Sarangi, Susmita; Lanikova, Lucie; Kapralova, Katarina; Acharya, Suchitra; Swierczek, Sabina; Lipton, Jeffrey M; Wolfe, Lawrence; Prchal, Josef T
2014-11-01
von Hippel-Lindau (VHL) protein is the principal negative regulator of hypoxia sensing mediated by transcription factors. Mutations in exon 3 of the VHL gene lead to Chuvash (VHL(R200W)) and Croatian (VHL(H191D)) polycythemias. Here, we describe an infant of Bangladesh ethnicity with a novel homozygous VHL(D126N) mutation with congenital polycythemia and dramatically elevated erythropoietin (EPO) levels, who developed severe fatal pulmonary hypertension. In contrast to Chuvash polycythemia, erythroid progenitors (BFU-Es) did not reveal a marked EPO hypersensitivity. Further, NF-E2 and RUNX1 transcripts that correlate with BFU-Es EPO hypersensitivity in polycythemic mutations were not elevated. © 2014 Wiley Periodicals, Inc.
Bencze, Szilvia; Puskás, Katalin; Vida, Gyula; Karsai, Ildikó; Balla, Krisztina; Komáromi, Judit; Veisz, Ottó
2017-08-01
Increasing atmospheric CO 2 concentration not only has a direct impact on plants but also affects plant-pathogen interactions. Due to economic and health-related problems, special concern was given thus in the present work to the effect of elevated CO 2 (750 μmol mol -1 ) level on the Fusarium culmorum infection and mycotoxin contamination of wheat. Despite the fact that disease severity was found to be not or little affected by elevated CO 2 in most varieties, as the spread of Fusarium increased only in one variety, spike grain number and/or grain weight decreased significantly at elevated CO 2 in all the varieties, indicating that Fusarium infection generally had a more dramatic impact on the grain yield at elevated CO 2 than at the ambient level. Likewise, grain deoxynivalenol (DON) content was usually considerably higher at elevated CO 2 than at the ambient level in the single-floret inoculation treatment, suggesting that the toxin content is not in direct relation to the level of Fusarium infection. In the whole-spike inoculation, DON production did not change, decreased or increased depending on the variety × experiment interaction. Cooler (18 °C) conditions delayed rachis penetration while 20 °C maximum temperature caused striking increases in the mycotoxin contents, resulting in extremely high DON values and also in a dramatic triggering of the grain zearalenone contamination at elevated CO 2 . The results indicate that future environmental conditions, such as rising CO 2 levels, may increase the threat of grain mycotoxin contamination.
Motamed, F; Eftekhari, K; Kiani, M A; Rabbani, A
2012-06-01
A 14 year old female complained of abdominal pain and distention with vomiting. The physical exam showed thyroid enlargement and ascites. The imaging evaluation demonstrated a large ovarian cyst. Laboratory tests depicted hypothyroidism and marked elevation of Carbohydrate antigen 125 (CA-125) levels. As the bone age was 10 years, more retarded than the chronological age, Van Wyk and Grumbach syndrome was suspected. Treatment with thyroid hormone was initiated and the condition improved dramatically with disappearance of symptoms and signs 5 weeks later.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Short, M.T.; Osmand, A.P.
The acute phase of inflammation is characterized by numerous changes in blood composition, perhaps the most dramatic of these being the elevation of C-reactive protein levels. C-reactive protein (CRP) is known to bind to molecules containing phosphocholine-substituents following reaction with Ca/sup 2 +/ ions. Lumines
Response of sunshine bass to ration at elevated culture temperature
USDA-ARS?s Scientific Manuscript database
Temperature and ammonia increase dramatically during summer production of sunshine bass. Global temperatures are projected to increase. A factorial experiment investigated the effects of three digestible protein (DP; 33, 40, 47%), two lipid (L; 10, 18 %) and two ration levels (satiation, restricted)...
Ward, Jeanine; Kanchagar, Chitra; Veksler-Lublinsky, Isana; Lee, Rosalind C; McGill, Mitchell R; Jaeschke, Hartmut; Curry, Steven C; Ambros, Victor R
2014-08-19
We have identified, by quantitative real-time PCR, hundreds of miRNAs that are dramatically elevated in the plasma or serum of acetaminophen (APAP) overdose patients. Most of these circulating microRNAs decrease toward normal levels during treatment with N-acetyl cysteine (NAC). We identified a set of 11 miRNAs whose profiles and dynamics in the circulation during NAC treatment can discriminate APAP hepatotoxicity from ischemic hepatitis. The elevation of certain miRNAs can precede the dramatic rise in the standard biomarker, alanine aminotransferase (ALT), and these miRNAs also respond more rapidly than ALT to successful treatment. Our results suggest that miRNAs can serve as sensitive diagnostic and prognostic clinical tools for severe liver injury and could be useful for monitoring drug-induced liver injury during drug discovery.
USDA-ARS?s Scientific Manuscript database
Burning fossil fuels and land use changes such as deforestation and urbanization have led to a dramatic rise in the concentration of carbon dioxide (CO2) in the atmosphere since the onset of the Industrial Revolution. The highly dilute CO2 from the atmosphere enters plant leaves where it is concentr...
Arai, Ayako; Nogami, Ayako; Imadome, Ken-Ichi; Kurata, Morito; Murakami, Naomi; Fujiwara, Shigeyoshi; Miura, Osamu
2012-11-01
We report the case of a female patient with chronic active Epstein-Barr virus infection (CAEBV) accompanied by hemophagocytic syndrome (HPS). On admission, she presented with severe liver dysfunction and disseminated intravascular coagulation with elevation of serum IL-6, TNF-α, and IFN-γ levels. Plasma exchange (PE) followed by immunochemotherapy with prednisolone, cyclosporine A, and VP16 was performed. PE decreased serum cytokine levels dramatically and improved liver function. Following immunochemotherapy, CAEBV became inactive. Four months after discharge, however, CAEBV relapsed with HPS, and serum cytokine levels were extremely elevated again. There was no response to immunochemotherapy, and the patient died 1 day after admission. We examined the cytokines in five additional untreated-CAEBV patients and determined that they were elevated above the normal level in all patients. These results suggest that inflammatory cytokines may have roles in the development of CAEBV, and that their depletion can be an effective treatment for this disease.
Surgical and healing changes to ocular aberrations following refractive surgery
NASA Astrophysics Data System (ADS)
Straub, Jochen; Schwiegerling, Jim
2003-07-01
Purpose: To measure ocular aberrations before and at several time periods after LASIK surgery to determine the change to the aberration structure of the eye. Methods: A Shack-Hartmann wavefront sensor was used to measure 88 LASIK patients pre-operatively and at 1 week and 12 months following surgery. Reconstructed wavefront errors are compared to look at induced differences. Manifest refraction was measured at 1 week, 1 month, 3 months, 6 months and 12 months following surgery. Sphere, cylinder, spherical aberration, and pupil diameter are analyzed. Results: A dramatic elevation in spherical aberration is seen following surgery. This elevation appears almost immediately and remains for the duration of the study. A temporary increase in pupil size is seen following surgery. Conclusions: LASIK surgery dramatically reduces defocus and astigmatism in the eye, but simultaneously increases spherical aberration levels. This increase occurs at the time of surgery and is not an effect of the healing response.
Northern Chile and Andes Mountains seen from STS-61 Shuttle Endeavour
1993-12-09
STS061-101-023 (8 Dec 1993) --- This color photograph is a spectacular, panoramic (southeastern view) shot that features the northern half of the country of Chile and the Andes Mountains of South America. The Atacama Desert, one of the driest regions on earth, is clearly visible along the northern Chilean coast. This desert extends from roughly Arica in the north to the city of Caldera in the south, a distance of six hundred miles. Some parts of this very arid region go for more than twenty years without measurable precipitation. It is an area of dramatic and abrupt elevation changes. For example, from the waters edge there is an escarpment of the coastal plateau that rises like an unbroken wall two or three thousand feet above the Pacific Ocean. From the coastal plateau, there is an even more dramatic increase in elevation -- from two thousand feet above sea level to an average elevation of thirteen thousand feet above sea level in the Bolivian Altiplano. This elevation change occurs within a one hundred to two hundred mile distance from the Pacific Ocean. The north-south trending spine of the Andes Mountains can be seen on this photograph. Several of the volcanic peaks in this mountain chain exceed 20,000 feet above sea level. Interspersed with these volcanic peaks, numerous dry lake beds (salars) can be seen as highly reflective surfaces. The largest of these salars (Salar de Uyuni) is visible at the edge of the Hubble Space Telescope (HST). Offshore, the cold Peruvian current produces low stratus clouds that can be found along this coastline at certain times of the year. This is the same type of meteorological phenomena that is found along the southern California coast and the Skeleton coast of southwestern Africa.
Elevated CO{sub 2} and leaf shape: Are dandelions getting toothier?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, S.C.; Bazzaz, F.A.
1996-01-01
Heteroblastic leaf development in Taraxacum officinale is compared between plants grown under ambient (350 ppm) vs. elevated (700 ppm) CO{sub 2} levels. Leaves of elevated CO{sub 2} plants exhibited more deeply incised leaf margins and relatively more slender leaf laminae than leaves of ambient CO{sub 2} plants. These differences were found to be significant in allometric analyses that controlled for differences in leaf size, as well as analyses that controlled for leaf development order. The effects of elevated CO{sub 2} on leaf shape were most pronounced when plants were grown individually, but detectable differences were also found in plants grownmore » at high density. Although less dramatic than in Taraxacum, significant effects of elevated CO{sub 2} on leaf shape were also found in two other weedy rosette species, Plantago major and Rumex crispus. These observations support the long-standing hypothesis that leaf carbohydrate level plays an important role in regulating heteroblastic leaf development, though elevated CO{sub 2} may also affect leaf development through direct hormonal interactions or increased leaf water potential. In Taraxacum, pronounced modifications of leaf shape were found at CO{sub 2} levels predicted to occur within the next century. 33 refs., 5 figs.« less
Persu, Alexandre; Lambert, Michel; Deinum, Jaap; Cossu, Marta; de Visscher, Nathalie; Irenge, Leonid; Ambroise, Jerôme; Minon, Jean-Marc; Nesterovitch, Andrew B.; Churbanov, Alexander; Popova, Isolda A.; Danilov, Sergei M.; Danser, A. H. Jan; Gala, Jean-Luc
2013-01-01
Background Angiotensin-converting enzyme (ACE) (EC 4.15.1) metabolizes many biologically active peptides and plays a key role in blood pressure regulation and vascular remodeling. Elevated ACE levels are associated with different cardiovascular and respiratory diseases. Methods and Results Two Belgian families with a 8-16-fold increase in blood ACE level were incidentally identified. A novel heterozygous splice site mutation of intron 25 - IVS25+1G>A (c.3691+1G>A) - cosegregating with elevated plasma ACE was identified in both pedigrees. Messenger RNA analysis revealed that the mutation led to the retention of intron 25 and Premature Termination Codon generation. Subjects harboring the mutation were mostly normotensive, had no left ventricular hypertrophy or cardiovascular disease. The levels of renin-angiotensin-aldosterone system components in the mutated cases and wild-type controls were similar, both at baseline and after 50 mg captopril. Compared with non-affected members, quantification of ACE surface expression and shedding using flow cytometry assay of dendritic cells derived from peripheral blood monocytes of affected members, demonstrated a 50% decrease and 3-fold increase, respectively. Together with a dramatic increase in circulating ACE levels, these findings argue in favor of deletion of transmembrane anchor, leading to direct secretion of ACE out of cells. Conclusions We describe a novel mutation of the ACE gene associated with a major familial elevation of circulating ACE, without evidence of activation of the renin-angiotensin system, target organ damage or cardiovascular complications. These data are consistent with the hypothesis that membrane-bound ACE, rather than circulating ACE, is responsible for Angiotensin II generation and its cardiovascular consequences. PMID:23560051
Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry
NASA Astrophysics Data System (ADS)
Babonis, G. S.; Csatho, B.; Schenk, T.
2016-06-01
During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.
Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A
2005-12-01
The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride level was significantly elevated postrace, then fell 30% below baseline 1 day after the run, and returned to baseline after 1 week. Total cholesterol responded less dramatically but with a similar pattern. High-density lipoprotein cholesterol remained significantly elevated and low-density lipoprotein cholesterol was transiently reduced for 3 days after the run. The total cholesterol/high-density cholesterol ratio was significantly lowered for 3 days. Serum lactate dehydrogenase activity significantly doubled postrace and then declined but remained elevated for 2 weeks. Serum creatine kinase activity peaked 24 hr after the run, with a 15-fold rise, and returned to baseline after 1 week. The rise of these enzymes reflects mechanically damaged muscle cells leaking contents into the interstitial fluid. It is concluded that a prolonged strenuous exercise bout in recreational runners, such as a marathon, produces beneficial changes in lipid blood profiles that are significant for only 3 days. However, muscle damage is also evident for 1 week or more from the dramatic and long-lasting effect on enzyme levels. Laboratory values for these runners were outside normal ranges for some days after the race.
Devi, Latha; Ohno, Masuo
2010-09-23
β-Site APP-cleaving enzyme 1 (BACE1) initiates amyloid-β (Aβ) generation and thus represents a prime therapeutic target in treating Alzheimer's disease (AD). Notably, increasing evidence indicates that BACE1 levels become elevated in AD brains as disease progresses; however, it remains unclear how the BACE1 upregulation may affect efficacies of therapeutic interventions including BACE1-inhibiting approaches. Here, we crossed heterozygous BACE1 knockout mice with AD transgenic mice (5XFAD model) and compared the abilities of partial BACE1 reduction to rescue AD-like phenotypes at earlier (6-month-old) and advanced (15-18-month-old) stages of disease, which expressed normal (∼100%) and elevated (∼200%) levels of BACE1, respectively. BACE1(+/-) deletion rescued memory deficits as tested by the spontaneous alternation Y-maze task in 5XFAD mice at the earlier stage and prevented their septohippocampal cholinergic deficits associated with significant neuronal loss. Importantly, BACE1(+/-) deletion was no longer able to rescue memory deficits or cholinergic neurodegeneration in 5XFAD mice at the advanced stage. Moreover, BACE1(+/-) deletion significantly reduced levels of Aβ42 and the β-secretase-cleaved C-terminal fragment (C99) in 6-month-old 5XFAD mouse brains, while these neurotoxic β-cleavage products dramatically elevated with age and were not affected by BACE1(+/-) deletion in 15-18-month-old 5XFAD brains. Interestingly, although BACE1(+/-) deletion lowered BACE1 expression by ∼50% in 5XFAD mice irrespective of age in concordance with the reduction in gene copy number, BACE1 equivalent to wild-type controls remained in BACE1(+/-)·5XFAD mice at the advanced age. In accord, phosphorylation of the translation initiation factor eIF2α, an important mediator of BACE1 elevation, was dramatically increased (∼9-fold) in 15-18-month-old 5XFAD mice and remained highly upregulated (∼6-fold) in age-matched BACE1(+/-)·5XFAD mice. Together, our results indicate that partial reduction of BACE1 is not sufficient to block the phospho-eIF2α-dependent BACE1 elevation during the progression of AD, thus limiting its abilities to reduce cerebral Aβ/C99 levels and rescue memory deficits and cholinergic neurodegeneration.
Dyslipidemia and Auditory Function
Evans, M. Bradley; Tonini, Ross; Shope, Cynthia Do; Oghalai, John S.; Jerger, James F.; Insull, William; Brownell, William E.
2013-01-01
The relationship between dyslipidemia and hearing is unclear. This study was conducted to investigate whether elevated serum lipid levels impact auditory function in humans and in guinea pigs. In the human study, a cross-sectional study of 40 volunteers with dyslipidemia was conducted. Pure tone thresholds, distortion product otoacoustic emissions, and lipid profiles were analyzed. When controlled for patient age and sex, we found that elevated triglycerides were associated with reduced hearing. In the guinea pig study, a prospective study of animals fed a high-fat diet for 14 weeks was conducted. Although the high-fat diet led to a dramatic elevation in the average weight and total cholesterol in all animals (from 61 to 589 mg/dl), there were no meaningful changes in distortion product otoacoustic emission magnitudes. These results suggest that whereas chronic dyslipidemia associated with elevated triglycerides may reduce auditory function, short-term dietary changes may not. PMID:16868509
Robertson, Alan S; Majchrzak, Mark J; Smith, Courtney M; Gagnon, Robert C; Devidze, Nino; Banks, Glen B; Little, Sean C; Nabbie, Fizal; Bounous, Denise I; DiPiero, Janet; Jacobsen, Leslie K; Bristow, Linda J; Ahlijanian, Michael K; Stimpson, Stephen A
2017-07-01
Enzyme-linked and electrochemiluminescence immunoassays were developed for quantification of amino (N-) terminal fragments of the skeletal muscle protein titin (N-ter titin) and qualified for use in detection of urinary N-ter titin excretion. Urine from normal subjects contained a small but measurable level of N-ter titin (1.0 ± 0.4 ng/ml). A 365-fold increase (365.4 ± 65.0, P = 0.0001) in urinary N-ter titin excretion was seen in Duchene muscular dystrophy (DMD) patients. Urinary N-ter titin was also evaluated in dystrophin deficient rodent models. Mdx mice exhibited low urinary N-ter titin levels at 2 weeks of age followed by a robust and sustained elevation starting at 3 weeks of age, coincident with the development of systemic skeletal muscle damage in this model; fold elevation could not be determined because urinary N-ter titin was not detected in age-matched wild type mice. Levels of serum creatine kinase and serum skeletal muscle troponin I (TnI) were also low at 2 weeks, elevated at later time points and were significantly correlated with urinary N-ter titin excretion in mdx mice. Corticosteroid treatment of mdx mice resulted in improved exercise performance and lowering of both urinary N-ter titin and serum skeletal muscle TnI concentrations. Low urinary N-ter titin levels were detected in wild type rats (3.0 ± 0.6 ng/ml), while Dmd mdx rats exhibited a 556-fold increase (1652.5 ± 405.7 ng/ml, P = 0.002) (both at 5 months of age). These results suggest that urinary N-ter titin is present at low basal concentrations in normal urine and increases dramatically coincident with muscle damage produced by dystrophin deficiency. Urinary N-ter titin has potential as a facile, non-invasive and translational biomarker for DMD. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Impact of sea level rise on tide gate function.
Walsh, Sean; Miskewitz, Robert
2013-01-01
Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America.
Serum concentrations of polychlorinated dibenzo-p-dioxins among ceramicists.
Demond, Avery; Jiang, Xiaohui; Broadwater, Kendra; Meeker, John; Luksemburg, William; Maier, Martha; Garabrant, David; Franzblau, Alfred
2015-01-01
Polychlorinated dibenzo-p-dioxins (PCDDs) occur naturally in ball clay at elevated concentrations. Thus, persons who habitually work with clay may be at risk for exposure to PCDDs. An earlier case report provided some evidence of elevated PCDD levels in serum for long-term hobby ceramicists; however, no previous study has measured serum dioxin concentrations among ceramicists. This study measured PCDD serum levels for 27 individuals involved in ceramics making. The average residual, defined as the average of the [log measured serum lipid concentration – log background serum lipid concentration], was calculated and then tested to determine whether it was significantly different from zero. The p-values for the average residuals indicated that the serum lipid concentrations for several PCDD congeners were elevated relative to background. The number of significant residuals increased dramatically if the background concentrations were adjusted to account for the fact that they were not contemporaneous with the measurements for the ceramicists. The ratio of the 1,2,3,6,7,8-HxCDD concentration to the 1,2,3,7,8,9-HxCDD concentration was greater than 1.0, unlike in ball clay, suggesting that although long-term working with ball clay elevates the PCDD levels in serum somewhat, it is not the predominant source of the PCDD body burden for ceramicists.
Wang, Qingsong; Yu, Ke; Wang, Jun; Lin, Hang; Wu, Yuxian; Wang, Weiwen
2012-04-21
To investigate the long-term effects of psychological stress on emotionality, the emotional arousal of rats in 4 months after predator stress was assessed in both an open field environment and elevated plus maze. We also assessed the levels of plasma corticosterone (CORT) by radioimmunoassay, the distributions of brain glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) by immunohistochemistry, and the expressions of GR and MR by Western blot. The results showed that intense predator stress, which was adjusted to ensure consistent stressor intensity using rat tonic immobility behavior, successfully induced lasting decreased locomotor activity and habituation to novel environments, suppressed exploratory behavior, and increased anxiety-like behavior. The plasma CORT levels dramatically increased 1h after stress, then returned to basal levels at 1wk, decreased 1 month later, and remained significantly lower than control levels 4 months after exposure to stress. Immunohistochemical analysis showed that GR was markedly increased in the hippocampus and frontal cortexes of stressed rats and that the changes in the hippocampus were more pronounced. In contrast, MR expression was significantly decreased in both brain regions. Western analysis confirmed these dramatically elevated levels of GR expression and lower levels of MR expression in the hippocampus 4 months after stress. We conclude that acute severe psychological stress may induce long-term emotional behavioral changes, and that different patterns in plasma CORT, alterations in brain corticoid receptors, and increased hippocampal vulnerability to the effects of predator stress may play important roles in the persistent emotional arousal induced by intense psychological stress. Copyright © 2012 Elsevier B.V. All rights reserved.
Ocean acidification affects prey detection by a predatory reef fish.
Cripps, Ingrid L; Munday, Philip L; McCormick, Mark I
2011-01-01
Changes in olfactory-mediated behaviour caused by elevated CO(2) levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2) will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2) and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO(2) levels or one of two elevated CO(2) levels (∼600 µatm or ∼950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2) and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2) treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2) treatment and feeding activity was lower for fish in the mid CO(2) treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2) treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2) acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.
Devi, Latha; Ohno, Masuo
2010-01-01
β-Site APP-cleaving enzyme 1 (BACE1) initiates amyloid-β (Aβ) generation and thus represents a prime therapeutic target in treating Alzheimer's disease (AD). Notably, increasing evidence indicates that BACE1 levels become elevated in AD brains as disease progresses; however, it remains unclear how the BACE1 upregulation may affect efficacies of therapeutic interventions including BACE1-inhibiting approaches. Here, we crossed heterozygous BACE1 knockout mice with AD transgenic mice (5XFAD model) and compared the abilities of partial BACE1 reduction to rescue AD-like phenotypes at earlier (6-month-old) and advanced (15–18-month-old) stages of disease, which expressed normal (∼100%) and elevated (∼200%) levels of BACE1, respectively. BACE1+/− deletion rescued memory deficits as tested by the spontaneous alternation Y-maze task in 5XFAD mice at the earlier stage and prevented their septohippocampal cholinergic deficits associated with significant neuronal loss. Importantly, BACE1+/− deletion was no longer able to rescue memory deficits or cholinergic neurodegeneration in 5XFAD mice at the advanced stage. Moreover, BACE1+/− deletion significantly reduced levels of Aβ42 and the β-secretase-cleaved C-terminal fragment (C99) in 6-month-old 5XFAD mouse brains, while these neurotoxic β-cleavage products dramatically elevated with age and were not affected by BACE1+/− deletion in 15–18-month-old 5XFAD brains. Interestingly, although BACE1+/− deletion lowered BACE1 expression by ∼50% in 5XFAD mice irrespective of age in concordance with the reduction in gene copy number, BACE1 equivalent to wild-type controls remained in BACE1+/−·5XFAD mice at the advanced age. In accord, phosphorylation of the translation initiation factor eIF2α, an important mediator of BACE1 elevation, was dramatically increased (∼9-fold) in 15–18-month-old 5XFAD mice and remained highly upregulated (∼6-fold) in age-matched BACE1+/−·5XFAD mice. Together, our results indicate that partial reduction of BACE1 is not sufficient to block the phospho-eIF2α-dependent BACE1 elevation during the progression of AD, thus limiting its abilities to reduce cerebral Aβ/C99 levels and rescue memory deficits and cholinergic neurodegeneration. PMID:20886088
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, P.S.; Snow, A.A.
1993-06-01
Rising atmospheric CO[sub 2] levels may lead to microevolutionary change in native plant populations. To test for within-population variation in genetic responses to elevated p(CO[sub 2]), we exposed five paternal sibships of wild radish to ambient and 2X ambient (700 [mu]bar) p(CO[sub 2]) in 3 m open top chambers for an entre growing season. Seeds were planted singly in 2.5 1 pots filled with locally derived, low fertility soil (160 plants per CO[sub 2] treatment). Net CO[sub 2] assimilation increased 25% in vegetative plants and 48% in reproductive plants growing at elevated p(CO[sub 2]). Every flower was hand-pollinated to mimicmore » natural pollination levels. Lifetime fecundity was greater in the elevated CO[sub 2] treatment, but the magnitude of this effect differed dramatically among paternal sibships: seed production increased 13% overall, yet among paternal sibships seed production varied between 0% and 50% more seeds in elevated p(CO[sub 2]) as compared to ambient. Our results suggest that natural selection can occur due to genotypic differences in the CO[sub 2] response. This process should be considered in estimates of long-term effects of elevated p(CO[sub 2]), especially with regard to anticipated increases in primary productivity.« less
Evidence of exceptional oyster-reef resilience to fluctuations in sea level.
Ridge, Justin T; Rodriguez, Antonio B; Fodrie, F Joel
2017-12-01
Ecosystems at the land-sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10-30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster-reef ( Crassostrea virginica ) growth to interannual variations in mean sea level (MSL) and improve long-term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade-old reefs ( n = 3) constructed in 1997 and 2000, young reefs ( n = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade-old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short-term (month-to-year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster-reef conservation and restoration.
Sun, Peng; Mantri, Nitin; Lou, Heqiang; Hu, Ya; Sun, Dan; Zhu, Yueqing; Dong, Tingting; Lu, Hongfei
2012-01-01
We investigated if elevated CO2 could alleviate the negative effect of high temperature on fruit yield of strawberry (Fragaria × ananassa Duch. cv. Toyonoka) at different levels of nitrogen and also tested the combined effects of CO2, temperature and nitrogen on fruit quality of plants cultivated in controlled growth chambers. Results show that elevated CO2 and high temperature caused a further 12% and 35% decrease in fruit yield at low and high nitrogen, respectively. The fewer inflorescences and smaller umbel size during flower induction caused the reduction of fruit yield at elevated CO2 and high temperature. Interestingly, nitrogen application has no beneficial effect on fruit yield, and this may be because of decreased sucrose export to the shoot apical meristem at floral transition. Moreover, elevated CO2 increased the levels of dry matter-content, fructose, glucose, total sugar and sweetness index per dry matter, but decreased fruit nitrogen content, total antioxidant capacity and all antioxidant compounds per dry matter in strawberry fruit. The reduction of fruit nitrogen content and antioxidant activity was mainly caused by the dilution effect of accumulated non-structural carbohydrates sourced from the increased net photosynthetic rate at elevated CO2. Thus, the quality of strawberry fruit would increase because of the increased sweetness and the similar amount of fruit nitrogen content, antioxidant activity per fresh matter at elevated CO2. Overall, we found that elevated CO2 improved the production of strawberry (including yield and quality) at low temperature, but decreased it at high temperature. The dramatic fluctuation in strawberry yield between low and high temperature at elevated CO2 implies that more attention should be paid to the process of flower induction under climate change, especially in fruits that require winter chilling for reproductive growth. PMID:22911728
Shynlova, Oksana; Mitchell, Jennifer A; Tsampalieros, Anne; Langille, B Lowell; Lye, Stephen J
2004-04-01
Myometrial growth and remodeling during pregnancy depends on increased synthesis of interstitial matrix proteins. We hypothesize that the presence of mechanical tension in a specific hormonal environment regulates the expression of extracellular matrix (ECM) components in the uterus. Myometrial tissue was collected from pregnant rats on Gestational Days 0, 12, 15, 17, 19, 21, 22, 23 (labor), and 1 day postpartum and ECM expression was analyzed by Northern blotting. Expression of fibronectin, laminin beta2, and collagen IV mRNA was low during early gestation but increased dramatically on Day 23 during labor. Expression of fibrillar collagens (type I and III) peaked Day 19 and decreased near term. In contrast, elastin mRNA remained elevated from midgestation onward. Injection of progesterone (P4) on Days 20-23 (to maintain elevated plasma P4 levels) delayed the onset of labor, caused dramatic reductions in the levels of fibronectin and laminin mRNA, and prevented the fall of collagen III mRNA levels on Day 23. Treatment of pregnant rats with the progesterone receptor antagonist RU486 on Day 19 induced preterm labor on Day 20 and a premature increase in mRNA levels of collagen IV, fibronectin, and laminin. Analysis of the uterine tissue from unilaterally pregnant rats revealed that most of the changes in ECM gene expression occurred specifically in the gravid horn. Our results show a decrease in expression of fibrillar collagens and a coordinated temporal increase in expression of components of the basement membrane near term associated with decreased P4 and increased mechanical tension. These ECM changes contribute to myometrial growth and remodeling during late pregnancy and the preparation for the synchronized contractions of labor.
Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status
USDA-ARS?s Scientific Manuscript database
A unique set of allelic Arabidopsis mutants are described that exhibit either suppressed or completely inhibited expression of a gene designated ECERIFERUM9 (CER9). These mutants exhibit a dramatic elevation in the total amount of leaf cutin monomers, and a dramatic shift in the leaf cuticular wax p...
Pun, Priti; Jones, Jesica; Wolfe, Craig; Deming, Douglas D.; Power, Gordon G.; Blood, Arlin B.
2016-01-01
Background Plasma nitrite serves as a reservoir of nitric oxide (NO) bioactivity. Because nitrite ingestion is markedly lower in newborns than adults, we hypothesized plasma nitrite levels would be lower in newborns than in adults, and that infants diagnosed with necrotizing enterocolitis (NEC), a disease characterized by ischemia and bacterial invasion of intestinal walls, would have lower levels of circulating nitrite in the days prior to diagnosis. Methods Single blood and urine samples were collected from 9 term infants and 12 adults, 72 preterm infants every 5 d for 3 wk, and from 13 lambs before and after cord occlusion. Results Nitrite fell 50% relative to cord levels in the first day after birth; and within 15 min after cord occlusion in lambs. Urinary nitrite was higher in infants than adults. Plasma and urinary nitrite levels in infants who developed NEC were similar to those of preterm control infants on days 1 and 5, but significantly elevated at 15 and 20 d after birth. Conclusion Plasma nitrite falls dramatically at birth while newborn urinary nitrite levels are significantly greater than adults. Acute NEC is associated with elevated plasma and urinary nitrite levels. PMID:26539663
MORPHOGENESIS OF DOUGLAS-FIR BUDS IN ALTERED AT ELEVATED TEMPERATURE BUT NOT AT ELEVATED CO21
Global climatic change as expressed by increased CO2 and temperature has the potential for dramatic effects on trees. To determine what its effects may be on Pacific Northwest forests, Douglas-fir (Pseudotsuga menziesii) seedlings were grown in sun-lit controlled environment cham...
Interactions of forest disturbance-recovery dynamics with a changing climate
NASA Astrophysics Data System (ADS)
Anderson-Teixeira, K. J.; Miller, A. D.; Tepley, A. J.; Bennett, A. C.; Wang, M.
2015-12-01
As the climate changes, altered disturbance-recovery dynamics in forests worldwide are likely to result in significant biogeochemical and biophysical feedbacks to the climate system. Climate shapes forest disturbance events including tree mortality and fire, with consequent climate feedbacks. For instance, in forests globally, drought increases tree mortality rates, having a stronger impact on larger trees and resulting in greater feedbacks to climate change than would occur if drought sensitivities were equal across tree size classes. Forest regeneration and associated biogeochemical and biophysical feedbacks are also shaped by climate: across the tropics the rate of biomass accumulation is faster in everwet than in seasonally dry climates, and in the Klamath region (N California / S Oregon), post-fire vegetation dynamics and microclimate are shaped by aridity. Forest recovery dynamics will be affected by elevated CO2 and climate change; for instance, models predict that forest regeneration rate, successional dynamics, and climate feedbacks will all be altered under elevated CO2. In combination, climatic impacts on disturbance and recovery can result in dramatic shifts in forest cover on the landscape level. For instance, in fire-prone forested landscapes, forest cover decreases with increasing frequency of high-severity fire and decreasing forest recovery rate, both of which could be altered by climate change, producing rapid loss of forest on the landscape level. Such effects may be amplified by the existence of alternative stable states, which can cause systems to experience non-reversible changes in cover type. Critical transitions in landscape-level forest cover would have significant biogeochemical and biophysical feedbacks. Thus, altered disturbance-recovery dynamics under a changing climate may have sudden and dramatic impacts on forest-climate interactions.
Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Chu, Haiyan
2016-01-01
The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.
Role of adrenal hormones in regulating distal nephron structure and ion transport.
Stanton, B A
1985-08-01
Mineralocorticoid levels are an important determinant of membrane area and ion transport in the renal initial (ICT) and cortical (CCT) collecting tubules. Adrenalectomy leads to a dramatic and specific decrease in basolateral membrane area of principal (P) cells and depresses sodium reabsorption and potassium secretion. Although aldosterone replacement for 10 days restores basolateral membrane area and ATPase activity to control levels and dramatically elevates ion transport, glucocorticoids have no effect on basolateral membrane area, ion transport, or ATPase. It is suggested that the aldosterone-induced amplification of membrane area occurs as a mechanism whereby cells increase the number of ATPase pumps in the basolateral membrane. An acute (of 2-3 h) increase in aldosterone, but not dexamethasone, also stimulates potassium transport by the ICT. Future studies will have to establish whether the acute stimulation of transport by aldosterone involves a change in basolateral membrane area. It is concluded that mineralocorticoids, but not glucocorticoids, regulate sodium and potassium transport by P cells of the ICT and CCT, in part, by determining the number of ATPase pumps available for transport.
Lead exposure and the 2010 achievement test scores of children in New York counties
2012-01-01
Background Lead is toxic to cognitive and behavioral functioning in children even at levels well below those producing physical symptoms. Continuing efforts in the U.S. since about the 1970s to reduce lead exposure in children have dramatically reduced the incidence of elevated blood lead levels (with elevated levels defined by the current U.S. Centers for Disease Control threshold of 10 μg/dl). The current study examines how much lead toxicity continues to impair the academic achievement of children of New York State, using 2010 test data. Methods This study relies on three sets of data published for the 57 New York counties outside New York City: school achievement data from the New York State Department of Education, data on incidence of elevated blood lead levels from the New York State Department of Health, and data on income from the U.S. Census Bureau. We studied third grade and eighth grade test scores in English Language Arts and mathematics. Using the county as the unit of analysis, we computed bivariate correlations and regression coefficients, with percent of children achieving at the lowest reported level as the dependent variable and the percent of preschoolers in the county with elevated blood lead levels as the independent variable. Then we repeated those analyses using partial correlations to control for possible confounding effects of family income, and using multiple regressions with income included. Results The bivariate correlations between incidence of elevated lead and number of children in the lowest achievement group ranged between 0.38 and 0.47. The partial correlations ranged from 0.29 to 0.40. The regression coefficients, both bivariate and partial (both estimating the increase in percent of children in the lowest achievement group for every percent increase in the children with elevated blood lead levels), ranged from 0.52 to 1.31. All regression coefficients, when rounded to the nearest integer, were approximately 1. Thus, when the percent of children showing elevated lead increases by one percent, the percent of children in the lowest achievement group, according to the regression equations generated, also increases by about one percent. All associations were significant at the 0.05 level. Conclusion Despite public health advances, and despite the imprecision of measures, an association between the incidence of elevated blood lead and achievement in New York counties is still apparent, not attributable to confounding by income. Efforts to reduce lead exposure should persist with vigor. PMID:22269775
NASA Astrophysics Data System (ADS)
Moser, K. A.; Hundey, E. J.; Porinchu, D. F.
2007-12-01
Aquatic systems in alpine and sub-alpine areas of the western United States are potentially impacted by atmospheric pollution and climate change. Because these mountainous regions are an important water resource for the western United States, it is critical to monitor and protect these systems. The Uinta Mountains are an east- west trending mountain range located on the border between Utah, Wyoming and Colorado and downwind of the Wasatch Front, Utah, which is characterized by a rapidly expanding population, as well as mining and industry. This alpine area provides water to many areas in Utah, and contributes approximately nine percent of the water supply to the Upper Colorado River. Our research is focused on determining the impacts of climate change and pollution on alpine lakes in the Uinta Mountains. The results presented here are based on limnological measurements made at 64 Uinta Mountain lakes spanning a longitude gradient of one degree and an elevation gradient of 3000 feet. At each lake maximum depth, conductivity, salinity, pH, Secchi depth, temperature, alkalinity, and concentrations of major anions, cations and trace metals were measured. Principal Components Analysis (PCA) was performed to determine relationships between these variables and to examine the variability of the values of these variables. Our results indicate that steep climate gradients related to elevation and longitude result in clear differences in limnological properties of the study sites, with high elevation lakes characterized by greater amounts of nitrate and nitrite compared to low elevation sites. As well, diatoms in these lakes indicate that many high elevation sites are mesotrophic to eutrophic, which is unexpected for such remote aquatic ecosystems. We hypothesize that elevated nitrate and nitrite levels at high elevation sites are related to atmospherically derived nitrogen, but are being exacerbated relative to lower elevation sites by greater snow cover and reduced plant cover. Paleolimnological analyses of well dated sediments from selected lakes indicate that some of these high elevation sites have undergone rapid and dramatic change beginning in the late 1800s to early 1900s. Many of these lakes have become more productive as indicated by loss-on-ignition and diatom analyses. Although the exact mechanism of these changes is uncertain, the timing closely follows recent increases in air and chironomid-inferred surface water temperatures, and increased fossil fuel burning in the region. Regardless of the exact mechanism, our results clearly indicate dramatic changes at these high elevation sites, which threaten critical water resources.
NASA Astrophysics Data System (ADS)
Zhao, Huabiao; Yang, Wei; Yao, Tandong; Tian, Lide; Xu, Baiqing
2016-08-01
Rapid climate change at high elevations has accelerated glacier retreat in the Himalayas and Tibetan Plateau. However, due to the lack of long-term glaciological measurements, there are still uncertainties regarding when the mass loss began and what the magnitude of mass loss is at such high elevations. Based on in situ glaciological observations during the past 9 years and a temperature-index mass balance model, this study investigates recent mass loss of the Naimona’nyi Glacier in the western Himalayas and reconstructs a 41-year (1973/74-2013/14) equilibrium line altitude (ELA) and glacier-wide mass loss. The result indicates that even at 6000 m above sea level (a.s.l.), the annual mass loss reaches ~0.73 m water equivalent (w.e.) during the past 9 years. Concordant with the abrupt climate shift in the end of 1980s, the ELA has dramatically risen from ~5969 ± 73 m a.s.l. during 1973/74-1988/89 to ~6193 ± 75 m a.s.l. during 1989/90-2013/14, suggesting that future ice cores containing uninterrupted climate records could only be recovered at least above 6200 m a.s.l. in the Naimona’nyi region. The glacier-wide mass balance over the past 41 years is averaged to be approximately -0.40 ± 0.17 m w.e., exhibiting a significant increase in the decadal average from -0.01 ± 0.15 to -0.69 ± 0.21 m w.e.
Sundin, Josefin; Amcoff, Mirjam; Mateos-González, Fernando; Raby, Graham D; Jutfelt, Fredrik; Clark, Timothy D
2017-01-01
Levels of dissolved carbon dioxide (CO 2 ) projected to occur in the world's oceans in the near future have been reported to increase swimming activity and impair predator recognition in coral reef fishes. These behavioral alterations would be expected to have dramatic effects on survival and community dynamics in marine ecosystems in the future. To investigate the universality and replicability of these observations, we used juvenile spiny chromis damselfish ( Acanthochromis polyacanthus ) to examine the effects of long-term CO 2 exposure on routine activity and the behavioral response to the chemical cues of a predator ( Cephalopholis urodeta ). Commencing at ~3-20 days post-hatch, juvenile damselfish were exposed to present-day CO 2 levels (~420 μatm) or to levels forecasted for the year 2100 (~1000 μatm) for 3 months of their development. Thereafter, we assessed routine activity before and after injections of seawater (sham injection, control) or seawater-containing predator chemical cues. There was no effect of CO 2 treatment on routine activity levels before or after the injections. All fish decreased their swimming activity following the predator cue injection but not following the sham injection, regardless of CO 2 treatment. Our results corroborate findings from a growing number of studies reporting limited or no behavioral responses of fishes to elevated CO 2 . Alarmingly, it has been reported that levels of dissolved carbon dioxide (CO 2 ) forecasted for the year 2100 cause coral reef fishes to be attracted to the chemical cues of predators. However, most studies have exposed the fish to CO 2 for very short periods before behavioral testing. Using long-term acclimation to elevated CO 2 and automated tracking software, we found that fish exposed to elevated CO 2 showed the same behavioral patterns as control fish exposed to present-day CO 2 levels. Specifically, activity levels were the same between groups, and fish acclimated to elevated CO 2 decreased their swimming activity to the same degree as control fish when presented with cues from a predator. These findings indicate that behavioral impacts of elevated CO 2 levels are not universal in coral reef fishes.
Zhong, Xiao Yan; Holzgreve, Wolfgang; Gebhardt, Stefan; Hillermann, Renate; Tofa, Kashefa Carelse; Gupta, Anurag Kumar; Huppertz, Berthold; Hahn, Sinuhe
2006-01-01
We have recently observed that fetal DNA and fetal corticotropin-releasing hormone (CRH) mRNA are associated with in vitro generated syncytiotrophoblast-derived microparticles, and that the ratio of fetal DNA to mRNA (CRH) varied according to whether the particles were derived by predominantly apoptotic, apo-necrotic or necrotic pathways. Hence, we examined whether these ratios varied in maternal plasma samples taken from normotensive and preeclamptic pregnancies in vivo. Maternal plasma samples were collected from 18 cases with preeclampsia and 29 normotensive term controls. Circulatory fetal CRH mRNA and DNA levels were quantified by real-time PCR and RT-PCR. Circulatory fetal mRNA and fetal DNA levels were significantly elevated in the preeclampsia study group when compared to normotensive controls. Alterations in the fetal mRNA to DNA ratio between the study and control groups were minimal, even when stratified into early (<34 weeks of gestation) and late (>34 weeks of gestation) onset preeclampsia. Our data suggest that although circulatory fetal DNA and mRNA levels are significantly elevated in preeclampsia, the ratios in maternal plasma are not dramatically altered. Copyright 2006 S. Karger AG, Basel.
Segmentectomy for giant pulmonary sclerosing haemangiomas with high serum KL-6 levels
Kuroda, Hiroaki; Mun, Mingyon; Okumura, Sakae; Nakagawa, Ken
2012-01-01
We describe a 61-year old female patient with a giant pulmonary sclerosing haemangioma (PSH) and an extremely high preoperative serum KL-6 level. During an annual health screening, the patient showed a posterior mediastinal mass on chest radiography. Chest computed tomography and magnetic resonance imaging revealed a well-circumscribed 60 mm diameter nodule with a marked contrast enhancement in the left lower lobe. The preoperative serum KL-6 level was elevated to 8204 U/ml. We performed a four-port thoracoscopic basal segmentectomy and lymph node sampling for diagnosis and therapy. The postoperative diagnosis showed PSH. The serum KL-6 level decreased dramatically with tumour resection. To the best of our knowledge, this is the first report of a patient with PSH showing a high serum KL-6 level. PMID:22454483
Landsberger, S; Wu, D
1995-12-01
The method of instrumental neutron activation analysis (NAA) has been improved for air filter samples in the determination of low level heavy metals in indoor air. By using the techniques of epithermal neutron irradiation in conjunction with Compton suppression, the detection limits of cadmium, arsenic and antimony measurements have been dramatically reduced to 2 ng for Cd, 0.2 ng for As, and 0.03 ng for Sb. The determination of these heavy metals in particulate material generated from cigarette smoking in indoor environments has been conducted. Other elements, Br, Cl, Na, K, Zn were also found at elevated levels.
Does the CRH binding protein shield the anterior pituitary from placental CRH?
Thomson, M
1998-12-01
Corticotropin releasing factor (CRH) is released from the hypothalamus and travels to the anterior pituitary where it stimulates the release of adrenocorticotropin (ACTH). In turn, ACTH travels through the blood and stimulates the release of cortisol from the adrenal. The placenta is also a source of CRH and is responsible for the dramatic rises in CRH plasma levels in the third trimester of pregnancy. A CRH binding protein may stop placental CRH from overstimulating the pituitary and may contribute to the reason that pregnant women show only mildly elevated levels of ACTH in the blood. There is evidence to suggest, however, that the CRH binding protein does not completely shield the corticotrope from placental CRH.
Gordon, Kerry; Nesterovitch, Andrew B.; Lünsdorf, Heinrich; Chen, Zhenlong; Castellon, Maricela; Popova, Isolda A.; Kalinin, Sergey; Mendonca, Emma; Petukhov, Pavel A.; Schwartz, David E.
2011-01-01
Background Angiotensin I-converting enzyme (ACE) metabolizes a range of peptidic substrates and plays a key role in blood pressure regulation and vascular remodeling. Thus, elevated ACE levels may be associated with an increased risk for different cardiovascular or respiratory diseases. Previously, a striking familial elevation in blood ACE was explained by mutations in the ACE juxtamembrane region that enhanced the cleavage-secretion process. Recently, we found a family whose affected members had a 6-fold increase in blood ACE and a Tyr465Asp (Y465D) substitution, distal to the stalk region, in the N domain of ACE. Methodology/Principal Findings HEK and CHO cells expressing mutant (Tyr465Asp) ACE demonstrate a 3- and 8-fold increase, respectively, in the rate of ACE shedding compared to wild-type ACE. Conformational fingerprinting of mutant ACE demonstrated dramatic changes in ACE conformation in several different epitopes of ACE. Cell ELISA carried out on CHO-ACE cells also demonstrated significant changes in local ACE conformation, particularly proximal to the stalk region. However, the cleavage site of the mutant ACE - between Arg1203 and Ser1204 - was the same as that of WT ACE. The Y465D substitution is localized in the interface of the N-domain dimer (from the crystal structure) and abolishes a hydrogen bond between Tyr465 in one monomer and Asp462 in another. Conclusions/Significance The Y465D substitution results in dramatic increase in the rate of ACE shedding and is associated with significant local conformational changes in ACE. These changes could result in increased ACE dimerization and accessibility of the stalk region or the entire sACE, thus increasing the rate of cleavage by the putative ACE secretase (sheddase). PMID:21998728
Mei, Shuang; Yang, Xuefeng; Guo, Huailan; Gu, Haihua; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Bennett, Brian J; He, Ling; Cao, Wenhong
2014-01-01
Both dietary fat and carbohydrates (Carbs) may play important roles in the development of insulin resistance. The main goal of this study was to further define the roles for fat and dietary carbs in insulin resistance. C57BL/6 mice were fed normal chow diet (CD) or HFD containing 0.1-25.5% carbs for 5 weeks, followed by evaluations of calorie consumption, body weight and fat gains, insulin sensitivity, intratissue insulin signaling, ectopic fat, and oxidative stress in liver and skeletal muscle. The role of hepatic gluconeogenesis in the HFD-induced insulin resistance was determined in mice. The role of fat in insulin resistance was also examined in cultured cells. HFD with little carbs (0.1%) induced severe insulin resistance. Addition of 5% carbs to HFD dramatically elevated insulin resistance and 10% carbs in HFD was sufficient to induce a maximal level of insulin resistance. HFD with little carbs induced ectopic fat accumulation and oxidative stress in liver and skeletal muscle and addition of carbs to HFD dramatically enhanced ectopic fat and oxidative stress. HFD increased hepatic expression of key gluconeogenic genes and the increase was most dramatic by HFD with little carbs, and inhibition of hepatic gluconeogenesis prevented the HFD-induced insulin resistance. In cultured cells, development of insulin resistance induced by a pathological level of insulin was prevented in the absence of fat. Together, fat is essential for development of insulin resistance and dietary carb is not necessary for HFD-induced insulin resistance due to the presence of hepatic gluconeogenesis but a very small amount of it can promote HFD-induced insulin resistance to a maximal level.
Guo, Huailan; Gu, Haihua; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Bennett, Brian J.; He, Ling; Cao, Wenhong
2014-01-01
Both dietary fat and carbohydrates (Carbs) may play important roles in the development of insulin resistance. The main goal of this study was to further define the roles for fat and dietary carbs in insulin resistance. C57BL/6 mice were fed normal chow diet (CD) or HFD containing 0.1–25.5% carbs for 5 weeks, followed by evaluations of calorie consumption, body weight and fat gains, insulin sensitivity, intratissue insulin signaling, ectopic fat, and oxidative stress in liver and skeletal muscle. The role of hepatic gluconeogenesis in the HFD-induced insulin resistance was determined in mice. The role of fat in insulin resistance was also examined in cultured cells. HFD with little carbs (0.1%) induced severe insulin resistance. Addition of 5% carbs to HFD dramatically elevated insulin resistance and 10% carbs in HFD was sufficient to induce a maximal level of insulin resistance. HFD with little carbs induced ectopic fat accumulation and oxidative stress in liver and skeletal muscle and addition of carbs to HFD dramatically enhanced ectopic fat and oxidative stress. HFD increased hepatic expression of key gluconeogenic genes and the increase was most dramatic by HFD with little carbs, and inhibition of hepatic gluconeogenesis prevented the HFD-induced insulin resistance. In cultured cells, development of insulin resistance induced by a pathological level of insulin was prevented in the absence of fat. Together, fat is essential for development of insulin resistance and dietary carb is not necessary for HFD-induced insulin resistance due to the presence of hepatic gluconeogenesis but a very small amount of it can promote HFD-induced insulin resistance to a maximal level. PMID:25055153
George, Elizabeth M; Rosvall, Kimberly A
2018-06-02
In many vertebrates, males increase circulating testosterone (T) levels in response to seasonal and social changes in competition. Females are also capable of producing and responding to T, but the full extent to which they can elevate T across life history stages remains unclear. Here we investigated T production during various breeding stages in female tree swallows (Tachycineta bicolor), which face intense competition for nesting sites. We performed GnRH and saline injections and compared changes in T levels 30 min before and after injection. We found that GnRH-injected females showed the greatest increases in T during territory establishment and pre-laying stages, whereas saline controls dramatically decreased T production during this time. We also observed elevated rates of conspecific aggression during these early stages of breeding. During incubation and provisioning, however, T levels and T production capabilities declined. Given that high T can disrupt maternal care, an inability to elevate T levels in later breeding stages may be adaptive. Our results highlight the importance of saline controls for contextualizing T production capabilities, and they also suggest that social modulation of T is a potential mechanism by which females may respond to competition, but only during the period of time when competition is most intense. These findings have broad implications for understanding how females can respond to their social environment and how selection may have shaped these hormone-behavior interactions. Copyright © 2018 Elsevier Inc. All rights reserved.
Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Chu, Haiyan
2016-01-01
The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500–2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change. PMID:27524983
Watson, Bonnie S.; Bedair, Mohamed F.; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Yang, Dong Sik; Allen, Stacy N.; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W.
2015-01-01
Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4′-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4′-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously. PMID:25667316
Caffeine accelerates recovery from general anesthesia
Wang, Qiang; Fong, Robert; Mason, Peggy; Fox, Aaron P.
2013-01-01
General anesthetics inhibit neurotransmitter release from both neurons and secretory cells. If inhibition of neurotransmitter release is part of an anesthetic mechanism of action, then drugs that facilitate neurotransmitter release may aid in reversing general anesthesia. Drugs that elevate intracellular cAMP levels are known to facilitate neurotransmitter release. Three cAMP elevating drugs (forskolin, theophylline, and caffeine) were tested; all three drugs reversed the inhibition of neurotransmitter release produced by isoflurane in PC12 cells in vitro. The drugs were tested in isoflurane-anesthetized rats. Animals were injected with either saline or saline containing drug. All three drugs dramatically accelerated recovery from isoflurane anesthesia, but caffeine was most effective. None of the drugs, at the concentrations tested, had significant effects on breathing rates, O2 saturation, heart rate, or blood pressure in anesthetized animals. Caffeine alone was tested on propofol-anesthetized rats where it dramatically accelerated recovery from anesthesia. The ability of caffeine to accelerate recovery from anesthesia for different chemical classes of anesthetics, isoflurane and propofol, opens the possibility that it will do so for all commonly used general anesthetics, although additional studies will be required to determine whether this is in fact the case. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in human patients. PMID:24375022
NASA Astrophysics Data System (ADS)
Liang, Liangliang; Liu, Xiaogang
2018-03-01
Phosphors often suffer luminescence quenching at elevated temperatures. Now, thermal quenching can be combated with surface phonon-assisted energy transfer, enabling the luminescence of ultrasmall upconversion nanophosphors to be dramatically enhanced.
Deanol acetamidobenzoate (Deaner) in tardive dyskinesia.
Stafford, J R; Fann, W E
1977-12-01
A total of twenty-nine patients have thus far been treated with deanol in various dosage levels for periods ranging from five to thirty days. Clinical response has been pronounced, even dramatic, in seven patients, moderate but significant in nine patients, and slight to insignificant in thirteen others. Videotape rating and quantitative accelerometry, to the extent that they constitute novel and stress-inducing experiences may not be representative of global clinical changes. Deanol did not produce the anticipated elevation in choline levels postulated to be one mechanism of its action. The failure of deanol to achieve this effect may most probably be attributed to interval after last dose, to inadequate level of deanol or to some alteration in choline metabolism in the presence of deanol. The etiology of tardive dyskinesia at biochemical and structural levels is complex. For some patients improvement has been dramatic and clearly associated with deanol. Others appear to exhibit minimal response which cannot be differentiated from placebo or environmental effects. Our present strategy, in common with that of other authors includes the administration of a "challenge" dose of rapid acting injectable cholinomimetic agents (e.g. physostigmine) and dopamine-blocking agents (e.g. haloperidol) with placebo controls. In this manner therapy may be more rationally selected for long-term use and may logically include deanol. The correlation of such predictive challenges with response to long-term treatment is an area for much more well controlled study.
Seo, Goo-Young; Lee, Jeong-Min; Jang, Young-Saeng; Kang, Seung Goo; Yoon, Sung-Il; Ko, Hyun-Jeong; Lee, Geun-Shik; Park, Seok-Rae; Nagler, Cathryn R; Kim, Pyeung-Hyeun
2017-12-01
The present study extends an earlier report that retinoic acid (RA) down-regulates IgE Ab synthesis in vitro. Here, we show the suppressive activity of RA on IgE production in vivo and its underlying mechanisms. We found that RA down-regulated IgE class switching recombination (CSR) mainly through RA receptor α (RARα). Additionally, RA inhibited histone acetylation of germ-line ε (GL ε) promoter, leading to suppression of IgE CSR. Consistently, serum IgE levels were substantially elevated in vitamin A-deficient (VAD) mice and this was more dramatic in VAD-lecithin:retinol acyltransferase deficient (LRAT -/- ) mice. Further, serum mouse mast cell protease-1 (mMCP-1) level was elevated while frequency of intestinal regulatory T cells (Tregs) were diminished in VAD LRAT -/- mice, reflecting that deprivation of RA leads to allergic immune response. Taken together, our results reveal that RA has an IgE-repressive activity in vivo, which may ameliorate IgE-mediated allergic disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Latus, Joerg; Braun, Niko; Alscher, M Dominik; Kimmel, Martin
2012-01-01
A 76-year-old woman (51 kg, 158 cm, body mass index 20.5) was admitted to the hospital because of an acute kidney injury with hyperkalemia. On admission, she reported progredient muscle weakness of all limbs for several days. Serum potassium level was dramatically elevated and ECG showed QRS with a ‘sine-wave’ pattern and haemodialysis was started. 45 days ago, Hartmann’s operation was done because of stenosing sigmoid diverticulitis. At this time, the serum creatinine was 0.4 mg/dl (‘normal’ 0.5–1.2). Thereafter, she got severe ‘high output-ileostoma’ with severe intestinal fluid losses and treatment with potassium supplementation and spironolactone was started by the surgeons. She was discharged with elevated serum potassium levels and serum creatinine of 1.0 mg/dl (‘normal’ range (0.5–1.2 mg/dl)). This case illustrates impressively the lack of serum creatinine as an ideal kidney function test, because it is depending on muscle mass and there is no interindividual normal range. PMID:22605836
Teaster, Neal D; Motes, Christy M; Tang, Yuhong; Wiant, William C; Cotter, Matthew Q; Wang, Yuh-Shuh; Kilaru, Aruna; Venables, Barney J; Hasenstein, Karl H; Gonzalez, Gabriel; Blancaflor, Elison B; Chapman, Kent D
2007-08-01
N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites.
Hemodynamic and permeability characteristics of acute experimental necrotizing enterocolitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M.J.; Adams, J.; Gu, X.A.
1990-10-01
We examined the local hemodynamic response of intestinal loops during acute necrotizing enterocolitis (NEC) in anesthetized rabbits. NEC was induced in ileal loops by transmural injection of a solution containing casein (10 mg/ml) and calcium gluconate (50 mg/ml) acidified to pH 4.0 with propionic or acetic acid. Control loops received casein only (pH 5.0). Mucosal damage was quantified by the blood-to-lumen movement of (51Cr)EDTA, fluid shifts into the lumen, and histology. Mean arterial pressure and loop blood flow were steady over the 3-hr period, loop fluid volume decreased, and there was no evidence of necrosis or epithelial damage. In loopsmore » receiving acidified casein and calcium gluconate, there was an immediate dramatic increase in loop blood flow that returned to baseline by 50 min. In addition, loop fluid volume was dramatically increased, necrosis was noted in the form of blunting and loss of villi, and sevenfold increase in (51Cr)EDTA permeability was evident. Administration of CV 1808 (30 mg/kg/hr), a selective adenosine2 agonist, which maintained and elevated loop blood flow throughout the 3 hr protocol, failed to alter the changes in loop fluid volume or prevent necrosis. Histamine levels in loop fluid levels were significantly elevated 20-30 min after NEC induction when compared to saline controls, indicating an early activation of mucosal defenses with this luminal insult. Thus, this model of NEC is characterized by a transient, acute hyperemia, increased intestinal permeability, and histamine release. As mucosal damage was independent of ischemia and could not be prevented by vasodilatory therapy, this model supports the clinical findings that NEC is correlated with luminal factors related to feeding and independent of cardiovascular stress.« less
Caffeine accelerates recovery from general anesthesia via multiple pathways.
Fong, Robert; Khokhar, Suhail; Chowdhury, Atif N; Xie, Kelvin G; Wong, Josiah Hiu-Yuen; Fox, Aaron P; Xie, Zheng
2017-09-01
Various studies have explored different ways to speed emergence from anesthesia. Previously, we have shown that three drugs that elevate intracellular cAMP (forskolin, theophylline, and caffeine) accelerate emergence from anesthesia in rats. However, our earlier studies left two main questions unanswered. First, were cAMP-elevating drugs effective at all anesthetic concentrations? Second, given that caffeine was the most effective of the drugs tested, why was caffeine more effective than forskolin since both drugs elevate cAMP? In our current study, emergence time from anesthesia was measured in adult rats exposed to 3% isoflurane for 60 min. Caffeine dramatically accelerated emergence from anesthesia, even at the high level of anesthetic employed. Caffeine has multiple actions including blockade of adenosine receptors. We show that the selective A 2a adenosine receptor antagonist preladenant or the intracellular cAMP ([cAMP] i )-elevating drug forskolin, accelerated recovery from anesthesia. When preladenant and forskolin were tested together, the effect on anesthesia recovery time was additive indicating that these drugs operate via different pathways. Furthermore, the combination of preladenant and forskolin was about as effective as caffeine suggesting that both A 2A receptor blockade and [cAMP] i elevation play a role in caffeine's ability to accelerate emergence from anesthesia. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in humans at all anesthetic concentrations and that both the elevation of [cAMP] i and adenosine receptor blockade play a role in this response. NEW & NOTEWORTHY Currently, there is no method to accelerate emergence from anesthesia. Patients "wake" when they clear the anesthetic from their systems. Previously, we have shown that caffeine can accelerate emergence from anesthesia. In this study, we show that caffeine is effective even at high levels of anesthetic. We also show that caffeine operates by both elevating intracellular cAMP levels and by blocking adenosine receptors. This complicated pharmacology makes caffeine especially effective in accelerating emergence from anesthesia. Copyright © 2017 the American Physiological Society.
Mountain landscapes offer few opportunities for high-elevation tree species migration
Bell, David M.; Bradford, John B.; Lauenroth, William K.
2014-01-01
Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes.
Southern Florida, Shaded Relief and Colored Height
NASA Technical Reports Server (NTRS)
2004-01-01
The very low topography of southern Florida is evident in this color-coded shaded relief map generated with data from the Shuttle Radar Topography Mission. The image on the left is a standard view, with the green colors indicating low elevations, rising through yellow and tan, to white at the highest elevations. In this exaggerated view even those highest elevations are only about 60 meters (197 feet) above sea level. For the view on the right, elevations below 5 meters (16 feet) above sea level have been colored dark blue, and lighter blue indicates elevations below 10 meters (33 feet). This is a dramatic demonstration of how Florida's low topography, especially along the coastline, make it especially vulnerable to flooding associated with storm surges. Planners can use data like these to predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C. Location: 27 degrees north latitude, 81 degrees west longitude Orientation: North toward the top, Mercator projection Size: 397 by 445 kilometers (246 by 276 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000Leonis, Mike A; Toney-Earley, Kenya; Degen, Sandra J F; Waltz, Susan E
2002-11-01
The targeted deletion of the cytoplasmic domain of the Ron receptor tyrosine kinase (TK) in mice leads to exaggerated responses to injury in several murine models of inflammation as well as increased lethality in response to endotoxin (lipopolysaccharide [LPS]). Using a well-characterized model of LPS-induced acute liver failure (ALF) in galactosamine (GalN)-sensitized mice, we show that Ron TK(-/-) mice display marked protection compared with control Ron TK(+/+) mice. Whereas control mice have profound elevation of serum aminotransferase levels (a marker of hepatocyte injury) and hemorrhagic necrosis of the liver, in dramatic contrast, Ron TK(-/-) mice have mild elevation of aminotransferase levels and relatively normal liver histology. These findings are associated with a reduction in the number of liver cells undergoing apoptosis in Ron TK(-/-) mice. Paradoxically, treatment of Ron TK(-/-) mice with LPS/GalN leads to markedly elevated (3.5-fold) serum levels of tumor necrosis factor (TNF) alpha, a key inflammatory mediator in this liver injury model, as well as reduced amounts of interleukin (IL) 10 (a suppressor of TNF-alpha production) and interferon (IFN)-gamma (a TNF-alpha sensitizer). These results show that ablation of the TK activity of the Ron receptor leads to protection from the development of hepatocellular apoptosis in response to treatment with LPS/GalN, even in the presence of excessive levels of serum TNF-alpha. In conclusion, our studies show that the Ron receptor TK plays a critical role in modulating the response of the liver to endotoxin.
Schmidt, S K; Reed, Sasha C; Nemergut, Diana R; Grandy, A Stuart; Cleveland, Cory C; Weintraub, Michael N; Hill, Andrew W; Costello, Elizabeth K; Meyer, A F; Neff, J C; Martin, A M
2008-12-22
Global climate change has accelerated the pace of glacial retreat in high-latitude and high-elevation environments, exposing lands that remain devoid of vegetation for many years. The exposure of 'new' soil is particularly apparent at high elevations (5000 metres above sea level) in the Peruvian Andes, where extreme environmental conditions hinder plant colonization. Nonetheless, these seemingly barren soils contain a diverse microbial community; yet the biogeochemical role of micro-organisms at these extreme elevations remains unknown. Using biogeochemical and molecular techniques, we investigated the biological community structure and ecosystem functioning of the pre-plant stages of primary succession in soils along a high-Andean chronosequence. We found that recently glaciated soils were colonized by a diverse community of cyanobacteria during the first 4-5 years following glacial retreat. This significant increase in cyanobacterial diversity corresponded with equally dramatic increases in soil stability, heterotrophic microbial biomass, soil enzyme activity and the presence and abundance of photosynthetic and photoprotective pigments. Furthermore, we found that soil nitrogen-fixation rates increased almost two orders of magnitude during the first 4-5 years of succession, many years before the establishment of mosses, lichens or vascular plants. Carbon analyses (pyrolysis-gas chromatography/mass spectroscopy) of soil organic matter suggested that soil carbon along the chronosequence was of microbial origin. This indicates that inputs of nutrients and organic matter during early ecosystem development at these sites are dominated by microbial carbon and nitrogen fixation. Overall, our results indicate that photosynthetic and nitrogen-fixing bacteria play important roles in acquiring nutrients and facilitating ecological succession in soils near some of the highest elevation receding glaciers on the Earth.
Wu, Xiaoqi; Pan, Bo; Wang, Ying; Liu, Lingjuan; Huang, Xupei; Tian, Jie
2018-01-01
Cardiovascular disease remains a worldwide public health issue. As fructose consumption is dramatically increasing, it has been demonstrated that a fructose-rich intake would increase the risk of cardiovascular disease. In addition, emerging evidences suggest that low concentration alcohol intake may exert a protective effect on cardiovascular system. This study aimed to investigate whether low-concentration alcohol consumption would prevent the adverse effects on cardiovascular events induced by high fructose in mice. From the results of hematoxylin-eosin staining, echocardiography, heart weight/body weight ratio and the expression of hypertrophic marker ANP, we found high-fructose result in myocardial hypertrophy and the low-concentration alcohol consumption would prevent the cardiomyocyte hypertrophy from happening. In addition, we observed low-concentration alcohol consumption could inhibit mitochondria swollen induced by high-fructose. The elevated levels of glucose, triglyceride, total cholesterol in high-fructose group were reduced by low concentration alcohol. Low expression levels of SIRT1 and PPAR-γ induced by high-fructose were significantly elevated when fed with low-concentration alcohol. The histone lysine 9 acetylation (acH3K9) level was decreased in PPAR-γ promoter in high-fructose group but elevated when intake with low concentration alcohol. The binding levels of histone deacetylase SIRT1 were increased in the same region in high-fructose group, while the low concentration alcohol can prevent the increased binding levels. Overall, our study indicates that low-concentration alcohol consumption could inhibit high-fructose related myocardial hypertrophy, cardiac mitochondria damaged and disorders of glucose-lipid metabolism. Furthermore, these findings also provide new insights into histone acetylation-deacetylation mechanisms of low-concentration alcohol treatment that may contribute to the prevention of cardiovascular disease induced by high-fructose intake. Copyright © 2017 Elsevier Inc. All rights reserved.
Advances in lipid-lowering therapy through gene-silencing technologies.
Nordestgaard, Børge G; Nicholls, Stephen J; Langsted, Anne; Ray, Kausik K; Tybjærg-Hansen, Anne
2018-05-01
New treatment opportunities are emerging in the field of lipid-lowering therapy through gene-silencing approaches. Both antisense oligonucleotide inhibition and small interfering RNA technology aim to degrade gene mRNA transcripts to reduce protein production and plasma lipoprotein levels. Elevated levels of LDL, remnant lipoproteins, and lipoprotein(a) all cause cardiovascular disease, whereas elevated levels of triglyceride-rich lipoproteins in some patients can cause acute pancreatitis. The levels of each of these lipoproteins can be reduced using gene-silencing therapies by targeting proteins that have an important role in lipoprotein production or removal (for example, the protein products of ANGPTL3, APOB, APOC3, LPA, and PCSK9). Using this technology, plasma levels of these lipoproteins can be reduced by 50-90% with 2-12 injections per year; such dramatic reductions are likely to reduce the incidence of cardiovascular disease or acute pancreatitis in at-risk patients. The reported adverse effects of these new therapies include injection-site reactions, flu-like symptoms, and low blood platelet counts. However, newer-generation drugs are more efficiently delivered to liver cells, requiring lower drug doses, which leads to fewer adverse effects. Although these findings are promising, robust evidence of cardiovascular disease reduction and long-term safety is needed before these gene-silencing technologies can have widespread implementation. Before the availability of such evidence, these drugs might have roles in patients with unmet medical needs through orphan indications.
Nitrous Oxide Abuse and Vitamin B12 Action in a 20-Year-Old Woman: A Case Report.
Duque, Miriam Andrea; Kresak, Jesse L; Falchook, Adam; Harris, Neil S
2015-01-01
Herein, we report a case of a 20-year-old (ethnicity not reported) woman with a history of nitrous oxide abuse and clinical symptoms consistent with spinal cord subacute combined degeneration with associated low serum concentrations of vitamin B12, elevated methylmalonic acid levels, and radiologic evidence of demyelination of the dorsal region of the spinal column. The health of the patient improved dramatically with B12 supplementation. In this case, we discuss the interaction of nitrous oxide with the enzymatic pathways involved in the biochemistry of vitamin B12. Copyright© by the American Society for Clinical Pathology (ASCP).
Slesak, B; Harlozinska-Szmyrka, A; Knast, W; Sedlaczek, P; Einarsson, R; van Dalen, A
2004-01-01
The aim of this study was to assess the value of TPS and CA 19-9 in a long-term follow-up analysis of 11 patients with chronic pancreatitis (CP) and 15 patients with pancreatic cancer (PC). In all monitored patients with chronic pancreatitis the initial TPS level was below 200 U/L, whereas CA 19-9 was elevated in two of them. In one patient a dramatic increase in the TPS concentration (820 U/L) was measured at the last follow-up visit (after 8.6 months), which led to the detection of PC. In all patients with PC the preoperative TPS level exceeded 200 U/L, whereas CA 19-9 was elevated in only nine patients. After the Kausch-Whipple operation 11 patients showed no evidence of disease and in eight of these patients both TPS and CA 19-9 were within the reference range; however, in three patients liver metastases were detected after 8-24 months from the last tumor marker measurement. In four of the 15 patients both markers were elevated at the end of the follow-up period and distant metastases were clinically confirmed. Our results indicate that in patients with CP and PC undergoing long-term follow-up, TPS reflects the clinical status of patients more accurately than CA 19-9.
The Hiroshima/Nagasaki Survivor Studies: Discrepancies Between Results and General Perception
2016-01-01
The explosion of atom bombs over the cities of Hiroshima and Nagasaki in August 1945 resulted in very high casualties, both immediate and delayed but also left a large number of survivors who had been exposed to radiation, at levels that could be fairly precisely ascertained. Extensive follow-up of a large cohort of survivors (120,000) and of their offspring (77,000) was initiated in 1947 and continues to this day. In essence, survivors having received 1 Gy irradiation (∼1000 mSV) have a significantly elevated rate of cancer (42% increase) but a limited decrease of longevity (∼1 year), while their offspring show no increased frequency of abnormalities and, so far, no detectable elevation of the mutation rate. Current acceptable exposure levels for the general population and for workers in the nuclear industry have largely been derived from these studies, which have been reported in more than 100 publications. Yet the general public, and indeed most scientists, are unaware of these data: it is widely believed that irradiated survivors suffered a very high cancer burden and dramatically shortened life span, and that their progeny were affected by elevated mutation rates and frequent abnormalities. In this article, I summarize the results and discuss possible reasons for this very striking discrepancy between the facts and general beliefs about this situation. PMID:27516613
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudd, A.
This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudd, Armin
This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less
Neurexin 1 (NRXN1) Splice Isoform Expression During Human Neocortical Development and Aging
Jenkins, Aaron K.; Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Kleinman, Joel E.; Law, Amanda J.
2015-01-01
Neurexin 1 (NRXN1), a presynaptic adhesion molecule, is implicated in several neurodevelopmental disorders characterized by synaptic dysfunction including, autism, intellectual disability, and schizophrenia. To gain insight into NRXN1’s involvement in human cortical development we used quantitative real time PCR to examine the expression trajectories of NRXN1, and its predominant isoforms NRXN1-α and NRXN1-β in prefrontal cortex from fetal stages to aging. Additionally, we investigated whether prefrontal cortical expression levels of NRXN1 transcripts are altered in schizophrenia or bipolar disorder in comparison to non-psychiatric control subjects. We observed that all three NRXN1 transcripts were highly expressed during human fetal cortical development, dramatically increasing with gestational age. In the postnatal DLPFC, expression levels were negatively correlated with age, peaking at birth until approximately 3 years of age, after which levels declined dramatically to be stable across the lifespan. NRXN1-β expression was modestly but significantly elevated in the brains of patients with schizophrenia compared to non-psychiatric controls, whereas NRXN1-α expression was increased in bipolar disorder. These data provide novel evidence that NRXN1 expression is highest in human prefrontal cortex during critical developmental windows relevant to the onset and diagnosis of a range of neurodevelopmental disorders, and that NRXN1 expression may be differentially altered in neuropsychiatric disorders. PMID:26216298
Piñero, María Carmen; Houdusse, Fabrice; Garcia-Mina, Jose M; Garnica, María; Del Amor, Francisco M
2014-08-01
This study examines the extent to which the predicted CO2 -protective effects on the inhibition of growth, impairment of photosynthesis and nutrient imbalance caused by saline stress are mediated by an effective adaptation of the endogenous plant hormonal balance. Therefore, sweet pepper plants (Capsicum annuum, cv. Ciclón) were grown at ambient or elevated [CO2] (400 or 800 µmol mol(-1)) with a nutrient solution containing 0 or 80 mM NaCl. The results show that, under saline conditions, elevated [CO2] increased plant dry weight, leaf area, leaf relative water content and net photosynthesis compared with ambient [CO2], whilst the maximum potential quantum efficiency of photosystem II was not modified. In salt-stressed plants, elevated [CO2 ] increased leaf NO3(-) concentration and reduced Cl(-) concentration. Salinity stress induced ABA accumulation in the leaves but it was reduced in the roots at high [CO2], being correlated with the stomatal response. Under non-stressed conditions, IAA was dramatically reduced in the roots when high [CO2] was applied, which resulted in greater root DW and root respiration. Additionally, the observed high CK concentration in the roots (especially tZR) could prevent downregulation of photosynthesis at high [CO2], as the N level in the leaves was increased compared with the ambient [CO2], under salt-stress conditions. These results demonstrate that the hormonal balance was altered by the [CO2], which resulted in significant changes at the growth, gas exchange and nutritional levels. © 2013 Scandinavian Plant Physiology Society.
Whelan, K.R.T.; Smith, T. J.; Anderson, G.H.; Ouellette, M.L.
2009-01-01
Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site's soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma's storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (± 3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.
Xi, Jinghui; Pan, Yiou; Bi, Rui; Gao, Xiwu; Chen, Xuewei; Peng, Tianfei; Zhang, Min; Zhang, Hua; Hu, Xiaoyue; Shang, Qingli
2015-02-01
A resistant strain of the Aphis glycines Matsumura (CRR) has developed 76.67-fold resistance to lambda-cyhalothrin compared with the susceptible (CSS) strain. Synergists piperonyl butoxide (PBO), S,S,S-Tributyltrithiophosphate (DEF) and triphenyl phosphate (TPP) dramatically increased the toxicity of lambda-cyhalothrin to the resistant strain. Bioassay results indicated that the CRR strain had developed high levels of cross-resistance to chlorpyrifos (11.66-fold), acephate (8.20-fold), cypermethrin (53.24-fold), esfenvalerate (13.83-fold), cyfluthrin (9.64-fold), carbofuran (14.60-fold), methomyl (9.32-fold) and bifenthrin (4.81-fold), but did not have cross-resistance to chlorfenapyr, imidacloprid, diafenthiuron, abamectin. The transcriptional levels of CYP6A2-like, CYP6A14-like and cytochrome b-c1 complex subunit 9-like increased significantly in the resistant strain than that in the susceptible. Similar trend were observed in the transcripts and DNA copy number of CarE and E4 esterase. Overall, these results demonstrate that increased esterase hydrolysis activity, combined with elevated cytochrome P450 monooxygenase detoxicatication, plays an important role in the high levels of lambda-cyhalothrin resistance and can cause cross-resistance to other insecticides in the CRR strain. Copyright © 2014 Elsevier Inc. All rights reserved.
Rounds, R.A.; Erwin, R.M.; Portera, J.H.
2004-01-01
Rising sea levels in the mid-Atlantic region pose a long-term threat to marshes and their avian inhabitants. The Gull-billed Tern (Sterna nilotica), Common Tern (S. hirundo), Black Skimmer (Rynchops niger), and American Oystercatcher (Haematopus palliatus), species of concern in Virginia, nest on low shelly perimeters of salt marsh islands on the Eastern Shore of Virginia. Marsh shellpiles are free of mammalian predators, but subject to frequent floods that reduce reproductive success. In an attempt to examine nest-site selection, enhance habitat, and improve hatching success, small (2 ? 2 m) plots on five island shellpiles were experimentally elevated, and nest-site selection and hatching success were monitored from 1 May to 1 August, 2002. In addition, location, elevation, and nesting performance of all other nests in the colonies were also monitored. No species selected the elevated experimental plots preferentially over adjacent control plots at any of the sites. When all nests were considered, Common Tern nests were located significantly lower than were random point elevations at two sites, as they tended to concentrate on low-lying wrack. At two other sites, however, Common Tern nests were significantly higher than were random points. Gull-billed Terns and American Oystercatchers showed a weak preference for higher elevations on bare shell at most sites. Hatching success was not improved on elevated plots, despite the protection they provided from flooding. Because of a 7 June flood, when 47% of all nests flooded, hatching success for all species was low. Nest elevation had the strongest impact on a nest's probability of hatching, followed by nest-initiation date. Predation rates were high at small colonies, and Ruddy Turnstones (Arenaria interpres) depredated 90% of early Gull-billed Tern nests at one shellpile. The importance of nest elevation and flooding on hatching success demonstrates the potential for management of certain waterbird nesting sites. Facing threats from predators on barrier islands and rising sea levels especially in the mid-Atlantic region, several species of nesting waterbirds may benefit dramatically with modest manipulation of even small habitat patches on isolated marsh islands.
Kleiber, Catherine E
2017-01-01
A type 1 diabetic male reports multiple instances when his blood glucose was dramatically elevated by the presence of microwave radiation from wireless technology and plummeted when the radiation exposure ended. In one instance, his body temperature elevated in addition to his blood glucose. Both remained elevated for nearly 48 h after exposure with the effect gradually decreasing. Possible mechanisms for microwave radiation elevating blood glucose include effects on glucose transport proteins and ion channels, insulin conformational changes and oxidative stress. Temperature elevation may be caused by microwave radiation-triggered Ca 2+ efflux, a mechanism similar to malignant hyperthermia. The potential for radiation from wireless technology to cause serious biological effects has important implications and necessitates a reevaluation of its near-ubiquitous presence, especially in hospitals and medical facilities.
Krumbein, Angelika; Kläring, Hans-Peter; Schonhof, Ilona; Schreiner, Monika
2010-03-24
Atmospheric carbon dioxide (CO(2)) concentration is an environmental factor currently undergoing dramatic changes. The objective of the present study was to determine the effect of doubling the ambient CO(2) concentration on plant photochemistry as measured by photochemical quenching coefficient (qP), soluble sugars and volatiles in broccoli. Elevated CO(2) concentration increased qP values in leaves by up to 100% and 89% in heads, while glucose and sucrose in leaves increased by about 60%. Furthermore, in broccoli heads elevated CO(2) concentration induced approximately a 2-fold increase in concentrations of three fatty acid-derived C(7) aldehydes ((E)-2-heptenal, (E,Z)-2,4-heptadienal, (E,E)-2,4-heptadienal), two fatty acid-derived C(5) alcohols (1-penten-3-ol, (Z)-2-pentenol), and two amino acid-derived nitriles (phenyl propanenitrile, 3-methyl butanenitrile). In contrast, concentrations of the sulfur-containing compound 2-ethylthiophene and C(6) alcohol (E)-2-hexenol decreased. Finally, elevated CO(2) concentration increased soluble sugar concentrations due to enhanced photochemical activity in leaves and heads, which may account for the increased synthesis of volatiles.
Wiegman, Adrian R H; Day, John W; D'Elia, Christopher F; Rutherford, Jeffrey S; Morris, James T; Roy, Eric D; Lane, Robert R; Dismukes, David E; Snyder, Brian F
2018-03-15
Over 25% of Mississippi River delta plain (MRDP) wetlands were lost over the past century. There is currently a major effort to restore the MRDP focused on a 50-year time horizon, a period during which the energy system and climate will change dramatically. We used a calibrated MRDP marsh elevation model to assess the costs of hydraulic dredging to sustain wetlands from 2016 to 2066 and 2016 to 2100 under a range of scenarios for sea level rise, energy price, and management regimes. We developed a subroutine to simulate dredging costs based on the price of crude oil and a project efficiency factor. Crude oil prices were projected using forecasts from global energy models. The costs to sustain marsh between 2016 and 2100 changed from $128,000/ha in the no change scenario to ~$1,010,000/ha in the worst-case scenario for sea level rise and energy price, an ~8-fold increase. Increasing suspended sediment concentrations, which is possible using managed river diversions, raised created marsh lifespan and decreased long term dredging costs. Created marsh lifespan changed nonlinearly with dredging fill elevation and suspended sediment level. Cost effectiveness of marsh creation and nourishment can be optimized by adjusting dredging fill elevation to the local sediment regime. Regardless of management scenario, sustaining the MRDP with hydraulic dredging suffered declining returns on investment due to the convergence of energy and climate trends. Marsh creation will likely become unaffordable in the mid to late 21st century, especially if river sediment diversions are not constructed before 2030. We recommend that environmental managers take into consideration coupled energy and climate scenarios for long-term risk assessments and adjust restoration goals accordingly. Copyright © 2017 Elsevier B.V. All rights reserved.
Teaster, Neal D.; Motes, Christy M.; Tang, Yuhong; Wiant, William C.; Cotter, Matthew Q.; Wang, Yuh-Shuh; Kilaru, Aruna; Venables, Barney J.; Hasenstein, Karl H.; Gonzalez, Gabriel; Blancaflor, Elison B.; Chapman, Kent D.
2007-01-01
N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites. PMID:17766402
Cast Aluminum Alloy for High Temperature Applications
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2003-01-01
Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.
High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.; Chen, Po Shou
2003-01-01
Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent thermal growth stability, surface hardness and wear resistant properties.
Li, Yuanyuan; Ran, Wenzhuo; Zhang, Jiaqiang; Chen, Shi; Li, Yihang; Luo, Deng; Wang, Chen; Jia, Weiping
2017-07-01
Milk fat globule-epidermal growth factor 8 (MFG-E8) is the key mediator in anti-inflammatory responses that facilitate phagocytosis of apoptotic cells, and play an essential role in type 2 diabetes and pregnancy, both of which are under a low-grade inflammatory state. However, the action of MFG-E8 in gestational diabetes mellitus (GDM) is unclear. We measured plasma MFG-E8 levels in pregnancy and GDM for the first time, and elucidated possible relationships between its plasma levels and various metabolic parameters. Plasma MFG-E8 levels were quantified by enzyme-linked immunosorbent assay in 66 women with GDM, 70 with normal pregnancy (p-NGT) and 44 healthy non-pregnant controls (CON), who were matched for age and body mass index. Inflammatory factors tumor necrosis factor-α (TNF-α) and C-reactive protein levels were measured, oral glucose tolerance test was carried out and β-cell function was evaluated. Plasma MFG-E8 levels were remarkably higher in p-NGT than in CON (P = 0.024), and were further elevated in GDM vs p-NGT (P = 0.016). MFG-E8 concentrations correlated positively with hemoglobin A1c, glucose levels and insulin resistance (homeostasis model assessment for insulin resistance), and correlated inversely with TNF-α and insulin secretion evaluated by disposition indices in pregnancies. Fasting glucose levels, disposition index of first phase insulin secretion and TNF-α were independent predictors of MFG-E8 levels in pregnancies. Logistic regression analyses showed that women in the third tertile of MFG-E8 levels had a markedly elevated risk of GDM. Circulating MFG-E8 levels are dramatically elevated in pregnancy, and are significantly higher in GDM vs p-NGT. MFG-E8 concentrations are significantly associated with TNF-α, fasting glucose levels, homeostasis model assessment for insulin resistance and disposition indices. However, further studies are required to elucidate the regulation mechanism of MFG-E8 during pregnancy and GDM. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.
NASA Technical Reports Server (NTRS)
Shazly, Mostafa; Nathenson, David; Prakash, Vikas
2003-01-01
Gamma titanium aluminides have received considerable attention over the last decade. These alloys are known to have low density, good high temperature strength retention, and good oxidation and corrosion resistance. However, poor ductility and low fracture toughness have been the key limiting factors in the full utilization of these alloys. More recently, Gamma-met PX has been developed by GKSS, Germany. These alloys have been observed to have superior strengths at elevated temperatures and quasi-static deformation rates and good oxidation resistance at elevated temperatures when compared with other gamma titanium aluminides. The present paper discusses results of a study to understand dynamic response of gamma-met PX in uniaxial compression. The experiments were conducted by using a modified split Hopkinson pressure bar between room temperature and 900 C and strain rates of up to 3500 per second. The Gamma met PX alloy showed superior strength when compared to nickel based superalloys and other gamma titanium aluminides at all test temperatures. It also showed strain and strain-rate hardening at all levels of strain rates and temperatures and without yield anomaly up to 900 C. After approximately 600 C, thermal softening is observed at all strain rates with the rate of thermal softening increasing dramatically between 800 and 900 C. However, these flow stress levels are comparatively higher in Gamma met PX than those observed for other TiAl alloys.
Neuroimmunomodulators in neuroborreliosis and Lyme encephalopathy.
Eckman, Elizabeth A; Pacheco-Quinto, Javier; Herdt, Aimee R; Halperin, John J
2018-01-11
Lyme encephalopathy, characterized by non-specific neurobehavioral symptoms including mild cognitive difficulties, may occur in patients with systemic Lyme disease and is often mistakenly attributed to CNS infection. Identical symptoms occur in innumerable other inflammatory states and may reflect the effect of systemic immune mediators on the CNS. Multiplex immunoassays were used to characterize the inflammatory profile in serum and CSF from Lyme and non-Lyme patients with a range of symptoms to determine if there are specific markers of active CNS infection (neuroborreliosis), or systemic inflammatory mediators associated with neurobehavioral syndromes. CSF CXCL13 was elevated dramatically in confirmed neuroborreliosis (n=8) and to a lesser extent in possible neuroborreliosis (n=11) and other neuroinflammatory conditions (n=44). Patients with Lyme (n=63) or non-Lyme (n=8) encephalopathy had normal CSF findings, but had elevated serum levels of IL-7, TSLP, IL-17A, IL-17F, and MIP-1α/CCL3. CSF CXCL13 is a sensitive and specific marker of neuroborreliosis in individuals with Borrelia-specific intrathecal antibody (ITAb) production. However, CXCL13 does not distinguish individuals strongly suspected of having neuroborreliosis, but lacking confirmatory ITAb, from those with other neuroinflammatory conditions. Patients with mild cognitive symptoms occurring during acute Lyme disease, and/or following appropriate treatment, have normal CSF but elevated serum levels of T-helper 17 markers and T-cell growth factors. These markers are also elevated in non-Lyme disease patients experiencing similar symptoms. Our results support that in the absence of CSF abnormalities, neurobehavioral symptoms are associated with systemic inflammation, not CNS infection or inflammation, and are not specific to Lyme disease. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
High tides and rising seas: potential effects on estuarine waterbirds
Erwin, R.M.; Sanders, G.M.; Prosser, D.J.; Cahoon, D.R.; Greenberg, Russell; Maldonado, Jesus; Droege, Sam; McDonald, M.V.
2006-01-01
Coastal waterbirds are vulnerable to water-level changes especially under predictions of accelerating sea-level rise and increased storm frequency in the next century. Tidal and wind-driven fluctuations in water levels affecting marshes, their invertebrate communities, and their dependent waterbirds are manifested in daily, monthly, seasonal, annual, and supra-annual (e.g., decadal or 18.6-yr) periodicities. Superimposed on these cyclic patterns is a long-term (50?80 yr) increase in relative sea-level rise that varies from about 2?4 + mm/yr along the Atlantic coastline. At five study sites selected on marsh islands from Cape Cod, Massachusetts to coastal Virginia, we monitored marsh elevation changes and flooding, tide variations over time, and waterbird use. We found from longterm marsh core data that marsh elevations at three of five sites may not be sufficient to maintain pace with current sea-level rise. Results of the short-term (3?4 yr) measures using surface elevation tables suggest a more dramatic difference, with marsh elevation change at four of five sites falling below relative sea-level rise. In addition, we have found a significant increase (in three of four cases) in the rate of surface marsh flooding in New Jersey and Virginia over the past 70?80 yr during May?July when waterbirds are nesting on or near the marsh surface. Short-term, immediate effects of flooding will jeopardize annual fecundity of many species of concern to federal and state agencies, most notably American Black Duck (Anas rubripes), Nelson?s Sharp-tailed Sparrow (Ammodramus nelsoni), Saltmarsh Sharp-tailed Sparrow (A. caudacutus), Seaside Sparrow (A. maritima), Coastal Plain Swamp Sparrow (Melospiza georgiana nigrescens), Black Rail (Laterallus jamaicensis), Forster?s Tern (Sterna forsteri), Gull-billed Tern (S. nilotica), Black Skimmer (Rynchops niger), and American Oystercatcher (Haemotopus palliatus). Forster?s Terns are probably most at risk given the large proportion of their breeding range in the mid-Atlantic and their saltmarsh specialization. At a scale of 1?2 decades, vegetation changes (saltmeadow cordgrass [Spartina patens] and salt grass [Distichlis spicata] converting to smooth cordgrass [Spartina alternifl ora]), interior pond expansion and erosion of marshes will reduce nesting habitat for many of these species, but may enhance feeding habitat of migrant shorebirds and/or migrant or wintering waterfowl. At scales of 50?100 yr, reversion of marsh island complexes to open water may enhance populations of open-bay waterfowl, e.g., Bufflehead (Bucephala albeola) and Canvasback (Aythya valisneria), but reduce nesting habitats dramatically for the above named marsh-nesting species, may reduce estuarine productivity by loss of the detrital food web and nursery habitat for fish and invertebrates, and cause redistribution of waterfowl, shorebirds, and other species. Such scenarios are more likely to occur in the mid- and north Atlantic regions since these estuaries are lower in sediment delivery on average than those in the Southeast. A simple hypothetical example from New Jersey is presented where waterbirds are forced to shift from submerged natural marshes to nearby impoundments, resulting in roughly a 10-fold increase in density. Whether prey fauna are sufficiently abundant to support this level of increase remains an open question, but extreme densities in confined habitats would exacerbate competition, increase disease risk, and possibly increase predation.
ACE phenotyping in Gaucher disease.
Danilov, Sergei M; Tikhomirova, Victoria E; Metzger, Roman; Naperova, Irina A; Bukina, Tatiana M; Goker-Alpan, Ozlem; Tayebi, Nahid; Gayfullin, Nurshat M; Schwartz, David E; Samokhodskaya, Larisa M; Kost, Olga A; Sidransky, Ellen
2018-04-01
Gaucher disease is characterized by the activation of splenic and hepatic macrophages, accompanied by dramatically increased levels of angiotensin-converting enzyme (ACE). To evaluate the source of the elevated blood ACE, we performed complete ACE phenotyping using blood, spleen and liver samples from patients with Gaucher disease and controls. ACE phenotyping included 1) immunohistochemical staining for ACE; 2) measuring ACE activity with two substrates (HHL and ZPHL); 3) calculating the ratio of the rates of substrate hydrolysis (ZPHL/HHL ratio); 4) assessing the conformational fingerprint of ACE by evaluating the pattern of binding of monoclonal antibodies to 16 different ACE epitopes. We show that in patients with Gaucher disease, the dramatically increased levels of ACE originate from activated splenic and/or hepatic macrophages (Gaucher cells), and that both its conformational fingerprint and kinetic characteristics (ZPHL/HHL ratio) differ from controls and from patients with sarcoid granulomas. Furthermore, normal spleen was found to produce high levels of endogenous ACE inhibitors and a novel, tightly-bound 10-30 kDa ACE effector which is deficient in Gaucher spleen. The conformation of ACE is tissue-specific. In Gaucher disease, ACE produced by activated splenic macrophages differs from that in hepatic macrophages, as well as from macrophages and dendritic cells in sarcoid granulomas. The observed differences are likely due to altered ACE glycosylation or sialylation in these diseased organs. The conformational differences in ACE may serve as a specific biomarker for Gaucher disease. Copyright © 2018 Elsevier Inc. All rights reserved.
Mei, Tsai Ching
2016-01-01
The services of OR play an important role in the medical business for department of surgery. The most important issue for OR is about the scheduling and management of surgeries. Good surgery schedule could elevate the utilization efficiency of OR. Therefore, the introduction of excellent medical information can both dramatically elevate the work efficiency of health care employees and reduce workload to reach win-win benefits in both management and performance.
Lead-contaminated imported tamarind candy and children's blood lead levels.
Lynch, R A; Boatright, D T; Moss, S K
2000-01-01
In 1999, an investigation implicated tamarind candy as the potential source of lead exposure for a child with a significantly elevated blood lead level (BLL). The Oklahoma City-County Health Department tested two types of tamarind suckers and their packaging for lead content. More than 50% of the tested suckers exceeded the US Food and Drug Administration (FDA) Level of Concern for lead in this type of product. The authors calculated that a child consuming one-quarter to one-half of either of the two types of suckers in a day would exceed the maximum FDA Provis onal Tolerable Intake for lead. High lead concentrations in the two types of wrappers suggested leaching as a potential source of contamination. The authors used the Environmental Protection Agency's Integrated Exposure Uptake Biokinetic (IEUBK) model to predict the effects of consumption of contaminated tamarind suckers on populat on BLLs. The IEUBK model predicted that consumption of either type of sucker at a rate of one per day would result in dramatic increases in mean BLLs for children ages 6-84 months in Oklahoma and in the percentage of children wth elevated BLLs (> or =10 micrograms per deciliter [microg/dL]). The authors conclude that consumption of these products represents a potential public health threat. In addition, a history of lead contamination in imported tamarind products suggests that import control measures may not be completely effective in preventing additional lead exposure.
Cui, Yanting; Ren, Xianyun; Li, Jian; Zhai, Qianqian; Feng, Yanyan; Xu, Yang; Ma, Li
2017-05-01
The purpose of this study was to evaluate the immunological responses, such as phenoloxidase (PO), antibacterial, and bacteriolytic activities, and metabolic variables, such as oxyhemocyanin, lactate, and glucose levels, of Litopenaeus vannamei exposed to ambient ammonia-N at 0, 2.5, 5, 7.5, and 10 mg/L for 0, 3, 6, 12, 24, and 48 h, and determine the effects of the eyestalk hormone on the metabolic and immune functions of unilateral eyestalk-ablated L. vannamei exposed to ambient ammonia-N at 10 mg/L. The actual concentrations of the control and test solutions were 0.04, 2.77, 6.01, 8.30, and 11.36 mg/L for ammonia-N and 0.01, 0.15, 0.32, 0.44, and 0.60 mg/L for NH 3 -N (unionized ammonia). The results showed a significant decrease in the PO, antibacterial, and bacteriolytic activities in the plasma as well as a significant increase in the glucose and lactate levels and decreased oxyhemocyanin levels in the hemolymph of L. vannamei exposed to elevated ammonia-N levels. These findings indicated that L. vannamei exposed to ammonia-N might demonstrate weakened metabolic and immunological responses. Moreover, eyestalk removal caused a dramatic decrease in PO, antibacterial, and bacteriolytic activities, which indicated that the eyestalk hormone in L. vannamei exhibited a higher immune response due to the induction of protective mechanisms against ammonia-N stress. Eyestalk removal also caused a dramatic decrease in glucose and lactate levels, suggesting that the eyestalk hormone is involved in glucose metabolism to meet the energy requirements under ammonia-N stress conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mason, Amanda G; Tomé, Stephanie; Simard, Jodie P; Libby, Randell T; Bammler, Theodor K; Beyer, Richard P; Morton, A Jennifer; Pearson, Christopher E; La Spada, Albert R
2014-03-15
Expansion of CAG/CTG trinucleotide repeats causes numerous inherited neurological disorders, including Huntington's disease (HD), several spinocerebellar ataxias and myotonic dystrophy type 1. Expanded repeats are genetically unstable with a propensity to further expand when transmitted from parents to offspring. For many alleles with expanded repeats, extensive somatic mosaicism has been documented. For CAG repeat diseases, dramatic instability has been documented in the striatum, with larger expansions noted with advancing age. In contrast, only modest instability occurs in the cerebellum. Using microarray expression analysis, we sought to identify the genetic basis of these regional instability differences by comparing gene expression in the striatum and cerebellum of aged wild-type C57BL/6J mice. We identified eight candidate genes enriched in cerebellum, and validated four--Pcna, Rpa1, Msh6 and Fen1--along with a highly associated interactor, Lig1. We also explored whether expression levels of mismatch repair (MMR) proteins are altered in a line of HD transgenic mice, R6/2, that is known to show pronounced regional repeat instability. Compared with wild-type littermates, MMR expression levels were not significantly altered in R6/2 mice regardless of age. Interestingly, expression levels of these candidates were significantly increased in the cerebellum of control and HD human samples in comparison to striatum. Together, our data suggest that elevated expression levels of DNA replication and repair proteins in cerebellum may act as a safeguard against repeat instability, and may account for the dramatically reduced somatic instability present in this brain region, compared with the marked instability observed in the striatum.
Warming and Acidification Induced Mass Mortality of a Coastal Keystone predator
NASA Astrophysics Data System (ADS)
Melzner, F.; Findeisen, U.
2016-02-01
The Baltic Sea is characterized by low salinity and pronounced fluctuations in pCO2. On-line monitoring of pCO2 in 2014 in Kiel Fjord demonstrated occurrence of peak values of >2,000 µatm in summer and autumn and average values >750 µatm. We assessed the impacts of elevated temperature (ambient temperature, ambient +3°C) and pCO2 (500, 1,500, 2,400 µatm) on the keystone species Asterias rubens in a fully crossed long - term experiment (N=5 replicate tanks each, 1 year duration). During spring and early summer (February - June), high temperature animals ingested significantly more food and spawned significantly earlier (April 30th) than ambient acclimated animals (May 23rd). Elevated pCO2 led to comparatively minor reductions in food intake and scope for growth during that period. During summer (June - August), elevated temperature >25°C caused negative energy budgets and >95% mortality in the warm acclimated groups, while mortality was low in the ambient temperature groups. Our results indicate that A. rubens may benefit from increased temperature during colder months, yet dramatically suffer during summer heat waves in warm years. Meaningful experimental approaches to assess species vulnerability to climate change need to encompass all seasons and realistic abiotic stressor levels.
Elevation of macrophage-derived chemokine in eosinophilic pneumonia: a role of alveolar macrophages.
Manabe, Kazuyoshi; Nishioka, Yasuhiko; Kishi, Jun; Inayama, Mami; Aono, Yoshinori; Nakamura, Yoichi; Ogushi, Fumitaka; Bando, Hiroyasu; Tani, Kenji; Sone, Saburo
2005-02-01
Macrophage-derived chemokine (MDC/CCL22) and thymus-and activation-regulated chemokine (TARC/CCL17) are ligands for CC chemokine receptor 4. Recently, TARC has been reported to play a role in the pathogenesis of idiopathic eosinophilic pneumonia (IEP). The purpose of this study was to evaluate the role of MDC in IEP and other interstitial lung diseases (ILDs). MDC and TARC in the bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay in patients with ILDs and healthy volunteers (HV). We also examined the expression of MDC mRNA in alveolar macrophages (AM) by real-time quantitative reverse transcriptase-polymerase chain reaction. Both MDC and TARC were detected only in BALF obtained from IEP patients. The concentration of MDC was higher than that of TARC in all cases. The level of MDC in IEP correlated with that of TARC. AM from IEP patients expressed a significantly higher amount of MDC than that from HV at the levels of protein and mRNA. MDC in BALF from IEP dramatically decreased when patients achieved remission. These findings suggest that MDC, in addition to TARC, might be involved in the pathogenesis of IEP, and AM play a role in the elevation of MDC in IEP.
A case report of neonatal diabetes due to neonatal hemochromatosis.
Cetinkaya, Semra; Kunak, Benal; Kara, Cengiz; Demirçeken, Fulya; Yarali, Neşe; Polat, Emine; Aycan, Zehra
2010-05-01
A 6-week-old girl, the first child of non-consanguineous parents, was admitted to the hospital for evaluation of vomiting. She was small for gestational age (1500 g). On admission, she weighed 1830 g, and appeared dehydrated. The blood glucose was 880 mg/dL. Insulin and C-peptide levels were <1 microIU/ml and 0.1 pmol/L, respectively. Antibodies of diabetes were negative. The serum triglyceride level was markedly elevated (5322 mg/dL). After a few days of insulin therapy, the triglyceride levels dramatically decreased, but cholestasis persisted. A liver biopsy revealed diffuse iron deposition and the diagnosis of neonatal hemochromatosis was established. In neonatal hemochromatosis, diabetes may occur as a result of iron deposition in the pancreas. The coexistence of neonatal diabetes secondary to neonatal hemochromatosis with a fatal course during the infancy period has not been previously reported. In this report, an infant with neonatal diabetes secondary to neonatal hemochromatosis is presented as the first case in the literature involving the coexistence of these two conditions.
NASA Technical Reports Server (NTRS)
Salinas, Santo V.; Chew, Boon Ning; Miettinen, Jukka; Campbell, James R.; Welton, Ellsworth J.; Reid, Jeffrey S.; Yu, Liya E.; Liew, Soo Chin
2013-01-01
Trans-boundary biomass burning smoke episodes have increased dramatically during the past 20-30 years and have become an annual phenomenon in the South-East-Asia region. On 15th October 2010, elevated levels of fire activity were detected by remote sensing satellites (e.g. MODIS). On the same date, measurements of fine particulate matter (PM2.5) at Singapore and Malaysia found high levels of fine mode particles in the local environment. All these observations were indicative of the initial onset of a smoke episode that lasted for several days. In this work, we investigate the temporal evolution of this smoke episode by analyzing the physical and optical properties of smoke particles with the aid of an AERONET Sun photometer, an MPLNet micropulse lidar, and surface PM2.5 measurements. Elevated levels of fire activity coupled with high aerosol optical depth and PM2.5 were observed over a period of nine days. Increased variability of parameters such as aerosol optical depth, Angstrom exponent number and its fine mode equivalents all indicated high levels of fine particulate presence in the atmosphere. Smoke particle growth due to aging, coagulation and condensation mechanisms was detected during the afternoons and over several days. Retrieved lidar ratios were compatible with the presence of fine particulate within the boundary/aerosol layer. Moreover, retrieved particle size distribution as well as single scattering albedo indicated the prevalence of the fine mode particulate regime as well as particles showing enhanced levels of absorption respectively.
Grape seed extract reduces oxidative stress and fibrosis in experimental biliary obstruction.
Dulundu, Ender; Ozel, Yahya; Topaloglu, Umit; Toklu, Hale; Ercan, Feriha; Gedik, Nursal; Sener, Goksel
2007-06-01
The aim of this study was to assess the protective effect of grape seed extract (GSE) against oxidative liver injury and fibrosis induced by biliary obstruction in rats. Wistar albino rats were divided into four groups; control (C), GSE-treated, bile duct ligated (BDL), and BDL and GSE-treated (BDL + GSE) groups. GSE was administered at a dose of 50 mg/kg a day orally for 28 days. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver function and tissue damage, respectively. Tumor necrosis factor-alpha (TNF-alpha) and antioxidant capacity (AOC) were assayed in plasma samples. Liver tissues were taken for determination of the hepatic malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content. Production of reactive oxidants was monitored by chemiluminescence (CL) assay. Serum AST, ALT, LDH and plasma TNF-alpha were elevated in the BDL group as compared to the control group and were significantly decreased with GSE treatment. Plasma AOC and hepatic GSH level, depressed by BDL, was elevated back to the control level in the GSE-treated BDL group. Increases in tissue MDA level, MPO activity and collagen content due to BDL were also attenuated by GSE treatment. Furthermore, luminol and lucigenin CL values in the BDL group increased dramatically compared to the control and were reduced by GSE treatment. These results suggest that GSE protects the liver from oxidative damage following bile duct ligation in rats. This effect possibly involves the inhibition of neutrophil infiltration and lipid peroxidation; thus, restoration of oxidant and antioxidant status in the tissue.
Ramsey, E.; Lu, Z.; Suzuoki, Y.; Rangoonwala, A.; Werle, D.
2011-01-01
Inundation maps of coastal marshes in western Louisiana were created with multitemporal Envisat Advanced Synthetic Aperture (ASAR) scenes collected before and during the three months after Hurricane Rita landfall in September 2005. Corroborated by inland water-levels, 7 days after landfall, 48% of coastal estuarine and palustrine marshes remained inundated by storm-surge waters. Forty-five days after landfall, storm-surge inundated 20% of those marshes. The end of the storm-surge flooding was marked by an abrupt decrease in water levels following the passage of a storm front and persistent offshore winds. A complementary dramatic decrease in flood extent was confirmed by an ASAR-derived inundation map. In nonimpounded marshes at elevations <;80 cm, storm-surge waters rapidly receded while slower recession was dominantly associated with impounded marshes at elevations >;80 cm during the first month after Rita landfall. After this initial period, drainage from marshes-especially impounded marshes-was hastened by the onset of offshore winds. Following the abrupt drops in inland water levels and flood extent, rainfall events coinciding with increased water levels were recorded as inundation re-expansion. This postsurge flooding decreased until only isolated impounded and palustrine marshes remained inundated. Changing flood extents were correlated to inland water levels and largely occurred within the same marsh regions. Trends related to incremental threshold increases used in the ASAR change-detection analyses seemed related to the preceding hydraulic and hydrologic events, and VV and HH threshold differences supported their relationship to the overall wetland hydraulic condition.
Metabolic profiling of muscle contraction in lean compared with obese rodents.
Thyfault, John P; Cree, Melanie G; Tapscott, Edward B; Bell, Jill A; Koves, Timothy R; Ilkayeva, Olga; Wolfe, Robert R; Dohm, G Lynis; Muoio, Deborah M
2010-09-01
Interest in the pathophysiological relevance of intramuscular triacylglycerol (IMTG) accumulation has grown from numerous studies reporting that abnormally high glycerolipid levels in tissues of obese and diabetic subjects correlate negatively with glucose tolerance. Here, we used a hindlimb perfusion model to examine the impact of obesity and elevated IMTG levels on contraction-induced changes in skeletal muscle fuel metabolism. Comprehensive lipid profiling was performed on gastrocnemius muscles harvested from lean and obese Zucker rats immediately and 25 min after 15 min of one-legged electrically stimulated contraction compared with the contralateral control (rested) limbs. Predictably, IMTG content was grossly elevated in control muscles from obese rats compared with their lean counterparts. In muscles of obese (but not lean) rats, contraction resulted in marked hydrolysis of IMTG, which was then restored to near resting levels during 25 min of recovery. Despite dramatic phenotypical differences in contraction-induced IMTG turnover, muscle levels of diacylglycerol (DAG) and long-chain acyl-CoAs (LCACoA) were surprisingly similar between groups. Tissue profiles of acylcarnitine metabolites suggested that the surfeit of IMTG in obese rats fueled higher rates of fat oxidation relative to the lean group. Muscles of the obese rats had reduced lactate levels immediately following contraction and higher glycogen resynthesis during recovery, consistent with a lipid-associated glucose-sparing effect. Together, these findings suggest that contraction-induced mobilization of local lipid reserves in obese muscles promotes beta-oxidation, while discouraging glucose utilization. Further studies are necessary to determine whether persistent oxidation of IMTG-derived fatty acids contributes to systemic glucose intolerance in other physiological settings.
Wu, Haibin; Guo, Zhengtang; Guiot, Joël; Hatté, Christine; Peng, Changhui; Yu, Yanyan; Ge, Junyi; Li, Qin; Sun, Aizhi; Zhao, Deai
2014-05-01
During the late Miocene, a dramatic global expansion of C4 plant distribution occurred with broad spatial and temporal variations. Although the event is well documented, whether subsequent expansions were caused by a decreased atmospheric CO2 concentration or climate change is a contentious issue. In this study, we used an improved inverse vegetation modeling approach that accounts for the physiological responses of C3 and C4 plants to quantitatively reconstruct the paleoclimate in the Siwalik of Nepal based on pollen and carbon isotope data. We also studied the sensitivity of the C3 and C4 plants to changes in the climate and the atmospheric CO2 concentration. We suggest that the expansion of the C4 plant distribution during the late Miocene may have been primarily triggered by regional aridification and temperature increases. The expansion was unlikely caused by reduced CO2 levels alone. Our findings suggest that this abrupt ecological shift mainly resulted from climate changes related to the decreased elevation of the Himalayan foreland. © 2013 John Wiley & Sons Ltd.
Rhabdomyolysis in a Patient with Severe Hypothyroidism.
Salehi, Nooshin; Agoston, Endre; Munir, Iqbal; Thompson, Gary J
2017-08-22
BACKGROUND Muscular symptoms, including stiffness, myalgia, cramps, and fatigue, are present in the majority of the patients with symptomatic hypothyroidism, but rhabdomyolysis, the rapid breakdown of skeletal muscle, is a rare manifestation. In most patients with hypothyroidism who develop rhabdomyolysis, precipitating factors, such as strenuous exercise or use of lipid-lowering drugs, can be identified. CASE REPORT We report a case of a 52-year-old Hispanic woman with a history of hypothyroidism, hypertension, and type 2 diabetes mellitus who presented with fatigue, severe generalized weakness, bilateral leg pain, and recurrent falls. She reported poor medication compliance for the preceding month. Initial laboratory testing showed elevated thyroid stimulating hormone (TSH) and creatine kinase (CK) levels, indicating uncontrolled hypothyroidism with associated rhabdomyolysis. Supportive treatment with intravenous fluids and intravenous levothyroxine were initiated and resulted in dramatic clinical improvement. CONCLUSIONS We report a case of rhabdomyolysis, which is a rare but potentially serious complication of hypothyroidism. Screening for hypothyroidism in patients with elevated muscle enzymes should be considered, since an early diagnosis and prompt treatment of hypothyroidism is essential to prevent rhabdomyolysis and its consequences.
Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan
2017-01-01
Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of ‘wasted’ seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of “wasted” seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities. PMID:28727747
Ellis-Soto, Diego; Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan
2017-01-01
Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.
Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana
Steven D. Allison; Caroline Nielsen; R. Flint Hughes
2006-01-01
Like other N-fixing invasive species in Hawaii, Falcataria moluccana dramatically alters forest structure, litterfall quality and quantity, and nutrient dynamics. We hypothesized that these biogeochemical changes would also affect the soil microbial community and the extracellular enzymes responsible for carbon and nutrient mineralization. Across...
Ecuador's Higher Education System in Times of Change
ERIC Educational Resources Information Center
Van Hoof, Hubert B.; Estrella, Mateo; Eljuri, Marie-Isabel; León, Leonardo Torres
2013-01-01
Ecuador's higher education system is undergoing dramatic changes. The National Constitution of 2008 and the Higher Education Law of 2010 have changed the way Ecuador's universities are funded, administered, and accredited. The importance of research was elevated and drastic changes were made to the academic qualifications and employment conditions…
Temperature dependent Raman spectroscopy of melamine and structural analogs in milk powder
USDA-ARS?s Scientific Manuscript database
Hyperspectral Raman imaging has the potential for rapid screening of solid-phase samples for potential adulterants. We found that the Raman spectra of melamine analogs changed dramatically and uniquely as a function of elevated temperature. Raman spectra were acquired for urea, biuret, cyanuric acid...
Dawson, Neal J; Storey, Kenneth B
2017-09-01
Wood frogs inhabit a broad range across North America, extending from the southern tip of the Appalachian Mountains to the northern boreal forest. Remarkably, they can survive the winter in a frozen state, where as much as 70% of their body water is converted into ice. Whilst in the frozen state, their hearts cease to pump blood, causing their cells to experience ischemia, which can dramatically increase the production of reactive oxygen species within the cell. To overcome this, wood frogs have elevated levels of glutathione, a primary antioxidant. We examined the regulation of glutathione reductase, the enzyme involved in recycling glutathione, in both the frozen and unfrozen (control) state. Glutathione reductase activity from both the control and frozen state showed a dramatic reduction in substrate specificity ( K m ) for oxidized glutathione (50%) when measured in the presence of glucose (300 mmol l -1 ) and a increase (157%) when measured in the presence of levels of urea (75 mmol l -1 ) encountered in the frozen state. However, when we tested the synergistic effect of urea and glucose simultaneously, we observed a substantial reduction in the K m for oxidized glutathione (43%) to a value similar to that with glucose alone. In fact, we found no observable differences in the kinetic and structural properties of glutathione reductase between the two states. Therefore, a significant increase in the affinity for oxidized glutathione in the presence of endogenous levels of glucose suggests that increased glutathione recycling may occur as a result of passive regulation of glutathione reductase by rising levels of glucose during freezing. © 2017. Published by The Company of Biologists Ltd.
Núnez, Cristina; Zelei, Edina; Polyák, Ágnes; Milanés, M. Victoria
2013-01-01
Chronic morphine treatment and naloxone precipitated morphine withdrawal activates stress-related brain circuit and results in significant changes in food intake, body weight gain and energy metabolism. The present study aimed to reveal hypothalamic mechanisms underlying these effects. Adult male rats were made dependent on morphine by subcutaneous implantation of constant release drug pellets. Pair feeding revealed significantly smaller weight loss of morphine treated rats compared to placebo implanted animals whose food consumption was limited to that eaten by morphine implanted pairs. These results suggest reduced energy expenditure of morphine-treated animals. Chronic morphine exposure or pair feeding did not significantly affect hypothalamic expression of selected stress- and metabolic related neuropeptides - corticotropin-releasing hormone (CRH), urocortin 2 (UCN2) and proopiomelanocortin (POMC) compared to placebo implanted and pair fed animals. Naloxone precipitated morphine withdrawal resulted in a dramatic weight loss starting as early as 15–30 min after naloxone injection and increased adrenocorticotrophic hormone, prolactin and corticosterone plasma levels in morphine dependent rats. Using real-time quantitative PCR to monitor the time course of relative expression of neuropeptide mRNAs in the hypothalamus we found elevated CRH and UCN2 mRNA and dramatically reduced POMC expression. Neuropeptide Y (NPY) and arginine vasopressin (AVP) mRNA levels were transiently increased during opiate withdrawal. These data highlight that morphine withdrawal differentially affects expression of stress- and metabolic-related neuropeptides in the rat hypothalamus, while relative mRNA levels of these neuropeptides remain unchanged either in rats chronically treated with morphine or in their pair-fed controls. PMID:23805290
NASA Astrophysics Data System (ADS)
Mohamed, Ahmed-Salem; Leduc, Christian; Marlin, Christelle; Wagué, Oumar; Sidi Cheikh, Mohamed-Ahmed
2017-10-01
Declining groundwater resources in semi-arid areas are often cited because of anthropization and climate change. This is not the case in Nouakchott (Mauritania) where the water level has risen by 1 to 2 m over the last 40 years in parallel with urban expansion (+1 million inhabitants in 60 years). Using former and new data, primarily water table measurements and chemical indicators (major ions, bromide, 18O, 2H), we show that the groundwater level rise is mainly a consequence of the rapid population growth in the Nouakchott area, while the global sea level rise only has a limited impact. The increased supply of domestic water (currently 120,000 m3/day) and the lack of waste water networks have added large amounts of water to the Quaternary aquifer. In this metropolis where 60% of the total area is at an elevation of less than 1 m asl, the rise in the groundwater level has dramatic consequences, including the abandonment of flooded districts, and the emergence of new diseases.
Nagaraj, R H; Kern, T S; Sell, D R; Fogarty, J; Engerman, R L; Monnier, V M
1996-05-01
The relationship between long-term glycemic control and the advanced Maillard reaction was investigated in dura mater collagen and lens proteins from dogs that were diabetic for 5 years. Diabetic dogs were assigned prospectively to good, moderate, and poor glycemic control and maintained by insulin. Biochemical changes were determined at study exit. Mean levels of collagen digestibility by pepsin decreased (NS) whereas collagen glycation (P < 0.001), pentosidine cross-links (P < 0.001), and collagen fluorescence (P = 0.02) increased with increasing mean HbA1 values. Similarly, mean levels of lens crystallin glycation (P < 0.001), fluorescence (P < 0.001), and the specific advanced lens Maillard product 1 (LM-1) (P < 0.001) and pentosidine (P < 0.005) increased significantly with poorer glycemic control. Statistical analysis revealed very high Spearman correlation coefficients between collagen and lens changes. Whereas pentosidine cross-links were significantly elevated in collagen from diabetic dogs with moderate levels of HbA1 (i.e., 8.0 +/- 0.4%), lens pentosidine levels were normal in this group and were elevated (P < 0.001) only in the animals with poor glycemic control (HbA1 = 9.7 +/- 0.6%). Thus, whereas protein glycation and advanced glycation in the extracellular matrix and in the lens are generally related to the level of glycemic control, there is evidence for a tissue-specific glycemic threshold for pentosidine formation, i.e., glycoxidation, in the lens. This threshold may be in part linked to a dramatic acceleration in crystallin glycation with HbA1 values of > 8.0% and/or a loss of lens membrane permeability. This study provides support at the molecular level for the growing concept that glycemic thresholds may be involved in the development of some of the complications in diabetes.
Gupta, A; Roobol, M J; Savage, C J; Peltola, M; Pettersson, K; Scardino, P T; Vickers, A J; Schröder, F H; Lilja, H
2010-08-24
Most men with elevated levels of prostate-specific antigen (PSA) do not have prostate cancer, leading to a large number of unnecessary biopsies. A statistical model based on a panel of four kallikreins has been shown to predict the outcome of a first prostate biopsy. In this study, we apply the model to an independent data set of men with previous negative biopsy but persistently elevated PSA. The study cohort consisted of 925 men with a previous negative prostate biopsy and elevated PSA (>or=3 ng ml(-1)), with 110 prostate cancers detected (12%). A previously published statistical model was applied, with recalibration to reflect the lower positive biopsy rates on rebiopsy. The full-kallikrein panel had higher discriminative accuracy than PSA and DRE alone, with area under the curve (AUC) improving from 0.58 (95% confidence interval (CI): 0.52, 0.64) to 0.68 (95% CI: 0.62, 0.74), P<0.001, and high-grade cancer (Gleason >or=7) at biopsy with AUC improving from 0.76 (95% CI: 0.64, 0.89) to 0.87 (95% CI: 0.81, 0.94), P=0.003). Application of the panel to 1000 men with persistently elevated PSA after initial negative biopsy, at a 15% risk threshold would reduce the number of biopsies by 712; would miss (or delay) the diagnosis of 53 cancers, of which only 3 would be Gleason 7 and the rest Gleason 6 or less. Our data constitute an external validation of a previously published model. The four-kallikrein panel predicts the result of repeat prostate biopsy in men with elevated PSA while dramatically decreasing unnecessary biopsies.
Nylen, Kirk; Likhodii, Sergei; Abdelmalik, Peter A; Clarke, Jasper; Burnham, W McIntyre
2005-08-01
The pentylenetetrazol (PTZ) infusion test was used to compare seizure thresholds in adult and young rats fed either a 4:1 ketogenic diet (KD) or a 6.3:1 KD. We hypothesized that both KDs would significantly elevate seizure thresholds and that the 4:1 KD would serve as a better model of the KD used clinically. Ninety adult rats and 75 young rats were placed on one of five experimental diets: (a) a 4:1 KD, (b) a control diet balanced to the 4:1 KD, (c) a 6.3:1 KD, (d) a standard control diet, or (e) an ad libitum standard control diet. All subjects were seizure tested by using the PTZ infusion test. Blood glucose and beta-hydroxybutyrate (beta-OHB) levels were measured. Neither KD elevated absolute "latencies to seizure" in young or adult rats. Similarly, neither KD elevated "threshold doses" in adult rats. In young rats, the 6.3:1 KD, but not the 4:1 KD, significantly elevated threshold doses. The 6.3:1 KD group showed poorer weight gain than the 4:1 KD group when compared with respective controls. The most dramatic discrepancies were seen in young rats. "Threshold doses" and "latency to seizure" data provided conflicting measures of seizure threshold. This was likely due to the inflation of threshold doses calculated by using the much smaller body weights found in the 6.3:1 KD group. Ultimately, the PTZ infusion test in rats may not be a good preparation to model the anticonvulsant effects of the KD seen clinically, especially when dietary treatments lead to significantly mismatched body weights between the groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anschel, D.
1994-05-06
Levels of atmospheric carbon dioxide have been increasing at an unprecedented rate in modern times. In response to this situation, we have initiated a long-term study of a forest species` response to elevated carbon dioxide levels. We have set up a facility for subjecting P. ponderosa to ambient, ambient + 175 {mu}1 1{sup {minus}1}, and ambient + 350 {mu}1 1{sup {minus}1} CO{sub 2}. This report specifically concentrates on the effects of elevated CO{sub 2} on the photosynthetic system, as indicated by chlorophyll fluorescence and pigment assays. We tested for intraspecific variability by selecting nine different families of trees from fivemore » different geographic areas of California. There are differential responses to carbon dioxide treatments which appear to be dependent upon the tree`s genotype, as indicated by the relative efficiencies of photochemical electron flow in photosystem II (Fv/Fm). During the same testing period Fv/Fm varied by as much as 21.1% relative to ambient in the treated groups. Total chlorophyll, chlorophyll {alpha} and carotenoid values all showed statistically significant (p<0.05) drops in the treatment groups regardless of genotype. Chlorophyll {alpha} at one time showed the most dramatic drop of 3 mg/m2 in the + 350 {mu}1 1{sup {minus}1} CO{sub 2} group versus the ambient. Findings for both photosynthetic pigments and chlorophyll fluorescence vary somewhat over the course of several months.« less
Lead-contaminated imported tamarind candy and children's blood lead levels.
Lynch, R A; Boatright, D T; Moss, S K
2000-01-01
In 1999, an investigation implicated tamarind candy as the potential source of lead exposure for a child with a significantly elevated blood lead level (BLL). The Oklahoma City-County Health Department tested two types of tamarind suckers and their packaging for lead content. More than 50% of the tested suckers exceeded the US Food and Drug Administration (FDA) Level of Concern for lead in this type of product. The authors calculated that a child consuming one-quarter to one-half of either of the two types of suckers in a day would exceed the maximum FDA Provis onal Tolerable Intake for lead. High lead concentrations in the two types of wrappers suggested leaching as a potential source of contamination. The authors used the Environmental Protection Agency's Integrated Exposure Uptake Biokinetic (IEUBK) model to predict the effects of consumption of contaminated tamarind suckers on populat on BLLs. The IEUBK model predicted that consumption of either type of sucker at a rate of one per day would result in dramatic increases in mean BLLs for children ages 6-84 months in Oklahoma and in the percentage of children wth elevated BLLs (> or =10 micrograms per deciliter [microg/dL]). The authors conclude that consumption of these products represents a potential public health threat. In addition, a history of lead contamination in imported tamarind products suggests that import control measures may not be completely effective in preventing additional lead exposure. PMID:11354337
Greenman, Yona; Drori, Yonat; Asa, Sylvia L.; Navon, Inbal; Forkosh, Oren; Gil, Shosh; Stern, Naftali
2013-01-01
Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus are central components of systems regulating appetite and energy homeostasis. Here we report on the establishment of a mouse model in which the ribonuclease III ribonuclease Dicer-1 has been specifically deleted from POMC-expressing neurons (POMCΔDCR), leading to postnatal cell death. Mice are born phenotypically normal, at the expected genetic ratio and with normal hypothalamic POMC-mRNA levels. At 6 weeks of age, no POMC neurons/cells could be detected either in the arcuate nucleus or in the pituitary of POMCΔDCR mice. POMCΔDCR develop progressive obesity secondary to decreased energy expenditure but unrelated to food intake, which was surprisingly lower than in control mice. Reduced expression of AgRP and ghrelin receptor in the hypothalamus and reduced uncoupling protein 1 expression in brown adipose tissue can potentially explain the decreased food intake and decreased heat production, respectively, in these mice. Fasting glucose levels were dramatically elevated in POMCΔDCR mice and the glucose tolerance test revealed marked glucose intolerance in these mice. Secondary to corticotrope ablation, basal and stress-induced corticosterone levels were undetectable in POMCΔDCR mice. Despite this lack of activation of the neuroendocrine stress response, POMCΔDCR mice exhibited an anxiogenic phenotype, which was accompanied with elevated levels of hypothalamic corticotropin-releasing factor and arginine-vasopressin transcripts. In conclusion, postnatal ablation of POMC neurons leads to enhanced anxiety and the development of obesity despite decreased food intake and glucocorticoid deficiency. PMID:23676213
Quantifying Temporal Genomic Erosion in Endangered Species.
Díez-Del-Molino, David; Sánchez-Barreiro, Fatima; Barnes, Ian; Gilbert, M Thomas P; Dalén, Love
2018-03-01
Many species have undergone dramatic population size declines over the past centuries. Although stochastic genetic processes during and after such declines are thought to elevate the risk of extinction, comparative analyses of genomic data from several endangered species suggest little concordance between genome-wide diversity and current population sizes. This is likely because species-specific life-history traits and ancient bottlenecks overshadow the genetic effect of recent demographic declines. Therefore, we advocate that temporal sampling of genomic data provides a more accurate approach to quantify genetic threats in endangered species. Specifically, genomic data from predecline museum specimens will provide valuable baseline data that enable accurate estimation of recent decreases in genome-wide diversity, increases in inbreeding levels, and accumulation of deleterious genetic variation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gründemann, Jan; Schlaudraff, Falk; Liss, Birgit
2011-01-01
Cell specificity of gene expression analysis is essential to avoid tissue sample related artifacts, in particular when the relative number of target cells present in the compared tissues varies dramatically, e.g., when comparing dopamine neurons in midbrain tissues from control subjects with those from Parkinson's disease (PD) cases. Here, we describe a detailed protocol that combines contact-free UV-laser microdissection and quantitative PCR of reverse-transcribed RNA of individual neurons from postmortem human midbrain tissue from PD patients and unaffected controls. Among expression changes in a variety of dopamine neuron marker, maintenance, and cell-metabolism genes, we found that α-synuclein mRNA levels were significantly elevated in individual neuromelanin-positive dopamine midbrain neurons from PD brains when compared to those from matched controls.
Measuring up Education: Community-Driven Accountability in Milwaukee
ERIC Educational Resources Information Center
Dickman, Anneliese; Allen, Vanessa; Henken, Rob
2011-01-01
The recent appointment of a new superintendent, the need for priority-setting in the face of dramatic state budget cuts, and increased national attention on school reform have elevated the performance of the Milwaukee Public Schools (MPS) to the forefront of local media and civic attention. Consequently, the need for an understandable and commonly…
USDA-ARS?s Scientific Manuscript database
Carbon dioxide (CO2) concentrations in the earth’s atmosphere have continually increased each year since the beginning of the Industrial revolution and are expected to continue rising in the future, which could have a dramatic impact on agricultural production. Previous research has shown that eleva...
INTERACTIVE EFFECTS OF ELEVATED CO2 AND 03 ON RICE AND FLACCA TOMATO
All atmospheric concentrations of both carbon dioxide (CO2) and ozone (03) are increasing, with potentially dramatic effects on plants. This study was conducted to determine interactive effects of CO2 and 03 on rice (Oryza sativa L. cv. IR 74) and a 'wilty' mutant of tomato (Lyco...
Tracking Dramatic Changes at Hawaii's Only Alpine Lake
NASA Astrophysics Data System (ADS)
Patrick, Matthew R.; Delparte, Donna
2014-04-01
Lake Waiau is a small lake (normally 100 meters in diameter) just below the summit of Mauna Kea Volcano (elevation of 4207 meters) on the island of Hawaii. The only alpine lake in the Hawaiian Islands, it is fed mainly by sporadic winter storms that drop snow in the otherwise arid summit region.
Conceptualizing Teacher Professional Identity in Neoliberal Times: Resistance, Compliance and Reform
ERIC Educational Resources Information Center
Hall, David; McGinity, Ruth
2015-01-01
This article examines the dramatic implications of the turn towards neo-liberal education policies for teachers' professional identities. It begins with an analysis of some of the key features of this policy shift including marketization, metricization and managerialism and the accompanying elevation of performativity. This is followed by a…
Seasonal and elevational variation of δ18O and δ2H in the Willamette River basin
Climate change is expected to dramatically alter the timing and quantity of water within the nation’s river systems. These changes are driven by variation in the form, location and amount of precipitation that will affect the temporal and spatial distribution of river source wat...
ERIC Educational Resources Information Center
Illingworth, Marjorie A.; Hanrahan, Donncha; Anderson, Claire E.; O'Kane, Kathryn; Anderson, Jennifer; Casey, Maureen; de Sousa, Carlos; Cross, J. Helen; Wright, Sukvhir; Dale, Russell C.; Vincent, Angela; Kurian, Manju A.
2011-01-01
Fever-induced refractory epileptic encephalopathy in school-age children (FIRES) is a clinically recognized epileptic encephalopathy of unknown aetiology. Presentation in previously healthy children is characterized by febrile status epilepticus. A pharmacoresistant epilepsy ensues, occurring in parallel with dramatic cognitive decline and…
Whitebark and limber pine restoration and monitoring in Glacier National Park
Jennifer M. Asebrook; Joyce Lapp; Tara. Carolin
2011-01-01
Whitebark pine (Pinus albicaulis) and limber pine (Pinus flexilis) are keystone species important to watersheds, grizzly and black bears, squirrels, birds, and other wildlife. Both high elevation five-needled pines have dramatically declined in Glacier National Park primarily due to white pine blister rust (Cronartium ribicola) and fire exclusion, with mountain pine...
The role of molecular testing and enzyme analysis in the management of hypomorphic citrullinemia.
Dimmock, David P; Trapane, Pamela; Feigenbaum, Annette; Keegan, Catherine E; Cederbaum, Stephen; Gibson, James; Gambello, Michael J; Vaux, Keith; Ward, Patricia; Rice, Gregory M; Wolff, Jon A; O'Brien, William E; Fang, Ping
2008-11-15
Expanded newborn screening detects patients with modest elevations in citrulline; however it is currently unclear how to treat these patients and how to counsel their parents. In order to begin to address these issues, we compared the clinical, biochemical, and molecular features of 10 patients with mildly elevated citrulline levels. Three patients presented with clinical illness whereas seven came to attention as a result of expanded newborn screening. One patient presented during pregnancy and responded promptly to IV sodium phenylacetate/sodium benzoate and arginine therapy with no long-term adverse effects on mother or fetus. Two children presented with neurocognitive dysfunction, one of these responded dramatically to dietary protein reduction. ASS enzyme activity was not deficient in all patients with biallelic mutations suggesting this test cannot exclude the ASS1 locus in patients with mildly elevated plasma citrulline. Conversely, all symptomatic patients who were tested had deficient activity. We describe four unreported mutations (p.Y291S, p.R272H, p.F72L, and p.L88I), as well as the common p.W179R mutation. In silico algorithms were inconsistent in predicting the pathogenicity of mutations. The cognitive benefit in one patient of protein restriction and the lack of adverse outcome in seven others restricted from birth, suggest a role for protein restriction and continued monitoring to prevent neurocognitive dysfunction. (c) 2008 Wiley-Liss, Inc.
Carpenter, Kent E; Abrar, Muhammad; Aeby, Greta; Aronson, Richard B; Banks, Stuart; Bruckner, Andrew; Chiriboga, Angel; Cortés, Jorge; Delbeek, J Charles; Devantier, Lyndon; Edgar, Graham J; Edwards, Alasdair J; Fenner, Douglas; Guzmán, Héctor M; Hoeksema, Bert W; Hodgson, Gregor; Johan, Ofri; Licuanan, Wilfredo Y; Livingstone, Suzanne R; Lovell, Edward R; Moore, Jennifer A; Obura, David O; Ochavillo, Domingo; Polidoro, Beth A; Precht, William F; Quibilan, Miledel C; Reboton, Clarissa; Richards, Zoe T; Rogers, Alex D; Sanciangco, Jonnell; Sheppard, Anne; Sheppard, Charles; Smith, Jennifer; Stuart, Simon; Turak, Emre; Veron, John E N; Wallace, Carden; Weil, Ernesto; Wood, Elizabeth
2008-07-25
The conservation status of 845 zooxanthellate reef-building coral species was assessed by using International Union for Conservation of Nature Red List Criteria. Of the 704 species that could be assigned conservation status, 32.8% are in categories with elevated risk of extinction. Declines in abundance are associated with bleaching and diseases driven by elevated sea surface temperatures, with extinction risk further exacerbated by local-scale anthropogenic disturbances. The proportion of corals threatened with extinction has increased dramatically in recent decades and exceeds that of most terrestrial groups. The Caribbean has the largest proportion of corals in high extinction risk categories, whereas the Coral Triangle (western Pacific) has the highest proportion of species in all categories of elevated extinction risk. Our results emphasize the widespread plight of coral reefs and the urgent need to enact conservation measures.
Brusca, Richard C; Wiens, John F; Meyer, Wallace M; Eble, Jeff; Franklin, Kim; Overpeck, Jonathan T; Moore, Wendy
2013-01-01
Models analyzing how Southwestern plant communities will respond to climate change predict that increases in temperature will lead to upward elevational shifts of montane species. We tested this hypothesis by reexamining Robert Whittaker's 1963 plant transect in the Santa Catalina Mountains of southern Arizona, finding that this process is already well underway. Our survey, five decades after Whittaker's, reveals large changes in the elevational ranges of common montane plants, while mean annual rainfall has decreased over the past 20 years, and mean annual temperatures increased 0.25°C/decade from 1949 to 2011 in the Tucson Basin. Although elevational changes in species are individualistic, significant overall upward movement of the lower elevation boundaries, and elevational range contractions, have occurred. This is the first documentation of significant upward shifts of lower elevation range boundaries in Southwestern montane plant species over decadal time, confirming that previous hypotheses are correct in their prediction that mountain communities in the Southwest will be strongly impacted by warming, and that the Southwest is already experiencing a rapid vegetation change. PMID:24223270
NASA Astrophysics Data System (ADS)
Cooper, H.; Zhang, C.
2017-12-01
Coastal wetlands are one of the most productive ecological systems in the world, providing critical habitat area and valuable ecosystem services such as carbon sequestration. However, due to their location in low lying areas, coastal wetlands are particularly vulnerable to sea-level rise (SLR). Everglades National Park (ENP) encompasses the southern-most portion of the Greater Everglades Ecosystem, and is the largest subtropical wetland in the USA. Water depths have shown to have a significant relationship to vegetation community composition and organization while also playing a crucial role in vegetation health throughout the Everglades. Live plants play a vital role in maintaining soil structure (i.e. elevation), and decreases in vegetation health can cause peat collapse or wetland loss resulting in dramatic habitat, organic soil, and elevation loss posing concerns for Everglades management and restoration. One suspected mechanism for peat collapse is enhanced inundation due to SLR, thus mapping and modeling water depths is a critical component to understanding the potential impacts of future SLR. Previous research in the Everglades focused on a conventional Water Depth Model (WDM) approach where a Digital Elevation Model (DEM) is subtracted from a Water Table Elevation Model (WTEM). In this study, the conventional WDM approach is extended to a more rigorous WDM technique so that the accuracy and precision of the underlying data may be considered. Monte Carlo simulation is used to propagate probability distributions through our SLR depth model using our Random Forest-based LiDAR DEM, Empirical Bayesian Kriging-based WTEMs, uncertainties in vertical datums, soil accretion projections, and regional sea-level rise projections. Water depth maps were produced for the wet and dry seasons in April and October, which successfully revealed the potential spatial and temporal water depth variations due to future SLR. It is concluded that a more rigorous WDM technique helps to increase the integrity of derived products used to support and guide coastal restoration managers and planners under the challenge of rising seas.
Stiefel, Eric C.; Field, Larry; Replogle, William; McIntyre, Louis; Igboechi, Oduche; Savoie, Felix H.
2016-01-01
Background: Over the past 30 years, there has been a dramatic increase in the prevalence of childhood obesity and hypertension in the United States. The prevalence of these diagnoses among individuals participating in school-sanctioned sports has not been clearly defined. Purpose: To identify the prevalence of obesity and elevated blood pressure (BP) among student athletes and investigate associations between race, sex, type and number of sports played, and the prevalence of these diseases. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Pre–sports participation medical examinations (N = 7705) performed between 2009 and 2013 were reviewed to identify the prevalence of obesity and elevated BP and examine relationships between the type of sports played, participation in multiple sports versus a single sport, and the athlete’s body weight and body mass index (BMI). Results: The prevalence of obesity was 23.5%. There was a significant association (P < .001) between the number of sports played by the student and BMI. The risk of obesity among single-sport athletes was more than 2-fold the risk (relative risk [RR], 2.13) compared with ≥3-sport athletes and 1.42 times greater compared with 2-sport athletes (RR, 1.42). The prevalence of elevated BP was 21.2%. There was a significant association (P < .001) between the number of sports played by the student and elevated BP. The risk of elevated BP among single-sport athletes was 1.59 times greater (RR, 1.59) than ≥3-sport athletes and 1.30 times greater compared with 2-sport athletes (RR, 1.30). Finally, obese students were 2.40 times more likely to have elevated BP compared with nonobese students (P < .001). Conclusion: The result of this study confirms the progressive nature of the obesity epidemic and identifies the contribution of obesity to the worsening cardiometabolic profiles in student athletes. The study also identifies that participation in multiple sports and running sports decreases the individual’s risk for obesity and hypertension. Clinical Relevance: The present study emphasizes the importance of screening for obesity and elevated blood pressure during the athlete’s preparticipation physical examination. PMID:26962540
Conway, Christopher C; Rancourt, Diana; Adelman, Caroline B; Burk, William J; Prinstein, Mitchell J
2011-11-01
Tests of interpersonal theories of depression have established that elevated depression levels among peers portend increases in individuals' own depressive symptoms, a phenomenon known as depression socialization. Susceptibility to this socialization effect may be enhanced during the transition to adolescence as the strength of peer influence rises dramatically. Socialization of depressive symptoms among members of child and adolescent friendship groups was examined over a 1-year period among 648 youth in grades six through eight. Sociometric methods were utilized to identify friendship groups and ascertain the prospective effect of group-level depressive symptoms on youths' own depressive symptoms. Hierarchical linear modeling results revealed a significant socialization effect and indicated that this effect was most potent for (a) girls and (b) individuals on the periphery of friendship groups. Future studies would benefit from incorporating child and adolescent peer groups as a developmentally salient context for interpersonal models of depression.
[Dropped head syndrome as first manifestation of primary hyperparathyroid myopathy].
Ota, Kiyobumi; Koseki, Sayo; Ikegami, Kenji; Onishi, Iichiroh; Tomimitsu, Hiyoryuki; Shintani, Shuzo
2018-03-28
75 years old woman presented with 6-month history of progressive dropped head syndrome. Neurological examination revealed moderate weakness of flexor and extensor of neck and mild weakness of proximal appendicular muscles with normal deep tendon reflexes. The needle electromyography showed short duration and low amplitude motor unit potential. No fibrillation potentials or positive sharp waves were seen. Biopsy of deltoid muscle was normal. Laboratory studies showed elevated levels of serum calcium (11.8 mg/dl, upper limit of normal 10.1) and intact parathyroid hormone (104 pg/ml, upper limit of normal 65), and decreased level of serum phosphorus (2.3 mg/dl, lower limit of normal 2.7). Ultrasonography and enhanced computed tomography revealed a parathyroid tumor. The tumor was removed surgically. Pathological examination proved tumor to be parathyroid adenoma. Dropped head and weakness of muscles were dramatically improved within a week after the operation. Although hyperparathyroidism is a rare cause of dropped head syndrome, neurologists must recognize hyperparathyroidism as a treatable cause of dropped head syndrome.
Conway, Christopher C.; Rancourt, Diana; Adelman, Caroline B.; Burk, William J.; Prinstein, Mitchell J.
2012-01-01
Tests of interpersonal theories of depression have established that elevated depression levels among peers portend increases in individuals’ own depressive symptoms, a phenomenon known as depression socialization. Susceptibility to this socialization effect may be enhanced during the transition to adolescence as the strength of peer influence rises dramatically. Socialization of depressive symptoms among members of child and adolescent friendship groups was examined over a 1-year period among 648 youth in grades six through eight. Sociometric methods were utilized to identify friendship groups and ascertain the prospective effect of group-level depressive symptoms on youths’ own depressive symptoms. Hierarchical linear modeling results revealed a significant socialization effect and indicated that this effect was most potent for (a) girls and (b) individuals on the periphery of friendship groups. Future studies would benefit from incorporating child and adolescent peer groups as a developmentally salient context for interpersonal models of depression. PMID:21842961
Neuroregression as an initial manifestation in a toddler with acquired pernicious anaemia
Yoganathan, Sangeetha; Thomas, Maya Mary; Mathai, Sarah; Ghosh, Urmi
2015-01-01
The aetiology spectrum for neuroregression in infants and toddlers is diverse. Vitamin B12 deficiency-mediated neuroregression is less commonly considered as a differential. Prevalence of pernicious anaemia in the general population is 0.1% and is extremely rare in children. We describe a 35-month-old toddler with neuroregression, seizures, coarse tremors, bleating cry and neuropathy. His clinical symptomatology mimicked grey matter degenerative illness and infantile tremor syndrome, a nutritional deficiency-mediated movement disorder. His vitamin B12 level was low and serum homocysteine level was elevated. Haematological manifestations were not overt and anti-intrinsic factor antibody was positive. With parenteral vitamin B12 therapy, there was a dramatic response with clinical and laboratory translation. This report emphasises the need for a high index of suspicion and screening for markers of vitamin B12 deficiency in all children with unexplained acute or subacute neuroregression, seizures and movement disorders as it is potentially reversible. PMID:26678841
Neuroregression as an initial manifestation in a toddler with acquired pernicious anaemia.
Yoganathan, Sangeetha; Thomas, Maya Mary; Mathai, Sarah; Ghosh, Urmi
2015-12-17
The aetiology spectrum for neuroregression in infants and toddlers is diverse. Vitamin B12 deficiency-mediated neuroregression is less commonly considered as a differential. Prevalence of pernicious anaemia in the general population is 0.1% and is extremely rare in children. We describe a 35-month-old toddler with neuroregression, seizures, coarse tremors, bleating cry and neuropathy. His clinical symptomatology mimicked grey matter degenerative illness and infantile tremor syndrome, a nutritional deficiency-mediated movement disorder. His vitamin B12 level was low and serum homocysteine level was elevated. Haematological manifestations were not overt and anti-intrinsic factor antibody was positive. With parenteral vitamin B12 therapy, there was a dramatic response with clinical and laboratory translation. This report emphasises the need for a high index of suspicion and screening for markers of vitamin B12 deficiency in all children with unexplained acute or subacute neuroregression, seizures and movement disorders as it is potentially reversible. 2015 BMJ Publishing Group Ltd.
ERIC Educational Resources Information Center
O'Donnell, Lydia; Fuxman, Shai
2017-01-01
Background: Teen pregnancy rates and related risks remain elevated among Latino teens. We tested the impact on youth sexual behaviors of a brief, culturally targeted, bilingual media intervention designed for parents of young adolescents. Methods: "Salud y éxito" (Health & Success) uses dramatic audio stories to model positive…
Two new virus diseases in Rubus: Blackberry yellow vein and raspberry crumbly fruit
USDA-ARS?s Scientific Manuscript database
Blackberry production area has increased dramatically in the Southeast in recent years with the release of new cultivars suitable for the region and due to elevated customer demand for high quality fruit, which has led to high prices enjoyed by the growers. As in almost all cases where a crop is int...
Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity.
Meshulam, Tova; Breen, Michael R; Liu, Libin; Parton, Robert G; Pilch, Paul F
2011-08-01
Mice and humans lacking functional caveolae are dyslipidemic and have reduced fat stores and smaller fat cells. To test the role of caveolins/caveolae in maintaining lipid stores and adipocyte integrity, we compared lipolysis in caveolin-1 (Cav1)-null fat cells to that in cells reconstituted for caveolae by caveolin-1 re-expression. We find that the Cav1-null cells have a modestly enhanced rate of lipolysis and reduced cellular integrity compared with reconstituted cells as determined by the release of lipid metabolites and lactic dehydrogenase, respectively, into the media. There are no apparent differences in the levels of lipolytic enzymes or hormonally stimulated phosphorylation events in the two cell lines. In addition, acute fasting, which dramatically raises circulating fatty acid levels in vivo, causes a significant upregulation of caveolar protein constituents. These results are consistent with the hypothesis that caveolae protect fat cells from the lipotoxic effects of elevated levels fatty acids, which are weak detergents at physiological pH, by virtue of the property of caveolae to form detergent-resistant membrane domains.
Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity
Meshulam, Tova; Breen, Michael R.; Liu, Libin; Parton, Robert G.; Pilch, Paul F.
2011-01-01
Mice and humans lacking functional caveolae are dyslipidemic and have reduced fat stores and smaller fat cells. To test the role of caveolins/caveolae in maintaining lipid stores and adipocyte integrity, we compared lipolysis in caveolin-1 (Cav1)-null fat cells to that in cells reconstituted for caveolae by caveolin-1 re-expression. We find that the Cav1-null cells have a modestly enhanced rate of lipolysis and reduced cellular integrity compared with reconstituted cells as determined by the release of lipid metabolites and lactic dehydrogenase, respectively, into the media. There are no apparent differences in the levels of lipolytic enzymes or hormonally stimulated phosphorylation events in the two cell lines. In addition, acute fasting, which dramatically raises circulating fatty acid levels in vivo, causes a significant upregulation of caveolar protein constituents. These results are consistent with the hypothesis that caveolae protect fat cells from the lipotoxic effects of elevated levels fatty acids, which are weak detergents at physiological pH, by virtue of the property of caveolae to form detergent-resistant membrane domains. PMID:21652731
Huang, Shu-Ping; Garcia, Mark; Fuller, Adam
2018-01-01
In many species, males tend to behave more aggressively than females and female aggression often occurs during particular life stages such as maternal defence of offspring. Though many studies have revealed differences in aggression between the sexes, few studies have compared the sexes in terms of their neuroendocrine responses to contest experience. We investigated sex differences in the endocrine response to social challenge using mangrove rivulus fish, Kryptolebias marmoratus. In this species, sex is determined environmentally, allowing us to produce males and hermaphrodites with identical genotypes. We hypothesized that males would show elevated androgen levels (testosterone and 11-ketotestosterone) following social challenge but that hermaphrodite responses might be constrained by having to maintain both testicular and ovarian tissue. To test this hypothesis, we staged fights between males and between hermaphrodites, and then compared contest behaviour and hormone responses between the sexes. Hermaphrodites had significantly higher oestradiol but lower 11-ketotestosterone than males before contests. Males took longer to initiate contests but tended to fight more aggressively and sustain longer fights than hermaphrodites. Males showed a dramatic post-fight increase in 11-ketotestosterone but hermaphrodites did not. Thus, despite being genetically identical, males and hermaphrodites exhibit dramatically different fighting strategies and endocrine responses to contests. PMID:29765691
Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers
NASA Astrophysics Data System (ADS)
Cunning, Benjamin V.; Ahmed, Mohsin; Mishra, Neeraj; Ranjbar Kermany, Atieh; Wood, Barry; Iacopi, Francesca
2014-08-01
Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices.
Manela, Neta; Oliva, Moran; Ovadia, Rinat; Sikron-Persi, Noga; Ayenew, Biruk; Fait, Aaron; Galili, Gad; Perl, Avichai; Weiss, David; Oren-Shamir, Michal
2015-01-01
Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA) pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG*) of the shikimate pathway under a constitutive promoter. The presence of AroG* protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG* transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids, and phenylpropanoid pathways showed that transcription was not affected by AroG*. This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG* cells, and the relative frequencies of the different anthocyanins changed as well. PMID:26236327
Manela, Neta; Oliva, Moran; Ovadia, Rinat; Sikron-Persi, Noga; Ayenew, Biruk; Fait, Aaron; Galili, Gad; Perl, Avichai; Weiss, David; Oren-Shamir, Michal
2015-01-01
Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA) pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG (*)) of the shikimate pathway under a constitutive promoter. The presence of AroG(*) protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG (*) transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids, and phenylpropanoid pathways showed that transcription was not affected by AroG (*). This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG(*) cells, and the relative frequencies of the different anthocyanins changed as well.
Guo, Sheng-jie; Li, Zhen; Feng, Xiao; Ma, Li; Zhang, Jin-shan; Liu, Xin-ping; Zhang, Yuan-qiang
2011-01-01
Background Deregulated thermal factors have been frequently implicated in the pathogenesis of male infertility, but the molecular basis through which certain responses are directed remain largely unknown. We previously reported that overexpression of exogenous Metastasis-associated protein 1 (MTA1) protects spermatogenic tumor cells GC-2spd (ts) against heat-induced apoptosis. To further dissect the underlying mechanism, we addressed here the fine coordination between MTA1 and p53 in pachytene spermatocytes upon hyperthermal stimulation. Methodology/Principal Findings High level of MTA1 expression sustained for 1.5 h in primary spermatocytes after heat stress before a notable decrease was detected conversely correlated to the gradual increase of acetylation status of p53 and of p21 level. Knockdown of the endogenous MTA1 in GC-2spd (ts) elevated the acetylation of p53 by diminishing the recruitment of HDAC2 and thereafter led to a dramatic increase of apoptosis after heat treatment. Consistent with this, in vivo interference of MTA1 expression in the testes of C57BL/6 mice also urged an impairment of the differentiation of spermatocytes and a disruption of Sertoli cell function due to the elevated apoptotic rate after heat stress. Finally, attenuated expression of MTA1 of pachytene spermatocytes was observed in arrested testes (at the round spermatid level) of human varicocele patients. Conclusions These data underscore a transient protective effect of this histone modifier in primary spermatocytes against heat-stress, which may operate as a negative coregulator of p53 in maintenance of apoptotic balance during early phase after hyperthermal stress. PMID:22022494
Stanley, Jenni A; Van Parijs, Sofie M; Hatch, Leila T
2017-11-07
Stellwagen Bank National Marine Sanctuary is located in Massachusetts Bay off the densely populated northeast coast of the United States; subsequently, the marine inhabitants of the area are exposed to elevated levels of anthropogenic underwater sound, particularly due to commercial shipping. The current study investigated the alteration of estimated effective communication spaces at three spawning locations for populations of the commercially and ecologically important fishes, Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Both the ambient sound pressure levels and the estimated effective vocalization radii, estimated through spherical spreading models, fluctuated dramatically during the three-month recording periods. Increases in sound pressure level appeared to be largely driven by large vessel activity, and accordingly exhibited a significant positive correlation with the number of Automatic Identification System tracked vessels at the two of the three sites. The near constant high levels of low frequency sound and consequential reduction in the communication space observed at these recording sites during times of high vocalization activity raises significant concerns that communication between conspecifics may be compromised during critical biological periods. This study takes the first steps in evaluating these animals' communication spaces and alteration of these spaces due to anthropogenic underwater sound.
NASA Astrophysics Data System (ADS)
Hwang, Cheinway; Huang, YongRuei; Cheng, Ys; Shen, WenBin; Pan, Yuanjin
2017-04-01
The mean elevation of the Qinghai-Tibet Plateau (QTP) exceeds 4000 m. Lake levels in the QTP are less affected by human activities than elsewhere, and may better reflect the state of contemporary climate change. Here ground-based lake level measurements are rare. Repeat altimeter missions, particularly those from the TOPEX and ERS series of altimetry, have provided long-term lake level observations in the QTP, but their large cross-track distances allow only few lakes to be monitored. In contrast, the Cryosat-2 altimeter, equipped with the new sensor SIRAL (interferometric/ synthetic aperture radar altimeter), provides a much better ranging accuracy and a finer spatial coverage than these repeated missions, and can detect water level changes over a large number of lakes in the QTP. In this study, Cryosat-2 data are used to determine lake level changes over 75˚E-100˚E and 28˚N-37.5˚N, where Cryosat-2 covers 60 lakes and SARAL/ AltiKa covers 32 lakes from 2013 to 2016. Over a lake, Cryosat-2 in different cycles can pass through different spots of the lake, making the numbers of observations non-uniform and requiring corrections for lake slopes. Four cases are investigated to cope with these situations: (1) neglecting inconsistency in data volume and lake slopes (2) considering data volume, (3) considering lake slopes only, and (4) considering both data volume and lake slopes. The CRYOSAT-2 result is then compared with the result from the SARAL to determine the best case. Because Cryosat-2 is available from 2010 to 2016, Jason-2 data are used to fill gaps between the time series of Cryosat-2 and ICESat (2003-2009) to obtain >10 years of lake level series. The Cryosat-2 result shows dramatic lake level rises in Lakes Kusai, Zhuoaihu and Salt in 2011 caused by floods. Landsat satellite imagery assists the determination and interpretation of such rises.
Future Directions for the Study of Suicide and Self-Injury
ERIC Educational Resources Information Center
Nock, Matthew K.
2012-01-01
The death of a child is one of the most tragic events imaginable. Even more gut-wrenching is when a child intentionally chooses to end his or her own life in order to escape from unbearable suffering. Unfortunately, the occurrence of self-harm behaviors increases dramatically and occurs at elevated rates during adolescence (Nock et al., 2008), and…
Andrzej Bytnerowicz
1997-01-01
Anthropogenic activities of the past century have caused a dramatic increase in global air pollution. This process has accelerated in the past few decades, and emissions of carbon dioxide, nitrogen oxides, or chlorofluorocarbons caused serious changes in the earth's climate, e.g., increased temperatures or elevated ultraviolet-B radiation. These changes, together...
Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duysen, Ellen G.; Lockridge, Oksana, E-mail: olockrid@unmc.edu
2011-09-01
The restoration of plasma acetylcholinesterase activity in mice following inhibition by organophosphorus pesticides and nerve agents has been attributed to synthesis of new enzyme. It is generally assumed that activity levels return to normal, are stable and do not exceed the normal level. We have observed over the past 10 years that recovery of acetylcholinesterase activity levels in mice treated with organophosphorus agents (OP) exceeds pretreatment levels and remains elevated for up to 2 months. The most dramatic case was in mice treated with tri-cresyl phosphate and tri-ortho-cresyl phosphate, where plasma acetylcholinesterase activity rebounded to a level 250% higher thanmore » the pretreatment activity. The present report summarizes our observations on plasma acetylcholinesterase activity in mice treated with chlorpyrifos, chlorpyrifos oxon, diazinon, tri-ortho-cresyl phosphate, tri-cresyl phosphate, tabun thiocholine, parathion, dichlorvos, and diisopropylfluorophosphate. We have developed a hypothesis to explain the excess acetylcholinesterase activity, based on published observations. We hypothesize that acetylcholinesterase activity is induced when cells undergo apoptosis and that consequently there is a rise in the level of plasma acetylcholinesterase. - Highlights: > Acetylcholinesterase activity is induced by organophosphorus agents. > AChE induction is related to apoptosis. > Induction of AChE activity by OP is independent of BChE.« less
Kim, H; You, S; Kong, B W; Foster, L K; Farris, J; Foster, D N
2001-08-22
The reactive oxygen species are known as endogenous toxic oxidant damaging factors in a variety of cell types, and in response, the antioxidant genes have been implicated in cell proliferation, senescence, immortalization, and tumorigenesis. The expression of manganese superoxide dismutase mRNA was shown to increase in most of the immortal chicken embryo fibroblast (CEF) cells tested, while expression of catalase mRNA appeared to be dramatically decreased in all immortal CEF cells compared to their primary counterparts. The expression of copper-zinc superoxide dismutase mRNA was shown to increase slightly in some immortal CEF cells. The glutathione peroxidase expressed relatively similar levels in both primary and immortal CEF cells. As primary and immortal DF-1 CEF cells were treated with 10-100 microM of hydrogen peroxide (concentrations known to be sublethal in human diploid fibroblasts), immortal DF-1 CEF cells were shown to be more sensitive to hydrogen peroxide, and total cell numbers were dramatically reduced when compared with primary cell counterparts. This increased sensitivity to hydrogen peroxide in immortal DF-1 cells occurred without evident changes in either antioxidant gene expression, mitochondrial membrane potential, cell cycle distribution or chromatin condensation. However, the total number of dead cells without chromatin condensation was dramatically elevated in immortal DF-1 CEFs treated with hydrogen peroxide, indicating that the inhibition of immortal DF-1 cell growth by low concentrations of hydrogen peroxide is due to increased necrotic cell death, but not apoptosis. Taken together, our observation suggests that the balanced antioxidant function might be important for cell proliferation in response to toxic oxidative damage by hydrogen peroxide.
Evidence that chytrids dominate fungal communities in high-elevation soils
Freeman, K. R.; Martin, A. P.; Karki, D.; Lynch, R. C.; Mitter, M. S.; Meyer, A. F.; Longcore, J. E.; Simmons, D. R.; Schmidt, S. K.
2009-01-01
Periglacial soils are one of the least studied ecosystems on Earth, yet they are widespread and are increasing in area due to retreat of glaciers worldwide. Soils in these environments are cold and during the brief summer are exposed to high levels of UV radiation and dramatic fluctuations in moisture and temperature. Recent research suggests that these environments harbor immense microbial diversity. Here we use sequencing of environmental DNA, culturing of isolates, and analysis of environmental variables to show that members of the Chytridiomycota (chytrids) dominate fungal biodiversity and perhaps decomposition processes in plant-free, high-elevation soils from the highest mountain ranges on Earth. The zoosporic reproduction of chytrids requires free water, yet we found that chytrids constituted over 70% of the ribosomal gene sequences of clone libraries from barren soils of the Himalayas and Rockies; by contrast, they are rare in other soil environments. Very few chytrids have been cultured, although we were successful at culturing chytrids from high-elevation sites throughout the world. In a more focused study of our sites in Colorado, we show that carbon sources that support chytrid growth (eolian deposited pollen and microbial phototrophs) are abundant and that soils are saturated with water for several months under the snow, thus creating ideal conditions for the development of a chytrid-dominated ecosystem. Our work broadens the known biodiversity of the Chytridomycota, and describes previously unsuspected links between aquatic and terrestrial ecosystems in alpine regions. PMID:19826082
Responses of Saccharomyces cerevisiae Strains from Different Origins to Elevated Iron Concentrations
Martínez-Garay, Carlos Andrés; de Llanos, Rosa; Romero, Antonia María; Martínez-Pastor, María Teresa
2016-01-01
Iron is an essential micronutrient for all eukaryotic organisms. However, the low solubility of ferric iron has tremendously increased the prevalence of iron deficiency anemia, especially in women and children, with dramatic consequences. Baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, a fermentative microorganism, and a feed supplement. In this report, we explore the genetic diversity of 123 wild and domestic strains of S. cerevisiae isolated from different geographical origins and sources to characterize how yeast cells respond to elevated iron concentrations in the environment. By using two different forms of iron, we selected and characterized both iron-sensitive and iron-resistant yeast strains. We observed that when the iron concentration in the medium increases, iron-sensitive strains accumulate iron more rapidly than iron-resistant isolates. We observed that, consistent with excess iron leading to oxidative stress, the redox state of iron-sensitive strains was more oxidized than that of iron-resistant strains. Growth assays in the presence of different oxidative reagents ruled out that this phenotype was due to alterations in the general oxidative stress protection machinery. It was noteworthy that iron-resistant strains were more sensitive to iron deficiency conditions than iron-sensitive strains, which suggests that adaptation to either high or low iron is detrimental for the opposite condition. An initial gene expression analysis suggested that alterations in iron homeostasis genes could contribute to the different responses of distant iron-sensitive and iron-resistant yeast strains to elevated environmental iron levels. PMID:26773083
Byers, Michael J; Zangl, Amy; Phernetton, Terrance M; Lopez, Gladys; Chen, Dong-bao; Magness, Ronald R
2005-01-01
Pregnancy and the follicular phase are physiological states of elevated oestrogen levels and rises in uterine blood flow (UBF). The dramatic increase in utero-placental blood flow during gestation is required for normal fetal growth and development. Oestrogen exerts its vasodilatory effect by binding to its specific oestrogen receptors (ER) in target cells, resulting in increased expression and activity of endothelial nitric oxide synthase (eNOS) to relax vascular smooth muscle (VSM). However, the regulation of endothelial versus VSM ERα and ERβ expression in uterine arteries (UAs) during the ovarian cycle, pregnancy and with exogenous hormone replacement therapy (HRT) are currently unknown. ER mRNA and protein localization was determined by in situ hybridization (ISH) using 35S-labelled riboprobes and immunohistochemistry (IHC), respectively. UA endothelial (UAendo), UA VSM, omental artery endothelium (OA endo), and OA VSM proteins were isolated and ERα and ERβ protein expression was determined by Western analysis. We observed by ISH and IHC that ERα and ERβ mRNA and protein were localized in both UAendo and UA VSM. Immunoblot data demonstrated ovarian hormone specific regulation of ERα and ERβ protein in UAendo and UA VSM. Compared to luteal phase sheep, both ERα and ERβ levels in UAendo were elevated in follicular phase sheep. Whereas ERβ was elevated by pregnancy in UAendo and UA VSM, ERα was not appreciably altered. eNOS was increased in UAendo from follicular and pregnant sheep. Ovariectomized ewes (OVEX) had substantially reduced UAendo ERβ, but not UAendo ERα or OAendo ERα and ERβ. In contrast, OVEX increased UA VSM ERα and ERβ and decreased OA VSM ERα and ERβ. Treatment with oestradiol-17β (E2β), but not progesterone or their combination, increased UAendo ERα levels. The reduced ERβ in UAendo from OVEX ewes was reversed by E2β and progesterone treatment. While ERα and eNOS were not elevated in any other reproductive or non-reproductive endothelia tested, ERβ was augmented by pregnancy in uterine, mammary, placenta, and coronary artery endothelia. ERα and ERβ mRNA and protein are expressed in UA endothelium with expression levels depending on the endocrine status of the animal, indicating UA endothelium is a target for oestrogen action in vivo, and that the two receptors appear to be differentially regulated in a spatial and temporal fashion with regard to the reproductive status or HRT. PMID:15774511
ERIC Educational Resources Information Center
Philadelphia School District, PA. Office of Early Childhood Programs.
This handbook on creative dramatics at the elementary school level is primarily intended to assist the teacher who already has some training in creative dramatics. The handbook contains sections on (1) the philosophy and objectives of the program, including a discussion of an affective curriculum; (2) definitions of key concepts, including general…
NASA Astrophysics Data System (ADS)
Deutsch, Assaf; Pevzner, Eliyahu; Jaronkin, Alex; Mayevsky, Avraham
2004-06-01
Monitoring of tissue vitality (oxygen supply/demand) in real time is very rare in clinical practice although its use as an early warning alarming system, for clinical care medicine, is very practical. In our previous communication (SPIE 2003) we described the Tissue Spectroscope - TiSpec02, by which tissue microcirculatory blood flow (TBF) and mitochondrial NADH fluorescence were measured using a single light source (390nm). In order to improve the measurement capabilities as well as to decrease dramatically the size and cost of this clinical device, we have changed the TiSpec02 into a multi-wavelength illumination system in the new TiSpec03. In order to measure microcirculatory blood flow by laser Doppler flowmetry we used a 785nm laser diode. For mitochondrial NADH fluorescence measurement we adopted the 370nm LED. For the determination of the oxygenation level of hemoglobin (HbO2) we used the 2-wavelength reflectance technique. This new monitored parameter that was added to the TiSpec03 increases the accuracy of the diagnosis of tissue vitality. The bundle of optical fibers used to connect the tissue to the TiSpec03, was integrated into a special anchoring methodology depending on the monitored tissue or organ. In order to test the performance of the improved TiSpec we have used it in experimental animals brain models exposed to various pathophysiological conditions. Rats and gerbils were anesthetized and the fiber optic probe was located epidurally used dental acrylic cement. During anoxia and ischemia the lack of O2 led to a clear decrease in TBF and HbO2 while NADH shows a large elevation. When brain activation was induced by cortical spreading depression (SD), the elevated O2 consumption was recorded as a large oxidation (decrease) of mitochondrial NADH while TBF increase dramatically. Blood HbO2 was not affected significantly by the SD wave.
Chytridiomycosis in frogs of Mount Gede Pangrango, Indonesia.
Kusrini, M D; Skerratt, L F; Garland, S; Berger, L; Endarwin, W
2008-12-22
Batrachochytrium dendrobatidis (Bd) is a fungus recognised as one of the causes of global amphibian population declines. To assess its occurrence, we conducted PCR diagnostic assays of 147 swab samples, from 13 species of frogs from Mount Gede Pangrango National Park, Indonesia. Four swab samples, from Rhacophorus javanus, Rana chalconota, Leptobrachium hasseltii and Limnonectes microdiscus, were positive for Bd and had low to moderate levels of infection. The sample from L. hasseltii was from a tadpole with mouthpart deformities and infection was confirmed by histology and immunohistochemistry. An additional sample from Leptophryne cruentata showed a very low level of infection (< or = 1 zoospore equivalent). This is the first record of Bd in Indonesia and in Southeast Asia, dramatically extending the global distribution of Bd, with important consequences for international amphibian disease control, conservation and trade. Consistent with declines in amphibian populations caused by Bd in other parts of the world, evidence exists for the decline and possible extirpation of amphibian populations at high elevations and some decline with recovery of populations at lower elevations on this mountain. Therefore, it is essential to manage Bd in Indonesia where it is likely to be threatening amphibian populations. This will require a national strategy to mitigate the spread of Bd in Indonesia and neighboring countries as well as the impact of that spread. It is also important to collect information on the extent of the impact of Bd on frog populations in Indonesia.
Choi, Sung E; Kwon, Sanghoon; Seok, Sunmi; Xiao, Zhen; Lee, Kwan-Woo; Kang, Yup; Li, Xiaoling; Shinoda, Kosaku; Kajimura, Shingo; Kemper, Byron; Kemper, Jongsook Kim
2017-08-01
Sirtuin1 (SIRT1) deacetylase delays and improves many obesity-related diseases, including nonalcoholic fatty liver disease (NAFLD) and diabetes, and has received great attention as a drug target. SIRT1 function is aberrantly low in obesity, so understanding the underlying mechanisms is important for drug development. Here, we show that obesity-linked phosphorylation of SIRT1 inhibits its function and promotes pathological symptoms of NAFLD. In proteomic analysis, Ser-164 was identified as a major serine phosphorylation site in SIRT1 in obese, but not lean, mice, and this phosphorylation was catalyzed by casein kinase 2 (CK2), the levels of which were dramatically elevated in obesity. Mechanistically, phosphorylation of SIRT1 at Ser-164 substantially inhibited its nuclear localization and modestly affected its deacetylase activity. Adenovirus-mediated liver-specific expression of SIRT1 or a phosphor-defective S164A-SIRT1 mutant promoted fatty acid oxidation and ameliorated liver steatosis and glucose intolerance in diet-induced obese mice, but these beneficial effects were not observed in mice expressing a phosphor-mimic S164D-SIRT1 mutant. Remarkably, phosphorylated S164-SIRT1 and CK2 levels were also highly elevated in liver samples of NAFLD patients and correlated with disease severity. Thus, inhibition of phosphorylation of SIRT1 by CK2 may serve as a new therapeutic approach for treatment of NAFLD and other obesity-related diseases. Copyright © 2017 American Society for Microbiology.
Beier, Ross C; Byrd, J Allen; Kubena, Leon F; Hume, Michael E; McReynolds, Jackson L; Anderson, Robin C; Nisbet, David J
2014-02-01
Linalool is a natural plant-product used in perfumes, cosmetics, and flavoring agents. Linalool has proven antimicrobial and insect-repellent properties, which indicate it might be useful for control of enteropathogens or insect pests in poultry production. However, there are no published reports that linalool may be safely administered to or tolerated by chickens. Linalool was added to the diets of day-of-hatch chicks, and they were fed linalool-supplemented diets for 3 wk. We studied the effects of linalool on serum chemistry, gross pathology, feed conversion, and relative liver weights. Linalool had a dramatic negative dose-dependent effect on feed conversion at concentrations in the feed exceeding 2% linalool, but not on gross pathology. Liver weights were significantly increased in the 5% linalool-treated birds. There was a statistical effect on blood glucose, but this parameter remained below the cut-offs for elevated serum glucose, and the result is likely of no biological significance. Linalool caused serum aspartate aminotransferase (AST) levels to increase, but it did not increase serum gamma-glutamyl transferase levels. The linalool effect on AST was dose-dependent, but in linalool doses between 0.1 and 2% of the feed, AST was not elevated beyond normal parameters. Linalool at 2% or less may be safely added to chicken feed. We suggest future studies to evaluate the addition of linalool to the litter, where it may be used as an antimicrobial or an insect repellent or to produce a calming effect.
Metabolic profiles of exercise in patients with McArdle disease or mitochondrial myopathy
Sharma, Rohit; Tadvalkar, Laura; Clish, Clary B.; Haller, Ronald G.; Mootha, Vamsi K.
2017-01-01
McArdle disease and mitochondrial myopathy impair muscle oxidative phosphorylation (OXPHOS) by distinct mechanisms: the former by restricting oxidative substrate availability caused by blocked glycogen breakdown, the latter because of intrinsic respiratory chain defects. We applied metabolic profiling to systematically interrogate these disorders at rest, when muscle symptoms are typically minimal, and with exercise, when symptoms of premature fatigue and potential muscle injury are unmasked. At rest, patients with mitochondrial disease exhibit elevated lactate and reduced uridine; in McArdle disease purine nucleotide metabolites, including xanthine, hypoxanthine, and inosine are elevated. During exercise, glycolytic intermediates, TCA cycle intermediates, and pantothenate expand dramatically in both mitochondrial disease and control subjects. In contrast, in McArdle disease, these metabolites remain unchanged from rest; but urea cycle intermediates are increased, likely attributable to increased ammonia production as a result of exaggerated purine degradation. Our results establish skeletal muscle glycogen as the source of TCA cycle expansion that normally accompanies exercise and imply that impaired TCA cycle flux is a central mechanism of restricted oxidative capacity in this disorder. Finally, we report that resting levels of long-chain triacylglycerols in mitochondrial myopathy correlate with the severity of OXPHOS dysfunction, as indicated by the level of impaired O2 extraction from arterial blood during peak exercise. Our integrated analysis of exercise and metabolism provides unique insights into the biochemical basis of these muscle oxidative defects, with potential implications for their clinical management. PMID:28716914
Choi, Sung E.; Kwon, Sanghoon; Seok, Sunmi; Xiao, Zhen; Lee, Kwan-Woo; Kang, Yup; Li, Xiaoling; Shinoda, Kosaku; Kajimura, Shingo; Kemper, Byron
2017-01-01
ABSTRACT Sirtuin1 (SIRT1) deacetylase delays and improves many obesity-related diseases, including nonalcoholic fatty liver disease (NAFLD) and diabetes, and has received great attention as a drug target. SIRT1 function is aberrantly low in obesity, so understanding the underlying mechanisms is important for drug development. Here, we show that obesity-linked phosphorylation of SIRT1 inhibits its function and promotes pathological symptoms of NAFLD. In proteomic analysis, Ser-164 was identified as a major serine phosphorylation site in SIRT1 in obese, but not lean, mice, and this phosphorylation was catalyzed by casein kinase 2 (CK2), the levels of which were dramatically elevated in obesity. Mechanistically, phosphorylation of SIRT1 at Ser-164 substantially inhibited its nuclear localization and modestly affected its deacetylase activity. Adenovirus-mediated liver-specific expression of SIRT1 or a phosphor-defective S164A-SIRT1 mutant promoted fatty acid oxidation and ameliorated liver steatosis and glucose intolerance in diet-induced obese mice, but these beneficial effects were not observed in mice expressing a phosphor-mimic S164D-SIRT1 mutant. Remarkably, phosphorylated S164-SIRT1 and CK2 levels were also highly elevated in liver samples of NAFLD patients and correlated with disease severity. Thus, inhibition of phosphorylation of SIRT1 by CK2 may serve as a new therapeutic approach for treatment of NAFLD and other obesity-related diseases. PMID:28533219
K.R. Matthews; R.A. Knapp; K.L. Pope
2002-01-01
ABSTRACT.âThe dramatic amphibian population declines reported worldwide likely have important effects on their predators. In the Sierra Nevada, where amphibian declines are well documented and some are closely tied to the introduction of nonnative trout, the mountain garter snake, Thamnophis elegans elegans, preys predominately on amphibians. We surveyed 2103 high-...
Juvenile i`iwi detected in lower elevations of Hawaii Volcanoes National Park
Gaudioso, Jacqueline M.; Beck, Angela T.
2013-01-01
The Hawaiian islands are home to a diverse array of plants and animals found nowhere else on Earth. Among the most famous of these are the spectacular Hawaiian honeycreepers, a group that evolved from a single flock of ancestral finches into at least 54 unique species. Unfortunately, the same isolation that fostered such dramatic adaptive radiation left Hawaiian species vulnerable. Under the onslaught of alien species predation and competition, habitat degradation, and introduced infectious diseases and parasites, most of the surviving honeycreepers have become largely confined to higher elevations. Intact habitat exists above the warm-weather range of deadly introduced avian malaria (Plasmodium relictum), and its mosquito vector (Culex quinquefasciatus).
[Antiretroviral treatment for HIV infection. Where we are and where we are going?].
Sierra-Madero, Juan G; Franco-San-Sebastián, Dennise
2004-01-01
Antiretroviral treatment for HIV infection has evolved importantly during the last few years. Eradication of HIV is currently not a realistic target of antiretroviral therapy; however, long term virologic control is possible with current antiviral combinations in the majority of patients. This has resulted in a dramatic reduction in complications and mortality associated with AIDS, even though significant challenges remain. Some of them are the limited access to antiretroviral drugs that exist in most of the affected countries because of the elevated costs of the drugs, the high level of adherence needed for efficacy and the short term and long term toxicity. It is important that antiretroviral access programs financed with public funds consider the following points in their design: specialized prescription that optimizes the use of these resources, integration of prevention to care, evaluation of costs in a global perspective, and integration of research with medical care.
Encephalopathy in an infant with infantile spasms: possible role of valproate toxicity
Sivathanu, Shobhana; Sampath, Sowmya; Veerasamy, Madhubala; Sunderkumar, Satheeshkumar
2014-01-01
An infant presented with global developmental delay and infantile spasms. EEG was suggestive of hypsarrhythmia. She was started on sodium valproate, clonazepam and adrenocorticotropic hormone injection. After an initial improvement the child developed vomiting, altered sensorium and increase in frequency of seizures suggestive of encephalopathy. Valproate-induced hyperammonaemia or hepatic encephalopathy was considered and the drug was withheld following which there was a dramatic improvement. Paradoxically, the liver function tests and serum ammonia were normal. However, a complete reversal of encephalopathy, on withdrawal of the drug, strongly suggested an adverse drug reaction (ADR) due to valproic acid. Marginal elevation of serum valproic acid prompted us to use the Naranjo ADR probability score to confirm the diagnosis. This case highlights the fact that valproate toxicity can manifest with normal liver function and serum ammonia levels. This is the youngest reported case with this rare form of valproate-induced encephalopathy. PMID:24810446
Vivo, Rey P; Krim, Selim R; Hodgson, John
2008-11-01
We describe a 65-year-old woman with a history of hypertension and smoking who presented with an acute episode of chest pain precipitated by severe emotional stress. Her initial electrocardiogram done in the emergency room showed non-specific T wave changes in the lateral leads and her cardiac troponin levels were mildly elevated. Because of her clinical presentation, she was admitted with a presumptive diagnosis of acute myocardial infarction and managed with antiplatelet and anticoagulant therapy. Coronary angiogram did not reveal coronary artery disease and left ventriculography showed findings consistent with apical ballooning syndrome or takotsubo cardiomyopathy. Subsequent electrocardiograms displayed dramatic changes including T wave inversions, QT interval prolongation and U waves. The patient remained asymptomatic and recovered uneventfully. Three weeks post-discharge, an echocardiogram documented resolved left ventricular dysfunction. We describe the clinical features and highlight the electrocardiographic findings that may help differentiate takotsubo cardiomyopathy from myocardial infarction.
Yu, Jianxiu; Deng, Rong; Zhu, Helen H; Zhang, Sharon S; Zhu, Changhong; Montminy, Marc; Davis, Roger; Feng, Gen-Sheng
2013-02-08
The Src-homology 2 (SH2) domain-containing tyrosine phosphatase Shp2 has been known to regulate various signaling pathways triggered by receptor and cytoplasmic tyrosine kinases. Here we describe a novel function of Shp2 in control of lipid metabolism by mediating degradation of fatty acid synthase (FASN). p38-phosphorylated COP1 accumulates in the cytoplasm and subsequently binds FASN through Shp2 here as an adapter, leading to FASN-Shp2-COP1 complex formation and FASN degradation mediated by ubiquitination pathway. By fasting p38 is activated and stimulates FASN protein degradation in mice. Consistently, the FASN protein levels are dramatically elevated in mouse liver and pancreas in which Shp2/Ptpn11 is selectively deleted. Thus, this study identifies a new activity for Shp2 in lipid metabolism.
Top Nurse-Management Staffing Collapse and Care Quality in Nursing Homes
Hunt, Selina R.; Corazzini, Kirsten; Anderson, Ruth A.
2014-01-01
Director of nursing turnover is linked to staff turnover and poor quality of care in nursing homes; however the mechanisms of these relationships are unknown. Using a complexity science framework, we examined how nurse management turnover impacts system capacity to produce high quality care. This study is a longitudinal case analysis of a nursing home (n = 97 staff) with 400% director of nursing turnover during the study time period. Data included 100 interviews, observations and documents collected over 9 months and were analyzed using immersion and content analysis. Turnover events at all staff levels were nonlinear, socially mediated and contributed to dramatic care deficits. Federal mandated, quality assurance mechanisms failed to ensure resident safety. High multilevel turnover should be elevated to a sentinel event for regulators. Suggestions to magnify positive emergence in extreme conditions and to improve quality are provided. PMID:24652943
Hansen, Halvor S; Daura, Xavier; Hünenberger, Philippe H
2010-09-14
A new method, fragment-based local elevation umbrella sampling (FB-LEUS), is proposed to enhance the conformational sampling in explicit-solvent molecular dynamics (MD) simulations of solvated polymers. The method is derived from the local elevation umbrella sampling (LEUS) method [ Hansen and Hünenberger , J. Comput. Chem. 2010 , 31 , 1 - 23 ], which combines the local elevation (LE) conformational searching and the umbrella sampling (US) conformational sampling approaches into a single scheme. In LEUS, an initial (relatively short) LE build-up (searching) phase is used to construct an optimized (grid-based) biasing potential within a subspace of conformationally relevant degrees of freedom, which is then frozen and used in a (comparatively longer) US sampling phase. This combination dramatically enhances the sampling power of MD simulations but, due to computational and memory costs, is only applicable to relevant subspaces of low dimensionalities. As an attempt to expand the scope of the LEUS approach to solvated polymers with more than a few relevant degrees of freedom, the FB-LEUS scheme involves an US sampling phase that relies on a superposition of low-dimensionality biasing potentials optimized using LEUS at the fragment level. The feasibility of this approach is tested using polyalanine (poly-Ala) and polyvaline (poly-Val) oligopeptides. Two-dimensional biasing potentials are preoptimized at the monopeptide level, and subsequently applied to all dihedral-angle pairs within oligopeptides of 4, 6, 8, or 10 residues. Two types of fragment-based biasing potentials are distinguished: (i) the basin-filling (BF) potentials act so as to "fill" free-energy basins up to a prescribed free-energy level above the global minimum; (ii) the valley-digging (VD) potentials act so as to "dig" valleys between the (four) free-energy minima of the two-dimensional maps, preserving barriers (relative to linearly interpolated free-energy changes) of a prescribed magnitude. The application of these biasing potentials may lead to an impressive enhancement of the searching power (volume of conformational space visited in a given amount of simulation time). However, this increase is largely offset by a deterioration of the statistical efficiency (representativeness of the biased ensemble in terms of the conformational distribution appropriate for the physical ensemble). As a result, it appears difficult to engineer FB-LEUS schemes representing a significant improvement over plain MD, at least for the systems considered here.
Nakatani, Akiho; Li, Xuan; Miyamoto, Junki; Igarashi, Miki; Watanabe, Hitoshi; Sutou, Asuka; Watanabe, Keita; Motoyama, Takayasu; Tachibana, Nobuhiko; Kohno, Mitsutaka; Inoue, Hiroshi; Kimura, Ikuo
2018-07-02
The 8-globulin-rich mung bean protein (MPI) suppresses hepatic lipogenesis in rodent models and reduces fasting plasma glucose and insulin levels in obese adults. However, its effects on mitigating high fat diet (HFD)-induced obesity and the mechanism underlying these effects remain to be elucidated. Herein, we examined the metabolic phenotype, intestinal bile acid (BA) pool, and gut microbiota of conventionally raised (CONV-R) male C57BL/6 mice and germ-free (GF) mice that were randomized to receive either regular HFD or HFD containing mung bean protein isolate (MPI) instead of the dairy protein present in regular HFD. MPI intake significantly reduced HFD-induced weight gain and adipose tissue accumulation, and attenuated hepatic steatosis. Enhancement in the secretion of intestinal glucagon-like peptide-1 (GLP-1) and an enlarged cecal and fecal BA pool of dramatically elevated secondary/primary BA ratio were observed in mice that had consumed MPI. These effects were abolished in GF mice, indicating that the effects were dependent upon the presence of the microbiota. As revealed by 16S rRNA gene sequence analysis, MPI intake also elicited dramatic changes in the gut microbiome, such as an expansion of taxa belonging to the phylum Bacteroidetes along with a reduced abundance of the Firmicutes. Copyright © 2018 Elsevier Inc. All rights reserved.
Bey, Erik A.; Reinicke, Kathryn E.; Srougi, Melissa C.; Varnes, Marie; Anderson, Vernon; Pink, John J.; Li, Long Shan; Patel, Malina; Cao, Lifen; Moore, Zachary; Rommel, Amy; Boatman, Michael; Lewis, Cheryl; Euhus, David M.; Bornmann, William G.; Buchsbaum, Donald J.; Spitz, Douglas R.; Gao, Jinming; Boothman, David A.
2013-01-01
Improving patient outcome by personalized therapy involves a thorough understanding of an agent’s mechanism of action. β-Lapachone (clinical forms, Arq501/Arq761) has been developed to exploit dramatic cancer-specific elevations in the phase II detoxifying enzyme, NAD(P)H:quinone oxidoreductase (NQO1). NQO1 is dramatically elevated in solid cancers, including primary and metastatic (e.g., triple-negative (ER-, PR-, Her2/Neu-)) breast cancers. To define cellular factors that influence the efficacy of β-lapachone using knowledge of its mechanism of action, we confirmed that NQO1 was required for lethality and mediated a futile redox cycle where ~120 moles of superoxide were formed per mole of β-lapachone in 5 min. β-Lapachone induced reactive oxygen species (ROS), stimulated DNA single strand break-dependent PARP1 hyperactivation, caused dramatic loss of essential nucleotides (NAD+/ATP) and elicited programmed necrosis in breast cancer cells. While PARP1 hyperactivation and NQO1 expression were major determinants of β-lapachone-induced lethality, alterations in catalase expression, including treatment with exogenous enzyme, caused marked cytoprotection. Thus, catalase is an important resistance factor, and highlights H2O2 as an obligate ROS for cell death from this agent. Exogenous superoxide dismutase (SOD) enhanced catalase-induced cytoprotection. β-Lapachone-induced cell death included AIF translocation from mitochondria to nuclei, TUNEL+ staining, atypical PARP1 cleavage, and GAPDH S-nitrosylation, which were abrogated by catalase. We predict that the ratio of NQO1:catalase activities in breast cancer versus associated normal tissue are likely to be the major determinants affecting the therapeutic window of β-lapachone and other NQO1 bioactivatable drugs. PMID:23883585
Kazama, Itsuro; Nakajima, Toshiyuki
2017-10-01
In patients with bilateral ureteral obstruction, the serum creatinine levels are often elevated, sometimes causing postrenal acute kidney injury (AKI). In contrast, those with unilateral ureteral obstruction present normal serum creatinine levels, as long as their contralateral kidneys are preserved intact. However, the unilateral obstruction of the ureter could affect the renal function, as it humorally influences the renal hemodynamics. A 66-year-old man with a past medical history of hypertension and diabetes mellitus came to our outpatient clinic because of right abdominal dullness. Unilateral ureteral obstruction caused by a radio-opaque calculus in the right upper ureter and a secondary renal dysfunction. As oral hydration and the use of calcium antagonists failed to allow the spontaneous stone passage, extracorporeal shock wave lithotripsy (ESWL) was performed. Immediately after the passage of the stone, the number of red blood cells in the urine was dramatically decreased and the serum creatinine level almost returned to the normal range with the significant increase in glomerular filtration rate. Unilateral ureteral obstruction by the calculus, which caused reflex vascular constriction and ureteral spasm in the contralateral kidney, was thought to be responsible for the deteriorating renal function.
Mesa, M.G.; Maule, A.G.; Poe, T.P.; Schreck, C.B.
1999-01-01
We investigated the effects of a chronic, progressive infection with Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD), on selected aspects of smoltification in yearling juvenile spring chinook salmon (Oncorhynchus tshawytscha). After experimentally infecting fish with Rs using an immersion challenge, we sampled them every two weeks to monitor changes in gill Na+, K+-ATPase (ATPase), cortisol, infection level, mortality, growth, and other stress-related physiological factors during the normal time of parr-smolt transformation in fresh water (i.e., from winter to spring). A progressively worsening infection with Rs did not alter the normal changes in gill ATPase and condition factor associated with smoltification in juvenile chinook salmon. The infection did, however, lead to elevated levels of plasma cortisol and lactate and depressed levels of plasma glucose, indicating that the disease is stressful during the later stages. A dramatic proliferation of BKD was associated with maximal responses of indicators of smoltification, suggesting that the process of smoltification itself can trigger outbreaks of disease. Our results suggest mechanisms that probably influence the reported inability of Rs-infected fish to successfully adapt to sea water.
Performance of a low-power subsonic-arc-attachment arcjet thruster
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Berns, Darren H.
1993-01-01
A subsonic-arc-attachment thruster design was scaled from a 30 kW 1960's vintage thruster to operate at nominally 3 kW. Performance measurements were obtained over a 1-4 kW power range using hydrogen as the propellant. Several modes of operation were identified and were characterized by varying degrees of voltage instability. A stability map was developed showing that the voltage oscillations were brought upon by elevated current or propellant levels. At a given specific energy level the specific impulse increased asymptotically with increased flow rates. Comparisons of performance were made between radial and tangential propellant injection. When the vortex flow was eliminated using radial injection, the operating voltages were lower at a given current, and the specific impulse and efficiency decreased. Tests were also conducted to determine the effects of background pressure on operation, and performance data were obtained at pressures of 0.047 Pa and 18 Pa. For a given specific energy level, the performance increased with a decrease in facility background pressure. Lowering the background pressure also caused a dramatic change in the voltage-current characteristic and the voltage stability, a phenomenon not previously reported with conventional supersonic-arc-attachment thrusters.
Laser capture microdissection-microarray analysis of focal segmental glomerulosclerosis glomeruli.
Bennett, Michael R; Czech, Kimberly A; Arend, Lois J; Witte, David P; Devarajan, Prasad; Potter, S Steven
2007-01-01
Focal segmental glomerulosclerosis (FSGS) is a major cause of end-stage renal disease. In this report we used laser capture microdissection to purify diseased glomeruli, and microarrays to provide universal gene expression profiles. The results provide a deeper understanding of the molecular mechanisms of the disease process and suggest novel therapeutic strategies. Consistent with earlier studies, molecular markers of the differentiated podocyte, including WT1, nephrin, and VEGF, were dramatically downregulated in the diseased glomerulus. We also observed multiple changes consistent with increased TGF-beta signaling, including elevated expression of TGF-beta(2), TGF-beta(3), SMAD2, TGF-beta(1) receptor, and thrombospondin. In addition, there was relatively low level expression of Csf1r, a marker of macrophages, but elevated expression of the chemokines CXCL1, CXCL2, CCL3, and CXCL14. We also observed strongly upregulated expression of Sox9, a transcription factor that can drive a genetic program of chondrogenesis and fibrosis. Further, the gene with the greatest fold increase in expression in the diseased glomerulus was osteopontin, which has been previously strongly implicated in kidney fibrosis in the unilateral ureteral obstruction mouse model. These results confirm old findings, and indicate the involvement of new genetic pathways in the cause and progression of FSGS. Copyright 2007 S. Karger AG, Basel.
Rhabdomyolysis in a Patient with Severe Hypothyroidism
Salehi, Nooshin; Agoston, Endre; Munir, Iqbal; Thompson, Gary J.
2017-01-01
Patient: Female, 52 Final Diagnosis: Hypothyroidism induced rhabdomyolysis Symptoms: Bilateral leg pain • fatigue Medication: Levothyroxine • Calcitriol • Calcium Gluconate Clinical Procedure: — Specialty: Endocrinology and Metabolic Objective: Unusual clinical course Background: Muscular symptoms, including stiffness, myalgia, cramps, and fatigue, are present in the majority of the patients with symptomatic hypothyroidism, but rhabdomyolysis, the rapid breakdown of skeletal muscle, is a rare manifestation. In most patients with hypothyroidism who develop rhabdomyolysis, precipitating factors, such as strenuous exercise or use of lipid-lowering drugs, can be identified. Case Report: We report a case of a 52-year-old Hispanic woman with a history of hypothyroidism, hypertension, and type 2 diabetes mellitus who presented with fatigue, severe generalized weakness, bilateral leg pain, and recurrent falls. She reported poor medication compliance for the preceding month. Initial laboratory testing showed elevated thyroid stimulating hormone (TSH) and creatine kinase (CK) levels, indicating uncontrolled hypothyroidism with associated rhabdomyolysis. Supportive treatment with intravenous fluids and intravenous levothyroxine were initiated and resulted in dramatic clinical improvement. Conclusions: We report a case of rhabdomyolysis, which is a rare but potentially serious complication of hypothyroidism. Screening for hypothyroidism in patients with elevated muscle enzymes should be considered, since an early diagnosis and prompt treatment of hypothyroidism is essential to prevent rhabdomyolysis and its consequences. PMID:28827517
Antioxidant and hepatoprotective effects of Crataegus songarica methanol extract.
Ganie, Showkat Ahmad; Dar, Tanveer Ali; Zargar, Bilal; Hamid, Rabia; Zargar, Ovais; Dar, Parvaiz Ahmad; Abeer, Shayaq Ul; Masood, Akbar; Amin, Shajrul; Zargar, Mohammad Afzal
2014-01-01
The protective activity of the methanolic extract of the Crataegus songarica leaves was investigated against CCl4- and paracetamol-induced liver damage. On folklore levels, this plant is popularly used to treat various toxicological diseases. We evaluated both in vitro and ex vivo antioxidant activity of C. songarica. At higher concentration of plant extract (700 µg/ml), 88.106% inhibition on DPPH radical scavenging activity was observed and reducing power of extract was increased in a concentration-dependent manner. We also observed its inhibition on Fe2+/ascorbic acid-induced lipid peroxidation on rat liver microsomes in vitro. In addition, C. songarica extract exhibited antioxidant effects on calf thymus DNA damage induced by Fenton reaction. Hepatotoxicity was induced by challenging the animals with CCl4 (1 ml/kg body weight, i.p.) and paracetamol (500 mg/kg body weight) and the extract was administered at three concentrations (100, 200, and 300 mg/kg body weight). Hepatoprotection was evaluated by determining the activities of liver function marker enzymes and antioxidant status of liver. Administration of CCl4 elevated the levels of liver function enzymes, SGOT, SGPT, and LDH. We also observed a dramatic increase in ALT, AST, bilirubin, and alkaline phosphatase levels in rats administered 500 mg/kg body weight of paracetamol. Decreased antioxidant defense system as glutathione (GSH), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione-S-transferase (GST), and superoxide dismutase (SOD) were observed in rats treated with CCl4 and paracetamol. Pretreatment with the extract decreased the elevated serum GOT, GPT, LDH, bilirubin, and alkaline phosphatase activities and increased the antioxidant enzymes in a dose-dependent manner. Therefore, C. songarica methanol extract may be an effective hepatic protective agent and viable candidate for treating hepatic disorders and other oxidative stress-related diseases.
Yu, Hao; Chen, Chuan; Ma, Jincai; Xu, Xijun; Fan, Ronggui; Wang, Aijie
2014-05-01
Limited oxygen supply to anaerobic wastewater treatment systems had been demonstrated as an effective strategy to improve elemental sulfur (S(0)) recovery, coupling sulfate reduction and sulfide oxidation. However, little is known about the impact of dissolved oxygen (DO) on the microbial functional structures in these systems. We used a high throughput tool (GeoChip) to evaluate the microbial community structures in a biological desulfurization reactor under micro-aerobic conditions (DO: 0.02-0.33 mg/L). The results indicated that the microbial community functional compositions and structures were dramatically altered with elevated DO levels. The abundances of dsrA/B genes involved in sulfate reduction processes significantly decreased (p < 0.05, LSD test) at relatively high DO concentration (DO: 0.33 mg/L). The abundances of sox and fccA/B genes involved in sulfur/sulfide oxidation processes significantly increased (p < 0.05, LSD test) in low DO concentration conditions (DO: 0.09 mg/L) and then gradually decreased with continuously elevated DO levels. Their abundances coincided with the change of sulfate removal efficiencies and elemental sulfur (S(0)) conversion efficiencies in the bioreactor. In addition, the abundance of carbon degradation genes increased with the raising of DO levels, showing that the heterotrophic microorganisms (e.g., fermentative microorganisms) were thriving under micro-aerobic condition. This study provides new insights into the impacts of micro-aerobic conditions on the microbial functional structure of sulfate-reducing sulfur-producing bioreactors, and revealed the potential linkage between functional microbial communities and reactor performance. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Vaarala, M H; Porvari, K S; Kyllönen, A P; Mustonen, M V; Lukkarinen, O; Vihko, P T
1998-09-25
A cDNA library specific for mRNA over-expressed in prostate cancer was generated by subtractive hybridization of transcripts originating from prostatic hyperplasia and cancer tissues. cDNA encoding ribosomal proteins L4, L5, L7a, L23a, L30, L37, S14 and S18 was found to be present among 100 analyzed clones. Levels of ribosomal mRNA were significantly higher at least in one of the prostate-cancer cell lines, LNCaP, DU-145 and PC-3, than in hyperplastic tissue, as determined by slot-blot hybridization. Furthermore, L23a- and S14-transcript levels were significantly elevated in PC-3 cells as compared with those in the normal prostate epithelial cell line PrEC. Generally, dramatic changes in the mRNA content of the ribosomal proteins were not detected, the most evident over-expression being that of L37 mRNA, which was 3.4 times more abundant in LNCaP cells than in hyperplastic prostate tissue. The over-expression of L7a and L37 mRNA was confirmed in prostate-cancer tissue samples by in situ hybridization. Elevated cancer-related expression of L4 and L30 has not been reported, but levels of the other ribosomal proteins are known to be increased in several types of cancers. These results therefore suggest that prostate cancer is comparable with other types of cancers, in that a larger pool of some ribosomal proteins is gained during the transformation process, by an unknown mechanism.
Hallaq, Haifa; Pinter, Emese; Enciso, Josephine; McGrath, James; Zeiss, Caroline; Brueckner, Martina; Madri, Joseph; Jacobs, Harris C; Wilson, Christine M; Vasavada, Hemaxi; Jiang, Xiaobing; Bogue, Clifford W
2004-10-01
The homeobox gene Hhex has recently been shown to be essential for normal liver, thyroid and forebrain development. Hhex(-/-) mice die by mid-gestation (E14.5) and the cause of their early demise remains unclear. Because Hhex is expressed in the developing blood islands at E7.0 in the endothelium of the developing vasculature and heart at E9.0-9.5, and in the ventral foregut endoderm at E8.5-9.0, it has been postulated to play a critical role in heart and vascular development. We show here, for the first time, that a null mutation of Hhex results in striking abnormalities of cardiac and vascular development which include: (1) defective vasculogenesis, (2) hypoplasia of the right ventricle, (3) overabundant endocardial cushions accompanied by ventricular septal defects, outflow tract abnormalities and atrio-ventricular (AV) valve dysplasia and (4) aberrant development of the compact myocardium. The dramatic enlargement of the endocardial cushions in the absence of Hhex is due to decreased apoptosis and dysregulated epithelial-mesenchymal transformation (EMT). Interestingly, vascular endothelial growth factor A (Vegfa) levels in the hearts of Hhex(-/-) mice were elevated as much as three-fold between E9.5 and E11.5, and treatment of cultured Hhex(-/-) AV explants with truncated soluble Vegfa receptor 1, sFlt-1, an inhibitor of Vegf signaling, completely abolished the excessive epithelial-mesenchymal transformation seen in the absence of Hhex. Therefore, Hhex expression in the ventral foregut endoderm and/or the endothelium is necessary for normal cardiovascular development in vivo, and one function of Hhex is to repress Vegfa levels during development.
Magness, Ronald R; Phernetton, Terrance M; Gibson, Tiffini C; Chen, Dong-Bao
2005-05-15
Oestrogen dramatically increases uterine blood flow (UBF) in ovariectomized (Ovx) ewes. Both the follicular phase and pregnancy are normal physiological states with elevated levels of circulating oestrogen. ICI 182 780 is a pure steroidal oestrogen receptor (ER) antagonist that blocks oestrogenic actions in oestrogen-responsive tissue. We hypothesized that an ER-mediated mechanism is responsible for in vivo rises in UBF in physiological states of high oestrogen. The purpose of the study was to examine the effect of an ER antagonist on exogenous and endogenous oestradiol-17beta (E2beta)-mediated elevations in UBF. Sheep were surgically instrumented with bilateral uterine artery blood flow transducers, and uterine and femoral artery catheters. Ovx animals (n = 8) were infused with vehicle (35% ethanol) or ICI 182 780 (0.1-3.0 microg min(-1)) into one uterine artery for 10 min before and 50 min after E2beta was given (1 microg kg(-1) I.V. bolus) and UBF was recorded for an additional hour. Intact, cycling sheep were synchronized to the follicular phase using progesterone, prostaglandin F2alpha(PGF2alpha) and pregnant mare serum gonadotrophin (PMSG). When peri-ovulatory rises in UBF reached near peak levels, ICI 182 780 (1 or 2 microg (ml uterine blood flow)-1) was infused unilaterally (n = 4 sheep). Ewes in the last stages of pregnancy (late pregnant ewes) were also given ICI 182 780 (0.23-2.0 microg (ml uterine blood flow)-1; 60 min infusion) into one uterine artery (n = 8 sheep). In Ovx sheep, local infusion of ICI 182 780 did not alter systemic cardiovascular parameters, such as mean arterial blood pressure or heart rate; however, it maximally decreased ipsilateral, but not contralateral, UBF vasodilatory responses to exogenous E2beta by approximately 55-60% (P < 0.01). In two models of elevated endogenous E2beta, local ICI 182 780 infusion inhibited the elevated UBF seen in follicular phase and late pregnant ewes in a time-dependent manner by approximately 60% and 37%, respectively; ipsilateral > contralateral effects (P < 0.01). In late pregnant sheep ICI 182 780 also mildly and acutely (for 5-30 min) elevated mean arterial pressure and heart rate (P < 0.05). We conclude that exogenous E2beta-induced increases in UBF in the Ovx animal and endogenous E2beta-mediated elevations of UBF during the follicular phase and late pregnancy are partially mediated by ER-dependent mechanisms.
Magness, Ronald R; Phernetton, Terrance M; Gibson, Tiffini C; Chen, Dong-bao
2005-01-01
Oestrogen dramatically increases uterine blood flow (UBF) in ovariectomized (Ovx) ewes. Both the follicular phase and pregnancy are normal physiological states with elevated levels of circulating oestrogen. ICI 182 780 is a pure steroidal oestrogen receptor (ER) antagonist that blocks oestrogenic actions in oestrogen-responsive tissue. We hypothesized that an ER-mediated mechanism is responsible for in vivo rises in UBF in physiological states of high oestrogen. The purpose of the study was to examine the effect of an ER antagonist on exogenous and endogenous oestradiol-17β (E2β)-mediated elevations in UBF. Sheep were surgically instrumented with bilateral uterine artery blood flow transducers, and uterine and femoral artery catheters. Ovx animals (n = 8) were infused with vehicle (35% ethanol) or ICI 182 780 (0.1–3.0 μg min−1) into one uterine artery for 10 min before and 50 min after E2β was given (1 μg kg−1i.v. bolus) and UBF was recorded for an additional hour. Intact, cycling sheep were synchronized to the follicular phase using progesterone, prostaglandin F2α(PGF2α) and pregnant mare serum gonadotrophin (PMSG). When peri-ovulatory rises in UBF reached near peak levels, ICI 182 780 (1 or 2 μg (ml uterine blood flow)−1) was infused unilaterally (n = 4 sheep). Ewes in the last stages of pregnancy (late pregnant ewes) were also given ICI 182 780 (0.23–2.0 μg (ml uterine blood flow)−1; 60 min infusion) into one uterine artery (n = 8 sheep). In Ovx sheep, local infusion of ICI 182 780 did not alter systemic cardiovascular parameters, such as mean arterial blood pressure or heart rate; however, it maximally decreased ipsilateral, but not contralateral, UBF vasodilatory responses to exogenous E2β by ∼55–60% (P < 0.01). In two models of elevated endogenous E2β, local ICI 182 780 infusion inhibited the elevated UBF seen in follicular phase and late pregnant ewes in a time-dependent manner by ∼60% and 37%, respectively; ipsilateral ≫ contralateral effects (P < 0.01). In late pregnant sheep ICI 182 780 also mildly and acutely (for 5–30 min) elevated mean arterial pressure and heart rate (P < 0.05). We conclude that exogenous E2β-induced increases in UBF in the Ovx animal and endogenous E2β-mediated elevations of UBF during the follicular phase and late pregnancy are partially mediated by ER-dependent mechanisms. PMID:15774510
Samoilov, M O; Churilova, A V; Glushchenko, T S; Rybnikova, E A
2017-04-01
We studied the effects of different modes of hypobaric hypoxia on the content of epigenetic factors acH3K24, meH3K9, and meDNA modulating conformational characteristics of chromatin and gene expression in neurons of associative complex of rat parietal neocortex. Severe destructive hypoxia dramatically reduced the level of acH3K24 in 3 h after the end of exposure and increased meH3K9 and meDNA content. By contrast, 3-fold (but not single) adaptive exposure to moderate hypobaric hypoxia that produced a neuroprotective effect enhanced neuronal acH3K24 expression and decreased both meH3K9 and meDNA levels. Elevated acH3K24 content facilitates, while increased content of meH3K9 hampers binding of transcription factors to the target genes. At the same time, increased expression of meDNA suppresses transcription. The role of modification of epigenetic mechanisms in the regulation of proadaptive genes under the effects of hypoxic exposure according to various protocols is discussed.
Changing images of violence in Rap music lyrics: 1979-1997.
Herd, Denise
2009-12-01
Rap music has been at the center of concern about the potential harmful effects of violent media on youth social behavior. This article explores the role of changing images of violence in rap music lyrics from the 1970s to the 1990s. The results indicate that there has been a dramatic and sustained increase in the level of violence in rap music. The percentage of songs mentioning violence increased from 27 per cent during 1979-1984 to 60 per cent during 1994-1997. In addition, portrayals of violence in later songs are viewed in a more positive light as shown by their increased association with glamor, wealth, masculinity, and personal prowess. Additional analyses revealed that genre, specifically gangster rap, is the most powerful predictor of the increased number of violent references in songs. The discussion suggests that violence in rap music has increased in response to the complex interplay of changing social conditions such as the elevated levels of youth violence in the 1980s and changing commercial practices within the music industry.
Tamarkin-Ben-Harush, Ana; Vasseur, Jean-Jacques; Debart, Françoise; Ulitsky, Igor; Dikstein, Rivka
2017-02-08
Transcription start-site (TSS) selection and alternative promoter (AP) usage contribute to gene expression complexity but little is known about their impact on translation. Here we performed TSS mapping of the translatome following energy stress. Assessing the contribution of cap-proximal TSS nucleotides, we found dramatic effect on translation only upon stress. As eIF4E levels were reduced, we determined its binding to capped-RNAs with different initiating nucleotides and found the lowest affinity to 5'cytidine in correlation with the translational stress-response. In addition, the number of differentially translated APs was elevated following stress. These include novel glucose starvation-induced downstream transcripts for the translation regulators eIF4A and Pabp, which are also translationally-induced despite general translational inhibition. The resultant eIF4A protein is N-terminally truncated and acts as eIF4A inhibitor. The induced Pabp isoform has shorter 5'UTR removing an auto-inhibitory element. Our findings uncovered several levels of coordination of transcription and translation responses to energy stress.
Chen, Dai; Liu, Shao-Quan
2016-04-01
This work examined for the first time the impact of malolactic fermentation (MLF) on the chemical constituents of lychee wine. Oenococcus oeni Viniflora Oenos (MLF inducer) and Saccharomyces cerevisiae MERIT.ferm were co-inoculated into lychee juice to induce simultaneous alcoholic fermentation (AF) and MLF. MLF did not affect sugar utilisation and ethanol production statistically (8.54% v/v for MLF and 9.27% v/v for AF). However, MLF resulted in dramatic degradation of malic and citric acids with concomitant increases of lactic acid, ethyl lactate and pH. The final concentrations of acetic and succinic acids between AF and MLF wines had no significant difference. The MLF wine contained significantly higher amounts of amino acids than the AF wine. More importantly, MLF significantly elevated the levels of potent aroma-active compounds including isoamyl acetate, linalool, geraniol and cis-rose oxide (to levels above or near respective detection thresholds), suggesting that MLF is an effective way of retaining the original lychee flavour. Copyright © 2015 Elsevier Ltd. All rights reserved.
McCormick, S.D.; Shrimpton, J.M.; Moriyama, S.; Bjornsson, Bjorn Thrandur
2007-01-01
In order to elucidate the developmental basis for smolting, Atlantic salmon, Salmo salar, parr ( 12.5??cm) were exposed to natural daylength (LDN) and increased daylength (LD16:8) starting in late February and gill Na+,K+-ATPase activity and circulating hormone levels monitored from January to May. Gill Na+,K+-ATPase activity remained low and constant in both groups of parr. In smolts, gill Na+,K+-ATPase began increasing in late February in both photoperiods, but was significantly higher in the LD16:8 group from March through April. Smolts exposed to LD16:8 had dramatically elevated plasma GH within one week of increased daylength that remained high through April, whereas plasma GH of LDN smolts increased steadily beginning in late February and peaking in late April. Plasma GH levels of parr remained low in spring and did not respond to increased daylength. Plasma insulin-like growth factor I (IGF-I) levels were substantially higher in smolts than parr in January. Plasma IGF-I levels of parr increased steadily from January to May, but there was no influence of increased daylength. In smolts, plasma IGF-I of LD16:8 fish initially decreased in early March then increased in late March and April, whereas plasma IGF-I of LDN smolts increased steadily to peak levels in early April. Plasma cortisol was low in parr throughout spring and did not differ between photoperiod treatments. Plasma cortisol of LD16:8 smolts increased in early March and remained elevated through April, whereas in LDN smolts plasma cortisol did not increase until early April and peaked in late April. Plasma thyroid hormones were generally higher in smolts than in parr, but there was no clear effect of increased daylength in parr or smolts. The greater capacity of the GH/IGF-I and cortisol axes to respond to increased daylength may be a critical factor underlying smolt development. ?? 2007 Elsevier B.V. All rights reserved.
Plants mediate soil organic matter decomposition in response to sea level rise.
Mueller, Peter; Jensen, Kai; Megonigal, James Patrick
2016-01-01
Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field-based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated via δ(13) CO2 . Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM-derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR. © 2015 John Wiley & Sons Ltd.
Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong
2014-01-01
Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in the drawdown area.
Wang, Qiang; Yuan, Xingzhong; Willison, J.H.Martin; Zhang, Yuewei; Liu, Hong
2014-01-01
Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in the drawdown area. PMID:24971514
Functional Analysis of Human NF1 in Drosophila
2009-01-01
syndrome (NS) affect LTM. Noonan syndrome is one of so-called Ras-related disorders as NF1 is. It shares symptoms with NF1 and is also resulted from...3. Noonan Syndrome Elevated MAPK activation is a consistent biochemical hallmark of Noonan syndrome (NS) as well as of other phenotypically...mutations associated with Noonan syndrome . Our studies also showed that wild-type CSW overexpression dramatically shortens the inter-trial interval
Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilgour, Douglas W.; Moseley, Rebecca A.; Savage, Kaye S
2008-09-01
A study of the potential negative consequences of adding phosphate (P)-based fertilizers as amendments to immobilize lead (Pb) in contaminated soils was conducted. Lead-contaminated firing range soils also contained elevated concentrations of antimony (Sb), a common Pb hardening agent, and some arsenic (As) of unknown (possibly background) origin. After amending the soils with triple superphosphate, a relatively soluble P source, column leaching experiments revealed elevated concentrations of Sb, As, and Pb in the leachate, reflecting an initial spike in soluble Pb and a particularly dramatic increase in Sb and As mobility. Minimal As, Sb, and Pb leaching was observed duringmore » column tests performed on non-amended control soils. In vitro extractions tests were performed to assess changes in Pb, As, and Sb bioaccessibility on P amendment. Lead bioaccessibility was systematically lowered with increasing P dosage, but there was much less of an effect on As and Sb bioaccessibility than on mobility. Our results indicate that although P amendments may aid in lowering the bioaccessibility of soil-bound Pb, it may also produce an initial increase in Pb mobility and a significant release of Sb and As from the soil, dramatically increasing their mobility and to a lesser extent their bioavailability.« less
Albatross species demonstrate regional differences in North Pacific marine contamination
Finkelstein, M.; Keitt, B.S.; Croll, D.A.; Tershy, B.; Jarman, Walter M.; Rodriguez-Pastor, S.; Anderson, D.J.; Sievert, P.R.; Smith, D.R.
2006-01-01
Recent concern about negative effects on human health from elevated organochlorine and mercury concentrations in marine foods has highlighted the need to understand temporal and spatial patterns of marine pollution. Seabirds, long-lived pelagic predators with wide foraging ranges, can be used as indicators of regional contaminant patterns across large temporal and spatial scales. Here we evaluate contaminant levels, carbon and nitrogen stable isotope ratios, and satellite telemetry data from two sympatrically breeding North Pacific albatross species to demonstrate that (1) organochlorine and mercury contaminant levels are significantly higher in the California Current compared to levels in the high-latitude North Pacific and (2) levels of organochlorine contaminants in the North Paci.c are increasing over time. Black-footed Albatrosses (Phoebastria nigripes) had 370-460% higher organochlorine (polychlorinated biphenyls [PCBs], dichlorodiphenyltrichloroethanes [DDTs]) and mercury body burdens than a closely related species, the Laysan Albatross (P. immutabilis), primarily due to regional segregation of their North Pacific foraging areas. PCBs (the sum of the individual PCB congeners analyzed) and DDE concentrations in both albatross species were 130-360% higher than concentrations measured a decade ago. Our results demonstrate dramatically high and increasing contaminant concentrations in the eastern North Pacific Ocean, a finding relevant to other marine predators, including humans. ?? 2006 by the Ecological Society of America.
Radville, Laura; Chaves, Arielle; Preisser, Evan L
2011-06-01
Herbivores can trigger a wide array of morphological and chemical changes in their host plants. Feeding by some insects induces a defensive hypersensitive response, a defense mechanism consisting of elevated H(2)O(2) levels and tissue death at the site of herbivore feeding. The invasive hemlock woolly adelgid Adelges tsugae ('HWA') and elongate hemlock scale Fiorinia externa ('EHS') feed on eastern hemlocks; although both are sessile sap feeders, HWA causes more damage than EHS. The rapid rate of tree death following HWA infestation has led to the suggestion that feeding induces a hypersensitive response in hemlock trees. We assessed the potential for an herbivore-induced hypersensitive response in eastern hemlocks by measuring H(2)O(2) levels in foliage from HWA-infested, EHS-infested, and uninfested trees. Needles with settled HWA or EHS had higher H(2)O(2) levels than control needles, suggesting a localized hypersensitive plant response. Needles with no direct contact to settled HWA also had high H(2)O(2) levels, suggesting that HWA infestation may induce a systemic defense response in eastern hemlocks. There was no similar systemic defensive response in the EHS treatment. Our results showed that two herbivores in the same feeding guild had dramatically different outcomes on the health of their shared host.
High-Density Lipoprotein-Targeted Therapy and Apolipoprotein A-I Mimetic Peptides.
Uehara, Yoshinari; Chiesa, Giulia; Saku, Keijiro
2015-01-01
Numerous randomized clinical trials have established statins as the major standard therapy for atherosclerotic diseases because these molecules decrease the plasma level of low-density lipoprotein (LDL) cholesterol and moderately increase that of plasma high-density lipoprotein (HDL) cholesterol. The reverse cholesterol transport pathway, mediated by HDL particles, has a relevant antiatherogenic potential. An important approach to HDL-targeted therapy is optimization of the HDL-cholesterol level and enhanced removal of plasma cholesterol, together with the prevention and mitigation of inflammation related to atherosclerosis. Small-molecule inhibitors of cholesteryl ester transfer protein (CETP) increase the HDL-cholesterol level in subjects with normal or low HDL-cholesterol. However, CETP inhibitors do not seem to reduce the risk of atherosclerotic diseases. HDL therapies using reconstituted HDL, including apolipoprotein (Apo) A-I Milano, ApoA-I mimetics, or full-length ApoA-I, are dramatically effective in animal models. Of those, the ApoA-I-mimetic peptide called FAMP effectively removes cholesterol via the ABCA1 transporter and acts as an antiatherosclerotic agent by enhancing the biological functions of HDL without elevating the HDL-cholesterol level. Our review of the literature leads us to conclude that HDL-targeted therapies have significant atheroprotective potential and thus may effectively treat patients with cardiovascular diseases.
Leucocyte protein Trojan, a possible regulator of apoptosis.
Petrov, Petar; Syrjänen, Riikka; Uchida, Tatsuya; Vainio, Olli
2017-02-01
Trojan is a leucocyte-specific protein, cloned from chicken embryonic thymocyte cDNA library. The molecule is a type I transmembrane protein with an extracellular CCP domain, followed by two FN3 domains. Its cytoplasmic tail is predicted to possess a MAPK docking and a PKA phosphorylation sites. Trojan has been proposed to have an anti-apoptotic role based on its differential expression on developing thymocyte subpopulations. Using a chicken cell line, our in vitro studies showed that upon apoptosis induction, Trojan expression rises dramatically on the surface of surviving cells and gradually decreases towards its normal levels as cells recover. When sorted based on their expression levels of Trojan, cells with high expression appeared less susceptible to apoptotic induction than those bearing no or low levels of Trojan on their surface. The mechanism by which the molecule exerts its function is yet to be discovered. We found that cells overexpressing Trojan from a cDNA plasmid show elevated steady-state levels of intracellular calcium, suggesting the molecule is able to transmit cytoplasmic signals. The mechanistic nature of Trojan-induced signalling is a target of future investigation. In this article, we conducted a series of experiments that suggest Trojan as an anti-apoptotic regulator. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Effects of kidney or kidney-pancreas transplantation on plasma pentosidine.
Hricik, D E; Schulak, J A; Sell, D R; Fogarty, J F; Monnier, V M
1993-02-01
Tissue and plasma concentrations of pentose-derived glycation end-products ("pentosidine") are elevated in diabetic patients with normal renal function and in both diabetic and nondiabetic patients with end-stage renal disease. To determine the effects of correcting hyperglycemia and/or renal failure on the accumulation of pentosidine, we used reverse phase and ion exchange high performance liquid chromatography to measure this advanced glycation end-product in plasma proteins of diabetic and nondiabetic transplant recipients at various time intervals after kidney-pancreas or kidney transplantation. Changes in plasma pentosidine levels after transplantation were compared to changes in simultaneously obtained glycohemoglobin levels. Both kidney and kidney-pancreas transplantation were accompanied by a dramatic, but incomplete, reduction of plasma pentosidine concentrations within three months of transplantation. Kidney-pancreas transplantation resulted in normal glycohemoglobin levels within three months but offered no advantage over kidney transplantation alone in the partial correction of plasma pentosidine levels. There was no correlation between posttransplant plasma pentosidine and glycohemoglobin levels in either diabetic or nondiabetic transplant recipients. We conclude that renal failure is the major factor accounting for the accumulation of pentosidine in both diabetic and nondiabetic patients with end-stage renal disease. Restoration of euglycemia after kidney-pancreas transplantation provides no additional benefit in reducing plasma pentosidine levels to that achieved by correction of renal failure after kidney transplantation alone.
Remodeling the zonula adherens in response to tension and the role of afadin in this response
Acharya, Bipul R.; Peyret, Grégoire; Fardin, Marc-Antoine; Mège, René-Marc; Ladoux, Benoit; Yap, Alpha S.; Fanning, Alan S.
2016-01-01
Morphogenesis requires dynamic coordination between cell–cell adhesion and the cytoskeleton to allow cells to change shape and move without losing tissue integrity. We used genetic tools and superresolution microscopy in a simple model epithelial cell line to define how the molecular architecture of cell–cell zonula adherens (ZA) is modified in response to elevated contractility, and how these cells maintain tissue integrity. We previously found that depleting zonula occludens 1 (ZO-1) family proteins in MDCK cells induces a highly organized contractile actomyosin array at the ZA. We find that ZO knockdown elevates contractility via a Shroom3/Rho-associated, coiled-coil containing protein kinase (ROCK) pathway. Our data suggest that each bicellular border is an independent contractile unit, with actin cables anchored end-on to cadherin complexes at tricellular junctions. Cells respond to elevated contractility by increasing junctional afadin. Although ZO/afadin knockdown did not prevent contractile array assembly, it dramatically altered cell shape and barrier function in response to elevated contractility. We propose that afadin acts as a robust protein scaffold that maintains ZA architecture at tricellular junctions. PMID:27114502
Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?
Munday, Philip L; McCormick, Mark I; Nilsson, Göran E
2012-11-15
Average sea-surface temperature and the amount of CO(2) dissolved in the ocean are rising as a result of increasing concentrations of atmospheric CO(2). Many coral reef fishes appear to be living close to their thermal optimum, and for some of them, even relatively moderate increases in temperature (2-4°C) lead to significant reductions in aerobic scope. Reduced aerobic capacity could affect population sustainability because less energy can be devoted to feeding and reproduction. Coral reef fishes seem to have limited capacity to acclimate to elevated temperature as adults, but recent research shows that developmental and transgenerational plasticity occur, which might enable some species to adjust to rising ocean temperatures. Predicted increases in P(CO(2)), and associated ocean acidification, can also influence the aerobic scope of coral reef fishes, although there is considerable interspecific variation, with some species exhibiting a decline and others an increase in aerobic scope at near-future CO(2) levels. As with thermal effects, there are transgenerational changes in response to elevated CO(2) that could mitigate impacts of high CO(2) on the growth and survival of reef fishes. An unexpected discovery is that elevated CO(2) has a dramatic effect on a wide range of behaviours and sensory responses of reef fishes, with consequences for the timing of settlement, habitat selection, predator avoidance and individual fitness. The underlying physiological mechanism appears to be the interference of acid-base regulatory processes with brain neurotransmitter function. Differences in the sensitivity of species and populations to global warming and rising CO(2) have been identified that will lead to changes in fish community structure as the oceans warm and becomes more acidic; however, the prospect for acclimation and adaptation of populations to these threats also needs to be considered. Ultimately, it will be the capacity for species to adjust to environmental change over coming decades that will determine the impact of climate change on marine ecosystems.
Zhou, Wen-Qin; Wang, Peng; Shao, Qiu-Ping; Wang, Jian
2016-08-01
Acute respiratory distress syndrome (ARDS) is a common clinical disorder characterized by pulmonary edema leading to acute lung damage and arterial hypoxemia. Pulmonary fibrosis is a progressive, fibrotic lung disorder, whose pathogenesis in ARDS remains speculative. LincRNA-p21 was a novel regulator of cell proliferation, apoptosis and DNA damage response. This study aims to investigate the effects and mechanism of lincRNA-p21 on pulmonary fibrosis in ARDS. Purified 10 mg/kg LPS was dropped into airways of C57BL/6 mice. Expression levels of lincRNA-p21 and Thy-1 were measured by real-time PCR or western blotting. Proliferation of lung fibroblasts was analyzed by BrdU incorporation assay. Lung and BAL collagen contents were estimated using colorimetric Sircol assay. LincRNA-p21 expression was time-dependently increased and Thy-1 expression was time-dependently reduced in a mouse model of ARDS and in LPS-treated lung fibroblasts. Meanwhile, lung fibroblast proliferation was also time-dependently elevated in LPS-treated lung fibroblasts. In addition, lung fibroblast proliferation could be promoted by lincRNA-p21 overexpression and LPS treatment, however, the elevated lung fibroblast proliferation was further abrogated by Thy-1 overexpression or lincRNA-p21 interference. And Thy-1 interference could elevate cell viability of lung fibroblasts and rescue the reduction of lung fibroblast proliferation induced by lincRNA-p21 interference. Moreover, lincRNA-p21 overexpression dramatically inhibited acetylation of H3 and H4 at the Thy-1 promoter and Thy-1 expression levels in HLF1 cells. Finally, lincRNA-p21 interference rescued LPS-induced increase of lung and BAL collagen contents. LincRNA-p21 could lead to pulmonary fibrosis in ARDS by inhibition of the expression of Thy-1.
Treating presbyopia without spectacles
NASA Astrophysics Data System (ADS)
Xu, Renfeng
Both multifocal optics and small pupils can increase the depth of focus (DoF) of presbyopes. This thesis will evaluate some of the unique challenges faced by each of these two strategies. First, there is no single spherical refracting lens that can focus all parts of the pupil of an aberrated eye. What is the objective and subjective spherical refractive error (Rx) for such an eye, and does it vary with the amount of primary SA? Using both computational modeling and psychophysical methods, we found that high levels of positive Seidel SA caused both objective and subjective refractions to become myopic. Significantly, this refractive shift varied with stimulus spatial frequency and subjective criterion. Second, although secondary SA can dramatically expand DoF, we show that this is mostly due to the lower order components within this polynomial, which can also change spherical Rx. Also, the r6 term that defines secondary SA actually narrows rather than expands DoF, when in the presence of the r4 term within Z60. Finally, as retinal illuminance drops, neural thresholds are elevated due to increased problems of photon noise. We asked if the gains in near and distant vision of presbyopes anticipated at high light levels would be cancelled or even reversed at low light levels because of the additional reduction in retinal illuminance contributed by small pupils. We found that when light levels are > 2 cd/m2, a small pupil with a diameter of 2--3mm improves near image quality, near visual acuity, and near reading speed without significant loss of distance image quality and distance vision. This result gains added significance because we also showed that low light level text in the urban environment always has luminance levels > 2 cd/m2. In conclusion, both small pupils and multifocal optics face significant challenges as near vision aids for presbyopes. However, some of the confounding effects of elevated SA levels are avoided by using small pupils to expand DoF, which can provide improved near and distance vision at most light levels encountered while reading.
Catalase (KatA) Plays a Role in Protection against Anaerobic Nitric Oxide in Pseudomonas aeruginosa
Su, Shengchang; Panmanee, Warunya; Wilson, Jeffrey J.; Mahtani, Harry K.; Li, Qian; VanderWielen, Bradley D.; Makris, Thomas M.; Rogers, Melanie; McDaniel, Cameron; Lipscomb, John D.; Irvin, Randall T.; Schurr, Michael J.; Lancaster, Jack R.; Kovall, Rhett A.; Hassett, Daniel J.
2014-01-01
Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (K d ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of NO are approached. PMID:24663218
Response of the Arctic pteropod Limacina helicina to projected future environmental conditions.
Comeau, Steeve; Jeffree, Ross; Teyssié, Jean-Louis; Gattuso, Jean-Pierre
2010-06-29
Thecosome pteropods (pelagic mollusks) can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO(2) emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO(2) levels of 280, 380, 550, 760 and 1020 microatm and at control (0 degrees C) and elevated (4 degrees C) temperatures. The respiration rate was unaffected by pCO(2) at control temperature, but significantly increased as a function of the pCO(2) level at elevated temperature. pCO(2) had no effect on the gut clearance rate at either temperature. Precipitation of CaCO(3), measured as the incorporation of (45)Ca, significantly declined as a function of pCO(2) at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems.
Response of the Arctic Pteropod Limacina helicina to Projected Future Environmental Conditions
Comeau, Steeve; Jeffree, Ross; Teyssié, Jean-Louis; Gattuso, Jean-Pierre
2010-01-01
Thecosome pteropods (pelagic mollusks) can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO2 levels of 280, 380, 550, 760 and 1020 µatm and at control (0°C) and elevated (4°C) temperatures. The respiration rate was unaffected by pCO2 at control temperature, but significantly increased as a function of the pCO2 level at elevated temperature. pCO2 had no effect on the gut clearance rate at either temperature. Precipitation of CaCO3, measured as the incorporation of 45Ca, significantly declined as a function of pCO2 at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems. PMID:20613868
Nunes, Paula; Roth, Isabelle; Meda, Paolo; Féraille, Eric; Brown, Dennis; Hasler, Udo
2015-01-01
Cell volume homeostasis is vital for the maintenance of optimal protein density and cellular function. Numerous mammalian cell types are routinely exposed to acute hypertonic challenge and shrink. Molecular crowding modifies biochemical reaction rates and decreases macromolecule diffusion. Cell volume is restored rapidly by ion influx but at the expense of elevated intracellular sodium and chloride levels that persist long after challenge. Although recent studies have highlighted the role of molecular crowding on the effects of hypertonicity, the effects of ionic imbalance on cellular trafficking dynamics in living cells are largely unexplored. By tracking distinct fluorescently labeled endosome/vesicle populations by live-cell imaging, we show that vesicle motility is reduced dramatically in a variety of cell types at the onset of hypertonic challenge. Live-cell imaging of actin and tubulin revealed similar arrested microfilament motility upon challenge. Vesicle motility recovered long after cell volume, a process that required functional regulatory volume increase and was accelerated by a return of extracellular osmolality to isosmotic levels. This delay suggests that, although volume-induced molecular crowding contributes to trafficking defects, it alone cannot explain the observed effects. Using fluorescent indicators and FRET-based probes, we found that intracellular ATP abundance and mitochondrial potential were reduced by hypertonicity and recovered after longer periods of time. Similar to the effects of osmotic challenge, isovolumetric elevation of intracellular chloride concentration by ionophores transiently decreased ATP production by mitochondria and abated microfilament and vesicle motility. These data illustrate how perturbed ionic balance, in addition to molecular crowding, affects membrane trafficking. PMID:26045497
Youssefian, Shohab; Nakamura, Michimi; Orudgev, Emin; Kondo, Noriaki
2001-01-01
O-Acetylserine(thiol) lyase (OASTL), a key enzyme of plant sulfur metabolism, catalyzes the formation of Cys from sulfide and O-acetylserine. The biosynthesis of Cys is regarded as the exclusive function of sulfur reduction in plants, and a key limiting step in the production of glutathione (GSH), a thiol implicated in various cellular functions, including sulfur transport, gene expression, scavenging of reactive oxygen species (ROS), and resistance to biotic and abiotic stresses. To examine whether an increased capacity for cysteine (Cys) biosynthesis alters cellular responses to such stresses, we studied the differential changes in thiol levels and ROS scavenging of transgenic tobacco (Nicotiana tabacum) plants expressing the wheat (Triticum aestivum) OASTL gene, cys1, to SO2 and to the ROS generator, methyl viologen. Intracellular Cys and GSH contents were generally higher in cys1 transgenics than in controls under normal growth conditions, but became especially elevated in transgenic plants after SO2 exposure. An examination of differences in the ROS scavenging system of the transgenic plants also demonstrated the specific accumulation of Cu/Zn superoxide dismutase transcripts, known to be induced by Cys or GSH, and elevated cellular superoxide dismutase activities. The transgenic plants accordingly showed dramatic reductions in the extent of both foliar and photooxidative damage in response to acute SO2, as well as reduced levels of chlorosis and membrane damage following methyl viologen treatment. Overall, our results imply that OASTL plays a pivotal role in the synthesis of Cys and GSH that are required for regulation of plant responses to oxidative stress. PMID:11457951
Biological Significance of Prolactin in Gynecological Cancers
Levina, Vera V; Nolen, Brian; Su, YunYun; Godwin, Andrew K.; Fishman, David; Liu, Jinsong; Mor, Gil; Maxwell, Larry G.; Herberman, Ronald B.; Szczepanski, Miroslaw J.; Szajnik, Marta E.; Gorelik, Elieser; Lokshin, Anna E
2010-01-01
There is increasing evidence that Prolactin (PRL), a hormone/cytokine, plays a role in breast, prostate and colorectal cancers via local production or accumulation. Elevated levels of serum PRL in ovarian and endometrial cancers have been reported indicating a potential role for prolactin in endometrial and ovarian carcinogenesis. In this study, we demonstrate that serum PRL levels are significantly elevated in women with a strong family history of ovarian cancer. We demonstrate dramatically increased expression of PRL receptor (PRLR) in ovarian and endometrial tumors as well as in endometrial hyperplasia signifying the importance of PRL signaling in malignant and premalignant conditions. PRL mRNA was expressed in ovarian and endometrial tumors indicating the presence of an autocrine loop. PRL potently induced proliferation in several ovarian and endometrial cancer cell lines. Binding of PRL to its receptor was followed by rapid phosphorylation of ERK1/2, MEK-1, STAT3, CREB, ATF-2, and p53, and activation of 37 transcription factors in ovarian and endometrial carcinoma cells. PRL also activated Ras oncogene in these cells. When human immortalized normal ovarian epithelial (NOE) cells were chronically exposed to PRL a malignant transformation occurred manifested by the acquired ability of transformed cells to form clones, grow in soft agar, and form tumors in SCID-beige mice. Transformation efficiency was diminished by a Ras inhibitor providing proof that PRL-induced transformation utilizes the Ras pathway. In summary, we present findings that indicate an important role for PRL in ovarian and endometrial tumorigenesis. PRL may represent a risk factor for ovarian and endometrial cancers. PMID:19491263
Nrf2/p62 signaling in apoptosis resistance and its role in cadmium-induced carcinogenesis.
Son, Young-Ok; Pratheeshkumar, Poyil; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Zhang, Zhuo; Shi, Xianglin
2014-10-10
The cadmium-transformed human lung bronchial epithelial BEAS-2B cells exhibit a property of apoptosis resistance as compared with normal non-transformed BEAS-2B cells. The level of basal reactive oxygen species (ROS) is extremely low in transformed cells in correlation with elevated expressions of both antioxidant enzymes (catalase, SOD1, and SOD2) and antiapoptotic proteins (Bcl-2/Bcl-xL). Moreover, Nrf2 and p62 are highly expressed in these transformed cells. The knockdown of Nrf2 or p62 by siRNA enhances ROS levels and cadmium-induced apoptosis. The binding activities of Nrf2 on the antioxidant response element promoter regions of p62/Bcl-2/Bcl-xL were dramatically increased in the cadmium-exposed transformed cells. Cadmium exposure increased the formation of LC3-II and the frequency of GFP-LC3 punctal cells in non-transformed BEAS-2B cells, whereas these increases are not shown in transformed cells, an indication of autophagy deficiency of transformed cells. Furthermore, the expression levels of Nrf2 and p62 are dramatically increased during chronic long term exposure to cadmium in the BEAS-2B cells as well as antiapoptotic proteins and antioxidant enzymes. These proteins are overexpressed in the tumor tissues derived from xenograft mouse models. Moreover, the colony growth is significantly attenuated in the transformed cells by siRNA transfection specific for Nrf2 or p62. Taken together, this study demonstrates that cadmium-transformed cells have acquired autophagy deficiency, leading to constitutive p62 and Nrf2 overexpression. These overexpressions up-regulate the antioxidant proteins catalase and SOD and the antiapoptotic proteins Bcl-2 and Bcl-xL. The final consequences are decrease in ROS generation, apoptotic resistance, and increased cell survival, proliferation, and tumorigenesis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Nrf2/p62 Signaling in Apoptosis Resistance and Its Role in Cadmium-induced Carcinogenesis*
Son, Young-Ok; Pratheeshkumar, Poyil; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Zhang, Zhuo; Shi, Xianglin
2014-01-01
The cadmium-transformed human lung bronchial epithelial BEAS-2B cells exhibit a property of apoptosis resistance as compared with normal non-transformed BEAS-2B cells. The level of basal reactive oxygen species (ROS) is extremely low in transformed cells in correlation with elevated expressions of both antioxidant enzymes (catalase, SOD1, and SOD2) and antiapoptotic proteins (Bcl-2/Bcl-xL). Moreover, Nrf2 and p62 are highly expressed in these transformed cells. The knockdown of Nrf2 or p62 by siRNA enhances ROS levels and cadmium-induced apoptosis. The binding activities of Nrf2 on the antioxidant response element promoter regions of p62/Bcl-2/Bcl-xL were dramatically increased in the cadmium-exposed transformed cells. Cadmium exposure increased the formation of LC3-II and the frequency of GFP-LC3 punctal cells in non-transformed BEAS-2B cells, whereas these increases are not shown in transformed cells, an indication of autophagy deficiency of transformed cells. Furthermore, the expression levels of Nrf2 and p62 are dramatically increased during chronic long term exposure to cadmium in the BEAS-2B cells as well as antiapoptotic proteins and antioxidant enzymes. These proteins are overexpressed in the tumor tissues derived from xenograft mouse models. Moreover, the colony growth is significantly attenuated in the transformed cells by siRNA transfection specific for Nrf2 or p62. Taken together, this study demonstrates that cadmium-transformed cells have acquired autophagy deficiency, leading to constitutive p62 and Nrf2 overexpression. These overexpressions up-regulate the antioxidant proteins catalase and SOD and the antiapoptotic proteins Bcl-2 and Bcl-xL. The final consequences are decrease in ROS generation, apoptotic resistance, and increased cell survival, proliferation, and tumorigenesis. PMID:25157103
A chief safety officer as the driver and guardian of a great safety rating.
Steck, Oliver; Zenker, Daniel; Beatty, Tom
2013-02-01
If the Pharmaceutical Industry were to align to broad metrics that objectively state each product's "Safety Rating" two things would happen. First, Life Sciences companies would refocus dramatically on safety (followed by outcomes). Second, companies that have the highest aggregate "Safety Rating" would enjoy a significant competitive advantage. To achieve and maintain a high safety rating, the role of Safety officer needs to be elevated to the C-Suite.
Peng, Xian-E; Wu, Yun-Li; Zhu, Yi-Bing; Huang, Rong-Dong; Lu, Qing-Qing; Lin, Xu
2015-01-01
Liver fatty acid-binding protein (L-FABP), also known as fatty acid-binding protein 1 (FABP1), is a key regulator of hepatic lipid metabolism. Elevated FABP1 levels are associated with an increased risk of cardiovascular disease (CVD) and metabolic syndromes. In this study, we examine the association of FABP1 gene promoter variants with serum FABP1 and lipid levels in a Chinese population. Four promoter single-nucleotide polymorphisms (SNPs) of FABP1 gene were genotyped in a cross-sectional survey of healthy volunteers (n = 1,182) from Fuzhou city of China. Results showed that only the rs2919872 G>A variant was significantly associated with serum TG concentration(P = 0.032).Compared with the rs2919872 G allele, rs2919872 A allele contributed significantly to reduced serum TG concentration, and this allele dramatically decreased the FABP1 promoter activity(P < 0.05). The rs2919872 A allele carriers had considerably lower serum FABP1 levels than G allele carriers (P < 0.01). In the multivariable linear regression analysis, the rs2919872 A allele was negatively associated with serum FABP1 levels (β = -0.320, P = 0.003), while serum TG levels were positively associated with serum FABP1 levels (β = 0.487, P = 0.014). Our data suggest that compared with the rs2919872 G allele, the rs2919872 A allele reduces the transcriptional activity of FABP1 promoter, and thereby may link FABP1 gene variation to TG level in humans.
Zhu, Yi-bing; Huang, Rong-dong; Lu, Qing-Qing; Lin, Xu
2015-01-01
Liver fatty acid-binding protein (L-FABP), also known as fatty acid-binding protein 1 (FABP1), is a key regulator of hepatic lipid metabolism. Elevated FABP1 levels are associated with an increased risk of cardiovascular disease (CVD) and metabolic syndromes. In this study, we examine the association of FABP1 gene promoter variants with serum FABP1 and lipid levels in a Chinese population. Four promoter single-nucleotide polymorphisms (SNPs) of FABP1 gene were genotyped in a cross-sectional survey of healthy volunteers (n = 1,182) from Fuzhou city of China. Results showed that only the rs2919872 G>A variant was significantly associated with serum TG concentration(P = 0.032).Compared with the rs2919872 G allele, rs2919872 A allele contributed significantly to reduced serum TG concentration, and this allele dramatically decreased the FABP1 promoter activity(P < 0.05). The rs2919872 A allele carriers had considerably lower serum FABP1 levels than G allele carriers (P < 0.01). In the multivariable linear regression analysis, the rs2919872 A allele was negatively associated with serum FABP1 levels (β = —0.320, P = 0.003), while serum TG levels were positively associated with serum FABP1 levels (β = 0.487, P = 0.014). Our data suggest that compared with the rs2919872 G allele, the rs2919872 A allele reduces the transcriptional activity of FABP1 promoter, and thereby may link FABP1 gene variation to TG level in humans. PMID:26439934
Valdes, Carla; Black, Frank J; Stringham, Blair; Collins, Jeffrey N; Goodman, James R; Saxton, Heidi J; Mansfield, Christopher R; Schmidt, Joshua N; Yang, Shu; Johnson, William P
2017-05-02
Measurements of chemical and physical parameters made before and after sealing of culverts in the railroad causeway spanning the Great Salt Lake in late 2013 documented dramatic alterations in the system in response to the elimination of flow between the Great Salt Lake's north and south arms. The flow of denser, more-saline water through the culverts from the north arm (Gunnison Bay) to the south arm (Gilbert Bay) previously drove the perennial stratification of the south arm and the existence of oxic shallow brine and anoxic deep brine layers. Closure of the causeway culverts occurred concurrently with a multiyear drought that resulted in a decrease in the lake elevation and a concomitant increase in top-down erosion of the upper surface of the deep brine layer by wind-forced mixing. The combination of these events resulted in the replacement of the formerly stratified water column in the south arm with one that was vertically homogeneous and oxic. Total mercury concentrations in the deep waters of the south arm decreased by approximately 81% and methylmercury concentrations in deep waters decreased by roughly 86% due to destratification. Methylmercury concentrations decreased by 77% in underlying surficial sediment, whereas there was no change observed in total mercury. The dramatic mercury loss from deep waters and methylmercury loss from underlying sediment in response to causeway sealing provides new understanding of the potential role of the deep brine layer in the accumulation and persistence of methylmercury in the Great Salt Lake. Additional mercury measurements in biota appear to contradict the previously implied connection between elevated methylmercury concentrations in the deep brine layer and elevated mercury in avian species reported prior to causeway sealing.
A time-course analysis of changes in cerebral metal levels following a controlled cortical impact.
Portbury, Stuart D; Hare, Dominic J; Sgambelloni, Charlotte; Finkelstein, David I; Adlard, Paul A
2016-02-01
Traumatic brain injury (TBI) is complicated by a sudden and dramatic change in brain metal levels, including iron (Fe), copper (Cu) and zinc (Zn). Specific 'metallo-pathological' features of TBI include increased non-heme bound Fe and the liberation of free Zn ions, both of which may contribute to the pathogenesis of TBI. To further characterise the metal dyshomeostasis that occurs following brain trauma, we performed a quantitative time-course survey of spatial Fe, Cu and Zn distribution in mice receiving a controlled cortical impact TBI. Images of brain metal levels produced using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in the upper quadrant of the ipsilateral hemisphere were compared to the corresponding contralateral hemisphere, together with regional areas radiating toward the center of the brain from the site of lesion. Significant regional and time point specific elevations in Fe, Zn and Cu were detected immediately and up to 28 days after TBI. The magnitude and timeframe of many of these changes suggest that TBI results in a pronounced and sustained alteration in normal metal levels within the brain. Such alterations are likely to play a role in both the short- and long-term consequences of head trauma and suggest that pharmacological modulation to normalize these metal levels may be efficacious in improving functional outcome.
Rowe, Peter S.N.; Matsumoto, Naoko; Jo, Oak D.; Shih, Remi N.J.; Oconnor, Jeannine; Roudier, Martine P.; Bain, Steve; Liu, Shiguang; Harrison, Jody; Yanagawa, Norimoto
2012-01-01
Increased expression of several osteoblastic proteases and MEPE (a bone matrix protein) occurs in X-linked hypophosphatemic rickets (hyp). This is associated with an increased release of a protease-resistant MEPE peptide (ASARM peptide), a potent inhibitor of mineralization. Cathepsin B cleaves MEPE releasing ASARM peptide and hyp osteoblast/osteocyte cells hypersecrete cathepsin D, an activator of cathepsin B. Our aims were to determine whether cathepsin inhibitors correct the mineralization defect in vivo and whether hyp-bone ASARM peptide levels are reduced after protease treatment. Normal littermates and hyp mice (n = 6) were injected intraperitoneally once a day for 4 weeks with pepstatin, CAO74 or vehicle. Animals were then sacrificed and bones plus serum removed for comprehensive analysis. All hyp mice groups (treated and untreated) remained hypophosphatemic with serum 1,25 vitamin D3 inappropriately normal. Serum PTH was significantly elevated in all hyp mice groups relative to normal mice (P = 0.0017). Untreated hyp mice had six-fold elevated levels of serum alkaline-phosphatase and two-fold elevated levels of ASARM peptides relative to normal mice (P < 0.001). In contrast, serum alkaline phosphatase and serum ASARM peptides were significantly reduced (normalized) in hyp mice treated with CA074 or pepstatin. Serum FGF23 levels remained high in all hyp animal groups (P < 0.0001). Hyp mice treated with protease inhibitors showed dramatic reductions in unmineralized osteoid (femurs) compared to control hyp mice (Goldner staining). Also, hyp animals treated with protease inhibitors showed marked and significant improvements in growth plate width (42%), osteoid thickness (40%) and cortical area (40%) (P < 0.002). The mineralization apposition rate, bone formation rate and mineralization surface were normalized by protease-treatment. High-resolution pQCT mineral histomorphometry measurements and uCT also confirmed a marked mineralization improvement. Finally, the growth plate and cortical bone of hyp femurs contained a massive accumulation of osteoblast-derived ASARM peptide(s) that was reduced in hyp animals treated with CA074 or pepstatin. This study confirms in vivo administration of cathepsin inhibitors improves bone mineralization in hyp mice. This may be due to a protease inhibitor mediated decrease in proteolytic degradation of the extracellular matrix and a reduced release of ASARM peptides (potent mineralization inhibitors). PMID:16762607
Forest productivity varies with soil moisture more than temperature in a small montane watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Liang; Zhou, Hang; Link, Timothy E
Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less
Forest productivity varies with soil moisture more than temperature in a small montane watershed
Wei, Liang; Zhou, Hang; Link, Timothy E; ...
2018-05-16
Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less
Leaf δ13C variability with elevation, slope aspect, and precipitation in the southwest United States
Van De Water, Peter K.; Leavitt, Steven W.; Betancourt, Julio L.
2002-01-01
Leaves from several desert and woodland species, including gymnosperms and angiosperms with both C3 and C4 physiology, were analyzed to detect trends in δ13Cleaf with elevation and slope aspect along two transects in southeastern Utah and south-central New Mexico, USA. The main difference between the two transects is the steeper elevational gradient for mean annual and summer precipitation in the southern transect. For any given species, we found that isotopic differences between individual plants growing at the same site commonly equal differences measured for plants along the entire altitudinal gradient. In C3 plants, δ13Cleaf values become slightly enriched at the lowest elevations, the opposite of trends identified in more humid regions. Apparently, increasing water-use efficiency with drought stress offsets the influence of other biotic and abiotic factors that operate to decrease isotopic discrimination with elevation. For some species shared by the two transects (e.g., Pinus edulis and Cercocarpus montanus), δ13Cleaf values are dramatically depleted at sites that receive more than 550 mm mean annual precipitation, roughly the boundary (pedalfer-pedocal) at which soils commonly fill to field capacity in summer and carbonates are leached. We hypothesize that, in summer-wet areas, this may represent the boundary at which drought stress overtakes other factors in determining the sign of δ13Cleaf with elevation. The opposition of isotopic trends with elevation in arid versus humid regions cautions against standard correction for elevation in comparative studies of δ13Cleaf.
ICESat and ICESat-2: Preparing to assess decadal-scale elevation change over the ice sheets
NASA Astrophysics Data System (ADS)
Webb, C. E.; Markus, T.; Neumann, T.; Anthony, M.
2016-12-01
One of the first, and most dramatic, assessments of elevation change to occur after the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) enters its science orbit in early 2018 will be to compare the altimetry data being collected to the baseline established by the original ICESat mission between 2003 and 2009. Both missions use altimeters that send laser pulses from the satellite to the Earth. By measuring the travel time, the range to the surface can be inferred, and then combined with the position of the satellite and the pointing direction of the laser to determine where the pulse landed on the surface and its height there. The first ICESat mission employed a single-beam, full-waveform altimeter with a near-infrared (1064-nm wavelength) laser pulsed at 40 Hz. This produced surface heights at 170-meter intervals along reference tracks that extended to +/- 86 degrees latitude. ICESat-2 will carry an altimeter that sends a green (532-nm wavelength) laser through a diffractive optical element to be split into six beams, and pulsed at 10kHz. This will yield overlapping footprints every 70 cm along each beam track, extending to +/-88 degrees latitude. Rather than capturing the full returned waveform, however, the altimeter will use photon-counting detectors to measure the travel times of individual photons. Once on the ground, these data will be used in the science data processing system to produce a latitude, longitude and ellipsoidal height, marking the location from which each photon returned from the surface. Higher-level data products will characterize the surface more precisely by aggregating photons to reduce noise along each of the six beam tracks. Here, we describe the ICESat and ICESat-2 measurements and ice sheet data products, and discuss possible methods for comparing them to assess elevation change over the Greenland and Antarctic ice sheets in the nine years between the two missions.
A dramatic, objective antiandrogen withdrawal response: case report and review of the literature.
Lau, Yiu-Keung; Chadha, Manpreet K; Litwin, Alan; Trump, Donald L
2008-11-05
Antiandrogen withdrawal response is an increasingly recognized entity in patients with metastatic prostate cancer. To our knowledge, there have been no reports describing a durable radiologic improvement along with prostate-specific antigen (PSA) with discontinuation of the antiandrogen agent bicalutamide. We report a case in which a dramatic decline of serum PSA levels associated with a dramatic improvement in radiologic disease was achieved with bicalutamide discontinuation.
Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle
NASA Technical Reports Server (NTRS)
Lawler, John M.; Song, Wook; Demaree, Scott R.; Bloomfield, S. A. (Principal Investigator)
2003-01-01
Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.
Monslow, James; Sato, Nobuyuki; Mack, Judith A; Maytin, Edward V
2009-08-01
Hyaluronic acid (HA), a glycosaminoglycan located between keratinocytes in the epidermis, accumulates dramatically following skin wounding. To study inductive mechanisms, a rat keratinocyte organotypic culture model that faithfully mimics HA metabolism was used. Organotypic cultures were needle-punctured 100 times, incubated for up to 24 hours, and HA analyzed by histochemical and biochemical methods. Within 15 minutes post-injury, HA levels had elevated two-fold, increasing to four-fold by 24 hours. HA elevations far from the site of injury suggested the possible involvement of a soluble HA-inductive factor. Media transfer experiments (from wounded cultures to unwounded cultures) confirmed the existence of a soluble factor. From earlier evidence, we hypothesized that an EGF-like growth factor might be responsible. This was confirmed as follows: (1) EGFR kinase inhibitor (AG1478) completely prevented wounding-induced HA accumulation. (2) Rapid tyrosine-phosphorylation of EGFR correlated well with the onset of increased HA synthesis. (3) A neutralizing antibody that recognizes heparin binding EGF-like growth factor (HB-EGF) blocked wounding-induced HA synthesis by > or =50%. (4) Western analyses showed that release of activated HB-EGF (but neither amphiregulin nor EGF) occured after wounding. In summary, rapid HA accumulation after epidermal wounding occurs through a mechanism requiring cleavage of HB-EGF and activation of EGFR signaling.
Bishop, Jacob; Jones, Hannah E; O'Sullivan, Donal M; Potts, Simon G
2017-04-01
Climate change can threaten the reproductive success of plants, both directly, through physiological damage during increasingly extreme weather events, and indirectly, through disruption of plant-pollinator interactions. To explore how plant-pollinator interactions are modified by extreme weather, we exposed faba bean (Vicia faba) plants to elevated temperature for 5 d during flowering, simulating a heatwave. We then moved the plants to flight cages with either bumblebees or no pollinators, or to two field sites, where plants were enclosed in mesh bags or pollinated by wild insect communities. We used a morphological marker to quantify pollen movement between experimental plants. There was a substantial increase in the level of outcrossing by insect pollinators following heat stress. Proportion outcrossed seed increased from 17 % at control temperature, to 33 % following heat stress in the flight cages, and from 31 % to 80 % at one field site, but not at the other (33 % to 32 %). Abiotic stress can dramatically shift the relative contributions of cross- and self-pollination to reproduction in an insect pollinated plant. The resulting increases in gene flow have broad implications for genetic diversity and functioning of ecosystems, and may increase resilience by accelerating the selection of more stress-tolerant genotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Relationships between physical-geographical factors and soil degradation on agricultural land.
Bednář, Marek; Šarapatka, Bořivoj
2018-07-01
It is a well-known fact that soil degradation is dramatically increasing and currently threatens agricultural soils all around the world. The objective of this study was to reveal the possible connection between soil degradation and seven physical-geographical factors - slope steepness, altitude, elevation differences, rainfall, temperature, soil texture and solar radiation - in the form of threshold values (if these exist), where soil degradation begins and ends. The analysis involved the whole area of the Czech Republic which consists of 13,027 cadasters (78,866 km 2 ). The greatest total degradation threat occurs in areas with slope steepness >7 degrees, average annual temperature <5.9 °C, elevation differences >10.54, altitude >766 m a.s.l. Similarly, the results for water erosion, wind erosion, soil compaction, loss of organic matter, acidification and heavy metal contamination were processed. The results enable us to identify the relationships of different levels of threats which could consequently be used in various ways - for classification of threatened areas, for more effective implementation of anti-degradation measures, or purely for a better understanding of the role of physical geographical factors in soil degradation in the Czech Republic, and thus could increase the chances of reducing vulnerability to land degradation not only in the Czech Republic. Copyright © 2018 Elsevier Inc. All rights reserved.
Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide.
Fonken, Laura K; Weil, Zachary M; Nelson, Randy J
2013-11-01
The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure. Copyright © 2013 Elsevier Inc. All rights reserved.
Miselis, Jennifer L.; Andrews, Brian D.; Nicholson, Robert S.; Defne, Zafer; Ganju, Neil K.; Navoy, Anthony S.
2016-01-01
Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
Dang, Lenny; White, David W.; Gross, Stefan; Bennett, Bryson D.; Bittinger, Mark A.; Driggers, Edward M.; Fantin, Valeria R.; Jang, Hyun Gyung; Jin, Shengfang; Keenan, Marie C.; Marks, Kevin M.; Prins, Robert M.; Ward, Patrick S.; Yen, Katharine E.; Liau, Linda M.; Rabinowitz, Joshua D.; Cantley, Lewis C.; Thompson, Craig B.; Vander Heiden, Matthew G.; Su, Shinsan M.
2009-01-01
Summary Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site resulting in loss of the enzyme’s ability to catalyze conversion of isocitrate to α-ketoglutarate. However, only a single copy of the gene is mutated in tumors, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α-ketoglutarate to R(−)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when R132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert α-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumors in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harboring IDH1 mutations, we find dramatically elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and suggest that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas. PMID:19935646
Long-Term Effects of Temperature Exposure on SLM 304L Stainless Steel
NASA Astrophysics Data System (ADS)
Amine, Tarak; Kriewall, Caitlin S.; Newkirk, Joseph W.
2018-03-01
Austenitic stainless steel is extensively used in industries that operate at elevated temperatures. This work investigates the high-temperature microstructure stability as well as elevated-temperature properties of 304L stainless steel fabricated using the selective laser melting (SLM) process. Significant microstructural changes were seen after a 400°C aging process for as little as 25 h. This dramatic change in microstructure would not be expected based on the ferrite decomposition studied in conventional 304L materials. The as-built additively manufactured alloy has much faster kinetic response to heat treatment at 400°C. An investigation of the structures which occur, the kinetics of the various transformations, and the mechanical properties is presented. The impact of this on the application of SLM 304L is discussed.
A critical assessment of studies on the carcinogenic potential of diesel exhaust.
Hesterberg, Thomas W; Bunn, William B; Chase, Gerald R; Valberg, Peter A; Slavin, Thomas J; Lapin, Charles A; Hart, Georgia A
2006-10-01
After decades of research involving numerous epidemiologic studies and extensive investigations in laboratory animals, a causal relationship between diesel exhaust (DE) exposure and lung cancer has not been conclusively demonstrated. Epidemiologic studies of the transportation industry (trucking, busing, and railroad) show a small elevation in lung cancer incidence (relative risks [RRs] generally below 1.5), but a dose response for DE is lacking. The studies are also limited by a lack of quantitative concurrent exposure data and inadequate or lack of controls for potential confounders, particularly tobacco smoking. Furthermore, prior to dieselization, similar elevations in lung cancer incidence have been reported for truck drivers, and in-cab diesel particulate matter (DPM) exposures of truck drivers were comparable to ambient highway exposures. Taken together, these findings suggest that an unidentified occupational agent or lifestyle factor might be responsible for the low elevations in lung cancer reported in the transportation studies. In contrast, underground miners, many of whom experience the highest occupational DPM exposures, generally do not show elevations in lung cancer. Laboratory studies must be interpreted with caution with respect to predicting the carcinogenic potential of DE in humans. Tumors observed in rats following lifetime chronic inhalation of very high levels of DPM may be attributed to species-specific overload mechanisms that lack relevance to humans. Increased tumor incidence was not observed in other species (hamsters or mice) exposed to DPM at very high levels or in rats exposed at lower levels (=2000 mug/m3). Although DPM contains mutagens, mutagenicity studies in which cells were exposed to concentrated extracts of DPM also have limited application to human risk assessment, because such extracts can be obtained from DPM only by using strong organic solvents, agitation, and heat. Most studies have shown that whole DPM itself is not mutagenic because the adsorbed organic compounds are minimally bioavailable in aqueous-based fluids. In the past two decades, dramatic changes in diesel engine technology (e.g., low-sulfur fuel and exhaust after-treatment) have resulted in >99% reduction in DPM and other quantitative and qualitative changes in the chemical and physical characteristics of diesel exhaust. Thus, the current database, which is focused almost entirely on the potential health effects of traditional diesel exhaust (TDE), has only limited utility in assessing the potential health risks of new-technology diesel exhaust (NTDE). To overcome some of the limitations of the historical epidemiologic database on TDE and to gain further insights into the potential health effects of NTDE, new studies are underway and more studies are planned.
Rolletschek, Hardy; Borisjuk, Ljudmilla; Sánchez-García, Alicia; Gotor, Cecilia; Romero, Luis C; Martínez-Rivas, José M; Mancha, Manuel
2007-01-01
Oleoyl-phosphatidylcholine desaturase (FAD2) is a key enzyme involved in fatty acid desaturation in oilseeds, which is affected by environmental temperature. The results of this study show that FAD2 is regulated in vivo via temperature-dependent endogenous oxygen concentrations in developing sunflower (Helianthus annuus L.) seeds. By combining in vivo oxygen profiling, in situ hybridization of FAD2 genes, an assay of energy status, fatty acid analysis, and an in vitro FAD2 enzyme activity assay, it is shown that: (i) the oil-storing embryo is characterized by a very low oxygen level that is developmentally regulated. Oxygen supply is mainly limited by the thin seed coat. (ii) Elevations of external oxygen supply raised the energy status of seed and produced a dramatic increase of the FAD2 enzyme activity as well as the linoleic acid content. (iii) A clear negative correlation exists between temperature and internal oxygen concentration. The changes occurred almost instantly and the effect was fully reversible. The results indicate that the internal oxygen level acts as a key regulator for the activity of the FAD2 enzyme. It is concluded that a major mechanism by which temperature modifies the unsaturation degree of the sunflower oil is through its effect on dissolved oxygen levels in the developing seed.
Liu, Qingxi; Zhang, Zijiang; Liu, Yupeng; Cui, Zhanfeng; Zhang, Tongcun; Li, Zhaohui; Ma, Wenjian
2018-03-01
Three-dimensional (3D) collagen scaffold models, due to their ability to mimic the tissue and organ structure in vivo, have received increasing interest in drug discovery and toxicity evaluation. In this study, we developed a perfused 3D model and studied cellular response to cytotoxic drugs in comparison with traditional 2D cell cultures as evaluated by cancer drug cisplatin. Cancer cells grown in perfused 3D environments showed increased levels of reactive oxygen species (ROS) production compared to the 2D culture. As determined by growth analysis, cells in the 3D culture, after forming a spheroid, were more resistant to the cancer drug cisplatin compared to that of the 2D cell culture. In addition, 3D culturing cells showed elevated level of ROS, indicating a physiological change or the formation of a microenvironment that resembles tumor cells in vivo. These data revealed that cellular response to drugs for cells growing in 3D environments are dramatically different from that of 2D cultured cells. Thus, the perfused 3D collagen scaffold model we report here might be a potentially very useful tool for drug analysis.
The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium[OPEN
Pacheco-Villalobos, David; Tamaki, Takayuki; Gujas, Bojan; Jaspert, Nina; Oecking, Claudia; Bulone, Vincent; Hardtke, Christian S.
2016-01-01
The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana. However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots. PMID:27169463
Ji, L L; Miller, R H; Nagle, F J; Lardy, H A; Stratman, F W
1987-08-01
The influence of endurance training and an acute bout of exercise on plasma concentrations of free amino acids and the intermediates of branched-chain amino acid (BCAA) metabolism were investigated in the rat. Training did not affect the plasma amino acid levels in the resting state. Plasma concentrations of alanine (Ala), aspartic acid (Asp), asparagine (Asn), arginine (Arg), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), and valine (Val) were significantly lower, whereas glutamate (Glu), glycine (Gly), ornithine (Orn), tryptophan (Trp), tyrosine (Tyr), creatinine, urea, and ammonia levels were unchanged, after one hour of treadmill running in the trained rats. Plasma concentration of glutamine (Glu), the branched-chain keto acids (BCKA) and short-chain acyl carnitines were elevated with exercise. Ratios of plasma BCAA/BCKA were dramatically lowered by exercise in the trained rats. A decrease in plasma-free carnitine levels was also observed. These data suggest that amino acid metabolism is enhanced by exercise even in the trained state. BCAA may only be partially metabolized within muscle and some of their carbon skeletons are released into the circulation in forms of BCKA and short-chain acyl carnitines.
Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons
2017-01-01
Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function. SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural circuit, we discovered that neurons lacking FMRP take up dramatically more current-injected small dye. After examining many neuronal properties, we determined that this dye defect is cytoplasmic and occurs due to a highly elevated dye iontophoresis rate. We also report several new factors affecting neuron dye uptake. Understanding how FMRP regulates iontophoresis should reveal new molecular factors underpinning FXS dysfunction. PMID:28887386
Moya, A; Huisman, L; Ball, E E; Hayward, D C; Grasso, L C; Chua, C M; Woo, H N; Gattuso, J-P; Forêt, S; Miller, D J
2012-05-01
The impact of ocean acidification (OA) on coral calcification, a subject of intense current interest, is poorly understood in part because of the presence of symbionts in adult corals. Early life history stages of Acropora spp. provide an opportunity to study the effects of elevated CO(2) on coral calcification without the complication of symbiont metabolism. Therefore, we used the Illumina RNAseq approach to study the effects of acute exposure to elevated CO(2) on gene expression in primary polyps of Acropora millepora, using as reference a novel comprehensive transcriptome assembly developed for this study. Gene ontology analysis of this whole transcriptome data set indicated that CO(2) -driven acidification strongly suppressed metabolism but enhanced extracellular organic matrix synthesis, whereas targeted analyses revealed complex effects on genes implicated in calcification. Unexpectedly, expression of most ion transport proteins was unaffected, while many membrane-associated or secreted carbonic anhydrases were expressed at lower levels. The most dramatic effect of CO(2) -driven acidification, however, was on genes encoding candidate and known components of the skeletal organic matrix that controls CaCO(3) deposition. The skeletal organic matrix effects included elevated expression of adult-type galaxins and some secreted acidic proteins, but down-regulation of other galaxins, secreted acidic proteins, SCRiPs and other coral-specific genes, suggesting specialized roles for the members of these protein families and complex impacts of OA on mineral deposition. This study is the first exhaustive exploration of the transcriptomic response of a scleractinian coral to acidification and provides an unbiased perspective on its effects during the early stages of calcification. © 2012 Blackwell Publishing Ltd.
Hu, Jia-Yu; Xie, Yong-Hong; Tang, Yue; Li, Feng; Zou, Ye-Ai
2018-01-01
Water regime is regarded as the primary factor influencing the vegetation distribution in natural wetland ecosystems. However, the effect of water regime change induced by large-scale hydraulic engineering on vegetation distribution is still unclear. In this study, multi-temporal TM/ETM+/OLI images and hydrological data from 1995 to 2015 were used to elucidate how the change in water regime influenced the vegetation distribution in the East Dongting Lake (EDTL), especially after the operation of the Three Gorges Dam (TGD) in 2003. Using unsupervised and supervised classification methods, three types of land cover were identified in the study area: Water and Mudflat, Grass, and Reed and Forest. Results showed that the total vegetation area in EDTL increased by approximately 78 km 2 during 1995-2015. The areas of Reed and Forest and Grass exhibited a contrasting trend, dramatic increase in Reed and Forest but sharp decrease in Grass, particularly after the operation of TGD. The lowest distribution elevations of Grass and Reed and Forest decreased by 0.61 and 0.52 m, respectively. As a result of water level variation, submergence duration increased at 20-21 m and 28 m elevations (1-13 days), but significantly decreased at 22-27 m and 29-30 m elevations (-3 to -31 days). The submergence duration of Grass and Reed and Forest was 246 and 177 days, respectively. This study indicated that wetland vegetation pattern significantly changed after the operation of TGD, mainly as a result of changes in submergence condition. Submergence duration might be an effective indicator to predict the shift of vegetation distribution in EDTL, and which could provide scientific guidance for vegetation restoration and wetland management in this lake.
Immune Dysregulation Following Short versus Long Duration Space Flight. Version 03
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Stowe, Raymond P.; Pierson, Duane L.; Sams, Clarence F.
2007-01-01
Immune system dysregulation has been demonstrated to occur during spaceflight and has the potential to cause serious health risks to crewmembers participating in exploration-class missions. A comprehensive immune assessment was recently performed on 13 short duration Space Shuttle crewmembers and 8 long duration International Space Station (ISS) crewmembers. Statistically significant post-flight phenotype alterations (as compared to pre-flight baseline) for the Shuttle crewmembers included: granulocytosis, increased percentage of B cells, reduced percentage of NK cells, elevated CD4/CD8 ratio, elevated levels of memory CD4+ T cells, and a CD8+ T cell shift to a less differentiated state. For the Shuttle crewmembers, T cell function was surprisingly elevated post-flight, among both the CD4+ and CD8+ subsets. This is likely an acute stress response in less-deconditioned crewmembers. The percentage of CD4+/IL-2+, CD4+/IFNg+ and CD8+/IFNg+ T cells were all decreased at landing. Culture secreted IFNg production was significantly decreased at landing, whereas production of Th2 cytokines was largely unchanged. It was found that the IFNg:IL-10 ratio was obviously declined in the Shuttle crewmembers immediately post-flight. A similar pattern of alterations were observed for the long duration ISS crewmembers. In contrast to Shuttle crewmembers, the ISS crewmembers demonstrated a dramatic reduction in T cell function immediately post-flight. This may be related to the effect of acute landing stress in conjunction with prolonged deconditioning associated with extended flight. The reduction in IFNg:IL-10 ratio (Th2 shift) was also observed post-flight in the ISS crewmembers to a much higher degree. These data indicate consistent peripheral phenotype changes and altered cytokine production profiles occur following space travel of both short and long duration.
Hu, Jia-Yu; Xie, Yong-Hong; Tang, Yue; Li, Feng; Zou, Ye-Ai
2018-01-01
Water regime is regarded as the primary factor influencing the vegetation distribution in natural wetland ecosystems. However, the effect of water regime change induced by large-scale hydraulic engineering on vegetation distribution is still unclear. In this study, multi-temporal TM/ETM+/OLI images and hydrological data from 1995 to 2015 were used to elucidate how the change in water regime influenced the vegetation distribution in the East Dongting Lake (EDTL), especially after the operation of the Three Gorges Dam (TGD) in 2003. Using unsupervised and supervised classification methods, three types of land cover were identified in the study area: Water and Mudflat, Grass, and Reed and Forest. Results showed that the total vegetation area in EDTL increased by approximately 78 km2 during 1995–2015. The areas of Reed and Forest and Grass exhibited a contrasting trend, dramatic increase in Reed and Forest but sharp decrease in Grass, particularly after the operation of TGD. The lowest distribution elevations of Grass and Reed and Forest decreased by 0.61 and 0.52 m, respectively. As a result of water level variation, submergence duration increased at 20–21 m and 28 m elevations (1–13 days), but significantly decreased at 22–27 m and 29–30 m elevations (-3 to -31 days). The submergence duration of Grass and Reed and Forest was 246 and 177 days, respectively. This study indicated that wetland vegetation pattern significantly changed after the operation of TGD, mainly as a result of changes in submergence condition. Submergence duration might be an effective indicator to predict the shift of vegetation distribution in EDTL, and which could provide scientific guidance for vegetation restoration and wetland management in this lake. PMID:29765388
Devi, Latha; Ohno, Masuo
2013-01-01
Emerging evidence suggests that dysregulated translation through phosphorylation of eukaryotic initiation factor-2α (eIF2α) may contribute to Alzheimer's disease (AD) and related memory impairments. However, the underlying mechanisms remain unclear. Here, we crossed knockout mice for an eIF2α kinase (GCN2: general control nonderepressible-2 kinase) with 5XFAD transgenic mice, and investigated whether GCN2 deletion affects AD-like traits in this model. As observed in AD brains, 5XFAD mice recapitulated significant elevations in the β-secretase enzyme BACE1 and the CREB repressor ATF4 concomitant with a dramatic increase of eIF2α phosphorylation. Contrary to expectation, we found that GCN2(-/-) and GCN2(+/-) deficiencies aggravate rather than suppress hippocampal BACE1 and ATF4 elevations in 5XFAD mice, failing to rescue memory deficits as tested by the contextual fear conditioning. The facilitation of these deleterious events resulted in exacerbated β-amyloid accumulation, plaque pathology and CREB dysfunction in 5XFAD mice with GCN2 mutations. Notably, GCN2 deletion caused overactivation of the PKR-endoplasmic reticulum-related kinase (PERK)-dependent eIF2α phosphorylation pathway in 5XFAD mice in the absence of changes in the PKR pathway. Moreover, PERK activation in response to GCN2 deficiency was specific to 5XFAD mice, since phosphorylated PERK levels were equivalent between GCN2(-/-) and wild-type control mice. Our findings suggest that GCN2 may be an important eIF2α kinase under the physiological condition, whereas blocking the GCN2 pathway under exposure to significant β-amyloidosis rather aggravates eIF2α phosphorylation leading to BACE1 and ATF4 elevations in AD.
Factors determining extreme brain natriuretic peptide elevation.
Guglin, Maya; Hourani, Rayan; Pitta, Sridevi
2007-01-01
Brain natriuretic peptide (BNP) level is elevated in heart failure and reflects its severity. It is unknown why some patients have extremely high BNP levels. The authors retrospectively reviewed data on 179 consecutive patients whose BNP levels fell within one of several predetermined ranges: mild elevation, 500 to 1000 pg/mL (n=82); moderate elevation, 2000 to 3000 pg/mL (n=48); and high elevation, 4000 to 20,000 pg/mL (n=49). The statistical analysis was conducted with the unpaired t test and Pearson's correlation coefficient. Adjustments were made for age, sex, and serum creatinine level. Patients with moderate BNP elevation were more symptomatic and had more advanced structural and hemodynamic changes than did patients with lower BNP elevation. Characteristics of the high BNP level group did not differ from those of the moderate BNP level group. Serum creatinine level correlated with BNP level, but neither age nor sex did. High BNP level (4000-20,000 pg/mL) is determined more by renal dysfunction than by the severity of heart failure.
Zhang, Hang; Fan, Qin; Xie, Hongyang; Lu, Lin; Tao, Rong; Wang, Fang; Xi, Rui; Hu, Jian; Chen, Qiujing; Shen, Weifeng; Zhang, Ruiyan; Yan, Xiaoxiang
2017-01-01
Inflammation plays a central role in the pathogenesis of metabolic syndrome (MetS). Cyclophilin B (CypB) can be constitutively secreted in response to inflammatory stimuli and oxidative stress, participating in tissue or systemic inflammation. We investigated the relationship between CypB and MetS in both humans and mice. Serum CypB levels were determined in 211 subjects with MetS and 292 subjects without MetS (non-MetS) (133 healthy controls and 159 high-risk subjects with one to two MetS components). Additionally, CypB expression in metabolic organs was examined in mice fed with high-fat diet (HFD) and genetically obese (ob/ob) mice. Serum CypB level was significantly higher in MetS subjects compared with both groups of non-MetS subjects (193.80 ± 83.22 vs. 168.38 ± 65.01 vs. 124.26 ± 47.83 ng/mL, P < 0.001). Particularly, serum CypB level was significantly higher in subjects with hypertension, central obesity, diabetes mellitus or hyperglycemia, elevated levels of triglycerides, or reduced levels of high-density lipoprotein than in those without. Moreover, CypB was positively associated with the number of MetS components ( r = 0.404, P < 0.001), indicating that a higher serum CypB level reflected more severe MetS. Multivariate regression revealed that a one SD increase in CypB was associated with an odds ratio of 1.506 (1.080-2.101, P = 0.016) for MetS prevalence after adjusting for age, gender, conventional risk factors, and medication. Stratified analyses by age and gender demonstrated that subjects >60 years old with higher CypB levels were more likely to have MetS, and the risk for MetS was higher and more significant in women compared with men. Additionally, CypB expression levels were lower at baseline and dramatically enhanced in metabolic organs (such as the liver) and visceral and subcutaneous adipose tissue from HFD-induced obese mice and ob/ob mice. Increased CypB levels were significantly and independently associated with the presence and severity of MetS, indicating that CypB could be used as a novel biomarker and clinical predictor of MetS.
NASA Astrophysics Data System (ADS)
VanReken, Timothy M.; Dhammapala, Ranil S.; Jobson, B. Thomas; Bottenus, Courtney L.; VanderSchelden, Graham S.; Kaspari, Susan D.; Gao, Zhongming; Zhu, Qiurui; Lamb, Brian K.; Liu, Heping; Johnston, Jeff
2017-04-01
The Yakima Air Wintertime Nitrate Study (YAWNS) was conducted in January 2013 to investigate the drivers of elevated levels of fine particulate matter (PM2.5) frequently present in the region during winter stagnation periods. An extended stagnation period occurred during the study. For the first four days of the event, skies were clear and the strong diel variation in air pollution patterns were consistent with the expected effects of strong low-level nighttime temperature inversions with moderate mixing during daylight hours. Later in the event a low-level cloud layer formed that persisted over the Yakima Valley for the next seven days while regional conditions remained stagnant. Coincident with the onset of cloud, the levels of all measured primary pollutants, including CO2, CO, NOx, particle number concentration, and black carbon, dropped dramatically and remained low with negligible diel variation for as long as the cloud layer was present. The observed patterns for these air pollutants are consistent with decreased stability and enhanced mixing associated with the cloud-topped boundary layer. Interestingly, levels of secondary pollutants, most notably particulate ammonium nitrate, did not exhibit the same decline. This difference may be due to shifts in the chemical production of secondary pollutants during cloudy conditions, or may merely reflect a further influence of mixing. The results imply that the best strategies for managing wintertime air quality during episodes of persistent cloud are likely different from those needed during clear-sky stagnation events.
Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome.
Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex
2017-04-26
The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.
Relaxation of selective constraint on dog mitochondrial DNA following domestication.
Björnerfeldt, Susanne; Webster, Matthew T; Vilà, Carles
2006-08-01
The domestication of dogs caused a dramatic change in their way of life compared with that of their ancestor, the gray wolf. We hypothesize that this new life style changed the selective forces that acted upon the species, which in turn had an effect on the dog's genome. We sequenced the complete mitochondrial DNA genome in 14 dogs, six wolves, and three coyotes. Here we show that dogs have accumulated nonsynonymous changes in mitochondrial genes at a faster rate than wolves, leading to elevated levels of variation in their proteins. This suggests that a major consequence of domestication in dogs was a general relaxation of selective constraint on their mitochondrial genome. If this change also affected other parts of the dog genome, it could have facilitated the generation of novel functional genetic diversity. This diversity could thus have contributed raw material upon which artificial selection has shaped modern breeds and may therefore be an important source of the extreme phenotypic variation present in modern-day dogs.
Wang, Jing; Anders, Robert A.; Wu, Qiang; Peng, Dacheng; Cho, Judy H.; Sun, Yonglian; Karaliukas, Reda; Kang, Hyung-Sik; Turner, Jerrold R.; Fu, Yang-Xin
2004-01-01
Whether and how T cells contribute to the pathogenesis of immunoglobulin A nephropathy (IgAN) has not been well defined. Here, we explore a murine model that spontaneously develops T cell–mediated intestinal inflammation accompanied by pathological features similar to those of human IgAN. Intestinal inflammation mediated by LIGHT, a ligand for lymphotoxin β receptor (LTβR), not only stimulates IgA overproduction in the gut but also results in defective IgA transportation into the gut lumen, causing a dramatic increase in serum polymeric IgA. Engagement of LTβR by LIGHT is essential for both intestinal inflammation and hyperserum IgA syndrome in our LIGHT transgenic model. Impressively, the majority of patients with inflammatory bowel disease showed increased IgA-producing cells in the gut, elevated serum IgA levels, and severe hematuria, a hallmark of IgAN. These observations indicate the critical contributions of dysregulated LIGHT expression and intestinal inflammation to the pathogenesis of IgAN. PMID:15067315
Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome
Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex
2017-01-01
The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome. PMID:28445389
Paull, C.K.; Ussler, W.; Dallimore, S.R.; Blasco, S.M.; Lorenson, T.D.; Melling, H.; Medioli, B.E.; Nixon, F.M.; McLaughlin, F.A.
2007-01-01
The Arctic shelf is currently undergoing dramatic thermal changes caused by the continued warming associated with Holocene sea level rise. During this transgression, comparatively warm waters have flooded over cold permafrost areas of the Arctic Shelf. A thermal pulse of more than 10??C is still propagating down into the submerged sediment and may be decomposing gas hydrate as well as permafrost. A search for gas venting on the Arctic seafloor focused on pingo-like-features (PLFs) on the Beaufort Sea Shelf because they may be a direct consequence of gas hydrate decomposition at depth. Vibracores collected from eight PLFs had systematically elevated methane concentrations. ROV observations revealed streams of methane-rich gas bubbles coming from the crests of PLFs. We offer a scenario of how PLFs may be growing offshore as a result of gas pressure associated with gas hydrate decomposition. Copyright 2007 by the American Geophysical Union.
Methodological aspects of the molecular and histological study of prostate cancer: focus on PTEN.
Ugalde-Olano, Aitziber; Egia, Ainara; Fernández-Ruiz, Sonia; Loizaga-Iriarte, Ana; Zuñiga-García, Patricia; Garcia, Stephane; Royo, Félix; Lacasa-Viscasillas, Isabel; Castro, Erika; Cortazar, Ana R; Zabala-Letona, Amaia; Martín-Martín, Natalia; Arruabarrena-Aristorena, Amaia; Torrano-Moya, Verónica; Valcárcel-Jiménez, Lorea; Sánchez-Mosquera, Pilar; Caro-Maldonado, Alfredo; González-Tampan, Jorge; Cachi-Fuentes, Guido; Bilbao, Elena; Montero, Rocío; Fernández, Sara; Arrieta, Edurne; Zorroza, Kerman; Castillo-Martín, Mireia; Serra, Violeta; Salazar, Eider; Macías-Cámara, Nuria; Tabernero, Jose; Baselga, Jose; Cordón-Cardo, Carlos; Aransay, Ana M; Villar, Amaia Del; Iovanna, Juan L; Falcón-Pérez, Juan M; Unda, Miguel; Bilbao, Roberto; Carracedo, Arkaitz
2015-05-01
Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high number of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dramatically increasing in western societies in the past decades, suggesting that this type of tumor is exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene (inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the features of the human disease. In order to study the molecular alterations in prostate cancer, we need to overcome the methodological challenges that this tissue imposes. In this review we present protocols and methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer. Copyright © 2015. Published by Elsevier Inc.
Reassessing Pliocene temperature gradients
NASA Astrophysics Data System (ADS)
Tierney, J. E.
2017-12-01
With CO2 levels similar to present, the Pliocene Warm Period (PWP) is one of our best analogs for climate change in the near future. Temperature proxy data from the PWP describe dramatically reduced zonal and meridional temperature gradients that have proved difficult to reproduce with climate model simulations. Recently, debate has emerged regarding the interpretation of the proxies used to infer Pliocene temperature gradients; these interpretations affect the magnitude of inferred change and the degree of inconsistency with existing climate model simulations of the PWP. Here, I revisit the issue using Bayesian proxy forward modeling and prediction that propagates known uncertainties in the Mg/Ca, UK'37, and TEX86 proxy systems. These new spatiotemporal predictions are quantitatively compared to PWP simulations to assess probabilistic agreement. Results show generally good agreement between existing Pliocene simulations from the PlioMIP ensemble and SST proxy data, suggesting that exotic changes in the ocean-atmosphere are not needed to explain the Pliocene climate state. Rather, the spatial changes in SST during the Pliocene are largely consistent with elevated CO2 forcing.
A dramatic, objective antiandrogen withdrawal response: case report and review of the literature
Lau, Yiu-Keung; Chadha, Manpreet K; Litwin, Alan; Trump, Donald L
2008-01-01
Antiandrogen withdrawal response is an increasingly recognized entity in patients with metastatic prostate cancer. To our knowledge, there have been no reports describing a durable radiologic improvement along with prostate-specific antigen (PSA) with discontinuation of the antiandrogen agent bicalutamide. We report a case in which a dramatic decline of serum PSA levels associated with a dramatic improvement in radiologic disease was achieved with bicalutamide discontinuation. PMID:18986533
Mean Cancer Mortality Rates in Low Versus High Elevation Counties in Texas
Hart, John
2010-01-01
There is controversy as to whether low levels of radiation (i.e., < 5 rem) pose a health risk. This brief inquiry compares archived cancer mortality data in counties having relatively low (0–250 feet above sea level), medium (500–1000 feet above sea level), and high (3000+ feet above sea level) elevations also having corresponding greater natural background levels of radiation respectively. Cancer mortality was found to be lowest in the high elevation counties (mean = 58.2) followed by low elevation counties (67.5) and then medium elevation counties (70.4). Statistically significant differences were found between low –high elevations (p = 0.003), and medium – high elevations (p = 0.010), but not between low and medium elevations (p = 0.5). More rigorous research, with an accounting of confounding variables, is indicated. PMID:21191484
MacAlpine, D M; Perlman, P S; Butow, R A
1998-06-09
Abf2p is a high mobility group (HMG) protein found in yeast mitochondria that is required for the maintenance of wild-type (rho+) mtDNA in cells grown on fermentable carbon sources, and for efficient recombination of mtDNA markers in crosses. Here, we show by two-dimensional gel electrophoresis that Abf2p promotes or stabilizes Holliday recombination junction intermediates in rho+ mtDNA in vivo but does not influence the high levels of recombination intermediates readily detected in the mtDNA of petite mutants (rho-). mtDNA recombination junctions are not observed in rho+ mtDNA of wild-type cells but are elevated to detectable levels in cells with a null allele of the MGT1 gene (Deltamgt1), which codes for a mitochondrial cruciform-cutting endonuclease. The level of recombination intermediates in rho+ mtDNA of Deltamgt1 cells is decreased about 10-fold if those cells contain a null allele of the ABF2 gene. Overproduction of Abf2p by >/= 10-fold in wild-type rho+ cells, which leads to mtDNA instability, results in a dramatic increase in mtDNA recombination intermediates. Specific mutations in the two Abf2p HMG boxes required for DNA binding diminishes these responses. We conclude that Abf2p functions in the recombination of rho+ mtDNA.
Sleep and the epidemic of obesity in children and adults
Van Cauter, Eve; Knutson, Kristen L
2008-01-01
Sleep is an important modulator of neuroendocrine function and glucose metabolism in children as well as in adults. In recent years, sleep curtailment has become a hallmark of modern society with both children and adults having shorter bedtimes than a few decades ago. This trend for shorter sleep duration has developed over the same time period as the dramatic increase in the prevalence of obesity. There is rapidly accumulating evidence from both laboratory and epidemiological studies to indicate that chronic partial sleep loss may increase the risk of obesity and weight gain. The present article reviews laboratory evidence indicating that sleep curtailment in young adults results in a constellation of metabolic and endocrine alterations, including decreased glucose tolerance, decreased insulin sensitivity, elevated sympathovagal balance, increased evening concentrations of cortisol, increased levels of ghrelin, decreased levels of leptin, and increased hunger and appetite. We also review cross-sectional epidemiological studies associating short sleep with increased body mass index and prospective epidemiological studies that have shown an increased risk of weight gain and obesity in children and young adults who are short sleepers. Altogether, the evidence points to a possible role of decreased sleep duration in the current epidemic of obesity. PMID:18719052
Vitamin D and intestinal calcium transport after bariatric surgery.
Schafer, Anne L
2017-10-01
Bariatric surgery is a highly effective treatment for obesity, but it may have detrimental effects on the skeleton. Skeletal effects are multifactorial but mediated in part by nutrient malabsorption. While there is increasing interest in non-nutritional mechanisms such as changes in fat-derived and gut-derived hormones, nutritional factors are modifiable and thus represent potential opportunities to prevent and treat skeletal complications. This review begins with a discussion of normal intestinal calcium transport, including recent advances in our understanding of its regulation by vitamin D, and areas of continued uncertainty. Human and animal studies of vitamin D and intestinal calcium transport after bariatric surgery are then summarized. In humans, even with optimized 25-hydroxyvitamin D levels and recommended calcium intake, fractional calcium absorption decreased dramatically after Roux-en-Y gastric bypass (RYGB). In rats, intestinal calcium absorption was lower after RYGB than after sham surgery, despite elevated 1,25-dihyroxyvitamin D levels and intestinal gene expression evidence of vitamin D responsiveness. Such studies have the potential to shed new light on the physiology of vitamin D and intestinal calcium transport. Moreover, understanding the effects of bariatric surgery on these processes may improve the clinical care of bariatric surgery patients. Published by Elsevier Ltd.
Translational Control in Plasmodium and Toxoplasma Parasites
Joyce, Bradley R.; Sullivan, William J.; Nussenzweig, Victor
2013-01-01
The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis. PMID:23243065
Translational control in Plasmodium and toxoplasma parasites.
Zhang, Min; Joyce, Bradley R; Sullivan, William J; Nussenzweig, Victor
2013-02-01
The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.
Geng, Biao; Liang, Man-Man; Ye, Xiao-Bing; Zhao, Wen-Ying
2015-01-01
The objective of this study was to investigate the association of serum cancer antigen 15-3 (CA 15-3) and carcinoembryonic antigen (CEA) levels with clinicopathological parameters in patients diagnosed with metastatic breast cancer (MBC). We retrospectively evaluated the medical records of 284 patients diagnosed with MBC between January, 2007 and December, 2012 who fulfilled the specified criteria and the association between the levels of the two tumor marker and clinicopathological parameters was analyzed. Of the 284 patients, elevated CA 15-3 and CEA levels at initial diagnosis of recurrence were identified in 163 (57.4%) and 97 (34.2%) patients, respectively. Elevated CA 15-3 and CEA levels were significantly associated with breast cancer molecular subtypes (P<0.001 and P=0.032, respectively). Cases with luminal subtypes exhibited a higher percentage of elevated CA 15-3 and CEA levels compared to non-luminal subtypes. Elevated CA 15-3 level was correlated with bone metastasis (P=0.017). However, elevation of CEA was observed regardless of the site of metastasis. Elevation of CA 15-3 was significantly more common in MBC with multiple metastatic sites compared to MBC with a single metastasis (P=0.001). However, the incidence of elevated CEA levels did not differ between patients with a single and those with multiple metastatic sites. In conclusion, elevated CA 15-3 and CEA levels at initial diagnosis of recurrence were found to be associated with breast cancer molecular subtypes, whereas an elevated CA 15-3 level was significantly correlated with bone metastasis and an elevated CEA level was observed regardless of metastatic site. The proportion of MBC cases with elevated CA 15-3 levels differed according to the number of metastatic sites.
Darbah, Joseph N. T.; Kubiske, Mark E.; Nelson, Neil; ...
2007-01-01
Atmospheric CO 2 and tropospheric O 3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO 3 and O 3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment) site in Rhinelander, WI. Elevated CO 2 increased both male and female flower production, while elevated O 3 increased female flower production compared to trees in control rings. Interestingly, very little flowering hasmore » yet occurred in combined treatment. Elevated CO 2 had significant positive effect on birch catkin size, weight, and germination success rate (elevated CO 2 increased germination rate of birch by 110% compared to ambient CO 2 concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination), while the opposite was true of elevated O 3 (elevated O 3 decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%). Under elevated CO 2 , plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO 2 , while the reverse was true for seedlings from seeds produced under the elevated O 3 . Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO 2 and O 3 can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.« less
Impacts of elevated atmospheric CO2 and O3 on paper birch (Betula papyrifera): reproductive fitness.
Darbah, Joseph N T; Kubiske, Mark E; Nelson, Neil; Oksanen, Elina; Vaapavuori, Elina; Karnosky, David F
2007-03-21
Atmospheric CO2 and tropospheric O3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO2 and O3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment) site in Rhinelander, WI. Elevated CO2 increased both male and female flower production, while elevated O3 increased female flower production compared to trees in control rings. Interestingly, very little flowering has yet occurred in combined treatment. Elevated CO2 had significant positive effect on birch catkin size, weight, and germination success rate (elevated CO2 increased germination rate of birch by 110% compared to ambient CO2 concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination), while the opposite was true of elevated O3 (elevated O3 decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%). Under elevated CO2, plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO2, while the reverse was true for seedlings from seeds produced under the elevated O3. Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO2 and O3 can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.
Immortalized Parkinson's disease lymphocytes have enhanced mitochondrial respiratory activity
Annesley, Sarah J.; Lay, Sui T.; De Piazza, Shawn W.; Sanislav, Oana; Hammersley, Eleanor; Allan, Claire Y.; Francione, Lisa M.; Bui, Minh Q.; Chen, Zhi-Ping; Ngoei, Kevin R. W.; Tassone, Flora; Kemp, Bruce E.; Storey, Elsdon; Evans, Andrew; Loesch, Danuta Z.
2016-01-01
ABSTRACT In combination with studies of post-mortem Parkinson's disease (PD) brains, pharmacological and genetic models of PD have suggested that two fundamental interacting cellular processes are impaired – proteostasis and mitochondrial respiration. We have re-examined the role of mitochondrial dysfunction in lymphoblasts isolated from individuals with idiopathic PD and an age-matched control group. As previously reported for various PD cell types, the production of reactive oxygen species (ROS) by PD lymphoblasts was significantly elevated. However, this was not due to an impairment of mitochondrial respiration, as is often assumed. Instead, basal mitochondrial respiration and ATP synthesis are dramatically elevated in PD lymphoblasts. The mitochondrial mass, genome copy number and membrane potential were unaltered, but the expression of indicative respiratory complex proteins was also elevated. This explains the increased oxygen consumption rates by each of the respiratory complexes in experimentally uncoupled mitochondria of iPD cells. However, it was not attributable to increased activity of the stress- and energy-sensing protein kinase AMPK, a regulator of mitochondrial biogenesis and activity. The respiratory differences between iPD and control cells were sufficiently dramatic as to provide a potentially sensitive and reliable biomarker of the disease state, unaffected by disease duration (time since diagnosis) or clinical severity. Lymphoblasts from control and PD individuals thus occupy two distinct, quasi-stable steady states; a ‘normal’ and a ‘hyperactive’ state characterized by two different metabolic rates. The apparent stability of the ‘hyperactive’ state in patient-derived lymphoblasts in the face of patient ageing, ongoing disease and mounting disease severity suggests an early, permanent switch to an alternative metabolic steady state. With its associated, elevated ROS production, the ‘hyperactive’ state might not cause pathology to cells that are rapidly turned over, but brain cells might accumulate long-term damage leading ultimately to neurodegeneration and the loss of mitochondrial function observed post-mortem. Whether the ‘hyperactive’ state in lymphoblasts is a biomarker specifically of PD or more generally of neurodegenerative disease remains to be determined. PMID:27638668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, Hitesh; Department of Pharmacology, L.M. College of Pharmacy, Navarangpura, Ahmedabad-380009; Pandya, Gaurav
2011-05-15
Doxorubicin (DXR) has been used in variety of human malignancies for decades. Despite its efficacy in cancer, clinical usage is limited because of its cardiotoxicity, which has been associated with oxidative stress and apoptosis. Carbon monoxide-releasing molecules (CORMs) have been shown to reduce the oxidative damage and apoptosis. The present study investigated the effects of CORM-2, a fast CO-releaser, against DXR-induced cardiotoxicity in mice using biochemical, histopathological and gene expression approaches. CORM-2 (3, 10 and 30 mg/kg/day) was administered intraperitoneally (i.p.) for 10 days and terminated the study on day 11. DXR (20 mg/kg, i.p.) was injected before 72 hmore » of termination. Mice treated with DXR showed cardiotoxicity as evidenced by elevation of serum creatine kinase (CK) and lactate dehydrogenase (LDH), tissue malondialdehyde (MDA), caspase-3 and decrease the level of total antioxidant status (TAS) in heart tissues. Pre- and post-treatment with CORM-2 (30 mg/kg, i.p.) elicited significant improvement in CK, LDH, MDA, caspase-3 and TAS levels. Histopathological studies showed that cardiac damage with DXR has been reversed with CORM-2 + DXR treatment. There was dramatic decrease in hematological count in DXR-treated mice, which has been improved with CORM-2. Furthermore, there was also elevation of mRNA expression of heme oxygenase-1, hypoxia inducible factor-1 alpha, vascular endothelial growth factor and decrease in inducible-nitric oxide synthase expression upon treatment with CORM-2 that might be linked to cardioprotection. These data suggest that CORM-2 treatment provides cardioprotection against acute doxorubicin-induced cardiotoxicity in mice and this effect may be attributed to CORM-2-mediated antioxidant and anti-apoptotic properties.« less
Profound Amplification of Pathogenic Murine Polytropic Retrovirus Release from Coinfected Cells
Rosenke, Kyle; Lavignon, Marc; Malik, Frank; Kolokithas, Angelo; Hendrick, Duncan; Virtaneva, Kimmo; Peterson, Karin
2012-01-01
Previous studies indicate that mice infected with mixtures of mouse retroviruses (murine leukemia viruses [MuLVs]) exhibit dramatically altered pathology compared to mice infected with individual viruses of the mixture. Coinoculation of the ecotropic virus Friend MuLV (F-MuLV) with Fr98, a polytropic MuLV, induced a rapidly fatal neurological disease that was not observed in infections with either virus alone. The polytropic virus load in coinoculated mice was markedly enhanced, while the ecotropic F-MuLV load was unchanged. Furthermore, pseudotyping of the polytropic MuLV genome within ecotropic virions was nearly complete in coinoculated mice. In an effort to better understand these phenomena, we examined mixed retrovirus infections by utilizing in vitro cell lines. Similar to in vivo mixed infections, the polytropic MuLV genome was extensively pseudotyped within ecotropic virions; polytropic virus release was profoundly elevated in coinfected cells, and the ecotropic virus release was unchanged. A reduced level of polytropic SU protein on the surfaces of coinfected cells was observed and correlated with a reduced level of nonpseudotyped polytropic virion release. Marked amplification and pseudotyping of the polytropic MuLV were also observed in mixed Fr98–F-MuLV infections of cell lines derived from the central nervous system (CNS), the target for Fr98 pathogenesis. Additional experiments indicated that pseudotyping contributed to the elevated polytropic virus titer by increasing the efficiency of packaging and release of the polytropic genomes within ecotropic virions. Mixed infections are the rule rather than the exception in retroviral infection, and the ability to examine them in vitro should facilitate a more thorough understanding of retroviral interactions in general. PMID:22514353
Oxidative Burst of Circulating Neutrophils Following Traumatic Brain Injury in Human
Liao, Yiliu; Liu, Peng; Guo, Fangyuan; Zhang, Zhi-Yuan; Zhang, Zhiren
2013-01-01
Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage. PMID:23894384
Chan, Wing Lee; Steiner, Magdalena; Egerer, Johannes; Mizumoto, Shuji; Pestka, Jan M.; Zhang, Haikuo; Khayal, Layal Abo; Ott, Claus-Eric; Kolanczyk, Mateusz; Schinke, Thorsten; Paganini, Chiara; Rossi, Antonio; Sugahara, Kazuyuki; Amling, Michael; Knaus, Petra; Chan, Danny; Mundlos, Stefan
2018-01-01
Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. GORAB, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the GorabNull full knockout, Gorab was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only GorabPrx1 and GorabRunx2 mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of GorabNull mutants and in bone of GorabPrx1 mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from GorabNull mutants. In bone from GorabPrx1 mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured GORAB-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-β in GorabPrx1 bone tissue leading to enhanced downstream signalling, which was reproduced in GORAB-deficient fibroblasts. Our data suggest that the loss of Gorab primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment. PMID:29561836
DHTKD1 Deficiency Causes Charcot-Marie-Tooth Disease in Mice.
Xu, Wang-Yang; Zhu, Houbao; Shen, Yan; Wan, Ying-Han; Tu, Xiao-Die; Wu, Wen-Ting; Tang, Lingyun; Zhang, Hong-Xin; Lu, Shun-Yuan; Jin, Xiao-Long; Fei, Jian; Wang, Zhu-Gang
2018-07-01
DHTKD1, a part of 2-ketoadipic acid dehydrogenase complex, is involved in lysine and tryptophan catabolism. Mutations in DHTKD1 block the metabolic pathway and cause 2-aminoadipic and 2-oxoadipic aciduria (AMOXAD), an autosomal recessive inborn metabolic disorder. In addition, a nonsense mutation in DHTKD1 that we identified previously causes Charcot-Marie-Tooth disease (CMT) type 2Q, one of the most common inherited neurological disorders affecting the peripheral nerves in the musculature. However, the comprehensive molecular mechanism underlying CMT2Q remains elusive. Here, we show that Dhtkd1 -/- mice mimic the major aspects of CMT2 phenotypes, characterized by progressive weakness and atrophy in the distal parts of limbs with motor and sensory dysfunctions, which are accompanied with decreased nerve conduction velocity. Moreover, DHTKD1 deficiency causes severe metabolic abnormalities and dramatically increased levels of 2-ketoadipic acid (2-KAA) and 2-aminoadipic acid (2-AAA) in urine. Further studies revealed that both 2-KAA and 2-AAA could stimulate insulin biosynthesis and secretion. Subsequently, elevated insulin regulates myelin protein zero ( Mpz ) transcription in Schwann cells via upregulating the expression of early growth response 2 (Egr2), leading to myelin structure damage and axonal degeneration. Finally, 2-AAA-fed mice do reproduce phenotypes similar to CMT2Q phenotypes. In conclusion, we have demonstrated that loss of DHTKD1 causes CMT2Q-like phenotypes through dysregulation of Mpz mRNA and protein zero (P 0 ) which are closely associated with elevated DHTKD1 substrate and insulin levels. These findings further indicate an important role of metabolic disorders in addition to mitochondrial insufficiency in the pathogenesis of peripheral neuropathies. Copyright © 2018 American Society for Microbiology.
Lord, Tessa; Martin, Jacinta H; Aitken, R John
2015-02-01
With increasing periods of time following ovulation, the metaphase II (MII)-stage oocyte experiences overproduction of reactive oxygen species and elevated levels of lipid peroxidation that are implicitly linked with functional deficiencies acquired during postovulatory oocyte aging. We have demonstrated that the electrophilic aldehydes 4-hydroxynonenal (4HNE), malondialdehyde, and acrolein are by-products of nonenzymatic lipid peroxidation in the murine MII-stage oocyte, adducting to multiple proteins within the cell. The covalent modification of oocyte proteins by these aldehydes increased with extended periods of time postovulation; the mitochondrial protein succinate dehydrogenase (SDHA) was identified as a primary target for 4HNE adduction. Time- and dose-dependent studies revealed that exposure to elevated levels of electrophilic aldehydes causes mitochondrial reactive oxygen species production, lipid peroxidation, loss of mitochondrial membrane potential, and eventual apoptosis within the MII oocyte, presumably as a consequence of electron transport chain collapse following SDHA adduction. Additionally, we have determined that short-term exposure to low doses of 4HNE dramatically impairs the oocyte's ability to participate in fertilization and support embryonic development; however, this loss of functionality can be prevented by supplementation with the antioxidant penicillamine. In conclusion, this study has revealed that the accumulation of electrophilic aldehydes is linked to postovulatory oocyte aging, causing reduced fertility, oxidative stress, and apoptosis of this highly specialized cell. These data highlight the importance of timely fertilization of the mammalian oocyte postovulation and emphasize the potential advantages associated with antioxidant supplementation of oocyte culture medium in circumstances where reinsemination of oocytes may be desirable (i.e., rescue intracytoplasmic sperm injection), or where in vitro fertilization may be delayed. © 2015 by the Society for the Study of Reproduction, Inc.
Climate impacts on connectivity of snowmelt to flow in the ...
Much of the water that people in Western Oregon rely on comes from snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past 6 years have shown dramatic variation in snowpack, from a high of 174% of normal in 2010-11 to a low of 11% for 2014-15, one of the lowest on record. During this timeframe, we have monitored the stable isotopes of water within the Willamette River twice monthly, and mapped the spatial variation of water isotopes across the basin. Within the Willamette Basin, stable isotopes of water in precipitation vary strongly with elevation and provide a marker for determining the mean elevation from which water in the Willamette River is derived. In winter, when snow accumulates in the mountains, low elevation precipitation (primarily rain) contributes the largest proportion of water to the Willamette River. During summer, when rainfall is scarce and demand for water is the greatest, water in the Willamette River is mainly derived from high elevation snowmelt. Our data indicate that the proportion of water from high elevation decreased with decreasing snowpack. We combine this information with river flow data to estimate the volume reduction related to snowpack reduction during the dry summer. Observed reductions in the contribution of high elevation water to the Willamette River after just 2 years of diminished snowpack indicate that the hydrologic system responds relatively
NASA Astrophysics Data System (ADS)
Polichetti, Juliano; Grigoropoulos, Konstantinos; Ferentinos, George; Tselentis, Vasilios; Nastos, Panagiotis; Xatzioakeimidis, Konstantinos; Dimas, Konstantinos; Khan, Ubaidullah
2010-05-01
Since the 19th century anthropogenic activities in urban areas have increased dramatically due to socio-economic evolution, increased urbanization and transport needs. Fifty seven years ago London experienced the impacts of an acute atmospheric pollution episode, due to elevated levels of black carbon aerosols (BC) and SO2, leading to the realization that uncontrolled emissions to the atmosphere lead to severe impacts on human health. Many large cities (Mega cities) in the developed and developing world have, for the last two decades, been plagued by high levels of atmospheric pollution, a problem that the European and worldwide scientific community are at present studying with measurable success. However, due to rapid industrial development and the ever increasing traffic, many more studies are required to support decision makers and governments on measures to reduce atmospheric pollution and mitigate the associated serious health effects on the population. Registered health problems are numerous and dramatic in all ages groups, but particularly so in infants, and patients suffering from chronic diseases due to increased levels of pollutants and nocive substance inhaled, entering the lungs and blood stream and finally being deposited in several organs. Recent studies indicate that cardiac arrhythmias associated to increased atmospheric pollution pose a serious threat to human health. K.N.Grigoropoulos,et al.2008. This study is based on monitoring and mapping CO levels in six areas 3 different cities i.e. Athens, Naples and Islamabad, the objective being to present and analyze the spatial and temporal variability of carbon monoxide (CO) levels leading to the estimation of the concentration levels and the quantities inhaled by pedestrians on a daily basis. It is well know that exposure to carbon monoxide concentration values in excess of 200ppm for 2-3 h usually create headaches, tiredness, fatigue and nausea, whereas human exposure of values of 800 ppm for over three hours, are fatal. The findings of this research indicate that although CO concentrations remain at low levels throughout the measurement period, several peaks of high CO concentration are obtained, in many instances of several minutes duration, which are incompatible with public health levels and conditions for the afore mentioned cities. This research is yet another reminder that it is timely and necessary for the European Community to re examinate and evaluate the framework pertinent to CO emissions and levels in the urban ambient atmosphere.
NASA Astrophysics Data System (ADS)
Shope, J. B.; Storlazzi, C. D.; Hoeke, R. K.
2016-12-01
Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. With sea level and wave climates projected to change over the next century, it is unclear how shoreline wave runup and erosion patterns along these low elevation islands will respond, making it difficult for communities to prepare for the future. To investigate this, extreme boreal winter and summer wave conditions under a variety of future sea-level rise (SLR) scenarios were modeled at two atolls, Wake and Midway, using Delft3D. Nearshore wave conditions were used to find the potential longshore sediment flux, and wave-driven shoreline erosion was calculated as the divergence of the longshore drift; runup and the locations where runup exceed the berm elevation were also found. Of the aforementioned parameters, SLR is projected to be the dominant force driving future island morphological change and flooding. Increased sea level reduces depth-limited breaking by the atoll reef, allowing larger waves to reach the shoreline, increasing runup height and driving greater inland flooding along most coastlines. Previously protected shorelines, such as lagoon shorelines or shorelines with comparably wide reef flats, are projected see the greatest relative increases in runup. Increases in inland flooding extent were greatest along seaward shorelines due to increases in runup. Changes in incident wave directions had a smaller effect on runup, and the projected changes to incident wave heights had a negligible effect. SLR also drove the greatest changes to island shoreline morphology. Windward islands are projected to become thinner as seaward and lagoonal shorelines erode, accreting toward more leeward shorelines and shorelines with comparably wider reef flats. Similarly, leeward islands are anticipated to become thinner and longer, accreting towards their longitudinal ends. The shorelines of these islands will likely change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.
Prohaska, Joseph R; Broderius, Margaret; Brokate, Bruce
2003-09-15
Cu,Zn-superoxide dismutase (SOD1) is an abundant metalloenzyme important in scavenging superoxide ions. Cu-deficient rats and mice have lower SOD1 activity and protein, possibly because apo-SOD1 is degraded faster than holo-SOD1. SOD1 interacts with and requires its metallochaperone CCS for donating copper. We produced dietary Cu deficiency in rodents to determine if the reduction in SOD1 was related to the level of its specific metallochaperone CCS. CCS levels determined by immunoblot were 2- to 3-fold higher in liver, heart, kidney, and brain from male Cu-deficient rats and mice under a variety of conditions. CCS was also higher in livers of Cu-deficient dams. Interestingly, CCS levels in brain of Cu-deficient mice were also higher even though SOD1 activity and protein were not altered, suggesting that the rise in CCS is correlated with altered Cu status rather than a direct result of lower SOD1. A DNA probe specific for rat CCS detected a single transcript by Northern blot hybridization with liver RNA. CCS mRNA levels in mouse and rat liver were not altered by dietary treatment. These results suggest a posttranscriptional mechanism for higher CCS protein when Cu is limiting in the cell, perhaps due to slower protein turnover. Elevation in CCS level is one of the most dramatic alterations in Cu binding proteins accompanying Cu deficiency and may be useful to assess Cu status.
Effects of thermal treatment on halogenated disinfection by-products in drinking water.
Wu, W W; Benjamin, M M; Korshin, G V
2001-10-01
The influence of heating or boiling on the formation and behavior of disinfection by-products (DBPs) was investigated in DBP-spiked reagent water, municipal tap water, and synthetic water containing chlorinated aquatic humic substances. Thermal cleavage of larger halogenated species leads to both formation of smaller chlorinated molecules (including THMs and HAAs) and dechlorination of organics. In parallel with their formation from larger molecules, THMs can be volatilized, and this latter process dominates the change in their concentration when water is boiled. HAAs are not volatile, but they can be destroyed by chemical reactions at elevated temperatures, with the net effect being loss of trihalogenated HAAs and either formation or loss of less chlorinated HAAs. Although other identifiable DBPs can be generated at slightly elevated temperatures, in most cases their concentrations decline dramatically when the solution is heated.
Benning, Tracy L; LaPointe, Dennis; Atkinson, Carter T; Vitousek, Peter M
2002-10-29
The Hawaiian honeycreepers (Drepanidae) represent a superb illustration of evolutionary radiation, with a single colonization event giving rise to 19 extant and at least 10 extinct species [Curnutt, J. & Pimm, S. (2001) Stud. Avian Biol. 22, 15-30]. They also represent a dramatic example of anthropogenic extinction. Crop and pasture land has replaced their forest habitat, and human introductions of predators and diseases, particularly of mosquitoes and avian malaria, has eliminated them from the remaining low- and mid-elevation forests. Landscape analyses of three high-elevation forest refuges show that anthropogenic climate change is likely to combine with past land-use changes and biological invasions to drive several of the remaining species to extinction, especially on the islands of Kauai and Hawaii.
Thermal transport and anharmonic phonons in strained monolayer hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Li, Shasha; Chen, Yue
2017-03-01
Thermal transport and phonon-phonon coupling in monolayer hexagonal boron nitride (h-BN) under equibiaxial strains are investigated from first principles. Phonon spectra at elevated temperatures have been calculated from perturbation theory using the third-order anharmonic force constants. The stiffening of the out-of-plane transverse acoustic mode (ZA) near the Brillouin zone center and the increase of acoustic phonon lifetimes are found to contribute to the dramatic increase of thermal transport in strained h-BN. The transverse optical mode (TO) at the K point, which was predicted to lead to mechanical failure of h-BN, is found to shift to lower frequencies at elevated temperatures under equibiaxial strains. The longitudinal and transverse acoustic modes exhibit broad phonon spectra under large strains in sharp contrast to the ZA mode, indicating strong in-plane phonon-phonon coupling.
Improvement of GRCop-84 Through the Addition of Zirconium
NASA Technical Reports Server (NTRS)
Ellis, David L.; Lerch, Bradley A.
2012-01-01
GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) has excellent strength, creep resistance, low cycle fatigue (LCF) life and stability at elevated temperatures. It suffers in comparison to many commercially available precipitation-strengthened alloys below 500 C (932 F). It was observed that the addition of Zr consistently improved the mechanical properties of Cu-based alloys especially below 500 C. In an effort to improve the low temperature properties of GRCop-84, 0.35 wt.% Zr was added to the alloy. Limited tensile, creep, and LCF testing was conducted to determine if improvements occur. The results showed some dramatic increases in the tensile and creep properties at the conditions tested with the probability of additional improvements being possible through cold working. LCF testing at room temperature did not show an improvement, but improvements might occur at elevated temperatures.
Benning, Tracy L.; LaPointe, Dennis; Atkinson, Carter T.; Vitousek, Peter M.
2002-01-01
The Hawaiian honeycreepers (Drepanidae) represent a superb illustration of evolutionary radiation, with a single colonization event giving rise to 19 extant and at least 10 extinct species [Curnutt, J. & Pimm, S. (2001) Stud. Avian Biol. 22, 15–30]. They also represent a dramatic example of anthropogenic extinction. Crop and pasture land has replaced their forest habitat, and human introductions of predators and diseases, particularly of mosquitoes and avian malaria, has eliminated them from the remaining low- and mid-elevation forests. Landscape analyses of three high-elevation forest refuges show that anthropogenic climate change is likely to combine with past land-use changes and biological invasions to drive several of the remaining species to extinction, especially on the islands of Kauai and Hawaii. PMID:12374870
Luque, R M; Ibáñez-Costa, A; López-Sánchez, L M; Jiménez-Reina, L; Venegas-Moreno, E; Gálvez, M A; Villa-Osaba, A; Madrazo-Atutxa, A M; Japón, M A; de la Riva, A; Cano, D A; Benito-López, P; Soto-Moreno, A; Gahete, M D; Leal-Cerro, A; Castaño, J P
2013-10-01
Desmopressin is a synthetic agonist of vasopressin receptors (AVPRs). The desmopressin stimulation test is used in the diagnosis and postsurgery prognosis of Cushing disease (CD). However, the cellular and molecular mechanisms underlying the desmopressin-induced ACTH increase in patients with CD are poorly understood. The objectives of this study were to determine, for the first time, whether desmopressin acts directly and exclusively on pituitary corticotropinoma cells to stimulate ACTH expression/release and to elucidate the cellular and molecular mechanisms involved in desmopressin-induced ACTH increase in CD. A total of 8 normal pituitaries (NPs), 23 corticotropinomas, 14 nonfunctioning pituitary adenomas, 17 somatotropinomas, and 3 prolactinomas were analyzed for AVPR expression by quantitative real-time RT-PCR. Primary cultures derived from corticotropinomas, nonfunctioning pituitary adenomas, somatotropinomas, prolactinomas, and NPs were treated with desmopressin, and ACTH secretion/expression, [Ca(2+)]i kinetics, and AVPR expression and/or proliferative response were evaluated. The relationship between AVPR expression and plasma adrenocorticotropin/cortisol levels obtained from desmopressin tests was assessed. Desmopressin affects all functional parameters evaluated in corticotropinoma cells but not in NPs or other pituitary adenomas cells. These effects might be due to the dramatic elevation of AVPR1b expression levels found in corticotropinomas. In line with this notion, the use of an AVPR1b antagonist completely blocked desmopressin stimulatory effects. Remarkably, only AVPR1b expression was positively correlated with elevated plasma adrenocorticotropin levels in corticotropinomas. The present results provide a cellular and molecular basis to support the desmopressin stimulation test as a reliable, specific test for the diagnosis and postsurgery prognosis of CD. Furthermore, our data indicate that AVPR1b is responsible for the direct/exclusive desmopressin stimulatory pituitary effects observed in CD, thus opening the possibility of exploring AVPR1b antagonists as potential therapeutic tools for CD treatment.
Tao, Li; Zhang, Yulong; Fan, Shuru; Nobile, Clarissa J.; Guan, Guobo; Huang, Guanghua
2017-01-01
Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways. PMID:28787458
Kim, Mi-Kyung; Lee, In-Ho; Lee, Ki-Heon; Lee, Yoo Kyung; So, Kyeong A; Hong, Sung Ran; Hwang, Chang-Sun; Kee, Mee-Kyung; Rhee, Jee Eun; Kang, Chun; Hur, Soo Young; Park, Jong Sup; Kim, Tae-Jin
2016-03-01
DNA methylation has been shown to be a potential biomarker for early cancer detection. The aim of this study was to evaluate DNA methylation profiles according to liquid-based Pap (LBP) test results and to assess their diagnostic value in a Korean population. A total of 205 patients with various Papanicolaou test results were enrolled to this study (negative, 26; atypical squamous cells of undetermined significance, 39; low grade squamous intraepithelial lesion, 44; high grade squamous intraepithelial lesion (HSIL), 48; and cancer, 48). DNA methylation analysis of four genes, ADCYAP1, PAX1, MAL, and CADM1, was performed on residual cervical cells from LBP samples using a quantitative bisulfite pyrosequencing method. To evaluate the diagnostic performance of the four methylated genes for cancer detection, receiver operating characteristic (ROC) curves were drawn. Sensitivities and specificities were also tested at cutoffs determined from the ROC curves. Cervical cancer cells showed dramatically increased methylation levels for the four genes analyzed. ADCYAP1 and PAX1 also trended toward elevated methylation levels in HSIL samples, although the levels were much lower than those in cancer cells. The sensitivities of methylated ADCYAP1, PAX1, MAL, and CADM1 for the detection of cancer were 79.2%, 75.0%, 70.8%, and 52.1%, and the specificities were 92.0%, 94.0%, 94.7%, and 94.0%, respectively. Methylated ADCYAP1 and PAX1 demonstrated relatively better discriminatory ability than did methylated MAL and CADM1 (area under the curves 0.911 and 0.916 vs. 0.854 and 0.756, respectively). DNA methylation status, especially in the ADCYAP1 and PAX1 genes, showed relatively good specificity, ranging from 90% to 94%. The possible additive and complementary roles of DNA methylation testing with respect to conventional cervical cancer screening programs will need to be validated in prospective population-based studies.
Lee, Ki-Heon; So, Kyeong A; Hong, Sung Ran; Hwang, Chang-Sun; Kee, Mee-Kyung; Rhee, Jee Eun; Kang, Chun; Hur, Soo Young; Park, Jong Sup
2016-01-01
Objective DNA methylation has been shown to be a potential biomarker for early cancer detection. The aim of this study was to evaluate DNA methylation profiles according to liquid-based Pap (LBP) test results and to assess their diagnostic value in a Korean population. Methods A total of 205 patients with various Papanicolaou test results were enrolled to this study (negative, 26; atypical squamous cells of undetermined significance, 39; low grade squamous intraepithelial lesion, 44; high grade squamous intraepithelial lesion (HSIL), 48; and cancer, 48). DNA methylation analysis of four genes, ADCYAP1, PAX1, MAL, and CADM1, was performed on residual cervical cells from LBP samples using a quantitative bisulfite pyrosequencing method. To evaluate the diagnostic performance of the four methylated genes for cancer detection, receiver operating characteristic (ROC) curves were drawn. Sensitivities and specificities were also tested at cutoffs determined from the ROC curves. Results Cervical cancer cells showed dramatically increased methylation levels for the four genes analyzed. ADCYAP1 and PAX1 also trended toward elevated methylation levels in HSIL samples, although the levels were much lower than those in cancer cells. The sensitivities of methylated ADCYAP1, PAX1, MAL, and CADM1 for the detection of cancer were 79.2%, 75.0%, 70.8%, and 52.1%, and the specificities were 92.0%, 94.0%, 94.7%, and 94.0%, respectively. Methylated ADCYAP1 and PAX1 demonstrated relatively better discriminatory ability than did methylated MAL and CADM1 (area under the curves 0.911 and 0.916 vs. 0.854 and 0.756, respectively). Conclusion DNA methylation status, especially in the ADCYAP1 and PAX1 genes, showed relatively good specificity, ranging from 90% to 94%. The possible additive and complementary roles of DNA methylation testing with respect to conventional cervical cancer screening programs will need to be validated in prospective population-based studies. PMID:26768780
Hahm, Seung; Fekete, Csaba; Mizuno, Tooru M; Windsor, Joan; Yan, Hai; Boozer, Carol N; Lee, Charlotte; Elmquist, Joel K; Lechan, Ronald M; Mobbs, Charles V; Salton, Stephen R J
2002-08-15
Targeted deletion of the gene encoding the neuronal and neuroendocrine secreted polypeptide VGF (nonacronymic) produces a lean, hypermetabolic mouse. Consistent with this phenotype, VGF mRNA levels are regulated in the hypothalamic arcuate nucleus in response to fasting. To gain insight into the site(s) and mechanism(s) of action of VGF, we further characterized VGF expression in the hypothalamus. Double-label studies indicated that VGF and pro-opiomelanocortin were coexpressed in lateral arcuate neurons in the fed state, and that VGF expression was induced after fasting in medial arcuate neurons that synthesize neuropeptide Y (NPY). Like NPY, VGF mRNA induction in this region of the hypothalamus in fasted mice was inhibited by exogenous leptin. In leptin-deficient ob/ob and receptor-mutant db/db mice, VGF mRNA levels in the medial arcuate were elevated. To identify neural pathways that are functionally compromised by Vgf ablation, VGF mutant mice were crossed with obese A(y)/a (agouti) and ob/ob mice. VGF deficiency completely blocked the development of obesity in A(y)/a mice, whereas deletion of Vgf in ob/ob mice attenuated weight gain but had no impact on adiposity. Hypothalamic levels of NPY and agouti-related polypeptide mRNAs in both double-mutant lines were dramatically elevated 10- to 15-fold above those of wild-type mice. VGF-deficient mice were also found to resist diet- and gold thioglucose-induced obesity. These data and the susceptibility of VGF mutant mice to monosodium glutamate-induced obesity are consistent with a role for VGF in outflow pathways, downstream of hypothalamic and/or brainstem melanocortin 4 receptors, that project via the autonomic nervous system to peripheral metabolic tissues and regulate energy homeostasis.
ERIC Educational Resources Information Center
Battino, Rubin; Letcher, Trevor M.
2008-01-01
The cryophorus dramatically demonstrates the cooling effect of evaporation. This article describes some simple and easy-to-make cryophoruses, ideal for demonstrating evaporative cooling to students at all levels. The most dramatic effects occurred with cyclohexane and benzene, with water generally freezing more slowly. (Contains 4 notes, 2 tables,…
Stilborn, S Salina M; Manzon, Lori A; Schauenberg, Jennifer D; Manzon, Richard G
2013-03-01
Thyroid hormones (THs) are crucial for normal vertebrate development and are the one obligate morphogen that drives amphibian metamorphosis. However, contrary to other metamorphosing vertebrates, lampreys exhibit a sharp drop in serum TH early in metamorphosis, and anti-thyroid agents such as potassium perchlorate (KClO(4)) induce metamorphosis. The type 2 deiodinase (D2) enzyme is a key regulator of TH availability during amphibian metamorphosis. We set out to determine how D2 may be involved in the regulation of lamprey metamorphosis and thyroid homeostasis. We cloned a 1.8Kb Petromyzon marinus D2 cDNA that includes the entire protein coding region and a selenocysteine (Sec) codon. Northern blotting indicated that the lamprey D2 mRNA is the longest reported to date (>9Kb). Using real-time PCR, we showed that intestinal and hepatic D2 mRNA levels were elevated prior to and during the early stages of metamorphosis and then declined dramatically to low levels that were sustained for the remainder of metamorphosis. These data are consistent with previously reported changes in serum TH levels and deiodinase activity. Treatment of larvae with either TH or KClO(4) significantly affected D2 mRNA levels in the intestine and liver. These D2 mRNA levels during metamorphosis and in response to thyroid challenges suggest that D2 may function in the regulation of TH levels during lamprey metamorphosis and the maintenance of TH homeostasis. Copyright © 2013 Elsevier Inc. All rights reserved.
Jia, Yan; Tang, Shi-rong; Ju, Xue-hai; Shu, Li-na; Tu, Shu-xing; Feng, Ren-wei; Giusti, Lorenzino
2011-01-01
This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam. and Lolium perenne L. exposed to two CO2 levels (360 and 1000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO2 increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO2 than under ambient CO2, especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO2 under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO2. The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO2 than under ambient CO2. Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO2 may have implications in food safety and phytoremediation. PMID:21462388
Plotka, E.D.; Seal, U.S.; Schmoller, G.C.; Karns, P.D.; Keenlyne, Kent D.
1977-01-01
A total of 161 blood samples collected from 77 white-tailed does (Odocoileus virginianus borealis) during the years 1971 through 1974 in Minnesota were utilized to make a preliminary characterization of the estrogen and progesterone levels in pregnant and nonpregnant animals. Progesterone and estrogen were measured by radioimmunoassay. Progesterone levels during the months of December through February were similar for pregnant and nonpregnant animals (3.98 ± 0.57 vs. 5.50 ± 0.82 ng/ml, x̄ ± S.E., N.S., t = 1.51). The pregnant animals had higher progesterone levels during the March through May period (4.61 ± 0.44 vs. 1.94 ± 0.85, P<0.01). Progesterone levels during the months of June to early November, i.e., anestrus, were low and similar for lactating and nonlactating animals. Estrogen levels did not change during the year except for the period just before parturition in the pregnant does when estrogen levels were dramatically elevated (178 ± 29 pg/ml). Two nonpregnant adult does were sampled every 5 days from late January through early March. Progesterone levels exhibited a cyclic pattern of about 28 days duration. Estrogen levels showed no distinct pattern but tended to be inversely related to progesterone. These data suggest that 1) deer exhibit estrous cycles of about 25 to 30 days in length, 2) that estrous cycles recurred in nonpregnant does from November through early March, 3) that progesterone levels are similar for pregnancy and the luteal phase of the estrous cycle and 4) that late pregnancy is characterized by high estrogen levels as compared to early pregnancy and the estrous cycle.
Rana, B; Mischoulon, D; Xie, Y; Bucher, N L; Farmer, S R
1994-01-01
Previous investigations have shown that culture of freshly isolated hepatocytes under conventional conditions, i.e., on dried rat tail collagen in the presence of growth factors, facilitates cell growth but also causes an extensive down-regulation of most liver-specific functions. This dedifferentiation process can be prevented if the cells are cultured on a reconstituted basement membrane gel matrix derived from the Englebreth-Holm-Swarm mouse sarcoma tumor (EHS gel). To gain insight into the mechanisms regulating this response to extracellular matrix, we are analyzing the activities of two families of transcription factors, C/EBP and AP-1, which control the transcription of hepatic and growth-responsive genes, respectively. We demonstrate that isolation of hepatocytes from the normal quiescent rat liver by collagenase perfusion activates the immediate-early growth response program, as indicated by increased expression of c-jun, junB, c-fos, and c-myc mRNAs. Adhesion of these activated cells to dried rat tail collagen augments the elevated levels of these mRNAs for the initial 1 to 2 h postplating; junB and c-myc mRNA levels then drop steeply, with junB returning to normal quiescence and the c-myc level remaining slightly elevated during the 3-day culture period. Levels of c-jun mRNA and AP-1 DNA binding activity, however, remain elevated from the outset, while C/EBP alpha mRNA expression is down-regulated, resulting in a decrease in the steady-state levels of the 42- and 30-kDa C/EBP alpha polypeptides and C/EBP alpha DNA binding activity. In contrast, C/EBP beta mRNA production remains at near-normal hepatic levels for 5 to 8 days of culture, although its DNA binding activity decreases severalfold during this time. Adhesion of hepatocytes to the EHS gel for the same period of time dramatically alters this program: it arrests growth and inhibits AP-1 DNA binding activity and the expression of c-jun, junB, and c-myc mRNAs, but, in addition, it restores C/EBP alpha mRNA and protein as well as C/EBP alpha and C/EBP beta DNA binding activities to the abundant levels present in freshly isolated hepatocytes. These changes are not due merely to growth inhibition, because suppression of hepatocyte proliferation on collagen by epidermal growth factor starvation or addition of transforming growth factor beta does not inhibit AP-1 activity or restore C/EBP alpha DNA binding activity to normal hepatic levels. These data suggest that expression of the normal hepatic phenotype requires that hepatocytes exist in a G0 state of growth arrest, facilitated here by adhesion of cells to the EHS gel, in order to express high levels of hepatic transcription factors such as C/EBP alpha. Images PMID:8065319
Lead poisoning in United States-bound refugee children: Thailand-Burma border, 2009.
Mitchell, Tarissa; Jentes, Emily; Ortega, Luis; Scalia Sucosky, Marissa; Jefferies, Taran; Bajcevic, Predrag; Parr, Valentina; Jones, Warren; Brown, Mary Jean; Painter, John
2012-02-01
Elevated blood lead levels lead to permanent neurocognitive sequelae in children. Resettled refugee children in the United States are considered at high risk for elevated blood lead levels, but the prevalence of and risk factors for elevated blood lead levels before resettlement have not been described. Blood samples from children aged 6 months to 14 years from refugee camps in Thailand were tested for lead and hemoglobin. Sixty-seven children with elevated blood lead levels (venous ≥10 µg/dL) or undetectable (capillary <3.3 µg/dL) blood lead levels participated in a case-control study. Of 642 children, 33 (5.1%) had elevated blood lead levels. Children aged <2 years had the highest prevalence (14.5%). Among children aged <2 years included in a case-control study, elevated blood lead levels risk factors included hemoglobin <10 g/dL, exposure to car batteries, and taking traditional medicines. The prevalence of elevated blood lead levels among tested US-bound Burmese refugee children was higher than the current US prevalence, and was especially high among children <2 years old. Refugee children may arrive in the United States with elevated blood lead levels. A population-specific understanding of preexisting lead exposures can enhance postarrival lead-poisoning prevention efforts, based on Centers for Disease Control and Prevention recommendations for resettled refugee children, and can lead to remediation efforts overseas.
Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea
NASA Astrophysics Data System (ADS)
Fallon, Stewart J.; White, Jamie C.; McCulloch, Malcolm T.
2002-01-01
In 1989 open-cut gold mining commenced on Misima Island in Papua New Guinea (PNG). Open-cut mining by its nature causes a significant increase in sedimentation via the exposure of soils to the erosive forces of rain and runoff. This increased sedimentation affected the nearby fringing coral reef to varying degrees, ranging from coral mortality (smothering) to relatively minor short-term impacts. The sediment associated with the mining operation consists of weathered quartz feldspar, greenstone, and schist. These rocks have distinct chemical characteristics (rare earth element patterns and high abundances of manganese, zinc, and lead) and are entering the near-shore environment in considerably higher than normal concentrations. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), we analyzed eight colonies (two from high sedimentation, two transitional, two minor, and two unaffected control sites) for Y, La, Ce, Mn, Zn, and Pb. All sites show low steady background levels prior to the commencement of mining in 1988. Subsequently, all sites apart from the control show dramatic increases of Y, La, and Ce associated with the increased sedimentation as well as rapid decreases following the cessation of mining. The elements Zn and Pb exhibit a different behavior, increasing in concentration after 1989 when ore processing began and one year after initial mining operations. Elevated levels of Zn and Pb in corals has continued well after the cessation of mining, indicating ongoing transport into the reef of these metals via sulfate-rich waters. Rare earth element (REE) abundance patterns measured in two corals show significant differences compared to Coral Sea seawater. The corals display enrichments in the light and middle REEs while the heavy REEs are depleted relative to the seawater pattern. This suggests that the nearshore seawater REE pattern is dominated by island sedimentation. Trace element abundances of Misima Island corals clearly record the dramatic changes in the environmental conditions at this site and provide a basis for identifying anthropogenic influences on corals reefs.
The Position and Attitude of Sub-reflector Modeling for TM65 m Radio Telescope
NASA Astrophysics Data System (ADS)
Sun, Z. X.; Chen, L.; Wang, J. Q.
2016-01-01
In the course of astronomical observations, with changes in angle of pitch, the large radio telescope will have different degrees of deformation in the sub-reflector support, back frame, main reflector etc, which will lead to the dramatic decline of antenna efficiency in both high and low elevation. A sub-reflector system of the Tian Ma 65 m radio telescope has been installed in order to compensate for the gravitational deformations of the sub-reflector support and the main reflector. The position and attitude of the sub-reflector are variable in order to improve the pointing performance and the efficiency at different elevations. In this paper, it is studied that the changes of position and attitude of the sub-reflector have influence on the efficiency of antenna in the X band and Ku band. A model has been constructed to determine the position and attitude of the sub-reflector with elevation, as well as the point compensation model, by observing the radio source. In addition, antenna efficiency was tested with sub-reflector position adjusted and fixed. The results show that the model of sub-reflector can effectively improve the efficiency of the 65 m radio telescope. In X band, the aperture efficiency of the radio telescope reaches more than 60% over the entire elevation range.
NASA Astrophysics Data System (ADS)
Brooks, J. R.; Johnson, H.; Cline, S. P.; Rugh, W.
2015-12-01
Much of the water that people in Western Oregon rely on comes from the snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past five years have shown dramatic variation in snowpack from a high of 174% of normal in 2010-11 to a low of 11% for 2014-15, one of the lowest on record. During this timeframe, we have monitored the stable isotopes of water within the Willamette River twice monthly, and mapped the spatial variation of water isotopes across the basin. Within the Willamette Basin, stable isotopes of water in precipitation vary strongly with elevation and provide a marker for determining the mean elevation from which water in the Willamette River is derived. In the winter when snow accumulates in the mountains, low elevation precipitation (primarily rain) contributes the largest proportion of water to the Willamette River. During summer when rainfall is scarce and demand for water is the greatest, water in the Willamette River is mainly derived from high elevation snowmelt. Our data indicate that the proportion of water from high elevation decreased with decreasing snowpack. We combine this information with the river flow data to estimate the volume reduction related to snow pack reduction during the dry summer. Observed reductions in the contribution of high elevation water to the Willamette River after just two years of diminished snowpack indicate that the hydrologic system responds relatively rapidly to changing snowpack volume. Reconciling the demands between human use and biological instream requirements during summer will be challenging under climatic conditions in which winter snowpack is reduced compared to historical amounts.
Henning, Jill D; Karamchandani, Jaideep M; Bonachea, Luis A; Bunker, Clareann H; Patrick, Alan L; Jenkins, Frank J
2017-05-01
Serum-prostate specific antigen (PSA) levels have been used for many years as a biomarker for prostate cancer. This usage is under scrutiny due to the fact that elevated PSA levels can be caused by other conditions such as benign prostatic hyperplasia and infections of or injury to the prostate. As a result, the identification of specific pathogens capable of increasing serum levels of PSA is important. A potential candidate responsible for elevated PSA is human herpesvirus 8 (HHV-8). We have reported previously that HHV-8 is capable of infecting and establishing a latent infection in the prostate. In this current study we test the hypothesis that HHV-8 infection is associated with elevated PSA levels. Circulating cytokine levels between men with elevated PSA and controls are also compared. HHV-8 serostatus was determined among men with elevated serum PSA (≥4 ng/ml; n = 168, no prostate cancer on biopsy) and age-matched controls (PSA <4 ng/ml; n = 234), Circulating cytokine levels were determined among a subset of each group (116 with elevated PSA and 85 controls). Men with an elevated serum PSA were significantly more likely to be HHV-8 seropositive (42.9%) than the age-matched cancer-free men (22.2%; OR 2.51; 95%CI 1.48-4.29, P = 00001). Comparison of circulating cytokine levels between men with elevated serum PSA and controls indicated that elevated serum PSA is associated with a pro-inflammatory response with a mixed Th1/Th2 response while HHV-8 infection was associated with significantly higher levels of IL12p70, IL-10, and IL-13 indicating a Th2 immune response. We found a significant association between HHV-8 infection and increased levels of serum PSA. In an age of patient-centered medicine, men with an elevated serum PSA should be considered for HHV-8 serology testing to determine if HHV-8 is responsible for the elevated PSA. Prostate 77: 617-624, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qichun; Tian, Hanqin; Li, Xia
The North American east coast has experienced significant land-use and climate changes since the beginning of the 20th century. In this study, using the Dynamic Land Ecosystem Model 2.0 driven by time-series input data of land use, climate and atmospheric CO 2, we examined how these driving forces have affected the spatiotemporal trends and variability of evapotranspiration (ET) in this region during 1901–2008. Annual ET in the North American east coast during this period was 648.3 ± 38.6 mm/year and demonstrated an increasing trend. Factorial model simulations indicated that climate variability explained 76% of the inter-annual ET variability. Although land-usemore » change only explained 16% of the ET temporal variability, afforestation induced the upward trend of ET and increased annual ET by 12.8 mm/year. Elevated atmospheric CO 2 reduced annual ET by 0.84 mm, and its potential impacts under future atmospheric CO 2 levels could be much larger than estimates for the historical 1901–2008 period. Climate change determined the spatial pattern of ET changes across the entire study area, whereas land-use changes dramatically affected ET in watersheds with significant land conversions. In spite of the multiple benefits from afforestation, its impacts on water resources should be considered in future land-use policy making. As a result, elevated ET may also affect fresh water availability for the increasing social and economic water demands.« less
Yang, Qichun; Tian, Hanqin; Li, Xia; ...
2014-08-08
The North American east coast has experienced significant land-use and climate changes since the beginning of the 20th century. In this study, using the Dynamic Land Ecosystem Model 2.0 driven by time-series input data of land use, climate and atmospheric CO 2, we examined how these driving forces have affected the spatiotemporal trends and variability of evapotranspiration (ET) in this region during 1901–2008. Annual ET in the North American east coast during this period was 648.3 ± 38.6 mm/year and demonstrated an increasing trend. Factorial model simulations indicated that climate variability explained 76% of the inter-annual ET variability. Although land-usemore » change only explained 16% of the ET temporal variability, afforestation induced the upward trend of ET and increased annual ET by 12.8 mm/year. Elevated atmospheric CO 2 reduced annual ET by 0.84 mm, and its potential impacts under future atmospheric CO 2 levels could be much larger than estimates for the historical 1901–2008 period. Climate change determined the spatial pattern of ET changes across the entire study area, whereas land-use changes dramatically affected ET in watersheds with significant land conversions. In spite of the multiple benefits from afforestation, its impacts on water resources should be considered in future land-use policy making. As a result, elevated ET may also affect fresh water availability for the increasing social and economic water demands.« less
Smith, Charles F; Schuett, Gordon W; Hoss, Shannon K
2012-04-01
We investigated levels of plasma progesterone (P4), 17β-estradiol (E2), testosterone (T), and corticosterone (CORT) during gestation and post-birth periods in wild-collected female copperhead snakes (Viperidae; Agkistrodon contortrix). We also sought to determine whether CORT levels at (or near) birth dramatically increase and were correlated with duration of labor and litter size. Specifically, pregnant subjects (N = 14) were collected during early- to mid-gestation, held in the laboratory, and repeatedly bled to obtain plasma for steroid analyses. Progesterone showed significant changes during gestation, with the highest levels at the onset of sampling (circa 50 days prior to birth); P4 progressively declined up to parturition, and basal levels were observed thereafter. At the onset of sampling, E2 was at peak levels and fell sharply at circa 30 days prior to birth, a trend observed throughout the post-birth sampling period. Throughout the entire sampling period, T was undetectable. Although CORT showed no significant changes during gestation and several days following parturition, there was a highly significant peak at the time of birth. Our findings mirror the results of previous studies on pregnancy and steroid hormones of other live-bearing snakes, lizards, and mammals. As expected, there was a significant relationship between duration of labor and litter size; however, although levels of CORT did not achieve significance, there was a positive trend with litter size. We suggest that elevation of CORT at birth is involved in the mobilization and regulation of energy stores necessary for the physiological process of parturition and as a possible mechanism to trigger birth.
Preface to the focus section on injection-induced seismicity
Eaton, David; Rubinstein, Justin L.
2015-01-01
The ongoing, dramatic increase in seismicity in the central United States that began in 2009 is believed to be the result of injection‐induced seismicity (Ellsworth, 2013). Although the basic mechanism for activation of slip on a fault by subsurface fluid injection is well established (Healy et al., 1968; Raleighet al., 1976; Nicholson and Wesson, 1992; McGarr et al., 2002; Ellsworth, 2013), the occurrence of damaging M≥5 earthquakes and the dramatic increase in seismicity in the central United States has brought heightened attention to this issue. The elevated seismicity is confined to a limited number of areas, and accumulating evidence indicates that the seismicity in these locations is directly linked to nearby industrial operations. This Seismological Research Letters (SRL) focus section presents a selected set of seven technical papers that cover various aspects of this topic, including basic seismological and ground‐motion observations, case studies, numerical simulation of fault activation, and risk mitigation.
Patterson, B; Ruppel, K M; Wu, Y; Spudich, J A
1997-10-31
Cold-sensitive myosin mutants represent powerful tools for dissecting discrete deficiencies in myosin function. Biochemical characterization of two such mutants, G680V and G691C, has allowed us to identify separate facets of myosin motor function perturbed by each alteration. Compared with wild type, the G680V myosin exhibits a substantially enhanced affinity for several nucleotides, decreased ATPase activity, and overoccupancy or creation of a novel strongly actin-binding state. The properties of the novel strong binding state are consistent with a partial arrest or pausing at the onset of the mechanical stroke. The G691C mutant, on the other hand, exhibits an elevated basal ATPase indicative of premature phosphate release. By releasing phosphate without a requirement for actin binding, the G691C can bypass the part of the cycle involving the mechanical stroke. The two mutants, despite having alterations in glycine residues separated by only 11 residues, have dramatically different consequences on the mechanochemical cycle.
Flowering responses of insect-pollinated plants to elevated CO{sub 2} levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cushman, J.H.; Koch, G.W.; Chiariello, N.R.
1995-06-01
Elevated atmospheric CO{sub 2} concentrations have been predicted or shown to substantially influence plants, communities and ecosystems in a variety of ways. Here, we examined the effects of elevated CO{sub 2} levels on the timing and magnitude of flowering for two insect-pollinated annual plant species in a serpentine grassland. We focused on Lasthenia californica and Linanthus parviflorus and addressed three questions: (1) Do elevated CO{sub 2} levels influence flowering phenologies and is this species specific? (2) Do elevated CO{sub 2} levels affect flower production and is this due to altered numbers of individuals, flowers per plant, or both? and (3)more » Are effects on flowering due to elevated CO{sub 2} levels per se or changes in environmental conditions associated with methods used to manipulate CO{sub 2} levels? To address these questions, we used the ecosystem experiment at Stanford University`s Jasper Ridge Biological Preserve (San Mateo Co., CA). This system consists of 20 open-topped chambers - half receiving ambient CO{sub 2} (360 ppm) and half receiving elevated CO{sub 2} (720 ppm) - and 10 untreated plots serving as chamber controls. Results from the 1994 season demonstrated that there were species-specific responses to elevated CO{sub 2} levels and the field chambers. For Lasthenia californica, elevated CO{sub 2} per se did not affect relative abundance, inflorescence production, or phenology, but chambers did significantly increase inflorescence production and extend the duration of flowering. For Linanthus parviflorus, elevated CO{sub 2} levels significantly increased relative abundance and flower production, and extended the flowering period slightly, while the chambers significantly decreased flower production early in the season and increased it later in the season.« less
Fulcrum of Change: Leveraging 50 States to Turn around 5000 Schools
ERIC Educational Resources Information Center
Rhim, Lauren Morando; Redding, Sam
2011-01-01
In 2010, unprecedented levels of resources began to flow through state education agencies (SEAs) to support dramatic change in persistently low-performing schools under the expanded federal School Improvement Grant (SIG) program. The challenge for states is to leverage the federal investment to drive dramatic and sustainable change efforts in…
Langeland, Aubrey L.; Hardin, Rebecca D.; Neitzel, Richard L.
2017-01-01
Artisanal and small-scale gold mining (ASGM) has been an important source of income for communities in the Madre de Dios River Basin in Peru for hundreds of years. However, in recent decades, the scale of ASGM activities in the region has increased dramatically, and exposures to a variety of occupational and environmental hazards related to ASGM, including mercury, are becoming more widespread. The aims of our study were to: (1) examine patterns in the total hair mercury level of human participants in several communities in the region and compare these results to the 2.2 µg/g total hair mercury level equivalent to the World Health Organization (WHO) Expert Committee of Food Additives (JECFA)’s Provisional Tolerable Weekly Intake (PTWI); and (2), to measure the mercury levels of paco (Piaractus brachypomus) fish raised in local aquaculture ponds, in order to compare these levels to the EPA Fish Tissue Residue Criterion of 0.3 µg Hg/g fish (wet weight). We collected hair samples from 80 participants in four communities (one control and three where ASGM activities occurred) in the region, and collected 111 samples from fish raised in 24 local aquaculture farms. We then analyzed the samples for total mercury. Total mercury levels in hair were statistically significantly higher in the mining communities than in the control community, and increased with increasing geodesic distance from the Madre de Dios headwaters, did not differ by sex, and frequently exceeded the reference level. Regression analyses indicated that higher hair mercury levels were associated with residence in ASGM communities. The analysis of paco fish samples found no samples that exceeded the EPA tissue residue criterion. Collectively, these results align with other recent studies showing that ASGM activities are associated with elevated human mercury exposure. The fish farmed through the relatively new process of aquaculture in ASGM areas appeared to have little potential to contribute to human mercury exposure. More research is needed on human health risks associated with ASGM to discern occupational, residential, and nutritional exposure, especially through tracking temporal changes in mercury levels as fish ponds age, and assessing levels in different farmed fish species. Additionally, research is needed to definitively determine that elevated mercury levels in humans and fish result from the elemental mercury from mining, rather than from a different source, such as the mercury released from soil erosion during deforestation events from mining or other activities. PMID:28335439
Langeland, Aubrey L; Hardin, Rebecca D; Neitzel, Richard L
2017-03-14
Artisanal and small-scale gold mining (ASGM) has been an important source of income for communities in the Madre de Dios River Basin in Peru for hundreds of years. However, in recent decades, the scale of ASGM activities in the region has increased dramatically, and exposures to a variety of occupational and environmental hazards related to ASGM, including mercury, are becoming more widespread. The aims of our study were to: (1) examine patterns in the total hair mercury level of human participants in several communities in the region and compare these results to the 2.2 µg/g total hair mercury level equivalent to the World Health Organization (WHO) Expert Committee of Food Additives (JECFA)'s Provisional Tolerable Weekly Intake (PTWI); and (2), to measure the mercury levels of paco ( Piaractus brachypomus ) fish raised in local aquaculture ponds, in order to compare these levels to the EPA Fish Tissue Residue Criterion of 0.3 µg Hg/g fish (wet weight). We collected hair samples from 80 participants in four communities (one control and three where ASGM activities occurred) in the region, and collected 111 samples from fish raised in 24 local aquaculture farms. We then analyzed the samples for total mercury. Total mercury levels in hair were statistically significantly higher in the mining communities than in the control community, and increased with increasing geodesic distance from the Madre de Dios headwaters, did not differ by sex, and frequently exceeded the reference level. Regression analyses indicated that higher hair mercury levels were associated with residence in ASGM communities. The analysis of paco fish samples found no samples that exceeded the EPA tissue residue criterion. Collectively, these results align with other recent studies showing that ASGM activities are associated with elevated human mercury exposure. The fish farmed through the relatively new process of aquaculture in ASGM areas appeared to have little potential to contribute to human mercury exposure. More research is needed on human health risks associated with ASGM to discern occupational, residential, and nutritional exposure, especially through tracking temporal changes in mercury levels as fish ponds age, and assessing levels in different farmed fish species. Additionally, research is needed to definitively determine that elevated mercury levels in humans and fish result from the elemental mercury from mining, rather than from a different source, such as the mercury released from soil erosion during deforestation events from mining or other activities.
A Case of Painful Hashimoto Thyroiditis that Mimicked Subacute Thyroiditis
Seo, Hye Mi; Kim, Miyeon; Bae, Jaeseok; Kim, Jo-Heon; Lee, Jeong Won; Lee, Sang Ah; Koh, Gwanpyo
2012-01-01
Hashimoto thyroiditis (HT) is an autoimmune thyroid disorder that usually presents as a diffuse, nontender goiter, whereas subacute thyroiditis (SAT) is an uncommon disease that is characterized by tender thyroid enlargement, transient thyrotoxicosis, and an elevated erythrocyte sedimentation rate (ESR). Very rarely, patients with HT can present with painful, tender goiter or fever, a mimic of SAT. We report a case of painful HT in a 68-year-old woman who presented with pain and tenderness in a chronic goiter. Her ESR was definitely elevated and her thyroid laboratory tests suggested subclinical hypothyroidism of autoimmune origin. 99mTc pertechnetate uptake was markedly decreased. Fine needle aspiration biopsy revealed reactive and polymorphous lymphoid cells and occasional epithelial cells with Hürthle cell changes. Her clinical symptoms showed a dramatic response to glucocorticoid treatment. She became hypothyroid finally and is now on levothyroxine therapy. PMID:22570820
Cole, Adam R.; Knebel, Axel; Morrice, Nick A.; Robertson, Laura A.; Irving, Andrew J.; Connolly, Chris N.; Sutherland, Calum
2007-01-01
Elevated glycogen synthase kinase-3 (GSK-3) activity is associated with Alzheimer disease. We have found that collapsin response mediator proteins (CRMP) 2 and 4 are physiological substrates of GSK-3. The amino acids targeted by GSK-3 comprise a hyperphosphorylated epitope first identified in plaques isolated from Alzheimer brain. Expression of wild type CRMP2 in primary hippocampal neurons or SH-SY5Y neuroblastoma cells promotes axon elongation. However, a GSK-3-insensitive CRMP2 mutant has dramatically reduced ability to promote axon elongation, a similar effect to pharmacological inhibition of GSK-3. Hence, we propose that phosphorylation of CRMP proteins by GSK-3 regulates axon elongation. This work provides a direct connection between hyperphosphorylation of these residues and elevated GSK-3 activity, both of which are observed in Alzheimer brain. PMID:15466863
Effects of hypokinesia and hypodynamia upon protein turnover in hindlimb muscles of the rat
NASA Technical Reports Server (NTRS)
Loughna, Paul T.; Goldspink, David F.; Goldspink, Geoffrey
1987-01-01
Hypokinesia/hypodynamia was induced in the hindlimb muscles of the rat, using a suspension technique. This caused differing degrees of atrophy in different muscles. However, this atrophy was reduced in muscles held in a lenghthened position. The greatest degree of wasting was observed in the unstretched soleus, a slow postural muscle, where both Type 1 and Type 2a fibers atrophied to the same degree. However, wasting of the gastrocnemius muscle was associated with a reduction in the size of the Type 2b fibers. In both slow-postural and fast-phasic hindlimb muscles, atrophy was brought about by a reduction in the rate of protein synthesis in conjunction with an elevation in the rate of protein degradation. When inactive muscles were passively stretched, both protein synthesis and degradation were dramatically elevated. Even periods of stretch of as little as 0.5 h/d were found to significantly decrease atrophy in inactive muscles.
Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Thorne, Karen M.; Casazza, Michael L.; Overton, Cory T.; Callaway, John C.; Takekawa, John Y.
2014-01-01
Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared to elevation-based habitat criteria developed for marsh vegetation, the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris) to determine the response of marsh habitat for each species to predicted >1-m sea-level rise by 2100. Feedback between vertical accretion mechanisms and elevation reduced the effect of initial elevation in the modeled scenarios. Elevation decreased nonlinearly with larger changes in elevation during the latter half of the century when the rate of sea-level rise increased. Model scenarios indicated that changes in elevation will degrade habitat quality within salt marshes in the San Francisco Estuary, and degradation will accelerate in the latter half of the century as the rate of sea-level rise accelerates. A sensitivity analysis of the model results showed that inorganic sediment accumulation and the rate of sea-level rise had the greatest influence over salt marsh sustainability.
MEK-dependent IL-8 induction regulates the invasiveness of triple-negative breast cancer cells.
Kim, Sangmin; Lee, Jeongmin; Jeon, Myeongjin; Lee, Jeong Eon; Nam, Seok Jin
2016-04-01
Interleukin-8 (IL-8) serves as a prognostic marker for breast cancer, and its expression level correlates with metastatic breast cancer and poor prognosis. Here, we investigated the levels of IL-8 expression in a variety of breast cancer cells and the regulatory mechanism of IL-8 in triple-negative breast cancer (TNBC) cells. Our results showed that IL-8 expression correlated positively with overall survival in basal-type breast cancer patients. The levels of IL-8 mRNA expression and protein secretion were significantly increased in TNBC cells compared with non-TNBC cells. In addition, the invasiveness of the TNBC cells was dramatically increased by IL-8 treatment and then augmented invasion-related proteins such as matrix metalloproteinase (MMP)-2 or MMP-9. We observed that elevated IL-8 mRNA expression and protein secretion were suppressed by a specific MEK1/2 inhibitor, UO126. In contrast, the overexpression of constitutively active MEK significantly increased the level of IL-8 mRNA expression in BT474 non-TNBC cells. Finally, we investigated the effect of UO126 on the tumorigenecity of TNBC cells. Our results showed that anchorage-independent growth, cell invasion, and cell migration were also decreased by UO126 in TNBC cells. As such, we demonstrated that IL-8 expression is regulated through MEK/ERK-dependent pathways in TNBC cells. A diversity of MEK blockers, including UO126, may be promising for treating TNBC patients.
Hanna-Attisha, Mona; LaChance, Jenny; Sadler, Richard Casey; Champney Schnepp, Allison
2016-02-01
We analyzed differences in pediatric elevated blood lead level incidence before and after Flint, Michigan, introduced a more corrosive water source into an aging water system without adequate corrosion control. We reviewed blood lead levels for children younger than 5 years before (2013) and after (2015) water source change in Greater Flint, Michigan. We assessed the percentage of elevated blood lead levels in both time periods, and identified geographical locations through spatial analysis. Incidence of elevated blood lead levels increased from 2.4% to 4.9% (P < .05) after water source change, and neighborhoods with the highest water lead levels experienced a 6.6% increase. No significant change was seen outside the city. Geospatial analysis identified disadvantaged neighborhoods as having the greatest elevated blood lead level increases and informed response prioritization during the now-declared public health emergency. The percentage of children with elevated blood lead levels increased after water source change, particularly in socioeconomically disadvantaged neighborhoods. Water is a growing source of childhood lead exposure because of aging infrastructure.
LaChance, Jenny; Sadler, Richard Casey; Champney Schnepp, Allison
2016-01-01
Objectives. We analyzed differences in pediatric elevated blood lead level incidence before and after Flint, Michigan, introduced a more corrosive water source into an aging water system without adequate corrosion control. Methods. We reviewed blood lead levels for children younger than 5 years before (2013) and after (2015) water source change in Greater Flint, Michigan. We assessed the percentage of elevated blood lead levels in both time periods, and identified geographical locations through spatial analysis. Results. Incidence of elevated blood lead levels increased from 2.4% to 4.9% (P < .05) after water source change, and neighborhoods with the highest water lead levels experienced a 6.6% increase. No significant change was seen outside the city. Geospatial analysis identified disadvantaged neighborhoods as having the greatest elevated blood lead level increases and informed response prioritization during the now-declared public health emergency. Conclusions. The percentage of children with elevated blood lead levels increased after water source change, particularly in socioeconomically disadvantaged neighborhoods. Water is a growing source of childhood lead exposure because of aging infrastructure. PMID:26691115
Arsenite activates NFκB through induction of C-reactive protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druwe, Ingrid L.; Sollome, James J.; Sanchez-Soria, Pablo
2012-06-15
C-reactive protein (CRP) is an acute phase protein in humans. Elevated levels of CRP are produced in response to inflammatory cytokines and are associated with atherosclerosis, hypertension, cardiovascular disease and insulin resistance. Exposure to inorganic arsenic, a common environmental toxicant, also produces cardiovascular disorders, namely atherosclerosis and is associated with insulin-resistance. Inorganic arsenic has been shown to contribute to cardiac toxicities through production of reactive oxygen species (ROS) that result in the activation of NFκB. In this study we show that exposure of the hepatic cell line, HepG2, to environmentally relevant levels of arsenite (0.13 to 2 μM) results inmore » elevated CRP expression and secretion. ROS analysis of the samples showed that a minimal amount of ROS are produced by HepG2 cells in response to these concentrations of arsenic. In addition, treatment of FvB mice with 100 ppb sodium arsenite in the drinking water for 6 months starting at weaning age resulted in dramatically higher levels of CRP in both the liver and inner medullary region of the kidney. Further, mouse Inner Medullary Collecting Duct cells (mIMCD-4), a mouse kidney cell line, were stimulated with 10 ng/ml CRP which resulted in activation of NFκB. Pretreatment with 10 nM Y27632, a known Rho-kinase inhibitor, prior to CRP exposure attenuated NFκB activation. These data suggest that arsenic causes the expression and secretion of CRP and that CRP activates NFκB through activation of the Rho-kinase pathway, thereby providing a novel pathway by which arsenic can contribute to metabolic syndrome and cardiovascular disease. -- Highlights: ► Exposure to arsenic can induce the expression and secretion of CRP. ► Mice treated with NaAsO{sub 2} showed higher levels of CRP in both the liver and kidney. ► mIMCD-3 were stimulated with CRP which resulted in activation of NFκB. ► CRP activates NFκB through activation of the Rho-kinase pathway. ► Data provide novel pathway for arsenic role in metabolic and cardiovascular disease.« less
Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles.
Thormann, Birthe; Ahrens, Dirk; Espinosa, Carlos Iván; Armijos, Diego Marín; Wagner, Thomas; Wägele, Johann W; Peters, Marcell K
2018-05-01
Elevational diversity gradients are typically studied without considering the complex small-scale topography of large mountains, which generates habitats of strongly different environmental conditions within the same elevational zones. Here we analyzed the importance of small-scale topography for elevational diversity patterns of hyperdiverse tropical leaf beetles (Coleoptera: Chrysomelidae). We compared patterns of elevational diversity and species composition of beetles in two types of forests (on mountain ridges and in valleys) and analyzed whether differences in the rate of species turnover among forest habitats lead to shifts in patterns of elevational diversity when scaling up from the local study site to the elevational belt level. We sampled beetle assemblages at 36 sites in the Podocarpus National Park, Ecuador, which were equally distributed over two forest habitats and three elevational levels. DNA barcoding and Poisson tree processes modelling were used to delimitate putative species. On average, local leaf beetle diversity showed a clear hump-shaped pattern. However, only diversity in forests on mountain ridges peaked at mid-elevation, while beetle diversity in valleys was similarly high at low- and mid-elevation and only declined at highest elevations. A higher turnover of species assemblages at lower than at mid-elevations caused a shift from a hump-shaped diversity pattern found at the local level to a low-elevation plateau pattern (with similar species numbers at low and mid-elevation) at the elevational belt level. Our study reveals an important role of small-scale topography and spatial scale for the inference on gradients of elevational species diversity.
Davis, Brittany E; Flynn, Erin E; Miller, Nathan A; Nelson, Frederick A; Fangue, Nann A; Todgham, Anne E
2018-02-01
Increases in atmospheric CO 2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have examined early life stages. To date, no studies have characterized potential trade-offs in physiology and behavior in response to projected multiple climate change stressors (ocean acidification and warming) on Antarctic fishes. We exposed juvenile emerald rockcod Trematomus bernacchii to three PCO 2 treatments (~450, ~850, and ~1,200 μatm PCO 2 ) at two temperatures (-1 or 2°C). After 2, 7, 14, and 28 days, metrics of physiological performance including cardiorespiratory function (heart rate [f H ] and ventilation rate [f V ]), metabolic rate (M˙O2), and cellular enzyme activity were measured. Behavioral responses, including scototaxis, activity, exploration, and escape response were assessed after 7 and 14 days. Elevated PCO 2 independently had little impact on either physiology or behavior in juvenile rockcod, whereas warming resulted in significant changes across acclimation time. After 14 days, f H , f V and M˙O2 significantly increased with warming, but not with elevated PCO 2 . Increased physiological costs were accompanied by behavioral alterations including increased dark zone preference up to 14%, reduced activity by 12%, as well as reduced escape time suggesting potential trade-offs in energetics. After 28 days, juvenile rockcod demonstrated a degree of temperature compensation as f V , M˙O2, and cellular metabolism significantly decreased following the peak at 14 days; however, temperature compensation was only evident in the absence of elevated PCO 2 . Sustained increases in f V and M˙O2 after 28 days exposure to elevated PCO 2 indicate additive (f V ) and synergistic (M˙O2) interactions occurred in combination with warming. Stressor-induced energetic trade-offs in physiology and behavior may be an important mechanism leading to vulnerability of Antarctic fishes to future ocean change. © 2017 John Wiley & Sons Ltd.
Mortality associated with bilirubin levels in insurance applicants.
Fulks, Michael; Stout, Robert L; Dolan, Vera F
2009-01-01
Determine the relationship between bilirubin levels with and without other liver function test (LFT) elevations and relative mortality in life insurance applicants. By use of the Social Security Death Master File mortality was determined in 1,905,664 insurance applicants for whom blood samples were submitted to the Clinical Reference Laboratory. There were 50,174 deaths observed in this study population. Results were stratified by 3 age/sex groups: females, age <60; males, age <60; and all, age 60+. The median follow-up was 12 years. Relative mortality increased as bilirubin decreased below bilirubin levels seen for the middle 50% of the population. The known association of smoking with lower bilirubin values explained only part of the additional elevated risk at low bilirubin levels. In the absence of other LFT elevations, relative mortality remained unchanged as bilirubin increased beyond levels seen for the middle 50% of the population. When a bilirubin elevation was combined with other LFT elevations, mortality further increased only at the highest elevations of other LFTs, seen only in <2.5% of applicants. Isolated elevations of bilirubin in this healthy screening population were not associated with excess mortality but values below the midpoint were. Other investigations have suggested a cardiovascular cause may underlie the excess mortality associated with low bilirubin. In association with other LFT elevations, bilirubin elevation further increases the mortality risk only at the highest elevations of other LFTs.
Gao, Yuan; Cao, Zhijun; Yang, Xi; Abdelmegeed, Mohamed A; Sun, Jinchun; Chen, Si; Beger, Richard D; Davis, Kelly; Salminen, William F; Song, Byoung-Joon; Mendrick, Donna L; Yu, Li-Rong
2017-01-01
Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Gao, Yuan; Cao, Zhijun; Yang, Xi; Abdelmegeed, Mohamed A.; Sun, Jinchun; Chen, Si; Beger, Richard D.; Davis, Kelly; Salminen, William F.; Song, Byoung-Joon; Mendrick, Donna L.; Yu, Li-Rong
2017-01-01
Purpose Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. Experimental design Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. Results Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. Conclusions and clinical relevance This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury. PMID:27634590
Stress-induced suppression of testosterone secretion in male alligators.
Lance, V A; Elsey, R M
1986-08-01
In order to test the effect of acute stress on gonadal hormone secretion in reptiles, six mature male alligators were captured, and a blood sample was taken within 5 min of capture. Additional blood samples were taken at timed intervals for up to 41 hr, and plasma testosterone and corticosterone were measured by radioimmunoassay. Plasma testosterone declined to 50% of the initial value by 4 hr and dropped to less than 10% of initial by 24 hr. Plasma corticosterone increased during the first 12 hr, declined at 24 hr, and rose again at 40 hr. Blood samples from male alligators collected in North and South Carolina, south Florida, and in south Louisiana in two consecutive breeding seasons were also assayed for testosterone and corticosterone. In these populations there were significant differences in mean plasma testosterone and corticosterone levels. Elevated corticosterone levels were consistently seen in alligators caught in traps and from which a blood sample was taken several hours later. Plasma testosterone, although consistently lower in trapped alligators, did not show a negative correlation with plasma corticosterone. Farm-reared alligators bled once, released, and bled again at 24 hr also showed a highly significant suppression of testosterone secretion. These results demonstrate that stress has a rapid and dramatic effect on testicular steroid secretion in both farm-reared and wild alligators.
Mondal, Jahur A
2016-05-05
Trimethylamine N-oxide (TMAO), a metabolite of choline containing dietary nutrients which are abundant in red meat, egg, and other animal foods, increases the risk of cardiovascular disease (e.g., atherosclerosis) by boosted accumulation of fatty deposits on artery wall. Hence, for the molecular level elucidation of the pathogenesis of atherosclerosis, it is important to understand the effect of TMAO at the endothelial cell membrane-blood interface (artery wall). Heterodyne-detected vibrational sum frequency generation (HD-VSFG) study of a zwitterionic phosphatidylcholine (PC) lipid monolayer-water interface (mimic of endothelial membrane-blood interface) shows that the interfacial water becomes increasingly H-up oriented in the presence of TMAO in the aqueous phase, revealing a dramatic change in the interfacial electrostatics. Examinations of charged lipid interfaces show that TMAO screens anionic phosphate less effectively than cationic choline, which confirms that TMAO increases the relative influence of the anionic phosphate by preferential screening of the cationic choline at the zwitterionic PC lipid interface where the phosphate and choline groups are simultaneously present. Together, it is conceivable that at an elevated TMAO level in serum would modify the electrostatics at the endothelial cell membrane-blood interface (artery wall), which may affect the influx/efflux of fatty deposits on artery wall, setting the stage for atherosclerosis.
Vonesh, James R; De la Cruz, Omar
2002-11-01
In the last decade there has been increasing evidence of amphibian declines from relatively pristine areas. Some declines are hypothesized to be the result of egg mortality caused by factors such as elevated solar UV-B irradiation, chemical pollutants, pathogenic fungi, and climate change. However, the population-level consequences of egg mortality have not been examined explicitly, and may be complicated by density dependence in intervening life-history stages. Here we develop a demographic model for two amphibians with contrasting life-history strategies, Bufo boreas and Ambystoma macrodactylum. We then use the complementary approaches of elasticity and limitation to examine the relationships among stage-specific survival rates, larval-stage density dependence and amphibian population dynamics. Elasticity analyses showed that for a range of density dependence scenarios both species were more sensitive to changes in post-embryonic survival parameters, particularly juvenile survival, than to egg survival, suggesting that mortality of later stages may play an important role in driving declines. Limitation analyses revealed that larval density dependence can dramatically alter the consequences of early mortality, reducing or even reversing the expected population-level effects of egg mortality. Thus, greater focus on later life stages and density dependence is called for to accurately assess how stressors are likely to affect amphibian populations of conservation concern.
Native Plant and Microbial Contributions to a Negative Plant-Plant Interaction1[OA
Bains, Gurdeep; Sampath Kumar, Amutha; Rudrappa, Thimmaraju; Alff, Emily; Hanson, Thomas E.; Bais, Harsh P.
2009-01-01
A number of hypotheses have been suggested to explain why invasive exotic plants dramatically increase their abundance upon transport to a new range. The novel weapons hypothesis argues that phytotoxins secreted by roots of an exotic plant are more effective against naïve resident competitors in the range being invaded. The common reed Phragmites australis has a diverse population structure including invasive populations that are noxious weeds in North America. P. australis exudes the common phenolic gallic acid, which restricts the growth of native plants. However, the pathway for free gallic acid production in soils colonized by P. australis requires further elucidation. Here, we show that exotic, invasive P. australis contain elevated levels of polymeric gallotannin relative to native, noninvasive P. australis. We hypothesized that polymeric gallotannin can be attacked by tannase, an enzymatic activity produced by native plant and microbial community members, to release gallic acid in the rhizosphere and exacerbate the noxiousness of P. australis. Native plants and microbes were found to produce high levels of tannase while invasive P. australis produced very little tannase. These results suggest that both invasive and native species participate in signaling events that initiate the execution of allelopathy potentially linking native plant and microbial biochemistry to the invasive traits of an exotic species. PMID:19776161
Hematological and TGF-beta variations after whole-body proton irradiation
NASA Technical Reports Server (NTRS)
Kajioka, E. H.; Andres, M. L.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Gridley, D. S.
2000-01-01
The acute effects of proton whole-body irradiation on five bone-marrow-derived cell types and transforming growth factor-beta 1 (TGF-beta 1) were examined and compared to the effects of photons (60Co). C57BL/6 mice were exposed to 3 Gy (0.4 Gy/min) protons at spread-out Bragg peak (SOBP), protons at entry (E), or 60Co and euthanized on days 0.5-17 thereafter. 60Co-irradiated animals had decreased erythrocytes, hemoglobin and hematocrit at 12 hours post-exposure; depression was not noted in proton (SOBP or E)-irradiated groups until day 4. Significantly decreased leukocyte counts were observed at this same time in all irradiated groups, with lymphocyte loss being greater than that of monocytes, and the depression was generally maintained. In contrast, the levels of neutrophils and thrombocytes fluctuated, especially during the first week; significant differences were noted among irradiated groups in neutrophil levels. Plasma TGF-beta 1 was elevated on day 7 in the 60Co, but not proton, irradiated mice. Collectively, the data show that dramatic and persistent changes occurred in all irradiated groups. However, few differences in assay results were seen between animals exposed to protons (SOBP or E) or photons, as well as between the groups irradiated with either of the two regions of the proton Bragg curve.
Different cucumber CsYUC genes regulate response to abiotic stresses and flower development.
Yan, Shuangshuang; Che, Gen; Ding, Lian; Chen, Zijing; Liu, Xiaofeng; Wang, Hongyin; Zhao, Wensheng; Ning, Kang; Zhao, Jianyu; Tesfamichael, Kiflom; Wang, Qian; Zhang, Xiaolan
2016-02-09
The phytohormone auxin is essential for plant growth and development, and YUCCA (YUC) proteins catalyze a rate-limiting step for endogenous auxin biosynthesis. Despite YUC family genes have been isolated from several species, systematic expression analyses of YUCs in response to abiotic stress are lacking, and little is known about the function of YUC homologs in agricultural crops. Cucumber (Cucumis sativus L.) is a world cultivated vegetable crop with great economical and nutritional value. In this study, we isolated 10 YUC family genes (CsYUCs) from cucumber and explored their expression pattern under four types of stress treatments. Our data showed that CsYUC8 and CsYUC9 were specifically upregulated to elevate the auxin level under high temperature. CsYUC10b was dramatically increased but CsYUC4 was repressed in response to low temperature. CsYUC10a and CsYUC11 act against the upregulation of CsYUC10b under salinity stress, suggesting that distinct YUC members participate in different stress response, and may even antagonize each other to maintain the proper auxin levels in cucumber. Further, CsYUC11 was specifically expressed in the male flower in cucumber, and enhanced tolerance to salinity stress and regulated pedicel and stamen development through auxin biosynthesis in Arabidopsis.
Low bone mineral density and fragility fractures in permanent vegetative state patients.
Oppl, Bastian; Michitsch, Gabriele; Misof, Barbara; Kudlacek, Stefan; Donis, Johann; Klaushofer, Klaus; Zwerina, Jochen; Zwettler, Elisabeth
2014-01-01
Disuse of the musculoskeletal system causes bone loss. Whether patients in vegetative state, a dramatic example of immobilization after severe brain injury, suffer from bone loss and fractures is currently unknown. Serum markers of bone turnover, bone mineral density (BMD) measurements, and clinical data were cross-sectionally analyzed in 30 consecutive vegetative state patients of a dedicated apallic care unit between 2003 and 2007 and compared with age- and sex-matched healthy individuals. Vegetative state patients showed low calcium levels and vitamin D deficiency compared with healthy controls. Serum bone turnover markers revealed high turnover as evidenced by markedly elevated carboxy-terminal telopeptide of type I collagen (β-crosslaps) and increased levels of alkaline phosphatase. BMD measured by dual-energy X-ray absorptiometry (DXA) scanning showed strongly decreased T- and Z-scores for hip and spine. Over a period of 5 years, 8 fragility fractures occurred at peripheral sites in 6 of 30 patients (n = 3 femur, n = 2 tibia, n = 2 fibula, n = 1 humerus). In conclusion, high bone turnover and low BMD is highly prevalent in vegetative state patients, translating into a clinically relevant problem as shown by fragility fractures in 20% of patients over a time period of 5 years. . © 2014 American Society for Bone and Mineral Research.
Production of New Trabecular Bone in Osteopenic Ovariectomized Rats by Prostaglandin E2
NASA Technical Reports Server (NTRS)
Mori, S.; Jee, W. S. S.; Li, X. J.
1992-01-01
Serum chemistry and bone morphometry of the proximal tibial metaphysis were performed in 3 month-old double fluorescent-labeled, female Sprague-Dawley rats subjected to bilateral ovariectomy or sham surgery for 4 months prior to treatment with 0, 0.3, 1,3, or 6 mg of prostaglandin E2 (PGE2)/kg/day subcutaneously for 30 days. The 4 month postovariectomized rats possessed an osteopenic proximal tibial metaphysis with 7% trabecular area compared with controls (19%). PGE2 treatment elevated osteocalcin levels and augmented proximal tibial metaphyseal bone area in ovariectomized and sham-operated rats. Osteopenic, ovariectomized rats treated with 6 mg (PGE2)/kg/day for 30 days restored bone area to levels of agematched sham-operated rats. Morphometric analyses showed increased woven and lamellar bone area, fluorescent-labeled perimeter (osteoblastic recruitment), mineral apposition rate (osteoblastic activity), bone formation rate (BFR/BV), and longitudinal bone growth. These dramatic bone changes were all significantly increased at the doseresponse manner. This study showed that in vivo PGE2 is a powerful activator of bone remodeling, it increases both bone resorption and bone formation, and produces an anabolic effect by shifting bone balance to the positive direction. Furthermore, PGE2-induced augmentation of metaphyseal bone area in ovariectomized rats was at least two times greater than in sham-operated rats.
Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi
2014-01-01
Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea-level rise. These results also emphasize the importance of adjacent uplands for long-term marsh survival and incorporating such areas in conservation planning efforts.
Spangler, Lawrence E.; Angeroth, Cory E.; Walton, Sarah J.
2008-01-01
Relations between the elevation of the static water level in wells and the elevation of the accounting surface within the Colorado River aquifer in the vicinity of Vidal, California, the Chemehuevi Indian Reservation, California, and on Mohave Mesa, Arizona, were used to determine which wells outside the flood plain of the Colorado River are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation equal to or below the elevation of the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Geographic Information System (GIS) interpolation tools were used to produce maps of areas where water levels are above, below, and near (within ? 0.84 foot) the accounting surface. Calculated water-level elevations and interpolated accounting-surface elevations were determined for 33 wells in the vicinity of Vidal, 16 wells in the Chemehuevi area, and 35 wells on Mohave Mesa. Water-level measurements generally were taken in the last 10 years with steel and electrical tapes accurate to within hundredths of a foot. A Differential Global Positioning System (DGPS) was used to determine land-surface elevations to within an operational accuracy of ? 0.43 foot, resulting in calculated water-level elevations having a 95-percent confidence interval of ? 0.84 foot. In the Vidal area, differences in elevation between the accounting surface and measured water levels range from -2.7 feet below to as much as 17.6 feet above the accounting surface. Relative differences between the elevation of the water level and the elevation of the accounting surface decrease from west to east and from north to south. In the Chemehuevi area, differences in elevation range from -3.7 feet below to as much as 8.7 feet above the accounting surface, which is established at 449.6 feet in the vicinity of Lake Havasu. In all of the Mohave Mesa area, the water-level elevation is near or below the elevation of the accounting surface. Differences in elevation between water levels and the accounting surface range from -0.2 to -11.3 feet, with most values exceeding -7.0 feet. In general, the ArcGIS Triangulated Irregular Network (TIN) Contour and Natural Neighbor tools reasonably represent areas where the elevation of water levels in wells is above, below, and near (within ? 0.84 foot) the elevation of the accounting surface in the Vidal and Chemehuevi study areas and accurately delineate areas around outlying wells and where anomalies exist. The TIN Contour tool provides a strict linear interpolation while the Natural Neighbor tool provides a smoothed interpolation. Using the default options in ArcGIS, the Inverse Distance Weighted (IDW) and Spline tools also reasonably represent areas above, below, and near the accounting surface in the Vidal and Chemehuevi areas. However, spatial extent of and boundaries between areas above, below, and near the accounting surface vary among the GIS methods, which results largely from the fundamentally different mathematical approaches used by these tools. The limited number and spatial distribution of wells in comparison to the size of the areas, and the locations and relative differences in elevation between water levels and the accounting surface of wells with anomalous water levels also influence the contouring by each of these methods. Qualitatively, the Natural Neighbor tool appears to provide the best representation of the difference between water-level and accounting-surface elevations in the study areas, on the basis of available well data.
Xiong, Yao; Liu, Bian; Hao, Zilong; Tao, Wendan; Liu, Ming
2016-01-01
Background and Objective Elevated levels of high sensitivity cardiac troponin T (hs-cTnT) occur in a substantial proportion of patients with acute ischemic stroke (AIS) and can predict poor outcome and mortality after stroke. Whether elevated hs-cTnT levels can also predict hemorrhagic transformation (HT) or prognosis in AIS patients with rheumatic heart disease (RHD) remains unclear. Methods Data from the Chengdu Stroke Registry on consecutive AIS patients with RHD admitted to West China Hospital within1 month of stroke onset from October 2011 to February 2014 were examined. Clinico-demographic characteristics, HT, functional outcomes and stroke recurrence were compared between patients with elevated hs-cTnT levels(≥14ng/L) and patients with normal hs-cTnT levels (<14ng/L). Results The final analysis involved 84 patients (31 males; mean age, 61.6±12.2years), of whom serum hs-cTnT levels were elevated in 58.3%. Renal impairment was independently associated with elevated hs-cTnT levels (OR 4.184, 95%CI 1.17 to 15.01, P = 0.028), and patients with elevated hs-cTnT levels were at significantly higher risk of HT, 3-month mortality and 3-month disability/mortality (all P≤0.029). After controlling for age, sex, hypertension, renal impairment and National Institutes of Health Stroke Scale score on admission, the risk of HT and 3-month mortality was, respectively, 4.0- and 5.5-fold higher in patients with elevated hs-cTnT levels than in patients with normal hs-cTnT levels. Conclusion Elevated hs-cTnT levels are independently associated with HT and 3-month mortality in AIS patients with RHD. These results with a small cohort should be verified and extended in large studies. PMID:26849554
Liu, Junfeng; Wang, Deren; Xiong, Yao; Liu, Bian; Hao, Zilong; Tao, Wendan; Liu, Ming
2016-01-01
Elevated levels of high sensitivity cardiac troponin T (hs-cTnT) occur in a substantial proportion of patients with acute ischemic stroke (AIS) and can predict poor outcome and mortality after stroke. Whether elevated hs-cTnT levels can also predict hemorrhagic transformation (HT) or prognosis in AIS patients with rheumatic heart disease (RHD) remains unclear. Data from the Chengdu Stroke Registry on consecutive AIS patients with RHD admitted to West China Hospital within 1 month of stroke onset from October 2011 to February 2014 were examined. Clinico-demographic characteristics, HT, functional outcomes and stroke recurrence were compared between patients with elevated hs-cTnT levels (≥14 ng/L) and patients with normal hs-cTnT levels (<14 ng/L). The final analysis involved 84 patients (31 males; mean age, 61.6±12.2 years), of whom serum hs-cTnT levels were elevated in 58.3%. Renal impairment was independently associated with elevated hs-cTnT levels (OR 4.184, 95%CI 1.17 to 15.01, P = 0.028), and patients with elevated hs-cTnT levels were at significantly higher risk of HT, 3-month mortality and 3-month disability/mortality (all P≤0.029). After controlling for age, sex, hypertension, renal impairment and National Institutes of Health Stroke Scale score on admission, the risk of HT and 3-month mortality was, respectively, 4.0- and 5.5-fold higher in patients with elevated hs-cTnT levels than in patients with normal hs-cTnT levels. Elevated hs-cTnT levels are independently associated with HT and 3-month mortality in AIS patients with RHD. These results with a small cohort should be verified and extended in large studies.
Zahrieh, David; Young, Sean G.; Oleson, Jacob; Ryckman, Kelli K.; Wels, Brian; Simmons, Donald L.; Saftlas, Audrey
2017-01-01
Lead in maternal blood can cross the placenta and result in elevated blood lead levels in newborns, potentially producing negative effects on neurocognitive function, particularly if combined with childhood lead exposure. Little research exists, however, into the burden of elevated blood lead levels in newborns, or the places and populations in which elevated lead levels are observed in newborns, particularly in rural settings. Using ~2300 dried bloods spots collected within 1–3 days of birth among Iowa newborns, linked with the area of mother’s residence at the time of birth, we examine the spatial patterns of elevated (>5 μg/dL) blood lead levels and the ecological-level predictors of elevated blood lead levels. We find that one in five newborns exceed the 5 μg/dL action level set by the US Centers for Disease Control & Prevention (CDC). Bayesian spatial zero inflated regression indicates that elevated blood lead in newborns is associated with areas of increased pre-1940s housing and childbearing-age women with low educational status in both rural and urban settings. No differences in blood lead levels or the proportion of children exceeding 5 μg/dL are observed between urban and rural maternal residence, though a spatial cluster of elevated blood lead is observed in rural counties. These characteristics can guide the recommendation for testing of infants at well-baby appointments in places where risk factors are present, potentially leading to earlier initiation of case management. The findings also suggest that rural populations are at as great of risk of elevated blood lead levels as are urban populations. Analysis of newborn dried blood spots is an important tool for lead poisoning surveillance in newborns and can direct public health efforts towards specific places and populations where lead testing and case management will have the greatest impact. PMID:28520816
Frank, Marlies; Finsterer, Josef
2012-01-01
To determine the frequency of elevated creatine kinase (CK) levels among patients with diabetes mellitus and to determine how often elevated CK is attributable to primary myopathy. In this prospective study, we investigated how often CK, aspartate amino-transferase, alanine aminotransferase, and resting lactate were elevated among consecutive diabetic patients attending our clinic. Those with elevated CK values were offered a neurologic workup. Ninety-nine patients with diabetes mellitus, aged 19 to 87 years, were assessed between May 2008 and April 2010. Seven patients had type 1 diabetes and 92 patients had type 2 diabetes. CK, aspartate aminotransferase, alanine aminotransferase, and resting lactate were elevated in 19 of 99, 25 of 99, 22 of 99, and 24 of 98 patients, respectively. Eleven of 19 patients with increased CK were self-injecting insulin. Ten of 24 patients with elevated serum lactate took metformin. Seven of 19 patients with elevated CK consented to neurologic workup. Two of the 7 had elevated resting lactate. In all 7 patients, the findings from neurologic investigation were indicative of a metabolic defect and further diagnostic evaluation was recommended. In diabetic patients attending our clinic, elevated CK levels occur in one-fifth and lactacidemia occurs in one-quarter. Elevated CK levels are attributable to a primary metabolic myopathy in most cases. Elevated CK levels in the setting of diabetes mellitus require further neurologic evaluation.
Hasty retreat of glaciers in the Palena province of Chile
NASA Astrophysics Data System (ADS)
Paul, F.; Mölg, N.; Bolch, T.
2013-12-01
Mapping glacier extent from optical satellite data has become a most efficient tool to create or update glacier inventories and determine glacier changes over time. A most valuable archive in this regard is the nearly 30-year time series of Landsat Thematic Mapper (TM) data that is freely available (already orthorectified) for most regions in the world from the USGS. One region with a most dramatic glacier shrinkage and a missing systematic assessment of changes, is the Palena province in Chile, south of Puerto Montt. A major bottleneck for accurate determination of glacier changes in this region is related to the huge amounts of snow falling in this very maritime region, hiding the perimeter of glaciers throughout the year. Consequently, we found only three years with Landsat scenes that can be used to map glacier extent through time. We here present the results of a glacier change analysis from six Landsat scenes (path-rows 232-89/90) acquired in 1985, 2000 and 2011 covering the Palena district in Chile. Clean glacier ice was mapped automatically with a standard technique (TM3/TM band ratio) and manual editing was applied to remove wrongly classified lakes and to add debris-covered glacier parts. The digital elevation model (DEM) from SRTM was used to derive drainage divides, determine glacier specific topographic parameters, and analyse the area changes in regard to topography. The scene from 2000 has the best snow conditions and was used to eliminate seasonal snow in the other two scenes by digital combination of the binary glacier masks. The observed changes show a huge spatial variability with a strong dependence on elevation and glacier hypsometry. While small mountain glaciers at high elevations and steep slopes show virtually no change over the 26-year period, ice at low elevations from large valley glaciers shows a dramatic decline (area and thickness loss). Some glaciers retreated more than 3 km over this time period or even disappeared completely. Typically, these glaciers lost contact to the accumulation areas of tributaries and now consist of an ablation area only. Furthermore, numerous pro-glacial lakes formed or expanded rapidly, increasing the local hazard potential. On the other hand, some glaciers located on or near to (still active) volcanoes have also advanced in the same time period. Observed trends in temperature (decreasing) are in contrast to the observed strong glacier shrinkage.
Laarabi, Saïd; El Kinani, Khalifa; Ettouhami, Aziz; Limouri, Mohammed
2005-05-01
In vivo spectrometric analysis of the electrical impedance of the first leaf of maize (Zea mays L.) as a function of soil and atmosphere hydrous conditions. We have measured the electrical resistance and capacitance of the first leaf of maize aged 14 days. The plants were cultivated at different levels of soil and atmospheric humidity and submitted to quiet or agitated air. In 'control' plants cultivated in quiet air under moderate relative humidity (HRA) (50 to 60%), the amplitude of the spectrometric bioimpedance spectrum (CSB) increased with the quantity of water available to the roots. Agitated air or elevated HRA increased the magnitude of the CSB in plants cultivated at 40% of the maximal retention capacity (CRM) of the soil. On the other hand, the CSB decreased in plants cultivated at 60% of the CRM or in hydroponics. This was accompanied by a dramatic decrease in the electrical resistance. The action of the atmospheric factors studied depends on the quantity of water where the roots are bathing.
Elevated genetic structure in the coastal tailed frog (Ascaphus truei) in managed redwood forests.
Aguilar, Andres; Douglas, Robert B; Gordon, Eric; Baumsteiger, Jason; Goldsworthy, Matthew O
2013-03-01
Landscape alterations have dramatic impacts on the distribution of genetic variation within and among populations and understanding these effects can guide contemporary and future conservation strategies. We initiated a landscape-scale genetic study of the coastal tailed frog (Ascaphus truei) on commercial timberlands within the southern range of the species in Mendocino County (CA, USA). In total, 294 individuals from 13 populations were analyzed at 9 microsatellite loci. None of the sampled populations departed from mutation-drift equilibrium, indicating recent population bottlenecks were not detected in contemporary samples. Fine-scale analysis indicated sampled populations were structured at the watershed level (mean F (ST) = 0.077 and mean G'(ST) = 0.425). Landscape analyses suggested wet and moist areas may serve as significant corridors for gene flow within watersheds in this region (r (2) = 0.32-0.54 for moisture-related features). Results indicate populations of frogs may have persisted at this scale through intense periods of timber harvest, making southern range edge populations of coastal tailed frogs resilient to past land use practices.
Sato, Yuichiro; Han, Jinshun; Fukuda, Hisashi; Mikami, Shigeaki
2018-02-01
Monoterpene alcohols (MTAs) are characteristic flavour-imparting compounds in sweet potato shochu (Japanese distilled spirit) that are liberated following hydrolysis by specific enzymes during fermentation. In the present study, we evaluated the effect of an exogenously added diglycoside-specific β-glycosidase (β-primeverosidase) on aroma formation during shochu brewing using various sweet potato species to address whether MTAs are predominantly present as diglycosidic precursors in raw materials. The results showed that the amount of MTAs produced from enzyme-treated mash was dramatically increased by 2- to 9-fold compared with untreated controls, and the increase varied with sweet potato species. In addition, levels of methyl salicylate, 1-octene-3-ol and ethyl benzoate were also elevated by enzyme treatment. These results indicate that a large amount of MTAs and other volatile aroma compounds are stored in the form of disaccharide β-glycosides such as β-primeverosides in sweet potato. This enzyme may therefore be useful for controlling aroma formation during shochu manufacturing, and may ultimately contribute to diversifying shochu quality. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Li, Wenping; Shi, Jingshan; Papa, Fabrizio; Maggi, Filippo; Chen, Xiuping
2016-01-01
Isofuranodiene is a natural sesquiterpene rich occurring in Smyrnium olusatrum, a forgotten culinary herb which was marginalised after the domestication of the improved form of celery. Our recent data showed that isofuranodiene inhibited the proliferation and induced apoptosis in cancer cells. In this study, we investigated its protective effect on d-galactosamine/lipopolysacchride (GalN/LPS)-induced liver injury in SD rats. Oral administration of isofuranodiene (20 and 50 mg/kg) dramatically inhibited GalN/LPS-induced serum elevation of aspartate aminotransferase, alanine aminotransferase and malondialdehyde levels, and significantly ameliorated liver injury as evidenced by the histological improvement in H&E staining. Furthermore, isofuranodiene treatment significantly inhibited GalN/LPS-induced mRNA expression of IL-1β, IL-6 and inducible nitric oxide synthase in liver tissues. The results from this study showed that isofuranodiene protects GalN/LPS-induced liver injury in SD rats and suggested that it may be a potential functional food ingredient for the prevention and treatment of liver diseases.
NASA Astrophysics Data System (ADS)
Saleh, F.; Garambois, P. A.; Biancamaria, S.
2017-12-01
Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.
Adaptive response studies may help choose astronauts for long-term space travel.
Mortazavi, S M; Cameron, J R; Niroomand-rad, A
2003-01-01
Long-term manned exploratory missions are planned for the future. Exposure to high-energy neutrons, protons and high charge and energy particles during a deep space mission, needs protection against the detrimental effects of space radiation. It has been suggested that exposure to unpredictable extremely large solar particle events would kill the astronauts without massive shielding. To reduce this risk to astronauts and to minimize the need for shielding, astronauts with highest significant adaptive responses should be chosen. It has been demonstrated that some humans living in very high natural radiation areas have acquired high adaptive responses to external radiation. Therefore, we suggest that for a deep space mission the adaptive response of all potential crew members be measured and only those with high adaptive response be chosen. We also proclaim that chronic exposure to elevated levels of radiation can considerably decrease radiation susceptibility and better protect astronauts against the unpredictable exposure to sudden and dramatic increase in flux due to solar flares and coronal mass ejections. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Human forearm metabolism during progressive starvation.
Owen, O E; Reichard, G A
1971-07-01
Forearm muscle metabolism was studied in eight obese subjects after an overnight, 3 and 24 day fast. Arterio-deep-venous differences of oxygen, carbon dioxide, glucose, lactate, pyruvate, free fatty acids, acetoacetate, and beta-hydroxybutyrate with simultaneous forearm blood flow were measured. Rates of metabolite utilization and production were thus estimated. Oxygen consumption and lactate and pyruvate production remained relatively constant at each fasting period. Glucose, initially the major substrate consumed, showed decreased consumption after 3 and 24 days of fasting. Acetoacetate and beta-hydroxybutyrate consumption after an overnight fast was low. At 3 days of fasting with increased arterial concentrations of acetoactate and beta-hydroxybutyrate, consumption of these substrates rose dramatically. At 24 days of fasting, despite further elevation of arterial levels of acetoacetate and beta-hydroxybutyrate, the utilization of acetoacetate did not increase further and if anything decreased, while five out of eight subjects released beta-hydroxybutyrate across the forearm. Acetoacetate was preferentially extracted over beta-hydroxybutyrate. At 24 days of starvation, free fatty acids were the principal fuels extracted by forearm muscle; at this time there was a decreased glucose and also ketone-body consumption by skeletal muscle.
Ishii, Kiyoko; Komaki, Hirofumi; Ohkuma, Aya; Nishino, Ichizo; Nonaka, Ikuya; Sasaki, Masayuki
2010-09-01
We report an adolescent case of late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (MADD) characterized by intermittent nausea and depressive state as early symptoms. At the age of 12 years and 11 months, the patient experienced intermittent nausea and vomiting, and depressive state. She was on medication for depression for 5 months but it was ineffective. Brain magnetic resonance imaging showed disseminated high-intensity areas in the periventricular white matter and in the splenium of the corpus callosum on T2-weighted images and fluid-attenuated inversion-recovery images. Progressive muscle weakness occurred and blood creatine kinase level was found to be elevated. The muscle biopsy revealed lipid storage myopathy. Urine organic acid analysis and mutation analysis of the ETFDH gene confirmed the diagnosis of MADD. With oral supplements of riboflavin and l-carnitine, in addition to a high-calorie and reduced-fat diet, her clinical symptoms improved dramatically. Early diagnosis is important because riboflavin treatment has been effective in a significant number of patients with MADD. Copyright 2009 Elsevier B.V. All rights reserved.
Pidotimod exacerbates allergic pulmonary infection in an OVA mouse model of asthma.
Fu, Luo-Qin; Li, Ya-Li; Fu, Ai-Kun; Wu, Yan-Ping; Wang, Yuan-Yuan; Hu, Sheng-Lan; Li, Wei-Fen
2017-10-01
Pidotimod is a synthetic dipeptide with biological and immuno‑modulatory properties. It has been widely used for treatment and prevention of recurrent respiratory infections. However, its impact on the regulation of allergic pulmonary inflammation is still not clear. In the current study, an ovalbumin (OVA)‑induced allergic asthma model was used to investigate the immune‑modulating effects of pidotimod on airway eosinophilia, mucus metaplasia and inflammatory factor expression compared with dexamethasone (positive control). The authors determined that treatment with pidotimod exacerbated pulmonary inflammation as demonstrated by significantly increased eosinophil infiltration, dramatically elevated immunoglobulin E production, and enhanced T helper 2 response. Moreover, treatment failed to attenuate mucus production in lung tissue, and did not reduce OVA‑induced high levels of FIZZ1 and Arg1 expression in asthmatic mice. In contrast, administration of dexamethasone was efficient in alleviating allergic airway inflammation in OVA‑induced asthmatic mice. These data indicated that pidotimod as an immunotherapeutic agent should be used cautiously and the effectiveness for controlling allergic asthma needs further evaluation and research.
Class I HDACs control a JIP1-dependent pathway for kinesin-microtubule binding in cardiomyocytes
Blakeslee, Weston W.; Lin, Ying-Hsi; Stratton, Matthew S.; Tatman, Philip D.; Hu, Tianjing; Ferguson, Bradley S.; McKinsey, Timothy A.
2018-01-01
Class I histone deacetylase (HDAC) inhibitors block hypertrophy and fibrosis of the heart by suppressing pathological signaling and gene expression programs in cardiac myocytes and fibroblasts. The impact of HDAC inhibition in unstressed cardiac cells remains poorly understood. Here, we demonstrate that treatment of cultured cardiomyocytes with small molecule HDAC inhibitors leads to dramatic induction of c-Jun amino-terminal kinase (JNK)-interacting protein-1 (JIP1) mRNA and protein expression. In contrast to prior findings, elevated levels of endogenous JIP1 in cardiomyocytes failed to significantly alter JNK signaling or cardiomyocyte hypertrophy. Instead, HDAC inhibitor-mediated induction of JIP1 was required to stimulate expression of the kinesin heavy chain family member, KIF5A. We provide evidence for an HDAC-dependent regulatory circuit that promotes formation of JIP1:KIF5A:microtubule complexes that regulate intracellular transport of cargo such as autophagosomes. These findings define a novel role for class I HDACs in the control of the JIP1/kinesin axis in cardiomyocytes, and suggest that HDAC inhibitors could be used to alter microtubule transport in the heart. PMID:28886967
Grabek, Katharine R; Diniz Behn, Cecilia; Barsh, Gregory S; Hesselberth, Jay R; Martin, Sandra L
2015-01-01
During hibernation, animals cycle between torpor and arousal. These cycles involve dramatic but poorly understood mechanisms of dynamic physiological regulation at the level of gene expression. Each cycle, Brown Adipose Tissue (BAT) drives periodic arousal from torpor by generating essential heat. We applied digital transcriptome analysis to precisely timed samples to identify molecular pathways that underlie the intense activity cycles of hibernator BAT. A cohort of transcripts increased during torpor, paradoxical because transcription effectively ceases at these low temperatures. We show that this increase occurs not by elevated transcription but rather by enhanced stabilization associated with maintenance and/or extension of long poly(A) tails. Mathematical modeling further supports a temperature-sensitive mechanism to protect a subset of transcripts from ongoing bulk degradation instead of increased transcription. This subset was enriched in a C-rich motif and genes required for BAT activation, suggesting a model and mechanism to prioritize translation of key proteins for thermogenesis. DOI: http://dx.doi.org/10.7554/eLife.04517.001 PMID:25626169
Cai, Ruibo; Shafer, Aaron B A; Laguardia, Alice; Lin, Zhenzhen; Liu, Shuqiang; Hu, Defu
2015-11-25
The forest musk deer (Moschus berezovskii) is a high elevation species distributed across western China and northern Vietnam. Once abundant, habitat loss and poaching has led to a dramatic decrease in population numbers prompting the IUCN to list the species as endangered. Here, we characterized the genetic diversity of a Major Histocompatibility Complex (MHC) locus and teased apart driving factors shaping its variation. Seven DRB exon 2 alleles were identified among a group of randomly sampled forest musk deer from a captive population in the Sichuan province of China. Compared to other endangered or captive ungulates, forest musk deer have relatively low levels of MHC genetic diversity. Non-synonymous substitutions primarily occurred in the putative peptide-binding region (PBR), with analyses suggesting that recombination and selection has shaped the genetic diversity across the locus. Specifically, inter-allelic recombination generated novel allelic combinations, with evidence for both positive selection acting on the PBR and negative selection on the non-PBR. An improved understanding of functional genetic variability of the MHC will facilitate better design and management of captive breeding programs for this endangered species.
Vitamin D deficiency rickets in an adolescent with severe atopic dermatitis.
Borzutzky, Arturo; Grob, Francisca; Camargo, Carlos A; Martinez-Aguayo, Alejandro
2014-02-01
Atopic dermatitis (AD) affects 10% to 20% of children worldwide. Its severity may be inversely correlated with 25-hydroxyvitamin D (25OHD) levels. Although low levels of vitamin D (VD) can cause rickets in infants, VD deficiency rickets is an unusual presentation in teenagers. We report the case of a 14-year-old girl with severe AD and fish allergy since early childhood. She lived at high latitude (with less sun exposure) and, because of her atopic disorders, avoided sunlight and fish. Laboratory studies showed elevated alkaline phosphatase and parathyroid hormone levels and low serum calcium; her serum 25OHD level was <12 nmol/L. A radiograph of the wrist showed a radiolucent band in the distal metaphysis of the radius with marginal sclerosis. She was diagnosed as having hypocalcemic rickets due to VD deficiency. Treatment with VD increased her 25OHD level to 44 nmol/L, with normalization of alkaline phosphatase, parathyroid hormone, and calcium. Moreover, we observed a dramatic improvement in her AD severity with VD treatment. This case demonstrates the complex interaction between VD deficiency, AD, and food allergy. We advise a high index of suspicion of VD deficiency rickets in children of all ages with AD, particularly during accelerated growth periods and in the presence of other risk factors such as darker skin, living at high latitude, sun avoidance, and low intake of VD-rich foods. The concomitant improvement in bone-related parameters and AD severity may reflect a double benefit of VD treatment, a possibility that warrants research on VD as potential treatment for AD.
Blood Lead Levels in Children Aged 0–6 Years Old in Hunan Province, China from 2009–2013
Qiu, Jun; Wang, Kewei; Wu, Xiaoli; Xiao, Zhenghui; Lu, Xiulan; Zhu, Yimin; Zuo, Chao; Yang, Yongjia; Wang, Youjie
2015-01-01
Objectives The aim of this study is to describe blood lead levels (BLLs) and the prevalence of elevated blood lead levels (EBLLs) in children aged 0–6 years old and to analyze the BLL trend in children from 2009 to 2013 in China. Methods A total of 124,376 children aged 0–6 years old were recruited for this study from January 1st 2009 to December 31st 2013. Their blood lead levels were analyzed using atomic absorption spectrometry. Results The median BLL was 64.3 μg/L (IQR: 49.6–81.0), and the range was 4.3–799.0 μg/L. Blood lead levels were significantly higher in boys (66.0 μg/L) than in girls (61.9 μg/L) (P<0.001). The overall prevalence of BLLs≥100 μg/L was 10.54% in children aged 0–6 years in Hunan Province. Between 2009 and 2013, the prevalence of EBLLs (≥100 μg/L) decreased from 18.31% to 4.26% in children aged 0–6 years and increased with age. The prevalence of EBLLs has dramatically decreased in two stages (2009–2010 and 2012–2013), with a slight fluctuation in 2010 and 2011. Conclusions Both BLLs and the prevalence of EBLLs in children aged 0–6 years old declined substantially from 2009 to 2013 in Hunan Province; however, both remain at unacceptably high levels compared to developed countries. Comprehensive strategies are required to further reduce blood lead levels in children. PMID:25830596
Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong
2011-08-15
Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.
Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons.
Kennedy, Tyler; Broadie, Kendal
2017-10-11
Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function. SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural circuit, we discovered that neurons lacking FMRP take up dramatically more current-injected small dye. After examining many neuronal properties, we determined that this dye defect is cytoplasmic and occurs due to a highly elevated dye iontophoresis rate. We also report several new factors affecting neuron dye uptake. Understanding how FMRP regulates iontophoresis should reveal new molecular factors underpinning FXS dysfunction. Copyright © 2017 the authors 0270-6474/17/379844-15$15.00/0.
Guccione, Julius M.; Ratcliffe, Mark B.; Sundnes, Joakim S.
2012-01-01
Myocardial infarction (MI) significantly alters the structure and function of the heart. As abnormal strain may drive heart failure and the generation of arrhythmias, we used computational methods to simulate a left ventricle with an MI over the course of a heartbeat to investigate strains and their potential implications to electrophysiology. We created a fully coupled finite element model of myocardial electromechanics consisting of a cellular physiological model, a bidomain electrical diffusion solver, and a nonlinear mechanics solver. A geometric mesh built from magnetic resonance imaging (MRI) measurements of an ovine left ventricle suffering from a surgically induced anteroapical infarct was used in the model, cycled through the cardiac loop of inflation, isovolumic contraction, ejection, and isovolumic relaxation. Stretch-activated currents were added as a mechanism of mechanoelectric feedback. Elevated fiber and cross fiber strains were observed in the area immediately adjacent to the aneurysm throughout the cardiac cycle, with a more dramatic increase in cross fiber strain than fiber strain. Stretch-activated channels decreased action potential (AP) dispersion in the remote myocardium while increasing it in the border zone. Decreases in electrical connectivity dramatically increased the changes in AP dispersion. The role of cross fiber strain in MI-injured hearts should be investigated more closely, since results indicate that these are more highly elevated than fiber strain in the border of the infarct. Decreases in connectivity may play an important role in the development of altered electrophysiology in the high-stretch regions of the heart. PMID:22058157
Elevation trends and shrink-swell response of wetland soils to flooding and drying
Cahoon, Donald R.; Perez, Brian C.; Segura, Bradley D.; Lynch, James C.
2011-01-01
Given the potential for a projected acceleration in sea-level rise to impact wetland sustainability over the next century, a better understanding is needed of climate-related drivers that influence the processes controlling wetland elevation. Changes in local hydrology and groundwater conditions can cause short-term perturbations to marsh elevation trends through shrink—swell of marsh soils. To better understand the magnitude of these perturbations and their impacts on marsh elevation trends, we measured vertical accretion and elevation dynamics in microtidal marshes in Texas and Louisiana during and after the extreme drought conditions that existed there from 1998 to 2000. In a Louisiana marsh, elevation was controlled by subsurface hydrologic fluxes occurring below the root zone but above the 4 m depth (i.e., the base of the surface elevation table benchmark) that were related to regional drought and local meteorological conditions, with marsh elevation tracking water level variations closely. In Texas, a rapid decline in marsh elevation was related to severe drought conditions, which lowered local groundwater levels. Unfragmented marshes experienced smaller water level drawdowns and more rapid marsh elevation recovery than fragmented marshes. It appears that extended drawdowns lead to increased substrate consolidation making it less resilient to respond to future favorable conditions. Overall, changes in water storage lead to rapid and large short-term impacts on marsh elevation that are as much as five times greater than the long-term elevation trend, indicating the importance of long-term, high-resolution elevation data sets to understand the prolonged effects of water deficits on marsh elevation change.
Kuhli-Hattenbach, C; Hellstern, P; Miesbach, W; Kohnen, T; Hattenbach, L-O
2018-01-01
The potential impact of elevated Lipoprotein (a) [Lp(a)] levels on retinal venous occlusive (RVO) diseases with regard to age and various risk factors has not been studied extensively. In a retrospective case-control study, thrombophilia data of 106 young patients (< 60 years at the time of the RVO or a previous thromboembolic event) with RVO and 76 healthy subjects were evaluated. Elevated Lp(a) plasma levels were significantly more prevalent among RVO patients (29.2 %) than among controls (9.2 %; p = 0.0009). Lp(a) levels were found to be significantly (p = 0.012) different between patients and controls. Moreover, we found that an unusual personal or family history of thromboembolism was a strong predictor of elevated Lp(a) (p = 0.03). We observed a significant correlation between elevated Lp(a) and other coagulation disorders (p = 0.005). Multivariate analysis showed that elevated lipoprotein(a) levels (OR: 3.5; p = 0.003) were an independent risk factor for the development of RVO. Elevated plasma levels of Lp(a) are associated with the development of RVO. Selective screening of young patients and subjects with a personal or family history of thromboembolism may be helpful in identifying RVO patients with elevated Lp(a). Georg Thieme Verlag KG Stuttgart · New York.
Effects of obesity surgery on non-insulin-dependent diabetes mellitus.
Greenway, Scott E; Greenway, Frank L; Klein, Stanley
2002-10-01
Most individuals who have non-insulin-dependent diabetes mellitus are obese. The obese population has proved a frustrating entity regarding weight loss and diabetes control. Results of medical weight loss programs, medications, and behavior therapy have proved disappointing. Bariatric surgery is the most effective method of diabetes management and cure in the morbidly obese population. Surgical procedures to cause malabsorption provide a more dramatic effect on diabetes owing to the imparted bypass of the hormonally active foregut. Pertinent journal articles spanning the last 40 years, as well as textbooks. Bariatric surgical procedures have proven a much more successful method of weight loss and diabetes control in the obese population than conservative methods. These surgical procedures have proven safe with reported mortality rates of 0% to 1.5%. Bariatric operations may be divided based on the method of weight loss and effect on diabetes. The first category is restrictive and includes vertical banded gastroplasty and adjustable silicone gastric banding. These operations improve diabetes by decreasing food intake and body weight with a slowing of gastric emptying. The second category not only contains restrictive components but also elements of malabsorption. This category includes the Roux-en-Y gastric bypass and biliary-pancreatic diversion, which bypass the foregut. Although all of the surgical procedures for obesity offer improved weight loss and diabetes control compared with conservative methods, the Roux-en-Y gastric bypass and biliary-pancreatic diversion offer superior weight loss and resolution of diabetes. The more dramatic effect seen in the surgical procedures to cause malabsorption is likely secondary to the bypass of the foregut resulting in increased weight loss and elevation of the enteroglucagon level.
Selenium and mercury have a synergistic negative effect on fish reproduction.
Penglase, S; Hamre, K; Ellingsen, S
2014-04-01
Selenium (Se) can reduce the negative impacts of mercury (Hg) toxicity on growth and survival, but little is known about how these two elements interact in reproduction. In the following study we explored the effects of organic Hg and Se on the growth, survival and reproduction of female zebrafish (Danio rerio). Fish were fed one of four diets from 73 until 226 dpf in a 2 × 2 factorial design, using selenomethionine (SeMet) and methylmercury (MeHg) as the Se and Hg sources, respectively. Each diet contained Se at either requirement (0.7 mg Se/kg DM) or elevated levels (10 mg Se/kgDM), and Hg at either low (0.05 mg Hg/kg DM) or elevated (12 mg Hg/kg DM) levels. Between 151 and 206 dpf the female fish were pairwise crossed against untreated male fish and the mating success, fecundity, embryo survival, and subsequent overall reproductive success were measured. Elevated dietary Se reduced Hg levels in both the adult fish and their eggs. Elevated dietary Hg and Se increased egg Se levels to a greater extent than when dietary Se was elevated alone. At elevated maternal intake levels, egg concentrations of Se and Hg reflected the maternal dietary levels and not the body burdens of the adult fish. Elevated dietary Hg reduced the growth and survival of female fish, but these effects were largely prevented with elevated dietary Se. Elevated dietary Se alone did not affect fish growth or survival. Compared to other treatments, elevated dietary Hg alone increased both mating and overall reproductive success with <100 days of exposure, but decreased these parameters with >100 days exposure. Elevated dietary Se decreased fecundity, embryo survival, and overall reproductive success. The combination of elevated Se and Hg had a synergistic negative effect on all aspects of fish reproduction compared to those groups fed elevated levels of either Se or Hg. Overall the data demonstrate that while increased dietary Se may reduce adverse effects of Hg on the growth and survival in adult fish, it can negatively affect fish reproductive potential, and the effect on reproduction is enhanced in the presence of elevated Hg. Copyright © 2014 Elsevier B.V. All rights reserved.
Serum biochemical markers in lung cancer.
Burt, R. W.; Ratcliffe, J. G.; Stack, B. H.; Cuthbert, J.; Kennedy, R. S.; Corker, C. S.; Franchimont, P.; Spilg, W. G.; Stimson, W. H.
1978-01-01
The prevalence of elevated serum levels of 5 potential tumour-associated antigens was determined in patients with lung cancer sampled at the time of initial presentation, using age- and sex-matched patients with benign lung disease as controls. Elevated levels (greater than upper 95th centile of controls) were found as follows: carcinoembryonic antigen (CEA), 17%; pregnancy-associated alpha-macroglobulin (PAM), 16%; casein 14%; human chorionic gonadotrophin (HCG) 6%; alpha-foetoprotein (AFP), 1.5%. The prevalence of elevated CEA levels (but not other markers) was higher in patients with evidence of extra-thoracic tumour spread (23%) mainly due to anaplastic tumours and adenocarcinomas. A degree of concordance of elevated marker levels occurred with CEA, HCG, casein and AFP, but there was a striking discordance of elevated CEA and PAM levels. Simultaneous assays of CEA and PAM will detect the majority of patients with elevations of any of the markers studied, and are likely to be the most useful biochemical markers in following the response of lung tumours to therapy. PMID:77672
Zhang, Haidong; Huang, Biao; Dong, Linlin; Hu, Wenyou; Akhtar, Mohammad Saleem; Qu, Mingkai
2017-03-01
Greenhouse vegetable cultivation with substantive manure and fertilizer input on soils with an elevated geochemical background can accumulate trace metals in soils and plants leading to human health risks. Studies on trace metal accumulation over a land use shift duration in an elevated geochemical background scenario are lacking. Accumulation characteristics of seven trace metals in greenhouse soil and edible plants were evaluated along with an assessment of the health risk to the consumers. A total of 118 greenhouse surface soils (0-20cm) and 30 vegetables were collected from Kunming City, Yunnan Province, southwestern China, and analyzed for total Cd, Pb, Cu, Zn, As, Hg, and Cr content by ICP-MS and AFS. The trace metals were ordered Cu>Cd>Hg>Zn>Pb>As>Cr in greenhouse soils accumulation level, and the geo-accumulation index suggested the soil more severely polluted with Cd, Cu, Hg and Zn. The greenhouse and open-field soils had significant difference in Cd, Cr and Zn. The duration of shift from paddy to greenhouse land-use significantly influenced trace metal accumulation with a dramatic change during five to ten year greenhouse land-use, and continuous increase of Cd and Hg. A spatial pattern from north to south for Cd and Hg and a zonal pattern for Cu and Zn were found. An anthropogenic source primarily caused trace metal accumulation, where the principal component analysis/multiple linear regression indicated a contribution 61.2%. While the assessment showed no potential risk for children and adults, the hazard health risks index was greater than one for adolescents. The extended duration of land use as greenhouses caused the trace metal accumulation, rotation in land use should be promoted to reduce the health risks. Copyright © 2016. Published by Elsevier Inc.
Rising CO2 concentrations affect settlement behaviour of larval damselfishes
NASA Astrophysics Data System (ADS)
Devine, B. M.; Munday, P. L.; Jones, G. P.
2012-03-01
Reef fish larvae actively select preferred benthic habitat, relying on olfactory, visual and acoustic cues to discriminate between microhabitats at settlement. Recent studies show exposure to elevated carbon dioxide (CO2) impairs olfactory cue recognition in larval reef fishes. However, whether this alters the behaviour of settling fish or disrupts habitat selection is unknown. Here, the effect of elevated CO2 on larval behaviour and habitat selection at settlement was tested in three species of damselfishes (family Pomacentridae) that differ in their pattern of habitat use: Pomacentrus amboinensis (a habitat generalist), Pomacentrus chrysurus (a rubble specialist) and Pomacentrus moluccensis (a live coral specialist). Settlement-stage larvae were exposed to current-day CO2 levels or CO2 concentrations that could occur by 2100 (700 and 850 ppm) based on IPCC emission scenarios. First, pair-wise choice tests were performed using a two-channel flume chamber to test olfactory discrimination between hard coral, soft coral and coral rubble habitats. The habitat selected by settling fish was then compared among treatments using a multi-choice settlement experiment conducted overnight. Finally, settlement timing between treatments was compared across two lunar cycles for one of the species, P. chrysurus. Exposure to elevated CO2 disrupted the ability of larvae to discriminate between habitat odours in olfactory trials. However, this had no effect on the habitats selected at settlement when all sensory cues were available. The timing of settlement was dramatically altered by CO2 exposure, with control fish exhibiting peak settlement around the new moon, whereas fish exposed to 850 ppm CO2 displaying highest settlement rates around the full moon. These results suggest larvae can rely on other sensory information, such as visual cues, to compensate for impaired olfactory ability when selecting settlement habitat at small spatial scales. However, rising CO2 could cause larvae to settle at unfavourable times, with potential consequences for larval survival and population replenishment.
Mantle of the Expert: Integrating Dramatic Inquiry and Visual Arts in Social Studies
ERIC Educational Resources Information Center
Johnson, Edric C.; Liu, Katrina; Goble, Kristin
2015-01-01
This article introduces the social studies field to Dorothy Heatchote's Mantle of Expert (MOE). MOE is a dramatic inquiry approach used in several subject areas and can work at all levels in the social studies curriculum. The authors go into the development of using this approach in an elementary and middle teacher education program. After sharing…
NASA Astrophysics Data System (ADS)
Huangfu, Y.; O'Keeffe, P.; Kirk, M.; Walden, V. P.; Lamb, B. K.; Jobson, B. T.
2017-12-01
This paper reports results on an indoor air quality study conducted on six homes in summer and winter, contrasting indoor and outdoor concentrations of O3, CO, CO2, NOx, PM2.5, and selected volatile organic hydrocarbons measured by PTR-MS. Data were collected as 1 minute averages. Air exchange rates of the homes were determined by CO2 tracer release. Smart home sensors, recording human activity level in various places in the home, and window and doors openings, were utilized to better understand the link between human activity and indoor air pollution. From our study, averaged air exchange rates of the homes ranged from 0.2 to 1.2 hour-1 and were greatly affected by the ventilation system type and window and door openings. In general, a negative correlation between air exchange rate and indoor VOCs levels was observed, with large variation of pollutant levels between the homes. For most of the VOCs measured in the house, including formaldehyde and acetaldehyde, summer levels were much higher than winter levels. In some homes formaldehyde levels displayed a time of day variation that was linked to changes in indoor temperature. During a wildfire period in the summer of 2015, outdoor levels of PM2.5, formaldehyde, and benzene dramatically increased, significantly impacting indoor levels due to infiltration. Human activities, such as cooking, can significantly change the levels of most of the compounds measured in the house and the levels can be significantly elevated for short periods of time, with peak levels can be several orders higher compared with typical levels. The data suggest that an outcome of state energy codes that require new homes to be energy efficient, and as a consequence built with lower air exchange rates, will be unacceptable levels of air toxics, notably formaldehyde.
Dignam, Timothy A.; Evens, Anne; Eduardo, Eduard; Ramirez, Shokufeh M.; Caldwell, Kathleen L.; Kilpatrick, Nikki; Noonan, Gary P.; Flanders, W. Dana; Meyer, Pamela A.; McGeehin, Michael A.
2004-01-01
Objectives. We assessed the prevalence of elevated blood lead levels (≥ 10 micrograms of lead per deciliter of blood), risk factors, and previous blood lead testing among children in 2 high-risk Chicago, Ill, communities. Methods. Through high-intensity targeted screening, blood lead levels were tested and risks were assessed among a representative sample of children aged 1 to 5 years who were at risk for lead exposure. Results. Of the 539 children who were tested, 27% had elevated blood lead levels, and 61% had never been tested previously. Elevated blood lead levels were associated with chipped exterior house paint. Conclusions. Most of the children who lived in these communities—where the prevalence for elevated blood lead levels among children was 12 times higher than the national prevalence—were not tested for lead poisoning. Our findings highlight the need for targeted community outreach that includes testing blood lead levels in accordance with the American Academy of Pediatrics’ recommendations. PMID:15514235
NASA Astrophysics Data System (ADS)
Jungers, M.; Heimsath, A. M.
2013-12-01
Periods of transient erosion during landscape evolution are most commonly attributed to fluvial systems' responses to changes in tectonic or climatic forcing. Dramatic changes in base level and sudden increases in drainage area associated with drainage reorganization can, however, drive punctuated events of incision and erosion equal in magnitude to those driven by tectonics or climate. In southeastern Arizona's Basin and Range, a mature portion of the North American physiographic province, the modern Gila River system integrates a network of previously internally drained structural basins. One basin in particular, Aravaipa Creek, is the most recent to join the broader Gila River fluvial network. Following drainage integration, Aravaipa Creek rapidly incised to equilibrate with its new, much lower, base level. In doing so, it carved Aravaipa Canyon, excavated a large volume of sedimentary basin fill, and captured drainage area from the still internally drained Sulphur Springs basin. Importantly, this dramatic episode of transient incision and erosion was the result of drainage integration alone. We hypothesize that the adjustment time for Aravaipa Creek was shorter than the timescale of any climate forcing, and regional extensional tectonics were quiescent at the time of integration. We can, therefore, explicitly quantify the magnitude of transient incision and erosion driven by drainage reorganization. We use remnants of the paleo-basin surface and modern landscape elevations to reconstruct the pre-drainage integration topography of Aravaipa Creek basin. Doing so enables us to quantify the magnitude of incision driven by drainage reorganization as well as the volume of material eroded from the basin subsequent to integration. Key control points for our landscape reconstruction are: (1) the inferred elevation of the spillover point between Aravaipa Creek and the San Pedro River; (2) Quaternary pediment-capping gravels above Aravaipa Canyon (3) perched remnants of late stage sedimentary basin fill that preserve the slope of the pre-incision piedmonts of the Galiuro Mountains and Santa Teresa Mountains; and (4) the paleo-drainage divide between Aravaipa Creek and Sulphur Springs Valley, approximately 6 km northwest of the modern divide. The pre-incision basin surface sloped from the Sulphur Springs divide (1370 m) to its intersection with the point of integration (1100 m) between Aravaipa Creek and the San Pedro River, 50 km to the northwest. Maximum incision of 450 m occurred in the vicinity of Aravaipa Canyon, and more than 50 cubic kilometers of material have been eroded from Aravaipa Creek basin. Finally, cosmogenic nuclide burial dates for latest stage sedimentary basin fill enable us to constrain the timing of drainage integration and place first-order constraints on paleo-erosion rates.
Watanabe, Chihiro K.; Sato, Shigeru; Yanagisawa, Shuichi; Uesono, Yukifumi; Terashima, Ichiro; Noguchi, Ko
2014-01-01
Elevated CO2 affects plant growth and photosynthesis, which results in changes in plant respiration. However, the mechanisms underlying the responses of plant respiration to elevated CO2 are poorly understood. In this study, we measured diurnal changes in the transcript levels of genes encoding respiratory enzymes, the maximal activities of the enzymes and primary metabolite levels in shoots of Arabidopsis thaliana grown under moderate or elevated CO2 conditions (390 or 780 parts per million by volume CO2, respectively). We examined the relationships between these changes and respiratory rates. Under elevated CO2, the transcript levels of several genes encoding respiratory enzymes increased at the end of the light period, but these increases did not result in changes in the maximal activities of the corresponding enzymes. The levels of some primary metabolites such as starch and sugar phosphates increased under elevated CO2, particularly at the end of the light period. The O2 uptake rate at the end of the dark period was higher under elevated CO2 than under moderate CO2, but higher under moderate CO2 than under elevated CO2 at the end of the light period. These results indicate that the changes in O2 uptake rates are not directly related to changes in maximal enzyme activities and primary metabolite levels. Instead, elevated CO2 may affect anabolic processes that consume respiratory ATP, thereby affecting O2 uptake rates. PMID:24319073
A comparison of bat activity at low and high elevations in the Black Hills of western Washington
Erickson, J.; Adams, Michael J.
2003-01-01
We examined the differences in activity patterns and community structure of bats between low (<150 m) and high ( ! 575 m) elevation sites in two habitats of the Capitol State Forest, Washington. Total bat activity averaged four times higher at low elevation sites than at high elevation sites. Feeding activity was almost 20 times higher at low elevation sites. However, the non-myotis group had similar activity levels at high and low elevation, whereas myotis group activity decreased at higher elevations. Different levels of activity between elevations could be the result of differences in insect availability, climatic conditions, and morphology of the bat species.
Cherry, J.A.; McKee, K.L.; Grace, J.B.
2009-01-01
1. Sea-level rise, one indirect consequence of increasing atmospheric CO2, poses a major challenge to long-term stability of coastal wetlands. An important question is whether direct effects of elevated CO 2 on the capacity of marsh plants to accrete organic material and to maintain surface elevations outweigh indirect negative effects of stressors associated with sea-level rise (salinity and flooding). 2. In this study, we used a mesocosm approach to examine potential direct and indirect effects of atmospheric CO2 concentration, salinity and flooding on elevation change in a brackish marsh community dominated by a C3 species, Schoenoplectus americanus, and a C4 grass, Spartina patens. This experimental design permitted identification of mechanisms and their role in controlling elevation change, and the development of models that can be tested in the field. 3. To test hypotheses related to CO2 and sea-level rise, we used conventional anova procedures in conjunction with structural equation modelling (SEM). SEM explained 78% of the variability in elevation change and showed the direct, positive effect of S. americanus production on elevation. The SEM indicated that C3 plant response was influenced by interactive effects between CO2 and salinity on plant growth, not a direct CO2 fertilization effect. Elevated CO2 ameliorated negative effects of salinity on S. americanus and enhanced biomass contribution to elevation. 4. The positive relationship between S. americanus production and elevation change can be explained by shoot-base expansion under elevated CO 2 conditions, which led to vertical soil displacement. While the response of this species may differ under other environmental conditions, shoot-base expansion and the general contribution of C3 plant production to elevation change may be an important mechanism contributing to soil expansion and elevation gain in other coastal wetlands. 5. Synthesis. Our results revealed previously unrecognized interactions and mechanisms contributing to marsh elevation change, including amelioration of salt stress by elevated CO2 and the importance of plant production and shoot-base expansion for elevation gain. Identification of biological processes contributing to elevation change is an important first step in developing comprehensive models that permit more accurate predictions of whether coastal marshes will persist with continued sea-level rise or become submerged. ?? 2008 The Authors.
Padmanabhan, Pradeep; Spiller, Henry A; Ross, Mitchell P; Bosse, George M
2011-01-01
In the absence of a rapid serum methanol level estimation, it is difficult to assess the risk from unintentional childhood ingestion of model fuels containing methanol and nitromethane (MFNM). Previous reports have documented false elevations of serum creatinine from the nitromethane in these fuels, suggesting its utility as a readily available marker of significant methanol ingestion. We performed a 2-year retrospective chart review of cases of ingestion of MFNM in children, with both a methanol level and measured creatinine level. Seven children, ages 19 months to 3 years, ingested MFNM. All seven children were seen in a hospital and had measured methanol and creatinine levels. All blood samples for methanol and creatinine were drawn within 3 hours of ingestion with methanol estimation delayed up to 24 hours. Creatinine ranged from 0.39 (0.034 mmol/l) to 10.7 mg/dl (0.95 mmol/l). All methanol levels were <10 mg/dl (0.31 mmol/l) or reported as negative. Fomepizole was initiated empirically in two patients due to delay in obtaining methanol analysis results. Transient elevations of creatinine occurred in five of the seven children. Blood urea nitrogen was within normal limits, and there was no history of renal impairment in these children, suggesting the elevated creatinine was mostly related to nitromethane ingestion. No child had a significantly elevated methanol level. Elevated creatinine level, as measured by Jaffe colorimetric method, is not a reliable marker for elevated methanol levels after unintentional ingestion of MFNM.
Gaillard, Romy; Eilers, Paul H C; Yassine, Siham; Hofman, Albert; Steegers, Eric A P; Jaddoe, Vincent W V
2014-05-01
To determine sociodemographic and life style-related risk factors and trimester specific maternal, placental, and fetal consequences of maternal anaemia and elevated haemoglobin levels in pregnancy. In a population-based prospective cohort study of 7317 mothers, we measured haemoglobin levels in early pregnancy [gestational age median 14.4 weeks (inter-quartile-range 12.5-17.5)]. Anaemia (haemoglobin ≤11 g/dl) and elevated haemoglobin levels (haemoglobin ≥13.2 g/dl) were defined according to the WHO criteria. Maternal blood pressure, placental function and fetal growth were measured in each trimester. Data on gestational hypertensive disorders and birth outcomes was collected from hospitals. Older maternal age, higher body mass index, primiparity and European descent were associated with higher haemoglobin levels (P < 0.05). Elevated haemoglobin levels were associated with increased systolic and diastolic blood pressure throughout pregnancy (mean differences 5.1 mmHg, 95% confidence interval [CI] 3.8, 6.5 and 4.1 mmHg, 95% CI 3.0, 5.2, respectively) and with a higher risk of third trimester uterine artery notching (RR 1.3, 95% CI 1.0, 1.7). As compared with maternal normal haemoglobin levels, not anaemia, but elevated haemoglobin levels were associated with fetal head circumference, length, and weight growth restriction from third trimester onwards (P < 0.05). Elevated haemoglobin levels were associated with increased risks of gestational hypertensive disorders (RR 1.4, 95% CI 1.1, 1.8) and adverse birth outcomes (RR 1.4, 95% CI 1.1, 1.7). In a low-risk population, various sociodemographic and life style factors affect haemoglobin levels during pregnancy. Elevated haemoglobin levels are associated with increased risks of maternal, placental, and fetal complications. © 2014 John Wiley & Sons Ltd.
Rozen, Todd; Swidan, Sahar Z
2007-01-01
To determine if patients with new daily persistent headache (NDPH) have elevated levels of tumor necrosis factor alpha (TNF alpha) in the CSF. NDPH is considered one of the most treatment resistant of all headache syndromes. This reflects a lack of understanding of its pathogenesis. As a certain percentage of NDPH patients have their headaches start after an infection, the possibility of a persistent state of systemic or CNS inflammation comes into question. TNF alpha is a proinflammatory cytokine involved in brain immune and inflammatory activities, as well as in pain initiation. The goal of this study was to look at TNF alpha levels in the CSF of NDPH patients, to determine if CNS inflammation may play some role in the pathogenesis of this condition. CSF TNF alpha levels were studied in 38 patients: 20 with NDPH and a control population of 16 patients with chronic migraine (CM), and 2 with post-traumatic headache (PT). CSF TNF alpha levels were elevated in 19 of 20 NDPH patients, 16 of 16 CM patients, and both PT patients. Serum TNF alpha levels were normal in most of the study subjects. An elevation of CSF TNF alpha levels was found in almost all NDPH patients and suggest a role for TNF alpha in the pathogenesis of this condition. Surprisingly, all CM and PT patients tested had elevated CSF TNF alpha levels. In most patients with elevated CSF levels, serum TNF alpha levels were normal. All of these syndromes may be manifestations of CNS inflammation. As most of the positive-tested patients showed minimal to no improvement during aggressive inpatient treatment, persistent elevation of CSF TNF alpha levels may be one of the causes of treatment refractory CDH.
The role of elevated serum procalcitonin in neuroendocrine neoplasms of digestive system.
Chen, Luohai; Zhang, Yu; Lin, Yuan; Deng, Langhui; Feng, Shiting; Chen, Minhu; Chen, Jie
2017-12-01
Elevated serum procalcitonin (PCT) was reported in patients with certain type of neuroendocrine neoplasms (NENs). The aim of this study was to assess the role of elevated serum PCT in NENs from digestive system. Serum PCT and serum CgA level were measured in 155 patients with NENs from digestive system. Elevated serum PCT was found in 63 patients (40.6%). Grade 3 disease was a significant factor associated with elevated serum PCT (OR, 9.24; 95%CI, 3.04-28.08; P<0.001). Serum PCT level was significantly decreased after treatment both in patients with stable disease (P=0.003) and patients with partial remission (P=0.001). In these patients, serum PCT level significantly increased again at the time of progression disease (P=0.001). Elevated serum PCT was a significant factor of worse survival (HR, 2.86; 95%CI, 1.36-6.03; P=0.006). Compared with patients with normal serum PCT and CgA level, patients with either PCT or CgA elevated and patients with both PCT and CgA elevated had progressively worse survival. Additionally, PCT expression in tumor cells was found in 24.0% of patients but did not correlate with other clinicopathological factors, including serum PCT. Serum PCT is elevated in part of patients with NENs of digestive system, especially in patients with grade 3 disease. Serum PCT level can help evaluate treatment response and its elevation indicates poor prognosis. Combination of serum PCT and CgA can improve outcome prediction. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, Mingming; Chen, Zhihua; Zhou, Hong; Zhang, Liang; Han, Zhaofeng
2018-03-01
To be better understand the hydrological and thermal behavior of karst systems in South China, seasonal variations in flow, hydrochemistry and stable isotope ratios of five karst springs were used to delineate flow paths and recharge processes, and to interpret their thermal response. Isotopic data suggest that mean recharge elevations are 200-820 m above spring outlets. Springs that originate from high elevations have lower NO3 - concentrations than those originating from lower areas that have more agricultural activity. Measured Sr2+ concentrations reflect the strontium contents of the host carbonate aquifer and help delineate the spring catchment's saturated zone. Seasonal variations of NO3 - and Sr2+ concentrations are inversely correlated, because the former correlates with event water and the latter with baseflow. The mean annual water temperatures of springs were only slightly lower than the local mean annual surface temperature at the outlet elevations. These mean spring temperatures suggest a vertical gradient of 6 °C/vertical km, which resembles the adiabatic lapse rate of the Earth's stable atmosphere. Seasonal temperature variations in the springs are in phase with surface air temperatures, except for Heilongquan (HLQ) spring. Event-scale variations of thermal response are dramatically controlled by the circulation depth of karst systems, which determines the effectiveness of heat exchange. HLQ spring undergoes the deepest circulation depth of 820 m, and its thermal responses are determined by the thermally effective regulation processes at higher elevations and the mixing processes associated with thermally ineffective responses at lower elevations.
Dramatic Declines of Montane Frogs in a Central African Biodiversity Hotspot
Hirschfeld, Mareike; Blackburn, David C.; Doherty-Bone, Thomas M.; Gonwouo, LeGrand Nono; Ghose, Sonia; Rödel, Mark-Oliver
2016-01-01
Amphibian populations are vanishing worldwide. Declines and extinctions of many populations have been attributed to chytridiomycosis, a disease induced by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). In Africa, however, changes in amphibian assemblages were typically attributed to habitat change. We conducted a retrospective study utilizing field surveys from 2004–2012 of the anuran faunas on two mountains in western Cameroon, a hotspot of African amphibian diversity. The number of species detected was negatively influenced by year, habitat degradation, and elevation, and we detected a decline of certain species. Because another study in this region revealed an emergence of Bd in 2008, we screened additional recent field-collected samples and also pre-decline preserved museum specimens for the presence of Bd supporting emergence before 2008. When comparing the years before and after Bd detection, we found significantly diminished frog species richness and abundance on both mountains after Bd emergence. Our analyses suggest that this may be the first disease-driven community-level decline in anuran biodiversity in Central Africa. The disappearance of several species known to tolerate habitat degradation, and a trend of stronger declines at higher elevations, are consistent with Bd-induced declines in other regions. Not all species decreased; populations of some species remained constant, and others increased after the emergence of Bd. This variation might be explained by species-specific differences in infection probability. Increased habitat protection and Bd-mitigation strategies are needed for sustaining diverse amphibian communities such as those on Mt. Manengouba, which contains nearly half of Cameroon’s frog diversity. PMID:27149624
Overmyer, Katherine A.; Thonusin, Chanisa; Qi, Nathan R.; Burant, Charles F.; Evans, Charles R.
2015-01-01
A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia. PMID:25658945
Overmyer, Katherine A; Thonusin, Chanisa; Qi, Nathan R; Burant, Charles F; Evans, Charles R
2015-01-01
A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia.
Increased mortality associated with elevated carcinoembryonic antigen in insurance applicants.
Stout, Robert L; Fulks, Michael; Dolan, Vera F; Magee, Mark E; Suarez, Luis
2007-01-01
Determine the relationship between the carcinoembryonic antigen (CEA) value and all-cause mortality in life insurance applicants aged 50 years and over. By use of the Social Security Master Death Index, mortality was examined in 115,590 insurance applicants aged 50 and up for whom blood samples for CEA were submitted to the Clinical Reference Laboratory. Results were stratified by CEA value (<5 ng/mL, 5 to 9.9 ng/mL, 10+ ng/mL), smoking status, and age groups (50-59 years, 60-69 years, and 70 years and up). Relative mortality is increased at CEA values between 5 and 9.9 ng/mL and further increased at 10+ ng/mL for all age groups, with the most dramatic increase at the youngest ages. Excess mortality appears to last at least 3 to 4 years after the elevated result. Five-year all-cause mortality in applicants with CEA values of 10+ ng/mL is 25.2% with a mortality ratio relative to those with a CEA <5 ng/mL of 1156%. This study shows that CEA can detect the risk of early excess mortality in life insurance applicants; CEA levels of 5 ng/mL and over may be of concern. CEA testing beginning at age 50 years for life insurance applicants could capture 4.6% of early mortality if the threshold for further evaluation was set at 10 ng/mL. Only 0.4% of all applicants aged 50 and over have CEA values at or above this threshold.
Dramatic Declines of Montane Frogs in a Central African Biodiversity Hotspot.
Hirschfeld, Mareike; Blackburn, David C; Doherty-Bone, Thomas M; Gonwouo, LeGrand Nono; Ghose, Sonia; Rödel, Mark-Oliver
2016-01-01
Amphibian populations are vanishing worldwide. Declines and extinctions of many populations have been attributed to chytridiomycosis, a disease induced by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). In Africa, however, changes in amphibian assemblages were typically attributed to habitat change. We conducted a retrospective study utilizing field surveys from 2004-2012 of the anuran faunas on two mountains in western Cameroon, a hotspot of African amphibian diversity. The number of species detected was negatively influenced by year, habitat degradation, and elevation, and we detected a decline of certain species. Because another study in this region revealed an emergence of Bd in 2008, we screened additional recent field-collected samples and also pre-decline preserved museum specimens for the presence of Bd supporting emergence before 2008. When comparing the years before and after Bd detection, we found significantly diminished frog species richness and abundance on both mountains after Bd emergence. Our analyses suggest that this may be the first disease-driven community-level decline in anuran biodiversity in Central Africa. The disappearance of several species known to tolerate habitat degradation, and a trend of stronger declines at higher elevations, are consistent with Bd-induced declines in other regions. Not all species decreased; populations of some species remained constant, and others increased after the emergence of Bd. This variation might be explained by species-specific differences in infection probability. Increased habitat protection and Bd-mitigation strategies are needed for sustaining diverse amphibian communities such as those on Mt. Manengouba, which contains nearly half of Cameroon's frog diversity.
Hyper telomere recombination accelerates replicative senescence and may promote premature aging
Hagelstrom, R. Tanner; Blagoev, Krastan B.; Niedernhofer, Laura J.; Goodwin, Edwin H.; Bailey, Susan M.
2010-01-01
Werner syndrome and Bloom syndrome result from defects in the RecQ helicases Werner (WRN) and Bloom (BLM), respectively, and display premature aging phenotypes. Similarly, XFE progeroid syndrome results from defects in the ERCC1-XPF DNA repair endonuclease. To gain insight into the origin of cellular senescence and human aging, we analyzed the dependence of sister chromatid exchange (SCE) frequencies on location [i.e., genomic (G-SCE) vs. telomeric (T-SCE) DNA] in primary human fibroblasts deficient in WRN, BLM, or ERCC1-XPF. Consistent with our other studies, we found evidence of elevated T-SCE in telomerase-negative but not telomerase-positive backgrounds. In telomerase-negative WRN-deficient cells, T-SCE—but not G-SCE—frequencies were significantly increased compared with controls. In contrast, SCE frequencies were significantly elevated in BLM-deficient cells irrespective of genome location. In ERCC1-XPF-deficient cells, neither T- nor G-SCE frequencies differed from controls. A theoretical model was developed that allowed an in silico investigation into the cellular consequences of increased T-SCE frequency. The model predicts that in cells with increased T-SCE, the onset of replicative senescence is dramatically accelerated even though the average rate of telomere loss has not changed. Premature cellular senescence may act as a powerful tumor-suppressor mechanism in telomerase-deficient cells with mutations that cause T-SCE levels to rise. Furthermore, T-SCE-driven premature cellular senescence may be a factor contributing to accelerated aging in Werner and Bloom syndromes, but not XFE progeroid syndrome. PMID:20798040
Zheng, Wenjiao; Wang, Junling; Zhu, Wei; Xu, Chiyan; He, Shaoheng
2016-06-01
Human basophils have been implicated in the pathogenesis of chronic spontaneous urticaria (CSU), and substance P (SP) is a possible candidate as histamine-releasing factor in some patients with CSU. However, little is known of relationship between basophils and SP in CSU. In the present study, we investigated expression of SP and NK1R on basophils from patients with CSU, and influence of SP on basophil functions by using flow cytometry analysis, basophil challenge, and mouse sensitization model techniques. The results showed that plasma SP level and basophil numbers in CSU patients were higher than that in HC subject. The percentages of SP+ and NK1R+ basophils were markedly elevated in CSU blood in comparison with HC blood. Once added, SP induced up to 41.2 % net histamine release from basophils of CSU patients, which was comparable with that provoked by anti-IgE, and fMLP. It appeared that SP induced dramatic increase in blood basophil numbers of mice following peritoneal injection. Ovalbumin (OVA)-sensitized mice had much more SP+ and NK1R+ basophils in blood than non-sensitized mice. In conclusion, the elevated plasma concentration of SP, upregulated expression of SP and NK1R on basophils, and the ability of SP in induction of basophil degranulation and accumulation indicate strongly that SP is most likely a potent proinflammatory mediator, which contributes greatly to the pathogenesis of CSU through basophils. Inhibitors of SP and blockers of NK1R are likely useful agents for treatment of CSU.
Liu, Chi-Ming; Tung, Tao-Hsin; Liu, Jorn-Hon; Chen, Victor Tze-Kai; Lin, Ching-Heng; Hsu, Chung-Te; Chou, Pesus
2005-01-01
AIM: To explore any gender-related differences in prevalence of and condition-associated factors related to an elevated serum alanine aminotransferase (ALT) level amongst residents of Kinmen, Taiwan. METHODS: A total of 11 898 of a potential 20 112 regional residents aged 30 years or more completed a related questionnaire that was carried out by the Yang-Ming Crusade between 1991 and 1994 inclusively, with blood samples being collected by public nurses. The overall questionnaire response rate was 59.3% (52.4% for males and 66.0% for females). RESULTS: The prevalence of an elevated serum ALT level for this sub-population was found to be 7.2%, the prevalence revealing a statistically significant decrease with increasing population age (P<0.0001). Males exhibited a greater prevalence of elevated serum ALT level than did females (9.4% vs 5.3%, P<0.0001). Using multiple logistic regression analysis, in addition to male gender, a younger age, greater waist circumference, presence of type-2 diabetes and hyperuricemia were the significant factors associated with an elevated serum ALT level for both males and females. Gender-related differences as regards associated factors were also revealed. For males, obesity was significantly related to an elevated serum ALT level (OR = 1.28, 95%CI: 1.00-1.66) but this was not so for females (OR = 1.09, 95%CI: 0.84-1.42). Hypertriglyceridemia (OR = 1.80, 95%CI: 1.36-2.39) and hyperuricemia (OR = 1.61, 95%CI: 1.03-2.52) were significantly related to elevated serum ALT levels only for females. CONCLUSION: Several gender-related differences were noted pertaining to the prevalence of and relationship between obesity, hypertriglyceridemia and hyperuricemia and elevated serum ALT level in the present study. PMID:15786537
Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia
Rogers, K.; Saintilan, N.; Cahoon, D.
2005-01-01
Following the dieback of an interior portion of a mangrove forest at Homebush Bay, Australia, surface elevation tables and feldspar marker horizons were installed in the impacted, intermediate and control forest to measure vertical accretion, elevation change, and shallow subsidence. The objectives of the study were to determine current vertical accretion and elevation change rates as a guide to understanding mangrove dieback, ascertain the factors controlling surface elevation change, and investigate the sustainability of the mangrove forest under estimated sea-level rise conditions. The study demonstrates that the influences on surface dynamics are more complex than soil accretion and soil autocompaction alone. During strong vegetative regrowth in the impacted forest, surface elevation increase exceeded vertical accretion apparently as a result of belowground biomass production. In addition, surface elevation in all forest zones was correlated with total monthly rainfall during a severe El Ni?o event, highlighting the importance of rainfall to groundwater recharge and surface elevation. Surface elevation increase for all zones exceeded the 85-year sea level trend for Sydney Harbour. Since mean sea-level also decreased during the El Ni?o event, the decrease in surface elevation did not translate to an increase in inundation frequency or influence the sustainability of the mangrove forest. These findings indicate that subsurface soil processes such as organic matter accumulation and groundwater flux can significantly influence mangrove surface elevation, and contribute to the long-term sustainability of mangrove systems under a scenario of rising sea levels.
1966-01-01
Geodetic leveling by the U.S. Geological Survey provides a framework of accurate elevations for topographic mapping. Elevations are referred to the Sea Level Datum of 1929. Lines of leveling may be run either with automatic or with precise spirit levels, by either the center-wire or the three-wire method. For future use, the surveys are monumented with bench marks, using standard metal tablets or other marking devices. The elevations are adjusted by least squares or other suitable method and are published in lists of control.
Engaging in Dramatic Activities in English as a Foreign Language Classes at the University Level
ERIC Educational Resources Information Center
Algarra Carrasco, Victoria
2012-01-01
In this article, we discuss how, through dramatic activities, fiction and reality can work together to help the English as a Foreign language learner communicate in a more personal and meaningful way. The kind of activities proposed are designed to help engender a space where students can personally engage with each other in an atmosphere that is…
ERIC Educational Resources Information Center
School Library Media Activities Monthly, 2003
2003-01-01
Provides five fully developed library media activities that are designed for use with specific curriculum units in dramatics, reading, language arts, science, and social studies. Library media skills, curriculum objectives, grade levels, resources, instructional roles, activities and procedures, evaluation, and follow-up are describes for each…
Bladen, Catherine L; Kozlowski, David J; Dynan, William S
2012-11-01
Prior work has established the zebrafish embryo as an in vivo model for studying the biological effects of exposure to low doses of ionizing radiation. One of the known effects of radiation is to elevate the levels of reactive oxygen species (ROS) in tissue. However, ROS are also produced as by-products of normal metabolism and, regardless of origin, ROS produce similar chemical damage to DNA. Here we use the zebrafish embryo model to investigate whether the effects of low-dose (0-1.5 Gy) radiation and endogenous ROS are mechanistically distinct. We increased levels of endogenous ROS by exposure to low concentrations of the quinone drug, menadione. Imaging studies in live embryos showed that exposure to 3 μM or higher concentrations of menadione dramatically increased ROS levels. This treatment was associated with a growth delay and morphologic abnormalities, which were partially or fully reversible. By contrast, exposure to low doses of ionizing radiation had no discernable effects on overall growth or morphology, although, there was an increase in TUNEL-positive apoptotic cells, consistent with the results of prior studies. Further studies showed that the combined effect of radiation and menadione exposure are greater than with either agent alone, and that attenuation of the expression of Ku80, a gene important for repair of radiation-induced DNA damage, had only a slight effect on menadione sensitivity. Together, results suggest that ionizing radiation and menadione affect the embryo by distinct mechanisms.
Waly, Mostafa I; Ali, Amanat; Al-Nassri, Amira; Al-Mukhaini, Mohamed; Valliatte, John; Al-Farsi, Yahya
2016-01-01
We are currently witnessing a dramatic change in lifestyle and food choices that is accompanied with an increase in the rate of morbidity and mortality from cardiovascular diseases (CVD). Although studies have reported an association of CVD with hyperhomocysteinemia-mediated oxidative stress, the biochemical basis is not known. This case-control study was aimed to evaluate the nutritional and biochemical status of B-vitamins in relation to hyperhomocysteinemia and oxidative stress in newly diagnosed cardiac patients. The retrospective dietary intake of the study subjects (cases and controls) was estimated using a semi-quantitative food frequency questionnaire, and fasting blood samples were drawn to assess their serum levels of B-vitamins (folate, vitamins B6 and B12), homocysteine (HCY), and oxidative stress indices such as glutathione (GSH), total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrites and nitrates (NN). It was observed that the cases had a lower dietary intake of B-vitamins as compared to their matched control subjects as well as to the corresponding recommended dietary allowances. Biochemical analysis of cases, as compared to controls, indicated depletion of GSH, impairment of TAC, and an elevation in the serum levels of HCY, MDA, and NN. These results suggest that lower status (dietary intake and serum levels) of B-vitamins is involved in the etiology of hyperhomocysteinemia and oxidative stress, the typical risk factors for CVD. © 2016 by the Society for Experimental Biology and Medicine.
Pucci, Bruna; Adams, Christopher S; Fertala, Jolanta; Snyder, Bradley C; Mansfield, Kyle D; Tafani, Marco; Freeman, Theresa; Shapiro, Irving M
2007-03-01
The maturation of epiphyseal chondrocytes is accompanied by dramatic changes in energy metabolism and shifts in proteins concerned with the induction of apoptosis. We evaluated the role of mitochondria in this process by evaluating the membrane potential (Delta psi m) of chondrocytes of embryonic tibia and the epiphyseal growth plate. We observed that there was a maturation-dependent change in fluorescence, indicating a fall in the Delta psi m. The level of mitochondrial Bcl-2 was decreased during maturation, while in the same time period there was an obvious increase in Bax levels in the mitochondrial fraction of the terminally differentiated chondrocytes. Bcl(xL), another anti-apoptotic protein, was also robustly expressed in the mitochondrial fraction, but its expression was not dependent on the maturation status of the chondrocytes. We found that caspase-3 was present throughout the growth plate and in hypertrophic cells in culture. We blocked caspase-3 activity and found that alkaline phosphatase staining and mineral formation was decreased, and the cells had lost their characteristic shape. Moreover, we noted that the undifferentiated cells were insensitive to elevated concentrations of inorganic phosphate (Pi). It is concluded that during hypertrophy, the change in membrane potential, the increased binding of a pro-apoptotic protein to mitochondria, and the activation of caspase-3 serve to prime cells for apoptosis. Only when the terminally differentiated chondrocytes are challenged with low levels of apoptogens there is activation of apoptosis. Copyright 2006 Wiley-Liss, Inc.
Tchantchou, Flaubert
2013-01-01
Abstract 2-arachidonylglycerol (2-AG) is the most abundant endocannabinoid in the central nervous system and is elevated after brain injury. Because of its rapid hydrolysis, however, the compensatory and neuroprotective effect of 2-AG is short-lived. Although inhibition of monoacylglycerol lipase, a principal enzyme for 2-AG degradation, causes a robust increase of brain levels of 2-AG, it also leads to cannabinoid receptor desensitization and behavioral tolerance. Alpha/beta hydrolase domain 6 (ABHD6) is a novel 2-AG hydrolytic enzyme that accounts for a small portion of 2-AG hydrolysis, but its inhibition is believed to elevate the levels of 2-AG within the therapeutic window without causing side effect. Using a mouse model of traumatic brain injury (TBI), we found that post-insult chronic treatment with a selective ABHD6 inhibitor WWL70 improved motor coordination and working memory performance. WWL70 treatment reduced lesion volume in the cortex and neurodegeneration in the dendate gyrus. It also suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 in the ipsilateral cortex at 3 and 7 days post-TBI, suggesting microglia/macrophages shifted from M1 to M2 phenotypes after treatment. The blood-brain barrier dysfunction at 3 and 7 days post-TBI was dramatically reduced. Furthermore, the beneficial effects of WWL70 involved up-regulation and activation of cannabinoid type 1 and type 2 receptors and were attributable to the phosphorylation of the extracellular signal regulated kinase and the serine/threonine protein kinase AKT. This study indicates that the fine-tuning of 2-AG signaling by modulating ABHD6 activity can exert anti-inflammatory and neuroprotective effects in TBI. PMID:23151067
Myxedema coma in a patient with subclinical hypothyroidism.
Mallipedhi, Akhila; Vali, Hamza; Okosieme, Onyebuchi
2011-01-01
Myxedema coma is the extreme manifestation of hypothyroidism, typically seen in patients with severe biochemical hypothyroidism. Its occurrence in association with subclinical hypothyroidism is extremely unusual. We describe a patient with subclinical hypothyroidism who developed clinical manifestations of myxedema coma. A 47-year-old woman presented to our endocrine clinic with complaints of fatigue and biochemical findings of subclinical hypothyroidism. She was started on treatment with thyroxine (T4) but remained unwell and was later admitted to hospital with hormone profile showing persisting subclinical hypothyroidism (elevated thyrotropin and normal free T4 [FT4] and free triiodothyronine [FT3]): FT4 10.7 pmol/L (reference range 10.3-24.5), FT3 2.7 pmol/L (reference range 2.67-7.03), and thyrotropin 6.09 mU/L (reference range 0.4-4.0). She subsequently developed hypothermia (temperature 33.2°C), circulatory collapse, and coma. Biochemical profile showed hyponatremia, elevated creatinine phosphokinase, metabolic acidosis, and renal failure. An echocardiogram revealed a moderate-sized pericardial effusion. We diagnosed myxedema coma and started treatment with intravenous T3. She responded dramatically with improvement in level of consciousness and normalization of metabolic parameters. We found no explanation other than hypothyroidism to account for the presentation. Adrenocorticotrophic hormone (ACTH) stimulation tests excluded adrenal insufficiency, and serum gonadotrophins were within the normal reference range. FT4 estimation by equilibrium dialysis excluded analytical interference, and molecular analysis for the thyroid hormone receptor β gene associated with thyroid hormone resistance was negative. To the best of our knowledge this is the first report of myxedema coma in a patient with subclinical hypothyroidism. The reason for normal thyroid hormone levels is unclear but may reflect deviation from a higher pre-morbid set-point. The case highlights the importance of careful clinical evaluation in patients with disparate clinical and laboratory findings.
Challenges in Unmanned Aerial Vehicle Photogrammetry for Archaeological Mapping at High Elevations
NASA Astrophysics Data System (ADS)
Adams, J. A.; Wernke, S.
2015-12-01
Unmanned Aerial Vehicles (UAVs), especially multi-rotor vehicles, are becoming ubiquitous and their appeal for generating photogrammetry-based maps has grown. The options are many and costs have plummeted in last five years; however, many challenges persist with their deployment. We mapped the archaeological site Mawchu Llacta, a settlement in the southern highlands of Peru (Figure 1). Mawchu Llacta is a planned colonial town built over a major Inka-era center in the high-elevation grasslands at ~4,000m asl. The "general resettlement of Indians" was a massive forced resettlement program, for which very little local-level documentation exists. Mawachu Llacta's excellently preserved architecture includes >500 buildings and hundreds of walls spread across ~13h posed significant mapping challenges. Many environmental factors impact UAV deployment. The air pressure at 4,100 m asl is dramatically lower than at sea level. The dry season diurnal temperature differentials can vary from 7°C to 22°C daily. High and hot conditions frequently occur from late morning to early afternoon. Reaching Mawchu Llacta requires hiking 4km with 400m of vertical gain over steep and rocky terrain. There is also no on-site power or secure storage. Thus, the UAV must be packable. FAA regulations govern US UAV deployments, but regulations were less stringent in Peru. However, ITAR exemptions and Peruvian customs requirements were required. The Peruvian government has established an importation and approval process that entails leaving the UAV at customs, while obtaining the necessary government approvals, both of which can be problematic. We have deployed the Aurora Flight Sciences Skate fixed wing ßUAV, an in-house fixed wing UAV based on the Skywalker X-5 flying wing, and a tethered 9 m3 capacity latex meteorological weather balloon. Development of an autonomous blimp/balloon has been ruled-out. A 3DR Solo is being assessed for excavation mapping.
Landis, Matthew S; Kamal, Ali S; Kovalcik, Kasey D; Croghan, Carry; Norris, Gary A; Bergdale, Amy
2016-01-15
In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters limited the interpretation of historical trends. Published by Elsevier B.V.
Zheng, HuaDong; Cui, DaJiang; Quan, XiaoJuan; Yang, WeiLin; Li, YingNa; Zhang, Lin; Liu, EnQi
2016-09-02
Atherosclerosis is a disease of the large- and medium-size arteries that is characterized by the formation of atherosclerotic plaques, in which foam cells are the characteristic pathological cells. However, the key underlying pathomechanisms are still not fully elucidated. In this study, we investigated the role of lipoprotein-associated phospholipase A2 (Lp-PLA2) in ox-LDL-induced oxidative stress and cell apoptosis, and further, elucidated the potential machanisms in human THP1 macrophages. Flow cytometry and western blot analyses showed that both cell apoptosis and Lp-PLA2 expression were dose-dependently elevated after ox-LDL treatment for 24 h and also time-dependently increased after 50 mg/L ox-LDL incubation in THP1 macrophages. In addition, Lp-PLA2 silencing decreased ox-LDL-induced Lp-PLA2 and CD36 expression in THP1 macrophages. We also found that the levels of oil red O-staining, triglyceride (TG) and total cholesterol (TC) were significantly upregulated in ox-LDL-treated THP1 cells, but inhibited by Lp-PLA2 silencing. Furthermore, ox-LDL treatment resulted in significant increases of ROS and MDA but a marked decrease of SOD, effects that were reversed by Lp-PLA2 silencing in THP1 cells. Lp-PLA2 silencing reduced ox-LDL-induced cell apoptosis and caspase-3 expression in THP1 cells. Moreover, Lp-PLA2 siRNA transfection dramatically lowered the elevated levels of p-Akt and p-mTOR proteins in ox-LDL-treated THP1 cells. Both PI3K inhibitor LY294002 and mTOR inhibitor rapamycin decreased the augmented caspase-3 expression and TC content induced by ox-LDL, respectively. Taken together, these results revealed that Lp-PLA2 silencing protected against ox-LDL-induced oxidative stress and cell apoptosis via Akt/mTOR signaling pathway in human THP1 macrophages. Copyright © 2016 Elsevier Inc. All rights reserved.
Factors Associated With Elevated Blood Lead Levels in Children.
Chaudhary, Sakshi; Firdaus, Uzma; Ali, Syed Manazir; Mahdi, Abbas Ali
2018-01-15
To determine the prevalence and correlates of elevated blood lead level in children (6-144 months) of Aligarh. A hospital-based cross-sectional study was conducted. Venous blood was obtained for lead estimation and a structured questionnaire was filled. A total of 260 children were enrolled. The prevalence of elevated blood lead level was 44.2%, seen mostly in children below 5 years of age. Old and deteriorating wall paints at home was found to be significantly associated with elevated levels. Lead-based house paints are potential source of lead exposure. Meticulous renovation and painting of the walls with safe paints is desirable.
Feng, Youzhi; Lin, Xiangui; Yu, Yongchang; Zhu, Jianguo
2011-11-01
The knowledge of the impact of elevated ground-level O(3) below ground the agro-ecosystem is limited. A field experiment in China Ozone Free-Air Concentration Enrichment (FACE-O(3)) facility on a rice-wheat rotation system was carried out to investigate responses of anoxygenic phototrophic purple bacteria (AnPPB) to elevated ground-level O(3). AnPPB community structures and sizes in paddy soil were monitored by molecular approaches including PCR-DGGE and real-time quantitative PCR based upon the pufM gene on three typical rice growth stages. Repetitive sequence-based PCR (rep-PCR) in combination with culture-reliant method was conducted to reveal changes in genotypic diversity. Elevated ground-level O(3) statistically reduce AnPPB abundance and percentage in total bacterial community in flooded rice soil via decreasing their genotypic diversity and metabolic versatility. Concomitantly, their community composition changed after rice anthesis stage under elevated ground-level O(3). Our results from AnPPB potential responses imply that continuously elevated ground-level O(3) in the future would eventually harm the health of paddy ecosystem through negative effect on soil microorganisms.
Inside the covered hopper car loading dock at railroad level, ...
Inside the covered hopper car loading dock at railroad level, looking east from the 1945 elevator into the 1913 elevator, control for the railroad car puller in background - Stewart Company Grain Elevator, 16 West Carson Street, Pittsburgh, Allegheny County, PA
Serum amyloid A induction of cytokines in monocytes/macrophages and lymphocytes.
Song, Changjie; Hsu, Kenneth; Yamen, Eric; Yan, Weixing; Fock, Jianyi; Witting, Paul K; Geczy, Carolyn L; Freedman, S Ben
2009-12-01
Serum amyloid A (SAA) is a biomarker of inflammation. Elevated blood levels in cardiovascular disease and local deposition in atheroma implies a role of SAA as a mediator rather than just a marker of inflammation. This study explored SAA-induced cytokine production and secretion by mononuclear cells. RT-PCR showed that SAA time-dependently induced cytokine mRNAs in peripheral blood mononuclear cells (PBMC) and THP-1 monocytoid cells, and dramatically increased IL-1beta, MCP-1, IL-6, IL-8, IL-10, GM-CSF, TNF, and MIP-1alpha secretion by PBMC to levels 28 to 25,000 fold above baseline, as measured with Bio-Plex kits; monocytes were the principle source. SAA induction of cytokines in monocyte-derived macrophages (MDM) was significantly higher than from monocytes from the same donors. SAA time-dependently induced transient and significant upregulation of NF-kappaB1 mRNA; inhibitor studies indicate that activation of NF-kappaB through the ERK1/2, p38 and JNK MAPKs and the PI3K pathway was involved. PBMC from 10 patients with coronary artery disease (CAD) spontaneously secreted higher levels of IL-6 and MIP-1alpha after 24h incubation than PBMC from normal controls, whereas SAA-induced levels of all cytokines were similar to controls. Aortic and coronary sinus sampling in 23 CAD patients indicated significant SAA release into the coronary circulation, not evident in 11 controls. SAA can increase monocyte and macrophage cytokine production, possibly at sites of atherosclerosis, thereby contributing to the pro-inflammatory state in coronary artery disease.
NASA Astrophysics Data System (ADS)
He, Keyang; Lu, Houyuan; Zheng, Yunfei; Zhang, Jianping; Xu, Deke; Huan, Xiujia; Wang, Jiehua; Lei, Shao
2018-05-01
The eastern coastal zone of China is densely populated and widely recognized as a center of rice domestication, which has undergone dramatic sea-level fluctuation during the Holocene epoch. Hemudu culture is distributed mainly in the eastern coastal area and was once presumed as a mature agricultural economy based on rice, making it an ideal case for examining the remarkable human-environment interaction in the Lower Yangtze River. Though numerous studies have been conducted on the cultural evolution, ecological environment, and rice domestication of Hemudu culture, the impact of sea-level fluctuation on human settlement and food production remains controversial. In this study, we report high-resolution pollen, phytolith, and diatom records, and accurately measured elevation from the Yushan site, which is the closest site of Hemudu culture to the modern coastline. Based on the data gathered, we suggest that the Hemudu culture and subsequent Liangzhu culture developed in the context of regression and were interrupted by two transgressions that occurred during 6300-5600 BP and 5000-4500 BP. The regional ecological environment of the Yushan site alternated between intertidal mudflat and freshwater wetlands induced by sea-level fluctuations in the mid-late Holocene. Though rice was cultivated in the wetland as early as 6700 BP, this cultivation was subsequently discontinued due to the transgression; thus, full domestication of rice did not occur until 5600 BP in this region. Comprehensive analysis of multiple proxies in this study promote the understanding of the relationship between environmental evolution, cultural interruption, and rice domestication.
Magnesium reduces calcification in bovine vascular smooth muscle cells in a dose-dependent manner
Peter, Mirjam E.; Sevinc Ok, Ebru; Celenk, Fatma Gul; Yilmaz, Mumtaz; Steppan, Sonja; Asci, Gulay; Ok, Ercan; Passlick-Deetjen, Jutta
2012-01-01
Background. Vascular calcification (VC), mainly due to elevated phosphate levels, is one major problem in patients suffering from chronic kidney disease. In clinical studies, an inverse relationship between serum magnesium and VC has been reported. However, there is only few information about the influence of magnesium on calcification on a cellular level available. Therefore, we investigated the effect of magnesium on calcification induced by β-glycerophosphate (BGP) in bovine vascular smooth muscle cells (BVSMCs). Methods. BVSMCs were incubated with calcification media for 14 days while simultaneously increasing the magnesium concentration. Calcium deposition, transdifferentiation of cells and apoptosis were measured applying quantification of calcium, von Kossa and Alizarin red staining, real-time reverse transcription–polymerase chain reaction and annexin V staining, respectively. Results. Calcium deposition in the cells dramatically increased with addition of BGP and could be mostly prevented by co-incubation with magnesium. Higher magnesium levels led to inhibition of BGP-induced alkaline phosphatase activity as well as to a decreased expression of genes associated with the process of transdifferentiation of BVSMCs into osteoblast-like cells. Furthermore, estimated calcium entry into the cells decreased with increasing magnesium concentrations in the media. In addition, higher magnesium concentrations prevented cell damage (apoptosis) induced by BGP as well as progression of already established calcification. Conclusions. Higher magnesium levels prevented BVSMC calcification, inhibited expression of osteogenic proteins, apoptosis and further progression of already established calcification. Thus, magnesium is influencing molecular processes associated with VC and may have the potential to play a role for VC also in clinical situations. PMID:21750166
Grommen, Sylvia V H; Arckens, Lutgarde; Theuwissen, Tim; Darras, Veerle M; De Groef, Bert
2008-03-01
In this study, we tried to elucidate the changes in thyroid hormone (TH) receptor beta2 (TRbeta2) expression at the different levels of the hypothalamo-pituitary-thyroidal (HPT) axis during the last week of chicken embryonic development and hatching, a period characterized by an augmented activity of the HPT axis. We quantified TRbeta2 mRNA in retina, pineal gland, and the major control levels of the HPT axis - brain, pituitary, and thyroid gland - at day 18 of incubation, and found the most abundant mRNA content in retina and pituitary. Thyroidal TRbeta2 mRNA content increased dramatically between embryonic day 14 and 1 day post-hatch. In pituitary and hypothalamus, TRbeta2 mRNA expression rose gradually, in parallel with increases in plasma thyroxine concentrations. Using in situ hybridization, we have demonstrated the presence of TRbeta2 mRNA throughout the diencephalon and confirmed the elevation in TRbeta2 mRNA expression in the hypophyseal thyrotropes. In vitro incubation with THs caused a down-regulation of TRbeta2 mRNA levels in embryonic but not in post-hatch pituitaries. The observed expression patterns in pituitary and diencephalon may point to substantial changes in TRbeta2-mediated TH feedback active during the perinatal period. The strong rise in thyroidal TRbeta2 mRNA content could be indicative of an augmented modulation of thyroid development and/or function by THs toward and after hatching. Finally, THs proved to exert an age-dependent effect on pituitary TRbeta2 mRNA expression.
Light Levels, Refractive Development, and Myopia – a Speculative Review
Norton, Thomas T.; Siegwart, John T.
2013-01-01
Recent epidemiological evidence in children indicates that time spent outdoors is protective against myopia. Studies in animal models (chick, macaque, tree shrew) have found that light levels (similar to being in the shade outdoors) that are mildly elevated compared to indoor levels, slow form-deprivation myopia and (in chick and tree shrew) lens-induced myopia. Normal chicks raised in low light levels (50 lux) with a circadian light on/off cycle often develop spontaneous myopia. We propose a model in which the ambient illuminance levels produce a continuum of effects on normal refractive development and the response to myopiagenic stimuli such that low light levels favor myopia development and elevated levels are protective. Among possible mechanisms, elevation of retinal dopamine activity seems the most likely. Inputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs) at elevated light levels may be involved, providing additional activation of retinal dopaminergic pathways. PMID:23680160
Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.
Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with,more » or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury compared to rodents. • Primary human hepatocytes largely undergo necrosis in response to BA toxicity. • Cholestatic liver injury in vivo is predominantly necrotic with minor apoptosis. • Rodent models of bile acid toxicity may not recapitulate the injury in man.« less
Stein, D T; Stevenson, B E; Chester, M W; Basit, M; Daniels, M B; Turley, S D; McGarry, J D
1997-01-01
Lowering of the elevated plasma FFA concentration in 18- 24-h fasted rats with nicotinic acid (NA) caused complete ablation of subsequent glucose-stimulated insulin secretion (GSIS). Although the effect of NA was reversed when the fasting level of total FFA was maintained by coinfusion of soybean oil or lard oil (plus heparin), the more saturated animal fat proved to be far more potent in enhancing GSIS. We therefore examined the influence of individual fatty acids on insulin secretion in the perfused rat pancreas. When present in the perfusion fluid at 0.5 mM (in the context of 1% albumin), the fold stimulation of insulin release from the fasted pancreas in response to 12.5 mM glucose was as follows: octanoate (C8:0), 3.4; linoleate (C18:2 cis/cis), 5.3; oleate (C18:1 cis), 9.4; palmitate (C16:0), 16. 2; and stearate (C18:0), 21.0. The equivalent value for palmitoleate (C16:1 cis) was 3.1. A cis--> trans switch of the double bond in the C16:1 and C18:1 fatty acids had only a modest, if any, impact on their potency. A similar profile emerged with regard to basal insulin secretion (3 mM glucose). When a subset of these fatty acids was tested in pancreases from fed animals, the same rank order of effectiveness at both basal and stimulatory levels of glucose was seen. The findings reaffirm the essentiality of an elevated plasma FFA concentration for GSIS in the fasted rat. They also show, however, that the insulinotropic effect of individual fatty acids spans a remarkably broad range, increasing and decreasing dramatically with chain length and degree of unsaturation, respectively. Thus, for any given level of glucose, insulin secretion will be influenced greatly not only by the combined concentration of all circulating (unbound) FFA, but also by the makeup of this FFA pool. Both factors will likely be important considerations in understanding the complex interplay between the nature of dietary fat and whole body insulin, glucose, and lipid dynamics. PMID:9218517
4th level of 1913 elevator indicating sacking scale, part of ...
4th level of 1913 elevator indicating sacking scale, part of the bagging system and nate to the sewing machine. Discharge spout for the grain bin to the left - Stewart Company Grain Elevator, 16 West Carson Street, Pittsburgh, Allegheny County, PA
7. ENTRANCE VIEW OF ELEVATOR SHAFT AT GROUND LEVEL. VIEW ...
7. ENTRANCE VIEW OF ELEVATOR SHAFT AT GROUND LEVEL. VIEW SHOWS VERTICAL LADDER AND CAGE ALONG ELEVATOR SHAFT. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI
Chen, Yimin; Zhao, Ying; Feng, Linmin; Zhang, Jie; Zhang, Juanwen; Feng, Guofang
2016-04-27
Metabolic syndrome is closely associated with an increased risk for fatty liver disease morbidity and mortality. Recently, studies have reported that participants with fatty liver disease have higher serum alpha-fetoprotein levels than those without. We investigated the association between alpha-fetoprotein levels and the prevalence of metabolic syndrome in a Chinese asymptomatic population. A cross-sectional study was performed with 7,755 participants who underwent individual health examinations. Clinical and anthropometric parameters were collected and serum alpha-fetoprotein levels and other clinical and laboratory parameters were measured. Logistic regression analysis was used to examine associations between alpha-fetoprotein and metabolic syndrome. Participants with metabolic syndrome had significantly higher (p < 0.001) alpha-fetoprotein levels than those without, though all alpha-fetoprotein levels were within the reference interval. The association between the components of metabolic syndrome (central obesity, elevated blood pressure, elevated triglycerides, reduced high-density lipoprotein cholesterol, and elevated fasting plasma glucose) and alpha-fetoprotein levels was evaluated. Alpha-fetoprotein levels in the elevated triglycerides, reduced high-density lipoprotein cholesterol, and elevated fasting plasma glucose groups were significantly different (p=0.002, p < 0.001, p=0.020) compared with alpha-fetoprotein in the normal triglycerides, high-density lipoprotein cholesterol, and fasting plasma glucose groups. Logistic regression analyses showed an association between alpha-fetoprotein levels and increased risk for metabolic syndrome, the presence of reduced high-density lipoprotein cholesterol, and elevated fasting plasma glucose, but not with obesity, elevated blood pressure, or triglycerides. These results suggest a significant association between alpha-fetoprotein and metabolic syndrome.
Estimating relative sea-level rise and submergence potential at a coastal wetland
Cahoon, Donald R.
2015-01-01
A tide gauge records a combined signal of the vertical change (positive or negative) in the level of both the sea and the land to which the gauge is affixed; or relative sea-level change, which is typically referred to as relative sea-level rise (RSLR). Complicating this situation, coastal wetlands exhibit dynamic surface elevation change (both positive and negative), as revealed by surface elevation table (SET) measurements, that is not recorded at tide gauges. Because the usefulness of RSLR is in the ability to tie the change in sea level to the local topography, it is important that RSLR be calculated at a wetland that reflects these local dynamic surface elevation changes in order to better estimate wetland submergence potential. A rationale is described for calculating wetland RSLR (RSLRwet) by subtracting the SET wetland elevation change from the tide gauge RSLR. The calculation is possible because the SET and tide gauge independently measure vertical land motion in different portions of the substrate. For 89 wetlands where RSLRwet was evaluated, wetland elevation change differed significantly from zero for 80 % of them, indicating that RSLRwet at these wetlands differed from the local tide gauge RSLR. When compared to tide gauge RSLR, about 39 % of wetlands experienced an elevation rate surplus and 58 % an elevation rate deficit (i.e., sea level becoming lower and higher, respectively, relative to the wetland surface). These proportions were consistent across saltmarsh, mangrove, and freshwater wetland types. Comparison of wetland elevation change and RSLR is confounded by high levels of temporal and spatial variability, and would be improved by co-locating tide gauge and SET stations near each other and obtaining long-term records for both.
Prevalence of hepatitis A viral RNA and antibodies among Chinese blood donors.
Sun, P; Su, N; Lin, F Z; Ma, L; Wang, H J; Rong, X; Dai, Y D; Li, J; Jian, Z W; Tang, L H; Xiao, W; Li, C Q
2015-12-09
Like other developing countries, China was reported to have a relatively high seroprevalence of anti-hepatitis A antibodies (anti-HAV). However, no studies have evaluated the prevalence of anti-HAV and HAV RNA among voluntary blood donors with or without elevated serum alanine transaminase (ALT) levels. Anti-HAV antibodies were detected using an enzyme-linked immunosorbent assay, and reverse transcription quantitative polymerase chain reaction was carried out for detection of HAV RNA. In the current study, we analyzed a total of 450 serum samples with elevated ALT levels (≥40 U/L) and 278 serum samples with non-elevated ALT levels. Seroprevalence rates of anti-HAV were 51.6% in donors with elevated ALT and 41.4% in donors with non-elevated ALT; however, none of the samples was positive for HAV RNA. The results of our study showed lower seroprevalence rates of anti-HAV in blood donors (irrespective of ALT levels) than those in published data on Chinese populations. Although donors with elevated ALT had statistically higher prevalence rates of anti- HAV than did those with non-elevated ALT, none of the serum samples had detectable levels of the active virus. In conclusion, our results demonstrate that the transmission of hepatitis A by blood transfusion will occur rarely.
Escallón, Camilo; Weinstein, Nicole M; Tallant, James A; Wojtenek, Winfried; Rodríguez-Saltos, Carlos A; Bonaccorso, Elisa; Moore, Ignacio T
2016-10-01
Elevation has been proposed as a dominant ecological variable shaping life history traits and subsequently their underlying hormonal mechanisms. In an earlier meta-analysis of tropical birds, elevation was positively related to testosterone levels. Furthermore, parasitism by avian haemosporidians should vary with elevation as environmental conditions affect vector abundance, and while testosterone is needed for breeding, it is hypothesized to be immunosuppressive and thus could exacerbate haemosporidian infection. Our objective in this study was to examine the relationships between elevation, testosterone levels, and parasitism by avian haemosporidians. We surveyed breeding male rufous-collared sparrows (Zonotrichia capensis) across a wide elevational range along the equator. We measured baseline testosterone levels, haemosporidian infection at four elevations spanning the species' natural range in the Ecuadorian Andes (600, 1500, 2100, 3300 m). Testosterone levels from breeding males were not related to elevation, but there was high intrapopulation variability. Testosterone levels were not related to the probability of parasitism, but our results from one population suggested that the likelihood of being infected by haemosporidian parasites was greater when in breeding condition. In conclusion, even though there is variation in life history strategies among the studied populations, wider divergence in seasonality and life history traits would probably be needed to detect an effect of elevation on testosterone if one exists. Additionally, our results show that variation in testosterone is not related to infection risk of haemosporidians, thus other factors that take a toll on energetic resources, such as reproduction, should be looked at more closely. © 2016 Wiley Periodicals, Inc.
Han, S Y; Hwang, E A; Park, S B; Kim, H C; Kim, H T
2012-04-01
Hypophosphatemia is a common complication after renal transplantation. Hyperparathyroidism has long been thought to be the cause, but hypophosphatemia can persist after high parathyroid hormone (PTH) levels normalize. Furthermore, calcitriol levels remain inappropriately low after transplantation, suggesting that mechanisms other than PTH contribute. Fibroblast growth factor 23 (FGF-23) induces phosphaturia, inhibits calcitriol synthesis, and accumulates in chronic kidney disease. We performed prospective study to investigate if FGF-23 early after renal transplantation contributes to hypophosphatemia. We measured FGF-23 levels before and at 1, 2, 4, and 12 weeks after transplantation in 20 renal transplant recipients. Serum creatinine, calcium (Ca), phosphate (Pi), intact PTH (PTH), and 1,25-dihydroxy vitamin D (1,25(OH)(2)VitD) were measured at the same time. FGF-23 levels decreased by 97% at 4 weeks after renal transplantation (PRT) (7,471 ± 11,746 vs 225 ± 295 pg/mL; P < .05) but were still above normal. PTH and Pi levels also decreased significantly after renal transplantation, and Ca and 1,25(OH)(2)VitD slightly increased. PRT hypophosphatemia of <2.5 mg/dL developed in 15 (75%) and 12 (60%) patients at 4 weeks and 12 weeks respectively. Compared with nonhypophosphatemic patients, the levels of FGF-23 of hypophosphatemic patients were higher (303 ± 311 vs 10 ± 6.9 pg/mL; P = .02) at 4 weeks PRT. FGF-23 levels were inversely correlated with Pi (r(2) = 0.406; P = .011); PTH was not independently associated with Pi (r(2) = 0.132; P = .151). FGF-23 levels decrease dramatically after renal transplantation. During the early PRT period, Pi rapidly decreased, suggesting that FGF-23 is cleared by the kidney, but residual FGF-23 may contribute to the PRT hypophosphatemia. FGF-23, but not PTH levels, was independently associated with PRT hypophosphatemia. Copyright © 2012 Elsevier Inc. All rights reserved.
75 FR 31342 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... referenced ground [caret] Communities affected elevation Elevation in meters (MSL) Effective Modified... Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the listed downstream and... ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the...
Dramatic increase in naïve T cell turnover is linked to loss of naïve T cells from old primates
Čičin-Šain, Luka; Messaoudi, Ilhem; Park, Byung; Currier, Noreen; Planer, Shannon; Fischer, Miranda; Tackitt, Shane; Nikolich-Žugich, Dragana; Legasse, Alfred; Axthelm, Michael K.; Picker, Louis J.; Mori, Motomi; Nikolich-Žugich, Janko
2007-01-01
The loss of naïve T cells is a hallmark of immune aging. Although thymic involution is a primary driver of this naïve T cell loss, less is known about the contribution of other mechanisms to the depletion of naïve T cells in aging primates. We examined the role of homeostatic cycling and proliferative expansion in different T cell subsets of aging rhesus macaques (RM). BrdU incorporation and the expression of the G1-M marker Ki-67 were elevated in peripheral naïve CD4 and even more markedly in the naïve CD8 T cells of old, but not young adult, RM. Proliferating naïve cells did not accumulate in old animals. Rather, the relative size of the naïve CD8 T cell compartment correlated inversely to its proliferation rate. Likewise, T cell receptor diversity decreased in individuals with elevated naïve CD8 T cell proliferation. This apparent contradiction was explained by a significant increase in turnover concomitant with the naïve pool loss. The turnover increased exponentially when the naïve CD8 T cell pool decreased below 4% of total blood CD8 cells. These results link the shrinking naïve T cell pool with a dramatic increase in homeostatic turnover, which has the potential to exacerbate the progressive exhaustion of the naïve pool and constrict the T cell repertoire. Thus, homeostatic T cell proliferation exhibits temporal antagonistic pleiotropy, being beneficial to T cell maintenance in adulthood but detrimental to the long-term T cell maintenance in aging individuals. PMID:18056811
Dramatic increase in naive T cell turnover is linked to loss of naive T cells from old primates.
Cicin-Sain, Luka; Messaoudi, Ilhem; Park, Byung; Currier, Noreen; Planer, Shannon; Fischer, Miranda; Tackitt, Shane; Nikolich-Zugich, Dragana; Legasse, Alfred; Axthelm, Michael K; Picker, Louis J; Mori, Motomi; Nikolich-Zugich, Janko
2007-12-11
The loss of naïve T cells is a hallmark of immune aging. Although thymic involution is a primary driver of this naïve T cell loss, less is known about the contribution of other mechanisms to the depletion of naïve T cells in aging primates. We examined the role of homeostatic cycling and proliferative expansion in different T cell subsets of aging rhesus macaques (RM). BrdU incorporation and the expression of the G(1)-M marker Ki-67 were elevated in peripheral naïve CD4 and even more markedly in the naïve CD8 T cells of old, but not young adult, RM. Proliferating naïve cells did not accumulate in old animals. Rather, the relative size of the naïve CD8 T cell compartment correlated inversely to its proliferation rate. Likewise, T cell receptor diversity decreased in individuals with elevated naïve CD8 T cell proliferation. This apparent contradiction was explained by a significant increase in turnover concomitant with the naïve pool loss. The turnover increased exponentially when the naïve CD8 T cell pool decreased below 4% of total blood CD8 cells. These results link the shrinking naïve T cell pool with a dramatic increase in homeostatic turnover, which has the potential to exacerbate the progressive exhaustion of the naïve pool and constrict the T cell repertoire. Thus, homeostatic T cell proliferation exhibits temporal antagonistic pleiotropy, being beneficial to T cell maintenance in adulthood but detrimental to the long-term T cell maintenance in aging individuals.
Mckee, Karen L.; Vervaeke, William
2018-01-01
To avoid submergence during sea-level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea-level rise may change. To compare how well mangroves and salt marshes accommodate sea-level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table-marker horizon system. Comparison of land movement with relative sea-level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub-root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small-scale disturbance of the plant canopy also had no effect on elevation trajectories—contrary to work in peat-forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion, subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea-level rise.
Cao, Jinling; Chen, Yan; Chen, Jianjie; Yan, Hanghang; Li, Meiyan; Wang, Jundong
2016-10-01
It is known that during spermatogenesis, pluripotent germ cells differentiate to become efficient delivery vehicles to the oocyte of paternal DNA, and the process is easily damaged by external poison. In this study, the effects of fluoride on the body weight, fluoride content in femur, testosterone levels in serum and testis, sperm quality, and the expressions of Y chromosome microdeletion genes and protein levels were examined in testes of Kunming male mice treated with different concentrations of 0, 25, 50, 100 mg/L of NaF in drinking water for 11 weeks, respectively. The results showed that compared with the control group, fluoride contents in three treatment groups were significantly increased and the structure of testes was seriously injured. The testosterone contents and the sperm count were decreased. Sperm malformation ratio was distinctly elevated. The expressions of Sly and HSF2 mRNA were markedly reduced in 100 mg/L NaF group and Ssty2 mRNA expression was dramatically decreased in 50 and 100 mg/L NaF groups. Meanwhile, the protein levels of Ssty2 and Sly were significantly reduced in 50 and 100 mg/L NaF groups and HSF2 protein levels were significantly decreased in 100 mg/L NaF group. These studies indicated that fluoride had toxic effects on male reproductive system by reducing the testosterone and sperm count, and increasing the sperm malformation ratio, supported by the damage of testicular structure, as a consequence of depressed HSF2 level, which resulted in the down-regulation of Ssty2 and Sly mRNA and protein. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact of menstrual cycle phase on endocrine effects of partial sleep restriction in healthy women.
LeRoux, Amanda; Wright, Lisa; Perrot, Tara; Rusak, Benjamin
2014-11-01
There is extensive evidence that sleep restriction alters endocrine function in healthy young men, increasing afternoon cortisol levels and modifying levels of other hormones that regulate metabolism. Recent studies have confirmed these effects in young women, but have not investigated whether menstrual cycle phase influences these responses. The effects on cortisol levels of limiting sleep to 3h for one night were assessed in two groups of women at different points in their menstrual cycles: mid-follicular and mid-luteal. Eighteen healthy, young women, not taking oral contraceptives (age: 21.8±0.53; BMI: 22.5±0.58 [mean±SEM]), were studied. Baseline sleep durations, eating habits and menstrual cycles were monitored. Salivary samples were collected at six times of day (08:00, 08:30, 11:00, 14:00, 17:00, 20:00) during two consecutive days: first after a 10h overnight sleep opportunity (Baseline) and then after a night with a 3h sleep opportunity (Post-sleep restriction). All were awakened at the same time of day. Women in the follicular phase showed a significant decrease (p=0.004) in their cortisol awakening responses (CAR) after sleep restriction and a sustained elevation in afternoon/evening cortisol levels (p=0.008), as has been reported for men. Women in the luteal phase showed neither a depressed CAR, nor an increase in afternoon/evening cortisol levels. Secondary analyses examined the impact of sleep restriction on self-reported hunger and mood. Menstrual cycle phase dramatically altered the cortisol responses of healthy, young women to a single night of sleep restriction, implicating effects of spontaneous changes in endocrine status on adrenal responses to sleep loss. Copyright © 2014 Elsevier Ltd. All rights reserved.
Patel, Chirag; Sugimoto, Keiichiro; Douard, Veronique; Shah, Ami; Inui, Hiroshi; Yamanouchi, Toshikazu
2015-01-01
Elevated blood fructose concentrations constitute the basis for organ dysfunction in fructose-induced metabolic syndrome. We hypothesized that diet-induced changes in blood fructose concentrations are regulated by ketohexokinase (KHK) and the fructose transporter GLUT5. Portal and systemic fructose concentrations determined by HPLC in wild-type mice fed for 7 days 0% free fructose were <0.07 mM, were independent of time after feeding, were similar to those of GLUT5−/−, and did not lead to hyperglycemia. Postprandial fructose levels, however, increased markedly in those fed isocaloric 20% fructose, causing significant hyperglycemia. Deletion of KHK prevented fructose-induced hyperglycemia, but caused dramatic hyperfructosemia (>1 mM) with reversed portal to systemic gradients. Systemic fructose in wild-type and KHK−/− mice changed by 0.34 and 1.8 mM, respectively, for every millimolar increase in portal fructose concentration. Systemic glucose varied strongly with systemic, but not portal, fructose levels in wild-type, and was independent of systemic and portal fructose in KHK−/−, mice. With ad libitum feeding for 12 wk, fructose-induced hyperglycemia in wild-type, but not hyperfructosemia in KHK−/− mice, increased HbA1c concentrations. Increasing dietary fructose to 40% intensified the hyperfructosemia of KHK−/− and the fructose-induced hyperglycemia of wild-type mice. Fructose perfusion or feeding in rats also caused duration- and dose-dependent hyperfructosemia and hyperglycemia. Significant levels of blood fructose are maintained independent of dietary fructose, KHK, and GLUT5, probably by endogenous synthesis of fructose. KHK prevents hyperfructosemia and fructose-induced hyperglycemia that would markedly increase HbA1c levels. These findings explain the hyperfructosemia of human hereditary fructosuria as well as the hyperglycemia of fructose-induced metabolic syndrome. PMID:26316589
Contrasting Decadal-Scale Changes in Elevation and ...
Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation tables (SETs) and surface elevation pins to measure changes in marsh surface elevation in two eastern Long Island Sound salt marshes, Barn Island and Mamacoke marshes. We compare marsh elevation change at these two systems with recent rates of RSLR and find evidence of differences between the two sites; Barn Island is maintaining its historic rate of elevation gain (2.3 ± 0.24 mm year−1 from 2003 to 2013) and is no longer keeping pace with RSLR, while Mamacoke shows evidence of a recent increase in rates (4.2 ± 0.52 mm year−1 from 1994 to 2014) to maintain its elevation relative to sea level. In addition to data on short-term elevation responses at these marshes, both sites have unusually long and detailed data on historic vegetation species composition extending back more than half a century. Over this study period, vegetation patterns track elevation change relative to sea levels, with the Barn Island plant community shifting towards those plants that are found at lower elevations and the Mamacoke vegetation patterns showing little change in plant composition. We hypothesize that the apparent contrasting trend in marsh elevation at the sites is due to differences in sediment a
75 FR 31368 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... referenced ground [caret] Communities affected elevation Elevation in meters (MSL) Effective Modified Santa.... Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be... Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter...
77 FR 21476 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Randolph County... Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter.... [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Beebe Maps are available for...
77 FR 7540 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Sebastian County... Level, rounded to the nearest 0.1 meter. ADDRESSES City of Fort Smith Maps are available for inspection.... [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Rolling Fork Maps are...
MONOTERPENE LEVELS IN NEEDLES OF DOUGLAS-FIR EXPOSED TO ELEVATED CO2 AND TEMPERATURE
Levels of monoterpenes in current year needles of douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were measured at the conclusion of four years of exposure to ambient or elevated CO2 (+ 179 mmol.mol-1), and ambient or elevated temperature (+ 3.5 C). Eleven monoterpen...
Circulatory nucleosome levels are significantly increased in early and late-onset preeclampsia.
Zhong, Xiao Yan; Gebhardt, Stefan; Hillermann, Renate; Tofa, Kashefa Carelse; Holzgreve, Wolfgang; Hahn, Sinuhe
2005-08-01
Elevations in circulatory DNA, as measured by real-time PCR, have been observed in pregnancies with manifest preeclampsia. Recent reports have indicated that circulatory nucleosome levels are elevated in the periphery of cancer patients. We have now examined whether circulatory nucleosome levels are similarly elevated in cases with preeclampsia. Maternal plasma samples were prepared from 17 cases with early onset preeclampsia (<34 weeks gestation) with 14 matched normotensive controls, as well as 15 cases late-onset preeclampsia (>34 weeks gestation) with 10 matched normotensive controls. Levels of circulatory nucleosomes were quantified by commercial ELISA (enzyme-linked immunosorbant assay). The level of circulatory nucleosomes was significantly elevated in both study preeclampsia groups, compared to the matched normotensive control group (p = 0.000 and p = 0.001, respectively). Our data suggests that preeclampsia is associated with the elevated presence of circulatory nucleosomes, and that this phenomenon occurs in both early- and late-onset forms of the disorder. Copyright 2005 John Wiley & Sons, Ltd.
Bee (Hymenoptera: Apoidea) Diversity and Sampling Methodology in a Midwestern USA Deciduous Forest.
McCravy, Kenneth W; Ruholl, Jared D
2017-08-04
Forests provide potentially important bee habitat, but little research has been done on forest bee diversity and the relative effectiveness of bee sampling methods in this environment. Bee diversity and sampling methodology were studied in an Illinois, USA upland oak-hickory forest using elevated and ground-level pan traps, malaise traps, and vane traps. 854 bees and 55 bee species were collected. Elevated pan traps collected the greatest number of bees (473), but ground-level pan traps collected greater species diversity (based on Simpson's diversity index) than did elevated pan traps. Elevated and ground-level pan traps collected the greatest bee species richness, with 43 and 39 species, respectively. An estimated sample size increase of over 18-fold would be required to approach minimum asymptotic richness using ground-level pan traps. Among pan trap colors/elevations, elevated yellow pan traps collected the greatest number of bees (266) but the lowest diversity. Malaise traps were relatively ineffective, collecting only 17 bees. Vane traps collected relatively low species richness (14 species), and Chao1 and abundance coverage estimators suggested that minimum asymptotic species richness was approached for that method. Bee species composition differed significantly between elevated pan traps, ground-level pan traps, and vane traps. Indicator species were significantly associated with each of these trap types, as well as with particular pan trap colors/elevations. These results indicate that Midwestern deciduous forests provide important bee habitat, and that the performance of common bee sampling methods varies substantially in this environment.
Matsuoka, Kazuhiko; Tsuji, Daisuke; Taki, Takao; Itoh, Kohji
2011-10-01
Sandhoff disease (SD) is a lysosomal disease caused by a mutation of the HEXB gene associated with excessive accumulation of GM2 ganglioside (GM2) in lysosomes and neurological manifestations. Production of autoantibodies against the accumulated gangliosides has been reported to be involved in the progressive pathogenesis of GM2 gangliosidosis, although the underlying mechanism has not been fully elucidated. The thymus is the key organ in the acquired immune system including the development of autoantibodies. We showed here that thymic involution and an increase in cell death in the organ occur in SD model mice at a late stage of the pathogenesis. Dramatic increases in the populations of Annexin-V(+) cells and terminal deoxynucletidyl transferase dUTP nick end labeling (TUNEL) (+) cells were observed throughout the thymuses of 15-week old SD mice. Enhanced caspase-3/7 activation, but not that of caspase-1/4, -6 ,-8, or -9, was also demonstrated. Furthermore, the serum level of corticosterone, a potent inducer of apoptosis of thymocytes, was elevated during the same period of apoptosis. Our studies suggested that an increase in endocrine corticosterone may be one of the causes that accelerate the apoptosis of thymocytes leading to thymic involution in GM2 gangliosidosis, and thus can be used as a disease marker for evaluation of the thymic condition and disease progression.
Pei, Luo; Shaozhen, Hou; Gengting, Dong; Tingbo, Chen; Liang, Liu; Hua, Zhou
2013-01-01
Mechanisms for Panax ginseng's cardioprotective effect against ischemia reperfusion injury involve the estrogen-mediated pathway, but little is known about the role of androgen. A standardized Panax ginseng extract (RSE) was orally given with or without flutamide in a left anterior descending coronary artery ligation rat model. Infarct size, CK and LDH activities were measured. Time-related changes of NO, PI3K/Akt/eNOS signaling, and testosterone concentration were also investigated. RSE (80 mg/kg) significantly inhibited myocardial infarction and CK and LDH activities, while coadministration of flutamide abolished this effect of RSE. NO was increased by RSE and reached a peak after 15 min of ischemia; however, flutamide cotreatment suppressed this elevation. Western blot analysis showed that RSE significantly reversed the decreases of expression and activation of PI3K, Akt, and eNOS evoked by ischemia, whereas flutamide attenuated the effects of these protective mechanisms induced by RSE. RSE completely reversed the dropping of endogenous testosterone level induced by I/R injury. Flutamide plus RSE treatment not only abolished RSE's effect but also produced a dramatic change on endogenous testosterone level after pretreatment and ischemia. Our results for the first time indicate that blocking androgen receptor abolishes the ability of Panax ginseng to protect the heart from myocardial I/R injury. PMID:24282438
Parra, Valentina; Verdejo, Hugo E; Iglewski, Myriam; Del Campo, Andrea; Troncoso, Rodrigo; Jones, Deborah; Zhu, Yi; Kuzmicic, Jovan; Pennanen, Christian; Lopez-Crisosto, Camila; Jaña, Fabián; Ferreira, Jorge; Noguera, Eduard; Chiong, Mario; Bernlohr, David A; Klip, Amira; Hill, Joseph A; Rothermel, Beverly A; Abel, Evan Dale; Zorzano, Antonio; Lavandero, Sergio
2014-01-01
Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway.
Parra, Valentina; Verdejo, Hugo E.; Iglewski, Myriam; del Campo, Andrea; Troncoso, Rodrigo; Jones, Deborah; Zhu, Yi; Kuzmicic, Jovan; Pennanen, Christian; Lopez‑Crisosto, Camila; Jaña, Fabián; Ferreira, Jorge; Noguera, Eduard; Chiong, Mario; Bernlohr, David A.; Klip, Amira; Hill, Joseph A.; Rothermel, Beverly A.; Abel, Evan Dale; Zorzano, Antonio; Lavandero, Sergio
2014-01-01
Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway. PMID:24009260
Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization.
Muntean, Andrew G; Pang, Liyan; Poncz, Mortimer; Dowdy, Steven F; Blobel, Gerd A; Crispino, John D
2007-06-15
Endomitosis is a unique form of cell cycle used by megakaryocytes, in which the latter stages of mitosis are bypassed so that the cell can increase its DNA content and size. Although several transcription factors, including GATA-1 and RUNX-1, have been implicated in this process, the link between transcription factors and polyploidization remains undefined. Here we show that GATA-1-deficient megakaryocytes, which display reduced size and polyploidization, express nearly 10-fold less cyclin D1 and 10-fold increased levels of p16 compared with their wild-type counterparts. We further demonstrate that cyclin D1 is a direct GATA-1 target in megakaryocytes, but not erythroid cells. Restoration of cyclin D1 expression, when accompanied by ectopic overexpression of its partner Cdk4, resulted in a dramatic increase in megakaryocyte size and DNA content. However, terminal differentiation was not rescued. Of note, polyploidization was only modestly reduced in cyclin D1-deficient mice, likely due to compensation by elevated cyclin D3 expression. Finally, consistent with an additional defect conferred by increased levels of p16, inhibition of cyclin D-Cdk4 complexes with a TAT-p16 fusion peptide significantly blocked polyploidization of wild-type megakaryocytes. Together, these data show that GATA-1 controls growth and polyploidization by regulating cyclin D-Cdk4 kinase activity.
Cyclin D–Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization
Muntean, Andrew G.; Pang, Liyan; Poncz, Mortimer; Dowdy, Steven F.; Blobel, Gerd A.
2007-01-01
Endomitosis is a unique form of cell cycle used by megakaryocytes, in which the latter stages of mitosis are bypassed so that the cell can increase its DNA content and size. Although several transcription factors, including GATA-1 and RUNX-1, have been implicated in this process, the link between transcription factors and polyploidization remains undefined. Here we show that GATA-1–deficient megakaryocytes, which display reduced size and polyploidization, express nearly 10-fold less cyclin D1 and 10-fold increased levels of p16 compared with their wild-type counterparts. We further demonstrate that cyclin D1 is a direct GATA-1 target in megakaryocytes, but not erythroid cells. Restoration of cyclin D1 expression, when accompanied by ectopic overexpression of its partner Cdk4, resulted in a dramatic increase in megakaryocyte size and DNA content. However, terminal differentiation was not rescued. Of note, polyploidization was only modestly reduced in cyclin D1–deficient mice, likely due to compensation by elevated cyclin D3 expression. Finally, consistent with an additional defect conferred by increased levels of p16, inhibition of cyclin D-Cdk4 complexes with a TAT-p16 fusion peptide significantly blocked polyploidization of wild-type megakaryocytes. Together, these data show that GATA-1 controls growth and polyploidization by regulating cyclin D-Cdk4 kinase activity. PMID:17317855
Aliomrani, Mehdi; Sepand, Mohammad Reza; Mirzaei, Hamid Reza; Kazemi, Ali Reza; Nekonam, Saeid; Sabzevari, Omid
2016-05-06
Sepsis is a debilitating systemic disease and described as a severe and irregular systemic inflammatory reaction syndrome (SIRS) against infection. We employed CLP (Cecal Ligation and Puncture) model in rats to investigate anti-inflammatory and antioxidant effects of phloretin, as a natural antioxidant agent, and its protective effect on liver tissue damage caused by sepsis. Male Wistar albino rats were randomly divided into three groups: sham group, CLP induced sepsis group and phloretin treated CLP group. Sepsis was induced by CLP method. 50 mmol/kg Phloretin was administered intraperitoneally in two equal doses immediately after surgery. It was observed that blood urea nitrogen (BUN) and tumor necrosis factor alpha (TNF-α) levels were dramatically increased in the CLP induced sepsis group (43.88 ± 1.905 mg/dl, 37.63 ± 1.92, respectively) when compared to the sham group. Moreover, tissue Glutathione (GSH) and liver nuclear factor ĸB (NF-ĸB p65) transcription factor values were higher in CLP induced sepsis group. This elevation was considerably reduced in the phloretin treated CLP group. No significant differences were observed in serum creatinine and creatinine phosphokinase levels. The present study suggested that phloretin, as a natural protective agent, act against tissue damages introduced following the experimental sepsis induced model, likely caused by free oxygen radicals.
Yang, Mu; Liu, Yingye; Dai, Jian; Li, Lin; Ding, Xin; Xu, Zhe; Mori, Masayuki; Miyahara, Hiroki; Sawashita, Jinko; Higuchi, Keiichi
2018-04-04
During acute-phase response (APR), there is a dramatic increase in serum amyloid A (SAA) in plasma high density lipoproteins (HDL). Elevated SAA leads to reactive AA amyloidosis in animals and humans. Herein, we employed apolipoprotein A-II (ApoA-II) deficient (Apoa2 -/- ) and transgenic (Apoa2Tg) mice to investigate the potential roles of ApoA-II in lipoprotein particle formation and progression of AA amyloidosis during APR. AA amyloid deposition was suppressed in Apoa2 -/- mice compared with wild type (WT) mice. During APR, Apoa2 -/- mice exhibited significant suppression of serum SAA levels and hepatic Saa1 and Saa2 mRNA levels. Pathological investigation showed Apoa2 -/- mice had less tissue damage and less inflammatory cell infiltration during APR. Total lipoproteins were markedly decreased in Apoa2 -/- mice, while the ratio of HDL to low density lipoprotein (LDL) was also decreased. Both WT and Apoa2 -/- mice showed increases in LDL and very large HDL during APR. SAA was distributed more widely in lipoprotein particles ranging from chylomicrons to very small HDL in Apoa2 -/- mice. Our observations uncovered the critical roles of ApoA-II in inflammation, serum lipoprotein stability and AA amyloidosis morbidity, and prompt consideration of therapies for AA and other amyloidoses, whose precursor proteins are associated with circulating HDL particles.
Beyond Correlation: Do Color Features Influence Attention in Rainforest?
Frey, Hans-Peter; Wirz, Kerstin; Willenbockel, Verena; Betz, Torsten; Schreiber, Cornell; Troscianko, Tomasz; König, Peter
2011-01-01
Recent research indicates a direct relationship between low-level color features and visual attention under natural conditions. However, the design of these studies allows only correlational observations and no inference about mechanisms. Here we go a step further to examine the nature of the influence of color features on overt attention in an environment in which trichromatic color vision is advantageous. We recorded eye-movements of color-normal and deuteranope human participants freely viewing original and modified rainforest images. Eliminating red–green color information dramatically alters fixation behavior in color-normal participants. Changes in feature correlations and variability over subjects and conditions provide evidence for a causal effect of red–green color-contrast. The effects of blue–yellow contrast are much smaller. However, globally rotating hue in color space in these images reveals a mechanism analyzing color-contrast invariant of a specific axis in color space. Surprisingly, in deuteranope participants we find significantly elevated red–green contrast at fixation points, comparable to color-normal participants. Temporal analysis indicates that this is due to compensatory mechanisms acting on a slower time scale. Taken together, our results suggest that under natural conditions red–green color information contributes to overt attention at a low-level (bottom-up). Nevertheless, the results of the image modifications and deuteranope participants indicate that evaluation of color information is done in a hue-invariant fashion. PMID:21519395
Dunlap, Kent D; Chung, Michael; Castellano, James F
2013-07-01
Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship.
Elevator ride comfort monitoring and evaluation using smartphones
NASA Astrophysics Data System (ADS)
Zhang, Yang; Sun, Xiaowei; Zhao, Xuefeng; Su, Wensheng
2018-05-01
With rapid urbanization, the demand for elevators is increasing, and their level of safety and ride comfort under vibrating conditions has also aroused interest. It is therefore essential to monitor the ride comfort level of elevators. The traditional method for such monitoring depends significantly on regular professional inspections, and requires expensive equipment and professional skill. With this regard, a new method for elevator ride comfort monitoring using a smartphone is demonstrated herein in detail. A variety of high-precision sensors are installed in a smartphone with strong data processing and telecommunication capabilities. A series of validation tests were designed and completed, and the international organization for standardization ISO2631-1997 was applied to evaluate the level of elevator ride comfort. Experimental results indicate that the proposed method is stable and reliable, its precision meets the engineering requirements, and the elevator ride comfort level can be accurately monitored under various situations. The method is very economical and convenient, and provides the possibility for the public to participate in elevator ride comfort monitoring. In addition, the method can both provide a wide range of data support and eliminate data errors to a certain extent.
Soil propagule banks of ectomycorrhizal fungi share many common species along an elevation gradient.
Miyamoto, Yumiko; Nara, Kazuhide
2016-04-01
We conducted bioassay experiments to investigate the soil propagule banks of ectomycorrhizal (EM) fungi in old-growth forests along an elevation gradient and compared the elevation pattern with the composition of EM fungi on existing roots in the field. In total, 150 soil cores were collected from three forests on Mt. Ishizuchi, western Japan, and subjected to bioassays using Pinus densiflora and Betula maximowicziana. Using molecular analyses, we recorded 23 EM fungal species in the assayed propagule banks. Eight species (34.8 %) were shared across the three sites, which ranged from a warm-temperate evergreen mixed forest to a subalpine conifer forest. The elevation pattern of the assayed propagule banks differed dramatically from that of EM fungi on existing roots along the same gradient, where only a small proportion of EM fungal species (3.5 %) were shared across sites. The EM fungal species found in the assayed propagule banks included many pioneer fungal species and composition differed significantly from that on existing roots. Furthermore, only 4 of 23 species were shared between the two host species, indicating a strong effect of bioassay host identity in determining the propagule banks of EM fungi. These results imply that the assayed propagule bank is less affected by climate compared to EM fungal communities on existing roots. The dominance of disturbance-dependent fungal species in the assayed propagule banks may result in higher ecosystem resilience to disturbance even in old-growth temperate forests.
Ecophysiological responses of three dominant species to experimental drought on the Colorado Plateau
NASA Astrophysics Data System (ADS)
Duniway, M.; Hoover, D. L.; Belnap, J.
2014-12-01
Water limitations in dryland ecosystems are predicted to intensify with climate change due to the combination of decreased precipitation and increased warming. Plants in these ecosystems may be living at or near their tolerance limits, and thus subtle changes in water availability may have dramatic effects on their performance. To examine the impacts of subtle, but chronic reductions in water availability, we established a network of 40 rainfall removal shelters across a range of plant communities, soil types and elevations in the Colorado Plateau. Each site consisted of a control plot receiving ambient precipitation paired with a drought plot that received a 35% precipitation reduction. After three years, we observed a range of ecosystem-level responses to the treatments by key plant functional types. The experimental drought had dramatic effects on the C3 grasses (mortality and cover changes), but the treatment effects were relatively minor for the C4 grasses (cover change only) and C3 shrubs (no treatment effects on cover or mortality). We investigated the mechanisms behind the relative drought tolerances of the latter two plant functional types by measuring the ecophysiological responses of three dominant species on the Colorado Plateau: Pleuraphis jamensii (C4 grass), Coleogyne ramosissima (C3 shrub) and Ephedra viridis (C3 shrub). During the 2014 growing season, we measured mid-day leaf water potential and net photosynthesis monthly for these dominant species under the control and drought treatments (n=5). We analyzed the effects of treatment, month and their interaction on these measurements using a mixed effects model for each species separately. Overall, P. jamensii was the most sensitive to drought of the three focal species as evidenced by significant effects of drought on both leaf water potential and net photosynthesis (30% reduction). Neither of the C3 shrubs had significant treatment effects on either ecophysiolgoical variable. These results provide mechanistic evidence behind the ecosystem-level effects; the drought treatments are causing stress in C4 grasses but not C3 shrubs. These results suggest that subtle but chronic changes in water availability may alter the structure and function of the Colorado Plateau ecosystem by differentially impacting key plant functional types.
Anderson, Dudley G.; Clark, John L.
1974-01-01
From the spring of 1971 to September 1973, neighborhood surveys were conducted in 58 communities throughout the nation to determine whether children with confirmed elevated blood lead levels could be identified. Another purpose of these screenings was to assist communities in identifying children with elevated blood lead levels and thereby demonstrate to community officials that such children do exist in communities screened. The children screened were not a random sample. In those communities where the initial elevated blood levels were confirmed all but seven had one or more children requiring followup and/or treatment. Of those children screened, black children had an elevated rate about three times as great as nonblack children. With few exceptions, the homes in the neighborhoods had at least one interior surface with sufficient quantities of lead paint to be dangerous if the paint were ingested. PMID:4831146
Poganiatz, I; Wagner, H
2001-04-01
Interaural level differences play an important role for elevational sound localization in barn owls. The changes of this cue with sound location are complex and frequency dependent. We exploited the opportunities offered by the virtual space technique to investigate the behavioral relevance of the overall interaural level difference by fixing this parameter in virtual stimuli to a constant value or introducing additional broadband level differences to normal virtual stimuli. Frequency-specific monaural cues in the stimuli were not manipulated. We observed an influence of the broadband interaural level differences on elevational, but not on azimuthal sound localization. Since results obtained with our manipulations explained only part of the variance in elevational turning angle, we conclude that frequency-specific cues are also important. The behavioral consequences of changes of the overall interaural level difference in a virtual sound depended on the combined interaural time difference contained in the stimulus, indicating an indirect influence of temporal cues on elevational sound localization as well. Thus, elevational sound localization is influenced by a combination of many spatial cues including frequency-dependent and temporal features.
Leonard, Charlene P; Akhtar, Javed
2007-07-01
To report a case of co-ingestion of methanol and nitromethane in a child in order to heighten the awareness of false elevation of serum creatinine from nitromethane ingestion. Case report. Pediatric intensive care unit. A 4-yr-old previously healthy girl ingested an unknown quantity of "Blue Thunder" model-engine fuel, which consisted of methanol and nitromethane. The patient was treated with fomepizole for methanol ingestion using elevated creatinine level as a reason for treatment. The patient was asymptomatic but her creatinine level increased ten-fold (from 0.4 mg/dL to 4 mg/dL) within 6 hrs. Blood urea nitrogen, anion gap, and osmolar gap remained within normal limits. When the serum creatinine level was measured with enzymatic method instead of Jaffe's method, a normal creatinine level was obtained. The falsely elevated creatinine level was due to nitromethane. The falsely elevated serum creatinine levels due to nitromethane ingestion can lead to unnecessary therapeutic interventions. We intend to heighten awareness of this potential misstep by reporting this case.
Elevated blood pressure, race/ethnicity, and C-reactive protein levels in children and adolescents.
Lande, Marc B; Pearson, Thomas A; Vermilion, Roger P; Auinger, Peggy; Fernandez, Isabel D
2008-12-01
Adult hypertension is independently associated with elevated C-reactive protein levels, after controlling for obesity and other cardiovascular risk factors. The objective of this study was to determine, with a nationally representative sample of children, whether the relationship between elevated blood pressure and C-reactive protein levels may be evident before adulthood. Cross-sectional data for children 8 to 17 years of age who participated in the National Health and Nutrition Examination Survey between 1999 and 2004 were analyzed. Bivariate analyses compared children with C-reactive protein levels of >3 mg/L versus
Larrieta-Carrasco, Elena; Flores, Yvonne N; Macías-Kauffer, Luis R; Ramírez-Palacios, Paula; Quiterio, Manuel; Ramírez-Salazar, Eric G; León-Mimila, Paola; Rivera-Paredez, Berenice; Cabrera-Álvarez, Guillermo; Canizales-Quinteros, Samuel; Zhang, Zuo-Feng; López-Pérez, Tania V; Salmerón, Jorge; Velázquez-Cruz, Rafael
2018-02-01
Non-alcoholic fatty liver disease (NAFLD) is the accumulation of extra fat in liver cells not caused by alcohol. Elevated transaminase levels are common indicators of liver disease, including NAFLD. Previously, we demonstrated that PNPLA3 (rs738409), LYPLAL1 (rs12137855), PPP1R3B (rs4240624), and GCKR (rs780094) are associated with elevated transaminase levels in overweight/obese Mexican adults. We investigated the association between 288 SNPs identified in genome-wide association studies and risk of elevated transaminase levels in an admixed Mexican-Mestizo sample of 178 cases of NAFLD and 454 healthy controls. The rs2896019, rs12483959, and rs3810622 SNPs in PNPLA3 and rs1227756 in COL13A1 were associated with elevated alanine aminotransferase (ALT, ≥40IU/L). A polygenic risk score (PRS) based on six SNPs in the ADIPOQ, COL13A1, PNPLA3, and SAMM50 genes was also associated with elevated ALT. Individuals carrying 9-12 risk alleles had 65.8% and 48.5% higher ALT and aspartate aminotransferase (AST) levels, respectively, than those with 1-4 risk alleles. The PRS showed the greatest risk of elevated ALT levels, with a higher level of significance than the individual variants. Our findings suggest a significant association between variants in COL13A1, ADIPOQ, SAMM50, and PNPLA3, and risk of NAFLD/elevated transaminase levels in Mexican adults with an admixed ancestry. This is the first study to examine high-density single nucleotide screening for genetic variations in a Mexican-Mestizo population. The extent of the effect of these variations on the development and progression of NAFLD in Latino populations requires further analysis. Copyright © 2018 Elsevier Inc. All rights reserved.
Hypsographic demography: The distribution of human population by altitude
Cohen, Joel E.; Small, Christopher
1998-01-01
The global distribution of the human population by elevation is quantified here. As of 1994, an estimated 1.88 × 109 people, or 33.5% of the world’s population, lived within 100 vertical meters of sea level, but only 15.6% of all inhabited land lies below 100 m elevation. The median person lived at an elevation of 194 m above sea level. Numbers of people decreased faster than exponentially with increasing elevation. The integrated population density (IPD, the number of people divided by the land area) within 100 vertical meters of sea level was significantly larger than that of any other range of elevations and represented far more people. A significant percentage of the low-elevation population lived at moderate population densities rather than at the highest densities of central large cities. Assessments of coastal hazards that focus only on large cities may substantially underestimate the number of people who could be affected. PMID:9826643
Familial aggregation of circulating C-reactive protein in polycystic ovary syndrome.
Sasidevi, Arunachalam; Vellanki, Priyathama; Kunselman, Allen R; Raja-Khan, Nazia; Dunaif, Andrea; Legro, Richard S
2013-03-01
What is the heritability of C-reactive protein (CRP) levels in women with polycystic ovary syndrome (PCOS) and their first-degree relatives? Women with PCOS and their siblings are more likely to have elevated CRP levels when both of their parents have elevated CRP. This PCOS family-based study indicates that CRP levels are likely a heritable trait. Previous studies have established that an elevated blood level of CRP is variably present in women with PCOS, and may be present independent of metabolic status. A familial based phenotyping study consisting of 81 families comprised of PCOS patients and their first-degree relatives for 305 subjects. Study conducted at an academic health center. An elevated CRP level was defined as >28.6 nmol/l. To account for familial clustering, generalized estimating equations with a logit link were used to model the association between elevated CRP levels in patients with PCOS and their siblings with their parental group (A = neither parent with elevated CRP; B = one parent with elevated CRP; C= both parents with elevated CRP), adjusting for gender, age and BMI of the offspring. We did additional heritability analyses by using a variance component estimation method for CRP levels, adjusting for sex, age and BMI. We observed elevated CRP levels in 94% of the offspring in group C, 45% in group B and 10% in group A after adjusting for age, gender and BMI of the offspring. The median BMI of the offspring in group A, B and C were 30.0, 28.7 and 31.2 kg/m², respectively. Heritability estimates of CRP levels ranged from 0.75 to 0.83 and remained significant after excluding for type 2 diabetes mellitus. Our small sample size increases the possibility of a type 1 error. This is a single report in an adequately powered but limited sample size study identifying the strong heritability of CRP levels. Replication in other large family cohorts is necessary. These findings support the concept that there is an increased cardiovascular disease risk profile in families of women with PCOS. This research was supported by National Institutes of Health grants U54HD-034449 and P50 HD044405 (A.D.). Priyathama Vellanki is supported in part by NIH/NIDDK Training Grant T32 DK007169.
Miller, Ian M.; Pigati, Jeffrey S.; Anderson, R. Scott; Johnson, Kirk R.; Mahan, Shannon; Ager, Thomas A.; Baker, Richard G.; Blaauw, Maarten; Bright, Jordon; Brown, Peter M.; Bryant, Bruce; Calamari, Zachary T.; Carrara, Paul E.; Michael D., Cherney; Demboski, John R.; Elias, Scott A.; Fisher, Daniel C.; Gray, Harrison J.; Haskett, Danielle R.; Honke, Jeffrey S.; Jackson, Stephen T.; Jiménez-Moreno, Gonzalo; Kline, Douglas; Leonard, Eric M.; Lifton, Nathaniel A.; Lucking, Carol; McDonald, H. Gregory; Miller, Dane M.; Muhs, Daniel R.; Nash, Stephen E.; Newton, Cody; Paces, James B.; Petrie, Lesley; Plummer, Mitchell A.; Porinchu, David F.; Rountrey, Adam N.; Scott, Eric; Sertich, Joseph J. W.; Sharpe, Saxon E.; Skipp, Gary L.; Strickland, Laura E.; Stucky, Richard K.; Thompson, Robert S.; Wilson, Jim
2014-01-01
In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean–atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010–2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~ 140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ian M. Miller; Mitchell A. Plummer; Various Others
In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean–atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010–2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bonesmore » of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5« less
Geographic characteristics of sable (Martes zibellina) distribution over time in Northeast China.
Zhang, Rui; Yang, Li; Ai, Lin; Yang, Qiuyuan; Chen, Minhao; Li, Jingxi; Yang, Lei; Luan, Xiaofeng
2017-06-01
Understanding historical context can help clarify the ecological and biogeographic characteristics of species population changes. The sable ( Martes zibellina ) population has decreased dramatically in Northeast China since the l950s, and understanding the changes in its distribution over time is necessary to support conservation efforts. To achieve this goal, we integrated ecological niche modeling and historical records of sables to estimate the magnitude of change in their distribution over time. Our results revealed a 51.71% reduction in their distribution in 2000-2016 compared with the potential distribution in the 1950s. This reduction was related to climate change (Pearson's correlation: Bio1, -.962, p < .01; Bio2, -.962, p < .01; Bio5, .817, p < .05; Bio6, .847, p < .05) and human population size (-.956, p < .01). The sable population tended to migrate in different directions and elevations over time in different areas due to climate change: In the Greater Khingan Mountains, they moved northward and to lower elevations; in the Lesser Khingan Mountains, they moved northward; and in the Changbai Mountains, they move southward and to higher elevations. Active conservation strategies should be considered in locations where sable populations have migrated or may migrate to.
NASA Astrophysics Data System (ADS)
Miller, Ian M.; Pigati, Jeffrey S.; Scott Anderson, R.; Johnson, Kirk R.; Mahan, Shannon A.; Ager, Thomas A.; Baker, Richard G.; Blaauw, Maarten; Bright, Jordon; Brown, Peter M.; Bryant, Bruce; Calamari, Zachary T.; Carrara, Paul E.; Cherney, Michael D.; Demboski, John R.; Elias, Scott A.; Fisher, Daniel C.; Gray, Harrison J.; Haskett, Danielle R.; Honke, Jeffrey S.; Jackson, Stephen T.; Jiménez-Moreno, Gonzalo; Kline, Douglas; Leonard, Eric M.; Lifton, Nathaniel A.; Lucking, Carol; Gregory McDonald, H.; Miller, Dane M.; Muhs, Daniel R.; Nash, Stephen E.; Newton, Cody; Paces, James B.; Petrie, Lesley; Plummer, Mitchell A.; Porinchu, David F.; Rountrey, Adam N.; Scott, Eric; Sertich, Joseph J. W.; Sharpe, Saxon E.; Skipp, Gary L.; Strickland, Laura E.; Stucky, Richard K.; Thompson, Robert S.; Wilson, Jim
2014-11-01
In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean-atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010-2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~ 140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5.
Gesch, Dean B.
2013-01-01
The accuracy with which coastal topography has been mapped directly affects the reliability and usefulness of elevationbased sea-level rise vulnerability assessments. Recent research has shown that the qualities of the elevation data must be well understood to properly model potential impacts. The cumulative vertical uncertainty has contributions from elevation data error, water level data uncertainties, and vertical datum and transformation uncertainties. The concepts of minimum sealevel rise increment and minimum planning timeline, important parameters for an elevation-based sea-level rise assessment, are used in recognition of the inherent vertical uncertainty of the underlying data. These concepts were applied to conduct a sea-level rise vulnerability assessment of the Mobile Bay, Alabama, region based on high-quality lidar-derived elevation data. The results that detail the area and associated resources (land cover, population, and infrastructure) vulnerable to a 1.18-m sea-level rise by the year 2100 are reported as a range of values (at the 95% confidence level) to account for the vertical uncertainty in the base data. Examination of the tabulated statistics about land cover, population, and infrastructure in the minimum and maximum vulnerable areas shows that these resources are not uniformly distributed throughout the overall vulnerable zone. The methods demonstrated in the Mobile Bay analysis provide an example of how to consider and properly account for vertical uncertainty in elevation-based sea-level rise vulnerability assessments, and the advantages of doing so.
Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.
Sea-level rise is a major factor in wetland loss worldwide, and inmuch of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mmyr -1 due to regional subsidence.Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, andmay exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidalmore » freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mmyr -1 in elevation on average, at least 5 mmyr -1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among themarshes studied, and ranged from-9.8 ± 6.9 to 4.5 ± 4.3 mmyr -1. Surface accretion of depositedmineral and organic matter was uniformly high across the estuary (~9–15 mmyr -1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. In conclusion, previous studies have focused on surface elevation change inmarshes of uniformsalinity (e.g., salt marshes); however, our findings highlight the need for elevation studies inmarshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.« less
Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise
Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.
2016-01-01
Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9–15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries. PMID:27467784
Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise
Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.; ...
2016-07-28
Sea-level rise is a major factor in wetland loss worldwide, and inmuch of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mmyr -1 due to regional subsidence.Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, andmay exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidalmore » freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mmyr -1 in elevation on average, at least 5 mmyr -1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among themarshes studied, and ranged from-9.8 ± 6.9 to 4.5 ± 4.3 mmyr -1. Surface accretion of depositedmineral and organic matter was uniformly high across the estuary (~9–15 mmyr -1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. In conclusion, previous studies have focused on surface elevation change inmarshes of uniformsalinity (e.g., salt marshes); however, our findings highlight the need for elevation studies inmarshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.« less
Feed intake and behavior of dairy goats when offered an elevated feed bunk.
Neave, Heather W; von Keyserlingk, Marina A G; Weary, Daniel M; Zobel, Gosia
2018-04-01
Goats are browsers and select vegetation at various heights when foraging. On commercial farms, dairy goats are typically fed from low-level feed bunks. The objective of this study was to determine how feed intake and feeding behavior vary when goats are offered feed at variable heights, with the potential of evaluating the benefits of offering an elevated feeder to dairy goats. Thirteen Saanen X dairy goats were housed in a home pen with a lying area of wood shavings, where they were pre-exposed for 24 d to 3 feeder heights designed to result in differences in head height while feeding: floor level (head lowered relative to body), head level (head level relative to body), and elevated level (head and neck angled upward). Nine groups of 3 goats each were randomly selected and housed for 24 h in a test pen identical to the home pen except that it contained 1 of each of the 3 feeder heights. Each feeder contained ad libitum chopped alfalfa silage and a top-dressed corn-based supplement, refreshed twice daily. Refusals from inside and under each feeder were weighed to calculate intake. Feed intake increased with increasing feeder height (mean ± SE; 0.18, 0.29, and 0.34 ± 0.04 kg of DM/goat for floor-level, head-level, and elevated-level feeders, respectively). Total feeding time did not vary with feeder height, but feeding rate tended to be faster at the elevated-level feeder (14.5 ± 2.1 g of DM/min) compared with head-level (9.2 ± 2.3 g of DM/min) and floor-level (8.9 ± 2.1 g of DM/min) feeders. Goats visited the floor-level feeder (36.4 ± 8.4 visits/goat) less than the head-level (79.4 ± 8.4 visits/goat) and elevated-level (74.8 ± 8.4 visits/goat) feeders. The number of displacements per minute of feeding time (physical removal of another goat from the feeding place) was greater at the elevated-level feeder (0.46 ± 0.06 displacements/min) compared with the floor-level feeder (0.23 ± 0.06 displacements/min) and tended to differ from the head-level feeder (0.27 ± 0.06 displacements/min). We conclude that goats eat more from an elevated feeder and compete more to access this feeder. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The 3D Elevation Program—Flood risk management
Carswell, William J.; Lukas, Vicki
2018-01-25
Flood-damage reduction in the United States has been a longstanding but elusive societal goal. The national strategy for reducing flood damage has shifted over recent decades from a focus on construction of flood-control dams and levee systems to a three-pronged strategy to (1) improve the design and operation of such structures, (2) provide more accurate and accessible flood forecasting, and (3) shift the Federal Emergency Management Agency (FEMA) National Flood Insurance Program to a more balanced, less costly flood-insurance paradigm. Expanding the availability and use of high-quality, three-dimensional (3D) elevation information derived from modern light detection and ranging (lidar) technologies to provide essential terrain data poses a singular opportunity to dramatically enhance the effectiveness of all three components of this strategy. Additionally, FEMA, the National Weather Service, and the U.S. Geological Survey (USGS) have developed tools and joint program activities to support the national strategy.The USGS 3D Elevation Program (3DEP) has the programmatic infrastructure to produce and provide essential terrain data. This infrastructure includes (1) data acquisition partnerships that leverage funding and reduce duplicative efforts, (2) contracts with experienced private mapping firms that ensure acquisition of consistent, low-cost 3D elevation data, and (3) the technical expertise, standards, and specifications required for consistent, edge-to-edge utility across multiple collection platforms and public access unfettered by individual database designs and limitations.High-quality elevation data, like that collected through 3DEP, are invaluable for assessing and documenting flood risk and communicating detailed information to both responders and planners alike. Multiple flood-mapping programs make use of USGS streamflow and 3DEP data. Flood insurance rate maps, flood documentation studies, and flood-inundation map libraries are products of these programs.
Plunkett, Mary H.; Natarajan, Velmurugan; Mus, Florence; Knutson, Carolann M.; Peters, John W.
2017-01-01
ABSTRACT Biological nitrogen fixation is accomplished by a diverse group of organisms known as diazotrophs and requires the function of the complex metalloenzyme nitrogenase. Nitrogenase and many of the accessory proteins required for proper cofactor biosynthesis and incorporation into the enzyme have been characterized, but a complete picture of the reaction mechanism and key cellular changes that accompany biological nitrogen fixation remain to be fully elucidated. Studies have revealed that specific disruptions of the antiactivator-encoding gene nifL result in the deregulation of the nif transcriptional activator NifA in the nitrogen-fixing bacterium Azotobacter vinelandii, triggering the production of extracellular ammonium levels approaching 30 mM during the stationary phase of growth. In this work, we have characterized the global patterns of gene expression of this high-ammonium-releasing phenotype. The findings reported here indicated that cultures of this high-ammonium-accumulating strain may experience metal limitation when grown using standard Burk's medium, which could be amended by increasing the molybdenum levels to further increase the ammonium yield. In addition, elevated levels of nitrogenase gene transcription are not accompanied by a corresponding dramatic increase in hydrogenase gene transcription levels or hydrogen uptake rates. Of the three potential electron donor systems for nitrogenase, only the rnf1 gene cluster showed a transcriptional correlation to the increased yield of ammonium. Our results also highlight several additional genes that may play a role in supporting elevated ammonium production in this aerobic nitrogen-fixing model bacterium. IMPORTANCE The transcriptional differences found during stationary-phase ammonium accumulation show a strong contrast between the deregulated (nifL-disrupted) and wild-type strains and what was previously reported for the wild-type strain under exponential-phase growth conditions. These results demonstrate that further improvement of the ammonium yield in this nitrogenase-deregulated strain can be obtained by increasing the amount of available molybdenum in the medium. These results also indicate a potential preference for one of two ATP synthases present in A. vinelandii as well as a prominent role for the membrane-bound hydrogenase over the soluble hydrogenase in hydrogen gas recycling. These results should inform future studies aimed at elucidating the important features of this phenotype and at maximizing ammonium production by this strain. PMID:28802272
Is UV-induced DNA damage greater at higher elevation?
Wang, Qing-Wei; Hidema, Jun; Hikosaka, Kouki
2014-05-01
• Although ultraviolet radiation (UV) is known to have negative effects on plant growth, there has been no direct evidence that plants growing at higher elevations are more severely affected by ultraviolet-B (UV-B) radiation, which is known to increase with elevation. We examined damage to DNA, a primary target of UV-B, in the widespread species Polygonum sachalinense (Fallopia sachalinensis) and Plantago asiatica at two elevations.• We sampled leaves of both species at 300 and 1700 m above sea level every 2 h for 11 d across the growing season and determined the level of cyclobutane pyrimidine dimer (CPD), a major product of UV damage to DNA.• The CPD level was significantly influenced by the time of day, date, elevation, and their interactions in both species. The CPD level tended to be higher at noon or on sunny days. DNA damage was more severe at 1700 m than at 300 m: on average, 8.7% greater at high elevation in P. asiatica and 7.8% greater in P. sachalinense Stepwise multiple regression analysis indicated that the CPD level was explained mainly by UV-B and had no significant relationship with other environmental factors such as temperature and photosynthetically active radiation.• UV-induced DNA damage in plants is greater at higher elevations. © 2014 Botanical Society of America, Inc.
Effects of anthropogenic land-subsidence on river flood hazard: a case study in Ravenna, Italy
NASA Astrophysics Data System (ADS)
Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio
2015-04-01
Can differential land-subsidence significantly alter the river flooding dynamics, and thus flood risk in flood prone areas? Many studies show how the lowering of the coastal areas is closely related to an increase in the flood-hazard due to more important tidal flooding and see level rise. On the contrary, the literature on the relationship between differential land-subsidence and possible alterations to riverine flood-hazard of inland areas is still sparse, while several areas characterized by significant land-subsidence rates during the second half of the 20th century experienced an intensification in both inundation magnitude and frequency. This study investigates the possible impact of a significant differential ground lowering on flood hazard in proximity of Ravenna, which is one of the oldest Italian cities, former capital of the Western Roman Empire, located a few kilometers from the Adriatic coast and about 60 km south of the Po River delta. The rate of land-subsidence in the area, naturally in the order of a few mm/year, dramatically increased up to 110 mm/year after World War II, primarily due to groundwater pumping and a number of deep onshore and offshore gas production platforms. The subsidence caused in the last century a cumulative drop larger than 1.5 m in the historical center of the city. Starting from these evidences and taking advantage of a recent digital elevation model of 10m resolution, we reconstructed the ground elevation in 1897 for an area of about 65 km2 around the city of Ravenna. We referred to these two digital elevation models (i.e. current topography and topographic reconstruction) and a 2D finite-element numerical model for the simulation of the inundation dynamics associated with several levee failure scenarios along embankment system of the river Montone. For each scenario and digital elevation model, the flood hazard is quantified in terms of water depth, speed and dynamics of the flooding front. The comparison enabled us to quantify alterations to the flooding hazard due to large and rapid differential land-subsidence, shedding some light on whether to consider anthropogenic land-subsidence among the relevant human-induced drivers of flood-risk change.
Naylor, Jennifer C; Hulette, Christine M; Steffens, David C; Shampine, Lawrence J; Ervin, John F; Payne, Victoria M; Massing, Mark W; Kilts, Jason D; Strauss, Jennifer L; Calhoun, Patrick S; Calnaido, Rohana P; Blazer, Daniel G; Lieberman, Jeffrey A; Madison, Roger D; Marx, Christine E
2008-08-01
It is currently unknown whether cerebrospinal fluid (CSF) neurosteroid levels are related to brain neurosteroid levels in humans. CSF and brain dehydroepiandrosterone (DHEA) levels are elevated in patients with Alzheimer's disease (AD), but it is unclear whether CSF DHEA levels are correlated with brain DHEA levels within the same subject cohort. We therefore determined DHEA and pregnenolone levels in AD patients (n = 25) and cognitively intact control subjects (n = 16) in both CSF and temporal cortex. DHEA and pregnenolone levels were determined by gas chromatography/mass spectrometry preceded by HPLC. Frozen CSF and temporal cortex specimens were provided by the Alzheimer's Disease Research Center at Duke University Medical Center. Data were analyzed by Mann-Whitney U test statistic and Spearman correlational analyses. CSF DHEA levels are positively correlated with temporal cortex DHEA levels (r = 0.59, P < 0.0001) and neuropathological disease stage (Braak and Braak) (r = 0.42, P = 0.007). CSF pregnenolone levels are also positively correlated with temporal cortex pregnenolone levels (r = 0.57, P < 0.0001) and tend to be correlated with neuropathological disease stage (Braak) (r = 0.30, P = 0.06). CSF DHEA levels are elevated (P = 0.032), and pregnenolone levels tend to be elevated (P = 0.10) in patients with AD, compared with cognitively intact control subjects. These findings indicate that CSF DHEA and pregnenolone levels are correlated with temporal cortex brain levels of these neurosteroids and that CSF DHEA is elevated in AD and related to neuropathological disease stage. Neurosteroids may thus be relevant to the pathophysiology of AD.
Abbott, David H; Barnett, Deborah K; Levine, Jon E; Padmanabhan, Vasantha; Dumesic, Daniel A; Jacoris, Steve; Tarantal, Alice F
2008-01-01
Experimentally induced fetal androgen excess induces polycystic ovary syndrome (PCOS)-like traits in adult female rhesus monkeys. Developmental changes leading to this endocrinopathy are not known. We therefore studied 15 time-mated, gravid female rhesus monkeys with known female fetuses. Nine dams received daily subcutaneous injections of 15 mg testosterone propionate (TP) and six received injections of oil vehicle (controls) from 40 through 80 days of gestation (term 165 [range: ±10] days), and all fetuses were delivered by Cesarean-section using established methods at term. Ultrasound-guided fetal blood sample collection and peripheral venous sample collection of dams and subsequent infants enabled determination of circulating levels of steroid hormones, LH and FSH. TP injections elevated serum testosterone and androstenedione levels in the dams and prenatally androgenized (PA) fetuses. After cessation of TP injections, testosterone levels mostly normalized, while serum androstenedione levels in PA infants were elevated. TP injections did not increase estrogen levels in the dams, PA fetuses and infants, yet conjugated estrogen levels were elevated in the TP-injected dams. Serum levels of LH and FSH were elevated in late gestation PA fetuses, and LH levels were elevated in PA infants. These studies suggest that experimentally-induced fetal androgen excess increases gonadotropin secretion in PA female fetuses and infants, and elevates endogenous androgen levels in PA infants. Thus, in this nonhuman primate model, differential programming of the fetal hypothalamo-pituitary unit with concomitant hyperandrogenism provides evidence to suggest developmental origins of LH and androgen excess in adulthood. PMID:18385445
Sharma, Naveen; Sim, Yun-Beom; Park, Soo-Hyun; Lim, Su-Min; Kim, Sung-Su; Jung, Jun-Sub; Hong, Jae-Seung; Suh, Hong-Won
2015-05-01
Sulfonylureas are widely used as an antidiabetic drug. In the present study, the effects of sulfonylurea administered supraspinally on immobilization stress-induced blood glucose level were studied in ICR mice. Mice were once enforced into immobilization stress for 30 min and returned to the cage. The blood glucose level was measured 30, 60, and 120 min after immobilization stress initiation. We found that intracerebroventricular (i.c.v.) injection with 30 µg of glyburide, glipizide, glimepiride or tolazamide attenuated the increased blood glucose level induced by immobilization stress. Immobilization stress causes an elevation of the blood corticosterone and insulin levels. Sulfonylureas pretreated i.c.v. caused a further elevation of the blood corticosterone level when mice were forced into the stress. In addition, sulfonylureas pretreated i.c.v. alone caused an elevation of the plasma insulin level. Furthermore, immobilization stress-induced insulin level was reduced by i.c.v. pretreated sulfonylureas. Our results suggest that lowering effect of sulfonylureas administered supraspinally against immobilization stress-induced increase of the blood glucose level appears to be primarily mediated via elevation of the plasma insulin level.
Centrifugal inertia effects in two-phase face seal films
NASA Technical Reports Server (NTRS)
Basu, P.; Hughes, W. F.; Beeler, R. M.
1987-01-01
A simplified, semianalytical model has been developed to analyze the effect of centrifugal inertia in two-phase face seals. The model is based on the assumption of isothermal flow through the seal, but at an elevated temperature, and takes into account heat transfer and boiling. Using this model, seal performance curves are obtained with water as the working fluid. It is shown that the centrifugal inertia of the fluid reduces the load-carrying capacity dramatically at high speeds and that operational instability exists under certain conditions. While an all-liquid seal may be starved at speeds higher than a 'critical' value, leakage always occurs under boiling conditions.
Changes in the Diurnal Rhythms during a 45-Day Head-Down Bed Rest
Liang, Xiaodi; Zhang, Lin; Wan, Yufeng; Yu, Xinyang; Guo, Yiming; Chen, Xiaoping; Tan, Cheng; Huang, Tianle; Shen, Hanjie; Chen, Xianyun; Li, Hongying; Lv, Ke; Sun, Fei; Chen, Shanguang; Guo, Jinhu
2012-01-01
In spaceflight human circadian rhythms and sleep patterns are likely subject to change, which consequently disturbs human physiology, cognitive abilities and performance efficiency. However, the influence of microgravity on sleep and circadian clock as well as the underlying mechanisms remain largely unknown. Placing volunteers in a prone position, whereby their heads rest at an angle of −6° below horizontal, mimics the microgravity environment in orbital flight. Such positioning is termed head-down bed rest (HDBR). In this work, we analysed the influence of a 45-day HDBR on physiological diurnal rhythms. We examined urinary electrolyte and hormone excretion, and the results show a dramatic elevation of cortisol levels during HDBR and recovery. Increased diuresis, melatonin and testosterone were observed at certain periods during HDBR. In addition, we investigated the changes in urination and defecation frequencies and found that the rhythmicity of urinary frequency during lights-off during and after HDBR was higher than control. The grouped defecation frequency data exhibits rhythmicity before and during HDBR but not after HDBR. Together, these data demonstrate that HDBR can alter a number of physiological processes associated with diurnal rhythms. PMID:23110150
Sources and Losses of Ring Current Ions
NASA Technical Reports Server (NTRS)
Chen, Sheng-Hsien; Fok, Mei-Ching H.; Angeloupoulos, Vassilis
2010-01-01
During geomagnetic quiet times, in-situ measurements of ring current energetic ions (few to few tens of keVs) from THEMIS spacecraft often exhibit multiple ion populations at discrete energies that extend from the inner magnetosphere to the magnetopause at dayside or plasma sheet at nightside. During geomagnetic storm times, the levels of fluxes as well as the mean energies of these ions elevated dramatically and the more smooth distributions in energies and distances during quiet times are disrupted into clusters of ion populations with more confined spatial extends. This reveals local plasma heating processes that might have come into play. Several processes have been proposed. Magnetotail dipolarization, sudden enhancement of field-aligned current, local current disruptions, and plasma waves are possible mechanisms to heat the ions locally as well as strong convections of energetic ions directly from the magnetotail due to reconnections. We will examine two geomagnetic storms on October 11, 2008 and July 22, 2009 to reveal possible heating mechanisms. We will analyze in-situ plasma and magnetic field measurements from THEMIS, GOES, and DMSP for the events to study the ion pitch angle distributions and magnetic field perturbations in the auroral ionosphere and inner magnetosphere where the plasma heating processes occur.
Liu, Ji-ping; Feng, Liang; Zhu, Mao-mao; Wang, Ru-Shang; Zhang, Ming-hua; Hu, Shao-ying; Jia, Xiao-bin; Wu, Jin-Jie
2012-11-01
Curcuma longa L. (CLL), a traditional herbal medicine, has been widely used for the prevention of diabetic vascular complications in recent years. However, the protective effects of curcuminoids in CLL on the AGEs-induced damage to mesangial cell are not fully understood. In this present study, dihydroethidium, superoxide dismutase kit, malondialdehyde kit, and acridine orange/ethidium bromide staining methods were used to evaluate the activities of curcumin and demethoxycurcumin (10(-11)-10(-9) M) on AGEs-induced oxidative stress and apoptosis, which were associated with the damage to mesangial cell. The results showed that these two compounds could significantly restore advanced glycation end products (AGEs)-induced apoptosis to normal levels (IC50 = 3.874 × 10(-11) M for curcumin and IC50 = 6.085 × 10(-11) M for demethoxycurcumin) and reduce remarkably reactive oxygen species generation in mesangial cell. Furthermore, curcumin and demethoxycurcumin dramatically elevated AGEs-decreased superoxide dismutase activity while significantly reducing AGEs-increased malondialdehyde content in cell culture supernatant. Our results suggest that both curcumin and demethoxycurcumin have a significant protective potential to the prevention of diabetic nephropathy. Georg Thieme Verlag KG Stuttgart · New York.
Oceans Melting Greenland (OMG): 2017 Observations and the First Look at Yearly Ocean/Ice Changes
NASA Astrophysics Data System (ADS)
Willis, J. K.; Rignot, E. J.; Fenty, I. G.; Khazendar, A.; Moller, D.; Tinto, K. J.; Morison, J.; Schodlok, M.; Thompson, A. F.; Fukumori, I.; Holland, D.; Forsberg, R.; Jakobsson, M.; Dinardo, S. J.
2017-12-01
Oceans Melting Greenland (OMG) is an airborne NASA Mission to investigate the role of the oceans in ice loss around the margins of the Greenland Ice Sheet. A five-year campaign, OMG will directly measure ocean warming and glacier retreat around all of Greenland. By relating these two, we will explore one of the most pressing open questions about how climate change drives sea level rise: How quickly are the warming oceans melting the Greenland Ice Sheet from the edges? This year, OMG collected its second set of both elevation maps of marine terminating glaciers and ocean temperature and salinity profiles around all of Greenland. This give us our first look at year-to-year changes in both ice volume at the margins, as well as the volume and extent of warm, salty Atlantic water present on the continental shelf. In addition, we will compare recent data in east Greenland waters with historical ocean observations that suggest a long-term warming trend there. Finally, we will briefly review the multi-beam sonar and airborne gravity campaigns—both of which were completed last year—and the dramatic improvement they had on bathymetry maps over the continental shelf around Greenland.
Replenishment of fish populations is threatened by ocean acidification
Munday, Philip L.; Dixson, Danielle L.; McCormick, Mark I.; Meekan, Mark; Ferrari, Maud C. O.; Chivers, Douglas P.
2010-01-01
There is increasing concern that ocean acidification, caused by the uptake of additional CO2 at the ocean surface, could affect the functioning of marine ecosystems; however, the mechanisms by which population declines will occur have not been identified, especially for noncalcifying species such as fishes. Here, we use a combination of laboratory and field-based experiments to show that levels of dissolved CO2 predicted to occur in the ocean this century alter the behavior of larval fish and dramatically decrease their survival during recruitment to adult populations. Altered behavior of larvae was detected at 700 ppm CO2, with many individuals becoming attracted to the smell of predators. At 850 ppm CO2, the ability to sense predators was completely impaired. Larvae exposed to elevated CO2 were more active and exhibited riskier behavior in natural coral-reef habitat. As a result, they had 5–9 times higher mortality from predation than current-day controls, with mortality increasing with CO2 concentration. Our results show that additional CO2 absorbed into the ocean will reduce recruitment success and have far-reaching consequences for the sustainability of fish populations. PMID:20615968
Atrial natriuretic peptide synthesis in atrial tumors of transgenic mice.
Gardner, D G; Camargo, M J; Behringer, R R; Brinster, R L; Baxter, J D; Atlas, S A; Laragh, J H; Deschepper, C F
1992-04-01
Transgenic mice harboring a chimeric gene linking mouse protamine 1 5'-flanking sequence to the coding sequence of the simian virus 40 T-antigen develop spontaneous rhabdomyosarcomas of the right atria. The presence of the tumors is accompanied by dramatic elevations in plasma atrial natriuretic peptide (ANP) immunoreactivity (1,698 +/- 993 vs. 60 +/- 18 fmol/ml for controls) and hematocrit (56 +/- 8 vs. 51 +/- 2 for controls). The immunoreactive ANP (irANP) present in the tumors is similar in size to irANP found in normal mouse atria. ANP mRNA transcripts present in the tumors also appear to be very similar in overall size and 5'-termini to those produced in normal cardiac tissue. Microscopically, the tumors are composed of a disorganized array of densely packed abnormal-appearing cells. Immunocytochemistry and in situ hybridization analysis reveal considerable heterogeneity in ANP gene expression. ANP peptide and mRNA are detectable throughout the parenchyma of the tumors, but absolute levels of expression vary widely among different cells in the population. These tumors represent a potentially valuable model for the study of inappropriate ANP secretion and may provide a tissue source for the development of an ANP-producing atrial cell line.
Bibee, Jacqueline M.; Stecker, G. Christopher
2016-01-01
Spatial judgments are often dominated by low-frequency binaural cues and onset cues when binaural cues vary across the spectrum and duration, respectively, of a brief sound. This study combined these dimensions to assess the spectrotemporal weighting of binaural information. Listeners discriminated target interaural time difference (ITD) and interaural level difference (ILD) carried by the onset, offset, or full duration of a 4-kHz Gabor click train with a 2-ms period in the presence or absence of a diotic 500-Hz interferer tone. ITD and ILD thresholds were significantly elevated by the interferer in all conditions and by a similar amount to previous reports for static cues. Binaural interference was dramatically greater for ITD targets lacking onset cues compared to onset and full-duration conditions. Binaural interference for ILD targets was similar across dynamic-cue conditions. These effects mirror the baseline discriminability of dynamic ITD and ILD cues [Stecker and Brown. (2010). J. Acoust. Soc. Am. 127, 3092–3103], consistent with stronger interference for less-robust/higher-variance cues. The results support the view that binaural cue integration occurs simultaneously across multiple variance-weighted dimensions, including time and frequency. PMID:27794286
Sun, Hongwei; Li, Guiying; Nie, Xin; Shi, Huixian; Wong, Po-Keung; Zhao, Huijun; An, Taicheng
2014-08-19
A systematic approach was developed to understand, in-depth, the mechanisms involved during the inactivation of bacterial cells using photoelectrocatalytic (PEC) processes with Escherichia coli K-12 as the model microorganism. The bacterial cells were found to be inactivated and decomposed primarily due to attack from photogenerated H2O2. Extracellular reactive oxygen species (ROSs), such as H2O2, may penetrate into the bacterial cell and cause dramatically elevated intracellular ROSs levels, which would overwhelm the antioxidative capacity of bacterial protective enzymes such as superoxide dismutase and catalase. The activities of these two enzymes were found to decrease due to the ROSs attacks during PEC inactivation. Bacterial cell wall damage was then observed, including loss of cell membrane integrity and increased permeability, followed by the decomposition of cell envelope (demonstrated by scanning electronic microscope images). One of the bacterial building blocks, protein, was found to be oxidatively damaged due to the ROSs attacks, as well. Leakage of cytoplasm and biomolecules (bacterial building blocks such as proteins and nucleic acids) were evident during prolonged PEC inactivation process. The leaked cytoplasmic substances and cell debris could be further degraded and, ultimately, mineralized with prolonged PEC treatment.
Effects of a crude oil spill on the benthic invertebrate community in the Gasconade River, Missouri
Poulton, Barry C.; Finger, Susan E.; Humphrey, S.A.
1997-01-01
Effects of a 3.3-million–L crude oil spill on the benthic macroinvertebrate community of the Gasconade River, a large river in Missouri, were evaluated by comparing several macroinvertebrate community indices in riffle and backwater habitats above and below the spill. Concentrations of total petroleum hydrocarbons (TPH) in sediments decreased dramatically in riffle habitats within 6 months of the spill, but elevated hydrocarbon levels (TPH = 80–270 μg/g) were still present in backwater habitats at the end of the study. Correspondingly, riffle macroinvertebrate communities recovered rapidly, but overall benthic diversity continued to be reduced in backwater areas until the end of the study 18 months after the spill. In addition, statistical analysis of benthic functional feeding groups revealed that both scrapers and shredders were reduced in backwater habitats below the oil spill. Decreased abundance of shredders and scrapers in these habitats is likely caused by oil contamination of aquatic sediments and associated organic matter required by these groups for food and substrate. Results of this study suggest that the persistence of oil in backwater habitats has a negative effect on the benthic community in large rivers.
Bibee, Jacqueline M; Stecker, G Christopher
2016-10-01
Spatial judgments are often dominated by low-frequency binaural cues and onset cues when binaural cues vary across the spectrum and duration, respectively, of a brief sound. This study combined these dimensions to assess the spectrotemporal weighting of binaural information. Listeners discriminated target interaural time difference (ITD) and interaural level difference (ILD) carried by the onset, offset, or full duration of a 4-kHz Gabor click train with a 2-ms period in the presence or absence of a diotic 500-Hz interferer tone. ITD and ILD thresholds were significantly elevated by the interferer in all conditions and by a similar amount to previous reports for static cues. Binaural interference was dramatically greater for ITD targets lacking onset cues compared to onset and full-duration conditions. Binaural interference for ILD targets was similar across dynamic-cue conditions. These effects mirror the baseline discriminability of dynamic ITD and ILD cues [Stecker and Brown. (2010). J. Acoust. Soc. Am. 127, 3092-3103], consistent with stronger interference for less-robust/higher-variance cues. The results support the view that binaural cue integration occurs simultaneously across multiple variance-weighted dimensions, including time and frequency.
Histone Deacetylase Inhibition and Dietary Short-Chain Fatty Acids
Licciardi, Paul V.; Ververis, Katherine; Karagiannis, Tom C.
2011-01-01
Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions such as probiotic supplementation have been investigated for their pleiotropic effects on microbiota composition and immune function. Probiotics may restore intestinal dysbiosis and improve clinical disease through elevated SCFA levels in the intestine. Although the precise mechanisms by which such dietary factors mediate these effects, SCFA metabolites such as butyrate also function as histone deacetylase inhibitors (HDACi), that can act on the epigenome through chromatin remodeling changes. The aim of this review is to provide an overview of HDAC enzymes and to discuss the biological effects of HDACi. Further, we discuss the important relationship between diet and the balance between health and disease and how novel dietary interventions such as probiotics could be alternative approach for the prevention and/or treatment of chronic inflammatory disease through modulation of the intestinal microbiome. PMID:23724235
Histone deacetylase inhibition and dietary short-chain Fatty acids.
Licciardi, Paul V; Ververis, Katherine; Karagiannis, Tom C
2011-01-01
Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions such as probiotic supplementation have been investigated for their pleiotropic effects on microbiota composition and immune function. Probiotics may restore intestinal dysbiosis and improve clinical disease through elevated SCFA levels in the intestine. Although the precise mechanisms by which such dietary factors mediate these effects, SCFA metabolites such as butyrate also function as histone deacetylase inhibitors (HDACi), that can act on the epigenome through chromatin remodeling changes. The aim of this review is to provide an overview of HDAC enzymes and to discuss the biological effects of HDACi. Further, we discuss the important relationship between diet and the balance between health and disease and how novel dietary interventions such as probiotics could be alternative approach for the prevention and/or treatment of chronic inflammatory disease through modulation of the intestinal microbiome.
Muñiz, Marco A; Dundas, Robert; Mahoney, Martin C
2003-01-01
The accuracy of a lead screening questionnaire in predicting elevated blood lead levels was examined in a pediatric practice in a rural part of New York state. A retrospective chart review was used to collect data on children ages 9 to 24 months who presented for well-child visits. Children with both questionnaire and lead level results available in the chart were included in the study (n = 171). The mean blood lead level among all children was 1.6 microg/dl (median = 2.0 microg/dl, range 0 to 24 microg/dl). Four children (2.3%) had elevated lead levels (greater than 10 microg/dl), with levels for two of these children being greater than 20 microg/dl. Although our lead screening questionnaire was expanded from the standard 1991 CDC questionnaire by the inclusion of six additional items, it was not especially useful in predicting elevated blood lead levels above 10 microg/dl. However, the questionnaire exhibited some utility in predicting marked elevations in blood lead levels (over 20 microg/dl). Although results in other geographic areas might differ, the lead questionnaire may have value by enhancing parents' awareness of potential lead hazards in their children's environment and may prove to be more useful in areas of high risk to lead exposure.
Elevated voltage level I.sub.DDQ failure testing of integrated circuits
Righter, Alan W.
1996-01-01
Burn in testing of static CMOS IC's is eliminated by I.sub.DDQ testing at elevated voltage levels. These voltage levels are at least 25% higher than the normal operating voltage for the IC but are below voltage levels that would cause damage to the chip.
O'Neill, Bridget F; Zangerl, Arthur R; Dermody, Orla; Bilgin, Damla D; Casteel, Clare L; Zavala, Jorge A; DeLucia, Evan H; Berenbaum, May R
2010-01-01
Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.
Is moral elevation an approach-oriented emotion?
Van de Vyver, Julie; Abrams, Dominic
2017-01-01
Abstract Two studies were designed to test whether moral elevation should be conceptualized as an approach-oriented emotion. The studies examined the relationship between moral elevation and the behavioral activation and inhibition systems. Study 1 (N = 80) showed that individual differences in moral elevation were associated with individual differences in behavioral activation but not inhibition. Study 2 (N = 78) showed that an elevation-inducing video promoted equally high levels of approach orientation as an anger-inducing video and significantly higher levels of approach orientation than a control video. Furthermore, the elevation-inducing stimulus (vs. the control condition) significantly promoted prosocial motivation and this effect was sequentially mediated by feelings of moral elevation followed by an approach-oriented state. Overall the results show unambiguous support for the proposal that moral elevation is an approach-oriented emotion. Applied and theoretical implications are discussed. PMID:28191027
The Encoding of Sound Source Elevation in the Human Auditory Cortex.
Trapeau, Régis; Schönwiesner, Marc
2018-03-28
Spatial hearing is a crucial capacity of the auditory system. While the encoding of horizontal sound direction has been extensively studied, very little is known about the representation of vertical sound direction in the auditory cortex. Using high-resolution fMRI, we measured voxelwise sound elevation tuning curves in human auditory cortex and show that sound elevation is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. We changed the ear shape of participants (male and female) with silicone molds for several days. This manipulation reduced or abolished the ability to discriminate sound elevation and flattened cortical tuning curves. Tuning curves recovered their original shape as participants adapted to the modified ears and regained elevation perception over time. These findings suggest that the elevation tuning observed in low-level auditory cortex did not arise from the physical features of the stimuli but is contingent on experience with spectral cues and covaries with the change in perception. One explanation for this observation may be that the tuning in low-level auditory cortex underlies the subjective perception of sound elevation. SIGNIFICANCE STATEMENT This study addresses two fundamental questions about the brain representation of sensory stimuli: how the vertical spatial axis of auditory space is represented in the auditory cortex and whether low-level sensory cortex represents physical stimulus features or subjective perceptual attributes. Using high-resolution fMRI, we show that vertical sound direction is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. In addition, we demonstrate that the shape of these tuning functions is contingent on experience with spectral cues and covaries with the change in perception, which may indicate that the tuning functions in low-level auditory cortex underlie the perceived elevation of a sound source. Copyright © 2018 the authors 0270-6474/18/383252-13$15.00/0.
Pacheco, Diego Andrés; Dudley, Leah S
2017-01-01
Abstract Low pollinator visitation in harsh environments may lead to pollen limitation which can threaten population persistence. Consequently, avoidance of pollen limitation is expected in outcrossing species subjected to habitually low pollinator service. The elevational decline in visitation rates on many high mountains provides an outstanding opportunity for addressing this question. According to a recent meta-analysis, levels of pollen limitation in alpine and lowland species do not differ. If parallel trends are manifested among populations of alpine species with wide elevational ranges, how do their uppermost populations contend with lower visitation? We investigated visitation rates and pollen limitation in high Andean Rhodolirium montanum. We test the hypothesis that lower visitation rates at high elevations are compensated for by the possession of long-lived flowers. Visitation rates decreased markedly over elevation as temperature decreased. Pollen limitation was absent at the low elevation site but did occur at the high elevation site. While initiation of stigmatic pollen deposition at high elevations was not delayed, rates of pollen arrival were lower, and cessation of pollination, as reflected by realized flower longevity, occurred later in the flower lifespan. Comparison of the elevational visitation decline and levels of pollen limitation indicates that flower longevity partially compensates for the lower visitation rates at high elevation. The functional role of flower longevity, however, was strongly masked by qualitative pollen limitation arising from higher abortion levels attributable to transference of genetically low-quality pollen in large clones. Stronger clonal growth at high elevations could counterbalance the negative fitness consequences of residual pollen limitation due to low visitation rates and/or difficult establishment under colder conditions. Visitation rates on the lower part of the elevational range greatly exceeded community rates recorded several decades ago when the planet was cooler. Current pollen limitation for some species in some habitats might underestimate historical levels. PMID:29225762
Base (100-year) flood elevations for selected sites in Marion County, Missouri
Southard, Rodney E.; Wilson, Gary L.
1998-01-01
The primary requirement for community participation in the National Flood Insurance Program is the adoption and enforcement of floodplain management requirements that minimize the potential for flood damages to new construction and avoid aggravating existing flooding conditions. This report provides base flood elevations (BFE) for a 100-year recurrence flood for use in the management and regulation of 14 flood-hazard areas designated by the Federal Emergency Management Agency as approximate Zone A areas in Marion County, Missouri. The one-dimensional surface-water flow model, HEC-RAS, was used to compute the base (100-year) flood elevations for the 14 Zone A sites. The 14 sites were located at U.S., State, or County road crossings and the base flood elevation was determined at the upstream side of each crossing. The base (100-year) flood elevations for BFE 1, 2, and 3 on the South Fork North River near Monroe City, Missouri, are 627.7, 579.2, and 545.9 feet above sea level. The base (100-year) flood elevations for BFE 4, 5, 6, and 7 on the main stem of the North River near or at Philadelphia and Palmyra, Missouri, are 560.5, 539.7, 504.2, and 494.4 feet above sea level. BFE 8 is located on Big Branch near Philadelphia, a tributary to the North River, and the base (100-year) flood elevation at this site is 530.5 feet above sea level. One site (BFE 9) is located on the South River near Monroe City, Missouri. The base (100-year) flood elevation at this site is 619.1 feet above sea level. Site BFE 10 is located on Bear Creek near Hannibal, Missouri, and the base (100-year) elevation is 565.5 feet above sea level. The four remaining sites (BFE 11, 12, 13, and 14) are located on the South Fabius River near Philadelphia and Palmyra, Missouri. The base (100-year) flood elevations for BFE 11, 12, 13, and 14 are 591.2, 578.4, 538.7, and 506.9 feet above sea level.
Effect of high altitude on blood glucose meter performance.
Fink, Kenneth S; Christensen, Dale B; Ellsworth, Allan
2002-01-01
Participation in high-altitude wilderness activities may expose persons to extreme environmental conditions, and for those with diabetes mellitus, euglycemia is important to ensure safe travel. We conducted a field assessment of the precision and accuracy of seven commonly used blood glucose meters while mountaineering on Mount Rainier, located in Washington State (elevation 14,410 ft). At various elevations each climber-subject used the randomly assigned device to measure the glucose level of capillary blood and three different concentrations of standardized control solutions, and a venous sample was also collected for later glucose analysis. Ordinary least squares regression was used to assess the effect of elevation and of other environmental potential covariates on the precision and accuracy of blood glucose meters. Elevation affects glucometer precision (p = 0.08), but becomes less significant (p = 0.21) when adjusted for temperature and relative humidity. The overall effect of elevation was to underestimate glucose levels by approximately 1-2% (unadjusted) for each 1,000 ft gain in elevation. Blood glucose meter accuracy was affected by elevation (p = 0.03), temperature (p < 0.01), and relative humidity (p = 0.04) after adjustment for the other variables. The interaction between elevation and relative humidity had a meaningful but not statistically significant effect on accuracy (p = 0.07). Thus, elevation, temperature, and relative humidity affect blood glucose meter performance, and elevated glucose levels are more greatly underestimated at higher elevations. Further research will help to identify which blood glucose meters are best suited for specific environments.
Processes contributing to resilience of coastal wetlands to sea-level rise
Stagg, Camille L.; Krauss, Ken W.; Cahoon, Donald R.; Cormier, Nicole; Conner, William H.; Swarzenski, Christopher M.
2016-01-01
The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise.
A comparison and evaluation between ICESat/GLAS altimetry and mean sea level in Thailand
NASA Astrophysics Data System (ADS)
Naksen, Didsaphan; Yang, Dong Kai
2015-10-01
Surface elevation is one of the importance information for GIS. Usually surface elevation can acquired from many sources such as satellite imageries, aerial photograph, SAR data or LiDAR by photogrammetry, remote sensing methodology. However the most trust information describe the actual surface elevation is Leveling from terrestrial survey. Leveling is giving the highest accuracy but in the other hand is also long period process spending a lot of budget and resources, moreover the LiDAR technology is new era to measure surface elevation. ICESat/GLAS is spaceborne LiDAR platform, a scientific satellite lunched by NASA in 2003. The study area was located at the middle part of Thailand between 12. ° - 14° North and 98° -100° East Latitude and Longitude. The main idea is to compare and evaluate about elevation between ICESat/GLAS Altimetry and mean sea level of Thailand. Data are collected from various sources, including the ICESat/GLAS altimetry data product from NASA, mean sea level from Royal Thai Survey Department (RTSD). For methodology, is to transform ICESat GLA14 from TOPX/Poseidon-Jason ellipsoid to WGS84 ellipsoid. In addition, ICESat/GLAS altimetry that extracted form centroid of laser footprint and mean sea level were compared and evaluated by 1st Layer National Vertical Reference Network. The result is shown that generally the range of elevation between ICESat/GLAS and mean sea level is wildly from 0. 8 to 25 meters in study area.
Kenney, Terry A.
2010-01-01
Operational procedures at U.S. Geological Survey gaging stations include periodic leveling checks to ensure that gages are accurately set to the established gage datum. Differential leveling techniques are used to determine elevations for reference marks, reference points, all gages, and the water surface. The techniques presented in this manual provide guidance on instruments and methods that ensure gaging-station levels are run to both a high precision and accuracy. Levels are run at gaging stations whenever differences in gage readings are unresolved, stations may have been damaged, or according to a pre-determined frequency. Engineer's levels, both optical levels and electronic digital levels, are commonly used for gaging-station levels. Collimation tests should be run at least once a week for any week that levels are run, and the absolute value of the collimation error cannot exceed 0.003 foot/100 feet (ft). An acceptable set of gaging-station levels consists of a minimum of two foresights, each from a different instrument height, taken on at least two independent reference marks, all reference points, all gages, and the water surface. The initial instrument height is determined from another independent reference mark, known as the origin, or base reference mark. The absolute value of the closure error of a leveling circuit must be less than or equal to ft, where n is the total number of instrument setups, and may not exceed |0.015| ft regardless of the number of instrument setups. Closure error for a leveling circuit is distributed by instrument setup and adjusted elevations are determined. Side shots in a level circuit are assessed by examining the differences between the adjusted first and second elevations for each objective point in the circuit. The absolute value of these differences must be less than or equal to 0.005 ft. Final elevations for objective points are determined by averaging the valid adjusted first and second elevations. If final elevations indicate that the reference gage is off by |0.015| ft or more, it must be reset.
NASA Astrophysics Data System (ADS)
Mishra, N. B.; Mainali, K. P.
2016-12-01
Climatic changes along with anthropogenic disturbances are causing dramatic ecological impacts in mid to high latitude mountain vegetation including in the Himalayas which are ecologically sensitive environments. Given the challenges associated with in situ vegetation monitoring in the Himalayas, remote sensing based quantification of vegetation dynamics can provide essential ecological information on changes in vegetation activity that may consist of alternative sequence of greening and/or browning periods. This study utilized a trend break analysis procedure for detection of monotonic as well as abrupt (either interruption or reversal) trend changes in smoothed normalized difference vegetation index satellite time-series data over the Himalayas. Overall, trend breaks in vegetation greenness showed high spatio-temporal variability in distribution considering elevation, ecoregion and land cover/use stratifications. Interrupted greening was spatially most dominant in all Himalayan ecoregions followed by abrupt browning. Areas showing trend reversal and monotonic trends appeared minority. Trend type distribution was strongly dependent on elevation as majority of greening (with or without interruption) occurred at lower elevation areas at higher elevation were dominantly. Ecoregion based stratification of trend types highlighted some exception to this elevational dependence as high altitude ecoregions of western Himalayas showed significantly less browning compared to the ecoregions in eastern Himalaya. Land cover/use based analysis of trend distribution showed that interrupted greening was most dominant in closed needleleafed forest following by rainfed cropland and mosaic croplands while interrupted browning most dominant in closed to open herbaceous vegetation found at higher elevation areas followed by closed needleleafed forest and closed to open broad leafed evergreen forests. Spatial analysis of trend break timing showed that for majority of areas experiencing interrupted greening, break in trend occurred later compared to areas with interrupted browning where break trend was observed much earlier. These results have significant implications for environmental management in the context of climate change and ecosystem dynamics in the Himalayas.
Feng, Jing; Wang, Xiaojuan; Zhu, Weihua; Chen, Si; Feng, Changwei
2017-06-01
In the present study, we investigated the functional role of microRNA (miR)-630 in epithelial-to-mesenchymal transition (EMT) of gastric cancer (GC) cells, as well as the regulatory mechanism. Cells of human GC cell line SGC 7901 were transfected with miR-630 mimic or miR-630 inhibitor. The transfection efficiency was confirmed by qRT-PCR. Cell migration and invasion were determined by Transwell assay. Protein expression of E-cadherin, vimentin, and Forkhead box protein M1 (FoxM1) was tested by Western blot. Moreover, the expression of FoxM1 was elevated or suppressed, and then the effects of miR-630 abnormal expression on EMT and properties of migration and invasion were examined again, as well as protein expression of Ras/phosphoinositide 3-kinase (PI3K)/AKT related factors. The results showed that (i) the EMT and properties of migration and invasion were statistically decreased by overexpression of miR-630 compared to the control group but markedly increased by suppression of miR-630. However, (ii) abnormal expression of FoxM1 reversed these effects in GC cells. Moreover, (iii) expression of GTP-Rac1, p-PI3K, and p-AKT was decreased by miR-630 overexpression but increased by FoxM1 overexpression. (iv) The decreased levels of GTP-Rac1, p-PI3K, and p-AKT induced by miR-630 overexpression were dramatically elevated by simultaneous overexpression of FoxM1. In conclusion, our results suggest that miR-630 might be a tumor suppressor in GC cells. MiR-630 suppresses EMT by regulating FoxM1 in GC cells, supposedly via inactivation of the Ras/PI3K/AKT pathway.
Kourilová, Pavlína; Hogg, Karen G; Kolárová, Libuse; Mountford, Adrian P
2004-03-15
Avian schistosomes are the primary causative agent of cercarial dermatitis in humans, but despite its worldwide occurrence, little is known of the immune mechanism of this disease. Using a murine model, hosts were exposed to primary (1x) and multiple (4x) infections of Trichobilharzia regenti via the pinna. Penetration of larvae into the skin evoked immediate edema, thickening of the exposure site, and an influx of leukocytes, including neutrophils, macrophages, CD4+ lymphocytes, and mast cells. A large proportion of the latter were in the process of degranulating. After 1x infection, inflammation was accompanied by the release of IL-1beta, IL-6, and IL-12p40. In contrast, in 4x reinfected animals the production of histamine, IL-4, and IL-10 was dramatically elevated within 1 h of infection. Analysis of Ag-stimulated lymphocytes from the skin-draining lymph nodes revealed that cells from 1x infected mice produced a mixed Th1/Th2 cytokine response, including abundant IFN-gamma, whereas cells from 4x reinfected mice were Th2 polarized, dominated by IL-4 and IL-5. Serum Abs confirmed this polarization, with elevated levels of IgG1 and IgE after multiple infections. Infection with radiolabeled cercariae revealed that almost 90% of larvae remained in the skin, and the majority died within 8 days after infection, although parasites were cleared more rapidly in 4x reinfected mice. Our results are the first demonstration that cercarial dermatitis, caused by bird schistosomes, is characterized by an early type I hypersensitivity reaction and a late phase of cutaneous inflammation, both associated with a polarized Th2-type acquired immune response.
Imamura, Fumio; Uchida, Junji; Kukita, Yoji; Kumagai, Toru; Nishino, Kazumi; Inoue, Takako; Kimura, Madoka; Oba, Shigeyuki; Kato, Kikuya
2016-04-01
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have dramatic effects on EGFR-mutant non-small-cell lung cancer (NSCLC). However, most patients experience disease recurrences, approximately half of which are T790M-mediated. Monitoring EGFR status with re-biopsy has spatiotemporal limitations. EGFR circulating tumor DNA (ctDNA) in serial plasma samples was amplified and 10(5) of them were sequenced with a next-generation sequencer. Plasma mutation (PM) score was defined as the number of reads containing deletions/substitutions in 10(5)EGFR cell free DNA (cfDNA). PM scores of various EGFR mutations showed dynamic, case-specific changes during EGFR-TKI treatments in 52 patients. The effects of the treatment on EGFR ctDNA were evaluated in 38 patients with elevated pre-treatment PM scores. The ctDNA responses correlated well with radiologic responses in radiologic good responders, whereas correlation was poor in non-responders. In addition to the peaks for the most prevalent ctDNA, small peaks of ctDNA with different types of activating EGFR mutations or the T790M mutation (early T790M ctDNA) appeared transiently in 10.5% and 26.3%, respectively. Early T790M ctDNA disappeared in all patients, including 7 who eventually developed acquired resistance accompanied by elevated levels of T790M ctDNA. Monitoring ctDNA is useful in evaluating treatment responses and monitoring driver oncogene status in NSCLC. ctDNA revealed clonal heterogeneity and genetic processes of cancer evolution in individual patients. The simple presence of the T790M mutation may be insufficient to confer EGFR-TKI resistance to tumor cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Elevation of Proenkephalin 143-183 in Cerebrospinal Fluid in Moyamoya Disease.
Yokoyama, Kinya; Maruwaka, Mikio; Yoshikawa, Kazuhiro; Araki, Yoshio; Okamoto, Sho; Sumitomo, Masaki; Kawamura, Akino; Sakamoto, Yusuke; Shimizu, Kenzo; Izumi, Takashi; Wakabayashi, Toshihiko
2018-01-01
In moyamoya disease (MMD), the causes of differences in clinical features between children and adults and of the dramatic temporal changes in moyamoya vessels are poorly understood. We previously discovered elevated levels of m/z 4588 and m/z 4473 peptides in cerebrospinal fluid (CSF) in patients with MMD. This study examined the amino acid sequences of these peptides and quantified in specimens. The m/z 4588 and m/z 4473 peptides in CSF from patients with MMD were purified and concentrated by high-performance liquid chromatography and ultrafiltration. Liquid chromatography coupled with tandem mass spectrometry analysis was performed to identify the amino acid sequences of these peptides. We quantified these peptides in samples using sandwich enzyme-linked immunosorbent assay, and concentrations in CSF were compared between MMD (n = 40, 19 male; median age, 37 years) and non-MMD intracranial disease (n = 40, 19 male; median age, 39 years) as controls. These peptides were identified as proenkephalin 143-183 (PENK 143-183). The concentration of PENK 143-183 was significantly greater in patients with MMD (median, 8,270 pmol/L) than control patients (median, 3,760 pmol/L; P < 0.001) and decreased in an age-dependent manner in MMD (r = -0.57; P < 0.001). The area under the receiver operating characteristic curve in children (age <18 years) was 0.885 (95% confidence interval 0.741-1). The correlation between proenkephalin concentration and temporal changes in moyamoya vessels was suggested. Proenkephalin 143-183 in CSF may offer a helpful diagnostic biomarker in pediatric MMD. The effect of enkephalin peptides through opioid growth factor receptor or delta opioid receptor might be associated with the pathophysiology of MMD. Copyright © 2017 Elsevier Inc. All rights reserved.
Huang, Ya-Qiang; Sun, Tong; Zhong, Wei-De; Wu, Chin-Lee
2014-01-01
Prostate-specific antigen (PSA) has been widely used as a serum marker for prostate cancer (PCa) screening or progression monitoring, which dramatically increased rate of early detection while significantly reduced PCa-specific mortality. However, a number of limitations of PSA have been noticed. Low specificity of PSA may lead to overtreatment in men who presenting with a total PSA (tPSA) level of < 10 ng/mL. As a type of free PSA (fPSA), [-2]proPSA is differentially expressed in peripheral zone of prostate gland and found to be elevated in serum of men with PCa. Two p2PSA-based derivatives, prostate health index (PHI) and %p2PSA, which were defined as [(p2PSA/fPSA) × √ tPSA] and [(p2PSA/fPSA) × 100] respectively, have been suggested to be increased in PCa and can better distinguish PCa from benign prostatic diseases than tPSA or fPSA. We performed a systematic review of the available scientific evidences to evaluate the potentials of %p2PSA and PHI in clinical application. Mounting evidences suggested that both %p2PSA and PHI possess higher area under the ROC curve (AUC) and better specificity at a high sensitivity for PCa detection when compare with tPSA and %fPSA. It indicated that measurements of %p2PSA and PHI significantly improved the accuracy of PCa detection and diminished unnecessary biopsies. Furthermore, elevations of %p2PSA and PHI are related to more aggressive diseases. %p2PSA and PHI might be helpful in reducing overtreatment on indolent cases or assessing the progression of PCa in men who undergo active surveillance. Further studies are needed before being applied in routine clinical practice.
An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration
Liu, Daofeng; Liu, Xiaojing; Meng, Yonglu; Sun, Cuihui; Tang, Hongshu; Jiang, Yudong; Khan, Muhammad Ali; Xue, Jingqi; Ma, Nan; Gao, Junping
2013-01-01
Dehydration is a major factor resulting in huge loss from cut flowers during transportation. In the present study, dehydration inhibited petal cell expansion and resulted in irregular flowers in cut roses, mimicking ethylene-treated flowers. Among the five floral organs, dehydration substantially elevated ethylene production in the sepals, whilst rehydration caused rapid and elevated ethylene levels in the gynoecia and sepals. Among the five ethylene biosynthetic enzyme genes (RhACS1–5), expression of RhACS1 and RhACS2 was induced by dehydration and rehydration in the two floral organs. Silencing both RhACS1 and RhACS2 significantly suppressed dehydration- and rehydration-induced ethylene in the sepals and gynoecia. This weakened the inhibitory effect of dehydration on petal cell expansion. β-glucuronidase activity driven by both the RhACS1 and RhACS2 promoters was dramatically induced in the sepals, pistil, and stamens, but not in the petals of transgenic Arabidopsis. This further supports the organ-specific induction of these two genes. Among the five rose ethylene receptor genes (RhETR1–5), expression of RhETR3 was predominantly induced by dehydration and rehydration in the petals. RhETR3 silencing clearly aggravated the inhibitory effect of dehydration on petal cell expansion. However, no significant difference in the effect between RhETR3-silenced flowers and RhETR-genes-silenced flowers was observed. Furthermore, RhETR-genes silencing extensively altered the expression of 21 cell expansion-related downstream genes in response to ethylene. These results suggest that induction of ethylene biosynthesis by dehydration proceeds in an organ-specific manner, indicating that ethylene can function as a mediator in dehydration-caused inhibition of cell expansion in rose petals. PMID:23599274
Huth, Troy J; Place, Sean P
2016-08-01
The IPCC has reasserted the strong influence of anthropogenic CO2 contributions on global climate change and highlighted the polar-regions as highly vulnerable. With these predictions the cold adapted fauna endemic to the Southern Ocean, which is dominated by fishes of the sub-order Notothenioidei, will face considerable challenges in the near future. Recent physiological studies have demonstrated that the synergistic stressors of elevated temperature and ocean acidification have a considerable, although variable, impact on notothenioid fishes. The present study explored the transcriptomic response of Pagothenia borchgrevinki to increased temperatures and pCO2 after 7, 28 and 56days of acclimation. We compared this response to short term studies assessing heat stress alone and foretell the potential impacts of these stressors on P. borchgrevinki's ability to survive a changing Southern Ocean. P. borchgrevinki did demonstrate a coordinated stress response to the dual-stressor condition, and even indicated that some level of inducible heat shock response may be conserved in this notothenioid species. However, the stress response of P. borchgrevinki was considerably less robust than that observed previously in the closely related notothenioid, Trematomus bernacchii, and varied considerably when compared across different acclimation time-points. Furthermore, the molecular response of these fish under multiple stressors displayed distinct differences compared to their response to short term heat stress alone. When exposed to increased sea surface temperatures, combined with ocean acidification, P. borchgrevinki demonstrated a coordinated stress response that has already peaked by 7days of acclimation and quickly diminished over time. However, this response is less dramatic than other closely related notothenioids under identical conditions, supporting previous research suggesting that this notothenioid species is less sensitive to environmental variation. Copyright © 2016 Elsevier B.V. All rights reserved.
Langley, Erika A; Krykbaeva, Marina; Blusztajn, Jan Krzysztof; Mellott, Tiffany J
2015-02-01
Autism is a neurodevelopmental disorder with multiple genetic and environmental risk factors. Choline is a fundamental nutrient for brain development and high choline intake during prenatal and/or early postnatal periods is neuroprotective. We examined the effects of perinatal choline supplementation on social behavior, anxiety, and repetitive behaviors in the BTBR T+Itpr3tf/J (BTBR) mouse model of autism. The BTBR or the more "sociable" C57BL/6J (B6) strain females were fed a control or choline-supplemented diet from mating, throughout pregnancy and lactation. After weaning to a control diet, all offspring were evaluated at one or two ages [postnatal days 33-36 and 89-91] using open field (OF), elevated plus maze (EPM), marble burying (MB), and three-chamber social interaction tests. As expected, control-diet BTBR mice displayed higher OF locomotor activity, impaired social preference, and increased digging behavior during the MB test compared to control-diet B6 mice. Choline supplementation significantly decreased digging behavior, elevated the percentage of open arm entries and time spent in open arms in the EPM by BTBR mice, but had no effect on locomotion. Choline supplementation did not alter social interaction in B6 mice but remarkably improved impairments in social interaction in BTBR mice at both ages, indicating that the benefits of supplementation persist long after dietary choline returns to control levels. In conclusion, our results suggest that high choline intake during early development can prevent or dramatically reduce deficits in social behavior and anxiety in an autistic mouse model, revealing a novel strategy for the treatment/prevention of autism spectrum disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Lokireddy, Sudarsanareddy; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D; Sharma, Mridula; Kambadur, Ravi; McFarlane, Craig
2011-12-01
Myostatin is a negative regulator of skeletal muscle growth and in fact acts as a potent inducer of "cachectic-like" muscle wasting in mice. The mechanism of action of myostatin in promoting muscle wasting has been predominantly studied in murine models. Despite numerous reports linking elevated levels of myostatin to human skeletal muscle wasting conditions, little is currently known about the signaling mechanism(s) through which myostatin promotes human skeletal muscle wasting. Therefore, in this present study we describe in further detail the mechanisms behind myostatin regulation of human skeletal muscle wasting using an in vitro human primary myotube atrophy model. Treatment of human myotube populations with myostatin promoted dramatic myotubular atrophy. Mechanistically, myostatin-induced myotube atrophy resulted in reduced p-AKT concomitant with the accumulation of active dephosphorylated Forkhead Box-O (FOXO1) and FOXO3. We further show that addition of myostatin results in enhanced activation of atrogin-1 and muscle-specific RING finger protein 1 (MURF1) and reduced expression of both myosin light chain (MYL) and myosin heavy chain (MYH). In addition, we found that myostatin-induced loss of MYL and MYH proteins is dependent on the activity of the proteasome and mediated via SMAD3-dependent regulation of FOXO1 and atrogin-1. Therefore, these data suggest that the mechanism through which myostatin promotes muscle wasting is very well conserved between species, and that myostatin-induced human myotube atrophy is mediated through inhibition of insulin-like growth factor (IGF)/phosphoinositide 3-kinase (PI3-K)/AKT signaling and enhanced activation of the ubiquitin-proteasome pathway and elevated protein degradation.
Ewing, S J; Zhu, S; Zhu, F; House, J S; Smart, R C
2008-11-01
CCAAT/enhancer-binding protein-beta (C/EBPbeta) is a mediator of cell survival and tumorigenesis. When C/EBPbeta(-/-) mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19(Arf) and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19(Arf) is dramatically elevated in C/EBPbeta(-/-) epidermis and that C/EBPbeta represses a p19(Arf) promoter reporter. To determine whether p19(Arf) is responsible for the proapoptotic phenotype in C/EBPbeta(-/-) mice, C/EBPbeta(-/-);p19(Arf-/-) mice were generated. C/EBPbeta(-/-);p19(Arf-/-) mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19(Arf) is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPbeta(-/-) epidermis, we generated K14-ER:Ras;C/EBPbeta(-/-) mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPbeta(-/-) mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPbeta represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPbeta may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents.
Ewing, SJ; Zhu, S; Zhu, F; House, JS; Smart, RC
2013-01-01
CCAAT/enhancer-binding protein-β (C/EBPβ) is a mediator of cell survival and tumorigenesis. When C/EBPβ−/− mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19Arf and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19Arf is dramatically elevated in C/EBPβ−/− epidermis and that C/EBPβ represses a p19Arf promoter reporter. To determine whether p19Arf is responsible for the proapoptotic phenotype in C/EBPβ−/− mice, C/EBPβ−/−;p19Arf−/− mice were generated. C/EBPβ−/−;p19Arf−/− mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19Arf is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPβ−/− epidermis, we generated K14-ER:Ras; C/EBPβ−/− mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPβ−/− mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPβ represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPβ may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents. PMID:18636078
NASA Astrophysics Data System (ADS)
Ren, Jin; Guo, Shuangsheng; Xu, Chunlan; Yang, Chengjia; Ai, Weidang; Tang, Yongkang; Qin, Lifeng
2014-01-01
Gynura bicolor DC is not only an edible plant but also a kind of traditional Chinese herbal medicine. G. bicolor DC grown in controlled environmental chambers under 3 CO2 concentrations [450 (ambient), 1500 (elevated), 8000 (super-elevated) μmol mol-1] and 3 LED lighting conditions [white (WL), 85% red + 15% blue (RB15), 70% red + 30% blue (RB30) ] were investigated to reveal plausible antioxidant anabolic responses to CO2 enrichment and LED light quality. Under ambient and elevated CO2 levels, blue light increasing from 15% to 30% was conducive to the accumulation of anthocyanins and total flavonoids, and the antioxidant activity of extract was also increased, but plant biomass was decreased. These results demonstrated that the reinforcement of blue light could induce more antioxidant of secondary metabolites, but depress the effective growth of G. bicolor DC under ambient and elevated CO2 levels. In addition, compared with the ambient and elevated CO2 levels, the increased anthocyanins, total flavonoids contents and antioxidant enzyme activities of G. bicolor DC under super-elevated CO2 level could serve as important components of antioxidative defense mechanism against CO2 stress. Hence, G. bicolor DC might have higher tolerance to CO2 stress.
The Rapid Ice Sheet Change Observatory (RISCO)
NASA Astrophysics Data System (ADS)
Morin, P.; Howat, I. M.; Ahn, Y.; Porter, C.; McFadden, E. M.
2010-12-01
The recent expansion of observational capacity from space has revealed dramatic, rapid changes in the Earth’s ice cover. These discoveries have fundamentally altered how scientists view ice-sheet change. Instead of just slow changes in snow accumulation and melting over centuries or millennia, important changes can occur in sudden events lasting only months, weeks, or even a single day. Our understanding of these short time- and space-scale processes, which hold important implications for future global sea level rise, has been impeded by the low temporal and spatial resolution, delayed sensor tasking, incomplete coverage, inaccessibility and/or high cost of data available to investigators. New cross-agency partnerships and data access policies provide the opportunity to dramatically improve the resolution of ice sheet observations by an order of magnitude, from timescales of months and distances of 10’s of meters, to days and meters or less. Advances in image processing technology also enable application of currently under-utilized datasets. The infrastructure for systematically gathering, processing, analyzing and distributing these data does not currently exist. Here we present the development of a multi-institutional, multi-platform observatory for rapid ice change with the ultimate objective of helping to elucidate the relevant timescales and processes of ice sheet dynamics and response to climate change. The Rapid Ice Sheet Observatory (RISCO) gathers observations of short time- and space-scale Cryosphere events and makes them easily accessible to investigators, media and general public. As opposed to existing data centers, which are structured to archive and distribute diverse types of raw data to end users with the specialized software and skills to analyze them, RISCO focuses on three types of geo-referenced raster (image) data products in a format immediately viewable with commonly available software. These three products are (1) sequences of images and image animations from the ice sheet scale down to scales of meters, (2) maps of ice flow velocity and acceleration and (3) digital elevation models and elevation change maps. These products are created both from user-tasked data acquisitions and from a decade of archived data. An online user interface will allow browsing of the data catalog, product ordering and requests for sensor tasking. Over the next few years, RISCO will develop into a long-term observational system, with an adaptable infrastructure to accommodate new sensors and currently unforeseeable demands. RISCO has the potential to greatly enhance observation of ice sheets, moving from ad hoc studies of past changes using whatever data happens to be available, to scalable, targeted, near-real time monitoring of events as they occur.
The magnitude of elevated maternal serum human chorionic gonadotropin and pregnancy complications.
Sharony, Reuven; Zipper, Oren; Amichay, Keren; Wiser, Amir; Kidron, Debora; Biron-Shental, Tal; Maymon, Ron
2017-07-01
This study assessed the correlation between the magnitude of the elevation in maternal serum human chorionic gonadotropin (MShCG) levels and pregnancy complications. Among 80,716 screened pregnancies, 120 with moderately elevated MShCG (3.00-5.99 MoM) were compared to 84 with extremely elevated MShCG >6.00 MoM. A control series of 120 women with normal MShCG (<3.00 MoM) were matched. Rates of intrauterine growth restriction, preterm labour, antepartum foetal death (APFD), pre-eclampsia, and placental abruption were analysed. We found that the study group had more adverse outcomes than the control group (73/204 [36%] vs. 18/120 [15%]; p < .0001). The rate was higher in the extremely elevated group than in the moderately elevated group (43/84 [51%] vs. 30/120 [25%]; p < .0001). All 12 cases of APFD (14%) occurred among the extremely elevated series. In conclusion, adverse pregnancy outcomes are more common in women with extremely elevated MShCG. The patients should receive counselling regarding this trend and undergo close pregnancy monitoring. Impact statement • What is already known on this subject?In addition to its contribution to Down syndrome (DS) screening, maternal serum human chorionic gonadotropin (MShCG) levels are a marker for pregnancy complications such as intrauterine growth restriction (IUGR), preterm labour (PTL), antepartum fatal death (APFD), pre-eclampsia (PE), placental abruption (PA) and fetal malformations with or without chromosomal aberrations. • What the results of this study add? We found that in the presence of elevated MShCG levels, the incidence of IUGR and PTL increased. PE increased clinically, but statistical significance was seen only when MShCG was extremely elevated (≥ 6.00 MoM). APFD and PA were associated with very high MShCG levels only. • What the implications are of these findings for clinical practice and/or further research? Women with high MShCG levels should be counselled. In case of very high levels (≥ 6.00 MoM), the risk of APFD and PA should be discussed. The pregnancy should be monitored for IUGR, PTL and PE. In view of the limited number of enrolled patients with very high levels of MShCG, the experience of other institutions is needed to corroborate these findings.
Heat shock response and mammal adaptation to high elevation (hypoxia).
Wang, Xiaolin; Xu, Cunshuan; Wang, Xiujie; Wang, Dongjie; Wang, Qingshang; Zhang, Baochen
2006-10-01
The mammal's high elevation (hypoxia) adaptation was studied by using the immunological and the molecular biological methods to understand the significance of Hsp (hypoxia) adaptation in the organic high elevation, through the mammal heat shock response. (1) From high elevation to low elevation (natural hypoxia): Western blot and conventional RT-PCR and real-time fluorescence quota PCR were adopted. Expression difference of heat shock protein of 70 (Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals (yak). (2) From low elevation to high elevation (hypoxia induction): The mammals (domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300, 3300 and 5000 m above sea level to be raised for a period of 3 weeks before being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was determined with RT-PCR. The result indicated that all of the mammals at different elevations possessed their heat shock response gene. Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation (hypoxia). The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells' normal physiological functions under stress. The Hsp70 has its threshold value. The altitude of 5000 m above sea level is the best condition for the heat shock response, and it starts to reduce when the altitude is over 6000 m above sea level. The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.
The 3D Elevation Program: summary for Missouri
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Montana
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The new 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Louisiana
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Tennessee
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for New York
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
3D Elevation Program: summary for Vermont
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Maryland
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Ohio
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation's natural and constructed features.
The 3D Elevation Program: summary for Indiana
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation's natural and constructed features.
The 3D Elevation Program: summary for Maine
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Kentucky
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Oregon
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for North Dakota
Carswell, William J.
2014-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios.The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Florida
Carswell, William J.
2013-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios.The new 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the OMB Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
3D Elevation Program: summary for Nebraska
Carswell, William J.
2015-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 interferometric synthetic aperture radar (ifsar) data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
The 3D Elevation Program: summary for Alabama
Carswell, William J.
2013-01-01
The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States and quality level 5 ifsar data for Alaska with a 6- to 10-year acquisition cycle provided the highest benefit/cost ratios. The new 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A-16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other 3D representations of the Nation’s natural and constructed features.
Wu, Lei; Lou, Yun-sheng; Meng, Yan; Wang, Wei-qing; Cui, He-yang
2015-01-01
A pot experiment was conducted to investigate the effects of silicon (Si) supply on diurnal variations of photosynthesis and transpiration-related physiological parameters at rice heading stage under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B. (ambient, A) and elevated UV-B (elevated by 20%, E), and four Si supply levels, i.e. Sio (control, 0 kg SiO2 . hm-2), Si, (sodium silicate, 100 kg SiO2 . hm-2), Si2 (sodium silicate, 200 kg SiO2 . hm2), Si3 (slag fertilizer, 200 kg SiO2 . hm-2). The results showed that, compared with ambient UV-B radiation, elevated UV-B radiation decreased the net photosynthesis rate (Pn) , intercellular CO2 concentration (Ci), transpiration rate (Tr), stomatal conductivity (gs) and water use efficiency (WUE) by 11.3%, 5.5%, 10.4%, 20.3% and 6.3%, respectively, in the treatment without Si supply (Si, level), and decreased the above parameters by 3.8%-5.5%, 0.7%-4.8%, 4.0%-8.7%, 7.4%-20.2% and 0.7%-5.9% in the treatments with Si supply (Si1, Si2 and Si3 levels) , respectively. Namely, elevated UV-B radiation decreased the photosynthesis and transpiration-related physiological parameters, but silicon supply could obviously mitigate the depressive effects of elevated UV-B radiation. Under elevated UV-B radiation, compared with control (Si0 level), silicon supply increased Pn, Ci, gs and WUE by 16.9%-28.0%, 3.5%-14.3%, 16.8% - 38.7% and 29.0% - 51.2%, respectively, but decreased Tr by 1.9% - 10.8% in the treatments with Si supply (Si1 , Si2 and Si3 levels). That is, silicon supply could mitigate the depressive effects of elevated UV-B radiation through significantly increasingnP., CigsgK and WUE, but decreasing T,. However, the difference existed in ameliorating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among the treatments of silicon supply, with the sequence of Si3>Si2>1i >Si0. This study suggested that fertilizing slag was helpful not only in recycling industrial wastes, but also in effectively mitigating the depressive effects of elevated UV-B radiation on photosynthesis and transpiration in rice production.
Sea level and turbidity controls on mangrove soil surface elevation change
Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.
2015-01-01
Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.