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear, and transportation technologies are particularly important. Even with an aggressive international mitigation effort, humanity will still need to adapt to significant climate change.

  7. Exposure of U.S. National Parks to land use and climate change 1900-2100.

    PubMed

    Hansen, Andrew J; Piekielek, Nathan; Davis, Cory; Haas, Jessica; Theobald, David M; Gross, John E; Monahan, William B; Olliff, Tom; Running, Steven W

    2014-04-01

    Many protected areas may not be adequately safeguarding biodiversity from human activities on surrounding lands and global change. The magnitude of such change agents and the sensitivity of ecosystems to these agents vary among protected areas. Thus, there is a need to assess vulnerability across networks of protected areas to determine those most at risk and to lay the basis for developing effective adaptation strategies. We conducted an assessment of exposure of U.S. National Parks to climate and land use change and consequences for vegetation communities. We first defined park protected-area centered ecosystems (PACEs) based on ecological principles. We then drew on existing land use, invasive species, climate, and biome data sets and models to quantify exposure of PACEs from 1900 through 2100. Most PACEs experienced substantial change over the 20th century (> 740% average increase in housing density since 1940, 13% of vascular plants are presently nonnative, temperature increase of 1 degree C/100 yr since 1895 in 80% of PACEs), and projections suggest that many of these trends will continue at similar or increasingly greater rates (255% increase in housing density by 2100, temperature increase of 2.5 degrees-4.5 degrees C/100 yr, 30% of PACE areas may lose their current biomes by 2030). In the coming century, housing densities are projected to increase in PACEs at about 82% of the rate of since 1940. The rate of climate warming in the coming century is projected to be 2.5-5.8 times higher than that measured in the past century. Underlying these averages, exposure of individual park PACEs to change agents differ in important ways. For example, parks such as Great Smoky Mountains exhibit high land use and low climate exposure, others such as Great Sand Dunes exhibit low land use and high climate exposure, and a few such as Point Reyes exhibit high exposure on both axes. The cumulative and synergistic effects of such changes in land use, invasives, and climate are expected to dramatically impact ecosystem function and biodiversity in national parks. These results are foundational to developing effective adaptation strategies and suggest policies to better safeguard parks under broad-scale environmental change.

  8. Water Futures for Cold Mountain Ecohydrology under Climate Change - Results from the North American Cordilleran Transect

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Fang, X.; Whitfield, P. H.; Marks, D. G.; Janowicz, J. R.

    2017-12-01

    A transect comprising three intensively researched mountain headwater catchments stretching from the northern US to northern Canada provides the basis to downscale climate models outputs for mountain hydrology and insight for an assessment of water futures under changing climate and vegetation using a physically based hydrological model. Reynolds Mountain East, Idaho; Marmot Creek, Alberta and Wolf Creek, Yukon are high mountain catchments dominated by forests and alpine shrub and grass vegetation with long-term snow, hydrometric and meteorological observations and extensive ecohydrological process studies. The physically based, modular, flexible and object-oriented Cold Regions Hydrological Modelling Platform (CRHM) was used to create custom spatially distributed hydrological models for these three catchments. Model parameterisations were based on knowledge of hydrological processes, basin physiography, soils and vegetation with minimal or no calibration from streamflow measurements. The models were run over multidecadal periods using high-elevation meteorological observations to assess the recent ecohydrological functioning of these catchments. The results showed unique features in each catchment, from snowdrift-fed aspen pocket forests in Reynolds Mountain East, to deep late-lying snowdrifts at treeline larch forests in Marmot Creek, and snow-trapping shrub tundra overlying discontinuous permafrost in Wolf Creek. The meteorological observations were then perturbed using the changes in monthly temperature and precipitation predicted by the NARCCAP modelling outputs for the mid-21st C. In all catchments there is a dramatic decline in snow redistribution and sublimation by wind and of snow interception by and sublimation from evergreen canopies that is associated with warmer winters. Reduced sublimation loss only partially compensated for greater rainfall fractions of precipitation. Under climate change, snowmelt was earlier and slower and at the lowest elevations and latitudes produced less proportion of runoff from snowmelt. Transient vegetation changes counteracted increasing streamflow yields from climate change partly due to increased snow retention by enhanced vegetation heights at high elevations and reduced vegetation canopy coverage at low elevations.

  9. Can Recent Global Changes Explain the Dramatic Range Contraction of an Endangered Semi-Aquatic Mammal Species in the French Pyrenees?

    PubMed

    Charbonnel, Anaïs; Laffaille, Pascal; Biffi, Marjorie; Blanc, Frédéric; Maire, Anthony; Némoz, Mélanie; Sanchez-Perez, José Miguel; Sauvage, Sabine; Buisson, Laëtitia

    2016-01-01

    Species distribution models (SDMs) are the main tool to predict global change impacts on species ranges. Climate change alone is frequently considered, but in freshwater ecosystems, hydrology is a key driver of the ecology of aquatic species. At large scale, hydrology is however rarely accounted for, owing to the lack of detailed stream flow data. In this study, we developed an integrated modelling approach to simulate stream flow using the hydrological Soil and Water Assessment Tool (SWAT). Simulated stream flow was subsequently included as an input variable in SDMs along with topographic, hydrographic, climatic and land-cover descriptors. SDMs were applied to two temporally-distinct surveys of the distribution of the endangered Pyrenean desman (Galemys pyrenaicus) in the French Pyrenees: a historical one conducted from 1985 to 1992 and a current one carried out between 2011 and 2013. The model calibrated on historical data was also forecasted onto the current period to assess its ability to describe the distributional change of the Pyrenean desman that has been modelled in the recent years. First, we found that hydrological and climatic variables were the ones influencing the most the distribution of this species for both periods, emphasizing the importance of taking into account hydrology when SDMs are applied to aquatic species. Secondly, our results highlighted a strong range contraction of the Pyrenean desman in the French Pyrenees over the last 25 years. Given that this range contraction was under-estimated when the historical model was forecasted onto current conditions, this finding suggests that other drivers may be interacting with climate, hydrology and land-use changes. Our results imply major concerns for the conservation of this endemic semi-aquatic mammal since changes in climate and hydrology are expected to become more intense in the future.

  10. Glaciological studies in the central Andes using AIRSAR/TOPSAR

    NASA Technical Reports Server (NTRS)

    Forster, Richard R.; Klein, Andrew G.; Blodgett, Troy A.; Isacks, Bryan L.

    1993-01-01

    The interaction of climate and topography in mountainous regions is dramatically expressed in the spatial distribution of glaciers and snowcover. Monitoring existing alpine glaciers and snow extent provides insight into the present mountain climate system and how it is changing, while mapping the positions of former glaciers as recorded in landforms such as cirques and moraines provide a record of the large past climate change associated with the last glacial maximum. The Andes are an ideal mountain range in which to study the response of snow and ice to past and present climate change. Their expansive latitudinal extent offers the opportunity to study glaciers in diverse climate settings from the tropical glaciers of Peru and Bolivia to the ice caps and tide-water glaciers of sub-polar Patagonia. SAR has advantages over traditional passive remote sensing instruments for monitoring present snow and ice and differentiating moraine relative ages. The cloud penetrating ability of SAR is indispensable for perennially cloud covered mountains. Snow and ice facies can be distinguished from SAR's response to surface roughness, liquid water content and grain size distribution. The combination of SAR with a coregestered high-resolution DEM (TOPSAR) provides a promising tool for measuring glacier change in three dimensions, thus allowing ice volume change to be measured directly. The change in moraine surface roughness over time enables SAR to differentiate older from younger moraines. Polarimetric SAR data have been used to distinguish snow and ice facies and relatively date moraines. However, both algorithms are still experimental and require ground truth verification. We plan to extend the SAR classification of snow and ice facies and moraine age beyond the ground truth sites to throughout the Cordillera Real to provide a regional view of past and present snow and ice. The high resolution DEM will enhance the SAR moraine dating technique by discriminating relative ages based on moraine slope degradation.

  11. Can Recent Global Changes Explain the Dramatic Range Contraction of an Endangered Semi-Aquatic Mammal Species in the French Pyrenees?

    PubMed Central

    Charbonnel, Anaïs; Laffaille, Pascal; Biffi, Marjorie; Blanc, Frédéric; Maire, Anthony; Némoz, Mélanie; Sanchez-Perez, José Miguel; Sauvage, Sabine

    2016-01-01

    Species distribution models (SDMs) are the main tool to predict global change impacts on species ranges. Climate change alone is frequently considered, but in freshwater ecosystems, hydrology is a key driver of the ecology of aquatic species. At large scale, hydrology is however rarely accounted for, owing to the lack of detailed stream flow data. In this study, we developed an integrated modelling approach to simulate stream flow using the hydrological Soil and Water Assessment Tool (SWAT). Simulated stream flow was subsequently included as an input variable in SDMs along with topographic, hydrographic, climatic and land-cover descriptors. SDMs were applied to two temporally-distinct surveys of the distribution of the endangered Pyrenean desman (Galemys pyrenaicus) in the French Pyrenees: a historical one conducted from 1985 to 1992 and a current one carried out between 2011 and 2013. The model calibrated on historical data was also forecasted onto the current period to assess its ability to describe the distributional change of the Pyrenean desman that has been modelled in the recent years. First, we found that hydrological and climatic variables were the ones influencing the most the distribution of this species for both periods, emphasizing the importance of taking into account hydrology when SDMs are applied to aquatic species. Secondly, our results highlighted a strong range contraction of the Pyrenean desman in the French Pyrenees over the last 25 years. Given that this range contraction was under-estimated when the historical model was forecasted onto current conditions, this finding suggests that other drivers may be interacting with climate, hydrology and land-use changes. Our results imply major concerns for the conservation of this endemic semi-aquatic mammal since changes in climate and hydrology are expected to become more intense in the future. PMID:27467269

  12. Projected distributions and diversity of flightless ground beetles within the Australian Wet Tropics and their environmental correlates.

    PubMed

    Staunton, Kyran M; Robson, Simon K A; Burwell, Chris J; Reside, April E; Williams, Stephen E

    2014-01-01

    With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region.

  13. Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates

    PubMed Central

    Staunton, Kyran M.; Robson, Simon K. A.; Burwell, Chris J.; Reside, April E.; Williams, Stephen E.

    2014-01-01

    With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group’s primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region. PMID:24586362

  14. Genomic basis for coral resilience to climate change.

    PubMed

    Barshis, Daniel J; Ladner, Jason T; Oliver, Thomas A; Seneca, François O; Traylor-Knowles, Nikki; Palumbi, Stephen R

    2013-01-22

    Recent advances in DNA-sequencing technologies now allow for in-depth characterization of the genomic stress responses of many organisms beyond model taxa. They are especially appropriate for organisms such as reef-building corals, for which dramatic declines in abundance are expected to worsen as anthropogenic climate change intensifies. Different corals differ substantially in physiological resilience to environmental stress, but the molecular mechanisms behind enhanced coral resilience remain unclear. Here, we compare transcriptome-wide gene expression (via RNA-Seq using Illumina sequencing) among conspecific thermally sensitive and thermally resilient corals to identify the molecular pathways contributing to coral resilience. Under simulated bleaching stress, sensitive and resilient corals change expression of hundreds of genes, but the resilient corals had higher expression under control conditions across 60 of these genes. These "frontloaded" transcripts were less up-regulated in resilient corals during heat stress and included thermal tolerance genes such as heat shock proteins and antioxidant enzymes, as well as a broad array of genes involved in apoptosis regulation, tumor suppression, innate immune response, and cell adhesion. We propose that constitutive frontloading enables an individual to maintain physiological resilience during frequently encountered environmental stress, an idea that has strong parallels in model systems such as yeast. Our study provides broad insight into the fundamental cellular processes responsible for enhanced stress tolerances that may enable some organisms to better persist into the future in an era of global climate change.

  15. Scaling-up permafrost thermal measurements in western Alaska using an ecotype approach

    DOE PAGES

    Cable, William L.; Romanovsky, Vladimir E.; Jorgenson, M. Torre

    2016-10-25

    Permafrost temperatures are increasing in Alaska due to climate change and in some cases permafrost is thawing and degrading. In areas where degradation has already occurred the effects can be dramatic, resulting in changing ecosystems, carbon release, and damage to infrastructure. However, in many areas we lack baseline data, such as subsurface temperatures, needed to assess future changes and potential risk areas. Besides climate, the physical properties of the vegetation cover and subsurface material have a major influence on the thermal state of permafrost. These properties are often directly related to the type of ecosystem overlaying permafrost. In this papermore » we demonstrate that classifying the landscape into general ecotypes is an effective way to scale up permafrost thermal data collected from field monitoring sites. Additionally, we find that within some ecotypes the absence of a moss layer is indicative of the absence of near-surface permafrost. As a proof of concept, we used the ground temperature data collected from the field sites to recode an ecotype land cover map into a map of mean annual ground temperature ranges at 1 m depth based on analysis and clustering of observed thermal regimes. In conclusion, the map should be useful for decision making with respect to land use and understanding how the landscape might change under future climate scenarios.« less

  16. Water isotopes and the Eocene. A tectonic sensitivity study

    NASA Astrophysics Data System (ADS)

    Legrande, A. N.; Roberts, C. D.; Tripati, A.; Schmidt, G. A.

    2009-04-01

    The early Eocene (54 Million years ago) is one of the warmest periods in the last 65 Million years. Its climate is postulated to have been the result of enhanced greenhouse gas concentration, with CO2 roughly 4 times pre-industrial and methane 7 times pre-industrial concentrations. One interesting feature of this period to emerge recently is the intermittent presence of fossilized Azolla, a type of freshwater fern, in the Arctic Ocean. Synchronous (within dating error) with this appearance were major changes in the restriction of the Arctic Ocean and the other global oceans. We investigate this time period using the Goddard Institute for Space Studies ModelE-R, a fully coupled atmosphere-ocean general circulation model that incorporates water isotopes throughout the hydrologic cycle, making it an ideal model to test hypotheses of past climate change and to compare to paleoclimate proxy data. We assess the impact of tectonic variability by using minimal and maximal levels of restriction for the Arctic Ocean seaways. We find that the modulation of connectivity of these basins dramatically alters global salinity distribution, leading to large changes in ocean circulation. Greater restriction of the Arctic Basin is associated with fresh and relatively warmer conditions. The same mechanisms responsible for this redistribution of salt also change the global distribution of water isotopes, and can alias (water isotope) proxy climate signals of warmth.

  17. Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery.

    PubMed

    Diaz-Pulido, Guillermo; McCook, Laurence J; Dove, Sophie; Berkelmans, Ray; Roff, George; Kline, David I; Weeks, Scarla; Evans, Richard D; Williamson, David H; Hoegh-Guldberg, Ove

    2009-01-01

    Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance. In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata), colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated. These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.

  18. The relative importance of body size and paleoclimatic change as explanatory variables influencing lineage diversification rate: an evolutionary analysis of bullhead catfishes (Siluriformes: Ictaluridae).

    PubMed

    Hardman, Michael; Hardman, Lotta M

    2008-02-01

    We applied Bayesian phylogenetics, divergence time estimation, diversification pattern analysis, and parsimony-based methods of ancestral state reconstruction to a combination of nucleotide sequences, maximum body sizes, fossils, and paleoclimate data to explore the influence of an extrinsic (climate change) and an intrinsic (maximum body size) factor on diversification rates in a North American clade of catfishes (Ictaluridae). We found diversification rate to have been significantly variable over time, with significant (or nearly significant) rate increases in the early history of Noturus. Though the latter coincided closely with a period of dramatic climate change at the Eocene-Oligocene boundary, we did not detect evidence for a general association between climate change and diversification rate during the entire history of Ictaluridae. Within Ictaluridae, small body size was found to be a near significant predictor of species richness. Morphological stasis of several species appears to be a consequence of a homoplastic increase in body size. We estimated the maximum standard length of the ictalurid ancestor to be approximately 50 cm, comparable to Eocene ictalurids (Astephus) and similar to modern sizes of Ameiurus and their Asian sister-taxon Cranoglanis. During the late Paleocene and early Eocene, the ictalurid ancestor diversified into the lineages represented by the modern epigean genera. The majority of modern species originated in the Oligocene and Miocene, most likely according to a peripheral isolates model of speciation. We discuss the difficulties of detecting macroevolutionary patterns within a lineage history and encourage the scrutiny of the terminal Eocene climatic event as a direct promoter of diversification.

  19. Bioarchaeology of adaptation to a marginal environment in bronze age Western China.

    PubMed

    Berger, Elizabeth; Wang, Hui

    2017-07-08

    This study examines human adaptation to the 4000 BP climate change event, which is said to have increased the marginality of Inner Asian environments. We propose to define "marginal" environments not in relation to a specific economic activity (e.g., agriculture), but in relation to whether humans living there are physiologically stressed. Three sites in the Hexi Corridor of Gansu were studied, one from the early and two from the late Bronze Age (N = 125). The study includes three indicators of physiological stress: linear enamel hypoplasias (LEH); tibial periosteal lesions; and fertility. The early and late Bronze Age groups were compared to examine whether human physiological stress increased. The percent of individuals with LEH declined dramatically, indicating fewer growth disruptions. Tibial periosteal reactions also changed, from mostly active to mostly healing at the time of death, indicating that frailty declined. Fertility, which is sensitive to changes in population health and resource availability, did not change significantly. Counter to the dominant narrative of environmental deterioration and subsistence system collapse, the Bronze Age residents of the Hexi Corridor show no skeletal evidence that they suffered from resource shortages or struggled to adapt in the fluctuating climate that pertained after the 4000 BP climate event. In fact, this study found that people suffered from less frailty and fewer growth disruptions after the unstable climate had persisted for some time. Therefore, in human biological terms, the Hexi Corridor did not become more marginal for human habitation during the Bronze Age. © 2017 Wiley Periodicals, Inc.

  20. Predicting Chronic Climate-Driven Disturbances and Their Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Nate G.; Michaletz, Sean T.; Bennett, Katrina E.

    Society increasingly demands the stable provision of ecosystem resources to support our population. Resource risks from climate-driven disturbances, including drought, heat, insect outbreaks, and wildfire, are growing as a chronic state of disequilibrium results from increasing temperatures and a greater frequency of extreme events. This confluence of increased demand and risk may soon reach critical thresholds. Here, we explain here why extreme chronic disequilibrium of ecosystem function is likely to increase dramatically across the globe, creating no-analog conditions that challenge adaptation. We also present novel mechanistic theory that combines models for disturbance mortality and metabolic scaling to link size-dependent plantmore » mortality to changes in ecosystem stocks and fluxes. Our efforts must anticipate and model chronic ecosystem disequilibrium to properly prepare for resilience planning.« less

  1. Predicting Chronic Climate-Driven Disturbances and Their Mitigation

    DOE PAGES

    McDowell, Nate G.; Michaletz, Sean T.; Bennett, Katrina E.; ...

    2017-11-13

    Society increasingly demands the stable provision of ecosystem resources to support our population. Resource risks from climate-driven disturbances, including drought, heat, insect outbreaks, and wildfire, are growing as a chronic state of disequilibrium results from increasing temperatures and a greater frequency of extreme events. This confluence of increased demand and risk may soon reach critical thresholds. Here, we explain here why extreme chronic disequilibrium of ecosystem function is likely to increase dramatically across the globe, creating no-analog conditions that challenge adaptation. We also present novel mechanistic theory that combines models for disturbance mortality and metabolic scaling to link size-dependent plantmore » mortality to changes in ecosystem stocks and fluxes. Our efforts must anticipate and model chronic ecosystem disequilibrium to properly prepare for resilience planning.« less

  2. Influence of Climate Warming on Arctic Mammals? New Insights from Ancient DNA Studies of the Collared Lemming Dicrostonyx torquatus

    PubMed Central

    Prost, Stefan; Smirnov, Nickolay; Fedorov, Vadim B.; Sommer, Robert S.; Stiller, Mathias; Nagel, Doris; Knapp, Michael; Hofreiter, Michael

    2010-01-01

    Background Global temperature increased by approximately half a degree (Celsius) within the last 150 years. Even this moderate warming had major impacts on Earth's ecological and biological systems, especially in the Arctic where the magnitude of abiotic changes even exceeds those in temperate and tropical biomes. Therefore, understanding the biological consequences of climate change on high latitudes is of critical importance for future conservation of the species living in this habitat. The past 25,000 years can be used as a model for such changes, as they were marked by prominent climatic changes that influenced geographical distribution, demographic history and pattern of genetic variation of many extant species. We sequenced ancient and modern DNA of the collared lemming (Dicrostonyx torquatus), which is a key species of the arctic biota, from a single site (Pymva Shor, Northern Pre Urals, Russia) to see if climate warming events after the Last Glacial Maximum had detectable effects on the genetic variation of this arctic rodent species, which is strongly associated with a cold and dry climate. Results Using three dimensional network reconstructions we found a dramatic decline in genetic diversity following the LGM. Model-based approaches such as Approximate Bayesian Computation and Markov Chain Monte Carlo based Bayesian inference show that there is evidence for a population decline in the collared lemming following the LGM, with the population size dropping to a minimum during the Greenland Interstadial 1 (Bølling/Allerød) warming phase at 14.5 kyrs BP. Conclusion Our results show that previous climate warming events had a strong influence on genetic diversity and population size of collared lemmings. Due to its already severely compromised genetic diversity a similar population reduction as a result of the predicted future climate change could completely abolish the remaining genetic diversity in this population. Local population extinctions of collared lemmings would have severe effects on the arctic ecosystem, as collared lemmings are a key species in the trophic interactions and ecosystem processes in the Arctic. PMID:20523724

  3. Using a zonal atmospheric model to test biogeophysical feedback-caused drought in the subtropical desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, G.L.; MacCracken, M.C.; Ellsaesser, H.W.

    1975-08-01

    Recent interest in the cause of the sub-Sahara drought has initiated several investigations implying possible anthropogenic origin through increased surface albedo due to reduced plant cover from overgrazing. Results of two integrations of the Zonal Atmospheric Model (ZAM2) are presented, differing only in the prescribed surface albedo for the subtropical land masses of the northern hemisphere. These studies were initiated to determine whether an albedo change alone can bring about such dramatic impacts on local precipitation rates as have been implied. Preliminary results indicate that an albedo change can affect the climate, not just at the latitude of change butmore » also at other latitudes due to various atmospheric feedback mechanisms. (auth)« less

  4. Changing patterns of clinical malaria since 1965 among a tea estate population located in the Kenyan highlands*

    PubMed Central

    Shanks, G. D.; Biomndo, K.; Hay, S. I.; Snow, R. W.

    2012-01-01

    The changing epidemiology of clinical malaria since 1965 among hospitalized patients was studied at a group of tea estates in the western highlands of Kenya. These data indicate recent dramatic increases in the numbers of malaria admissions (6·5 to 32·5% of all admissions), case fatality (1·3 to 6%) and patients originating from low-risk, highland areas (34 to 59%). Climate change, environmental management, population migration, and breakdown in health service provision seem unlikely explanations for this changing disease pattern. The coincident arrival of chloroquine resistance during the late 1980s in the sub-region suggests that drug resistance is a key factor in the current pattern and burden of malaria among this highland population. PMID:10974991

  5. Climate, Environment and Early Human Innovation: Stable Isotope and Faunal Proxy Evidence from Archaeological Sites (98-59ka) in the Southern Cape, South Africa.

    PubMed

    Roberts, Patrick; Henshilwood, Christopher S; van Niekerk, Karen L; Keene, Petro; Gledhill, Andrew; Reynard, Jerome; Badenhorst, Shaw; Lee-Thorp, Julia

    2016-01-01

    The Middle Stone Age (MSA) of southern Africa, and in particular its Still Bay and Howiesons Poort lithic traditions, represents a period of dramatic subsistence, cultural, and technological innovation by our species, Homo sapiens. Climate change has frequently been postulated as a primary driver of the appearance of these innovative behaviours, with researchers invoking either climate instability as a reason for the development of buffering mechanisms, or environmentally stable refugia as providing a stable setting for experimentation. Testing these alternative models has proved intractable, however, as existing regional palaeoclimatic and palaeoenvironmental records remain spatially, stratigraphically, and chronologically disconnected from the archaeological record. Here we report high-resolution records of environmental shifts based on stable carbon and oxygen isotopes in ostrich eggshell (OES) fragments, faunal remains, and shellfish assemblages excavated from two key MSA archaeological sequences, Blombos Cave and Klipdrift Shelter. We compare these records with archaeological material remains in the same strata. The results from both sites, spanning the periods 98-73 ka and 72-59 ka, respectively, show significant changes in vegetation, aridity, rainfall seasonality, and sea temperature in the vicinity of the sites during periods of human occupation. While these changes clearly influenced human subsistence strategies, we find that the remarkable cultural and technological innovations seen in the sites cannot be linked directly to climate shifts. Our results demonstrate the need for scale-appropriate, on-site testing of behavioural-environmental links, rather than broader, regional comparisons.

  6. How will melting of ice affect volcanic hazards in the twenty-first century?

    PubMed

    Tuffen, Hugh

    2010-05-28

    Glaciers and ice sheets on many active volcanoes are rapidly receding. There is compelling evidence that melting of ice during the last deglaciation triggered a dramatic acceleration in volcanic activity. Will melting of ice this century, which is associated with climate change, similarly affect volcanic activity and associated hazards? This paper provides a critical overview of the evidence that current melting of ice will increase the frequency or size of hazardous volcanic eruptions. Many aspects of the link between ice recession and accelerated volcanic activity remain poorly understood. Key questions include how rapidly volcanic systems react to melting of ice, whether volcanoes are sensitive to small changes in ice thickness and how recession of ice affects the generation, storage and eruption of magma at stratovolcanoes. A greater frequency of collapse events at glaciated stratovolcanoes can be expected in the near future, and there is strong potential for positive feedbacks between melting of ice and enhanced volcanism. Nonetheless, much further research is required to remove current uncertainties about the implications of climate change for volcanic hazards in the twenty-first century.

  7. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts.

    PubMed

    Vergés, Adriana; Steinberg, Peter D; Hay, Mark E; Poore, Alistair G B; Campbell, Alexandra H; Ballesteros, Enric; Heck, Kenneth L; Booth, David J; Coleman, Melinda A; Feary, David A; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M; Mizerek, Toni; Mumby, Peter J; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K

    2014-08-22

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Phytoplankton Biogeography and Community Stability in the Ocean

    PubMed Central

    Cermeño, Pedro; de Vargas, Colomban; Abrantes, Fátima; Falkowski, Paul G.

    2010-01-01

    Background Despite enormous environmental variability linked to glacial/interglacial climates of the Pleistocene, we have recently shown that marine diatom communities evolved slowly through gradual changes over the past 1.5 million years. Identifying the causes of this ecological stability is key for understanding the mechanisms that control the tempo and mode of community evolution. Methodology/Principal Findings If community assembly were controlled by local environmental selection rather than dispersal, environmental perturbations would change community composition, yet, this could revert once environmental conditions returned to previous-like states. We analyzed phytoplankton community composition across >104 km latitudinal transects in the Atlantic Ocean and show that local environmental selection of broadly dispersed species primarily controls community structure. Consistent with these results, three independent fossil records of marine diatoms over the past 250,000 years show cycles of community departure and recovery tightly synchronized with the temporal variations in Earth's climate. Conclusions/Significance Changes in habitat conditions dramatically alter community structure, yet, we conclude that the high dispersal of marine planktonic microbes erases the legacy of past environmental conditions, thereby decreasing the tempo of community evolution. PMID:20368810

  9. The economics (or lack thereof) of aerosol geoengineering

    NASA Astrophysics Data System (ADS)

    Goes, M.; Keller, K.; Tuana, N.

    2009-04-01

    Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for the deployment of a different approach: to geoengineer climate by injecting aerosol precursors into the stratosphere. Published economic studies typically suggest that substituting aerosol geoengineering for abatement of carbon dioxide emissions results in large net monetary benefits. However, these studies neglect the risks of aerosol geoengineering due to (i) the potential for future geoengineering failures and (ii) the negative impacts associated with the aerosol forcing. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcing. The simplicity of the model provides the advantages of parsimony and transparency, but it also imposes severe caveats on the interpretation of the results. For example, the analysis is based on a globally aggregated model and is hence silent on the question of intragenerational distribution of costs and benefits. In addition, the analysis neglects the effects of endogenous learning about the climate system. We show that the risks associated with a future geoengineering failure and negative impacts of aerosol forcings can cause geoenginering strategies to fail an economic cost-benefit test. One key to this finding is that a geoengineering failure would lead to dramatic and abrupt climatic changes. The monetary damages due to this failure can dominate the cost-benefit analysis because the monetary damages of climate change are expected to increase with the rate of change. Substituting aerosol geoengineering for greenhouse gas emission abatement might fail not only an economic cost-benefit test but also an ethical test of distributional justice. Substituting aerosol geoengineering for greenhouse gas emissions abatements constitutes a conscious risk transfer to future generations. Intergenerational justice demands distributional justice, namely that present generations may not create benefits for themselves in exchange for burdens on future generations. We use the economic model to quantify this risk transfer to better inform the judgment of whether substituting aerosol geoengineering for carbon dioxide emission abatement fails this ethical test.

  10. Global Warming in Geologic Time

    ScienceCinema

    Archer, David

    2018-01-01

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  11. Tracking Climate Change through the Spatiotemporal Dynamics of the Teletherms, the Statistically Hottest and Coldest Days of the Year

    DOE PAGES

    Dodds, Peter Sheridan; Mitchell, Lewis; Reagan, Andrew J.; ...

    2016-05-11

    Instabilities and long term shifts in seasons, whether induced by natural drivers or human activities, pose great disruptive threats to ecological, agricultural, and social systems. Here, we propose, measure, and explore two fundamental markers of location-sensitive seasonal variations: the Summer and Winter Teletherms—the on-average annual dates of the hottest and coldest days of the year. We analyze daily temperature extremes recorded at 1218 stations across the contiguous United States from 1853–2012, and observe large regional variation with the Summer Teletherm falling up to 90 days after the Summer Solstice, and 50 days for the Winter Teletherm after the Winter Solstice.more » We show that Teletherm temporal dynamics are substantive with clear and in some cases dramatic shifts reflective of system bifurcations. We also compare recorded daily temperature extremes with output from two regional climate models finding considerable though relatively unbiased error. In conclusion, our work demonstrates that Teletherms are an intuitive, powerful, and statistically sound measure of local climate change, and that they pose detailed, stringent challenges for future theoretical and computational models.« less

  12. Sunspots, Space Weather and Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Four hundred years ago this year the telescope was first used for astronomical observations. Within a year, Galileo in Italy and Harriot in England reported seeing spots on the surface of the Sun. Yet, it took over 230 years of observations before a Swiss amateur astronomer noticed that the sunspots increased and decreased in number over a period of about 11 years. Within 15 years of this discovery of the sunspot cycle astronomers made the first observations of a flare on the surface of the Sun. In the 150 years since that discovery we have learned much about sunspots, the sunspot cycle, and the Sun s explosive events - solar flares, prominence eruptions and coronal mass ejections that usually accompany the sunspots. These events produce what is called Space Weather. The conditions in space are dramatically affected by these events. Space Weather can damage our satellites, harm our astronauts, and affect our lives here on the surface of planet Earth. Long term changes in the sunspot cycle have been linked to changes in our climate as well. In this public lecture I will give an introduction to sunspots, the sunspot cycle, space weather, and the possible impact of solar variability on our climate.

  13. Global Albedo Variations on Mars from Recent MRO/MARCI and Other Space-Based Observations

    NASA Astrophysics Data System (ADS)

    Bell, J. F., III; Wellington, D. F.

    2017-12-01

    Dramatic changes in Mars surface albedo have been quantified by telescopic, orbital, and surface-based observations over the last 40 years. These changes provide important inputs for global and mesoscale climate models, enabling characterization of seasonal and secular variations in the distribution of mobile surface materials (dust, sand) in the planet's current climate regime. Much of the modern record of dust storms and albedo changes comes from synoptic-scale global imaging from the Viking Orbiter, Mars Global Surveyor (MGS), Hubble Space Telescope (HST), and Mars Reconnaissance Orbiter (MRO) missions, as well as local-scale observations from long-lived surface platforms like the Spirit and Opportunity rovers. Here we focus on the substantial time history of global-scale images acquired from the MRO Mars Color Imager (MARCI). MARCI is a wide-angle multispectral imager that acquires daily coverage of most of the surface at up to 1 km/pixel. MARCI has been in orbit since 2006, providing six Mars years of continuous surface and atmospheric observations, and building on the nearly five previous Mars years of global-scale imaging from the MGS Mars Orbiter Camera Wide Angle (MOC/WA) imager, which operated from 1997 to 2006. While many of the most significant MARCI-observed changes in the surface albedo are the result of large dust storms, other regions experience seasonal darkening events that repeat with different degrees of annual regularity. Some of these are associated with local dust storms, while for others, frequent surface changes take place with no associated evidence for dust storms, suggesting action by seasonally-variable winds and/or small-scale storms/dust devils too small to resolve. Discrete areas of dramatic surface changes across widely separated regions of Tharsis and in portions of Solis Lacus and Syrtis Major are among the regions where surface changes have been observed without a direct association to specific detectable dust storm events. Deposition following the annual southern summer dusty season plays a significant role in maintaining the cyclic nature of these changes. These and other historical observations also show that major regional or global-scale dust storms produce unique changes that may require several Mars years to reverse.

  14. Phenological Changes in the Southern Hemisphere

    PubMed Central

    Chambers, Lynda E.; Altwegg, Res; Barbraud, Christophe; Barnard, Phoebe; Beaumont, Linda J.; Crawford, Robert J. M.; Durant, Joel M.; Hughes, Lesley; Keatley, Marie R.; Low, Matt; Morellato, Patricia C.; Poloczanska, Elvira S.; Ruoppolo, Valeria; Vanstreels, Ralph E. T.; Woehler, Eric J.; Wolfaardt, Anton C.

    2013-01-01

    Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically supported. PMID:24098389

  15. Robust Emergent Climate Phenomena Associated with the High-Sensitivity Tail

    NASA Astrophysics Data System (ADS)

    Boslough, M.; Levy, M.; Backus, G.

    2010-12-01

    Because the potential effects of climate change are more severe than had previously been thought, increasing focus on uncertainty quantification is required for risk assessment needed by policy makers. Current scientific efforts focus almost exclusively on establishing best estimates of future climate change. However, the greatest consequences occur in the extreme tail of the probability density functions for climate sensitivity (the “high-sensitivity tail”). To this end, we are exploring the impacts of newly postulated, highly uncertain, but high-consequence physical mechanisms to better establish the climate change risk. We define consequence in terms of dramatic change in physical conditions and in the resulting socioeconomic impact (hence, risk) on populations. Although we are developing generally applicable risk assessment methods, we have focused our initial efforts on uncertainty and risk analyses for the Arctic region. Instead of focusing on best estimates, requiring many years of model parameterization development and evaluation, we are focusing on robust emergent phenomena (those that are not necessarily intuitive and are insensitive to assumptions, subgrid-parameterizations, and tunings). For many physical systems, under-resolved models fail to generate such phenomena, which only develop when model resolution is sufficiently high. Our ultimate goal is to discover the patterns of emergent climate precursors (those that cannot be predicted with lower-resolution models) that can be used as a "sensitivity fingerprint" and make recommendations for a climate early warning system that would use satellites and sensor arrays to look for the various predicted high-sensitivity signatures. Our initial simulations are focused on the Arctic region, where underpredicted phenomena such as rapid loss of sea ice are already emerging, and because of major geopolitical implications associated with increasing Arctic accessibility to natural resources, shipping routes, and strategic locations. We anticipate that regional climate will be strongly influenced by feedbacks associated with a seasonally ice-free Arctic, but with unknown emergent phenomena. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  16. Remote sensing aides studies of climate and wildlife in the Arctic-on land, at sea, and in the air (Invited)

    NASA Astrophysics Data System (ADS)

    Douglas, D. C.; Durner, G. M.; Gill, R. E.; Griffith, B.; Schmutz, J. A.

    2013-12-01

    Every day a variety of remote sensing technologies collects large volumes of data that are supporting new analyses and new interpretations about how weather and climate influence the status and distribution of wildlife populations worldwide. Understanding how climate presently affects wildlife is crucial for projecting how climate change could affect wildlife in the future. This talk highlights climate-related wildlife studies by the US Geological Survey in the Arctic. The Arctic is experiencing some of the most pronounced climate changes on earth, raising concerns for species that have evolved seasonal migration strategies tuned to habitat availability and quality. On land, large herbivores such as caribou select concentrated calving areas with high abundance of rapidly growing vegetation and calf survival increases with earlier green-up and with the quantity of food available to cows at peak lactation. Geese time their migrations and reproductive efforts to coincide with optimal plant phenology and peak nutrient availability and departures from this synchrony can influence the survival of goslings. At sea, the habitats of polar bears and other sea-ice-dependent species have dramatically changed over just the past two decades. The ice pack is comprised of younger ice that melts much more extensively during summer-a trend projected to continue by all general circulation models under all but the most aggressive greenhouse gas mitigation scenarios. Studies show that by mid-century optimal polar bear habitats will be so reduced that the species may become extirpated from some regions of the Arctic. In the air, a variety of shorebird species make non-stop endurance flights between northern and southern hemispheres. The bar-tailed godwit undertakes a trans-Pacific flight between Alaska and Australasia that lasts more than seven days and spans more than 10,000 km. Studies show that godwits time their flights to coincide with favorable wind conditions, but stochastic weather events en route can impose energetic costs that affect reproduction and possibly survival. As more is learned about how climate and climate change affect species and ecosystems, better adaptive management decisions can be made. Remote sensing will continue to play an essential role.

  17. Regional Climate Implications of Large-scale Cultivation of Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Rowe, C. M.; Oglesby, R. J.; Hays, C. J.; van Etten, A. R.

    2008-12-01

    Conversion from corn-based ethanol to cellulosic ethanol has the potential to dramatically alter the production of biofuels in the United States and could result in large-scale changes in the agricultural landscape of vast areas of the country. Regions currently dominated by corn production could see widespread planting of switchgrass and other fast-growing, water-efficient sources of cellulose biomass. An often overlooked side effect of these land-cover changes could be a significant alteration of the energy fluxes between the land surface and the atmosphere with profound local, regional, and continental impacts on the climate system. Changes in the surface energy balance result primarily from differences in the seasonality of transpiration from corn versus switchgrass and could be enhanced as a result of a reduced need for irrigation of switchgrass in areas where corn can be produced only under irrigation. Preliminary modeling results using a simple "bucket" land surface model coupled to the WRF mesoscale model have demonstrated increases in summertime average daily maximum temperature of up to 4° C, smaller increases of up to 2° C in nighttime minimum temperatures and reductions in precipitation by up to 25% when corn was changed to switchgrass over the central United States. Improved parameterization of biofuel crops in more sophisticated land surface models will allow us to refine these preliminary estimates and assess the impacts of large-scale conversion to cellulosic biofuel crops, relative to greenhouse gas induced regional climate change.

  18. The Potential Connectivity of Waterhole Networks and the Effectiveness of a Protected Area under Various Drought Scenarios

    PubMed Central

    O’Farrill, Georgina; Gauthier Schampaert, Kim; Rayfield, Bronwyn; Bodin, Örjan; Calmé, Sophie; Sengupta, Raja; Gonzalez, Andrew

    2014-01-01

    Landscape connectivity is considered a priority for ecosystem conservation because it may mitigate the synergistic effects of climate change and habitat loss. Climate change predictions suggest changes in precipitation regimes, which will affect the availability of water resources, with potential consequences for landscape connectivity. The Greater Calakmul Region of the Yucatan Peninsula (Mexico) has experienced a 16% decrease in precipitation over the last 50 years, which we hypothesise has affected water resource connectivity. We used a network model of connectivity, for three large endangered species (Baird’s tapir, white-lipped peccary and jaguar), to assess the effect of drought on waterhole availability and connectivity in a forested landscape inside and adjacent to the Calakmul Biosphere Reserve. We used reported travel distances and home ranges for our species to establish movement distances in our model. Specifically, we compared the effects of 10 drought scenarios on the number of waterholes (nodes) and the subsequent changes in network structure and node importance. Our analysis revealed that drought dramatically influenced spatial structure and potential connectivity of the network. Our results show that waterhole connectivity and suitable habitat (area surrounding waterholes) is lost faster inside than outside the reserve for all three study species, an outcome that may drive them outside the reserve boundaries. These results emphasize the need to assess how the variability in the availability of seasonal water resource may affect the viability of animal populations under current climate change inside and outside protected areas. PMID:24830392

  19. The potential connectivity of waterhole networks and the effectiveness of a protected area under various drought scenarios.

    PubMed

    O'Farrill, Georgina; Gauthier Schampaert, Kim; Rayfield, Bronwyn; Bodin, Örjan; Calmé, Sophie; Sengupta, Raja; Gonzalez, Andrew

    2014-01-01

    Landscape connectivity is considered a priority for ecosystem conservation because it may mitigate the synergistic effects of climate change and habitat loss. Climate change predictions suggest changes in precipitation regimes, which will affect the availability of water resources, with potential consequences for landscape connectivity. The Greater Calakmul Region of the Yucatan Peninsula (Mexico) has experienced a 16% decrease in precipitation over the last 50 years, which we hypothesise has affected water resource connectivity. We used a network model of connectivity, for three large endangered species (Baird's tapir, white-lipped peccary and jaguar), to assess the effect of drought on waterhole availability and connectivity in a forested landscape inside and adjacent to the Calakmul Biosphere Reserve. We used reported travel distances and home ranges for our species to establish movement distances in our model. Specifically, we compared the effects of 10 drought scenarios on the number of waterholes (nodes) and the subsequent changes in network structure and node importance. Our analysis revealed that drought dramatically influenced spatial structure and potential connectivity of the network. Our results show that waterhole connectivity and suitable habitat (area surrounding waterholes) is lost faster inside than outside the reserve for all three study species, an outcome that may drive them outside the reserve boundaries. These results emphasize the need to assess how the variability in the availability of seasonal water resource may affect the viability of animal populations under current climate change inside and outside protected areas.

  20. Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous

    NASA Astrophysics Data System (ADS)

    Brugger, Julia; Feulner, Georg; Petri, Stefan

    2017-01-01

    Sixty-six million years ago, the end-Cretaceous mass extinction ended the reign of the dinosaurs. Flood basalt eruptions and an asteroid impact are widely discussed causes, yet their contributions remain debated. Modeling the environmental changes after the Chicxulub impact can shed light on this question. Existing studies, however, focused on the effect of dust or used one-dimensional, noncoupled atmosphere models. Here we explore the longer-lasting cooling due to sulfate aerosols using a coupled climate model. Depending on aerosol stratospheric residence time, global annual mean surface air temperature decreased by at least 26°C, with 3 to 16 years subfreezing temperatures and a recovery time larger than 30 years. The surface cooling triggered vigorous ocean mixing which could have resulted in a plankton bloom due to upwelling of nutrients. These dramatic environmental changes suggest a pivotal role of the impact in the end-Cretaceous extinction.

  1. Complex response of a midcontinent north America drainage system to late Wisconsinan sedimentation

    USGS Publications Warehouse

    Bettis, E. Arthur; Autin, W.J.

    1997-01-01

    The geomorphic evolution of Mud Creek basin in eastern Iowa, U.S.A. serves to illustrate how geomorphic influences such as sediment supply, valley gradient, climate, and vegetation are recorded in the alluvial stratigraphic record. Sediment supply to the fluvial system increased significantly during the late Wisconsinan through a combination of periglacial erosion and loess accumulation. Subsequent evolution of the Holocene alluvial stratigraphic record reflects long-term routing of the late Wisconsinan sediment through the drainage basin in a series of cut-and-fill cycles whose timing was influenced by hydrologic response to change in climate and vegetation. When viewed in a regional context, the alluvial stratigraphic record appears to reflect a long-term complex response of the fluvial system to increased sediment supply during the late Wisconsinan. Hydrologic and sediment-supply changes accompanying the spread of Euroamerican agriculture to the basin in the 180Os dramatically upset trends in sedimentation and channel behavior established during the Holocene. Copyright ?? 1997, SEPM (Society for Sedimentary Geology).

  2. The Challenge of Communicating Flood Risk

    NASA Astrophysics Data System (ADS)

    Matthew, R.

    2015-12-01

    Worldwide, natural hazard risks, and especially flood risk, are increasing dramatically as populations grow, infrastructure deteriorates, and climate change worsens. Street level modeling technologies may help decision makers and the general public understand risk and explore options for building resilience. But there are challenges in linking powerful visualization technologies to people in ways that they trust, support and can use. Technology adoption depends on a host of social and psychological factors—for example, how have past experiences shaped perceptions? Where do people currently turn for information? Who do they trust? Who do they see as responsible for implementing response and resilience measures? What do people think about climate change and sea level rise? What are the values that will motivate them to act? The answers vary from place to place and group to group. Visualization technologies that are responsive to this type of information may be most effective. Through household level survey data collected at sites in California and Mexico, we identify factors that may help in designing effective flood risk communication tools.

  3. Past epochs of significantly higher pressure atmospheres on Pluto

    NASA Astrophysics Data System (ADS)

    Stern, S. A.; Binzel, R. P.; Earle, A. M.; Singer, K. N.; Young, L. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; New Horizons Geology; Geophysics; Atmospheres Teams

    2017-05-01

    Pluto is known to have undergone thousands of cycles of obliquity change and polar precession. These variations have a large and corresponding impact on the total average solar insolation reaching various places on Pluto's surface as a function of time. Such changes could produce dramatic increases in surface pressure and may explain certain features observed by New Horizons on Pluto's surface, including some that indicate the possibility of surface paleo-liquids. This paper is the first to discuss multiple lines of geomorphological evidence consistent with higher pressure epochs in Pluto's geologic past, and it also the first to provide a mechanism for potentially producing the requisite high pressure conditions needed for an environment that could support liquids on Pluto. The presence of such liquids and such conditions, if borne out by future work, would fundamentally affect our view of Pluto's past climate, volatile transport, and geological evolution. This paper motivates future, more detailed climate modeling and geologic interpretation efforts in this area.

  4. Historical and modern disturbance regimes, stand structures, and landscape dynamics in piñon-juniper vegetation of the western United States

    USGS Publications Warehouse

    Romme, William H.; Allen, Craig D.; Bailey, John D.; Baker, William L.; Bestelmeyer, Brandon T.; Brown, Peter M.; Eisenhart, Karen S.; Floyd, M. Lisa; Huffman, David W.; Jacobs, Brian F.; Miller, Richard F.; Muldavin, Esteban H.; Swetnam, Thomas W.; Tausch, Robin J.; Weisberg, Peter J.

    2009-01-01

    Piñon–juniper is a major vegetation type in western North America. Effective management of these ecosystems has been hindered by inadequate understanding of 1) the variability in ecosystem structure and ecological processes that exists among the diverse combinations of piñons, junipers, and associated shrubs, herbs, and soil organisms; 2) the prehistoric and historic disturbance regimes; and 3) the mechanisms driving changes in vegetation structure and composition during the past 150 yr. This article summarizes what we know (and don't know) about three fundamentally different kinds of piñon–juniper vegetation. Persistent woodlands are found where local soils, climate, and disturbance regimes are favorable for piñon, juniper, or a mix of both; fires have always been infrequent in these woodlands. Piñon–juniper savannas are found where local soils and climate are suitable for both trees and grasses; it is logical that low-severity fires may have maintained low tree densities before disruption of fire regimes following Euro-American settlement, but information is insufficient to support any confident statements about historical disturbance regimes in these savannas. Wooded shrublands are found where local soils and climate support a shrub community, but trees can increase during moist climatic conditions and periods without disturbance and decrease during droughts and following disturbance. Dramatic increases in tree density have occurred in portions of all three types of piñon–juniper vegetation, although equally dramatic mortality events have also occurred in some areas. The potential mechanisms driving increases in tree density—such as recovery from past disturbance, natural range expansion, livestock grazing, fire exclusion, climatic variability, and CO2 fertilization—generally have not received enough empirical or experimental investigation to predict which is most important in any given location. The intent of this synthesis is 1) to provide a source of information for managers and policy makers; and 2) to stimulate researchers to address the most important unanswered questions.

  5. To what extent has climate change contributed to the recent epidemiology of tick-borne diseases?

    PubMed

    Randolph, Sarah E

    2010-02-10

    There is no doubt that all vector-borne diseases are very sensitive to climatic conditions. Many such diseases have shown marked increases in both distribution and incidence during the past few decades, just as human-induced climate change is thought to have exceeded random fluctuations. This coincidence has led to the general perception that climate change has driven disease emergence, but climate change is the inevitable backdrop for all recent events, without implying causality. Coincidence and causality can be disentangled using tick-borne encephalitis (TBE) as a test case, based on the excellent long-term data for this medically significant European disease system. Detailed analysis of climate records since 1970 has revealed abrupt temperature increases just prior to the dramatic upsurge in TBE incidence in many parts of central and eastern Europe. Furthermore, the seasonal patterns of this temperature change are such as might have favoured the transmission of TBE virus between co-feeding ticks. Nevertheless, the pattern of climate change is too uniform to explain the marked heterogeneity in the timing and degree of TBE upsurge, for example in different counties within each of the Baltic countries. Recent decreases as well as increases in TBE incidence must also be taken into account. Instead of a single cause, a network of interacting factors, acting synergistically but with differential force in space and time, would generate this epidemiological heterogeneity. From analysis of past and present events, it appears that human behavioural factors have played a more significant role than purely biological enzootic factors, although there is an explicit causal linkage from one to the other. This includes a range of abiotic and biotic environmental factors, together with human behaviour determined by socio-economic conditions. Many of the abrupt changes followed from the shift from planned to market economies with the fall of Soviet rule. Comparisons between eight countries have indeed revealed a remarkable correlation between poverty indicators and the relative degree of upsurge in TBE from 1993. Against this background of longer-term shifts in TBE incidence, sudden spikes in incidence appear to be due to exceptional weather conditions affecting people's behaviour, which have a differential impact depending on socio-economic factors. This new perspective may also help explain the epidemiology of Crimean-Congo haemorrhagic fever around the eastern Mediterranean region, including the current exceptional epidemic in Turkey.

  6. Global climate change and intensification of coastal ocean upwelling.

    PubMed

    Bakun, A

    1990-01-12

    A mechanism exists whereby global greenhouse warning could, by intensifying the alongshore wind stress on the ocean surface, lead to acceleration of coastal upwelling. Evidence from several different regions suggests that the major coastal upwelling systems of the world have been growing in upwelling intensity as greenhouse gases have accumulated in the earth's atmosphere. Thus the cool foggy summer conditions that typify the coastlands of northern California and other similar upwelling regions might, under global warming, become even more pronounced. Effects of enhanced upwelling on the marine ecosystem are uncertain but potentially dramatic.

  7. State-dependent climate sensitivity in past warm climates and its implications for future climate projections

    PubMed Central

    Caballero, Rodrigo; Huber, Matthew

    2013-01-01

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow “Earth system” feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or “Charney” climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature. PMID:23918397

  8. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake

    PubMed Central

    Mei, Xuefei; Dai, Zhijun; Du, Jinzhou; Chen, Jiyu

    2015-01-01

    Despite comprising a small portion of the earth’s surface, lakes are vitally important for global ecosystem cycling. However, lake systems worldwide are extremely fragile, and many are shrinking due to changing climate and anthropogenic activities. Here, we show that Poyang Lake, the largest freshwater lake in China, has experienced a dramatic and prolonged recession, which began in late September of 2003. We further demonstrate that abnormally low levels appear during October, 28 days ahead of the normal initiation of the dry season, which greatly imperiled the lake’s wetland areas and function as an ecosystem for wintering waterbirds. An increase in the river-lake water level gradient induced by the Three Gorges Dam (TGD) altered the lake balance by inducing greater discharge into the Changjiang River, which is probably responsible for the current lake shrinkage. Occasional episodes of arid climate, as well as local sand mining, will aggravate the lake recession crisis. Although impacts of TGD on the Poyang Lake recession can be overruled by episodic extreme droughts, we argue that the average contributions of precipitation variation, human activities in the Poyang Lake catchment and TGD regulation to the Poyang Lake recession can be quantified as 39.1%, 4.6% and 56.3%, respectively. PMID:26657816

  9. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake

    NASA Astrophysics Data System (ADS)

    Mei, Xuefei; Dai, Zhijun; Du, Jinzhou; Chen, Jiyu

    2015-12-01

    Despite comprising a small portion of the earth’s surface, lakes are vitally important for global ecosystem cycling. However, lake systems worldwide are extremely fragile, and many are shrinking due to changing climate and anthropogenic activities. Here, we show that Poyang Lake, the largest freshwater lake in China, has experienced a dramatic and prolonged recession, which began in late September of 2003. We further demonstrate that abnormally low levels appear during October, 28 days ahead of the normal initiation of the dry season, which greatly imperiled the lake’s wetland areas and function as an ecosystem for wintering waterbirds. An increase in the river-lake water level gradient induced by the Three Gorges Dam (TGD) altered the lake balance by inducing greater discharge into the Changjiang River, which is probably responsible for the current lake shrinkage. Occasional episodes of arid climate, as well as local sand mining, will aggravate the lake recession crisis. Although impacts of TGD on the Poyang Lake recession can be overruled by episodic extreme droughts, we argue that the average contributions of precipitation variation, human activities in the Poyang Lake catchment and TGD regulation to the Poyang Lake recession can be quantified as 39.1%, 4.6% and 56.3%, respectively.

  10. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Denis, E. H.; Pedentchouk, N.; Schouten, S.; Pagani, M.; Freeman, K. H.

    2016-12-01

    Fire, an important component of ecosystems at a range of spatial and temporal scales, affects vegetation distribution, the carbon cycle, and climate. In turn, climate influences fuel composition (e.g., amount and type of vegetation), fuel availability (e.g., vegetation that can burn based on precipitation and temperature), and ignition sources (e.g., lightning). Climate studies predict increased wildfire activity in future decades, but mechanisms that control the relationship between climate and fire are complex. Reconstructing environmental conditions during past warming events (e.g., the Paleocene-Eocene Thermal Maximum (PETM)) will help elucidate climate-vegetation-fire relationships that are expressed over long durations (1,000 - 10,000 yrs). The abrupt global warming during the PETM dramatically altered vegetation and hydrologic patterns, and, possibly, fire occurrence. To investigate coincident changes in climate, vegetation, and fire occurrence, we studied biomarkers, including polycyclic aromatic hydrocarbons (PAHs), terpenoids, and alkanes from the PETM interval at IODP site 302 (the Lomonosov Ridge) in the Arctic Ocean. Both pollen and biomarker records indicate angiosperms abundance increased during the PETM relative to gymnosperms, reflecting a significant ecological shift to angiosperm-dominated vegetation. PAH abundances increased relative to plant biomarkers throughout the PETM, which suggests PAH production increased relative to plant productivity. Increased PAH production associated with the angiosperm vegetation shift indicates a greater prevalence of more fire-prone species. A time lag between increased moisture transport (based on published δD of n-alkanes data) to the Arctic and increased angiosperms and PAH production suggests wetter conditions, followed by increased air temperatures, favored angiosperms and combined to enhance fire occurrence.

  11. Morphological Adaptations for Digging and Climate-Impacted Soil Properties Define Pocket Gopher (Thomomys spp.) Distributions

    PubMed Central

    Marcy, Ariel E.; Fendorf, Scott; Patton, James L.; Hadly, Elizabeth A.

    2013-01-01

    Species ranges are mediated by physiology, environmental factors, and competition with other organisms. The allopatric distribution of five species of northern Californian pocket gophers (Thomomys spp.) is hypothesized to result from competitive exclusion. The five species in this environmentally heterogeneous region separate into two subgenera, Thomomys or Megascapheus, which have divergent digging styles. While all pocket gophers dig with their claws, the tooth-digging adaptations of subgenus Megascapheus allow access to harder soils and climate-protected depths. In a Northern Californian locality, replacement of subgenus Thomomys with subgenus Megascapheus occurred gradually during the Pleistocene-Holocene transition. Concurrent climate change over this transition suggests that environmental factors – in addition to soil – define pocket gopher distributional limits. Here we show 1) that all pocket gophers occupy the subset of less energetically costly soils and 2) that subgenera sort by percent soil clay, bulk density, and shrink-swell capacity (a mineralogical attribute). While clay and bulk density (without major perturbations) stay constant over decades to millennia, low precipitation and high temperatures can cause shrink-swell clays to crack and harden within days. The strong yet underappreciated interaction between soil and moisture on the distribution of vertebrates is rarely considered when projecting species responses to climatic change. Furthermore, increased precipitation alters the weathering processes that create shrink-swell minerals. Two projected outcomes of ongoing climate change—higher temperatures and precipitation—will dramatically impact hardness of soil with shrink-swell minerals. Current climate models do not include factors controlling soil hardness, despite its impact on all organisms that depend on a stable soil structure. PMID:23717675

  12. An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change.

    PubMed Central

    Kalkstein, L S; Greene, J S

    1997-01-01

    A new air mass-based synoptic procedure is used to evaluate climate/mortality relationships as they presently exist and to estimate how a predicted global warming might alter these values. Forty-four large U.S. cities with metropolitan areas exceeding 1 million in population are analyzed. Sharp increases in mortality are noted in summer for most cities in the East and Midwest when two particular air masses are present. A very warm air mass of maritime origin is most important in the eastern United States, which when present can increase daily mortality by as many as 30 deaths in large cities. A hot, dry air mass is important in many cities, and, although rare in the East, can increase daily mortality by up to 50 deaths. Cities in the South and Southwest show lesser weather/mortality relationships in summer. During winter, air mass-induced increases in mortality are considerably less than in summer. Although daily winter mortality is usually higher than summer, the causes of death that are responsible for most winter mortality do not vary much with temperature. Using models that estimate climate change for the years 2020 and 2050, it is estimated that summer mortality will increase dramatically and winter mortality will decrease slightly, even if people acclimatize to the increased warmth. Thus, a sizable net increase in weather-related mortality is estimated if the climate warms as the models predict. PMID:9074886

  13. Younger Dryas cooling and the Greenland climate response to CO2.

    PubMed

    Liu, Zhengyu; Carlson, Anders E; He, Feng; Brady, Esther C; Otto-Bliesner, Bette L; Briegleb, Bruce P; Wehrenberg, Mark; Clark, Peter U; Wu, Shu; Cheng, Jun; Zhang, Jiaxu; Noone, David; Zhu, Jiang

    2012-07-10

    Greenland ice-core δ(18)O-temperature reconstructions suggest a dramatic cooling during the Younger Dryas (YD; 12.9-11.7 ka), with temperatures being as cold as the earlier Oldest Dryas (OD; 18.0-14.6 ka) despite an approximately 50 ppm rise in atmospheric CO(2). Such YD cooling implies a muted Greenland climate response to atmospheric CO(2), contrary to physical predictions of an enhanced high-latitude response to future increases in CO(2). Here we show that North Atlantic sea surface temperature reconstructions as well as transient climate model simulations suggest that the YD over Greenland should be substantially warmer than the OD by approximately 5 °C in response to increased atmospheric CO(2). Additional experiments with an isotope-enabled model suggest that the apparent YD temperature reconstruction derived from the ice-core δ(18)O record is likely an artifact of an altered temperature-δ(18)O relationship due to changing deglacial atmospheric circulation. Our results thus suggest that Greenland climate was warmer during the YD relative to the OD in response to rising atmospheric CO(2), consistent with sea surface temperature reconstructions and physical predictions, and has a sensitivity approximately twice that found in climate models for current climate due to an enhanced albedo feedback during the last deglaciation.

  14. Wildfire disturbance impacts on streamflow from western USA watersheds

    NASA Astrophysics Data System (ADS)

    Cadol, D.; Wine, M.; Makhnin, O.

    2017-12-01

    Worldwide rapid changes in climate overlaid on changing land management paradigms have dramatically altered ecological disturbance regimes worldwide including in western North America. Ecological disturbances impacted include woody encroachment, pest pathogen complexes, riparian forest changes, and wildfire. These disturbances impact the hydrologic cycle, though the nature of these impacts has been difficult to quantify. Perhaps the greatest challenge is that most basins worldwide are ungauged. Taking wildfire as a globally relevant example of a key ecological disturbance, even within gauged basins, post-wildfire hydrologic response is spatially and temporally variable, affected by a host of variables including fire frequency, area burned, and recovery trajectory. Hydrologic response to wildfire is further understood to be a non-linear function of watershed characteristics and climate. Here we provide a framework that utilizes remote sensing, statistical modeling, field measurements, and geospatial methods to provide first-order estimates of ecological disturbance hydrologic impacts. We apply this framework to compare ecological disturbance hydrologic impacts amongst selected watersheds in the western USA. Here we show that ecological disturbance impacts on hydrology are highly variable, and in many cases have an effect magnitude similar to that modeled for temperature and precipitation changes.

  15. Long-term projections of temperature-related mortality risks for ischemic stroke, hemorrhagic stroke, and acute ischemic heart disease under changing climate in Beijing, China.

    PubMed

    Li, Tiantian; Horton, Radley M; Bader, Daniel A; Liu, Fangchao; Sun, Qinghua; Kinney, Patrick L

    2018-03-01

    Changing climates have been causing variations in the number of global ischemic heart disease and stroke incidences, and will continue to affect disease occurrence in the future. To project temperature-related mortality for acute ischemic heart disease, and ischemic and hemorrhagic stroke with concomitant climate warming. We estimated the exposure-response relationship between daily cause-specific mortality and daily mean temperature in Beijing. We utilized outputs from 31 downscaled climate models and two representative concentration pathways (RCPs) for the 2020s, 2050s, and 2080s. This strategy was used to estimate future net temperature along with heat- and cold-related deaths. The results for predicted temperature-related deaths were subsequently contrasted with the baseline period. In the 2080s, using the RCP8.5 and no population variation scenarios, the net total number of annual temperature-related deaths exhibited a median value of 637 (with a range across models of 434-874) for ischemic stroke; this is an increase of approximately 100% compared with the 1980s. The median number of projected annual temperature-related deaths was 660 (with a range across models of 580-745) for hemorrhagic stroke (virtually no change compared with the 1980s), and 1683 (with a range across models of 1351-2002) for acute ischemic heart disease (a slight increase of approximately 20% compared with the 1980s). In the 2080s, the monthly death projection for hemorrhagic stroke and acute ischemic heart disease showed that the largest absolute changes occurred in summer and winter while the largest absolute changes for ischemic stroke occurred in summer. We projected that the temperature-related mortality associated with ischemic stroke will increase dramatically due to climate warming. However, projected temperature-related mortality pertaining to acute ischemic heart disease and hemorrhagic stroke should remain relatively stable over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Non-linear Feedbacks Between Forest Mortality and Climate Change: Implications for Snow Cover, Water Resources, and Ecosystem Recovery in Western North America (Invited)

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Gochis, D. J.; Litvak, M. E.; Ewers, B. E.; Broxton, P. D.; Reed, D. E.

    2013-12-01

    Unprecedented levels of tree mortality from insect infestation and wildfire are dramatically altering forest structure and composition in Western North America. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how these changes in forest structure will interact with ongoing climate change to affect snowmelt water resources either for society or for ecosystem recovery following mortality. Because surface discharge, groundwater recharge, and ecosystem productivity all depend on seasonal snowmelt, a critical knowledge gap exists not only in predicting discharge, but in quantifying spatial and temporal variability in the partitioning of snowfall into abiotic vapor loss, plant available water, recharge, and streamflow within the complex mosaic of forest disturbance and topography that characterizes western mountain catchments. This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a climate gradient from Arizona to Wyoming; including undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input in a warming climate will increase only in topographically sheltered areas. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. Empirical analyses and modeling are being developed to identify landscapes most sensitive to climate change as well as to develop management alternatives that minimize the effects of disturbance on high elevation forests and the services of water provision and carbon storage they provide.

  17. Threats to North American Forests from Southern Pine Beetle with Warming Winters

    NASA Technical Reports Server (NTRS)

    Lesk, Corey; Coffel, Ethan; D'Amato, Anthony W.; Dodds, Kevin; Horton, Radley M.

    2016-01-01

    In coming decades, warmer winters are likely to lift range constraints on many cold-limited forest insects. Recent unprecedented expansion of the southern pine beetle (SPB, Dendroctonus frontalis) into New Jersey, New York, Connecticut, and Massachusetts in concert with warming annual temperature minima highlights the risk that this insect pest poses to the pine forests of the northern United States and Canada under continued climate change. Here we present the first projections of northward expansion in SPB-suitable climates using a statistical bioclimatic range modeling approach and current-generation general circulation model (GCM) output under the RCP 4.5 and 8.5 emissions scenarios. Our results show that by the middle of the 21st century, the climate is likely to be suitable for SPB expansion into vast areas of previously unaffected forests throughout the northeastern United States and into southeastern Canada. This scenario would pose a significant economic and ecological risk to the affected regions, including disruption oflocal ecosystem services, dramatic shifts in forest structure, and threats to native biodiversity.

  18. Satellite assessment of increasing tree cover 1982-2016

    NASA Astrophysics Data System (ADS)

    Song, X. P.; Hansen, M.

    2017-12-01

    The Earth's vegetation has undergone dramatic changes as we enter the Anthropocene. Recent studies have quantified global forest cover dynamics and resulting biogeochemical and biophysical impacts to the climate for the post-2000 time period. However, long-term gradual changes in undisturbed forests are less well quantified. We mapped annual tree cover using satellite data and quantified tree cover change during 1982-2016. The dataset was produced by combining optical observations from multiple satellite sensors, including the Advanced Very High Resolution Radiometer, the Moderate Resolution Imaging Spectroradiometer, the Landsat Enhanced Thematic Mapper Plus and various very high spatial resolution sensors. Contrary to current understanding of forest area change, global tree cover increased by 7%. The overall net gain in tree cover is a result of net loss in the tropics overweighed by net gain in the subtropical, temperate and boreal zones. All mountain systems, regardless of climate domain, experienced increases in tree cover. Regional patterns of tree cover gain including eastern United States, eastern Europe and southern China, indicate profound influences of socioeconomic, political or land management changes in shaping long-term environmental change. Results provide the first comprehensive record of global tree cover dynamics over the past four decades and may be used to reduce uncertainties in the quantification of the global carbon cycle.

  19. A century of changing flows: Forest management changed flow magnitudes and warming advanced the timing of flow in a southwestern US river

    PubMed Central

    2017-01-01

    The continued provision of water from rivers in the southwestern United States to downstream cities, natural communities and species is at risk due to higher temperatures and drought conditions in recent decades. Snowpack and snowfall levels have declined, snowmelt and peak spring flows are arriving earlier, and summer flows have declined. Concurrent to climate change and variation, a century of fire suppression has resulted in dramatic changes to forest conditions, and yet, few studies have focused on determining the degree to which changing forests have altered flows. In this study, we evaluated changes in flow, climate, and forest conditions in the Salt River in central Arizona from 1914–2012 to compare and evaluate the effects of changing forest conditions and temperatures on flows. After using linear regression models to remove the influence of precipitation and temperature, we estimated that annual flows declined by 8–29% from 1914–1963, coincident with a 2-fold increase in basal area, a 2-3-fold increase in canopy cover, and at least a 10-fold increase in forest density within ponderosa pine forests. Streamflow volumes declined by 37–56% in summer and fall months during this period. Declines in climate-adjusted flows reversed at mid-century when spring and annual flows increased by 10–31% from 1964–2012, perhaps due to more winter rainfall. Additionally, peak spring flows occurred about 12 days earlier in this period than in the previous period, coincident with winter and spring temperatures that increased by 1–2°C. While uncertainties remain, this study adds to the knowledge gained in other regions that forest change has had effects on flow that were on par with climate variability and, in the case of mid-century declines, well before the influence of anthropogenic warming. Current large-scale forest restoration projects hold some promise of recovering seasonal flows. PMID:29176868

  20. Land-use history as a guide for forest conservation and management.

    PubMed

    Whitlock, Cathy; Colombaroli, Daniele; Conedera, Marco; Tinner, Willy

    2018-02-01

    Conservation efforts to protect forested landscapes are challenged by climate projections that suggest substantial restructuring of vegetation and disturbance regimes in the future. In this regard, paleoecological records that describe ecosystem responses to past variations in climate, fire, and human activity offer critical information for assessing present landscape conditions and future landscape vulnerability. We illustrate this point drawing on 8 sites in the northwestern United States, New Zealand, Patagonia, and central and southern Europe that have undergone different levels of climate and land-use change. These sites fall along a gradient of landscape conditions that range from nearly pristine (i.e., vegetation and disturbance shaped primarily by past climate and biophysical constraints) to highly altered (i.e., landscapes that have been intensely modified by past human activity). Position on this gradient has implications for understanding the role of natural and anthropogenic disturbance in shaping ecosystem dynamics and assessments of present biodiversity, including recognizing missing or overrepresented species. Dramatic vegetation reorganization occurred at all study sites as a result of postglacial climate variations. In nearly pristine landscapes, such as those in Yellowstone National Park, climate has remained the primary driver of ecosystem change up to the present day. In Europe, natural vegetation-climate-fire linkages were broken 6000-8000 years ago with the onset of Neolithic farming, and in New Zealand, natural linkages were first lost about 700 years ago with arrival of the Maori people. In the U.S. Northwest and Patagonia, the greatest landscape alteration occurred in the last 150 years with Euro-American settlement. Paleoecology is sometimes the best and only tool for evaluating the degree of landscape alteration and the extent to which landscapes retain natural components. Information on landscape-level history thus helps assess current ecological change, clarify management objectives, and define conservation strategies that seek to protect both natural and cultural elements. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

Top