DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Hongli, E-mail: kaixinguoan@163.com; Yuen, Manwai, E-mail: nevetsyuen@hotmail.com
2014-05-15
In this paper, we investigate the analytical solutions of the compressible Navier-Stokes equations with dependent-density viscosity. By using the characteristic method, we successfully obtain a class of drifting solutions with elliptic symmetry for the Navier-Stokes model wherein the velocity components are governed by a generalized Emden dynamical system. In particular, when the viscosity variables are taken the same as Yuen [M. W. Yuen, “Analytical solutions to the Navier-Stokes equations,” J. Math. Phys. 49, 113102 (2008)], our solutions constitute a generalization of that obtained by Yuen. Interestingly, numerical simulations show that the analytical solutions can be used to explain the driftingmore » phenomena of the propagation wave like Tsunamis in oceans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touma, Rony; Zeidan, Dia
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potentialmore » of the proposed scheme.« less
Drift-free MPEG-4 AVC semi-fragile watermarking
NASA Astrophysics Data System (ADS)
Hasnaoui, M.; Mitrea, M.
2014-02-01
While intra frame drifting is a concern for all types of MPEG-4 AVC compressed-domain video processing applications, it has a particular negative impact in watermarking. In order to avoid the drift drawbacks, two classes of solutions are currently considered in the literature. They try either to compensate the drift distortions at the expense of complex decoding/estimation algorithms or to restrict the insertion to the blocks which are not involved in the prediction, thus reducing the data payload. The present study follows a different approach. First, it algebraically models the drift distortion spread problem by considering the analytic expressions of the MPEG-4 AVC encoding operations. Secondly, it solves the underlying algebraic system under drift-free constraints. Finally, the advanced solution is adapted to take into account the watermarking peculiarities. The experiments consider an m-QIM semi-fragile watermarking method and a video surveillance corpus of 80 minutes. For prescribed data payload (100 bit/s), robustness (BER < 0.1 against transcoding at 50% in stream size), fragility (frame modification detection with accuracies of 1/81 from the frame size and 3s) and complexity constraints, the modified insertion results in gains in transparency of 2 dB in PSNR, of 0.4 in AAD, of 0.002 in IF, of 0.03 in SC, of 0.017 NCC and 22 in DVQ.
Traverse Focusing of Intense Charged Particle Beams with Chromatic Effects for Heavy Ion Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
James M. Mitrani, Igor D. Kaganovich, Ronald C. Davidson
A fi nal focusing scheme designed to minimize chromatic effects is discussed. The Neutralized Drift Compression Experiment-II (NDCX-II) will apply a velocity tilt for longitudinal bunch compression, and a fi nal focusing solenoid (FFS) for transverse bunch compression. In the beam frame, neutralized drift compression causes a suffi ciently large spread in axial momentum, pz , resulting in chromatic effects to the fi nal focal spot during transverse bunch compression. Placing a weaker solenoid upstream of a stronger fi nal focusing solenoid (FFS) mitigates chromatic effects and improves transverse focusing by a factor of approximately 2-4 for appropriate NDCX-II parameters.
Short intense ion pulses for materials and warm dense matter research
NASA Astrophysics Data System (ADS)
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.
Irradiation of materials with short, intense ion pulses at NDCX-II
NASA Astrophysics Data System (ADS)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; Friedman, A.; Gilson, E. P.; Grote, D. P.; Ji, Q.; Kaganovich, I. D.; Ludewigt, B.; Persaud, A.; Sierra, C.; Silverman, M.; Stepanov, A. D.; Sulyman, A.; Treffert, F.; Waldron, W. L.; Zimmer, M.; Schenkel, T.
2017-06-01
We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; National Centre for Physics, Shahdara Valley Road, Islamabad; Zahoor, Sara
2016-09-15
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existencemore » regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.« less
NASA Astrophysics Data System (ADS)
Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali
2016-09-01
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.
Short intense ion pulses for materials and warm dense matter research
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; ...
2015-08-14
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10 10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientificmore » topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.« less
Irradiation of materials with short, intense ion pulses at NDCX-II
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...
2017-05-31
Here, we present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11 ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6 eV)] He + ion beam is neutralizedmore » in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. In conclusion, quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance« less
Simulated Prompt Acceleration of Multi-MeV Electrons by the 17 March 2015 Interplanetary Shock
NASA Astrophysics Data System (ADS)
Hudson, Mary; Jaynes, Allison; Kress, Brian; Li, Zhao; Patel, Maulik; Shen, Xiao-Chen; Thaller, Scott; Wiltberger, Michael; Wygant, John
2017-10-01
Prompt enhancement of relativistic electron flux at L = 3-5 has been reported from Van Allen Probes Relativistic Electron Proton Telescope (REPT) measurements associated with the 17 March 2015 interplanetary shock compression of the dayside magnetosphere. Acceleration by ˜1 MeV is inferred on less than a drift timescale as seen in prior shock compression events, which launch a magnetosonic azimuthal electric field impulse tailward. This impulse propagates from the dayside around the flanks accelerating electrons in drift resonance at the dusk flank. Such longitudinally localized acceleration events produce a drift echo signature which was seen at >1 MeV energy on both Van Allen Probe spacecraft, with sustained observations by Probe B outbound at L = 5 at 2100 MLT at the time of impulse arrival, measured by the Electric Fields and Waves instrument. MHD test particle simulations are presented which reproduce drift echo features observed in the REPT measurements at Probe B, including the energy and pitch angle dependence of drift echoes observed. While the flux enhancement was short lived for this event due to subsequent inward motion of the magnetopause, stronger events with larger electric field impulses, as observed in March 1991 and the Halloween 2003 storm, produce enhancements which can be quantified by the inward radial transport and energization determined by the induction electric field resulting from dayside compression.
Gordine, Samantha Alex; Fedak, Michael; Boehme, Lars
2015-01-01
ABSTRACT In southern elephant seals (Mirounga leonina), fasting- and foraging-related fluctuations in body composition are reflected by buoyancy changes. Such buoyancy changes can be monitored by measuring changes in the rate at which a seal drifts passively through the water column, i.e. when all active swimming motion ceases. Here, we present an improved knowledge-based method for detecting buoyancy changes from compressed and abstracted dive profiles received through telemetry. By step-wise filtering of the dive data, the developed algorithm identifies fragments of dives that correspond to times when animals drift. In the dive records of 11 southern elephant seals from South Georgia, this filtering method identified 0.8–2.2% of all dives as drift dives, indicating large individual variation in drift diving behaviour. The obtained drift rate time series exhibit that, at the beginning of each migration, all individuals were strongly negatively buoyant. Over the following 75–150 days, the buoyancy of all individuals peaked close to or at neutral buoyancy, indicative of a seal's foraging success. Independent verification with visually inspected detailed high-resolution dive data confirmed that this method is capable of reliably detecting buoyancy changes in the dive records of drift diving species using abstracted data. This also affirms that abstracted dive profiles convey the geometric shape of drift dives in sufficient detail for them to be identified. Further, it suggests that, using this step-wise filtering method, buoyancy changes could be detected even in old datasets with compressed dive information, for which conventional drift dive classification previously failed. PMID:26486362
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewhurst, J. M.; Hnat, B.; Dendy, R. O.
2009-07-15
The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity {nabla}{sup 2}{phi}, where {phi} is electrostatic potential, in a plasma with background density inhomogeneity {kappa}=-{partial_derivative} ln n{sub 0}/{partial_derivative}x and magnetic field strength inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. Finite C introduces interchange effects and {nabla}B drifts into the framework of drift turbulence through compressibility of the ExB and diamagnetic drifts. This paper addresses the direct computation of the radial ExB density flux {gamma}{sub n}=-n{partial_derivative}{phi}/{partial_derivative}y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive {gamma}{sub n} and tracer motion, and analytical underpinnings. Systematic trends emergemore » in the dependence on C of the skewness of the distribution of pointwise {gamma}{sub n} and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity {pi}={nabla}{sup 2}{phi}-n+({kappa}-C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation {gamma}{sub n}=({kappa}-C)D{sub x} between the radial density flux {gamma}{sub n} and the radial tracer diffusivity D{sub x}, which is shown to explain key trends in the simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi
A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e.,more » a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.« less
Short Intense Ion Pulses for Materials and Warm Dense Matter Research
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Lidia, S. M.; Persaud, A.; Stettler, M.; Takakuwa, J. H.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r <1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. We will describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components (arXiv:1506.05839). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas
NASA Astrophysics Data System (ADS)
Adnan, Muhammad; Mahmood, S.; Qamar, Anisa
2014-09-01
Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg-de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.
NASA Astrophysics Data System (ADS)
Kreyscher, Martin; Harder, Markus; Lemke, Peter; Flato, Gregory M.
2000-05-01
A hierarchy of sea ice rheologies is evaluated on the basis of a comprehensive set of observational data. The investigations are part of the Sea Ice Model Intercomparison Project (SIMIP). Four different sea ice rheology schemes are compared: a viscous-plastic rheology, a cavitating-fluid model, a compressible Newtonian fluid, and a simple free drift approach with velocity correction. The same grid, land boundaries, and forcing fields are applied to all models. As verification data, there are (1) ice thickness data from upward looking sonars (ULS), (2) ice concentration data from the passive microwave radiometers SMMR and SSM/I, (3) daily buoy drift data obtained by the International Arctic Buoy Program (IABP), and (4) satellite-derived ice drift fields based on the 85 GHz channel of SSM/I. All models are optimized individually with respect to mean drift speed and daily drift speed statistics. The impact of ice strength on the ice cover is best revealed by the spatial pattern of ice thickness, ice drift on different timescales, daily drift speed statistics, and the drift velocities in Fram Strait. Overall, the viscous-plastic rheology yields the most realistic simulation. In contrast, the results of the very simple free-drift model with velocity correction clearly show large errors in simulated ice drift as well as in ice thicknesses and ice export through Fram Strait compared to observation. The compressible Newtonian fluid cannot prevent excessive ice thickness buildup in the central Arctic and overestimates the internal forces in Fram Strait. Because of the lack of shear strength, the cavitating-fluid model shows marked differences to the statistics of observed ice drift and the observed spatial pattern of ice thickness. Comparison of required computer resources demonstrates that the additional cost for the viscous-plastic sea ice rheology is minor compared with the atmospheric and oceanic model components in global climate simulations.
Ferguson, J Connor; Chechetto, Rodolfo G; O'Donnell, Chris C; Dorr, Gary J; Moore, John H; Baker, Greg J; Powis, Kevin J; Hewitt, Andrew J
2016-08-01
Previous research has sought to adopt the use of drift-reducing technologies (DRTs) for use in field trials to control diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera: Plutellidae) in canola (Brassica napus L.). Previous studies observed no difference in canopy penetration from fine to coarse sprays, but the coverage was higher for fine sprays. DBM has a strong propensity to avoid sprayed plant material, putting further pressure on selecting technologies that maximise coverage, but often this is at the expense of a greater drift potential. This study aims to examine the addition of a DRT oil that is labelled for control of DBM as well and its effect on the drift potential of the spray solution. The objectives of the study are to quantify the droplet size spectrum and spray drift potential of each nozzle type to select technologies that reduce spray drift, to examine the effect of the insecticide tank mix at both (50 and 100 L ha(-1) ) application rates on droplet size and spray drift potential across tested nozzle type and to compare the droplet size results of each nozzle by tank mix against the drift potential of each nozzle. The nozzle type affected the drift potential the most, but the spray solution also affected drift potential. The fine spray quality (TCP) resulted in the greatest drift potential (7.2%), whereas the coarse spray quality (AIXR) resulted in the lowest (1.3%), across all spray solutions. The spray solutions mixed at the 100 L ha(-1) application volume rate resulted in a higher drift potential than the same products mixed at the 50 L ha(-1) mix rate. The addition of the paraffinic DRT oil was significant in reducing the drift potential of Bacillus thuringiensis var. kurstkai (Bt)-only treatments across all tested nozzle types. The reduction in drift potential from the fine spray quality to the coarse spray quality was up to 85%. The addition of a DRT oil is an effective way to reduce the spray solution drift potential across all nozzle types and tank mixes evaluated in this study. The greatest reduction in drift potential can be achieved by changing nozzle type, which can reduce the losses of the spray to the surrounding environment. Venturi nozzles greatly reduce the drift potential compared with standard nozzles by as much as 85% across all three insecticide spray solutions. Results suggest that a significant reduction in drift potential can be achieved by changing the nozzle type, and can be achieved without a loss in control of DBM. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Fluffy dust forms icy planetesimals by static compression
NASA Astrophysics Data System (ADS)
Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji
2013-09-01
Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.
Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion
NASA Astrophysics Data System (ADS)
Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.
2003-10-01
The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.
Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment
Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; ...
2016-05-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted onmore » the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.« less
Small-scale lacustrine drifts in Lake Champlain, Vermont
Manley, Patricia L.; Manley, T.O.; Hayo, Kathryn; Cronin, Thomas
2012-01-01
High resolution CHIRP (Compressed High Intensity Radar Pulse) seismic profiles reveal the presence of two lacustrine sediment drifts located in Lake Champlain's Juniper Deep. Both drifts are positive features composed of highly laminated sediments. Drift B sits on a basement high while Drift A is built on a trough-filling acoustically-transparent sediment unit inferred to be a mass-transport event. These drifts are oriented approximately north–south and are parallel to a steep ridge along the eastern shore of the basin. Drift A, located at the bottom of a structural trough, is classified as a confined, elongate drift that transitions northward to become a system of upslope asymmetric mudwaves. Drift B is perched atop a structural high to the west of Drift A and is classified as a detached elongate drift. Bottom current depositional control was investigated using Acoustic Doppler Current Profilers (ADCPs) located across Drift A. Sediment cores were taken at the crest and at the edges of the Drift A and were dated. Drift source, deposition, and evolution show that these drifts are formed by a water column shear with the highest deposition occurring along its crest and western flank and began developing circa 8700–8800 year BP.
Drift-based scrape-off particle width in X-point geometry
NASA Astrophysics Data System (ADS)
Reiser, D.; Eich, T.
2017-04-01
The Goldston heuristic estimate of the scrape-off layer width (Goldston 2012 Nucl. Fusion 52 013009) is reconsidered using a fluid description for the plasma dynamics. The basic ingredient is the inclusion of a compressible diamagnetic drift for the particle cross field transport. Instead of testing the heuristic model in a sophisticated numerical simulation including several physical mechanisms working together, the purpose of this work is to point out basic consequences for a drift-dominated cross field transport using a reduced fluid model. To evaluate the model equations and prepare them for subsequent numerical solution a specific analytical model for 2D magnetic field configurations with X-points is employed. In a first step parameter scans in high-resolution grids for isothermal plasmas are done to assess the basic formulas of the heuristic model with respect to the functional dependence of the scrape-off width on the poloidal magnetic field and plasma temperature. Particular features in the 2D-fluid calculations—especially the appearance of supersonic parallel flows and shock wave like bifurcational jumps—are discussed and can be understood partly in the framework of a reduced 1D model. The resulting semi-analytical findings might give hints for experimental proof and implementation in more elaborated fluid simulations.
Robust video transmission with distributed source coded auxiliary channel.
Wang, Jiajun; Majumdar, Abhik; Ramchandran, Kannan
2009-12-01
We propose a novel solution to the problem of robust, low-latency video transmission over lossy channels. Predictive video codecs, such as MPEG and H.26x, are very susceptible to prediction mismatch between encoder and decoder or "drift" when there are packet losses. These mismatches lead to a significant degradation in the decoded quality. To address this problem, we propose an auxiliary codec system that sends additional information alongside an MPEG or H.26x compressed video stream to correct for errors in decoded frames and mitigate drift. The proposed system is based on the principles of distributed source coding and uses the (possibly erroneous) MPEG/H.26x decoder reconstruction as side information at the auxiliary decoder. The distributed source coding framework depends upon knowing the statistical dependency (or correlation) between the source and the side information. We propose a recursive algorithm to analytically track the correlation between the original source frame and the erroneous MPEG/H.26x decoded frame. Finally, we propose a rate-distortion optimization scheme to allocate the rate used by the auxiliary encoder among the encoding blocks within a video frame. We implement the proposed system and present extensive simulation results that demonstrate significant gains in performance both visually and objectively (on the order of 2 dB in PSNR over forward error correction based solutions and 1.5 dB in PSNR over intrarefresh based solutions for typical scenarios) under tight latency constraints.
A comment on plasma 'pile-up' in the F-region
NASA Technical Reports Server (NTRS)
Rishbeth, H.; Hanson, W. B.
1974-01-01
At ionospheric heights, the geomagnetic field is virtually incompressible. In consequence, an electromagnetic drift can only compress the F-region plasma by moving it in a direction in which the field becomes stronger. This paper examines the rate of compression at mid-latitudes for three different assumptions about the ion motion.
Irradiation of materials with short, intense ion pulses at NDCX-II
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...
2017-05-31
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
Irradiation of materials with short, intense ion pulses at NDCX-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
Effects of Temporal Features and Order on the Apparent duration of a Visual Stimulus
Bruno, Aurelio; Ayhan, Inci; Johnston, Alan
2012-01-01
The apparent duration of a visual stimulus has been shown to be influenced by its speed. For low speeds, apparent duration increases linearly with stimulus speed. This effect has been ascribed to the number of changes that occur within a visual interval. Accordingly, a higher number of changes should produce an increase in apparent duration. In order to test this prediction, we asked subjects to compare the relative duration of a 10-Hz drifting comparison stimulus with a standard stimulus that contained a different number of changes in different conditions. The standard could be static, drifting at 10 Hz, or mixed (a combination of variable duration static and drifting intervals). In this last condition the number of changes was intermediate between the static and the continuously drifting stimulus. For all standard durations, the mixed stimulus looked significantly compressed (∼20% reduction) relative to the drifting stimulus. However, no difference emerged between the static (that contained no changes) and the mixed stimuli (which contained an intermediate number of changes). We also observed that when the standard was displayed first, it appeared compressed relative to when it was displayed second with a magnitude that depended on standard duration. These results are at odds with a model of time perception that simply reflects the number of temporal features within an interval in determining the perceived passing of time. PMID:22461778
Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; ...
2012-05-31
In this study, the design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ionmore » driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B~100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasmaelectrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electrondynamics strongly affected by a weak applied magnetic field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, J.W.; Arbelaez, D.; Bieniosek, F.M.
The Heavy Ion Fusion Science Virtual National Laboratory in the USA is constructing a new Neutralized Drift Compression eXperiment (NDCX-II) at LBNL. This facility is being developed for high energy density physics and inertial fusion energy research. The 12 m long induction linac in NDCX-II will produce a Li{sup +} beam pulse, at energies of 1.2-3 MeV, to heat target material to the warm dense matter regime ({approx} 1 eV). By making use of special acceleration voltage waveforms, 2.5T solenoid focusing, and neutralized drift compression, 20 - 50 nC of beam charge from the ion source will be compressed longitudinallymore » and radially to achieve a subnanosecond pulse length and mm-scale target spot size. The original Neutralized Drift Compression Experiment (NDCX-I) has successfully demonstrated simultaneous radial and longitudinal compression by imparting a velocity ramp to the ion beam, which then drifts in a neutralizing plasma to and through the final focussing solenoid and onto the target. At higher kinetic energy and current, NDCX-II will offer more than 100 times the peak energy fluence on target of NDCX-I. NDCX-II makes use of many parts from the decommissioned Advanced Test Accelerator (ATA) at LLNL. It includes 27 lattice periods between the injector and the neutralized drift compression section (Figure 1). There are 12 energized induction cells, 9 inactive cells which provide drift space, and 6 diagnostic cells which provide beam diagnostics and pumping. Custom pulsed power systems generate ramped waveforms for the first 7 induction cells, so as to quickly compress the beam from 600 ns at the injector down to 70 ns. After this compression, the high voltages of the ATA Blumleins are then used to rapidly add energy to the beam. The Blumleins were designed to match the ferrite core volt-seconds with pulses up to 250 kV and a fixed FWHM of 70 ns. The machine is limited to a pulse repetition rate of once every 20 seconds due to cooling requirements. The NDCX-II beam is highly space-charge dominated. The 1-D ASP code was used to synthesize high voltage waveform for acceleration, while the 3-D Warp particle-in-cell code was used for detailed design of the lattice. The Li{sup +} ion was chosen because its Bragg Peak energy (at {approx} 2 MeV) coincides with the NDCX-II beam energy. The 130 keV injector will have a 10.9 cm diameter ion source. Testing of small (0.64 cm diameter) lithium doped alumino-silicate ion sources has demonstrated the current density ({approx} 1 mA/cm{sup 2}) used in the design, with acceptable lifetime. A 7.6 cm diameter source has been successfully produced to verify that the coating method can be applied to such a large emitting area. The ion source will operate at {approx} 1275 C; thus a significant effort was made in the design to manage the 4 kW heating power and the associated cooling requirements. In modifying the ATA induction cells for NDCX-II, the low-field DC solenoids were replaced with 2.5 T pulsed solenoids. The beam pipe diameter was decreased in order to reduce the axial extent of the solenoid fringe fields and to make room for water cooling. In addition, an outer copper cylinder (water-cooled) was used to exclude the solenoid magnetic flux from the ferrite cores. Precise alignment is essential because the beam has a large energy spread due to the rapid pulse compression, such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. A novel pulsed-wire measurement method is used to align the pulsed solenoid magnets. Alignment accuracy has been demonstrated to within 100 {micro}m of the induction cell axis. The neutralized drift compression region after the last induction cell is approximately 1.2 m long and includes ferroelectric plasma sources (FEPS) fabricated by PPPL similar to those successfully operating in NDCX-I. The 8-T final focus pulsed solenoid, filtered cathodic arc plasma sources (FCAPS), and target chamber from NDCX-I are to be relocated to NDCX-II. The NDCX-II project started in July 2009 and is expected to complete in fall of 2011. As future funds become available, additional induction cells and pulsed power systems will be added to increase the beam energy.« less
Existence regimes for shocks in inhomogeneous magneto-plasmas having entropy
NASA Astrophysics Data System (ADS)
Iqbal, Javed; Yaqub Khan, M.
2018-04-01
The finding of connection of plasma density and temperature with entropy gives an incitement to study different plasma models with respect to entropy. Nonlinear dissipative one- and two-dimensional structures (shocks) are investigated in nonuniform magnetized plasma with respect to entropy. The dissipation comes in the medium through ion-neutral collisions. The linear dispersion relation is derived. The Korteweg-deVries-Burgers and Kadomtsev-Petviashvili-Burgers equations are derived for nonlinear drift waves in 1-D and 2-D by employing the drift approximation. It is found that vd/u ( vd is the diamagnetic drift velocity and u is the velocity of nonlinear structure) plays a significant role in the shock formation. It is also found that entropy has a significant effect on the strength of shocks. It is noticed that v d/u determines the rarefactive and compressive nature of the shocks. It is observed that upper and lower bounds exist for the shock velocity. It is also observed that the existing regimes for both one- and two-dimensional shocks for kappa distributed electrons are different from shocks with Cairns distributed electrons. Both rarefactive and compressive shocks are found for the 1-D drift waves with kappa distributed electrons. Interestingly, it is noticed that entropy enhances the strength of one- and two-dimensional shocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuoka, Seikichi, E-mail: matsuoka@rist.or.jp; Satake, Shinsuke; Kanno, Ryutaro
2015-07-15
In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weightmore » δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E{sub r}. The peaked behavior of the neoclassical radial fluxes around E{sub r }={sub }0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account.« less
NASA Astrophysics Data System (ADS)
Parfenyev, Vladimir M.; Vergeles, Sergey S.
2018-06-01
Recently the generation of eddy currents by interacting surface waves was observed experimentally. The phenomenon provides the possibility for manipulation of particles which are immersed in the fluid. The analysis shows that the amplitude of the established eddy currents produced by stationary surface waves does not depend on the fluid viscosity in the free surface case. The currents become parametrically larger, being inversely proportional to the square root of the fluid viscosity in the case when the fluid surface is covered by an almost incompressible thin liquid (i.e., shear elasticity is zero) film formed by an insoluble agent with negligible internal viscous losses as compared to the dissipation in the fluid bulk. Here we extend the theory for a thin insoluble film with zero shear elasticity and small shear and dilational viscosities on the case of an arbitrary elastic compression modulus. We find both contributions into the Lagrangian motion of passive tracers, which are the advection by the Eulerian vertical vorticity and the Stokes drift. Whereas the Stokes drift contribution preserves its value for the free surface case outside a thin viscous sublayer, the Eulerian vertical vorticity strongly depends on the fluid viscosity at high values of the film compression modulus. The Stokes drift acquires a strong dependence on the fluid viscosity inside the viscous sublayer; however, the change is compensated by an opposite change in the Eulerian vertical vorticity. As a result, the vertical dependence of the intensity of eddy currents is given by a sum of two decaying exponents with both decrements being of the order of the wave number. The decrements are numerically different, so the Eulerian contribution becomes dominant at some depth for the surface film with any compression modulus.
A robust H.264/AVC video watermarking scheme with drift compensation.
Jiang, Xinghao; Sun, Tanfeng; Zhou, Yue; Wang, Wan; Shi, Yun-Qing
2014-01-01
A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression.
A Robust H.264/AVC Video Watermarking Scheme with Drift Compensation
Sun, Tanfeng; Zhou, Yue; Shi, Yun-Qing
2014-01-01
A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression. PMID:24672376
Focusing Intense Charged Particle Beams with Achromatic Effects for Heavy Ion Fusion
NASA Astrophysics Data System (ADS)
Mitrani, James; Kaganovich, Igor
2012-10-01
Final focusing systems designed to minimize the effects of chromatic aberrations in the Neutralized Drift Compression Experiment (NDCX-II) are described. NDCX-II is a linear induction accelerator, designed to accelerate short bunches at high current. Previous experiments showed that neutralized drift compression significantly compresses the beam longitudinally (˜60x) in the z-direction, resulting in a narrow distribution in z-space, but a wide distribution in pz-space. Using simple lenses (e.g., solenoids, quadrupoles) to focus beam bunches with wide distributions in pz-space results in chromatic aberrations, leading to lower beam intensities (J/cm^2). Therefore, the final focusing system must be designed to compensate for chromatic aberrations. The paraxial ray equations and beam envelope equations are numerically solved for parameters appropriate to NDCX-II. Based on these results, conceptual designs for final focusing systems using a combination of solenoids and/or quadrupoles are optimized to compensate for chromatic aberrations. Lens aberrations and emittance growth will be investigated, and analytical results will be compared with results from numerical particle-in-cell (PIC) simulation codes.
3D Resistive MHD Simulations of Formation, Compression, and Acceleration of Compact Tori
NASA Astrophysics Data System (ADS)
Woodruff, Simon; Meyer, Thomas; Stuber, James; Romero-Talamas, Carlos; Brown, Michael; Kaur, Manjit; Schaffner, David
2017-10-01
We present results from extended resistive 3D MHD simulations (NIMROD) pertaining to a new formation method for toroidal plasmas using a reconnection region that forms in a radial implosion, and results from the acceleration of CTs along a drift tube that are accelerated by a coil and are allowed to go tilt unstable and form a helical minimum energy state. The new formation method results from a reconnection region that is generated between two magnetic compression coils that are ramped to 320kV in 2 μs. When the compressing field is aligned anti-parallel to a pre-existing CT, a current sheet and reconnection region forms that accelerates plasma radially inwards up to 500km/s which stagnates and directed energy converts to thermal, raising temperatures to 500eV. When field is aligned parallel to the pre-existing CT, the configuration can be accelerated along a drift tube. For certain ratios of magnetic field to density, the CT goes tilt-unstable forming a twisted flux rope, which can also be accelerated and stagnated on an end wall, where temperature and field increases as the plasma compresses. We compare simulation results with adiabatic scaling relations. Work supported by ARPA-E ALPHA program and DARPA.
Modeling of multi-band drift in nanowires using a full band Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Hathwar, Raghuraj; Saraniti, Marco; Goodnick, Stephen M.
2016-07-01
We report on a new numerical approach for multi-band drift within the context of full band Monte Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an applied electric field. The KI equations are based on the solution of the time-dependent Schrödinger equation, and previous solutions of these equations have used Runge-Kutta (RK) methods to numerically solve the KI equations. This approach made the solution of the KI equations numerically expensive and was therefore only applied to a small part of the Brillouin zone (BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus expansion (also known as "exponential perturbation theory"). This method is more accurate than the RK method as the solution lies on the exponential map and shares important qualitative properties with the exact solution such as the preservation of the unitary character of the time evolution operator. The solution of the KI equations is then incorporated through a modified FBMC free-flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field FBMC and analyzing the average carrier energies and carrier populations under high electric fields. Numerical simulations show that the average energy of the carriers under high electric field is significantly higher when multi-band drift is taken into consideration, due to the interband transitions allowing carriers to achieve higher energies.
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-08-21
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg.
Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga
2017-01-01
The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg. PMID:28825672
Mesozoic Deformation and Its Geological Significance in the Southern Margin of the South China Sea
NASA Astrophysics Data System (ADS)
Zhu, Rongwei; Liu, Hailing; Yao, Yongjian; Wang, Yin
2018-05-01
The pre-Eocene history of the region around the present South China Sea is not well known. New multi-channel seismic profiles provide valuable insights into the probable Mesozoic history of this region. Detailed structural and stratigraphic interpretations of the multi-channel seismic profiles, calibrated with relevant drilling and dredging data, show major Mesozoic structural features. A structural restoration was done to remove the Cenozoic tectonic influence and calculate the Mesozoic tectonic compression ratios. The results indicate that two groups of compressive stress with diametrically opposite orientations, S(S)E-N(N)W and N(N)W-S(S)E, were active during the Mesozoic. The compression ratio values gradually decrease from north to south and from west to east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate at which the Nansha block drifted northward in the late Jurassic to late Cretaceous. The Nansha block drifted northward until it collided and sutured with the southern China margin. The opening of the present South China Sea may be related to this suture zone, which was a tectonic zone of weakness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitner, M.; Bieniosek, F.; Kwan, J.
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration between Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL), is currently constructing a new induction linear accelerator, called Neutralized Drift Compression eXperiment NDCX-II. The accelerator design makes effective use of existing components from LLNL's decommissioned Advanced Test Accelerator (ATA), especially induction cells and Blumlein voltage sources that have been transferred to LBNL. We have developed an aggressive acceleration 'schedule' that compresses the emitted ion pulse from 500 ns to 1 ns in just 15 meters. In the nominal design concept, 30more » nC of Li{sup +} are accelerated to 3.5 MeV and allowed to drift-compress to a peak current of about 30 A. That beam will be utilized for warm dense matter experiments investigating the interaction of ion beams with matter at high temperature and pressure. Construction of the accelerator will be complete within a period of approximately two and a half years and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers.« less
Irradiation of Materials using Short, Intense Ion Beams
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.
2016-10-01
We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).
High power linear pulsed beam annealer
Strathman, Michael D.; Sadana, Devendra K.; True, Richard B.
1983-01-01
A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.
Application of a fast Newton-Krylov solver for equilibrium simulations of phosphorus and oxygen
NASA Astrophysics Data System (ADS)
Fu, Weiwei; Primeau, François
2017-11-01
Model drift due to inadequate spinup is a serious problem that complicates the interpretation of climate change simulations. Even after a 300 year spinup we show that solutions are not only still drifting but often drifting away from their eventual equilibrium over large parts of the ocean. Here we present a Newton-Krylov solver for computing cyclostationary equilibrium solutions of a biogeochemical model for the cycling of phosphorus and oxygen. In addition to using previously developed preconditioning strategies - time-averaging and coarse-graining the Jacobian matrix - we also introduce a new strategy: the adiabatic elimination of a fast variable (particulate organic phosphorus) by slaving it to a slow variable (dissolved inorganic phosphorus). We use transport matrices derived from the Community Earth System Model (CESM) with a nominal horizontal resolution of 1° × 1° and 60 vertical levels to implement and test the solver. We find that the new solver obtains seasonally-varying equilibrium solutions with no visible drift using no more than 80 simulation years.
Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.
2017-01-01
We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686
NASA Astrophysics Data System (ADS)
Wang, Dan; Yan, Lixin; Du, YingChao; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang
2018-02-01
Premodulated comblike electron bunch trains are used in a wide range of research fields, such as for wakefield-based particle acceleration and tunable radiation sources. We propose an optimized compression scheme for bunch trains in which a traveling wave accelerator tube and a downstream drift segment are together used as a compressor. When the phase injected into the accelerator tube for the bunch train is set to ≪-10 0 ° , velocity bunching occurs in a deep overcompression mode, which reverses the phase space and maintains a velocity difference within the injected beam, thereby giving rise to a compressed comblike electron bunch train after a few-meter-long drift segment; we call this the deep overcompression scheme. The main benefits of this scheme are the relatively large phase acceptance and the uniformity of compression for the bunch train. The comblike bunch train generated via this scheme is widely tunable: For the two-bunch case, the energy and time spacings can be continuously adjusted from +1 to -1 MeV and from 13 to 3 ps, respectively, by varying the injected phase of the bunch train from -22 0 ° to -14 0 ° . Both theoretical analysis and beam dynamics simulations are presented to study the properties of the deep overcompression scheme.
Mesozoic Compressional Folds of the Nansha Waters, Southern South China Sea
NASA Astrophysics Data System (ADS)
Zhu, R.; Liu, H.; Yao, Y.; Wang, Y.
2017-12-01
As an important part of the South China Sea, the southern margin of the South China Sea is fundamental to understand the interaction of the Eurasian, Pacific and Indian-Australian plates and the evolution of the South China Sea. Some multi-channel seismic profiles of the Nansha waters together with published drillings and dredge data were correlated for interpretation. The strata of the study region can be divided into the upper, middle and lower structural layers. The upper and middle structural layers with extensional tectonics are Cenozoic; the lower structural layer suffered compression is Mesozoic. Further structural restoration was done to remove the Cenozoic tectonic influence and to calculate the Mesozoic tectonic compression ratios. The results indicate that two diametrically opposite orientations of compressive stress, S(S)E towards N(N)W orientation and N(N)W towards S(S)E orientation respectively, once existed in the lower structural layer of the study area and shared the same variation trend. The compression ratio values gradually decrease both from the north to the south and from the west to the east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate of the Nansha block drifted northward in Late Jurassic to Late Cretaceous, which had pushed the Nansha block drifted northward until it collided and sutured with the Southern China Margin. Thus the opening of the present-day South China Sea may be related to this suture zone, which was tectonically weakness zone.Key words: Mesozoic compression; structural restoration; proto-South China Sea; Nansha waters; Southern South China Sea; Acknowledgements: The work was granted by the National Natural Science Foundation of China (Grant Nos. 41476039, 91328205, 41576068 and 41606080).
49 CFR 173.115 - Class 2, Divisions 2.1, 2.2, and 2.3-Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cryogenic gas, compressed gas in solution, asphyxiant gas and oxidizing gas). For the purpose of this... °F). (f) Compressed gas in solution. A compressed gas in solution is a non-liquefied compressed gas...% by mass or more flammable components and the chemical heat of combustion is 30 kJ/g or more; (2) An...
49 CFR 173.115 - Class 2, Divisions 2.1, 2.2, and 2.3-Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cryogenic gas, compressed gas in solution, asphyxiant gas and oxidizing gas). For the purpose of this... °F). (f) Compressed gas in solution. A compressed gas in solution is a non-liquefied compressed gas... mass or more flammable components and the chemical heat of combustion is 30 kJ/g or more; (2) An...
49 CFR 173.115 - Class 2, Divisions 2.1, 2.2, and 2.3-Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cryogenic gas, compressed gas in solution, asphyxiant gas and oxidizing gas). For the purpose of this... °F). (f) Compressed gas in solution. A compressed gas in solution is a non-liquefied compressed gas...% by mass or more flammable components and the chemical heat of combustion is 30 kJ/g or more; (2) An...
Predator prey oscillations in a simple cascade model of drift wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berionni, V.; Guercan, Oe. D.
2011-11-15
A reduced three shell limit of a simple cascade model of drift wave turbulence, which emphasizes nonlocal interactions with a large scale mode, is considered. It is shown to describe both the well known predator prey dynamics between the drift waves and zonal flows and to reduce to the standard three wave interaction equations. Here, this model is considered as a dynamical system whose characteristics are investigated. The analytical solutions for the purely nonlinear limit are given in terms of the Jacobi elliptic functions. An approximate analytical solution involving Jacobi elliptic functions and exponential growth is computed using scale separationmore » for the case of unstable solutions that are observed when the energy injection rate is high. The fixed points of the system are determined, and the behavior around these fixed points is studied. The system is shown to display periodic solutions corresponding to limit cycle oscillations, apparently chaotic phase space orbits, as well as unstable solutions that grow slowly while oscillating rapidly. The period doubling route to transition to chaos is examined.« less
Swim stress, motion, and deformation of active matter: effect of an external field.
Takatori, Sho C; Brady, John F
2014-12-21
We analyze the stress, dispersion, and average swimming speed of self-propelled particles subjected to an external field that affects their orientation and speed. The swimming trajectory is governed by a competition between the orienting influence (i.e., taxis) associated with the external (e.g., magnetic, gravitational, thermal, nutrient concentration) field versus the effects that randomize the particle orientations (e.g., rotary Brownian motion and/or an intrinsic tumbling mechanism like the flagella of bacteria). The swimmers' motion is characterized by a mean drift velocity and an effective translational diffusivity that becomes anisotropic in the presence of the orienting field. Since the diffusivity yields information about the micromechanical stress, the anisotropy generated by the external field creates a normal stress difference in the recently developed "swim stress" tensor [Takatori, Yan, and Brady, Phys. Rev. Lett., 2014]. This property can be exploited in the design of soft, compressible materials in which their size, shape, and motion can be manipulated and tuned by loading the material with active swimmers. Since the swimmers exert different normal stresses in different directions, the material can compress/expand, elongate, and translate depending on the external field strength. Such an active system can be used as nano/micromechanical devices and motors. Analytical solutions are corroborated by Brownian dynamics simulations.
Redshift drift in an inhomogeneous universe: averaging and the backreaction conjecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk
2016-01-01
An expression for the average redshift drift in a statistically homogeneous and isotropic dust universe is given. The expression takes the same form as the expression for the redshift drift in FLRW models. It is used for a proof-of-principle study of the effects of backreaction on redshift drift measurements by combining the expression with two-region models. The study shows that backreaction can lead to positive redshift drift at low redshifts, exemplifying that a positive redshift drift at low redshifts does not require dark energy. Moreover, the study illustrates that models without a dark energy component can have an average redshiftmore » drift observationally indistinguishable from that of the standard model according to the currently expected precision of ELT measurements. In an appendix, spherically symmetric solutions to Einstein's equations with inhomogeneous dark energy and matter are used to study deviations from the average redshift drift and effects of local voids.« less
PDR with a Foot-Mounted IMU and Ramp Detection
Jiménez, Antonio R.; Seco, Fernando; Zampella, Francisco; Prieto, José C.; Guevara, Jorge
2011-01-01
The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person’s body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person’s foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps. PMID:22163701
NASA Astrophysics Data System (ADS)
Sun, Guohua; Chuang-Sheng, Walter Yang; Gu, Qiang; DesRoches, Reginald
2018-04-01
To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained (PR) steel frames with solid reinforced concrete (RC) infill walls, an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution, load transferring mechanism, and failure modes of RC infill walls filled in PR steel frame. The proposed composite compression struts model for the solid RC infill walls is composed of α inclined struts and main diagonal struts. The α inclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface, while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls. This study derives appropriate formulas for the effective widths of the α inclined strut and main diagonal strut, respectively. An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated. The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results, and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%. This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.
Stability of Bifurcating Stationary Solutions of the Artificial Compressible System
NASA Astrophysics Data System (ADS)
Teramoto, Yuka
2018-02-01
The artificial compressible system gives a compressible approximation of the incompressible Navier-Stokes system. The latter system is obtained from the former one in the zero limit of the artificial Mach number ɛ which is a singular limit. The sets of stationary solutions of both systems coincide with each other. It is known that if a stationary solution of the incompressible system is asymptotically stable and the velocity field of the stationary solution satisfies an energy-type stability criterion, then it is also stable as a solution of the artificial compressible one for sufficiently small ɛ . In general, the range of ɛ shrinks when the spectrum of the linearized operator for the incompressible system approaches to the imaginary axis. This can happen when a stationary bifurcation occurs. It is proved that when a stationary bifurcation from a simple eigenvalue occurs, the range of ɛ can be taken uniformly near the bifurcation point to conclude the stability of the bifurcating solution as a solution of the artificial compressible system.
One-Dimensional Fokker-Planck Equation with Quadratically Nonlinear Quasilocal Drift
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.
2018-04-01
The Fokker-Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian's iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.
Soil-like deposits observed by Sojourner, the Pathfinder rover
Moore, Henry J.; Bickler, Donald B.; Crisp, Joy A.; Eisen, Howard J.; Gensler, Jeffrey A.; Haldemann, Albert F.C.; Matijevic, Jacob R.; Reid, Lisa K.; Pavlics, Ferenc
1999-01-01
Most of the soil-like materials at the Pathfinder landing site behave like moderately dense soils on Earth with friction angles near 34°-39° and are called cloddy deposits. Cloddy deposits appear to be poorly sorted with dust-sized to granule-sized mineral or rock grains; they may contain pebbles, small rock fragments, and clods. Thin deposits of porous, compressible drifts with friction angles near 26°-28° are also present. Drifts are fine grained. Cohesions of both types of deposits are small. There may be indurated soil-like deposits and/or coated or crusted rocks. Cloddy deposits may be fluvial sediments of the Ares-Tiu floods, but other origins, such as ejecta from nearby impact craters, should be considered. Drifts are probably dusts that settled from the Martian atmosphere. Remote-sensing signatures of the deposits inferred from rover observations are consistent with those observed from orbit and Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Kwan, J
Earlier this year, the U.S. Department of Energy Office of Fusion Energy Sciences approved the NDCX-II project, a second-generation Neutralized Drift Compression eXperiment. NDCX-II is a collaborative effort of scientists and engineers from Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and the Princeton Plasma Physics Laboratory (PPPL), in a formal collaboration known as the Virtual National Laboratory for Heavy Ion Fusion Science (HIFS-VNL). Supported by $11 M of funding from the American Recovery and Reinvestment Act, construction at LBNL commenced in July of 2009, with completion anticipated in March of 2012. Applications of this facility will includemore » studies of: the basic physics of the poorly understood 'warm dense matter' regime of temperatures around 1 eV and densities near solid, using uniform, volumetric ion heating of thin foil targets; ion energy coupling into an ablating plasma (such as that which occurs in an inertial fusion target) using beams with time-varying kinetic energy; space-charge-dominated ion beam dynamics; and beam focusing and pulse compression in neutralizing plasma. The machine will complement facilities at GSI in Darmstadt, Germany, but will employ lower ion kinetic energies and commensurately shorter stopping ranges in matter. Much of this research will contribute directly toward the collaboration's ultimate goal of electric power production via heavy-ion beam-driven inertial confinement fusion ('Heavy-Ion Fusion', or HIF). In inertial fusion, a target containing fusion fuel is heated by energetic 'driver' beams, and undergoes a miniature thermonuclear explosion. Currently the largest U.S. research program in inertial confinement is at Livermore's National Ignition Facility (NIF), a multibillion-dollar, stadium-sized laser facility optimized for studying physics issues relevant to nuclear stockpile stewardship. Nonetheless, NIF is expected to establish the fundamental feasibility of fusion ignition on the laboratory scale, and thus advance this approach to fusion energy. Heavy ion accelerators have a number of attributes (such as efficiency, longevity, and use of magnetic fields for final focusing) that make them attractive candidates as Inertial Fusion energy (IFE) drivers As with LBNL's existing NDCX-I, the new machine will produce short ion pulses using the technique of neutralized drift compression. A head-to-tail velocity gradient is imparted to the beam, which then shortens as it drifts in neutralizing plasma that suppresses space-charge forces. NDCX-II will make extensive use of induction cells and other hardware from the decommissioned ATA facility at LLNL. Figure (1) shows the layout of the facility, to be sited in LBNL's Building 58 alongside the existing NDCX-I apparatus. This second-generation facility represents a significant upgrade from the existing NDCX-I. It will be extensible and reconfigurable; in the configuration that has received the most emphasis, each NDCX-II pulse will deliver 30 nC of ions at 3 MeV into a mm-scale spot onto a thin-foil target. Pulse compression to {approx} 1 ns occurs in the accelerator as well as in the drift compression line; the beam is manipulated using suitably tailored voltage waveforms in the accelerating gaps. NDCX-II employs novel beam dynamics. To use the 200 kV Blumlein power supplies from ATA (blue cylinders in the figure), the pulse duration must first be reduced to less than 70 ns. This shortening is accomplished in an initial stage of non-neutral drift compression, downstream of the injector and the first few induction cells. The compression is sufficiently rapid that fewer than ten long-pulse waveform generators are needed, with Blumleins powering the rest of the acceleration. Extensive simulation studies have enabled an attractive physics design; these employ both a new 1-D code (ASP) and the VNL's workhorse 2-D/3-D code Warp. Snapshots from a simulation movie (available online) appear in Fig. 2. Studies on a dedicated test stand are quantifying the performance of the ATA hardware and of pulsed solenoids that will provide transverse beam confinement (ions require much stronger fields than the electrons accelerated by ATA). For more information, see the recent article in the Berkeley Lab News and references therein. Joe Kwan is the NDCX-II project manager and Alex Friedman is the leader for the physics design.« less
Two-stream instability with time-dependent drift velocity
Qin, Hong; Davidson, Ronald C.
2014-06-26
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
Tseng, Shi-Chang; Wu, Tong-Yu; Chou, Jung-Chuan; Liao, Yi-Hung; Lai, Chih-Hsien; Yan, Siao-Jie; Tseng, Ting-Wei
2018-02-20
We investigate the temperature effect on sensing characteristics and drift effect of an arrayed flexible ruthenium dioxide (RuO₂)/graphene oxide (GO) chloride sensor at different solution temperatures between 10 °C and 50 °C. The average sensor sensitivities according to our experimental results were 28.2 ± 1.4 mV/pCl (10 °C), 42.5 ± 2.0 mV/pCl (20 °C), 47.1 ± 1.8 mV/pCl (30 °C), 54.1 ± 2.01 mV/pCl (40 °C) and 46.6 ± 2.1 mV/pCl (50 °C). We found the drift effects of an arrayed flexible RuO₂/GO chloride sensor in a 1 M NaCl solution to be between 8.2 mV/h and 2.5 mV/h with solution temperatures from 10 °C to 50 °C.
Tseng, Shi-Chang; Wu, Tong-Yu; Liao, Yi-Hung; Lai, Chih-Hsien; Yan, Siao-Jie; Tseng, Ting-Wei
2018-01-01
We investigate the temperature effect on sensing characteristics and drift effect of an arrayed flexible ruthenium dioxide (RuO2)/graphene oxide (GO) chloride sensor at different solution temperatures between 10 °C and 50 °C. The average sensor sensitivities according to our experimental results were 28.2 ± 1.4 mV/pCl (10 °C), 42.5 ± 2.0 mV/pCl (20 °C), 47.1 ± 1.8 mV/pCl (30 °C), 54.1 ± 2.01 mV/pCl (40 °C) and 46.6 ± 2.1 mV/pCl (50 °C). We found the drift effects of an arrayed flexible RuO2/GO chloride sensor in a 1 M NaCl solution to be between 8.2 mV/h and 2.5 mV/h with solution temperatures from 10 °C to 50 °C. PMID:29461506
The isentropic quantum drift-diffusion model in two or three space dimensions
NASA Astrophysics Data System (ADS)
Chen, Xiuqing
2009-05-01
We investigate the isentropic quantum drift-diffusion model, a fourth order parabolic system, in space dimensions d = 2, 3. First, we establish the global weak solutions with large initial value and periodic boundary conditions. Then we show the semiclassical limit by delicate interpolation estimates and compactness argument.
Complete Numerical Solution of the Diffusion Equation of Random Genetic Drift
Zhao, Lei; Yue, Xingye; Waxman, David
2013-01-01
A numerical method is presented to solve the diffusion equation for the random genetic drift that occurs at a single unlinked locus with two alleles. The method was designed to conserve probability, and the resulting numerical solution represents a probability distribution whose total probability is unity. We describe solutions of the diffusion equation whose total probability is unity as complete. Thus the numerical method introduced in this work produces complete solutions, and such solutions have the property that whenever fixation and loss can occur, they are automatically included within the solution. This feature demonstrates that the diffusion approximation can describe not only internal allele frequencies, but also the boundary frequencies zero and one. The numerical approach presented here constitutes a single inclusive framework from which to perform calculations for random genetic drift. It has a straightforward implementation, allowing it to be applied to a wide variety of problems, including those with time-dependent parameters, such as changing population sizes. As tests and illustrations of the numerical method, it is used to determine: (i) the probability density and time-dependent probability of fixation for a neutral locus in a population of constant size; (ii) the probability of fixation in the presence of selection; and (iii) the probability of fixation in the presence of selection and demographic change, the latter in the form of a changing population size. PMID:23749318
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok
2007-01-01
The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.
NASA Astrophysics Data System (ADS)
Haspot, Boris
2016-06-01
We consider the compressible Navier-Stokes equations for viscous and barotropic fluids with density dependent viscosity. The aim is to investigate mathematical properties of solutions of the Navier-Stokes equations using solutions of the pressureless Navier-Stokes equations, that we call quasi solutions. This regime corresponds to the limit of highly compressible flows. In this paper we are interested in proving the announced result in Haspot (Proceedings of the 14th international conference on hyperbolic problems held in Padova, pp 667-674, 2014) concerning the existence of global weak solution for the quasi-solutions, we also observe that for some choice of initial data (irrotationnal) the quasi solutions verify the porous media, the heat equation or the fast diffusion equations in function of the structure of the viscosity coefficients. In particular it implies that it exists classical quasi-solutions in the sense that they are {C^{∞}} on {(0,T)× {R}N} for any {T > 0}. Finally we show the convergence of the global weak solution of compressible Navier-Stokes equations to the quasi solutions in the case of a vanishing pressure limit process. In particular for highly compressible equations the speed of propagation of the density is quasi finite when the viscosity corresponds to {μ(ρ)=ρ^{α}} with {α > 1}. Furthermore the density is not far from converging asymptotically in time to the Barrenblatt solution of mass the initial density {ρ0}.
Deterministic Methods in Stochastic Optimal Control.
1992-10-01
as (0.1) by adding a correction terito Ot ,h drift . L.tt us con|sidehr the Stoclia.tic optimtal control problem (0.1),(0.2). The dynaumtic progra...with ant icipative drift ) which will be done in Secioni I .sing Ihli decomposition of solutions of SI)E’s (see Kunila [14. p. 268] and Ocone and...programllitig. In the case when nonanticipating controls appear in the drift the Wong-Zakai con•’.rgence result slates that under smoothness and boundedness
Energetic Particles Dynamics in Mercury's Magnetosphere
NASA Technical Reports Server (NTRS)
Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.
2013-01-01
We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface
NASA Astrophysics Data System (ADS)
Choe, Chol-Ung; Kim, Ryong-Son; Ri, Ji-Song
2017-09-01
We consider a ring of phase oscillators with nonlocal coupling strength and heterogeneous phase lags. We analyze the effects of heterogeneity in the phase lags on the existence and stability of a variety of steady states. A nonlocal coupling with heterogeneous phase lags that allows the system to be solved analytically is suggested and the stability of solutions along the Ott-Antonsen invariant manifold is explored. We present a complete bifurcation diagram for stationary patterns including the uniform drift and modulated drift states as well as chimera state, which reveals that the stable modulated drift state and a continuum of metastable drift states could occur due to the heterogeneity of the phase lags. We verify our theoretical results using the direct numerical simulations of the model system.
NASA Astrophysics Data System (ADS)
Shan, S. Ali; Saleem, H.
2018-05-01
Electrostatic solitary waves and double layers (DLs) formed by the coupled ion acoustic (IA) and drift waves have been investigated in non-uniform plasma using q-nonextensive distribution function for the electrons and assuming ions to be cold Ti< Te. It is found that both compressive and rarefactive nonlinear structures (solitary waves and DLs) are possible in such a system. The steeper gradients are supportive for compressive solitary (and double layers) and destructive for rarefactive ones. The q-nonextensivity parameter q and the magnitudes of gradient scale lengths of density and temperature have significant effects on the amplitude of the double layers (and double layers) as well as on the speed of these structures. This theoretical model is general which has been applied here to the F-region ionosphere for illustration.
NASA Astrophysics Data System (ADS)
de La Vaissière, Rémi; Armand, Gilles; Talandier, Jean
2015-02-01
The Excavation Damaged Zone (EDZ) surrounding a drift, and in particular its evolution, is being studied for the performance assessment of a radioactive waste underground repository. A specific experiment (called CDZ) was designed and implemented in the Meuse/Haute-Marne Underground Research Laboratory (URL) in France to investigate the EDZ. This experiment is dedicated to study the evolution of the EDZ hydrogeological properties (conductivity and specific storage) of the Callovo-Oxfordian claystone under mechanical compression and artificial hydration. Firstly, a loading cycle applied on a drift wall was performed to simulate the compression effect from bentonite swelling in a repository drift (bentonite is a clay material to be used to seal drifts and shafts for repository closure purpose). Gas tests (permeability tests with nitrogen and tracer tests with helium) were conducted during the first phase of the experiment. The results showed that the fracture network within the EDZ was initially interconnected and opened for gas flow (particularly along the drift) and then progressively closed with the increasing mechanical stress applied on the drift wall. Moreover, the evolution of the EDZ after unloading indicated a self-sealing process. Secondly, the remaining fracture network was resaturated to demonstrate the ability to self-seal of the COx claystone without mechanical loading by conducting from 11 to 15 repetitive hydraulic tests with monitoring of the hydraulic parameters. During this hydration process, the EDZ effective transmissivity dropped due to the swelling of the clay materials near the fracture network. The hydraulic conductivity evolution was relatively fast during the first few days. Low conductivities ranging at 10-10 m/s were observed after four months. Conversely, the specific storage showed an erratic evolution during the first phase of hydration (up to 60 days). Some uncertainty remains on this parameter due to volumetric strain during the sealing of the fractures. The hydration was stopped after one year and cross-hole hydraulic tests were performed to determine more accurately the specific storage as well as the hydraulic conductivity at a meter-scale. All hydraulic conductivity values measured at the injection interval and at the observation intervals were all below 10-10 m/s. Moreover, the preferential inter-connectivity along the drift disappeared. Specific storage values at the observation and injection intervals were similar. Furthermore they were in agreement with the value obtained at the injection interval within the second hydration phase (60 days after starting hydration). The graphical abstract synthesizes the evolution of the hydraulic/gas conductivity for 8 intervals since the beginning of the CDZ experiment. The conductivity limit of 10-10 m/s corresponds to the lower bound hydraulic definition of the EDZ and it is demonstrated that EDZ can be sealed. This is a significant result in the demonstration of the long-term safety of a repository.
2D Slightly Compressible Ideal Flow in an Exterior Domain
NASA Astrophysics Data System (ADS)
Secchi, Paolo
2006-12-01
We consider the Euler equations of barotropic inviscid compressible fluids in the exterior domain. It is well known that, as the Mach number goes to zero, the compressible flows approximate the solution of the equations of motion of inviscid, incompressible fluids. In dimension 2 such limit solution exists on any arbitrary time interval, with no restriction on the size of the initial data. It is then natural to expect the same for the compressible solution, if the Mach number is sufficiently small. First we study the life span of smooth irrotational solutions, i.e. the largest time interval T(ɛ) of existence of classical solutions, when the initial data are a small perturbation of size ɛ from a constant state. Then, we study the nonlinear interaction between the irrotational part and the incompressible part of a general solution. This analysis yields the existence of smooth compressible flow on any arbitrary time interval and with no restriction on the size of the initial velocity, for any Mach number sufficiently small. Finally, the approach is applied to the study of the incompressible limit. For the proofs we use a combination of energy estimates and a decay estimate for the irrotational part.
Mechanical Properties of Mg-Gd and Mg-Y Solid Solutions
NASA Astrophysics Data System (ADS)
Kula, Anna; Jia, Xiaohui; Mishra, Raj K.; Niewczas, Marek
2016-12-01
The mechanical properties of Mg-Gd and Mg-Y solid solutions have been studied under uniaxial tension and compression between 4 K and 298 K (-269 °C and 25 °C). The results reveal that Mg-Gd alloys exhibit higher strength and ductility under tension and compression attributed to the more effective solid solution strengthening and grain-boundary strengthening effects. Profuse twinning has been observed under compression, resulting in a material texture with strong dominance of basal component parallel to compression axis. Under tension, twining is less active and the texture evolution is controlled mostly by slip. The alloys exhibit pronounced yield stress asymmetry and significantly different work-hardening behavior under tension and compression. Increasing of Gd and/or Y concentration leads to the reduction of the tension-compression asymmetry due to the weakening of the recrystallization texture and more balanced twinning and slip activity during plastic deformation. The results suggest that under compression of Mg-Y alloys slip is more active than twinning in comparison to Mg-Gd alloys.
RF cavity design and qualification for proton accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teotia, Vikas; Malhotra, Sanjay; Ukarde, Priti
Alvarez type Drift Tube Linac (DTL) is used for acceleration of proton beam in low energy section of beta ranging from 0.04 to 0.40. DTL is cylindrical RF cavity resonating in TM010 mode at 352.21 MHz frequency. It consists of array of drift tubes arranged ensuring that DTL centre and Drift Tube centre are concentric. The Drift Tubes also houses Permanent Magnet Quadrupole for transverse focusing of proton beam. A twelve cell prototype of DTL section is designed, developed and fabricated at Bhabha Atomic Research Centre, Trombay. Complete DTL accelerator consists of eight such DTL sections. High frequency microwave simulationsmore » are carried out in SOPRANO, vector fields and COMSOL simulation software. This prototype DTL is 1640.56 mm long cavity with 520 mm ID, 600 mm OD and consists of eleven Drift Tubes, two RF end flanges, three slug tuners, six post couplers, three RF field monitors, one RF waveguide coupler, two DN100 vacuum flanges and DTL tank platform with alignment features. Girder based Drift tube mounting arrangement utilizing uncompressing energy of disc springs for optimum combo RF-vacuum seal compression is worked out and implemented. This paper discusses design of this RF vacuum cavity operating at high accelerating field gradient in ultra-high vacuum. Detailed vacuum design and results of RF and vacuum qualifications are discussed. Results on mechanical accuracy achieved on scaled pre-prototype are also presented. Paper summarizes the engineering developments carried out for this RF cavity and brings out the future activities proposed in indigenous development of high gradient RF cavities for ion accelerators. (author)« less
New numerical solutions of three-dimensional compressible hydrodynamic convection. [in stars
NASA Technical Reports Server (NTRS)
Hossain, Murshed; Mullan, D. J.
1990-01-01
Numerical solutions of three-dimensional compressible hydrodynamics (including sound waves) in a stratified medium with open boundaries are presented. Convergent/divergent points play a controlling role in the flows, which are dominated by a single frequency related to the mean sound crossing time. Superposed on these rapid compressive flows, slower eddy-like flows eventually create convective transport. The solutions contain small structures stacked on top of larger ones, with vertical scales equal to the local pressure scale heights, H sub p. Although convective transport starts later in the evolution, vertical scales of H sub p are apparently selected at much earlier times by nonlinear compressive effects.
An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations
NASA Astrophysics Data System (ADS)
Drivas, Theodore D.; Eyink, Gregory L.
2017-12-01
We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier-Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L 3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.
Canonical angular momentum compression near the Brillouin limit
NASA Astrophysics Data System (ADS)
Jeong, E.; Gilson, E.; Fajans, J.
2000-10-01
Near the Brillouin limit, the angular momentum of a trapped, T=0, pure-electron plasma approaches zero. If the plasma expands axially, its density would appear to drop. However, the plasma's canonical angular momentum is not changed by an axial expansion, so the plasma must stay near the Brillouin limit; thus the plasma's density cannot change when it is expanded. The only way for the plasma density to remain constant as the plasma length increases is for the plasma radius to decrease. Dynamically, this decrease is caused by the polarization drift induced by a small decrease in the density. In this poster we present preliminary experimental evidence demonstrating this radial compression. This work was supported by the ONR.
The effect of sludge water treatment plant residuals on the properties of compressed brick
NASA Astrophysics Data System (ADS)
Shamsudin, Shamrul-Mar; Shahidan, S.; Azmi, M. A. M.; Ghaffar, S. A.; Ghani, M. B. Abdul; Saiful Bahari, N. A. A.; Zuki, S. S. M.
2017-11-01
The focus of this study is on the production of compressed bricks which contains sludge water treatment plant (SWTP) residuals obtained from SAJ. The main objective of this study is to utilise and incorporate discarded material (SWTP) in the form of residual solution to produce compressed bricks. This serves as one of the recycling efforts to conserve the environment. This study determined the optimum mix based on a mix ratio of 1:2:4 (cement: sand: soil) in the production of compressed bricks where 5 different mixes were investigated i. e. 0%, 5%, 10%, 20%, and 30% of water treatment plant residue solution. The production of the compressed bricks is in accordance with the Malaysian Standard MS 7.6: 1972 and British Standard BS 3921: 1985 - Compressive Strength & Water Absorption. After being moulded and air dried, the cured bricks were subjected to compression tests and water absorption tests. Based on the tests conducted, it was found that 20% of water treatment plant residue solution which is equivalent to 50% of soil content replacement with a mix composition of [10: cement] [20: sand] [20: soil] [20: water treatment plant residue solution] is the optimum mix. It was also observed that the bricks containing SWTP residuals were lighter in weight compared to the control specimens
A block-based algorithm for the solution of compressible flows in rotor-stator combinations
NASA Technical Reports Server (NTRS)
Akay, H. U.; Ecer, A.; Beskok, A.
1990-01-01
A block-based solution algorithm is developed for the solution of compressible flows in rotor-stator combinations. The method allows concurrent solution of multiple solution blocks in parallel machines. It also allows a time averaged interaction at the stator-rotor interfaces. Numerical results are presented to illustrate the performance of the algorithm. The effect of the interaction between the stator and rotor is evaluated.
The function profile of compressed-air and ultrasonic nebulizers.
Wu, Hsin-Lin; Lin, Yung-Zen; Wu, Wei-Fong; Huang, Fu-Yuan
2003-01-01
In order to study the detailed function of two kinds of nebulizers commonly used in clinical asthma treatment, compressed-air and ultrasonic, this study was conducted. At the beginning, various flow rates were adjusted, paired with different volumes of solutions in the container. The changes of temperature, pH, and osmolality during the course of nebulization were examined. Normal saline, terbutaline, and fenoterol solutions were used as the nebulized solutions. The study was performed in an environment in ambient temperature around 20 degrees C and relative humidity around 70%. The results showed a minimal 6 L/min flow rate was required to nebulize the solution when using the compressed-air nebulizer. The dead volume was about 0.8 ml for compressed-air and 8.5 ml for the ultrasonic nebulizer. When using the compressed-air nebulizer, the temperature, both in the solution and at the mouthpiece site, dropped gradually. On the contrary, the temperatures at both sites increased a little bit when using the ultrasonic nebulizer. The pH values of pure terbutaline and fenoterol nebulized solutions were acidic (3.58 and 3.00 respectively). The osmolality of terbutaline and fenoterol nebulized solutions were isotonic. The osmolality increased gradually during the course of nebulization, to a greater extent in the compressed-air nebulizer. In conclusion, both types of nebulizers have their special features. The ultrasonic nebulizer displays less extent in change of temperature and osmolality during nebulization and is expected to be a better device in treating asthmatic patients in terms of lesser effect on cooling and changing the osmolality of airway mucosa.
Wave drift damping acting on multiple circular cylinders (model tests)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, Takeshi; Sunahara, Shunji; Bao, W.
1995-12-31
The wave drift damping for the slow drift motion of a four-column platform is experimentally investigated. The estimation of damping force of the slow drift motion of moored floating structures in ocean waves, is one of the most important topics. Bao et al. calculated an interaction of multiple circular cylinders based on the potential flow theory, and showed that the wave drift damping is significantly influenced by the interaction between cylinders. This calculation method assumes that the slow drift motion is approximately replaced by steady current, that is, structures on slow drift motion are supposed to be equivalent to onesmore » in both regular waves and slow current. To validate semi-analytical solutions of Bao et al., experiments were carried out. At first, added resistance due to waves acting on a structure composed of multiple (four) vertical circular cylinders fixed to a slowly moving carriage, was measured in regular waves. Next, the added resistance of the structure moored by linear spring to the slowly moving carriage were measured in regular waves. Furthermore, to validate the assumption that the slow drift motion is replaced by steady current, free decay tests in still water and in regular waves were compared with the simulation of the slow drift motion using the wave drift damping coefficient obtained by the added resistance tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.; Barnard, J.J.; Briggs, R.J.
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaborationof LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity"tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of Warm Dense Matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven Inertial Fusion Energy (IFE). Thesemore » goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned Advanced Test Accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ~;;30 nC pulse of Li+ ions to ~;;3 MeV, then compresses it to ~;;1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using analysis, an interactive one-dimensional kinetic simulation model, and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.« less
On Chorin's Method for Stationary Solutions of the Oberbeck-Boussinesq Equation
NASA Astrophysics Data System (ADS)
Kagei, Yoshiyuki; Nishida, Takaaki
2017-06-01
Stability of stationary solutions of the Oberbeck-Boussinesq system (OB) and the corresponding artificial compressible system is considered. The latter system is obtained by adding the time derivative of the pressure with small parameter ɛ > 0 to the continuity equation of (OB), which was proposed by A. Chorin to find stationary solutions of (OB) numerically. Both systems have the same sets of stationary solutions and the system (OB) is obtained from the artificial compressible one as the limit ɛ \\to 0 which is a singular limit. It is proved that if a stationary solution of the artificial compressible system is stable for sufficiently small ɛ > 0, then it is also stable as a solution of (OB). The converse is proved provided that the velocity field of the stationary solution satisfies some smallness condition.
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
2015-12-10
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
Low complexity lossless compression of underwater sound recordings.
Johnson, Mark; Partan, Jim; Hurst, Tom
2013-03-01
Autonomous listening devices are increasingly used to study vocal aquatic animals, and there is a constant need to record longer or with greater bandwidth, requiring efficient use of memory and battery power. Real-time compression of sound has the potential to extend recording durations and bandwidths at the expense of increased processing operations and therefore power consumption. Whereas lossy methods such as MP3 introduce undesirable artifacts, lossless compression algorithms (e.g., flac) guarantee exact data recovery. But these algorithms are relatively complex due to the wide variety of signals they are designed to compress. A simpler lossless algorithm is shown here to provide compression factors of three or more for underwater sound recordings over a range of noise environments. The compressor was evaluated using samples from drifting and animal-borne sound recorders with sampling rates of 16-240 kHz. It achieves >87% of the compression of more-complex methods but requires about 1/10 of the processing operations resulting in less than 1 mW power consumption at a sampling rate of 192 kHz on a low-power microprocessor. The potential to triple recording duration with a minor increase in power consumption and no loss in sound quality may be especially valuable for battery-limited tags and robotic vehicles.
The effect of vertical drift on the equatorial F-region stability
NASA Technical Reports Server (NTRS)
Hanson, W. B.; Cragin, B. L.; Dennis, A.
1986-01-01
Time-dependent ionospheric model calculations for day-time and night-time solutions are presented. The behavior of the growth rate and ion-electron recombination rate for the Rayleigh-Taylor instability on the F-region bottomside is examined as a function of the vertical eastward electric field-magnetic field strength drift velocity. It is observed that on the bottomside F-layer the growth rate exceeds the ion-electron recombination rate even without vertical drift; however, an eastward electric field-magnetic field strength drift can produce an increase in the growth rate by an order of magnitude. The calculated data are compared with previous research and good correlation is detected. The formation of bubbles from a seeding mechanism is investigated.
Fast Ion extraction from the MedEBIS
NASA Astrophysics Data System (ADS)
Höltermann, H.; Becker, R.; Kleinod, M.; Müller, I.
2004-01-01
Cancer therapy synchrotrons profit from single turn injection in terms of size, costs and easy operation. The MEdically Dedicated EBIS (MEDEBIS), built in Frankfurt, will deliver short (~1.5 µs) and intense (~1.3 mA) pulses of highly charged light ions (C, N, O) to meet the requirements for therapy facilities. The MEDEBIS operates with an electron beam of 400 mA at 5 keV and a ratio of beam to drift tube of 1/20. Drift tube potentials up to 1.6 kV are switched in some 100 ns to deliver a 1.5 µs ion pulse at an axial field gradient of 6.5 kV/m. On extraction, all potentials applied to the drift tubes are set to a given primary potential to define the extraction gradient. During extraction the drift tubes are not held at constant voltage to avoid spreading out of the pulse due to the restoration of the full space charge depression at locations where ions have already been extracted. To locally distribute the action of the applied potentials the drift tubes are fully interpenetrating each other with tapered fingers. Combining these features result in a potential wall, which follows the extracted ion pulse and produces a compressed short ion pulse for single turn injection. In the future similar constructions could be considered for the RHIS EBIS device or proposed for LHC to provide the advantage with respect to lowest emittance and highest luminosity to the accelerators at BNL and CERN.
Electronics for fast ion extraction from EBIS devices
NASA Astrophysics Data System (ADS)
Höltermann, H.; Becker, R.; Kleinod, M.; Müller, I.
2004-05-01
Future synchrotrons for cancer therapy could profit from single turn injection in terms of size, costs, and ease of operation [O. Kester, R. Becker, and M. Kleinod, Rev. Sci. Instrum. 67 (1996)]. Short (˜1.5 μs) and intense (˜1.3 mA) pulses of highly charged light ions (C6+, N7+, O8+) are a requirement for these future therapy facilities which can be provided by an EBIS ion source. Such a medically dedicated EBIS has an electron beam of 400 mA at 5 keV and needs an electron current density of 100 A/cm2 for a repetition rate of 10 Hz. To obtain a 1.5 μs ion pulse it is necessary to switch the drift tube potentials up to 1.6 kV (for a ratio of beam to drift tube of 1/20) in some 100 ns. To avoid spreading out of the pulse due to the restoration of the full space charge depression at locations where ions have already been extracted, the potentials applied to the drift tubes are changed with time. They will be adjusted for each drift tube according to the transit time of the ion pulse. Furthermore, the drift tubes are fully interpenetrating each other with tapered fingers in order to locally distribute the action of the applied potentials. This provides a potential wall, which is following the extracted ion pulse and results in a compressed short ion pulse for single turn injection into a synchrotron.
Kupaei, Ramin Hosseini; Alengaram, U Johnson; Jumaat, Mohd Zamin
2014-01-01
This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.
Kupaei, Ramin Hosseini; Alengaram, U. Johnson; Jumaat, Mohd Zamin
2014-01-01
This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials—low calcium fly ash (FA) and oil palm shell (OPS)—as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength. PMID:25531006
Temperature effects on drift of suspended single-domain particles induced by the Magnus force
NASA Astrophysics Data System (ADS)
Denisov, S. I.; Lyutyy, T. V.; Reva, V. V.; Yermolenko, A. S.
2018-03-01
We study the temperature dependence of the drift velocity of single-domain ferromagnetic particles induced by the Magnus force in a dilute suspension. A set of stochastic equations describing the translational and rotational dynamics of particles is derived, and the particle drift velocity that depends on components of the average particle magnetization is introduced. The Fokker-Planck equation for the probability density of magnetization orientations is solved analytically in the limit of strong thermal fluctuations for both the planar rotor and general models. Using these solutions, we calculate the drift velocity and show that the out-of-plane fluctuations of magnetization, which are not accounted for in the planar rotor model, play an important role. In the general case of arbitrary fluctuations, we investigate the temperature dependence of the drift velocity by numerically simulating a set of effective stochastic differential equations for the magnetization dynamics.
Use of reinforced inorganic cement materials for spark wire and drift chamber wire frames
NASA Technical Reports Server (NTRS)
1987-01-01
The results of a survey, materials test, and analysis study directed toward the development of an inorganic glass-fiber reinforced cement material for use in the construction of space qualified spark wire frames and drift chamber frames are presented. The purpose for this research was to evaluate the feasibility of using glass fiber reinforced cement (GFRC) for large dimensioned structural frames for supporting a number of precisely located spark wires in multiple planes. A survey of the current state of the art in fiber reinforced cement materials was made; material sample mixes were made and tested to determine their laboratory performances. Tests conducted on sample materials showed that compressive and flexural strengths of this material could approach values which would enable fabrication of structural spark wire frames.
Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales
NASA Astrophysics Data System (ADS)
Kurowski, M.; Smolarkiewicz, P. K.; Grabowski, W.
2015-12-01
Moist anelastic and compressible numerical solutions to the planetary baroclinic instability and climate benchmarks are compared. The solutions are obtained applying a consistent numerical framework for dis- crete integrations of the various nonhydrostatic flow equations. Moist extension of the baroclinic instability benchmark is formulated as an analog of the dry case. Flow patterns, surface vertical vorticity and pressure, total kinetic energy, power spectra, and total amount of condensed water are analyzed. The climate bench- mark extends the baroclinic instability study by addressing long-term statistics of an idealized planetary equilibrium and associated meridional transports. Short-term deterministic anelastic and compressible so- lutions differ significantly. In particular, anelastic baroclinic eddies propagate faster and develop slower owing to, respectively, modified dispersion relation and abbreviated baroclinic vorticity production. These eddies also carry less kinetic energy, and the onset of their rapid growth occurs later than for the compressible solutions. The observed differences between the two solutions are sensitive to initial conditions as they di- minish for large-amplitude excitations of the instability. In particular, on the climatic time scales, the anelastic and compressible solutions evince similar zonally averaged flow patterns with the matching meridional transports of entropy, momentum, and moisture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru
2016-09-15
Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describesmore » static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the height of the free boundary on the density of the fluid. Self-similar continuous and discontinuous solutions are obtained for a system on a slope, and a solution is found to the initial discontinuity decay problem in this case.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L. Y.; Yu, J.; Cao, J. B.
After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less
Li, L. Y.; Yu, J.; Cao, J. B.; ...
2016-11-05
After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less
Hypersonic Magneto-Fluid-Dynamic Compression in Cylindrical Inlet
NASA Technical Reports Server (NTRS)
Shang, Joseph S.; Chang, Chau-Lyan
2007-01-01
Hypersonic magneto-fluid-dynamic interaction has been successfully performed as a virtual leading-edge strake and a virtual cowl of a cylindrical inlet. In a side-by-side experimental and computational study, the magnitude of the induced compression was found to be depended on configuration and electrode placement. To better understand the interacting phenomenon the present investigation is focused on a direct current discharge at the leading edge of a cylindrical inlet for which validating experimental data is available. The present computational result is obtained by solving the magneto-fluid-dynamics equations at the low magnetic Reynolds number limit and using a nonequilibrium weakly ionized gas model based on the drift-diffusion theory. The numerical simulation provides a detailed description of the intriguing physics. After validation with experimental measurements, the computed results further quantify the effectiveness of a magnet-fluid-dynamic compression for a hypersonic cylindrical inlet. At a minuscule power input to a direct current surface discharge of 8.14 watts per square centimeter of electrode area produces an additional compression of 6.7 percent for a constant cross-section cylindrical inlet.
PDF approach for compressible turbulent reacting flows
NASA Technical Reports Server (NTRS)
Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.
1993-01-01
The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.
Design of two-dimensional channels with prescribed velocity distributions along the channel walls
NASA Technical Reports Server (NTRS)
Stanitz, John D
1953-01-01
A general method of design is developed for two-dimensional unbranched channels with prescribed velocities as a function of arc length along the channel walls. The method is developed for both compressible and incompressible, irrotational, nonviscous flow and applies to the design of elbows, diffusers, nozzles, and so forth. In part I solutions are obtained by relaxation methods; in part II solutions are obtained by a Green's function. Five numerical examples are given in part I including three elbow designs with the same prescribed velocity as a function of arc length along the channel walls but with incompressible, linearized compressible, and compressible flow. One numerical example is presented in part II for an accelerating elbow with linearized compressible flow, and the time required for the solution by a Green's function in part II was considerably less than the time required for the same solution by relaxation methods in part I.
Drift-Alfven eigenmodes in inhomogeneous plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vranjes, J.; Poedts, S.
2006-03-15
A set of three nonlinear equations describing drift-Alfven waves in a nonuniform magnetized plasma is derived and discussed both in linear and nonlinear limits. In the case of a cylindric radially bounded plasma with a Gaussian density distribution in the radial direction the linearized equations are solved exactly yielding general solutions for modes with quantized frequencies and with radially dependent amplitudes. The full set of nonlinear equations is also solved yielding particular solutions in the form of rotating radially limited structures. The results should be applicable to the description of electromagnetic perturbations in solar magnetic structures and in astrophysical column-likemore » objects including cosmic tornados.« less
Improved waste water vapor compression distillation technology. [for Spacelab
NASA Technical Reports Server (NTRS)
Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.
1977-01-01
The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.
Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals
NASA Astrophysics Data System (ADS)
Wu, Guochun; Tan, Zhong
2018-06-01
In this paper, we consider the weak solution of the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in R3. When the initial data are of small energy and initial density is positive and essentially bounded, we prove the existence of a global weak solution in R3. The large-time behavior of a global weak solution is also established.
Closed-form solution of the Ogden-Hill's compressible hyperelastic model for ramp loading
NASA Astrophysics Data System (ADS)
Berezvai, Szabolcs; Kossa, Attila
2017-05-01
This article deals with the visco-hyperelastic modelling approach for compressible polymer foam materials. Polymer foams can exhibit large elastic strains and displacements in case of volumetric compression. In addition, they often show significant rate-dependent properties. This material behaviour can be accurately modelled using the visco-hyperelastic approach, in which the large strain viscoelastic description is combined with the rate-independent hyperelastic material model. In case of polymer foams, the most widely used compressible hyperelastic material model, the so-called Ogden-Hill's model, was applied, which is implemented in the commercial finite element (FE) software Abaqus. The visco-hyperelastic model is defined in hereditary integral form, therefore, obtaining a closed-form solution for the stress is not a trivial task. However, the parameter-fitting procedure could be much faster and accurate if closed-form solution exists. In this contribution, exact stress solutions are derived in case of uniaxial, biaxial and volumetric compression loading cases using ramp-loading history. The analytical stress solutions are compared with the stress results in Abaqus using FE analysis. In order to highlight the benefits of the analytical closed-form solution during the parameter-fitting process experimental work has been carried out on a particular open-cell memory foam material. The results of the material identification process shows significant accuracy improvement in the fitting procedure by applying the derived analytical solutions compared to the so-called separated approach applied in the engineering practice.
Towards efficient backward-in-time adjoint computations using data compression techniques
Cyr, E. C.; Shadid, J. N.; Wildey, T.
2014-12-16
In the context of a posteriori error estimation for nonlinear time-dependent partial differential equations, the state-of-the-practice is to use adjoint approaches which require the solution of a backward-in-time problem defined by a linearization of the forward problem. One of the major obstacles in the practical application of these approaches, we found, is the need to store, or recompute, the forward solution to define the adjoint problem and to evaluate the error representation. Our study considers the use of data compression techniques to approximate forward solutions employed in the backward-in-time integration. The development derives an error representation that accounts for themore » difference between the standard-approach and the compressed approximation of the forward solution. This representation is algorithmically similar to the standard representation and only requires the computation of the quantity of interest for the forward solution and the data-compressed reconstructed solution (i.e. scalar quantities that can be evaluated as the forward problem is integrated). This approach is then compared with existing techniques, such as checkpointing and time-averaged adjoints. Lastly, we provide numerical results indicating the potential efficiency of our approach on a transient diffusion–reaction equation and on the Navier–Stokes equations. These results demonstrate memory compression ratios up to 450×450× while maintaining reasonable accuracy in the error-estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniosek, F.M.; Anders, A.; Barnard, J.J.
This effort contains two main components: The new induction-bunching module is expected to deliver higher fluence in the bunched beam, and the new target positioner will enable a significantly enhanced target physics repetition rate. The velocity ramp that bunches the K{sup +} beam in the neutralized drift compression section is established with a bipolar voltage ramp applied to an acceleration gap. An induction acceleration module creates this voltage waveform. The new bunching module (IBM) specially built for NDCX has approximately twice the capability (volt-seconds) as our original IBM. We reported on the beam line design for the best use ofmore » the bunching module in our FY08 Q2 report. Based on simulations and theoretical work, we chose to extend the drift compression section and use the additional volt-seconds to extend the pulse duration and keep the peak voltage swing (and velocity excursions) similar to the present module. Simulations showed that this approach, which extends the drift section, to be advantageous because it limits the chromatic aberrations in the beam spot on target. To this end, colleagues at PPPL have fabricated the meter-long extension to the ferroelectric plasma source and it was installed on the beam line with the new IBM in January 2009. Simulation results suggest a factor of two increase in energy deposition from the bunched beam. In the first WDM target run (August-November 2008) the target handling setup required opening the vacuum system to manually replace the target after each shot (which destroys the target). Because of the requirement for careful alignment of each individual target, the target shot repetition rate was no greater than 1 shot per day. Initial results of this run are reported in our FY08 4th Quarter Milestone Report. Based on the valuable experience gained in the initial run, we have designed and installed an improved target alignment and positioning system with the capability to reposition targets remotely. This capability allows us to significantly increase our shot repetition rate, and to take greater advantage of the pinhole/cone arrangement we have developed to localize the beam at final focus. In addition we have improved the capability of the optical diagnostic systems, and we have installed a new beam current transformer downstream of the target to monitor beam current transmitted through the target during an experiment. These improvements will allow us to better exploit the inherent capability of the NDCX facility for high repetition rate and thus to provide more detailed experimental data to assess WDM physics models of target behavior. This milestone has been met by demonstrating highly compressed beams with the new bunching module, which are neutralized in the longer drift compression section by the new ferro-electric plasma sources. The peak uncompressed beam intensity ({approx}600 kW/cm{sup 2}) is higher than in previous measurements, and the bunched beam current profiles are {approx}2ns. We have also demonstrated a large increase in the experimental data acquisition rate for target heating experiments. In the first test of the new remote-controlled target positioning system, we completed three successful target physics shots in less than two hours. Further improvements are expected.« less
Probability density function approach for compressible turbulent reacting flows
NASA Technical Reports Server (NTRS)
Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.
1994-01-01
The objective of the present work is to extend the probability density function (PDF) tubulence model to compressible reacting flows. The proability density function of the species mass fractions and enthalpy are obtained by solving a PDF evolution equation using a Monte Carlo scheme. The PDF solution procedure is coupled with a compression finite-volume flow solver which provides the velocity and pressure fields. A modeled PDF equation for compressible flows, capable of treating flows with shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed. Two super sonic diffusion flames are studied using the proposed PDF model and the results are compared with experimental data; marked improvements over solutions without PDF are observed.
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, C.; Smith, Charles A. (Technical Monitor)
1998-01-01
Performance of the two commonly used numerical procedures, one based on artificial compressibility method and the other pressure projection method, are compared. These formulations are selected primarily because they are designed for three-dimensional applications. The computational procedures are compared by obtaining steady state solutions of a wake vortex and unsteady solutions of a curved duct flow. For steady computations, artificial compressibility was very efficient in terms of computing time and robustness. For an unsteady flow which requires small physical time step, pressure projection method was found to be computationally more efficient than an artificial compressibility method. This comparison is intended to give some basis for selecting a method or a flow solution code for large three-dimensional applications where computing resources become a critical issue.
Sensitivity Analysis in RIPless Compressed Sensing
2014-10-01
SECURITY CLASSIFICATION OF: The compressive sensing framework finds a wide range of applications in signal processing and analysis. Within this...Analysis of Compressive Sensing Solutions Report Title The compressive sensing framework finds a wide range of applications in signal processing and...compressed sensing. More specifically, we show that in a noiseless and RIP-less setting [11], the recovery process of a compressed sensing framework is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Barnard, J J; Briggs, R J
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity 'tilt' to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energymore » (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates an {approx} 30 nC pulse of Li{sup +} ions to {approx} 3 MeV, then compresses it to {approx} 1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.« less
NASA Astrophysics Data System (ADS)
Peeters, A. G.; Angioni, C.; Strintzi, D.
2009-03-01
The comment addresses questions raised on the derivation of the momentum pinch velocity due to the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)]. These concern the definition of the gradient, and the scaling with the density gradient length. It will be shown that the turbulent equipartition mechanism is included within the derivation using the Coriolis drift, with the density gradient scaling being the consequence of drift terms not considered in [T. S. Hahm et al., Phys. Plasmas 15, 055902 (2008)]. Finally the accuracy of the analytic models is assessed through a comparison with the full gyrokinetic solution.
Pozniak, Boguslaw P; Cole, Richard B
2004-12-01
Differential electrospray emitter potential (DEEP) maps, displaying variations in potential in the electrospray (ES) capillary and in the Taylor cone, have been generated in the negative ion mode of ES operation. In all examples, measured potential was found to be the highest at the points furthest into the Taylor cone, and values descended to zero at distances beyond approximately 15 mm within the ES capillary. In agreement with results obtained previously in the positive ion mode, negative mode data show a strong influence of electrolyte concentration on measured potentials. Weakly conductive solutions exhibited the highest values, and the steepest gradients, at points furthest into the Taylor cone. However, these same low conductivity solutions did not yield nonzero measured potentials to as deep a distance into the ES capillary as was possible from their higher conductivity counterparts. Addition of a readily reducible compound lowered measured potentials at all points near the ES capillary exit, in accordance with the description of the ES device as a controlled-current electrolytic cell. The development of potential inside the ES capillary upon the onset of ES was also studied, and initial results are presented. Potential waves are observed that can require 15 min or longer, to stabilize. The slow drift to steady potentials is evidence of upstream movement of electrochemically-produced species and follow-up reaction products; low conductivity solutions require longer intervals to reach a steady state. Potentials measured along the central ES axis reflect those at the ES capillary surface, although equipotential lines can be considered to be more compressed at the latter surface.
Ensemble sea ice forecast for predicting compressive situations in the Baltic Sea
NASA Astrophysics Data System (ADS)
Lehtiranta, Jonni; Lensu, Mikko; Kokkonen, Iiro; Haapala, Jari
2017-04-01
Forecasting of sea ice hazards is important for winter shipping in the Baltic Sea. In current numerical models the ice thickness distribution and drift are captured well, but compressive situations are often missing from forecast products. Its inclusion is requested by the shipping community, as compression poses a threat to ship operations. As compressing ice is capable of stopping ships for days and even damaging them, its inclusion in ice forecasts is vital. However, we have found that compression can not be predicted well in a deterministic forecast, since it can be a local and a quickly changing phenomenon. It is also very sensitive to small changes in the wind speed and direction, the prevailing ice conditions, and the model parameters. Thus, a probabilistic ensemble simulation is needed to produce a meaningful compression forecast. An ensemble model setup was developed in the SafeWIN project for this purpose. It uses the HELMI multicategory ice model, which was amended for making simulations in parallel. The ensemble was built by perturbing the atmospheric forcing and the physical parameters of the ice pack. The model setup will provide probabilistic forecasts for the compression in the Baltic sea ice. Additionally the model setup provides insight into the uncertainties related to different model parameters and their impact on the model results. We have completed several hindcast simulations for the Baltic Sea for verification purposes. These results are shown to match compression reports gathered from ships. In addition, an ensemble forecast is in preoperational testing phase and its first evaluation will be presented in this work.
NASA Technical Reports Server (NTRS)
Carter, J. E.
1972-01-01
Numerical solutions have been obtained for the supersonic, laminar flow over a two-dimensional compression corner. These solutions were obtained as steady-state solutions to the unsteady Navier-Stokes equations using the finite difference method of Brailovskaya, which has second-order accuracy in the spatial coordinates. Good agreement was obtained between the computed results and wall pressure distributions measured experimentally for Mach numbers of 4 and 6.06, and respective Reynolds numbers, based on free-stream conditions and the distance from the leading edge to the corner. In those calculations, as well as in others, sufficient resolution was obtained to show the streamline pattern in the separation bubble. Upstream boundary conditions to the compression corner flow were provided by numerically solving the unsteady Navier-Stokes equations for the flat plate flow field, beginning at the leading edge. The compression corner flow field was enclosed by a computational boundary with the unknown boundary conditions supplied by extrapolation from internally computed points.
NASA Astrophysics Data System (ADS)
Kwon, Young-Sam; Li, Fucai
2018-03-01
In this paper we study the incompressible limit of the degenerate quantum compressible Navier-Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier-Stokes equations converge to the strong solution of the incompressible Navier-Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier-Stokes equations to the strong solution of the incompressible Navier-Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.
Investigating the effect of compression on solute transport through degrading municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.
2014-11-15
Highlights: • The influence of compression on MSW flushing was evaluated using 13 tracer tests. • Compression has little effect on solute diffusion times in MSW. • Lithium tracer was conservative in non-degrading waste but not in degrading waste. • Bromide tracer was conservative, but deuterium was not. - Abstract: The effect of applied compression on the nature of liquid flow and hence the movement of contaminants within municipal solid waste was examined by means of thirteen tracer tests conducted on five separate waste samples. The conservative nature of bromide, lithium and deuterium tracers was evaluated and linked to themore » presence of degradation in the sample. Lithium and deuterium tracers were non-conservative in the presence of degradation, whereas the bromide remained effectively conservative under all conditions. Solute diffusion times into and out of less mobile blocks of waste were compared for each test under the assumption of dominantly dual-porosity flow. Despite the fact that hydraulic conductivity changed strongly with applied stress, the block diffusion times were found to be much less sensitive to compression. A simple conceptual model, whereby flow is dominated by sub-parallel low permeability obstructions which define predominantly horizontally aligned less mobile zones, is able to explain this result. Compression tends to narrow the gap between the obstructions, but not significantly alter the horizontal length scale. Irrespective of knowledge of the true flow pattern, these results show that simple models of solute flushing from landfill which do not include depth dependent changes in solute transport parameters are justified.« less
A privacy-preserving solution for compressed storage and selective retrieval of genomic data.
Huang, Zhicong; Ayday, Erman; Lin, Huang; Aiyar, Raeka S; Molyneaux, Adam; Xu, Zhenyu; Fellay, Jacques; Steinmetz, Lars M; Hubaux, Jean-Pierre
2016-12-01
In clinical genomics, the continuous evolution of bioinformatic algorithms and sequencing platforms makes it beneficial to store patients' complete aligned genomic data in addition to variant calls relative to a reference sequence. Due to the large size of human genome sequence data files (varying from 30 GB to 200 GB depending on coverage), two major challenges facing genomics laboratories are the costs of storage and the efficiency of the initial data processing. In addition, privacy of genomic data is becoming an increasingly serious concern, yet no standard data storage solutions exist that enable compression, encryption, and selective retrieval. Here we present a privacy-preserving solution named SECRAM (Selective retrieval on Encrypted and Compressed Reference-oriented Alignment Map) for the secure storage of compressed aligned genomic data. Our solution enables selective retrieval of encrypted data and improves the efficiency of downstream analysis (e.g., variant calling). Compared with BAM, the de facto standard for storing aligned genomic data, SECRAM uses 18% less storage. Compared with CRAM, one of the most compressed nonencrypted formats (using 34% less storage than BAM), SECRAM maintains efficient compression and downstream data processing, while allowing for unprecedented levels of security in genomic data storage. Compared with previous work, the distinguishing features of SECRAM are that (1) it is position-based instead of read-based, and (2) it allows random querying of a subregion from a BAM-like file in an encrypted form. Our method thus offers a space-saving, privacy-preserving, and effective solution for the storage of clinical genomic data. © 2016 Huang et al.; Published by Cold Spring Harbor Laboratory Press.
A privacy-preserving solution for compressed storage and selective retrieval of genomic data
Huang, Zhicong; Ayday, Erman; Lin, Huang; Aiyar, Raeka S.; Molyneaux, Adam; Xu, Zhenyu; Hubaux, Jean-Pierre
2016-01-01
In clinical genomics, the continuous evolution of bioinformatic algorithms and sequencing platforms makes it beneficial to store patients’ complete aligned genomic data in addition to variant calls relative to a reference sequence. Due to the large size of human genome sequence data files (varying from 30 GB to 200 GB depending on coverage), two major challenges facing genomics laboratories are the costs of storage and the efficiency of the initial data processing. In addition, privacy of genomic data is becoming an increasingly serious concern, yet no standard data storage solutions exist that enable compression, encryption, and selective retrieval. Here we present a privacy-preserving solution named SECRAM (Selective retrieval on Encrypted and Compressed Reference-oriented Alignment Map) for the secure storage of compressed aligned genomic data. Our solution enables selective retrieval of encrypted data and improves the efficiency of downstream analysis (e.g., variant calling). Compared with BAM, the de facto standard for storing aligned genomic data, SECRAM uses 18% less storage. Compared with CRAM, one of the most compressed nonencrypted formats (using 34% less storage than BAM), SECRAM maintains efficient compression and downstream data processing, while allowing for unprecedented levels of security in genomic data storage. Compared with previous work, the distinguishing features of SECRAM are that (1) it is position-based instead of read-based, and (2) it allows random querying of a subregion from a BAM-like file in an encrypted form. Our method thus offers a space-saving, privacy-preserving, and effective solution for the storage of clinical genomic data. PMID:27789525
LOW-VELOCITY COMPRESSIBLE FLOW THEORY
The widespread application of incompressible flow theory dominates low-velocity fluid dynamics, virtually preventing research into compressible low-velocity flow dynamics. Yet, compressible solutions to simple and well-defined flow problems and a series of contradictions in incom...
NASA Astrophysics Data System (ADS)
Dikkar, A. B.; Pethe, G. B.; Aswar, A. S.
2015-12-01
Density (ρ), speed of sound ( u), and viscosity (η), measurements have been carried on 2-hydroxy- 5-chloro-3-nitroacetophenone isonicotinoylhydrazone (HCNAIH) in N, N-dimethylformamide at 298.15, 303.15, 308.15, and 313.15 K. Adiabatic compressibility (βs), intermolecular free length ( L f), acoustic impedance ( Z), internal pressure ( P int), the apparent molar volume ( V w), limiting apparent molar volume ( V w 0), partial molar expansibility (wE 0), apparent molar adiabatic compressibility ( K w), limiting apparent molar adiabatic compressibility ( K w 0), viscosity B coefficients of Jones-Dole equation have been calculated. The activation free energy (Δμ 2 0 *) for viscous flow in solution have been calculated from B coefficient and partial molar volume data. The calculated parameters are used to interpret the solute-solvent interactions and structure forming/breaking ability of solute in DMF.
Direct Solve of Electrically Large Integral Equations for Problem Sizes to 1M Unknowns
NASA Technical Reports Server (NTRS)
Shaeffer, John
2008-01-01
Matrix methods for solving integral equations via direct solve LU factorization are presently limited to weeks to months of very expensive supercomputer time for problems sizes of several hundred thousand unknowns. This report presents matrix LU factor solutions for electromagnetic scattering problems for problem sizes to one million unknowns with thousands of right hand sides that run in mere days on PC level hardware. This EM solution is accomplished by utilizing the numerical low rank nature of spatially blocked unknowns using the Adaptive Cross Approximation for compressing the rank deficient blocks of the system Z matrix, the L and U factors, the right hand side forcing function and the final current solution. This compressed matrix solution is applied to a frequency domain EM solution of Maxwell's equations using standard Method of Moments approach. Compressed matrix storage and operations count leads to orders of magnitude reduction in memory and run time.
Li, J. C.; Diamond, P. H.
2017-03-23
Here, negative compressibility ITG turbulence in a linear plasma device (CSDX) can induce a negative viscosity increment. However, even with this negative increment, we show that the total axial viscosity remains positive definite, i.e. no intrinsic axial flow can be generated by pure ITG turbulence in a straight magnetic field. This differs from the case of electron drift wave (EDW) turbulence, where the total viscosity can turn negative, at least transiently. When the flow gradient is steepened by any drive mechanism, so that the parallel shear flow instability (PSFI) exceeds the ITG drive, the flow profile saturates at a level close to the value above which PSFI becomes dominant. This saturated flow gradient exceeds the PSFI linear threshold, and grows withmore » $$\
Lukyanets, Sergei P; Kliushnychenko, Oleksandr V
2010-11-01
The mass transport in an inhomogeneous medium is modeled as the limiting case of a two-component lattice gas with excluded volume constraint and one of the components fixed. In the long-wavelength approximation, the density relaxation of mobile particles is governed by diffusion and interaction with a medium inhomogeneity represented by the static component distribution. It is shown that the density relaxation can be locally accompanied by density distribution compression, i.e., the local mass transport directed from low-to high-density regions. The origin of such a "negative" mass transport is shown to be associated with the presence of a stationary drift flow defined by the medium inhomogeneity. In the quasi-one-dimensional case, the compression dynamics manifests itself in the hoppinglike motion of packet front position of diffusing substance due to staged passing through inhomogeneity barriers, and it leads to fragmentation of the packet and retardation of its spreading. The root-mean-square displacement reflects only the averaged packet front dynamics and becomes inappropriate as the transport characteristic in this regime. In the stationary case, the mass transport throughout the whole system may be directed from the boundary with lower concentration towards the boundary with higher concentration. Implications of the excluded volume constraint and particle distinguishability for these effects are discussed.
Effect of Impact Compression on the Age-Hardening of Rapidly Solidified Al-Zn-Mg Base Alloys
NASA Astrophysics Data System (ADS)
Horikawa, Keitaro; Kobayashi, Hidetoshi
Effect of impact compression on the age-hardening behavior and the mechanical properties of Mesoalite aluminum alloy was examined by means of the high-velocity plane collision between a projectile and Mesoalite by using a single powder gun. By imposing the impact compression to the Meso10 and Meso20 alloys in the state of quenching after the solution heat treatment, the following age-hardening at 110 °C was highly increased, comparing with the Mesoalite without the impact compression. XRD results revealed that high plastic strain was introduced on the specimen inside after the impact compression. Compression test results also clarified that both Meso10 and Meso20 alloy specimens imposed the impact compressive stresses more than 5 GPa after the peak-aging at 110°C showed higher yield stresses, comparing with the alloys without the impact compression. It was also shown that the Meso10 and Meso20 specimens after the solution heat treatment, followed by the high-velocity impact compression (12 GPa) and the peak-aging treatment indicated the highest compressive yield stresses such as 994 GPa in Meso10 and 1091 GPa in Meso20.
NASA Technical Reports Server (NTRS)
Garrick, I. E.; Kaplan, Carl
1944-01-01
The differential equation of Chaplygin's jet problem is utilized to give a systematic development of particular solutions of the hodograph flow equations, which extends the treatment of Chaplygin into the supersonic range and completes the set of particular solutions. The particular solutions serve to place on a reasonable basis the use of velocity correction formulas for the comparison of incompressible and compressible flows. It is shown that the geometric-mean type of velocity correction formula introduced in part I has significance as an over-all type of approximation in the subsonic range. A brief review of general conditions limiting the potential flow of an adiabatic compressible fluid is given and application is made to the particular solutions, yielding conditions for the existence of singular loci in the supersonic range. The combining of particular solutions in accordance with prescribed boundary flow conditions is not treated in the present paper.
New stochastic approach for extreme response of slow drift motion of moored floating structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Shunji; Okazaki, Takashi
1995-12-31
A new stochastic method for investigating the flow drift response statistics of moored floating structures is described. Assuming that wave drift excitation process can be driven by a Gaussian white noise process, an exact stochastic equation governing a time evolution of the response Probability Density Function (PDF) is derived on a basis of Projection operator technique in the field of statistical physics. In order to get an approximate solution of the GFP equation, the authors develop the renormalized perturbation technique which is a kind of singular perturbation methods and solve the GFP equation taken into account up to third ordermore » moments of a non-Gaussian excitation. As an example of the present method, a closed form of the joint PDF is derived for linear response in surge motion subjected to a non-Gaussian wave drift excitation and it is represented by the product of a form factor and the quasi-Cauchy PDFs. In this case, the motion displacement and velocity processes are not mutually independent if the excitation process has a significant third order moment. From a comparison between the response PDF by the present solution and the exact one derived by Naess, it is found that the present solution is effective for calculating both the response PDF and the joint PDF. Furthermore it is shown that the displacement-velocity independence is satisfied if the damping coefficient in equation of motion is not so large and that both the non-Gaussian property of excitation and the damping coefficient should be taken into account for estimating the probability exceedance of the response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, F.W.; Sun, Y.C.
1980-11-01
The steady-state solution of the nonlinear Vlasov-Poisson equations is reduced to a nonlinear eigenvalue problem for the case of double-layer (potential drop) boundary conditions. Solutions with no relative electron-ion drifts are found. The kinetic stability is discussed. Suggestions for creating these states in experiments and computer simulations are offered.
Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations
Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.; ...
2016-06-07
On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ~1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ~1300 to 0100 LT. We then concludemore » that the shock-induced electron dropout is not caused by the magnetopause shadowing. Furthermore, the dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.« less
Collisionless kinetic theory of oblique tearing instabilities
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
2018-02-15
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less
Collisionless kinetic theory of oblique tearing instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less
Collisionless kinetic theory of oblique tearing instabilities
NASA Astrophysics Data System (ADS)
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
2018-02-01
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. We find that this stabilization is associated with the density-gradient-driven diamagnetic drift. The analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. A simple analytic estimate for the stability criterion is provided.
Sliding window prior data assisted compressed sensing for MRI tracking of lung tumors.
Yip, Eugene; Yun, Jihyun; Wachowicz, Keith; Gabos, Zsolt; Rathee, Satyapal; Fallone, B G
2017-01-01
Hybrid magnetic resonance imaging and radiation therapy devices are capable of imaging in real-time to track intrafractional lung tumor motion during radiotherapy. Highly accelerated magnetic resonance (MR) imaging methods can potentially reduce system delay time and/or improves imaging spatial resolution, and provide flexibility in imaging parameters. Prior Data Assisted Compressed Sensing (PDACS) has previously been proposed as an acceleration method that combines the advantages of 2D compressed sensing and the KEYHOLE view-sharing technique. However, as PDACS relies on prior data acquired at the beginning of a dynamic imaging sequence, decline in image quality occurs for longer duration scans due to drifts in MR signal. Novel sliding window-based techniques for refreshing prior data are proposed as a solution to this problem. MR acceleration is performed by retrospective removal of data from the fully sampled sets. Six patients with lung tumors are scanned with a clinical 3 T MRI using a balanced steady-state free precession (bSSFP) sequence for 3 min at approximately 4 frames per second, for a total of 650 dynamics. A series of distinct pseudo-random patterns of partial k-space acquisition is generated such that, when combined with other dynamics within a sliding window of 100 dynamics, covers the entire k-space. The prior data in the sliding window are continuously refreshed to reduce the impact of MR signal drifts. We intended to demonstrate two different ways to utilize the sliding window data: a simple averaging method and a navigator-based method. These two sliding window methods are quantitatively compared against the original PDACS method using three metrics: artifact power, centroid displacement error, and Dice's coefficient. The study is repeated with pseudo 0.5 T images by adding complex, normally distributed noise with a standard deviation that reduces image SNR, relative to original 3 T images, by a factor of 6. Without sliding window implemented, PDACS-reconstructed dynamic datasets showed progressive increases in image artifact power as the 3 min scan progresses. With sliding windows implemented, this increase in artifact power is eliminated. Near the end of a 3 min scan at 3 T SNR and 5× acceleration, implementation of an averaging (navigator) sliding window method improves our metrics by the following ways: artifact power decreases from 0.065 without sliding window to 0.030 (0.031), centroid error decreases from 2.64 to 1.41 mm (1.28 mm), and Dice coefficient agreement increases from 0.860 to 0.912 (0.915). At pseudo 0.5 T SNR, the improvements in metrics are as follows: artifact power decreases from 0.110 without sliding window to 0.0897 (0.0985), centroid error decreases from 2.92 mm to 1.36 mm (1.32 mm), and Dice coefficient agreements increases from 0.851 to 0.894 (0.896). In this work we demonstrated the negative impact of slow changes in MR signal for longer duration PDACS dynamic scans, namely increases in image artifact power and reductions of tumor tracking accuracy. We have also demonstrated sliding window implementations (i.e., refreshing of prior data) of PDACS are effective solutions to this problem at both 3 T and simulated 0.5 T bSSFP images. © 2016 American Association of Physicists in Medicine.
Self-Similar Compressible Free Vortices
NASA Technical Reports Server (NTRS)
vonEllenrieder, Karl
1998-01-01
Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.
Redshift drift in axially symmetric quasispherical Szekeres models
NASA Astrophysics Data System (ADS)
Mishra, Priti; Célérier, Marie-Noëlle; Singh, Tejinder P.
2012-10-01
Models of inhomogeneous universes constructed with exact solutions of Einstein’s general relativity have been proposed in the literature with the aim of reproducing the cosmological data without any need for a dark energy component. Besides large scale inhomogeneity models spherically symmetric around the observer, Swiss-cheese models have also been studied. Among them, Swiss cheeses where the inhomogeneous patches are modeled by different particular Szekeres solutions have been used for reproducing the apparent dimming of the type Ia supernovae. However, the problem of fitting such models to the type Ia supernovae data is completely degenerate and we need other constraints to fully characterize them. One of the tests which is known to be able to discriminate between different cosmological models is the redshift drift. This drift has already been calculated by different authors for Lemaître-Tolman-Bondi models. We compute it here for one particular axially symmetric quasispherical Szekeres Swiss cheese which has previously been shown to reproduce to a good accuracy the type Ia supernovae data, and we compare the results to the drift in the ΛCDM model and in some Lemaître-Tolman-Bondi models that can be found in the literature. We show that it is a good discriminator between them. Then, we discuss our model’s remaining degrees of freedom and propose a recipe to fully constrain them.
Analysis of the SPS Long Term Orbit Drifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velotti, Francesco; Bracco, Chiara; Cornelis, Karel
2016-06-01
The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessitymore » to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed.« less
Quasi-neutral limit of Euler–Poisson system of compressible fluids coupled to a magnetic field
NASA Astrophysics Data System (ADS)
Yang, Jianwei
2018-06-01
In this paper, we consider the quasi-neutral limit of a three-dimensional Euler-Poisson system of compressible fluids coupled to a magnetic field. We prove that, as Debye length tends to zero, periodic initial-value problems of the model have unique smooth solutions existing in the time interval where the ideal incompressible magnetohydrodynamic equations has smooth solution. Meanwhile, it is proved that smooth solutions converge to solutions of incompressible magnetohydrodynamic equations with a sharp convergence rate in the process of quasi-neutral limit.
Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; Siddiq, M.; Karim, S.
2009-04-15
Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation ofmore » shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v{sub *}/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v{sub *}/u>0) increases, whereas the slow drift shock (i.e., v{sub *}/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less
Control Infrastructure for a Pulsed Ion Accelerator
NASA Astrophysics Data System (ADS)
Persaud, A.; Regis, M. J.; Stettler, M. W.; Vytla, V. K.
2016-10-01
We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.
Control Infrastructure for a Pulsed Ion Accelerator
Persaud, A.; Regis, M. J.; Stettler, M. W.; ...
2016-07-27
We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.
The role of Shabansky orbits in the generation of compression-related EMIC waves
NASA Astrophysics Data System (ADS)
McCollough, J. P.; Elkington, S. R.; Baker, D.
2009-12-01
Electromagnetic ion-cyclotron (EMIC) waves arise from temperature anisotropies in trapped warm plasma populations. In particular, EMIC waves at high L values near local noon are often found to be related to magnetospheric compression events. There are several possible mechanisms that can generate these temperature anisotropies: energizing processes, including adiabatic compression and shock-induced and radial transport; and non-energizing processes, such as drift shell splitting and the effects of off-equatorial minima on particle populations. In this work we investigate the role of off-equatorial minima in the generation of temperature anisotropies both at the magnetic equator and at higher latitudes. There are two kinds of behavior particles undergo in response: particles with high equatorial pitch angles (EPAs) are forced to execute so-called Shabanksy orbits and mirror at high latitudes without passing through the equator, and those with lower EPAs will pass through the equator with higher EPAs than before; as a result, perpendicular energies increase at the cost of parallel energies. By using a 3D particle tracing code in a tunable analytic compressed-dipole field, we parameterize the effects of Shabansky orbits on the anisotropy of the warm plasma. These results as well as evidence from simulations of a real event in which EMIC waves were observed (the compression event of 29 June 2007) are presented.
Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum
NASA Astrophysics Data System (ADS)
Guarnieri, F.; Moon, W.; Wettlaufer, J. S.
2017-09-01
Motivated by a problem in climate dynamics, we investigate the solution of a Bessel-like process with a negative constant drift, described by a Fokker-Planck equation with a potential V (x ) =-[b ln(x ) +a x ] , for b >0 and a <0 . The problem belongs to a family of Fokker-Planck equations with logarithmic potentials closely related to the Bessel process that has been extensively studied for its applications in physics, biology, and finance. The Bessel-like process we consider can be solved by seeking solutions through an expansion into a complete set of eigenfunctions. The associated imaginary-time Schrödinger equation exhibits a mix of discrete and continuous eigenvalue spectra, corresponding to the quantum Coulomb potential describing the bound states of the hydrogen atom. We present a technique to evaluate the normalization factor of the continuous spectrum of eigenfunctions that relies solely upon their asymptotic behavior. We demonstrate the technique by solving the Brownian motion problem and the Bessel process both with a constant negative drift. We conclude with a comparison to other analytical methods and with numerical solutions.
Complex Langevin dynamics and zeroes of the fermion determinant
NASA Astrophysics Data System (ADS)
Aarts, Gert; Seiler, Erhard; Sexty, Dénes; Stamatescu, Ion-Olimpiu
2017-05-01
QCD at nonzero baryon chemical potential suffers from the sign problem, due to the complex quark determinant. Complex Langevin dynamics can provide a solution, provided certain conditions are met. One of these conditions, holomorphicity of the Langevin drift, is absent in QCD since zeroes of the determinant result in a meromorphic drift. We first derive how poles in the drift affect the formal justification of the approach and then explore the various possibilities in simple models. The lessons from these are subsequently applied to both heavy dense QCD and full QCD, and we find that the results obtained show a consistent picture. We conclude that with careful monitoring, the method can be justified a posteriori, even in the presence of meromorphicity.
[Exploration of the concept of genetic drift in genetics teaching of undergraduates].
Wang, Chun-ming
2016-01-01
Genetic drift is one of the difficulties in teaching genetics due to its randomness and probability which could easily cause conceptual misunderstanding. The “sampling error" in its definition is often misunderstood because of the research method of “sampling", which disturbs the results and causes the random changes in allele frequency. I analyzed and compared the definitions of genetic drift in domestic and international genetic textbooks, and found that the definitions containing “sampling error" are widely adopted but are interpreted correctly in only a few textbooks. Here, the history of research on genetic drift, i.e., the contributions of Wright, Fisher and Kimura, is introduced. Moreover, I particularly describe two representative articles recently published about genetic drift teaching of undergraduates, which point out that misconceptions are inevitable for undergraduates during the studying process and also provide a preliminary solution. Combined with my own teaching practice, I suggest that the definition of genetic drift containing “sampling error" can be adopted with further interpretation, i.e., “sampling error" is random sampling among gametes when generating the next generation of alleles which is equivalent to a random sampling of all gametes participating in mating in gamete pool and has no relationship with artificial sampling in general genetics studies. This article may provide some help in genetics teaching.
Li, Xue; Dong, Jiao
2018-01-01
The material considered in this study not only has a functionally graded characteristic but also exhibits different tensile and compressive moduli of elasticity. One-dimensional and two-dimensional mechanical models for a functionally graded beam with a bimodular effect were established first. By taking the grade function as an exponential expression, the analytical solutions of a bimodular functionally graded beam under pure bending and lateral-force bending were obtained. The regression from a two-dimensional solution to a one-dimensional solution is verified. The physical quantities in a bimodular functionally graded beam are compared with their counterparts in a classical problem and a functionally graded beam without a bimodular effect. The validity of the plane section assumption under pure bending and lateral-force bending is analyzed. Three typical cases that the tensile modulus is greater than, equal to, or less than the compressive modulus are discussed. The result indicates that due to the introduction of the bimodular functionally graded effect of the materials, the maximum tensile and compressive bending stresses may not take place at the bottom and top of the beam. The real location at which the maximum bending stress takes place is determined via the extreme condition for the analytical solution. PMID:29772835
Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kimesh, Matthew A.
2012-01-01
Modern hyperspectral imaging systems are able to acquire far more data than can be downlinked from a spacecraft. Onboard data compression helps to alleviate this problem, but requires a system capable of power efficiency and high throughput. Software solutions have limited throughput performance and are power-hungry. Dedicated hardware solutions can provide both high throughput and power efficiency, while taking the load off of the main processor. Thus a hardware compression system was developed. The implementation uses a field-programmable gate array (FPGA). The implementation is based on the fast lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral-Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which achieves excellent compression performance and has low complexity. This algorithm performs predictive compression using an adaptive filtering method, and uses adaptive Golomb coding. The implementation also packetizes the coded data. The FL algorithm is well suited for implementation in hardware. In the FPGA implementation, one sample is compressed every clock cycle, which makes for a fast and practical realtime solution for space applications. Benefits of this implementation are: 1) The underlying algorithm achieves a combination of low complexity and compression effectiveness that exceeds that of techniques currently in use. 2) The algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. 3) Hardware acceleration provides a throughput improvement of 10 to 100 times vs. the software implementation. A prototype of the compressor is available in software, but it runs at a speed that does not meet spacecraft requirements. The hardware implementation targets the Xilinx Virtex IV FPGAs, and makes the use of this compressor practical for Earth satellites as well as beyond-Earth missions with hyperspectral instruments.
Blind compressed sensing image reconstruction based on alternating direction method
NASA Astrophysics Data System (ADS)
Liu, Qinan; Guo, Shuxu
2018-04-01
In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.
1986-08-01
AD-A174 952 FINITE - DIFFERENCE SOLUTIONS FOR CONPRESSIBLE LANINAR 1/2 BOUNDARY-LAYER FLOUS (U) TORONTO UNIV DOWNSVIEW (ONTARIO) INST FOR AEROSPACE...dilute dusty gas over a semi-infinite flat plate. Details are given of the impliit finite , difference schemes as well as the boundary conditions... FINITE - DIFFERENCE SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY-LAYER FLOWS OF A DUSTY GAS OVER A SEMI-INFINITE FLAT PLATE by B. Y. Wang and I. I
Iterative spectral methods and spectral solutions to compressible flows
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Zang, T. A.
1982-01-01
A spectral multigrid scheme is described which can solve pseudospectral discretizations of self-adjoint elliptic problems in O(N log N) operations. An iterative technique for efficiently implementing semi-implicit time-stepping for pseudospectral discretizations of Navier-Stokes equations is discussed. This approach can handle variable coefficient terms in an effective manner. Pseudospectral solutions of compressible flow problems are presented. These include one dimensional problems and two dimensional Euler solutions. Results are given both for shock-capturing approaches and for shock-fitting ones.
A conservative staggered-grid Chebyshev multidomain method for compressible flows
NASA Technical Reports Server (NTRS)
Kopriva, David A.; Kolias, John H.
1995-01-01
We present a new multidomain spectral collocation method that uses staggered grids for the solution of compressible flow problems. The solution unknowns are defined at the nodes of a Gauss quadrature rule. The fluxes are evaluated at the nodes of a Gauss-Lobatto rule. The method is conservative, free-stream preserving, and exponentially accurate. A significant advantage of the method is that subdomain corners are not included in the approximation, making solutions in complex geometries easier to compute.
NASA Astrophysics Data System (ADS)
Balitska, V.; Shpotyuk, O.; Brunner, M.; Hadzaman, I.
2018-02-01
Thermally-induced (170 °C) degradation-relaxation kinetics is examined in screen-printed structures composed of spinel Cu0.1Ni0.1Co1.6Mn1.2O4 ceramics with conductive Ag or Ag-Pd layered electrodes. Structural inhomogeneities due to Ag and Ag-Pd diffusants in spinel phase environment play a decisive role in non-exponential kinetics of negative relative resistance drift. If Ag migration in spinel is inhibited by Pd addition due to Ag-Pd alloy, the kinetics attains stretched exponential behavior with ∼0.58 exponent, typical for one-stage diffusion in structurally-dispersive media. Under deep Ag penetration into spinel ceramics, as for thick films with Ag-layered electrodes, the degradation kinetics drastically changes, attaining features of two-step diffusing process governed by compressed-exponential dependence with power index of ∼1.68. Crossover from stretched- to compressed-exponential kinetics in spinel-metallic structures is mapped on free energy landscape of non-barrier multi-well system under strong perturbation from equilibrium, showing transition with a character downhill scenario resulting in faster than exponential decaying.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.; Barnard, J. J.; Cohen, R. H.
The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL,more » NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Barnard, J J; Cohen, R H
The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Testmore » Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.« less
Force sensitive carbon nanotube arrays for biologically inspired airflow sensing
NASA Astrophysics Data System (ADS)
Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.
2012-09-01
The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.
NASA Astrophysics Data System (ADS)
Kobayashi, Hiroshi; Watanabe, Sei-ichiro; Kimura, Hiroshi; Yamamoto, Tetsuo
2009-05-01
Dust particles exposed to the stellar radiation and wind drift radially inward by the Poynting-Robertson (P-R) drag and pile up at the zone where they begin to sublime substantially. The reason they pile up or form a ring is that their inward drifts due to the P-R drag are suppressed by stellar radiation pressure when the ratio of radiation pressure to stellar gravity on them increases during their sublimation phases. We present analytic solutions to the orbital and mass evolution of such subliming dust particles, and find their drift velocities at the pileup zone are almost independent of their initial semimajor axes and masses. We derive analytically an enhancement factor of the number density of the particles at the outer edge of the sublimation zone from the solutions. We show that the formula of the enhancement factor reproduces well numerical simulations in the previous studies. The enhancement factor for spherical dust particles of silicate and carbon extends from 3 to more than 20 at stellar luminosities L=0.8-500L, where L is solar luminosity. Although the enhancement factor for fluffy dust particles is smaller than that for spherical particles, sublimating particles inevitably form a dust ring as long as their masses decrease faster than their surface areas during sublimation. The formulation is applicable to dust ring formation for arbitrary shape and material of dust in dust-debris disks as well as in the Solar System.
Engineered Barrier System: Physical and Chemical Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
2004-04-26
The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less
Monte Carlo criticality source convergence in a loosely coupled fuel storage system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blomquist, R. N.; Gelbard, E. M.
2003-06-10
The fission source convergence of a very loosely coupled array of 36 fuel subassemblies with slightly non-symmetric reflection is studied. The fission source converges very slowly from a uniform guess to the fundamental mode in which about 40% of the fissions occur in one corner subassembly. Eigenvalue and fission source estimates are analyzed using a set of statistical tests similar to those used in MCNP, including the ''drift-in-mean'' test and a new drift-in-mean test using a linear fit to the cumulative estimate drift, the Shapiro-Wilk test for normality, the relative error test, and the ''1/N'' test. The normality test doesmore » not detect a drifting eigenvalue or fission source. Applied to eigenvalue estimates, the other tests generally fail to detect an unconverged solution, but they are sometimes effective when evaluating fission source distributions. None of the test provides completely reliable indication of convergence, although they can detect nonconvergence.« less
Patterns through elastic instabilities, from thin sheets to twisted ribbons
NASA Astrophysics Data System (ADS)
Damman, Pascal
Sheets embedded in a given shape by external forces store the exerted work in elastic deformations. For pure tensile forces, the work is stored as stretching energy. When the forces are compressive, several ways to store the exerted work, combining stretching and bending deformations can be explored. For large deflections, the ratio of bending, Eh3ζ2 /L4 and stretching, Ehζ4 /L4 energies, suggests that strain-free solutions should be favored for thin sheets, provided ζ2 >>h2 (where E , ζ , Land h are the elastic modulus, the deflection, a characteristic sheet size and its thickness). For uniaxially constrained sheets deriving from the Elastica, strain-free solutions are obvious, i.e., buckles, folds or wrinkles grow to absorb the stress of compression. In contrast, crumpled sheets exhibit ``origami-like'' solutions usually described as an assembly of flat polygonal facets delimitated by ridges focusing strains are observed. This type of solutions is particularly interesting since a faceted morphology is isometric to the undeformed sheet, except at those narrow ridges. In some cases however, the geometric constraints imposed by the external forces do not allow solutions with negligible strain in the deformed state. For instance, considering a circular sheet on a small drop, so thin that bending becomes negligible, i.e., Eh3 / γL2 << 1 . The capillary tension, γ at the edge forces the sheet to follow the spherical shape of the drop. Depending on the magnitude of the capillary tension with respect to the stretching modulus, such a sheet on a sphere can be in full tension or subjected to azimuthal compression. These spherical solutions could generate a hoop stress of compression within a small strip at the sheet's edge. The mechanical response of the sheet will generate tiny wrinkles decorating the edge to relax the compression stress while keeping its spherical shape. Finally, twisting a paper ribbon under high tension spontaneously produces helicoidal shapes that also reflect stretching and bending deformations. When the tension is progressively relieved, longitudinal and transverse compressive stresses build. To relax the longitudinal stress while keeping the helicoid shape, the ribbons produce wrinkles that ultimately becomes sharp folds similar to the ridge singularities observed in crumpled paper. The relaxation of the transverse compression stress produces cylindrical solutions. All these examples illustrates the natural tendency of an elastic sheet to stay as close as possible to the imposed shape, i.e. flat, spherical, helicoid. The mechanical response of the elastic sheet aims to relieve the compressive stress by growing a given micro-structure, i.e. wrinkles, singularities. In this talk, we will explore the general mechanisms at work, based on geometry and a competition between various energy terms, involving stretching and bending modes.
Perturbational blowup solutions to the compressible Euler equations with damping.
Cheung, Ka Luen
2016-01-01
The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; Siddiq, M.; Karim, S.
2009-11-15
Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous electron-positron-ion (e-p-i) quantum magnetoplasma with neutrals in the background using the well known quantum hydrodynamic model. In this regard, Korteweg-de Vries-Burgers (KdVB) and Kadomtsev-Petviashvili-Burgers (KPB) equations are obtained. Furthermore, the solutions of KdVB and KPB equations are presented by using the tangent hyperbolic (tanh) method. The variation in the shock profile with the quantum Bohm potential, collision frequency, and the ratio of drift to shock velocity in the comoving frame, v{sub *}/u, is also investigated. It is found that increasing the positron concentration and collisionmore » frequency decreases the strength of the shock. It is also shown that when the localized structure propagates with velocity greater than the diamagnetic drift velocity (i.e., u>v{sub *}), the shock strength decreases. However, the shock strength is observed to increase when the localized structure propagates with velocity less than that of drift velocity (i.e., u
Ghazvini, Saba; Kalonia, Cavan; Volkin, David B; Dhar, Prajnaparamita
2016-05-01
Mechanical agitation of monoclonal antibody (mAb) solutions often leads to protein particle formation. In this study, various formulations of an immunoglobulin G (IgG) 1 mAb were subjected to different controlled interfacial stresses using a Langmuir trough, and protein particles formed at the interface and measured in bulk solution were characterized using atomic force microscopy and flow digital imaging. Results were compared to mAb solutions agitated in glass vials and unstressed controls. At lower pH, mAb solutions exhibited larger hysteresis in their surface pressure versus area isotherms and increased number of particles in bulk solution, when subjected to interfacial stresses. mAb samples subjected to 750-1000 interfacial compression-expansion cycles in 6 h contained high particle numbers in bulk solution, and displayed similar particulation trends when agitated in vials. At compression rates of 50 cycles in 6 h, however, particle levels in mAb solutions were comparable to unstressed controls, despite protein aggregates being present at the air-solution interface. These results suggest that while the air-solution interface serves as a nucleation site for initiating protein aggregation, the number of protein particles measured in bulk mAb solutions depends on the total number of compression cycles that proteins at the air-solution interface are subjected to within a fixed time. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Kelly, Terri-Ann N; Roach, Brendan L; Weidner, Zachary D; Mackenzie-Smith, Charles R; O'Connell, Grace D; Lima, Eric G; Stoker, Aaron M; Cook, James L; Ateshian, Gerard A; Hung, Clark T
2013-07-26
The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different developmental stages through a novel method that combines osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was previously used to examine tension-compression nonlinearity in native cartilage. Engineered cartilage, cultured under free-swelling (FS) or dynamically loaded (DL) conditions, was tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equilibrium modulus decreased with increasing salt concentration, indicating that increasing the bath solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along the tension-compression curve and revealing the intrinsic properties of the tissue. With this method, we were able to measure the tensile (401±83kPa for FS and 678±473kPa for DL) and compressive (161±33kPa for FS and 348±203kPa for DL) moduli of the same engineered cartilage specimens. These moduli are comparable to values obtained from traditional methods, validating this technique for measuring the tensile and compressive properties of hydrogel-based constructs. This study shows that engineered cartilage exhibits tension-compression nonlinearity reminiscent of the native tissue, and that dynamic deformational loading can yield significantly higher tensile properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mishra, Priti; Célérier, Marie-Noëlle Singh, Tejinder P.
2015-01-01
Exact inhomogeneous solutions of Einstein's equations have been used in the literature to build models reproducing the cosmological data without dark energy. However, owing to the degrees of freedom pertaining to these models, it is necessary to get rid of the degeneracy often exhibited by the problem of distinguishing between them and accelerating universe models. We give an overview of redshift drift in inhomogeneous cosmologies, and explain how it serves to this purpose. One class of models which fits the data is the Szekeres Swiss-cheese class where non-spherically symmetric voids exhibit a typical size of about 400 Mpc. We present our calculation of the redshift drift in this model, and compare it with the results obtained by other authors for alternate scenarios.
A Stokes drift approximation based on the Phillips spectrum
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Bidlot, Jean-Raymond; Janssen, Peter A. E. M.
2016-04-01
A new approximation to the Stokes drift velocity profile based on the exact solution for the Phillips spectrum is explored. The profile is compared with the monochromatic profile and the recently proposed exponential integral profile. ERA-Interim spectra and spectra from a wave buoy in the central North Sea are used to investigate the behavior of the profile. It is found that the new profile has a much stronger gradient near the surface and lower normalized deviation from the profile computed from the spectra. Based on estimates from two open-ocean locations, an average value has been estimated for a key parameter of the profile. Given this parameter, the profile can be computed from the same two parameters as the monochromatic profile, namely the transport and the surface Stokes drift velocity.
Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks
NASA Astrophysics Data System (ADS)
Kang, Hyesung; Ryu, Dongsu
2018-03-01
Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.
CARGO: effective format-free compressed storage of genomic information
Roguski, Łukasz; Ribeca, Paolo
2016-01-01
The recent super-exponential growth in the amount of sequencing data generated worldwide has put techniques for compressed storage into the focus. Most available solutions, however, are strictly tied to specific bioinformatics formats, sometimes inheriting from them suboptimal design choices; this hinders flexible and effective data sharing. Here, we present CARGO (Compressed ARchiving for GenOmics), a high-level framework to automatically generate software systems optimized for the compressed storage of arbitrary types of large genomic data collections. Straightforward applications of our approach to FASTQ and SAM archives require a few lines of code, produce solutions that match and sometimes outperform specialized format-tailored compressors and scale well to multi-TB datasets. All CARGO software components can be freely downloaded for academic and non-commercial use from http://bio-cargo.sourceforge.net. PMID:27131376
NASA Astrophysics Data System (ADS)
Ali, A.; Bidhuri, P.; Uzair, S.
2014-07-01
Ultrasonic speed u, densities ρ and viscosities η of xylitol in water and in 0.001 m aqueous l-tyrosine (Tyr) and l-phenylalanine (Phe) have been measured at different temperatures. From the density and ultrasonic speed measurements apparent molar isentropic compression κ_{φ}, apparent molar isentropic compressions at infinite dilution κ_{{S,φ}}0 , experimental slope S K , hydration number n H , transfer partial molar isentropic compressibility Δ_{tr} κ_{{S,φ}}0 of xylitol from water to aqueous Tyr and Phe have been obtained. From the viscosity data, B-coefficient and B-coefficient of transfer Δ tr B of xylitol from water to aqueous Phe and Tyr at different temperatures have also been estimated. Gibbs free energies of activation of viscous flow per mole of solvent Δ μ 1 0# and per mole of solute Δ μ 2 0# have been calculated by using Feakins transition state theory for the studied systems. The calculated parameters have been interpreted in terms of solute-solute and solute-solvent interactions and hydration behavior of xylitol.
Chimera states for coupled oscillators.
Abrams, Daniel M; Strogatz, Steven H
2004-10-22
Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked oscillators coexist with drifting ones. Discovered two years ago, such "chimera states" are believed to be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated drift state, and dies in a saddle-node bifurcation with an unstable chimera state.
Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feinberg, B.
1995-02-01
Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.
Adaptive learning compressive tracking based on Markov location prediction
NASA Astrophysics Data System (ADS)
Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan
2017-03-01
Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.
Multiresolution representation and numerical algorithms: A brief review
NASA Technical Reports Server (NTRS)
Harten, Amiram
1994-01-01
In this paper we review recent developments in techniques to represent data in terms of its local scale components. These techniques enable us to obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability for data compression can be used to reduce the cost of many numerical solution algorithms by either applying it to the numerical solution operator in order to get an approximate sparse representation, or by applying it to the numerical solution itself in order to reduce the number of quantities that need to be computed.
The Compressible Stokes Flows with No-Slip Boundary Condition on Non-Convex Polygons
NASA Astrophysics Data System (ADS)
Kweon, Jae Ryong
2017-03-01
In this paper we study the compressible Stokes equations with no-slip boundary condition on non-convex polygons and show a best regularity result that the solution can have without subtracting corner singularities. This is obtained by a suitable Helmholtz decomposition: {{{u}}={{w}}+nablaφ_R} with div w = 0 and a potential φ_R. Here w is the solution for the incompressible Stokes problem and φ_R is defined by subtracting from the solution of the Neumann problem the leading two corner singularities at non-convex vertices.
Dilatation-dissipation corrections for advanced turbulence models
NASA Technical Reports Server (NTRS)
Wilcox, David C.
1992-01-01
This paper analyzes dilatation-dissipation based compressibility corrections for advanced turbulence models. Numerical computations verify that the dilatation-dissipation corrections devised by Sarkar and Zeman greatly improve both the k-omega and k-epsilon model predicted effect of Mach number on spreading rate. However, computations with the k-gamma model also show that the Sarkar/Zeman terms cause an undesired reduction in skin friction for the compressible flat-plate boundary layer. A perturbation solution for the compressible wall layer shows that the Sarkar and Zeman terms reduce the effective von Karman constant in the law of the wall. This is the source of the inaccurate k-gamma model skin-friction predictions for the flat-plate boundary layer. The perturbation solution also shows that the k-epsilon model has an inherent flaw for compressible boundary layers that is not compensated for by the dilatation-dissipation corrections. A compressibility modification for k-gamma and k-epsilon models is proposed that is similar to those of Sarkar and Zeman. The new compressibility term permits accurate predictions for the compressible mixing layer, flat-plate boundary layer, and a shock separated flow with the same values for all closure coefficients.
Cloud solution for histopathological image analysis using region of interest based compression.
Kanakatte, Aparna; Subramanya, Rakshith; Delampady, Ashik; Nayak, Rajarama; Purushothaman, Balamuralidhar; Gubbi, Jayavardhana
2017-07-01
Recent technological gains have led to the adoption of innovative cloud based solutions in medical imaging field. Once the medical image is acquired, it can be viewed, modified, annotated and shared on many devices. This advancement is mainly due to the introduction of Cloud computing in medical domain. Tissue pathology images are complex and are normally collected at different focal lengths using a microscope. The single whole slide image contains many multi resolution images stored in a pyramidal structure with the highest resolution image at the base and the smallest thumbnail image at the top of the pyramid. Highest resolution image will be used for tissue pathology diagnosis and analysis. Transferring and storing such huge images is a big challenge. Compression is a very useful and effective technique to reduce the size of these images. As pathology images are used for diagnosis, no information can be lost during compression (lossless compression). A novel method of extracting the tissue region and applying lossless compression on this region and lossy compression on the empty regions has been proposed in this paper. The resulting compression ratio along with lossless compression on tissue region is in acceptable range allowing efficient storage and transmission to and from the Cloud.
Physics of singularities in pressure-impulse theory
NASA Astrophysics Data System (ADS)
Krechetnikov, R.
2018-05-01
The classical solution in the pressure-impulse theory for the inviscid, incompressible, and zero-surface-tension water impact of a flat plate at zero dead-rise angle exhibits both singular-in-time initial fluid acceleration, ∂v /∂ t |t =0˜δ (t ) , and a near-plate-edge spatial singularity in the velocity distribution, v ˜r-1 /2 , where r is the distance from the plate edge. The latter velocity divergence also leads to the interface being stretched infinitely right after the impact, which is another nonphysical artifact. From the point of view of matched asymptotic analysis, this classical solution is a singular limit when three physical quantities achieve limiting values: sound speed c0→∞ , fluid kinematic viscosity ν →0 , and surface tension σ →0 . This leaves open a question on how to resolve these singularities mathematically by including the neglected physical effects—compressibility, viscosity, and surface tension—first one by one and then culminating in the local compressible viscous solution valid for t →0 and r →0 , demonstrating a nontrivial flow structure that changes with the degree of the bulk compressibility. In the course of this study, by starting with the general physically relevant formulation of compressible viscous flow, we clarify the parameter range(s) of validity of the key analytical solutions including classical ones (inviscid incompressible and compressible, etc.) and understand the solution structure, its intermediate asymptotics nature, characteristics influencing physical processes, and the role of potential and rotational flow components. In particular, it is pointed out that sufficiently close to the plate edge surface tension must be taken into account. Overall, the idea is to highlight the interesting physics behind the singularities in the pressure-impulse theory.
MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma
NASA Technical Reports Server (NTRS)
Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.;
2016-01-01
In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..
Measuring the equations of state in a relaxed magnetohydrodynamic plasma.
Kaur, M; Barbano, L J; Suen-Lewis, E M; Shrock, J E; Light, A D; Brown, M R; Schaffner, D A
2018-01-01
We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.
Measuring the equations of state in a relaxed magnetohydrodynamic plasma
NASA Astrophysics Data System (ADS)
Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Brown, M. R.; Schaffner, D. A.
2018-01-01
We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.
Analytical model of a corona discharge from a conical electrode under saturation
NASA Astrophysics Data System (ADS)
Boltachev, G. Sh.; Zubarev, N. M.
2012-11-01
Exact partial solutions are found for the electric field distribution in the outer region of a stationary unipolar corona discharge from an ideal conical needle in the space-charge-limited current mode with allowance for the electric field dependence of the ion mobility. It is assumed that only the very tip of the cone is responsible for the discharge, i.e., that the ionization zone is a point. The solutions are obtained by joining the spherically symmetric potential distribution in the drift space and the self-similar potential distribution in the space-charge-free region. Such solutions are outside the framework of the conventional Deutsch approximation, according to which the space charge insignificantly influences the shape of equipotential surfaces and electric lines of force. The dependence is derived of the corona discharge saturation current on the apex angle of the conical electrode and applied potential difference. A simple analytical model is suggested that describes drift in the point-plane electrode geometry under saturation as a superposition of two exact solutions for the field potential. In terms of this model, the angular distribution of the current density over the massive plane electrode is derived, which agrees well with Warburg's empirical law.
NASA Astrophysics Data System (ADS)
Bie, Qunyi; Cui, Haibo; Wang, Qiru; Yao, Zheng-An
2017-10-01
The Cauchy problem for the compressible flow of nematic liquid crystals in the framework of critical spaces is considered. We first establish the existence and uniqueness of global solutions provided that the initial data are close to some equilibrium states. This result improves the work by Hu and Wu (SIAM J Math Anal 45(5):2678-2699, 2013) through relaxing the regularity requirement of the initial data in terms of the director field. Based on the global existence, we then consider the incompressible limit problem for ill prepared initial data. We prove that as the Mach number tends to zero, the global solution to the compressible flow of liquid crystals converges to the solution to the corresponding incompressible model in some function spaces. Moreover, the accurate converge rates are obtained.
Compressed modes for variational problems in mathematics and physics
Ozoliņš, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley
2013-01-01
This article describes a general formalism for obtaining spatially localized (“sparse”) solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger’s equation in quantum mechanics. Sparsity is achieved by adding an regularization term to the variational principle, which is shown to yield solutions with compact support (“compressed modes”). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size. PMID:24170861
Compressed modes for variational problems in mathematics and physics.
Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley
2013-11-12
This article describes a general formalism for obtaining spatially localized ("sparse") solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an regularization term to the variational principle, which is shown to yield solutions with compact support ("compressed modes"). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size.
New Solutions for Energy Absorbing Materials
2012-11-01
One can also readily plot transverse stiffness versus axial compression , shown in Figure 8, by relating the axial compression force, N, to the...displacement of 1 μm was applied at the center-top of the beam at the same time as the beam ends were subjected to varying axial compressive ...Figure 8 for varying amounts of axial compression . The results indicate a very good agreement between the analytical and FEA models. The slight
The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste
NASA Astrophysics Data System (ADS)
Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.
2017-06-01
Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2006-01-01
This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.
The dynamo of the diurnal tide and its effect on the thermospheric circulation
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.
1990-01-01
A theoretical multiconstituent model (including O, N2, and O2) which describes the interactions between neutral winds, dynamo electric fields, and ion drifts is used to interpret observations that revealed a dominance of the fundamental diurnal tide in the upper thermosphere and at equatorial latitudes, and its effect on the thermospheric circulation. The model is shown to reproduce reasonably well the magnitudes of the neutral winds, ion drift velocities, and the ratio between the two. A solution for the neutral winds in which the dynamo electric field is forced to zero shows that the dynamo-induced ion drift is very important in accelerating the neutral atmosphere at higher altitudes. The dynamo interaction primarily affects the curl component of the field; its effect on the temperature and density perturbations is small.
NASA Astrophysics Data System (ADS)
Antoni, Herianto, Jason Ghorman; Anastasia, Evelin; Hardjito, Djwantoro
2017-09-01
Fly ash with high calcium oxide content when used as the base material in geopolymer concrete could cause flash setting or rapid hardening. However, it might increase the compressive strength of geopolymer concrete. This rapid hardening could cause problems if the geopolymer concrete is used on a large scale casting that requires a long setting time. CaO content can be indicated by pH values of the fly ash, while higher pH is correlated with the rapid setting time of fly ash-based geopolymer. This study investigates the addition of acid solution to reduce the initial pH of the fly ash and to prolong the setting time of the mixture. The acids used in this study are hydrochloric acid (HCl), sulfuric acid (H2 SO4), nitric acid (HNO3) and acetic acid (CH3 COOH). It was found that the addition of acid solution in fly ash was able to decrease the initial pH of fly ash, however, the initial setting time of geopolymer was not reduced. It was even faster than that of the control mixture. The acid type causes various influence, depending on the fly ash properties. In addition, the use of acid solution in fly ash reduces the compressive strength of geopolymer mortar. It is concluded that the addition of acid solution cannot prolong the rapid hardening of high calcium fly ash geopolymer, and it causes adverse effect on the compressive strength.
NASA Astrophysics Data System (ADS)
Wong, S. K.; Chan, V. S.; Hinton, F. L.
2001-10-01
The classic solution of the linearized drift kinetic equations in neoclassical transport theory for large-aspect-ratio tokamak flux-surfaces relies on the variational principle and the choice of ``localized" distribution functions as trialfunctions.(M.N. Rosenbluth, et al., Phys. Fluids 15) (1972) 116. Somewhat unclear in this approach are the nature and the origin of the ``localization" and whether the results obtained represent the exact leading terms in an asymptotic expansion int he inverse aspect ratio. Using the method of matched asymptotic expansions, we were able to derive the leading approximations to the distribution functions and demonstrated the asymptotic exactness of the existing results. The method is also applied to the calculation of angular momentum transport(M.N. Rosenbluth, et al., Plasma Phys. and Contr. Nucl. Fusion Research, 1970, Vol. 1 (IAEA, Vienna, 1971) p. 495.) and the current driven by electron cyclotron waves.
Hydrodynamic collective effects of active protein machines in solution and lipid bilayers
Mikhailov, Alexander S.; Kapral, Raymond
2015-01-01
The cytoplasm and biomembranes in biological cells contain large numbers of proteins that cyclically change their shapes. They are molecular machines that can function as molecular motors or carry out various other tasks in the cell. Many enzymes also undergo conformational changes within their turnover cycles. We analyze the advection effects that nonthermal fluctuating hydrodynamic flows induced by active proteins have on other passive molecules in solution or membranes. We show that the diffusion constants of passive particles are enhanced substantially. Furthermore, when gradients of active proteins are present, a chemotaxis-like drift of passive particles takes place. In lipid bilayers, the effects are strongly nonlocal, so that active inclusions in the entire membrane contribute to local diffusion enhancement and the drift. All active proteins in a biological cell or in a membrane contribute to such effects and all passive particles, and the proteins themselves, will be subject to them. PMID:26124140
Teng, Chaoyi; Demers, Hendrix; Brodusch, Nicolas; Waters, Kristian; Gauvin, Raynald
2018-06-04
A number of techniques for the characterization of rare earth minerals (REM) have been developed and are widely applied in the mining industry. However, most of them are limited to a global analysis due to their low spatial resolution. In this work, phase map analyses were performed on REM with an annular silicon drift detector (aSDD) attached to a field emission scanning electron microscope. The optimal conditions for the aSDD were explored, and the high-resolution phase maps generated at a low accelerating voltage identify phases at the micron scale. In comparisons between an annular and a conventional SDD, the aSDD performed at optimized conditions, making the phase map a practical solution for choosing an appropriate grinding size, judging the efficiency of different separation processes, and optimizing a REM beneficiation flowsheet.
NASA Astrophysics Data System (ADS)
Monnin, Christophe
1990-12-01
A model is presented which is used to calculate the effect of pressure on activity coefficients of aqueous solutes in the system Na-Ca-Cl-SO 4-H 2O to 200°C. Literature data for the density and compressibility of aqueous binary solutions of Na 2SO 4 and CaCl 2 to 200°C are used to calculate the first and second pressure derivatives of Pitzer's ion interaction model parameters, as well as the standard molal compressibility and volume of these two salts. Empirical correlations between the apparent molal volume and compressibility of the aqueous electrolytes are used to guide the choice of the temperature dependent expressions used for the numerical representation of the derivatives of Pitzer's parameters with respect to pressure. For sodium sulfate solutions, such correlations are used to extrapolate compressibilities to 200°C. The change in the thermodynamic properties of the-CaSO 04 ion pair with pressure is taken into account by the variation of its dissociation constant. The volumetric properties (partial molal volumes and compressibilities) of multicomponent solutions in the Na-Ca-Cl-SO 4-H 2O system can be predicted from the information generated here and the volumetric equations of ROGERS and PITZER (1982) for NaCl. This model is then combined with the high temperature model of MOLLER (1988) of the same system in order to calculate activity coefficients at high pressures to 200°C. The resulting model is validated by comparing calculated and measured solubilities of anhydrite and gypsum in pure water and in NaCl solutions up to 6 M. The agreement between the calculated and measured solubilities of the calcium sulfates is typically better than 10% up to 200°C and 1 kbar. The relevance of temperature and pressure corrections to the activity coefficients of aqueous solutes is discussed in regard to the assumed accuracy with which geochemical models are able to calculate mineral solubilities.
Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field.
Ilyas, Muhammad; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok
2016-09-09
Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called "virtual sensor"), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth's magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms.
Marshall, Thomas; Challis, Richard E; Holmes, Andrew K; Tebbutt, John S
2002-11-01
Ultrasonic compression wave absorption is investigated as a means to monitor the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution, and the changing nature of the continuous phase. The Allegra-Hawley scattering formulation is used to simulate ultrasonic absorption as crystallization proceeds. Experiments confirm that simulated attenuation is in agreement with measured results.
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Blanchard, D. K.
1975-01-01
A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.
Currents Induced by Injected Charge in Junction Detectors
Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas
2013-01-01
The problem of drifting charge-induced currents is considered in order to predict the pulsed operational characteristics in photo- and particle-detectors with a junction controlled active area. The direct analysis of the field changes induced by drifting charge in the abrupt junction devices with a plane-parallel geometry of finite area electrodes is presented. The problem is solved using the one-dimensional approach. The models of the formation of the induced pulsed currents have been analyzed for the regimes of partial and full depletion. The obtained solutions for the current density contain expressions of a velocity field dependence on the applied voltage, location of the injected surface charge domain and carrier capture parameters. The drift component of this current coincides with Ramo's expression. It has been illustrated, that the synchronous action of carrier drift, trapping, generation and diffusion can lead to a vast variety of possible current pulse waveforms. Experimental illustrations of the current pulse variations determined by either the rather small or large carrier density within the photo-injected charge domain are presented, based on a study of Si detectors. PMID:24036586
Comparison of Artificial Compressibility Methods
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Housman, Jeffrey; Kwak, Dochan
2004-01-01
Various artificial compressibility methods for calculating the three-dimensional incompressible Navier-Stokes equations are compared. Each method is described and numerical solutions to test problems are conducted. A comparison based on convergence behavior, accuracy, and robustness is given.
Global Solutions to Repulsive Hookean Elastodynamics
NASA Astrophysics Data System (ADS)
Hu, Xianpeng; Masmoudi, Nader
2017-01-01
The global existence of classical solutions to the three dimensional repulsive Hookean elastodynamics around an equilibrium is considered. By linearization and Hodge's decomposition, the compressible part of the velocity, the density, and the compressible part of the transpose of the deformation gradient satisfy Klein-Gordon equations with speed {√{2}}, while the incompressible parts of the velocity and of the transpose of the deformation gradient satisfy wave equations with speed one. The space-time resonance method combined with the vector field method is used in a novel way to obtain the decay of the solution and hence global existence.
The Riemann problem for longitudinal motion in an elastic-plastic bar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trangenstein, J.A.; Pember, R.B.
In this paper the analytical solution to the Riemann problem for the Antman-Szymczak model of longitudinal motion in an elastic-plastic bar is constructed. The model involves two surfaces corresponding to plastic yield in tension and compression, and exhibits the appropriate limiting behavior for total compressions. The solution of the Riemann problem involves discontinuous changes in characteristic speeds due to transitions from elastic to plastic response. Illustrations are presented, in both state-space and self-similar coordinates, of the variety of possible solutions to the Riemann problem for possible use with numerical algorithms.
An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression
Bhatt, Deepak; Aggarwal, Priyanka; Bhattacharya, Prabir; Devabhaktuni, Vijay
2012-01-01
Micro Electro Mechanical System (MEMS)-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN) is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM) based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10–35% for gyroscopes and 61–76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches. PMID:23012552
Progress in hypersonic turbulence modeling
NASA Technical Reports Server (NTRS)
Wilcox, David C.
1991-01-01
A compressibility modification is developed for k-omega (Wilcox, 1988) and k-epsilon (Jones and Launder, 1972) models, that is similar to those of Sarkar et al. (1989) and Zeman (1990). Results of the perturbation solution for the compressible wall layer demonstrate why the Sarkar and Zeman terms yield inaccurate skin friction for the flat-plate boundary layer. A new compressibility term is developed which permits accurate predictions of the compressible mixing layer, flat-plate boundary layer, and shock separated flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niven, W.A.
The long-term position accuracy of an inertial navigation system depends primarily on the ability of the gyroscopes to maintain a near-perfect reference orientation. Small imperfections in the gyroscopes cause them to drift slowly away from their initial orientation, thereby producing errors in the system's calculations of position. The A3FIX is a computer program subroutine developed to estimate inertial navigation system gyro drift rates with the navigator stopped or moving slowly. It processes data of the navigation system's position error to arrive at estimates of the north- south and vertical gyro drift rates. It also computes changes in the east--west gyromore » drift rate if the navigator is stopped and if data on the system's azimuth error changes are also available. The report describes the subroutine, its capabilities, and gives examples of gyro drift rate estimates that were computed during the testing of a high quality inertial system under the PASSPORT program at the Lawrence Livermore Laboratory. The appendices provide mathematical derivations of the estimation equations that are used in the subroutine, a discussion of the estimation errors, and a program listing and flow diagram. The appendices also contain a derivation of closed form solutions to the navigation equations to clarify the effects that motion and time-varying drift rates induce in the phase-plane relationships between the Schulerfiltered errors in latitude and azimuth snd between the Schulerfiltered errors in latitude and longitude. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.
2014-06-15
The diamagnetic drift effects on the low-n magnetohydrodynamic instabilities at the high-mode (H-mode) pedestal are investigated in this paper with the inclusion of bootstrap current for equilibrium and rotation effects for stability, where n is the toroidal mode number. The AEGIS (Adaptive EiGenfunction Independent Solutions) code [L. J. Zheng and M. T. Kotschenreuther, J. Comp. Phys. 211 (2006)] is extended to include the diamagnetic drift effects. This can be viewed as the lowest order approximation of the finite Larmor radius effects in consideration of the pressure gradient steepness at the pedestal. The H-mode discharges at Jointed European Torus is reconstructedmore » numerically using the VMEC code [P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)], with bootstrap current taken into account. Generally speaking, the diamagnetic drift effects are stabilizing. Our results show that the effectiveness of diamagnetic stabilization depends sensitively on the safe factor value (q{sub s}) at the safety-factor reversal or plateau region. The diamagnetic stabilization are weaker, when q{sub s} is larger than an integer; while stronger, when q{sub s} is smaller or less larger than an integer. We also find that the diamagnetic drift effects also depend sensitively on the rotation direction. The diamagnetic stabilization in the co-rotation case is stronger than in the counter rotation case with respect to the ion diamagnetic drift direction.« less
An exact closed form solution for constant area compressible flow with friction and heat transfer
NASA Technical Reports Server (NTRS)
Sturas, J. I.
1971-01-01
The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.
Theoretical studies of defect formation and target heating by intense pulsed ion beams
NASA Astrophysics Data System (ADS)
Barnard, J. J.; Schenkel, T.; Persaud, A.; Seidl, P. A.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I.
2015-11-01
We present results of three studies related to experiments on NDCX-II, the Neutralized Drift Compression Experiment, a short-pulse (~ 1ns), high-current (~ 70A) linear accelerator for 1.2 MeV ions at LBNL. These include: (a) Coupled transverse and longitudinal envelope calculations of the final non-neutral ion beam transport, followed by neutralized drift and final focus, for a number of focus and drift lengths and with a series of ion species (Z =1-19). Predicted target fluences were obtained and target temperatures in the 1 eV range estimated. (b) HYDRA simulations of the target response for Li and He ions and for Al and Au targets at various ion fluences (up to 1012 ions/pulse/mm2) and pulse durations, benchmarking temperature estimates from the envelope calculations. (c) Crystal-Trim simulations of ion channeling through single-crystal lattices, with comparisons to ion transmission data as a function of orientation angle of the crystal foil and for different ion intensities and ion species. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and DE-AC02-76CH0307 (PPPL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-67521.
Compressible Fluids Interacting with a Linear-Elastic Shell
NASA Astrophysics Data System (ADS)
Breit, Dominic; Schwarzacher, Sebastian
2018-05-01
We study the Navier-Stokes equations governing the motion of an isentropic compressible fluid in three dimensions interacting with a flexible shell of Koiter type. The latter one constitutes a moving part of the boundary of the physical domain. Its deformation is modeled by a linearized version of Koiter's elastic energy. We show the existence of weak solutions to the corresponding system of PDEs provided the adiabatic exponent satisfies {γ > 12/7} ({γ >1 } in two dimensions). The solution exists until the moving boundary approaches a self-intersection. This provides a compressible counterpart of the results in Lengeler and Růžičkaka (Arch Ration Mech Anal 211(1):205-255, 2014) on incompressible Navier-Stokes equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoupas,N.; Ahrens, L.; Pile, P.
2008-10-01
As part of the preparation for the Proton Interrogation Experiment, we have calculated the beam optics for the transport of 4 GeV protons, from the AGS extraction point, to the 'Cross-Section Target Wheel 1' and to the 'Proton Interrogation Target'. In this technical note we present three possible beam-transports each corresponding to a particular Fast Extracted Beam W B setup of the AGS. In addition we present results on the effect of the atmospheric air, (which fills the drift space of the last 100 [m] of the transport line), on the size of the beam, at two locations along themore » drift space, one location at the middle of the drift space and the other at the end where the 'Proton Interrogation Target' is placed. All the beam transports mentioned above require the removal of the WD1 dipole magnet, which is the first magnet of the W-line, because it acts as a limiting beam aperture, and the magnet is not used in the beam transport. An alternative solution of a beam transport, which does not require the removal of the WD1 magnet, is also presented. In this solution, which models the transport line using the TURTLE computer code[7], the vertical beam sizes at the location of the WD1 magnet is minimized to allow 'lossless' beam transport at the location of the WD1 magnet. A similar solution, but using a MAD model of the line, is also presented.« less
NASA Technical Reports Server (NTRS)
Potgieter, M. S.; Le Roux, J. A.; Burlaga, L. F.; Mcdonald, F. B.
1993-01-01
Voyager 2 magnetic field measurements are used to simulate merged interaction and rarefaction regions (MIRs and RRs) for 1985-1989 via numerical solutions of the time-dependent, axially symmetric transport equation of cosmic rays in the heliosphere, together with the concurrent use of the wavy neutral sheet as a time-dependent drift parameter. This drift approach was found to be more successful, because it was able to reproduce the intensity levels, the factor modulation, and latitudinal gradients for 1 GeV protons at 23 AU.
Brenner, Howard
2005-12-01
A quiescent single-component gravity-free gas subject to a small steady uniform temperature gradient T, despite being at rest, is shown to experience a drift velocity UD=-D* gradient ln T, where D* is the gas's nonisothermal self-diffusion coefficient. D* is identified as being the gas's thermometric diffusivity alpha. The latter differs from the gas's isothermal isotopic self-diffusion coefficient D, albeit only slightly. Two independent derivations are given of this drift velocity formula, one kinematical and the other dynamical, both derivations being strictly macroscopic in nature. Within modest experimental and theoretical uncertainties, this virtual drift velocity UD=-alpha gradient ln T is shown to be constitutively and phenomenologically indistinguishable from the well-known experimental and theoretical formulas for the thermophoretic velocity U of a macroscopic (i.e., non-Brownian) non-heat-conducting particle moving under the influence of a uniform temperature gradient through an otherwise quiescent single-component rarefied gas continuum at small Knudsen numbers. Coupled with the size independence of the particle's thermophoretic velocity, the empirically observed equality, U=UD, leads naturally to the hypothesis that these two velocities, the former real and the latter virtual, are, in fact, simply manifestations of the same underlying molecular phenomenon, namely the gas's Brownian movement, albeit biased by the temperature gradient. This purely hydrodynamic continuum-mechanical equality is confirmed by theoretical calculations effected at the kinetic-molecular level on the basis of an existing solution of the Boltzmann equation for a quasi-Lorentzian gas, modulo small uncertainties pertaining to the choice of collision model. Explicitly, this asymptotically valid molecular model allows the virtual drift velocity UD of the light gas and the thermophoretic velocity U of the massive, effectively non-Brownian, particle, now regarded as the tracer particle of the light gas's drift velocity, to each be identified with the Chapman-Enskog "thermal diffusion velocity" of the quasi-Lorentzian gas, here designated by the symbol UM/M, as calculated by de la Mora and Mercer. It is further pointed out that, modulo the collective uncertainties cited above, the common velocities UD,U, and UM/M are identical to the single-component gas's diffuse volume current jv, the latter representing yet another, independent, strictly continuum-mechanical concept. Finally, comments are offered on the extension of the single-component drift velocity notion to liquids, and its application towards rationalizing Soret thermal-diffusion separation phenomena in quasi-Lorentzian liquid-phase binary mixtures composed of disparately sized solute and solvent molecules, with the massive Brownian solute molecules (e.g., colloidal particles) present in disproportionately small amounts relative to that of the solvent.
A hybrid data compression approach for online backup service
NASA Astrophysics Data System (ADS)
Wang, Hua; Zhou, Ke; Qin, MingKang
2009-08-01
With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.
Wang, P; Wang, J; Cong, R; Dong, B
1997-05-01
A bonded phase for high performance liquid chromatography (HPLC) has been prepared by the new reaction between silica and silicon ether. The ether was synthesized from alkylchlorosilane and pentane-2,4-dione in the presence of imidazole under inert conditions by using anhydrous tetrahydrofuran as solvent. The bonded phase thus obtained was characterized by elemental analysis, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and HPLC evaluation. The carbon content was 9.4% and the surface coverage almost attained 3.0micromol/m2 without end-capping. The silanol absorption peaks of the product cannot be observed from the DRIFT spectrum, which revealed that the silanization reaction proceeded thoroughly. The basic solutes, such as aniline, o-toluidine, p-toluidine, N,N-dimethylaniline and pyridine were used as the probe solutes to examine their interaction with the residual silanols on the surface of the products. No buffer or salt was used in the mobile phase for these experiments. In comparison with an acidic solute, such as, phenol, basic aniline eluted in front of phenol, and the ratio of asymmetry of aniline peak to that of the phenol peak was 1.1. Furthermore the relative k' value of p-toluidine to that of o-toluidine was also 1.1. All the results showed that the stationary phase has better quality and reproducibility and can be used for the separation of basic solutes efficiently.
Compressive Properties and Anti-Erosion Characteristics of Foam Concrete in Road Engineering
NASA Astrophysics Data System (ADS)
Li, Jinzhu; Huang, Hongxiang; Wang, Wenjun; Ding, Yifan
2018-01-01
To analyse the compression properties and anti-erosion characteristics of foam concrete, one dimensional compression tests were carried out using ring specimens of foam concrete, and unconfined compression tests were carried out using foam concrete specimens cured in different conditions. The results of one dimensional compression tests show that the compression curve of foam concrete has two critical points and three stages, which has significant difference with ordinary geotechnical materials such as soil. Based on the compression curve the compression modulus of each stage were determined. The results of erosion tests show that sea water has a slight influence on the long-term strength of foam concrete, while the sulphate solution has a significant influence on the long-term strength of foam concrete, which needs to pay more attention.
Nonuniform dependence on initial data for compressible gas dynamics: The periodic Cauchy problem
NASA Astrophysics Data System (ADS)
Keyfitz, B. L.; Tığlay, F.
2017-11-01
We start with the classic result that the Cauchy problem for ideal compressible gas dynamics is locally well posed in time in the sense of Hadamard; there is a unique solution that depends continuously on initial data in Sobolev space Hs for s > d / 2 + 1 where d is the space dimension. We prove that the data to solution map for periodic data in two dimensions although continuous is not uniformly continuous.
NASA Astrophysics Data System (ADS)
Wu, Haiqing; Bai, Bing; Li, Xiaochun
2018-02-01
Existing analytical or approximate solutions that are appropriate for describing the migration mechanics of CO2 and the evolution of fluid pressure in reservoirs do not consider the high compressibility of CO2, which reduces their calculation accuracy and application value. Therefore, this work first derives a new governing equation that represents the movement of complex fluids in reservoirs, based on the equation of continuity and the generalized Darcy's law. A more rigorous definition of the coefficient of compressibility of fluid is then presented, and a power function model (PFM) that characterizes the relationship between the physical properties of CO2 and the pressure is derived. Meanwhile, to avoid the difficulty of determining the saturation of fluids, a method that directly assumes the average relative permeability of each fluid phase in different fluid domains is proposed, based on the theory of gradual change. An advanced analytical solution is obtained that includes both the partial miscibility and the compressibility of CO2 and brine in evaluating the evolution of fluid pressure by integrating within different regions. Finally, two typical sample analyses are used to verify the reliability, improved nature and universality of this new analytical solution. Based on the physical characteristics and the results calculated for the examples, this work elaborates the concept and basis of partitioning for use in further work.
Pan, Baoliang; Liang, Daming; Zhang, Yafeng; Wang, Hailiang; Wang, Ming
2009-10-14
The Northern Fowl Mite (NFM), Ornithonyssus sylviarum, is one of the most important and common pests of poultry. Most of available pesticides applied in the NFM control are formulated as wettable powder or emulsifiable concentrate and require to be diluted with water before use. As water has very low affinity to bird feathers, a part of the diluted pesticide will fall on the ground, on the cages, on feed bins or drift in the air upon application, which becomes a source of a potential harm to administrative workers and birds. In contrast to water, an oil solution of pesticide has a higher affinity for feathers and can stay on the feather for a longer time, and maybe provide a high efficacy and be effective for a longer, persistent period against the NFM. In the present study, the efficacy of oil solution and wettable powder of lambda-cyhalothrin to NFM in breeders was compared; the results showed that while spraying lambda-cyhalothrin wettable powder on birds could effectively control NFM, painting lambda-cyhalothrin oil solution on birds gave complete control of NFM for at least 6 weeks. In the application of lambda-cyhalothrin oil solution, no containment of pesticide to cages, feed bin and no pesticide drifting in the air was observed. These results indicated that lambda-cyhalothrin oil solution has a potential to become an effective and safe formulation to control NFM in breeders.
Drift wave turbulence simulations in LAPD
NASA Astrophysics Data System (ADS)
Popovich, P.; Umansky, M.; Carter, T. A.; Auerbach, D. W.; Friedman, B.; Schaffner, D.; Vincena, S.
2009-11-01
We present numerical simulations of turbulence in LAPD plasmas using the 3D electromagnetic code BOUT (BOUndary Turbulence). BOUT solves a system of fluid moment equations in a general toroidal equlibrium geometry near the plasma boundary. The underlying assumptions for the validity of the fluid model are well satisfied for drift waves in LAPD plasmas (typical plasma parameters ne˜1x10^12cm-3, Te˜10eV, and B ˜1kG), which makes BOUT a perfect tool for simulating LAPD. We have adapted BOUT for the cylindrical geometry of LAPD and have extended the model to include the background flows required for simulations of recent bias-driven rotation experiments. We have successfully verified the code for several linear instabilities, including resistive drift waves, Kelvin-Helmholtz and rotation-driven interchange. We will discuss first non-linear simulations and quasi-stationary solutions with self-consistent plasma flows and saturated density profiles.
Evaluation of H.264 and H.265 full motion video encoding for small UAS platforms
NASA Astrophysics Data System (ADS)
McGuinness, Christopher D.; Walker, David; Taylor, Clark; Hill, Kerry; Hoffman, Marc
2016-05-01
Of all the steps in the image acquisition and formation pipeline, compression is the only process that degrades image quality. A selected compression algorithm succeeds or fails to provide sufficient quality at the requested compression rate depending on how well the algorithm is suited to the input data. Applying an algorithm designed for one type of data to a different type often results in poor compression performance. This is mostly the case when comparing the performance of H.264, designed for standard definition data, to HEVC (High Efficiency Video Coding), which the Joint Collaborative Team on Video Coding (JCT-VC) designed for high-definition data. This study focuses on evaluating how HEVC compares to H.264 when compressing data from small UAS platforms. To compare the standards directly, we assess two open-source traditional software solutions: x264 and x265. These software-only comparisons allow us to establish a baseline of how much improvement can generally be expected of HEVC over H.264. Then, specific solutions leveraging different types of hardware are selected to understand the limitations of commercial-off-the-shelf (COTS) options. Algorithmically, regardless of the implementation, HEVC is found to provide similar quality video as H.264 at 40% lower data rates for video resolutions greater than 1280x720, roughly 1 Megapixel (MPx). For resolutions less than 1MPx, H.264 is an adequate solution though a small (roughly 20%) compression boost is earned by employing HEVC. New low cost, size, weight, and power (CSWAP) HEVC implementations are being developed and will be ideal for small UAS systems.
Optimum mix for fly ash geopolymer binder based on workability and compressive strength
NASA Astrophysics Data System (ADS)
Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.
2018-04-01
The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.
NASA Astrophysics Data System (ADS)
Grundland, A. M.; Lalague, L.
1996-04-01
This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.
Hierarchical Approach to 'Atomistic' 3-D MOSFET Simulation
NASA Technical Reports Server (NTRS)
Asenov, Asen; Brown, Andrew R.; Davies, John H.; Saini, Subhash
1999-01-01
We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1 micron MOSFET's. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have developed a self-consistent option based on a solution of the current continuity equation restricted to a thin slab of the channel. This is coupled to the solution of the Poisson equation in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison to the full self-consistent solution. At low drain voltage, a single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. In this case, the current is calculated by solving the current continuity equation in a drift approximation only, also in a thin slab containing the MOSFET channel. The regions of applicability for the different components of this hierarchical approach are illustrated in example simulations covering the random dopant-induced threshold voltage fluctuations, threshold voltage lowering, threshold voltage asymmetry, and drain current fluctuations.
Compressibility of the protein-water interface
NASA Astrophysics Data System (ADS)
Persson, Filip; Halle, Bertil
2018-06-01
The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (˜0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ˜45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in bulk water, whereas its self part is 15%-20% lower. These large reductions are caused mainly by the proximity to the more rigid protein and are not a consequence of the perturbed water structure.
Compressibility of the protein-water interface.
Persson, Filip; Halle, Bertil
2018-06-07
The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (∼0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ∼45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in bulk water, whereas its self part is 15%-20% lower. These large reductions are caused mainly by the proximity to the more rigid protein and are not a consequence of the perturbed water structure.
Modelling compression sensing in ionic polymer metal composites
NASA Astrophysics Data System (ADS)
Volpini, Valentina; Bardella, Lorenzo; Rodella, Andrea; Cha, Youngsu; Porfiri, Maurizio
2017-03-01
Ionic polymer metal composites (IPMCs) consist of an ionomeric membrane, including mobile counterions, sandwiched between two thin noble metal electrodes. IPMCs find application as sensors and actuators, where an imposed mechanical loading generates a voltage across the electrodes, and, vice versa, an imposed electric field causes deformation. Here, we present a predictive modelling approach to elucidate the dynamic sensing response of IPMCs subject to a time-varying through-the-thickness compression (‘compression sensing’). The model relies on the continuum theory recently developed by Porfiri and co-workers, which couples finite deformations to the modified Poisson-Nernst-Planck (PNP) system governing the IPMC electrochemistry. For the ‘compression sensing’ problem we establish a perturbative closed-form solution along with a finite element (FE) solution. The systematic comparison between these two solutions is a central contribution of this study, offering insight on accuracy and mathematical complexity. The method of matched asymptotic expansions is employed to find the analytical solution. To this end, we uncouple the force balance from the modified PNP system and separately linearise the PNP equations in the ionomer bulk and in the boundary layers at the ionomer-electrode interfaces. Comparison with FE results for the fully coupled nonlinear system demonstrates the accuracy of the analytical solution to describe IPMC sensing for moderate deformation levels. We finally demonstrate the potential of the modelling scheme to accurately reproduce experimental results from the literature. The proposed model is expected to aid in the design of IPMC sensors, contribute to an improved understanding of IPMC electrochemomechanical response, and offer insight into the role of nonlinear phenomena across mechanics and electrochemistry.
Jayabalan, M.
2009-01-01
The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus. PMID:20126578
Jayabalan, M
2009-01-01
The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.
Financial market dynamics: superdiffusive or not?
NASA Astrophysics Data System (ADS)
Devi, Sandhya
2017-08-01
The behavior of stock market returns over a period of 1-60 d has been investigated for S&P 500 and Nasdaq within the framework of nonextensive Tsallis statistics. Even for such long terms, the distributions of the returns are non-Gaussian. They have fat tails indicating that the stock returns do not follow a random walk model. In this work, a good fit to a Tsallis q-Gaussian distribution is obtained for the distributions of all the returns using the method of Maximum Likelihood Estimate. For all the regions of data considered, the values of the scaling parameter q, estimated from 1 d returns, lie in the range 1.4-1.65. The estimated inverse mean square deviations (beta) show a power law behavior in time with exponent values between -0.91 and -1.1 indicating normal to mildly subdiffusive behavior. Quite often, the dynamics of market return distributions is modelled by a Fokker-Plank (FP) equation either with a linear drift and a nonlinear diffusion term or with just a nonlinear diffusion term. Both of these cases support a q-Gaussian distribution as a solution. The distributions obtained from current estimated parameters are compared with the solutions of the FP equations. For negligible drift term, the inverse mean square deviations (betaFP) from the FP model follow a power law with exponent values between -1.25 and -1.48 indicating superdiffusion. When the drift term is non-negligible, the corresponding betaFP do not follow a power law and become stationary after certain characteristic times that depend on the values of the drift parameter and q. Neither of these behaviors is supported by the results of the empirical fit.
A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows
NASA Astrophysics Data System (ADS)
Ionescu-Kruse, Delia
2018-04-01
We investigate a nonlinear three-dimensional model for equatorial flows, finding exact solutions that capture the most relevant geophysical features: depth-dependent currents, poleward or equatorial surface drift and a vertical mixture of upward and downward motions.
Corridor of existence of thermodynamically consistent solution of the Ornstein-Zernike equation.
Vorob'ev, V S; Martynov, G A
2007-07-14
We obtain the exact equation for a correction to the Ornstein-Zernike (OZ) equation based on the assumption of the uniqueness of thermodynamical functions. We show that this equation is reduced to a differential equation with one arbitrary parameter for the hard sphere model. The compressibility factor within narrow limits of this parameter variation can either coincide with one of the formulas obtained on the basis of analytical solutions of the OZ equation or assume all intermediate values lying in a corridor between these solutions. In particular, we find the value of this parameter when the thermodynamically consistent compressibility factor corresponds to the Carnahan-Stirling formula.
Poe, Donald P
2005-06-17
A general theory for efficiency of nonuniform columns with compressible mobile phase fluids is applied to the elution of an unretained solute in packed-column supercritical fluid chromatography (pSFC). The theoretical apparent plate height under isothermal conditions is given by the Knox equation multiplied by a compressibility correction factor f1, which is equal to the ratio of the temporal-to-spatial average densities of the mobile phase. If isothermal conditions are maintained, large pressure drops in pSFC should not result in excessive efficiency losses for elution of unretained solutes.
Chitosan composite hydrogels reinforced with natural clay nanotubes.
Huang, Biao; Liu, Mingxian; Zhou, Changren
2017-11-01
Here, chitosan composites hydrogels were prepared by addition of halloysite nanotubes (HNTs) in the chitosan KOH/LiOH/urea solution. The raw chitosan and chitosan/HNTs composite hydrogels were obtained by heat treatment at 60°C for 8h and then regeneration in ethanol solution. The viscosity of the composite solution is increased with HNTs content. The Fourier transform infrared spectroscopy (FT-IR) shows that the hydrogen bonds interactions exist between the HNTs and the chitosan. X-ray diffraction (XRD) results show that the crystal structure of HNT is not changed in the composite hydrogels. The compressive property test and storage modulus determination show that the mechanical properties and anti-deformation ability of the composite hydrogel significantly increase owing to the reinforcing effect of HNTs. The composites hydrogel with 66.7% HNTs can undergo 7 times compression cycles without breaking with compressive strength of 0.71MPa at 70% deformation, while pure chitosan hydrogel is broken after bearing 5 compression cycles with compressive strength of 0.14MPa and a maximum deformation of 59%. A porous structure with pore size of 100-500μm is found in the composite hydrogels by scanning electron microscopy (SEM), and the pore size and the swelling ratio in NaCl solution decrease by the addition of HNTs and the immersing of ethanol. Chitosan/HNTs composite hydrogels show low cytotoxicity towards MC3T3-E1 cells. Also, the composite hydrogels show a maximum drug entrapment efficiency of 45.7% for doxorubicin (DOX) which is much higher than that of pure chitosan hydrogel (27.5%). All the results illustrate that the chitosan/HNTs composite hydrogels show promising applications as biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.
A split finite element algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1979-01-01
An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.
Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field
Ilyas, Muhammad; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok
2016-01-01
Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called “virtual sensor”), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth’s magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms. PMID:27618056
Effects of Convection Electric Fields on Modeled Plasmaspheric Densities and ccc Temperatures
NASA Technical Reports Server (NTRS)
Comfort, Richard H.; Richards, Phil G.; Liao, Jin-Hua; Craven, Paul D.
1998-01-01
This paper examines the effects of convection electric fields on plasmaspheric H+, O+, He+, and N+ densities and electron and ion temperatures. These effects are studied with the aid of the Field Line Interhemispheric Plasma (FLIP) model, which has recently been extended to include the effects of ExB drifts. The FLIP model solves the continuity and momentum equations for the major ion species as well as the energy equations for ions and electrons along entire drifting flux tubes from 100 km altitude in the northern hemisphere to 100 km altitude in the southern hemisphere. Electron heating in the ionosphere and plasmasphere is provided by the solution of two-stream equations for photoelectrons. The dawn-dusk electric field imposed by the solar wind causes changes in plasmaspheric density and temperature as the plasma drifts onto flux tubes having different volumes. In an idealized convection model, outward drifts in the afternoon cause decreases in the plasmasphere density and temperature while inward drifts in the evening cause increases in plasmasphere density and temperature. In this paper we examine the effects of convection electric fields on the rate of refilling of flux tubes and investigate the hypothesis that convection electric fields are responsible for the unusually high evening electron temperatures and the post-midnight density maxima often observed in the winter ionosphere above Millstone Hill.
NASA Technical Reports Server (NTRS)
Adamczyk, J. L.
1974-01-01
An approximate solution is reported for the unsteady aerodynamic response of an infinite swept wing encountering a vertical oblique gust in a compressible stream. The approximate expressions are of closed form and do not require excessive computer storage or computation time, and further, they are in good agreement with the results of exact theory. This analysis is used to predict the unsteady aerodynamic response of a helicopter rotor blade encountering the trailing vortex from a previous blade. Significant effects of three dimensionality and compressibility are evident in the results obtained. In addition, an approximate solution for the unsteady aerodynamic forces associated with the pitching or plunging motion of a two dimensional airfoil in a subsonic stream is presented. The mathematical form of this solution approaches the incompressible solution as the Mach number vanishes, the linear transonic solution as the Mach number approaches one, and the solution predicted by piston theory as the reduced frequency becomes large.
NASA Astrophysics Data System (ADS)
Smith, David Eugene
Little basic research has been reported on the physical structure of aqueous solutions of saccharides. Sound velocimeters can be used to study physical structure of solutions, non-destructively. The La Place relationship was used to calculate adiabatic compressibility values for solutions from experimentally determined values for sound velocity and density. Using a sound velocimeter, aqueous solutions of twelve alditols and saccharides were studied at various concentrations and temperatures. Data indicated that over most of the temperature range employed (20 to 70 C) adiabatic compressibility of the solutions was the dominant factor in defining sound velocity through and structural rigidity of solution. As concentration of solute increased, more rigid structures were formed in solution, which caused sound velocity values to increase with increasing concentrations of solute; maximum sound velocity values were obtained at progressively lower temperatures. Analysis of data for sound velocity, density and adiabatic compressibility of various solutions provided partial insight into effects of each solute molecule on structure of solutions. A furanose form in a monosaccharide contributed to a more rigid structure than did a pyranose ring when below 30C. At higher temperatures the pyranose ring provided more rigidity than did the furanose ring. Hydroxyl groups in the equatorial position generally contributed more to rigidity of structure than did OH groups in axial positions. Disaccharides contributed differences from the inherent monosaccharides. A (beta) glycosidic linkage provided more structural rigidity of solution than did a linkage. Among the alditols, mannitol and sorbitol contributed very similar characteristics to solutions. Xylitol, in solution provided less rigidity, density and sound velocity than did mannitol-sorbitol in proportion to the lower molecular weight or xylitol. From the data for velocity of sound through single sugar solutions values for solutions of mixtures of these sugars at concentrations to 0.9m could be calculated with accuracy. Each sugar contributed independently to structure of solution and sound velocity values. At solute concentrations greater than 0.9m, there appeared to be some interaction among mixed solute molecules in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B
2011-01-01
We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation datamore » of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.« less
Algorithms for the computation of solutions of the Ornstein-Zernike equation.
Peplow, A T; Beardmore, R E; Bresme, F
2006-10-01
We introduce a robust and efficient methodology to solve the Ornstein-Zernike integral equation using the pseudoarc length (PAL) continuation method that reformulates the integral equation in an equivalent but nonstandard form. This enables the computation of solutions in regions where the compressibility experiences large changes or where the existence of multiple solutions and so-called branch points prevents Newton's method from converging. We illustrate the use of the algorithm with a difficult problem that arises in the numerical solution of integral equations, namely the evaluation of the so-called no-solution line of the Ornstein-Zernike hypernetted chain (HNC) integral equation for the Lennard-Jones potential. We are able to use the PAL algorithm to solve the integral equation along this line and to connect physical and nonphysical solution branches (both isotherms and isochores) where appropriate. We also show that PAL continuation can compute solutions within the no-solution region that cannot be computed when Newton and Picard methods are applied directly to the integral equation. While many solutions that we find are new, some correspond to states with negative compressibility and consequently are not physical.
Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbelaez, D.; Madur, A.; Lipton, T.M.
2011-04-01
A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beammore » has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.« less
Existence of Optimal Controls for Compressible Viscous Flow
NASA Astrophysics Data System (ADS)
Doboszczak, Stefan; Mohan, Manil T.; Sritharan, Sivaguru S.
2018-03-01
We formulate a control problem for a distributed parameter system where the state is governed by the compressible Navier-Stokes equations. Introducing a suitable cost functional, the existence of an optimal control is established within the framework of strong solutions in three dimensions.
Tritium migration from a low-level radioactive-waste disposal site near Chicago, Illinois
Nicholas, J.R.; Healy, R.W.
1988-01-01
This paper describes the results of a study to determine the geologic and hydrologic factors that control migration of tritium from a closed, low-level radioactive-waste disposal site. The disposal site, which operated from 1943 to mid1949, contains waste generated by research activities at the world's first nuclear reactors. Tritium has migrated horizontally at least 1,300 feet northward in glacial drift and more than 650 feet in the underlying dolomite. Thin, gently sloping sand layers in an otherwise clayey glacial drift are major conduits for ground-water flow and tritium migration in a perched zone beneath the disposal site. Tritium concentrations in the drift beneath the disposal site exceed 100,000 nanocuries per liter. Regional horizontal joints in the dolomite are enlarged by solution and are the major conduits for ground-water flow and tritium migration in the dolomite. A weathered zone at the top of the dolomite also is a pathway for tritium migration. The maximum measured tritium concentration in the dolomite is 29.4 nanocuries per liter. Fluctuations of tritium concentration in the dolomite are the result of dilution by seasonal recharge from the drift.
Simulation of drift of pesticides: development and validation of a model.
Brusselman, E; Spanoghe, P; Van der Meeren, P; Gabriels, D; Steurbaut, W
2003-01-01
Over the last decade drift of pesticides has been recognized as a major problem for the environment. High fractions of pesticides can be transported through the air and deposited in neighbouring ecosystems during and after application. A new computer-two steps-drift model is developed: FYDRIMO or F(ph)Ysical DRift MOdel. In the first step the droplet size spectrum of a nozzle is analysed. In this way the volume percentage of droplets with a certain size is known. In the second step the model results in a prediction of deposition of each droplet with a certain size. This second part of the model runs in MATLAB and is grounded on a combination of two physical factors: gravity force and friction forces. In this stage of development corrections are included for evaporation and wind force following a certain measured wind profile. For validation wind tunnel experiments were performed. Salt solutions were sprayed at two wind velocities and variable distance above the floor. Small gutters in the floor filled with filter paper were used to collect the sprayed droplets. After analysing and comparing the wind tunnel results with the model predictions, FYDRIMO seems to have good predicting capacities.
NASA Astrophysics Data System (ADS)
Panjaitan, Arief; Hasibuan, Purwandy
2018-05-01
Implementation of an axial compression load on the steel angle can be found at the various structure such as truss system on telecommunication tower. For telecommunication tower, steel angle section can be suggested as an alternative solution due to its assembling easiness as well as its strength. But, antennas and microwaves installation that keep increases every time on this structure demand reinforcement on each leg of the tower structure. One solution suggested is reinforcement with increasing areas section capacity, where tower leg consisted of single angle section will be reinforced to be double angle section. Regarding this case, this research discussed the behavior of two types of steel angle section: single angle of L.30.30.3 and double angles of 2L.30.30.3. These two sections were designed identically in length (103 cm) and tested by axial compression load. At the first step, compression member together with tension member was formed to be a truss system, where compression and tension member were met at a joint plate. Schematic loading was implemented by giving tension loading on the joint plate until failure of specimens. Experimental work findings showed that implementing double angle sections (103 cm) significantly increased compression capacity of steel angle section up to 118 %.
NASA Astrophysics Data System (ADS)
Deng, Shuxian; Ge, Xinxin
2017-10-01
Considering the non-Newtonian fluid equation of incompressible porous media, using the properties of operator semigroup and measure space and the principle of squeezed image, Fourier analysis and a priori estimate in the measurement space are used to discuss the non-compressible porous media, the properness of the solution of the equation, its gradual behavior and its topological properties. Through the diffusion regularization method and the compressed limit compact method, we study the overall decay rate of the solution of the equation in a certain space when the initial value is sufficient. The decay estimation of the solution of the incompressible seepage equation is obtained, and the asymptotic behavior of the solution is obtained by using the double regularization model and the Duhamel principle.
NASA Technical Reports Server (NTRS)
Harp, J. L., Jr.
1977-01-01
A two-dimensional time-dependent computer code was utilized to calculate the three-dimensional steady flow within the impeller blading. The numerical method is an explicit time marching scheme in two spatial dimensions. Initially, an inviscid solution is generated on the hub blade-to-blade surface by the method of Katsanis and McNally (1973). Starting with the known inviscid solution, the viscous effects are calculated through iteration. The approach makes it possible to take into account principal impeller fluid-mechanical effects. It is pointed out that the second iterate provides a complete solution to the three-dimensional, compressible, Navier-Stokes equations for flow in a centrifugal impeller. The problems investigated are related to the study of a radial impeller and a backswept impeller.
Chemical thermodynamics of ultrasound speed in solutions and liquid mixtures.
Reis, João Carlos R; Santos, Angela F S; Lampreia, Isabel M S
2010-02-01
A comprehensive formalism is developed to treat thermodynamically speed of ultrasound data for solutions and liquid mixtures. For solutions, the apparent speed of ultrasound of a solute is introduced and proposed to take the place of empirically defined quantities. The partial speed of ultrasound of a solute is defined and related to the partial molar volume and partial molar isentropic compression. For liquid mixtures, the concept of speed of sound before mixing pure liquids is presented and used to define the change in speed of ultrasound upon ideal mixing, which is predicted to be generally a negative quantity. A new thermodynamic equation is derived linking the values for excess speed of ultrasound, excess molar volume and excess molar isentropic compression of a mixture, and its applications are discussed. Ideal and excess apparent speeds of ultrasound, as well as ideal and excess partial speeds of ultrasound, are defined for substances making up a liquid mixture. Accurate speeds of ultrasound in 31 mixtures of water with the amphiphile 2-(ethylamino)ethanol at 293.15 K are reported. These data are used to demonstrate the ability of the apparent speed of ultrasound to describe the impact of solutes on sonic properties of solutions and the advantages of analysing thermodynamic properties of binary liquid mixtures in terms of the dependence on composition of Balankina's ratios between excess and ideal values. It is concluded that the new thermodynamic functions defined for speeds of ultrasound in solutions and liquid mixtures give, at the least, equivalent information on molecular aspects to the usual functions related to the isentropic compressibility, without needing density data for this purpose.
A study of competitive adsorption of organic molecules onto mineral oxides using DRIFTS
Joan E. Thomas; Kelley, Michael J.
2009-10-20
In this study, analysis of DRIFTS spectra was used for a quantitative study of competitive adsorption of myristic and salicylic acids onto kaolinite or γ-alumina. Peaks unique to the ring or the chain were selected and single molecule studies used as calibration. Samples were exposed to hexane solution containing equal molecular quantities of each acid. The surface loading of salicylic acid was not influenced by the presence of myristic acid on either mineral but the maximum loading of myristic acid was decreased (46-50%) by salicylic acid. Displacement of myristic acid from {gamma}-alumina, but not kaolinite, was observed when excess salicylicmore » acid remained in solution. A 25% increase in the maximum loading was observed for kaolinite, but not for{gamma}-alumina. On {gamma}-alumina, after a loading of 1 molecule per nm 2, increased exposure resulted in salicylic acid adsorption only, this value is approximately the same for salicylic acid adsorption from aqueous solution or for water washed hexane treated samples. Thus a set of sites for adsorption of either acid is indicated together with other energetically less favorable sites, which can be occupied by salicylic, but not by myristic, acid.« less
Verification of continuum drift kinetic equation solvers in NIMROD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Held, E. D.; Ji, J.-Y.; Kruger, S. E.
Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speedmore » coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.« less
Magnetohydrodynamic modeling of three Van Allen Probes storms in 2012 and 2013
NASA Astrophysics Data System (ADS)
Paral, J.; Hudson, M. K.; Kress, B. T.; Wiltberger, M. J.; Wygant, J. R.; Singer, H. J.
2015-08-01
Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L = 4.5, well within the computed magnetopause location. We compare ULF wave power from the Electric Field and Waves (EFW) electric field instrument on the Van Allen Probes for the 8 October 2013 storm with ULF wave power simulated using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) magnetospheric simulation code coupled to the Rice Convection Model (RCM). Two other storms with strong magnetopause compression, 8-9 October 2012 and 17-18 March 2013, are also examined. We show that the global MHD model captures the azimuthal magnetosonic impulse propagation speed and amplitude observed by the Van Allen Probes which is responsible for prompt acceleration at MeV energies reported for the 8 October 2013 storm. The simulation also captures the ULF wave power in the azimuthal component of the electric field, responsible for acceleration and radial transport of electrons, at frequencies comparable to the electron drift period. This electric field impulse has been shown to explain observations in related studies (Foster et al., 2015) of electron acceleration and drift phase bunching by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on the Van Allen Probes.
Local growth of dust- and ice-mixed aggregates as cometary building blocks in the solar nebula
NASA Astrophysics Data System (ADS)
Lorek, S.; Lacerda, P.; Blum, J.
2018-03-01
Context. Comet formation by gravitational instability requires aggregates that trigger the streaming instability and cluster in pebble-clouds. These aggregates form as mixtures of dust and ice from (sub-)micrometre-sized dust and ice grains via coagulation in the solar nebula. Aim. We investigate the growth of aggregates from (sub-)micrometre-sized dust and ice monomer grains. We are interested in the properties of these aggregates: whether they might trigger the streaming instability, how they compare to pebbles found on comets, and what the implications are for comet formation in collapsing pebble-clouds. Methods: We used Monte Carlo simulations to study the growth of aggregates through coagulation locally in the comet-forming region at 30 au. We used a collision model that can accommodate sticking, bouncing, fragmentation, and porosity of dust- and ice-mixed aggregates. We compared our results to measurements of pebbles on comet 67P/Churyumov-Gerasimenko. Results: We find that aggregate growth becomes limited by radial drift towards the Sun for 1 μm sized monomers and by bouncing collisions for 0.1 μm sized monomers before the aggregates reach a Stokes number that would trigger the streaming instability (Stmin). We argue that in a bouncing-dominated system, aggregates can reach Stmin through compression in bouncing collisions if compression is faster than radial drift. In the comet-forming region ( 30 au), aggregates with Stmin have volume-filling factors of 10-2 and radii of a few millimetres. These sizes are comparable to the sizes of pebbles found on comet 67P/Churyumov-Gerasimenko. The porosity of the aggregates formed in the solar nebula would imply that comets formed in pebble-clouds with masses equivalent to planetesimals of the order of 100 km in diameter.
Measurements and modeling of charge carrier lifetime in compressed xenon
NASA Astrophysics Data System (ADS)
Pudov, A. O.; Abyzov, A. S.; Sokolov, S. A.; Davydov, L. N.; Rybka, A. V.; Kutny, V. E.; Melnikov, S. I.; Kholomyeyev, G. A.; Leonov, S. A.; Turchin, A. A.
2018-06-01
Gamma-spectrometers based on high-pressure xenon gas (HPXe) are proving themselves as a great potential alternative to the spectrometers based on high-purity germanium crystals and scintillators. The working medium for the high-resolution HPXe detectors, that is, xenon gas compressed up to pressure ∼50 bar and sometimes doped with hydrogen, methane or others gases, needs to be of very high purity. The gas purity level can be determined by direct measurements or, alternatively, its usability in gamma-spectrometers can be evaluated indirectly through the charge carrier (electron) lifetime measurements. Different approaches and specific setups have been used for the lifetime determination, most of those methods involve the measurement and analyses of individual pulses from ionizing particles registered in an ionization chamber filled with Xe. In the present paper, we report on the HPXe electron lifetime study carried out by using measurements in a cylindrical ionization chamber and the respective analytical charge transport model. Our results support the possibility of carrier lifetime determination in the cylindrical configuration. In addition, the voltage regimes for the use of the chamber in the spectroscopic mode were determined. The measurements were conducted in a two-electrode configuration for a range of pressure values (5 to 50 bar) for the Xe+0.25%H2 gas mixture of ∼6N purity. It is shown that in gases with relatively high values of the electron drift velocity and the electron lifetime, for example low-density gases, the charge collection time measurements can give significantly underestimated lifetime assessment. On the other hand, for the low drift velocity gases, they give much more accurate results. With the use of the analytical model, the electron lifetime was determined more precisely.
NASA Astrophysics Data System (ADS)
Fierro, Elisa; Capitanio, Fabio A.; Schettino, Antonio; Morena Salerno, V.
2017-04-01
We use numerical modeling to investigate the coupling of mantle instabilities and surface tectonics along lithospheric steps developing during rifting. We address whether edge driven convection (EDC) beneath rifted continental margins and shear flow during rift-drift transition can play a role in the observed post-rift compressive tectonic evolution of the divergent continental margins along the Red Sea. We run a series of 2D simulations to examine the relationship between the maximum compression and key geometrical parameters of the step beneath continental margins, such as the step height due to lithosphere thickness variation and the width of the margins, and test the effect of rheology varying temperature- and stress-dependent viscosity in the lithosphere and asthenosphere. The development of instabilities is initially illustrated as a function of these parameters, to show the controls on the lithosphere strain distribution and magnitude. We then address the transient evolution of the instabilities to characterize their duration. In an additional suite of models, we address the development of EDC during plate motions, thus accounting for the mantle shearing due to spreading. Our results show an increase of strain with the step height as well as with the margin width up to 200 km. After this value the influence of ridge margin can be neglected. Strain rates are, then, quantified for a range of laboratory-constrained constitutive laws for mantle and lithosphere forming minerals. These models propose a viable mechanism to explain the post-rift tectonic inversion observed along the Arabian continental margin and the episodic ultra-fast sea floor spreading in the central Red Sea, where the role of EDC has been invoked.
Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan
2014-10-01
It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.
Stress fields around two pores in an elastic body: exact quadrature domain solutions.
Crowdy, Darren
2015-08-08
Analytical solutions are given for the stress fields, in both compression and far-field shear, in a two-dimensional elastic body containing two interacting non-circular pores. The two complex potentials governing the solutions are found by using a conformal mapping from a pre-image annulus with those potentials expressed in terms of the Schottky-Klein prime function for the annulus. Solutions for a three-parameter family of elastic bodies with two equal symmetric pores are presented and the compressibility of a special family of pore pairs is studied in detail. The methodology extends to two unequal pores. The importance for boundary value problems of plane elasticity of a special class of planar domains known as quadrature domains is also elucidated. This observation provides the route to generalization of the mathematical approach here to finding analytical solutions for the stress fields in bodies containing any finite number of pores.
Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer
NASA Astrophysics Data System (ADS)
Mishra, P. K.; Neuman, S. P.
2010-12-01
Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.
Comparing NetCDF and SciDB on managing and querying 5D hydrologic dataset
NASA Astrophysics Data System (ADS)
Liu, Haicheng; Xiao, Xiao
2016-11-01
Efficiently extracting information from high dimensional hydro-meteorological modelling datasets requires smart solutions. Traditional methods are mostly based on files, which can be edited and accessed handily. But they have problems of efficiency due to contiguous storage structure. Others propose databases as an alternative for advantages such as native functionalities for manipulating multidimensional (MD) arrays, smart caching strategy and scalability. In this research, NetCDF file based solutions and the multidimensional array database management system (DBMS) SciDB applying chunked storage structure are benchmarked to determine the best solution for storing and querying 5D large hydrologic modelling dataset. The effect of data storage configurations including chunk size, dimension order and compression on query performance is explored. Results indicate that dimension order to organize storage of 5D data has significant influence on query performance if chunk size is very large. But the effect becomes insignificant when chunk size is properly set. Compression of SciDB mostly has negative influence on query performance. Caching is an advantage but may be influenced by execution of different query processes. On the whole, NetCDF solution without compression is in general more efficient than the SciDB DBMS.
Does the Hertz solution estimate pressures correctly in diamond indentor experiments?
NASA Astrophysics Data System (ADS)
Bruno, M. S.; Dunn, K. J.
1986-05-01
The Hertz solution has been widely used to estimate pressures in a spherical indentor against flat matrix type high pressure experiments. It is usually assumed that the pressure generated when compressing a sample between the indentor and substrate is the same as that generated when compressing an indentor against a flat surface with no sample present. A non-linear finite element analysis of this problem has shown that the situation is far more complex. The actual peak pressure in the sample is highly dependent on plastic deformation and the change in material properties due to hydrostatic pressure. An analysis with two material models is presented and compared with the Hertz solution.
Deceleration of a supersonic flow behind a curved shock wave with isentropic precompression
NASA Technical Reports Server (NTRS)
Dulov, V. G.; Shchepanovskiy, V. A.
1985-01-01
Three-dimensional supersonic flows of an ideal fluid in the neighborhood of bodies formed by being cut out along the streamlines of an axisymmetric flow are investigated. The flow consists of a region of isoentropic compression and a region of vortex flow. An exact solution with variable entropy is used to describe the flow in the vortex region. In the continuous flow region an approximate solution is constructed by expanding the solution in a series in a small parameter. The effect of the shape of the excision and the vorticity of the flow on compression of the jet and and the total pressure loss coefficient is studied.
Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system
NASA Astrophysics Data System (ADS)
Tan, Zhong; Wang, Yong; Tong, Leilei
2017-10-01
We consider the global existence and large time behavior of solutions near a constant equilibrium state to the bipolar non-isentropic compressible Euler-Maxwell system in {R}3 , where the background magnetic field could be non-zero. The global existence is established under the assumption that the H 3 norm of the initial data is small, but its higher order derivatives could be large. Combining the negative Sobolev (or Besov) estimates with the interpolation estimates, we prove the optimal time decay rates of the solution and its higher order spatial derivatives. In this sense, our results improve the similar ones in Wang et al (2012 SIAM J. Math. Anal. 44 3429-57).
NASA Astrophysics Data System (ADS)
Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Schilling, Keith
2017-09-01
Unsaturated flow is an important process in base flow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. The effects of the lateral discharge of the unsaturated zone and aquifer compressibility are specifically taken into consideration. Semianalytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. A larger dimensionless constitutive exponent κD (a smaller retention capacity) of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. The compressibility of the aquifer has a nonnegligible impact on the discharge at early times. For late times, the power index b of the recession curve -dQ/dt˜ aQb, is 1 and independent of κD, where Q is the base flow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→0. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.
Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong; Ryou, Jae-Suk
2018-05-14
Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl₂ deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl₂ solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.
NASA Technical Reports Server (NTRS)
Howe, John T.
1959-01-01
Three numerical solutions of the partial differential equations describing the compressible laminar boundary layer are obtained by the finite difference method described in reports by I. Flugge-Lotz, D.C. Baxter, and this author. The solutions apply to steady-state supersonic flow without pressure gradient, over a cold wall and over an adiabatic wall, both having transpiration cooling upstream, and over an adiabatic wall with upstream cooling but without upstream transpiration. It is shown that for a given upstream wall temperature, upstream transpiration cooling affords much better protection to the adiabatic solid wall than does upstream cooling without transpiration. The results of the numerical solutions are compared with those of approximate solutions. The thermal results of the finite difference solution lie between the results of Rubesin and Inouye, and those of Libby and Pallone. When the skin-friction results of one finite difference solution are used in the thermal analysis of Rubesin and Inouye, improved agreement between the thermal results of the two methods of solution is obtained.
The effects of video compression on acceptability of images for monitoring life sciences experiments
NASA Astrophysics Data System (ADS)
Haines, Richard F.; Chuang, Sherry L.
1992-07-01
Future manned space operations for Space Station Freedom will call for a variety of carefully planned multimedia digital communications, including full-frame-rate color video, to support remote operations of scientific experiments. This paper presents the results of an investigation to determine if video compression is a viable solution to transmission bandwidth constraints. It reports on the impact of different levels of compression and associated calculational parameters on image acceptability to investigators in life-sciences research at ARC. Three nonhuman life-sciences disciplines (plant, rodent, and primate biology) were selected for this study. A total of 33 subjects viewed experimental scenes in their own scientific disciplines. Ten plant scientists viewed still images of wheat stalks at various stages of growth. Each image was compressed to four different compression levels using the Joint Photographic Expert Group (JPEG) standard algorithm, and the images were presented in random order. Twelve and eleven staffmembers viewed 30-sec videotaped segments showing small rodents and a small primate, respectively. Each segment was repeated at four different compression levels in random order using an inverse cosine transform (ICT) algorithm. Each viewer made a series of subjective image-quality ratings. There was a significant difference in image ratings according to the type of scene viewed within disciplines; thus, ratings were scene dependent. Image (still and motion) acceptability does, in fact, vary according to compression level. The JPEG still-image-compression levels, even with the large range of 5:1 to 120:1 in this study, yielded equally high levels of acceptability. In contrast, the ICT algorithm for motion compression yielded a sharp decline in acceptability below 768 kb/sec. Therefore, if video compression is to be used as a solution for overcoming transmission bandwidth constraints, the effective management of the ratio and compression parameters according to scientific discipline and experiment type is critical to the success of remote experiments.
The effects of video compression on acceptability of images for monitoring life sciences experiments
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Chuang, Sherry L.
1992-01-01
Future manned space operations for Space Station Freedom will call for a variety of carefully planned multimedia digital communications, including full-frame-rate color video, to support remote operations of scientific experiments. This paper presents the results of an investigation to determine if video compression is a viable solution to transmission bandwidth constraints. It reports on the impact of different levels of compression and associated calculational parameters on image acceptability to investigators in life-sciences research at ARC. Three nonhuman life-sciences disciplines (plant, rodent, and primate biology) were selected for this study. A total of 33 subjects viewed experimental scenes in their own scientific disciplines. Ten plant scientists viewed still images of wheat stalks at various stages of growth. Each image was compressed to four different compression levels using the Joint Photographic Expert Group (JPEG) standard algorithm, and the images were presented in random order. Twelve and eleven staffmembers viewed 30-sec videotaped segments showing small rodents and a small primate, respectively. Each segment was repeated at four different compression levels in random order using an inverse cosine transform (ICT) algorithm. Each viewer made a series of subjective image-quality ratings. There was a significant difference in image ratings according to the type of scene viewed within disciplines; thus, ratings were scene dependent. Image (still and motion) acceptability does, in fact, vary according to compression level. The JPEG still-image-compression levels, even with the large range of 5:1 to 120:1 in this study, yielded equally high levels of acceptability. In contrast, the ICT algorithm for motion compression yielded a sharp decline in acceptability below 768 kb/sec. Therefore, if video compression is to be used as a solution for overcoming transmission bandwidth constraints, the effective management of the ratio and compression parameters according to scientific discipline and experiment type is critical to the success of remote experiments.
Rheumatoid arthritis of the cervical spine: current techniques for management.
Casey, Adrian T H; Crockard, H Alan; Pringle, Jean; O'Brien, Michael F; Stevens, John M
2002-04-01
The incidence of rheumatoid arthritis in the European and North American population is significant. Rheumatoid arthritis can result in serious damage to the cervical spine and the central neuraxis, ranging from mild instability to myelopathy and death. Aggressive conservative care should be established early. The treating physician should not be lulled into a false sense of security by reports suggesting that cervical subluxations are typically asymptomatic [76-78]. Gradual spinal cord compression can result in severe neurologic deficits that may be irreversible despite appropriate surgical intervention when applied too late. [figure: see text] The treatment of rheumatoid disease in the cervical spine is challenging. Many details must be considered when diagnosing and attempting to institute a treatment plan, particularly surgical treatment. The pathomechanics may result in either instability or ankylosis. The superimposed deformities may be either fixed or mobile. The algorithm suggested by the authors can be used to navigate through the numerous details that must be considered to formulate a reasonable surgical plan. Although these patients are [figure: see text] frail, an "aggressive" surgical solution applied in a timely fashion yields better results than an incomplete or inappropriate surgical solution applied too late. When surgical intervention is anticipated, it should be performed before the development of severe myelopathy. Patients who progress to a Ranawat III-B status have a much higher morbidity and mortality rate associated with surgical intervention than do patients who ambulate. Although considered aggressive by some, "prophylactic" stabilization and fusion of a [figure: see text] relatively flexible, moderately deformed spine before the onset of severe neurologic symptoms may be reasonable. This approach ultimately may serve the patient better than "observation" if the patient is slowly drifting into a severe spinal deformity or shows signs of early myelopathy or paraparesis.
Magnetic Compression Experiment at General Fusion with Simulation Results
NASA Astrophysics Data System (ADS)
Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General
2017-10-01
The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.
Solution-processed multilayer polymer light-emitting diode without intermixing
NASA Astrophysics Data System (ADS)
Kasparek, C.; Blom, P. W. M.
2017-01-01
The intermixing of two emissive layers in a four-layer solution-processed polymeric light-emitting diode with a hole injection, two emissive layers, and one hole-blocking layer is investigated. The relative emission of both emissive layers is measured and compared to a calculated recombination profile across the device using drift-diffusion simulations. A good agreement between the measured and calculated relative emission was found, supporting that there is no intermixing in the two emissive materials.
USDA-ARS?s Scientific Manuscript database
The impact of different spray tank modifiers into an active ingredient spray mixture on spray atomization and in-field behavior under aerial application conditions were examined. Wind tunnel tests demonstrated that active ingredient solutions potentially results in significantly different atomizati...
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1976-01-01
An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.
Analysis of visual quality improvements provided by known tools for HDR content
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Alshina, Elena; Lee, JongSeok; Park, Youngo; Choi, Kwang Pyo
2016-09-01
In this paper, the visual quality of different solutions for high dynamic range (HDR) compression using MPEG test contents is analyzed. We also simulate the method for an efficient HDR compression which is based on statistical property of the signal. The method is compliant with HEVC specification and also easily compatible with other alternative methods which might require HEVC specification changes. It was subjectively tested on commercial TVs and compared with alternative solutions for HDR coding. Subjective visual quality tests were performed using SUHD TVs model which is SAMSUNG JS9500 with maximum luminance up to 1000nit in test. The solution that is based on statistical property shows not only improvement of objective performance but improvement of visual quality compared to other HDR solutions, while it is compatible with HEVC specification.
Room-temperature NaI/H2O compression icing: solute-solute interactions.
Zeng, Qingxin; Yao, Chuang; Wang, Kai; Sun, Chang Q; Zou, Bo
2017-10-11
In situ Raman spectroscopy revealed that transiting the concentrated NaI/H 2 O solutions to an ice VI phase and then into an ice VII phase at 298 K proceeds in a way different from that activated by the solute type. Unlike the solute type that raises both the critical pressures P C1 and P C2 , for the liquid-VI, the VI-VII transition simultaneously occurs in the Hofmeister series order: I > Br > Cl > F ∼ 0; concentration increase raises the P C1 faster than the P C2 that remains almost constant at higher NaI/H 2 O molecular number ratios. Concentration increase moves the P C1 along the liquid-VI phase boundary and it finally merges with P C2 at the triple-phase junction featured at 350 K and 3.05 GPa. The highly-deformed H-O bond is less sensitive to the concentration because of the involvement of anion-anion repulsion that weakens the electric field in the hydration shells. Observations confirm that the salt solvation lengthens the O:H nonbond and softens its phonon but relaxes the H-O bond contrastingly. Compression, however, has the opposite effect from that of salt solvation. Therefore, compression recovers the polarization-deformed O:H-O bond first and then proceeds to the phase transitions. The anion-anion interaction discriminates the effect of NaI/H 2 O concentration from that of the solute type at an identical concentration on the phase transitions.
Estimating drift of airborne pesticides during orchard spraying using active Open Path FTIR
NASA Astrophysics Data System (ADS)
Kira, Oz; Linker, Raphael; Dubowski, Yael
2016-10-01
The use of pesticides is important to ensure food security around the world. Unfortunately, exposure to pesticides is harmful to human health and the environment. This study suggests using active Open Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for monitoring and characterizing pesticide spray drift, which is one of the transfer mechanisms that lead to inhalation exposure to pesticides. Experiments were conducted in a research farm with two fungicides (Impulse and Bogiron), which were sprayed in the recommended concentration of ∼0.1%w in water, using a tractor-mounted air-assisted sprayer. The ability to detect and characterize the pesticide spray drift was tested in three types of environments: fallow field, young orchard, and mature orchard. During all spraying experiments the spectral signature of the organic phase of the pesticide solution was identified. Additionally, after estimating the droplets' size distribution using water sensitive papers, the OP-FTIR measurements enabled the estimation of the droplets load in the line of sight.
The NDCX-II engineering design
NASA Astrophysics Data System (ADS)
Waldron, W. L.; Abraham, W. J.; Arbelaez, D.; Friedman, A.; Galvin, J. E.; Gilson, E. P.; Greenway, W. G.; Grote, D. P.; Jung, J.-Y.; Kwan, J. W.; Leitner, M.; Lidia, S. M.; Lipton, T. M.; Reginato, L. L.; Regis, M. J.; Roy, P. K.; Sharp, W. M.; Stettler, M. W.; Takakuwa, J. H.; Volmering, J.; Vytla, V. K.
2014-01-01
The Neutralized Drift Compression Experiment (NDCX-II) is a user facility located at Lawrence Berkeley National Laboratory which is uniquely designed for ion-beam-driven high energy density laboratory physics and heavy ion fusion research. Construction was completed in March 2012 and the facility is now in the commissioning phase. A significant amount of engineering was carried out in order to meet the performance parameters required for a wide range of target heating experiments while making the most cost-effective use of high-value hardware available from a decommissioned high current electron induction accelerator. The technical challenges and design of this new ion induction accelerator facility are described.
Techniques in processing multi-frequency multi-polarization spaceborne SAR data
NASA Technical Reports Server (NTRS)
Curlander, John C.; Chang, C. Y.
1991-01-01
This paper presents the algorithm design of the SIR-C ground data processor, with emphasis on the unique elements involved in the production of registered multifrequency polarimetric data products. A quick-look processing algorithm used for generation of low-resolution browse image products and estimation of echo signal parameters is also presented. Specifically the discussion covers: (1) azimuth reference function generation to produce registered polarimetric imagery; (2) geometric rectification to accommondate cross-track and along-track Doppler drifts; (3) multilook filtering designed to generate output imagery with a uniform resolution; and (4) efficient coding to compress the polarimetric image data for distribution.
Metal/Metal Oxide Differential Electrode pH Sensors
NASA Technical Reports Server (NTRS)
West, William; Buehler, Martin; Keymeulen, Didier
2007-01-01
Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.
The exact fundamental solution for the Benes tracking problem
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam
2009-05-01
The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.
Y chromosome diversity, human expansion, drift, and cultural evolution
Chiaroni, Jacques; Underhill, Peter A.; Cavalli-Sforza, Luca L.
2009-01-01
The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent “Out of Africa” expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production. PMID:19920170
Y chromosome diversity, human expansion, drift, and cultural evolution.
Chiaroni, Jacques; Underhill, Peter A; Cavalli-Sforza, Luca L
2009-12-01
The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent "Out of Africa" expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production.
Geopolymerisation of fly ashes with waste aluminium anodising etching solutions.
Ogundiran, M B; Nugteren, H W; Witkamp, G J
2016-10-01
Combined management of coal combustion fly ash and waste aluminium anodising etching solutions using geopolymerisation presents economic and environmental benefits. The possibility of using waste aluminium anodising etching solution (AES) as activator to produce fly ash geopolymers in place of the commonly used silicate solutions was explored in this study. Geopolymerisation capacities of five European fly ashes with AES and the leaching of elements from their corresponding geopolymers were studied. Conventional commercial potassium silicate activator-based geopolymers were used as a reference. The geopolymers produced were subjected to physical, mechanical and leaching tests. The leaching of elements was tested on 28 days cured and crushed geopolymers using NEN 12457-4, NEN 7375, SPLP and TCLP leaching tests. After 28 days ambient curing, the geopolymers based on the etching solution activator showed compressive strength values between 51 and 84 MPa, whereas the commercial potassium silicate based geopolymers gave compressive strength values between 89 and 115 MPa. Based on the regulatory limits currently associated with the used leaching tests, all except one of the produced geopolymers (with above threshold leaching of As and Se) passed the recommended limits. The AES-geopolymer geopolymers demonstrated excellent compressive strength, although less than geopolymers made from commercial activator. Additionally, they demonstrated low element leaching potentials and therefore can be suitable for use in construction works. Copyright © 2016. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Norstrud, H.
1973-01-01
The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.
Lagrangian averaging, nonlinear waves, and shock regularization
NASA Astrophysics Data System (ADS)
Bhat, Harish S.
In this thesis, we explore various models for the flow of a compressible fluid as well as model equations for shock formation, one of the main features of compressible fluid flows. We begin by reviewing the variational structure of compressible fluid mechanics. We derive the barotropic compressible Euler equations from a variational principle in both material and spatial frames. Writing the resulting equations of motion requires certain Lie-algebraic calculations that we carry out in detail for expository purposes. Next, we extend the derivation of the Lagrangian averaged Euler (LAE-alpha) equations to the case of barotropic compressible flows. The derivation in this thesis involves averaging over a tube of trajectories etaepsilon centered around a given Lagrangian flow eta. With this tube framework, the LAE-alpha equations are derived by following a simple procedure: start with a given action, expand via Taylor series in terms of small-scale fluid fluctuations xi, truncate, average, and then model those terms that are nonlinear functions of xi. We then analyze a one-dimensional subcase of the general models derived above. We prove the existence of a large family of traveling wave solutions. Computing the dispersion relation for this model, we find it is nonlinear, implying that the equation is dispersive. We carry out numerical experiments that show that the model possesses smooth, bounded solutions that display interesting pattern formation. Finally, we examine a Hamiltonian partial differential equation (PDE) that regularizes the inviscid Burgers equation without the addition of standard viscosity. Here alpha is a small parameter that controls a nonlinear smoothing term that we have added to the inviscid Burgers equation. We show the existence of a large family of traveling front solutions. We analyze the initial-value problem and prove well-posedness for a certain class of initial data. We prove that in the zero-alpha limit, without any standard viscosity, solutions of the PDE converge strongly to weak solutions of the inviscid Burgers equation. We provide numerical evidence that this limit satisfies an entropy inequality for the inviscid Burgers equation. We demonstrate a Hamiltonian structure for the PDE.
Calcium leaching behavior of cementitious materials in hydrochloric acid solution.
Yang, Huashan; Che, Yujun; Leng, Faguang
2018-06-11
The calcium leaching behavior of cement paste and silica fume modified calcium hydroxide paste, exposed to hydrochloric acid solution, is reported in this paper. The kinetic of degradation was assessed by the changes of pH of hydrochloric acid solution with time. The changes of compressive strength of specimens in hydrochloric acid with time were tested. Hydration products of leached specimens were also analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric (TG), and atomic force microscope (AFM). Tests results show that there is a dynamic equilibrium in the supply and consumption of calcium hydroxide in hydrochloric acid solution, which govern the stability of hydration products such as calcium silicate hydrate (C-S-H). The decrease of compressive strength indicates that C-S-H are decomposed due to the lower concentration of calcium hydroxide in the pore solution than the equilibrium concentration of the hydration products. Furthermore, the hydration of unhydrated clinker delayed the decomposition of C-S-H in hydrochloric acid solution due to the increase of calcium hydroxide in pore solution of cementitious materials.
NASA Astrophysics Data System (ADS)
Roy, Mahendra Nath; Roy, Milan Chandra; Basak, Saptarshi
2014-05-01
Qualitative and quantitative analysis of molecular interaction prevailing in glycine, l-alanine, l-valine, and aqueous solution of ionic liquid (IL) [1-ethylpyridinium tetrafluoroborate (] have been investigated by thermophysical properties. The apparent molar volume (), viscosity -coefficient, molal refraction (), and adiabatic compressibility ( of glycine, l-alanine, and l-valine have been studied in 0.001 mol , 0.003 mol , and 0.005 mol aqueous 1-ethylpyridinium tetrafluoroborate [] solutions at 298.15 K from the values of densities , viscosities (), refractive index (, and speed of sound , respectively. The extent of interaction, i.e., the solute-solvent interaction is expressed in terms of the limiting apparent molar volume (, viscosity -coefficient, and limiting apparent molar adiabatic compressibility (. The limiting apparent molar volumes (, experimental slopes ( derived from the Masson equation, and viscosity - and -coefficients using the Jones-Dole equation have been interpreted in terms of ion-ion and ion-solvent interactions, respectively. Molal refractions ( have been calculated with the help of the Lorentz-Lorenz equation. The role of the solvent (aqueous IL solution) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.
Experimental Investigations of the Weathering of Suspended Sediment by Alpine Glacial Meltwater
NASA Astrophysics Data System (ADS)
Brown, Giles H.; Tranter, M.; Sharp, M. J.
1996-04-01
The magnitude and processes of solute acquisition by dilute meltwater in contact with suspended sediment in the channelized component of the hydroglacial system have been investigated through a suite of controlled laboratory experiments. Constrained by field data from Haut Glacier d'Arolla, Valais, Switzerland the effects of the water to rock ratio, particle size, crushing, repeated wetting and the availability of protons on the rate of solute acquisition are demonstrated. These free-drift experiments suggest that the rock flour is extremely geochemically reactive and that dilute quickflow waters are certain to acquire solute from suspended sediment. These data have important implications for hydrological interpretations based on the solute content of glacial meltwater, mixing model calculations, geochemical denudation rates and solute provenance studies.
A modified Dodge algorithm for the parabolized Navier-Stokes equation and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitive agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions.
Tollmien-Schlichting/vortex interactions in compressible boundary layer flows
NASA Technical Reports Server (NTRS)
Blackaby, Nicholas D.
1993-01-01
The weakly nonlinear interaction of oblique Tollmien-Schlichting waves and longitudinal vortices in compressible, high Reynolds number, boundary-layer flow over a flat plate is considered for all ranges of the Mach number. The interaction equations comprise of equations for the vortex which is indirectly forced by the waves via a boundary condition, whereas a vortex term appears in the amplitude equation for the wave pressure. The downstream solution properties of interaction equations are found to depend on the sign of an interaction coefficient. Compressibility is found to have a significant effect on the interaction properties; principally through its impact on the waves and their governing mechanism, the triple-deck structure. It is found that, in general, the flow quantities will grow slowly with increasing downstream co-ordinate; i.e. in general, solutions do not terminate in abrupt, finite-distance 'break-ups'.
NASA Astrophysics Data System (ADS)
Mitrofanov, O.; Pavelko, I.; Varickis, S.; Vagele, A.
2018-03-01
The necessity for considering both strength criteria and postbuckling effects in calculating the load-carrying capacity in compression of thin-wall composite structures with impact damage is substantiated. An original applied method ensuring solution of these problems with an accuracy sufficient for practical design tasks is developed. The main advantage of the method is its applicability in terms of computing resources and the set of initial data required. The results of application of the method to solution of the problem of compression of fragments of thin-wall honeycomb panel damaged by impacts of various energies are presented. After a comparison of calculation results with experimental data, a working algorithm for calculating the reduction in the load-carrying capacity of a composite object with impact damage is adopted.
Tides on Self-gravitating, Compressible Bodies
NASA Astrophysics Data System (ADS)
Hurford, T. A.; Greenberg, R.
2001-11-01
Most modern derivations of tidal amplitude follow the approach presented by Love [1]. Love's analysis for a homogeneous sphere assumed an incompressible material, which required introduction of a non-rigorously justified pressure term. We have solved the more general case of arbitrary compressibility, which allows for a more straightforward derivation [2,3]. We find the h2 love number of a body of radius R, density ρ , by solving the deformation equation [4], μ ∇ 2 u = ρ ∇U - (λ + μ ) ∇ (∇ ṡ u) where μ is the rigidity of the body and λ the Lamé constant. The potential U is the sum of (a) the tide raising potential, (b) the potential of surface mass shifted above or below the spherical surface, (c) potential due to the internal density changes and (d) the change in potential of each bit of volume due to its displacement u. A self-consistent solution can be obtained with U = \\sum_{q=0}^{\\infty} b_{(2+2q)} r^{(2+2q)} ( {3}/{2} \\cos2 \\theta - {1}/{2} ). In [1] and [3] only the r2 term was considered, which was valid only if compressibility is small or elasticity governs deformation (i.e. ρ g R << (λ + 2 μ )). The solution with only the r2 term reduces to Love's [1] solution in the limit of zero compressibility (λ = ∞ ). However, for rock μ ~ λ [4], in which case h2 is enhanced by ~ 3 %, and solutions for greater compressibility give up to 8 % enhancement of tidal amplitude. If ρ g R is significant, higher order r(2q+2) terms are important and even greater corrections are required to the classical tidal amplitude. [1] Love, A.E.H., New York Dover Publications, 1944 [2] Hurford, T.A. and R. Greenberg, Lunar Plan. Sci. XXXII 1741, 2001 [3] Hurford, T.A. and R. Greenberg, 2001 DDA meeting, Bull. Amer. Astron. Soc. in press [4] Kaula, W.M., John Wiley & Sons, Inc., 1968
NASA Astrophysics Data System (ADS)
Birdsell, D.; Karra, S.; Rajaram, H.
2016-12-01
The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.
NASA Astrophysics Data System (ADS)
Birdsell, D.; Karra, S.; Rajaram, H.
2017-12-01
The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.
Quasiperiodicity and chaos in post-AGB stars
NASA Astrophysics Data System (ADS)
Icke, V.
2003-03-01
This is a mini-presentation of three subjects, which are all related to the atmospheric motion in post-AGB stars. First, a summary of my 1990 equation of a driven stellar oscillator that exhibits chaotic solutions. Second, an advertisement for the subtle interplay of hydrodynamics, gas/dust drift, gas chemistry, dust formation, and radiation pressure, as presented in the thesis by Simis. Third, a new model equation for nonspherical stellar oscillations that resembles the FPU-equation which shows permanent non-equilibrium, with possibly intermittent solutions.
Determination of Selection Criteria for Spray Drift Reduction from Atomization Data
2012-01-01
Solutions Testing was conducted using glyphosate (Roundup PowerMAX, EPA Reg. No. 524–549, Monsanto Company, St. Louis, MO) as the active ingredient...This po- tassium glyphosate contains 540 g acid equivalent glyphosate per liter and is sprayed at 1.6 l/hectare (22 oz/acre), yielding a 1.7 % v/v...Table 1) were tested in water only and in water plus the glyphosate . The specific polymers were chosen so as to cre- ate a range of solutions with and
NEW EVIDENCE FOR CHARGE-SIGN-DEPENDENT MODULATION DURING THE SOLAR MINIMUM OF 2006 TO 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Felice, V.; Munini, R.; Vos, E. E.
The PAMELA space experiment, in orbit since 2006, has measured cosmic rays (CRs) through the most recent period of minimum solar activity with the magnetic field polarity as A < 0. During this entire time, galactic electrons and protons have been detected down to 70 MV and 400 MV, respectively, and their differential variation in intensity with time has been monitored with unprecedented accuracy. These observations are used to show how differently electrons and protons responded to the quiet modulation conditions that prevailed from 2006 to 2009. It is well known that particle drifts, as one of four major mechanisms for the solarmore » modulation of CRs, cause charge-sign-dependent solar modulation. Periods of minimum solar activity provide optimal conditions in which to study these drift effects. The observed behavior is compared to the solutions of a three-dimensional model for CRs in the heliosphere, including drifts. The numerical results confirm that the difference in the evolution of electron and proton spectra during the last prolonged solar minimum is attributed to a large extent to particle drifts. We therefore present new evidence of charge-sign-dependent solar modulation, with a perspective on its peculiarities for the observed period from 2006 to 2009.« less
Martingales, detrending data, and the efficient market hypothesis
NASA Astrophysics Data System (ADS)
McCauley, Joseph L.; Bassler, Kevin E.; Gunaratne, Gemunu H.
2008-01-01
We discuss martingales, detrending data, and the efficient market hypothesis (EMH) for stochastic processes x( t) with arbitrary diffusion coefficients D( x, t). Beginning with x-independent drift coefficients R( t) we show that martingale stochastic processes generate uncorrelated, generally non-stationary increments. Generally, a test for a martingale is therefore a test for uncorrelated increments. A detrended process with an x-dependent drift coefficient is generally not a martingale, and so we extend our analysis to include the class of ( x, t)-dependent drift coefficients of interest in finance. We explain why martingales look Markovian at the level of both simple averages and 2-point correlations. And while a Markovian market has no memory to exploit and presumably cannot be beaten systematically, it has never been shown that martingale memory cannot be exploited in 3-point or higher correlations to beat the market. We generalize our Markov scaling solutions presented earlier, and also generalize the martingale formulation of the EMH to include ( x, t)-dependent drift in log returns. We also use the analysis of this paper to correct a misstatement of the ‘fair game’ condition in terms of serial correlations in Fama's paper on the EMH. We end with a discussion of Levy's characterization of Brownian motion and prove that an arbitrary martingale is topologically inequivalent to a Wiener process.
NASA Astrophysics Data System (ADS)
Lee, Ho Ki; Baek, Kye Hyun; Shin, Kyoungsub
2017-06-01
As semiconductor devices are scaled down to sub-20 nm, process window of plasma etching gets extremely small so that process drift or shift becomes more significant. This study addresses one of typical process drift issues caused by consumable parts erosion over time and provides feasible solution by using virtual metrology (VM) based wafer-to-wafer control. Since erosion of a shower head has center-to-edge area dependency, critical dimensions (CDs) at the wafer center and edge area get reversed over time. That CD trend is successfully estimated on a wafer-to-wafer basis by a partial least square (PLS) model which combines variables from optical emission spectroscopy (OES), VI-probe and equipment state gauges. R 2 of the PLS model reaches 0.89 and its prediction performance is confirmed in a mass production line. As a result, the model can be exploited as a VM for wafer-to-wafer control. With the VM, advanced process control (APC) strategy is implemented to solve the CD drift. Three σ of CD across wafer is improved from the range (1.3-2.9 nm) to the range (0.79-1.7 nm). Hopefully, results introduced in this paper will contribute to accelerating implementation of VM based APC strategy in semiconductor industry.
On the relationship between kinetic and fluid formalisms for convection in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Song, Yang; Sazykin, Stanislav; Wolf, Richard A.
2008-08-01
In the inner magnetosphere, the plasma flows are mostly slow compared to thermal or Alfvén speeds, but the convection is far away from the ideal magnetohydrodynamic regime since the gradient/curvature drifts become significant. Both kinetic (Wolf, 1983) and two-fluid (Peymirat and Fontaine, 1994; Heinemann, 1999) formalisms have been used to describe plasma dynamics, but it is not fully understood how they relate to each other. We explore the relations among kinetic, fluid, and recently developed "average" (Liu, 2006) models in an attempt to find the simplest yet realistic way to describe the convection. First, we prove analytically that the model of (Liu, 2006), when closed with the assumption of a Maxwellian distribution, is equivalent to the fluid model of (Heinemann, 1999). Second, we analyze the transport of both one-dimensional and two-dimensional Gaussian-shaped blob of hot plasma. For the kinetic case, it is known that the time evolution of such a blob is gradual spreading in time. For the fluid case, Heinemann and Wolf (2001a, 2001b) showed that in a one-dimensional idealized case, the blob separates into two drifting at different speeds. We present a fully nonlinear solution of this case, confirming this behavior but demonstrating what appears to be a shocklike steepening of the faster drifting secondary blob. A new, more realistic two-dimensional example using the dipole geometry with a uniform electric field confirms the one-dimensional solutions. Implications for the numerical simulations of magnetospheric dynamics are discussed.
Li, Minglun; Hegemann, Nina-Sophie; Manapov, Farkhad; Kolberg, Anne; Thum, Patrick Dominik; Ganswindt, Ute; Belka, Claus; Ballhausen, Hendrik
2017-06-01
In image-guided EBRT of the prostate, transperineal ultrasound (US) probes exert pressure on the perineum both during planning and treatment. Through tissue deformation and relaxation, this causes target and risk organ displacement and drift. In this study, prefraction shift and intrafraction drift of the prostate are quantified during robotic transperineal 4DUS. The position of the prostate was recorded for different positions of the probe before treatment in 10 patients (16 series of measurements). During treatment (15 patients, 273 fractions), intrafraction motion of the prostate was tracked (total of 27 h and 24 min) with the transperineal probe in place. Per 1 mm shift of the US probe in the cranial direction, a displacement of the prostate by 0.42 ± 0.09 mm in the cranial direction was detected. The relationship was found to be linear (R² = 0.97) and highly significant (p < 0.0001). After initial contact of the probe and the perineum (no pressure), a shift of the probe of about 5-10 mm was typically necessary to achieve good image quality, corresponding to a shift of the prostate of about 2-4 mm in the cranial direction. Tissue compression and prostate displacement were well visible. During treatment, the prostate drifted at an average rate of 0.075 mm/min in the cranial direction (p = 0.0014). The pressure applied by a perineal US probe has a quantitatively similar impact on prostate displacement as transabdominal pressure. Shifts are predominantly in the cranial direction (typically 2-4 mm) with some component in the anterior direction (typically <1 mm). Slight probe pressure can improve image quality, but excessive probe pressure can distort the surrounding anatomy and potentially move risk organs closer to the high-dose area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Luo; Luqing Luo; Robert Nourgaliev
2010-09-01
A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier–Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier–Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need tomore » judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi–Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the Navier–Stokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier–Stokes equations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Luo; Luqing Luo; Robert Nourgaliev
2010-01-01
A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier-Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need tomore » judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi-Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the Navier-Stokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier-Stokes equations.« less
Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong
2018-01-01
Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl2 deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl2 solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases. PMID:29758008
On the Singular Incompressible Limit of Inviscid Compressible Fluids
NASA Astrophysics Data System (ADS)
Secchi, P.
We consider the Euler equations of barotropic inviscid compressible fluids in a bounded domain. It is well known that, as the Mach number goes to zero, the compressible flows approximate the solution of the equations of motion of inviscid, incompressible fluids. In this paper we discuss, for the boundary case, the different kinds of convergence under various assumptions on the data, in particular the weak convergence in the case of uniformly bounded initial data and the strong convergence in the norm of the data space.
S. Nami. Kartal; Stan. Lebow
2000-01-01
In this study, the effect of compression wood formation on the release rate of chromium, copper, and arsenic elements from red pine (Pinus resinosa Ait) was investigated. Wood blocks from red pine containing compression and normal wood portions were treated with a 1.0% CCA-C solution and were then allowed to fix at 23 * 2*C (74 * 4*F) for 0, 6, 24, 48, 96, 192, and 336...
The present state and future direction of second order closure models for compressible flows
NASA Technical Reports Server (NTRS)
Gatski, Thomas B.; Sarkar, Sutanu; Speziale, Charles G.
1992-01-01
The topics are presented in viewgraph form and include: (1) Reynolds stress closure models; (2) Favre averages and governing equations; (3) the model for the deviatoric part of the pressure-strain rate correlation; (4) the SSG pressure-strain correlation model; (5) a compressible turbulent dissipation rate model; (6) variable viscosity effects; (7) near-wall stiffness problems; (8) models of the Reynolds mass and heat flux; and (9) a numerical solution of the compressible turbulent transport equation.
Fully localized post-buckling states of cylindrical shells under axial compression
NASA Astrophysics Data System (ADS)
Kreilos, Tobias; Schneider, Tobias M.
2017-09-01
We compute nonlinear force equilibrium solutions for a clamped thin cylindrical shell under axial compression. The equilibrium solutions are dynamically unstable and located on the stability boundary of the unbuckled state. A fully localized single dimple deformation is identified as the edge state-the attractor for the dynamics restricted to the stability boundary. Under variation of the axial load, the single dimple undergoes homoclinic snaking in the azimuthal direction, creating states with multiple dimples arranged around the central circumference. Once the circumference is completely filled with a ring of dimples, snaking in the axial direction leads to further growth of the dimple pattern. These fully nonlinear solutions embedded in the stability boundary of the unbuckled state constitute critical shape deformations. The solutions may thus be a step towards explaining when the buckling and subsequent collapse of an axially loaded cylinder shell is triggered.
NASA Technical Reports Server (NTRS)
Cohen, Clarence B; Reshotko, Eli
1956-01-01
Stewartson's transformation is applied to the laminar compressible boundary-layer equations and the requirement of similarity is introduced, resulting in a set of ordinary nonlinear differential equations previously quoted by Stewartson, but unsolved. The requirements of the system are Prandtl number of 1.0, linear viscosity-temperature relation across the boundary layer, an isothermal surface, and the particular distributions of free-stream velocity consistent with similar solutions. This system admits axial pressure gradients of arbitrary magnitude, heat flux normal to the surface, and arbitrary Mach numbers. The system of differential equations is transformed to integral system, with the velocity ratio as the independent variable. For this system, solutions are found by digital computation for pressure gradients varying from that causing separation to the infinitely favorable gradient and for wall temperatures from absolute zero to twice the free-stream stagnation temperature. Some solutions for separated flows are also presented.
Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas
NASA Astrophysics Data System (ADS)
Liu, Yechi
2018-06-01
The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.
Features of sound propagation through and stability of a finite shear layer
NASA Technical Reports Server (NTRS)
Koutsoyannis, S. P.
1976-01-01
The plane wave propagation, the stability and the rectangular duct mode problems of a compressible inviscid linearly sheared parallel, but otherwise homogeneous flow, are shown to be governed by Whittaker's equation. The exact solutions for the perturbation quantities are essentially Whittaker M-functions. A number of known results are obtained as limiting cases of exact solutions. For the compressible finite thickness shear layer it is shown that no resonances and no critical angles exist for all Mach numbers, frequencies and shear layer velocity profile slopes except in the singular case of the vortex sheet.
NASA Astrophysics Data System (ADS)
Ochs, Oliver; Heckl, Wolfgang M.; Lackinger, Markus
2018-05-01
Fundamental insights into the kinetics and thermodynamics of supramolecular self-assembly on surfaces are uniquely gained by variable-temperature high-resolution Scanning-Tunneling-Microscopy (STM). Conventionally, these experiments are performed with standard ambient microscopes extended with heatable sample stages for local heating. However, unavoidable solvent evaporation sets a technical limit on the duration of these experiments, hence prohibiting long-term experiments. These, however, would be highly desirable to provide enough time for temperature stabilization and settling of drift but also to study processes with inherently slow kinetics. To overcome this dilemma, we propose a STM that can operate fully immersed in solution. The instrument is mounted onto the lid of a hermetically sealed heatable container that is filled with the respective solution. By closing the container, both the sample and microscope are immersed in solution. Thereby solvent evaporation is eliminated and an environment for long-term experiments with utmost stable and controllable temperatures between room-temperature and 100 °C is provided. Important experimental requirements for the immersion-STM and resulting design criteria are discussed, the strategy for protection against corrosive media is described, the temperature stability and drift behavior are thoroughly characterized, and first long-term high resolution experiments at liquid-solid interfaces are presented.
Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Sheng; Cappello, Franck
Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points canmore » be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.« less
Influence of crystal habit on the compression and densification mechanism of ibuprofen
NASA Astrophysics Data System (ADS)
Di Martino, Piera; Beccerica, Moira; Joiris, Etienne; Palmieri, Giovanni F.; Gayot, Anne; Martelli, Sante
2002-08-01
Ibuprofen was recrystallized from several solvents by two different methods: addition of a non-solvent to a drug solution and cooling of a drug solution. Four samples, characterized by different crystal habit, were selected: sample A, sample E and sample T, recrystallized respectively from acetone, ethanol and THF by addition of water as non-solvent and sample M recrystallized from methanol by temperature decrease. By SEM analysis, sample were characterized with the respect of their crystal habit, mean particle diameter and elongation ratio. Sample A appears stick-shaped, sample E acicular with lamellar characteristics, samples T and M polyhedral. DSC and X-ray diffraction studies permit to exclude a polymorphic modification of ibuprofen during crystallization. For all samples micromeritics properties, densification behaviour and compression ability was analysed. Sample M shows a higher densification tendency, evidenciated by its higher apparent and tapped particle density. The ability to densificate is also pointed out by D0' value of Heckel's plot, which indicate the rearrangement of original particles at the initial stage of compression. This fact is related to the crystal habit of sample M, which is characterized by strongly smoothed coins. The increase in powder bed porosity permits a particle-particle interaction of greater extent during the subsequent stage of compression, which allows higher tabletability and compressibility.
Analysis and testing of axial compression in imperfect slender truss struts
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Georgiadis, Nicholas
1990-01-01
The axial compression of imperfect slender struts for large space structures is addressed. The load-shortening behavior of struts with initially imperfect shapes and eccentric compressive end loading is analyzed using linear beam-column theory and results are compared with geometrically nonlinear solutions to determine the applicability of linear analysis. A set of developmental aluminum clad graphite/epoxy struts sized for application to the Space Station Freedom truss are measured to determine their initial imperfection magnitude, load eccentricity, and cross sectional area and moment of inertia. Load-shortening curves are determined from axial compression tests of these specimens and are correlated with theoretical curves generated using linear analysis.
NASA Technical Reports Server (NTRS)
Thomas, J. L.; Diskin, B.; Brandt, A.
1999-01-01
The distributed-relaxation multigrid and defect- correction methods are applied to the two- dimensional compressible Navier-Stokes equations. The formulation is intended for high Reynolds number applications and several applications are made at a laminar Reynolds number of 10,000. A staggered- grid arrangement of variables is used; the coupled pressure and internal energy equations are solved together with multigrid, requiring a block 2x2 matrix solution. Textbook multigrid efficiencies are attained for incompressible and slightly compressible simulations of the boundary layer on a flat plate. Textbook efficiencies are obtained for compressible simulations up to Mach numbers of 0.7 for a viscous wake simulation.
Fast computational scheme of image compression for 32-bit microprocessors
NASA Technical Reports Server (NTRS)
Kasperovich, Leonid
1994-01-01
This paper presents a new computational scheme of image compression based on the discrete cosine transform (DCT), underlying JPEG and MPEG International Standards. The algorithm for the 2-d DCT computation uses integer operations (register shifts and additions / subtractions only); its computational complexity is about 8 additions per image pixel. As a meaningful example of an on-board image compression application we consider the software implementation of the algorithm for the Mars Rover (Marsokhod, in Russian) imaging system being developed as a part of Mars-96 International Space Project. It's shown that fast software solution for 32-bit microprocessors may compete with the DCT-based image compression hardware.
NASA Astrophysics Data System (ADS)
Zapata Norberto, B.; Morales-Casique, E.; Herrera, G. S.
2017-12-01
Severe land subsidence due to groundwater extraction may occur in multiaquifer systems where highly compressible aquitards are present. The highly compressible nature of the aquitards leads to nonlinear consolidation where the groundwater flow parameters are stress-dependent. The case is further complicated by the heterogeneity of the hydrogeologic and geotechnical properties of the aquitards. We explore the effect of realistic vertical heterogeneity of hydrogeologic and geotechnical parameters on the consolidation of highly compressible aquitards by means of 1-D Monte Carlo numerical simulations. 2000 realizations are generated for each of the following parameters: hydraulic conductivity (K), compression index (Cc) and void ratio (e). The correlation structure, the mean and the variance for each parameter were obtained from a literature review about field studies in the lacustrine sediments of Mexico City. The results indicate that among the parameters considered, random K has the largest effect on the ensemble average behavior of the system. Random K leads to the largest variance (and therefore largest uncertainty) of total settlement, groundwater flux and time to reach steady state conditions. We further propose a data assimilation scheme by means of ensemble Kalman filter to estimate the ensemble mean distribution of K, pore-pressure and total settlement. We consider the case where pore-pressure measurements are available at given time intervals. We test our approach by generating a 1-D realization of K with exponential spatial correlation, and solving the nonlinear flow and consolidation problem. These results are taken as our "true" solution. We take pore-pressure "measurements" at different times from this "true" solution. The ensemble Kalman filter method is then employed to estimate ensemble mean distribution of K, pore-pressure and total settlement based on the sequential assimilation of these pore-pressure measurements. The ensemble-mean estimates from this procedure closely approximate those from the "true" solution. This procedure can be easily extended to other random variables such as compression index and void ratio.
CO2 as a smart gelator for Pluronic aqueous solutions.
Liu, Chengcheng; Mei, Qingqing; Zhang, Jianling; Kang, Xinchen; Peng, Li; Han, Buxing; Xue, Zhimin; Sang, Xinxin; Yang, Xiaogan; Wu, Zhonghua; Li, Zhihong; Mo, Guang
2014-11-25
It was found that CO2 could induce the gelation of Pluronic aqueous solutions, during which the microstructure of the solution transforms from randomly dispersed spherical micelles to cubic close packed micelles. The gelation switched by compressed CO2 has many advantages and can be applied in the synthesis of porous materials.
NASA Technical Reports Server (NTRS)
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
Finite element computation of compressible flows with the SUPG formulation
NASA Technical Reports Server (NTRS)
Le Beau, G. J.; Tezduyar, T. E.
1991-01-01
Finite element computation of compressible Euler equations is presented in the context of the streamline-upwind/Petrov-Galerkin (SUPG) formulation. The SUPG formulation, which is based on adding stabilizing terms to the Galerkin formulation, is further supplemented with a shock capturing operator which addresses the difficulty in maintaining a satisfactory solution near discontinuities in the solution field. The shock capturing operator, which has been derived from work done in entropy variables for a similar operator, is shown to lead to an appropriate level of additional stabilization near shocks, without resulting in excessive numerical diffusion. An implicit treatment of the impermeable wall boundary condition is also presented. This treatment of the no-penetration condition offers increased stability for large Courant numbers, and accelerated convergence of the computations for both implicit and explicit applications. Several examples are presented to demonstrate the ability of this method to solve the equations governing compressible fluid flow.
Solution of weakly compressible isothermal flow in landfill gas collection networks
NASA Astrophysics Data System (ADS)
Nec, Y.; Huculak, G.
2017-12-01
Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.
NASA Technical Reports Server (NTRS)
Garrick, I E; Kaplan, Carl
1944-01-01
Elementary basic solutions of the equations of motion of a compressible fluid in the hodograph variables are developed and used to provide a basis for comparison, in the form of velocity correction formulas, of corresponding compressible and incompressible flows. The known approximate results of Chaplygin, Von Karman and Tsien, Temple and Yarwood, and Prandtl and Glauert are unified by means of the analysis of the present paper. Two new types of approximations, obtained from the basic solutions, are introduced; they possess certain desirable features of the other approximations and appear preferable as a basis for extrapolation into the range of high stream Mach numbers and large disturbances to the main stream. Tables and figures giving velocity and pressure-coefficient correction factors are included in order to facilitate the practical application of the results.
NASA Astrophysics Data System (ADS)
Chang, Ching-Chun; Liu, Yanjun; Nguyen, Son T.
2015-03-01
Data hiding is a technique that embeds information into digital cover data. This technique has been concentrated on the spatial uncompressed domain, and it is considered more challenging to perform in the compressed domain, i.e., vector quantization, JPEG, and block truncation coding (BTC). In this paper, we propose a new data hiding scheme for BTC-compressed images. In the proposed scheme, a dynamic programming strategy was used to search for the optimal solution of the bijective mapping function for LSB substitution. Then, according to the optimal solution, each mean value embeds three secret bits to obtain high hiding capacity with low distortion. The experimental results indicated that the proposed scheme obtained both higher hiding capacity and hiding efficiency than the other four existing schemes, while ensuring good visual quality of the stego-image. In addition, the proposed scheme achieved a low bit rate as original BTC algorithm.
Derivation of the Navier-Stokes-Poisson System with Radiation for an Accretion Disk
NASA Astrophysics Data System (ADS)
Ducomet, Bernard; Nečasová, Šárka; Pokorný, Milan; Rodríguez-Bellido, M. Angeles
2018-01-01
We study the 3-D compressible barotropic radiation fluid dynamics system describing the motion of the compressible rotating viscous fluid with gravitation and radiation confined to a straight layer Ω _{ɛ } = ω × (0,ɛ ) , where ω is a 2-D domain. We show that weak solutions in the 3-D domain converge to the strong solution of—the rotating 2-D Navier-Stokes-Poisson system with radiation in ω as ɛ → 0 for all times less than the maximal life time of the strong solution of the 2-D system when the Froude number is small (Fr=O(√{ɛ })) ,—the rotating pure 2-D Navier-Stokes system with radiation in ω as ɛ → 0 when Fr=O(1).
A modified Dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Dwoyer, D. M.
1983-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitative agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions. Previously announced in STAR as N82-16363
Derivation of the Navier-Stokes-Poisson System with Radiation for an Accretion Disk
NASA Astrophysics Data System (ADS)
Ducomet, Bernard; Nečasová, Šárka; Pokorný, Milan; Rodríguez-Bellido, M. Angeles
2018-06-01
We study the 3-D compressible barotropic radiation fluid dynamics system describing the motion of the compressible rotating viscous fluid with gravitation and radiation confined to a straight layer Ω _{ɛ } = ω × (0,ɛ ) , where ω is a 2-D domain. We show that weak solutions in the 3-D domain converge to the strong solution of—the rotating 2-D Navier-Stokes-Poisson system with radiation in ω as ɛ → 0 for all times less than the maximal life time of the strong solution of the 2-D system when the Froude number is small (Fr={O}(√{ɛ })),—the rotating pure 2-D Navier-Stokes system with radiation in ω as ɛ → 0 when Fr={O}(1).
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1992-01-01
The development of efficient iterative solution methods for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations is discussed. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. In this work, another approach based on the classical conjugate gradient method, known as the Generalized Minimum Residual (GMRES) algorithm is investigated. The GMRES algorithm has been used in the past by a number of researchers for solving steady viscous and inviscid flow problems. Here, we investigate the suitability of this algorithm for solving the system of non-linear equations that arise in unsteady Navier-Stokes solvers at each time step.
NASA Astrophysics Data System (ADS)
Ji, Q.; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Friedman, A.; Grote, D. P.; Persaud, A.; Barnard, J. J.; Schenkel, T.
2016-02-01
The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ˜1 eV using intense, short pulses (˜1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He+ ions leads to more uniform energy deposition of the target material than Li+ ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li+ ions from a hot plate type ion source. He+ beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.
Ji, Q; Seidl, P A; Waldron, W L; Takakuwa, J H; Friedman, A; Grote, D P; Persaud, A; Barnard, J J; Schenkel, T
2016-02-01
The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ∼1 eV using intense, short pulses (∼1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He(+) ions leads to more uniform energy deposition of the target material than Li(+) ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li(+) ions from a hot plate type ion source. He(+) beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.
Ji, Q.; Seidl, P. A.; Waldron, W. L.; ...
2015-11-12
In this paper, the neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ~1 eV using intense, short pulses (~1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He + ions leads to more uniform energy deposition of the target material than Li + ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li + ions frommore » a hot plate type ion source. He + beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. Finally, the accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.« less
Compressing Aviation Data in XML Format
NASA Technical Reports Server (NTRS)
Patel, Hemil; Lau, Derek; Kulkarni, Deepak
2003-01-01
Design, operations and maintenance activities in aviation involve analysis of variety of aviation data. This data is typically in disparate formats making it difficult to use with different software packages. Use of a self-describing and extensible standard called XML provides a solution to this interoperability problem. XML provides a standardized language for describing the contents of an information stream, performing the same kind of definitional role for Web content as a database schema performs for relational databases. XML data can be easily customized for display using Extensible Style Sheets (XSL). While self-describing nature of XML makes it easy to reuse, it also increases the size of data significantly. Therefore, transfemng a dataset in XML form can decrease throughput and increase data transfer time significantly. It also increases storage requirements significantly. A natural solution to the problem is to compress the data using suitable algorithm and transfer it in the compressed form. We found that XML-specific compressors such as Xmill and XMLPPM generally outperform traditional compressors. However, optimal use of Xmill requires of discovery of optimal options to use while running Xmill. This, in turn, depends on the nature of data used. Manual disc0ver.y of optimal setting can require an engineer to experiment for weeks. We have devised an XML compression advisory tool that can analyze sample data files and recommend what compression tool would work the best for this data and what are the optimal settings to be used with a XML compression tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Ryan S.; Kaspi, Victoria M.; Archibald, Anne M.
2013-02-15
We have completed a 350 MHz Drift-scan Survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered {approx}10,300 deg{sup 2} and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, 7 of which are recycled pulsars. A companion paper by Boyles et al. describes the survey strategy, sky coverage, and instrumental setup, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, andmore » follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources-two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.« less
Solution of plane cascade flow using improved surface singularity methods
NASA Technical Reports Server (NTRS)
Mcfarland, E. R.
1981-01-01
A solution method has been developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those found in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.
Interactive computer graphics applications for compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.
Decay of the compressible magneto-micropolar fluids
NASA Astrophysics Data System (ADS)
Zhang, Peixin
2018-02-01
This paper considers the large-time behavior of solutions to the Cauchy problem on the compressible magneto-micropolar fluid system under small perturbation in regular Sobolev space. Based on the time-weighted energy estimate, the asymptotic stability of the steady state with the strictly positive constant density, vanishing velocity, micro-rotational velocity, and magnetic field is established.
NASA Astrophysics Data System (ADS)
Jhang, Hogun
2018-05-01
We show that the threshold condition for the toroidal ion temperature gradient (ITG) mode with an inverted density profile can be derived from a simple physics argument. The key in this picture is that the density inversion reduces the ion compression due to the ITG mode and the electron drift motion mitigates the poloidal potential build-up. This condition reproduces the same result that has been reported from a linear gyrokinetic calculation [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. The destabilizing role of trapped electrons in toroidal geometry is easily captured in this picture.
An efficient incremental learning mechanism for tracking concept drift in spam filtering
Sheu, Jyh-Jian; Chu, Ko-Tsung; Li, Nien-Feng; Lee, Cheng-Chi
2017-01-01
This research manages in-depth analysis on the knowledge about spams and expects to propose an efficient spam filtering method with the ability of adapting to the dynamic environment. We focus on the analysis of email’s header and apply decision tree data mining technique to look for the association rules about spams. Then, we propose an efficient systematic filtering method based on these association rules. Our systematic method has the following major advantages: (1) Checking only the header sections of emails, which is different from those spam filtering methods at present that have to analyze fully the email’s content. Meanwhile, the email filtering accuracy is expected to be enhanced. (2) Regarding the solution to the problem of concept drift, we propose a window-based technique to estimate for the condition of concept drift for each unknown email, which will help our filtering method in recognizing the occurrence of spam. (3) We propose an incremental learning mechanism for our filtering method to strengthen the ability of adapting to the dynamic environment. PMID:28182691
Fully compressible solutions for early stage Richtmyer–Meshkov instability
Margolin, Len G.; Reisner, Jon Michael
2016-10-27
Here, we will consider the effects of compressibility and viscosity on the early dynamics of the Richtmyer–Meshkov instability (RMI). In particular, we will combine theory, scaling, and high resolution simulation of RMI to probe the details of the initial compression and the subsequent viscous damping as a shock interacts with a density discontinuity. We will propose a refinement of the classic 1D model for the linear regime of RMI that, for small initial perturbation wavelengths, more accurately reproduces the 2D dynamics of a fully resolved numerical simulation.
NASA Astrophysics Data System (ADS)
Secchi, Paolo
2005-05-01
We introduce the main known results of the theory of incompressible and compressible vortex sheets. Moreover, we present recent results obtained by the author with J. F. Coulombel about supersonic compressible vortex sheets in two space dimensions. The problem is a nonlinear free boundary hyperbolic problem with two difficulties: the free boundary is characteristic and the Lopatinski condition holds only in a weak sense, yielding losses of derivatives. Under a supersonic condition that precludes violent instabilities, we prove an energy estimate for the boundary value problem obtained by linearization around an unsteady piecewise solution.
Global strong solutions to radial symmetric compressible Navier-Stokes equations with free boundary
NASA Astrophysics Data System (ADS)
Li, Hai-liang; Zhang, Xingwei
2016-12-01
In this paper, we consider the two-dimensional barotropic compressible Navier-Stokes equations with stress free boundary condition imposed on the free surface. As the viscosity coefficients satisfies μ (ρ) = 2 μ, λ (ρ) =ρβ, β > 1, we establish the existence of global strong solution for arbitrarily large spherical symmetric initial data even if the density vanishes across the free boundary. In particular, we show that the density is strictly positive and bounded from the above and below in any finite time if the initial density is strictly positive, and the free boundary propagates along the particle path and expand outwards at an algebraic rate.
A modified dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of a split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three-dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard successive overrelaxation iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition.
A-posteriori error estimation for the finite point method with applications to compressible flow
NASA Astrophysics Data System (ADS)
Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio
2017-08-01
An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.
Features of sound propagation through and stability of a finite shear layer
NASA Technical Reports Server (NTRS)
Koutsoyannis, S. P.
1977-01-01
The plane wave propagation, the stability, and the rectangular duct mode problems of a compressible, inviscid, linearly sheared, parallel, homogeneous flow are shown to be governed by Whittaker's equation. The exact solutions for the perturbation quantities are essentially the Whittaker M-functions where the nondimensional quantities have precise physical meanings. A number of known results are obtained as limiting cases of the exact solutions. For the compressible finite thickness shear layer it is shown that no resonances and no critical angles exist for all Mach numbers, frequencies, and shear layer velocity profile slopes except in the singular case of the vortex sheet.
NASA Technical Reports Server (NTRS)
Roberts, Thomas W.; Sidilkover, David; Thomas, J. L.
2000-01-01
The second-order factorizable discretization of the compressible Euler equations developed by Sidilkover is extended to conservation form on general curvilinear body-fitted grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Solutions for flow in a channel with Mach numbers ranging from 0.0001 to a supercritical Mach number are shown, demonstrating uniform convergence rates and no loss of accuracy in the incompressible limit. A solution for the flow around the leading edge of a semi-infinite parabolic body demonstrates that the scheme maintains rapid convergence for a flow containing a stagnation point.
An incremental block-line-Gauss-Seidel method for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Napolitano, M.; Walters, R. W.
1985-01-01
A block-line-Gauss-Seidel (LGS) method is developed for solving the incompressible and compressible Navier-Stokes equations in two dimensions. The method requires only one block-tridiagonal solution process per iteration and is consequently faster per step than the linearized block-ADI methods. Results are presented for both incompressible and compressible separated flows: in all cases the proposed block-LGS method is more efficient than the block-ADI methods. Furthermore, for high Reynolds number weakly separated incompressible flow in a channel, which proved to be an impossible task for a block-ADI method, solutions have been obtained very efficiently by the new scheme.
Second-order subsonic airfoil theory including edge effects
NASA Technical Reports Server (NTRS)
Van Dyke, Milton D
1956-01-01
Several recent advances in plane subsonic flow theory are combined into a unified second-order theory for airfoil sections of arbitrary shape. The solution is reached in three steps: the incompressible result is found by integration, it is converted into the corresponding subsonic compressible result by means of the second-order compressibility rule, and it is rendered uniformly valid near stagnation points by further rules. Solutions for a number of airfoils are given and are compared with the results of other theories and of experiment. A straight-forward computing scheme is outlined for calculating the surface velocities and pressures on any airfoil at any angle of attack
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Smith, G. E.; Springer, G. S.; Rimon, Y.
1983-01-01
A method is presented for formulating the boundary conditions in implicit finite-difference form needed for obtaining solutions to the compressible Navier-Stokes equations by the Beam and Warming implicit factored method. The usefulness of the method was demonstrated (a) by establishing the boundary conditions applicable to the analysis of the flow inside an axisymmetric piston-cylinder configuration and (b) by calculating velocities and mass fractions inside the cylinder for different geometries and different operating conditions. Stability, selection of time step and grid sizes, and computer time requirements are discussed in reference to the piston-cylinder problem analyzed.
NASA Astrophysics Data System (ADS)
Huang, Xiangdi
2017-02-01
One of the most influential fundamental tools in harmonic analysis is the Riesz transforms. It maps Lp functions to Lp functions for any p ∈ (1 , ∞) which plays an important role in singular operators. As an application in fluid dynamics, the norm equivalence between ‖∇u‖Lp and ‖ div u ‖ Lp +‖ curl u ‖ Lp is well established for p ∈ (1 , ∞). However, since Riesz operators sent bounded functions only to BMO functions, there is no hope to bound ‖∇u‖L∞ in terms of ‖ div u ‖ L∞ +‖ curl u ‖ L∞. As pointed out by Hoff (2006) [11], this is the main obstacle to obtain uniqueness of weak solutions for isentropic compressible flows. Fortunately, based on new observations, see Lemma 2.2, we derive an exact estimate for ‖∇u‖L∞ ≤ (2 + 1 / N)‖ div u ‖ L∞ for any N-dimensional radially symmetric vector functions u. As a direct application, we give an affirmative answer to the open problem of uniqueness of some weak solutions to the compressible spherically symmetric flows in a bounded ball.
Polyimide Composites from 'Salt-Like' Solution Precursors
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Hou, Tan H.; Weiser, Erik S.; SaintClair, Terry L.
2001-01-01
Four NASA Langley-developed polyimide matrix resins, LaRC(TM)-IA, LaRC(TM)-IAX, LaRC(TM)-8515 and LaRC(TM)-PETI-5, were produced via a 'saltlike' process developed by Unitika Ltd. The salt-like solutions (65% solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC multipurpose tape machine. Process parameters were determined and composite panels fabricated. The temperature dependent volatile depletion rates, the thermal crystallization behavior and the resin rheology were characterized. Composite molding cycles were developed which consistently yielded well consolidated, void-free laminated parts. Composite mechanical properties such as the short beam shear strength; the longitudinal and transverse flexural strength and flexural modulus; the longitudinal compression strength and modulus; and the open hole compression strength and compression after impact strength were measured at room temperature and elevated temperatures. The processing characteristics and the composite mechanical properties of the four intermediate modulus carbon fiber/polyimide matrix composites were compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (30-35% solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of the polyimide composites.
NASA Technical Reports Server (NTRS)
Lee, Jeffrey M.
1999-01-01
This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.
The Role of Concentration and Solvent Character in the Molecular Organization of Humic Acids.
Klučáková, Martina; Věžníková, Kateřina
2016-10-27
The molecular organization of humic acids in different aqueous solutions was studied over a wide concentration range (0.01-10 g·dm -3 ). Solutions of humic acids were prepared in three different media: NaOH, NaCl, and NaOH neutralized by HCl after dissolution of the humic sample. Potentiometry, conductometry, densitometry, and high resolution ultrasound spectrometry were used in order to investigate conformational changes in the humic systems. The molecular organization of humic acids in the studied systems could be divided into three concentration ranges. The rearrangements were observed at concentrations of ~0.02 g·dm -3 and ~1 g·dm -3 . The first "switch-over point" was connected with changes in the hydration shells of humic particles resulting in changes in their elasticity. The compressibility of water in the hydration shells is less than the compressibility of bulk water. The transfer of hydration water into bulk water increased the total compressibility of the solution, reducing the ultrasonic velocity. The aggregation of humic particles and the formation of rigid structures in systems with concentrations higher than 1 g·dm -3 was detected.
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Mathelin, Lionel; Hussaini, M. Yousuff; Bataille, Francoise
2003-01-01
This paper describes a fully spectral, Polynomial Chaos method for the propagation of uncertainty in numerical simulations of compressible, turbulent flow, as well as a novel stochastic collocation algorithm for the same application. The stochastic collocation method is key to the efficient use of stochastic methods on problems with complex nonlinearities, such as those associated with the turbulence model equations in compressible flow and for CFD schemes requiring solution of a Riemann problem. Both methods are applied to compressible flow in a quasi-one-dimensional nozzle. The stochastic collocation method is roughly an order of magnitude faster than the fully Galerkin Polynomial Chaos method on the inviscid problem.
Compressible viscous flows generated by oscillating flexible cylinders
NASA Astrophysics Data System (ADS)
Van Eysden, Cornelis A.; Sader, John E.
2009-01-01
The fluid dynamics of oscillating elastic beams underpin the operation of many modern technological devices ranging from micromechanical sensors to the atomic force microscope. While viscous effects are widely acknowledged to have a strong influence on these dynamics, fluid compressibility is commonly neglected. Here, we theoretically study the three-dimensional flow fields that are generated by the motion of flexible cylinders immersed in viscous compressible fluids and discuss the implications of compressibility in practice. We consider cylinders of circular cross section and flat blades of zero thickness that are executing flexural and torsional oscillations of arbitrary wave number. Exact analytical solutions are derived for these flow fields and their resulting hydrodynamic loads.
46 CFR 153.1065 - Sodium chlorate solutions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Sodium chlorate solutions. 153.1065 Section 153.1065 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo...
46 CFR 153.1065 - Sodium chlorate solutions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Sodium chlorate solutions. 153.1065 Section 153.1065 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo...
HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress
NASA Astrophysics Data System (ADS)
Zhang, Xi; Xu, Yan; Zhou, Yong; Gong, Yinyan; Huang, Yongli; Sun, Chang Q.
2017-11-01
An incorporation of the hydrogen bond (O:Hsbnd O or HB) cooperativity notion, contact angle detection, and the differential phonon spectrometrics (DPS) has enabled us to gain refined information on the HCl, KCl and KOH solvation resolved solute-solvent molecular interactions and the solution surface stresses. Results show that ionic polarization stiffens the solvent Hsbnd O bond phonon from 3200 to 3480 cm-1 in the hydration shells. The HO- in alkaline solution, however, shares not only the same Hsbnd O phonon redshift of compressed water from 3200 to < 3100 cm-1 but also the dangling bonds of H2O surface featured at 3610 cm-1. Salt and alkaline solvation enhances the solution surface stress by K+ and Cl- ionic polarization. The excessive H+ proton in acid solution forms a H↔H anti-HB that depresses the solution surface stress, instead. The solute capability of transforming the fraction of the O:Hsbnd O bonds of the solvent matrix is featured by: fH = 0 and fx ∝ 1-exp(-C/C0) (x = HO-, K+ and Cl-) towards saturation. Exercises not only confirm the presence of the H↔H anti-HB point fragilization, the O:⇔:O super-HB point compression, and ionic polarization dominating the performance of the respective HCl, KOH, and KCl solutions, but also demonstrate the power of the DPS that enables high resolution of solute-solute-solvent interactions and correlation between HB relaxation and solution surface stress.
An abstract approach to evaporation models in rarefied gas dynamics
NASA Astrophysics Data System (ADS)
Greenberg, W.; van der Mee, C. V. M.
1984-03-01
Strong evaporation models involving 1D stationary problems with linear self-adjoint collision operators and solutions in abstract Hilbert spaces are investigated analytically. An efficient algorithm for locating the transition from existence to nonexistence of solutions is developed and applied to the 1D and 3D BGK model equations and the 3D BGK model in moment form, demonstrating the nonexistence of stationary evaporation states with supersonic drift velocities. Applications to similar models in electron and phonon transport, radiative transfer, and neutron transport are suggested.
NASA Technical Reports Server (NTRS)
Mcfarland, E. R.
1981-01-01
A solution method was developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.
Drifting States and Synchronization Induced Chaos in Autonomous Networks of Excitable Neurons.
Echeveste, Rodrigo; Gros, Claudius
2016-01-01
The study of balanced networks of excitatory and inhibitory neurons has led to several open questions. On the one hand it is yet unclear whether the asynchronous state observed in the brain is autonomously generated, or if it results from the interplay between external drivings and internal dynamics. It is also not known, which kind of network variabilities will lead to irregular spiking and which to synchronous firing states. Here we show how isolated networks of purely excitatory neurons generically show asynchronous firing whenever a minimal level of structural variability is present together with a refractory period. Our autonomous networks are composed of excitable units, in the form of leaky integrators spiking only in response to driving currents, remaining otherwise quiet. For a non-uniform network, composed exclusively of excitatory neurons, we find a rich repertoire of self-induced dynamical states. We show in particular that asynchronous drifting states may be stabilized in purely excitatory networks whenever a refractory period is present. Other states found are either fully synchronized or mixed, containing both drifting and synchronized components. The individual neurons considered are excitable and hence do not dispose of intrinsic natural firing frequencies. An effective network-wide distribution of natural frequencies is however generated autonomously through self-consistent feedback loops. The asynchronous drifting state is, additionally, amenable to an analytic solution. We find two types of asynchronous activity, with the individual neurons spiking regularly in the pure drifting state, albeit with a continuous distribution of firing frequencies. The activity of the drifting component, however, becomes irregular in the mixed state, due to the periodic driving of the synchronized component. We propose a new tool for the study of chaos in spiking neural networks, which consists of an analysis of the time series of pairs of consecutive interspike intervals. In this space, we show that a strange attractor with a fractal dimension of about 1.8 is formed in the mentioned mixed state.
Drifting States and Synchronization Induced Chaos in Autonomous Networks of Excitable Neurons
Echeveste, Rodrigo; Gros, Claudius
2016-01-01
The study of balanced networks of excitatory and inhibitory neurons has led to several open questions. On the one hand it is yet unclear whether the asynchronous state observed in the brain is autonomously generated, or if it results from the interplay between external drivings and internal dynamics. It is also not known, which kind of network variabilities will lead to irregular spiking and which to synchronous firing states. Here we show how isolated networks of purely excitatory neurons generically show asynchronous firing whenever a minimal level of structural variability is present together with a refractory period. Our autonomous networks are composed of excitable units, in the form of leaky integrators spiking only in response to driving currents, remaining otherwise quiet. For a non-uniform network, composed exclusively of excitatory neurons, we find a rich repertoire of self-induced dynamical states. We show in particular that asynchronous drifting states may be stabilized in purely excitatory networks whenever a refractory period is present. Other states found are either fully synchronized or mixed, containing both drifting and synchronized components. The individual neurons considered are excitable and hence do not dispose of intrinsic natural firing frequencies. An effective network-wide distribution of natural frequencies is however generated autonomously through self-consistent feedback loops. The asynchronous drifting state is, additionally, amenable to an analytic solution. We find two types of asynchronous activity, with the individual neurons spiking regularly in the pure drifting state, albeit with a continuous distribution of firing frequencies. The activity of the drifting component, however, becomes irregular in the mixed state, due to the periodic driving of the synchronized component. We propose a new tool for the study of chaos in spiking neural networks, which consists of an analysis of the time series of pairs of consecutive interspike intervals. In this space, we show that a strange attractor with a fractal dimension of about 1.8 is formed in the mentioned mixed state. PMID:27708572
Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity
NASA Astrophysics Data System (ADS)
Jiang, Fei
2018-04-01
We investigate the thermal instability of a smooth equilibrium state, in which the density function satisfies Schwarzschild's (instability) condition, to a compressible heat-conducting viscous flow without heat conductivity in the presence of a uniform gravitational field in a three-dimensional bounded domain. We show that the equilibrium state is linearly unstable by a modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further construct the initial data of linearly unstable solutions to be the one of the original nonlinear problem, and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we finally show that the equilibrium state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap instability argument.
High-performance software-only H.261 video compression on PC
NASA Astrophysics Data System (ADS)
Kasperovich, Leonid
1996-03-01
This paper describes an implementation of a software H.261 codec for PC, that takes an advantage of the fast computational algorithms for DCT-based video compression, which have been presented by the author at the February's 1995 SPIE/IS&T meeting. The motivation for developing the H.261 prototype system is to demonstrate a feasibility of real time software- only videoconferencing solution to operate across a wide range of network bandwidth, frame rate, and resolution of the input video. As the bandwidths of current network technology will be increased, the higher frame rate and resolution of video to be transmitted is allowed, that requires, in turn, a software codec to be able to compress pictures of CIF (352 X 288) resolution at up to 30 frame/sec. Running on Pentium 133 MHz PC the codec presented is capable to compress video in CIF format at 21 - 23 frame/sec. This result is comparable to the known hardware-based H.261 solutions, but it doesn't require any specific hardware. The methods to achieve high performance, the program optimization technique for Pentium microprocessor along with the performance profile, showing the actual contribution of the different encoding/decoding stages to the overall computational process, are presented.
COMPRESSIVE FATIGUE IN TITANIUM DENTAL IMPLANTS SUBMITTED TO FLUORIDE IONS ACTION
Ribeiro, Ana Lúcia Roselino; Noriega, Jorge Roberto; Dametto, Fábio Roberto; Vaz, Luís Geraldo
2007-01-01
The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures. PMID:19089148
NASA Astrophysics Data System (ADS)
Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley
2014-03-01
We will describe a general formalism for obtaining spatially localized (``sparse'') solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an L1 regularization term to the variational principle, which is shown to yield solutions with compact support (``compressed modes''). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size. In addition, we introduce an L1 regularized variational framework for developing a spatially localized basis, compressed plane waves (CPWs), that spans the eigenspace of a differential operator, for instance, the Laplace operator. Our approach generalizes the concept of plane waves to an orthogonal real-space basis with multiresolution capabilities. Supported by NSF Award DMR-1106024 (VO), DOE Contract No. DE-FG02-05ER25710 (RC) and ONR Grant No. N00014-11-1-719 (SO).
Calibration-free optical chemical sensors
DeGrandpre, Michael D.
2006-04-11
An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.
NASA Astrophysics Data System (ADS)
Zhao, Siwei; Tao, Wei; He, Qiaozhi; Zhao, Hui; Cao, Wenwu
2017-03-01
Diabetes mellitus (DM) is a chronic disease affecting nearly 400 million people worldwide. In order to manage the disease, patients need to monitor the blood glucose level by puncturing the finger several times a day, which is uncomfortable and inconvenient. We present here a potential non-invasive monitoring method based on the velocity of ultrasonic waves generated in glucose solution by the photoacoustic principal, which can recognize the glucose concentration down to 20mg/dL. In order to apply this method to warm bodies, we carefully designed the experiment and performed measurements from 30 °C to 50 °C to generate a set of calibration curves, which may be used by engineers to build devices. Most importantly, we have theoretically explained the relationship between the compressibility and the glucose concentration. Our results show that the compressibility of solution decreases with the glucose concentration, which clarified the controversy between theory and experiment results in the literature. The derived formula is generally validity, which can be used to nondestructively measure solution concentration for other types of solutions using photoacoustic principle.
NASA Astrophysics Data System (ADS)
Kerner, H. R.; Bell, J. F., III; Ben Amor, H.
2017-12-01
The Mastcam color imaging system on the Mars Science Laboratory Curiosity rover acquires images within Gale crater for a variety of geologic and atmospheric studies. Images are often JPEG compressed before being downlinked to Earth. While critical for transmitting images on a low-bandwidth connection, this compression can result in image artifacts most noticeable as anomalous brightness or color changes within or near JPEG compression block boundaries. In images with significant high-frequency detail (e.g., in regions showing fine layering or lamination in sedimentary rocks), the image might need to be re-transmitted losslessly to enable accurate scientific interpretation of the data. The process of identifying which images have been adversely affected by compression artifacts is performed manually by the Mastcam science team, costing significant expert human time. To streamline the tedious process of identifying which images might need to be re-transmitted, we present an input-efficient neural network solution for predicting the perceived quality of a compressed Mastcam image. Most neural network solutions require large amounts of hand-labeled training data for the model to learn the target mapping between input (e.g. distorted images) and output (e.g. quality assessment). We propose an automatic labeling method using joint entropy between a compressed and uncompressed image to avoid the need for domain experts to label thousands of training examples by hand. We use automatically labeled data to train a convolutional neural network to estimate the probability that a Mastcam user would find the quality of a given compressed image acceptable for science analysis. We tested our model on a variety of Mastcam images and found that the proposed method correlates well with image quality perception by science team members. When assisted by our proposed method, we estimate that a Mastcam investigator could reduce the time spent reviewing images by a minimum of 70%.
NASA Astrophysics Data System (ADS)
Caughey, David A.; Jameson, Antony
2003-10-01
New versions of implicit algorithms are developed for the efficient solution of the Euler and Navier-Stokes equations of compressible flow. The methods are based on a preconditioned, lower-upper (LU) implementation of a non-linear, symmetric Gauss-Seidel (SGS) algorithm for use as a smoothing algorithm in a multigrid method. Previously, this method had been implemented for flows in quasi-one-dimensional ducts and for two-dimensional flows past airfoils on boundary-conforming O-type grids for a variety of symmetric limited positive (SLIP) spatial approximations, including the scalar dissipation and convective upwind split pressure (CUSP) schemes. Here results are presented for both inviscid and viscous (laminar) flows past airfoils on boundary-conforming C-type grids. The method is significantly faster than earlier explicit or implicit methods for inviscid problems, allowing solution of these problems to the level of truncation error in three to five multigrid cycles. Viscous solutions still require as many as twenty multigrid cycles.
JPEG XS-based frame buffer compression inside HEVC for power-aware video compression
NASA Astrophysics Data System (ADS)
Willème, Alexandre; Descampe, Antonin; Rouvroy, Gaël.; Pellegrin, Pascal; Macq, Benoit
2017-09-01
With the emergence of Ultra-High Definition video, reference frame buffers (FBs) inside HEVC-like encoders and decoders have to sustain huge bandwidth. The power consumed by these external memory accesses accounts for a significant share of the codec's total consumption. This paper describes a solution to significantly decrease the FB's bandwidth, making HEVC encoder more suitable for use in power-aware applications. The proposed prototype consists in integrating an embedded lightweight, low-latency and visually lossless codec at the FB interface inside HEVC in order to store each reference frame as several compressed bitstreams. As opposed to previous works, our solution compresses large picture areas (ranging from a CTU to a frame stripe) independently in order to better exploit the spatial redundancy found in the reference frame. This work investigates two data reuse schemes namely Level-C and Level-D. Our approach is made possible thanks to simplified motion estimation mechanisms further reducing the FB's bandwidth and inducing very low quality degradation. In this work, we integrated JPEG XS, the upcoming standard for lightweight low-latency video compression, inside HEVC. In practice, the proposed implementation is based on HM 16.8 and on XSM 1.1.2 (JPEG XS Test Model). Through this paper, the architecture of our HEVC with JPEG XS-based frame buffer compression is described. Then its performance is compared to HM encoder. Compared to previous works, our prototype provides significant external memory bandwidth reduction. Depending on the reuse scheme, one can expect bandwidth and FB size reduction ranging from 50% to 83.3% without significant quality degradation.
Liao, Ke; Zhu, Min; Ding, Lei
2013-08-01
The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, J. R., E-mail: jdav@lle.rochester.edu; Betti, R.; Chang, P.-Y.
2015-11-15
The magnetohydrodynamics (MHD) of magnetic-field compression in laser-driven spherical targets is considered. Magnetic-field evolution is cast in terms of an effective fluid velocity, a convective term resulting from resistivity gradients, a resistive diffusion term, and a source term. Effective velocity is the sum of fluid velocity, drift velocity, and heat-flux velocity, given by electron heat flux divided by electron enthalpy density, which has two components: the perpendicular or Nernst velocity and the cross-field velocity. The Nernst velocity compresses the magnetic field as the heat front moves into gas. The cross-field velocity leads to dynamo generation of an azimuthal magnetic field.more » It is proposed that the heat-flux velocity should be flux limited using a “Nernst” flux limiter independent of the thermal flux limiter but should not exceed it. The addition of the MHD routines to the 1D, Lagrangian hydrocode LILAC and the Eulerian version of the 2D hydrocode DRACO is described, and the codes are used to model a magnetized spherical compression on the OMEGA laser. Thermal flux limiting at a shock front is found to cause unphysical electron temperature gradients that lead to large, unphysical magnetic fields caused by the resistivity gradient, so thermal flux limiting in the gas is removed. The Nernst term reduces the benefits of magnetization in inertial fusion. A Nernst flux limiter ≤0.12 is required in the gas in order to agree with measured neutron yield and increases in the neutron-averaged ion temperature caused by magnetization. This corresponds to preventing the Nernst velocity from exceeding the shock velocity, which prevents significant decoupling of the magnetic field and gas compression.« less
The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
Davies, J. R.; Betti, R.; Chang, P. -Y.; ...
2015-11-06
The magnetohydrodynamics (MHD) of magnetic-field compression in laser-driven spherical targets is considered. Magnetic-field evolution is cast in terms of an effective fluid velocity, a convective term resulting from resistivity gradients, a resistive diffusion term, and a source term. Effective velocity is the sum of fluid velocity, drift velocity, and heat-flux velocity, given by electron heat flux divided by electron enthalpy density, which has two components: the perpendicular or Nernst velocity and the cross-field velocity. The Nernst velocity compresses the magnetic field as a heat front moves into the gas. The cross-field velocity leads to dynamo generation of an azimuthal magneticmore » field. It is proposed that the heat-flux velocity should be flux limited using a “Nernst” flux limiter independent of the thermal flux limiter but should not exceed it. The addition of MHD routines to the 1-D, Lagrangian hydrocode LILAC and the Eulerian version of the 2-D hydrocode DRACO is described, and the codes are used to model a magnetized spherical compression on the OMEGA laser. Thermal flux limiting at a shock front is found to cause unphysical electron temperature gradients that lead to large, unphysical magnetic fields caused by the resistivity gradient, so thermal flux limiting in the gas is removed. The Nernst term reduces the benefits of magnetization in inertial fusion. In addition, a Nernst flux limiter ≤ 0.12 is required in the gas in order to agree with measured neutron yield and increases in the neutron-averaged ion temperature caused by magnetization. This corresponds to maintaining the Nernst velocity below the shock velocity, which prevents significant decoupling of the magnetic field and gas compression.« less
A new variable temperature solution-solid interface scanning tunneling microscope.
Jahanbekam, Abdolreza; Mazur, Ursula; Hipps, K W
2014-10-01
We present a new solution-solid (SS) interface scanning tunneling microscope design that enables imaging at high temperatures with low thermal drift and with volatile solvents. In this new design, distinct from the conventional designs, the entire microscope is surrounded in a controlled-temperature and controlled-atmosphere chamber. This allows users to take measurements at high temperatures while minimizing thermal drift. By incorporating an open solution reservoir in the chamber, solvent evaporation from the sample is minimized; allowing users to use volatile solvents for temperature dependent studies at high temperatures. The new design enables the user to image at the SS interface with some volatile solvents for long periods of time (>24 h). An increase in the nonlinearity of the piezoelectric scanner in the lateral direction as a function of temperature is addressed. A temperature dependent study of cobalt(II) octaethylporphyrin (CoOEP) at the toluene/Au(111) interface has been performed with this instrument. It is demonstrated that the lattice parameters remain constant within experimental error from 24 °C to 75 °C. Similar quality images were obtained over the entire temperature range. We report the unit cell of CoOEP at the toluene/Au(111) interface (based on two molecules per unit cell) to be A = (1.36 ± 0.04) nm, B = (2.51 ± 0.04) nm, and α = 97° ± 2°.
NASA Astrophysics Data System (ADS)
Evans, M. N.; Selmer, K. J.; Breeden, B. T.; Lopatka, A. S.; Plummer, R. E.
2016-09-01
We describe an algorithm to correct for scale compression, runtime drift, and amplitude effects in carbonate and cellulose oxygen and carbon isotopic analyses made on two online continuous flow isotope ratio mass spectrometry (CF-IRMS) systems using gas chromatographic (GC) separation. We validate the algorithm by correcting measurements of samples of known isotopic composition which are not used to estimate the corrections. For carbonate δ13C (δ18O) data, median precision of validation estimates for two reference materials and two calibrated working standards is 0.05‰ (0.07‰); median bias is 0.04‰ (0.02‰) over a range of 49.2‰ (24.3‰). For α-cellulose δ13C (δ18O) data, median precision of validation estimates for one reference material and five working standards is 0.11‰ (0.27‰); median bias is 0.13‰ (-0.10‰) over a range of 16.1‰ (19.1‰). These results are within the 5th-95th percentile range of subsequent routine runtime validation exercises in which one working standard is used to calibrate the other. Analysis of the relative importance of correction steps suggests that drift and scale-compression corrections are most reliable and valuable. If validation precisions are not already small, routine cross-validated precision estimates are improved by up to 50% (80%). The results suggest that correction for systematic error may enable these particular CF-IRMS systems to produce δ13C and δ18O carbonate and cellulose isotopic analyses with higher validated precision, accuracy, and throughput than is typically reported for these systems. The correction scheme may be used in support of replication-intensive research projects in paleoclimatology and other data-intensive applications within the geosciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Shi, F; Tian, Z
2014-06-01
Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motionmore » pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be comparable to motion ranges.« less
Numerical Solution of the Extended Nernst-Planck Model.
Samson; Marchand
1999-07-01
The main features of a numerical model aiming at predicting the drift of ions in an electrolytic solution upon a chemical potential gradient are presented. The mechanisms of ionic diffusion are described by solving the extended Nernst-Planck system of equations. The electrical coupling between the various ionic fluxes is accounted for by the Poisson equation. Furthermore, chemical activity effects are considered in the model. The whole system of nonlinear equations is solved using the finite-element method. Results yielded by the model for simple test cases are compared to those obtained using an analytical solution. Applications of the model to more complex problems are also presented and discussed. Copyright 1999 Academic Press.
Analytic, High-beta Solutions of the Helical Grad-Shafranov Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.R. Smith; A.H. Reiman
We present analytic, high-beta ({beta} {approx} O(1)), helical equilibrium solutions for a class of helical axis configurations having large helical aspect ratio, with the helix assumed to be tightly wound. The solutions develop a narrow boundary layer of strongly compressed flux, similar to that previously found in high beta tokamak equilibrium solutions. The boundary layer is associated with a strong localized current which prevents the equilibrium from having zero net current.
On the uniqueness of motion of viscous gaseous stars
NASA Astrophysics Data System (ADS)
Secchi, Paolo
1990-11-01
The existence of solutions of the evolutionary equations of motion of a star regarded as a compressible viscous fluid with self-gravitation, bounded by a free surface, has recently been considered by Secchi (1990). In this paper, the uniqueness of the solutions cited is studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. -J.; Li, W.; Thorne, R. M.
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed bymore » Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.« less
Zhang, X. -J.; Li, W.; Thorne, R. M.; ...
2016-08-13
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed bymore » Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.« less
Dynamic Compression of the Signal in a Charge Sensitive Amplifier: From Concept to Design
NASA Astrophysics Data System (ADS)
Manghisoni, Massimo; Comotti, Daniele; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio
2015-10-01
This work is concerned with the design of a low-noise Charge Sensitive Amplifier featuring a dynamic signal compression based on the non-linear features of an inversion-mode MOS capacitor. These features make the device suitable for applications where a non-linear characteristic of the front-end is required, such as in imaging instrumentation for free electron laser experiments. The aim of the paper is to discuss a methodology for the proper design of the feedback network enabling the dynamic signal compression. Starting from this compression solution, the design of a low-noise Charge Sensitive Amplifier is also discussed. The study has been carried out by referring to a 65 nm CMOS technology.
Discontinuity minimization for omnidirectional video projections
NASA Astrophysics Data System (ADS)
Alshina, Elena; Zakharchenko, Vladyslav
2017-09-01
Advances in display technologies both for head mounted devices and television panels demand resolution increase beyond 4K for source signal in virtual reality video streaming applications. This poses a problem of content delivery trough a bandwidth limited distribution networks. Considering a fact that source signal covers entire surrounding space investigation reviled that compression efficiency may fluctuate 40% in average depending on origin selection at the conversion stage from 3D space to 2D projection. Based on these knowledge the origin selection algorithm for video compression applications has been proposed. Using discontinuity entropy minimization function projection origin rotation may be defined to provide optimal compression results. Outcome of this research may be applied across various video compression solutions for omnidirectional content.
A theoretical framework for the study of compression sensing in ionic polymer metal composites
NASA Astrophysics Data System (ADS)
Volpini, Valentina; Bardella, Lorenzo; Rodella, Andrea; Cha, Youngsu; Porfiri, Maurizio
2017-04-01
Ionic Polymer Metal Composites (IPMCs) are electro-responsive materials for sensing and actuation, consisting of an ion-exchange polymeric membrane with ionized units, plated within noble metal electrodes. In this work, we investigate the sensing response of IPMCs that are subject to a through-the-thickness compression, by specializing the continuum model introduced by Cha and Porfiri,1 to this one-dimensional problem. This model modifies the classical Poisson-Nernst-Plank system governing the electrochemistry in the absence of mechanical effects, by accounting for finite deformations underlying the actuation and sensing processes. With the aim of accurately describing the IPMC dynamic compressive behavior, we introduce a spatial asymmetry in the properties of the membrane, which must be accounted for to trigger a sensing response. Then, we determine an analytical solution by applying the singular perturbation theory, and in particular the method of matched asymptotic expansions. This solution shows a good agreement with experimental findings reported in literature.
NASA Astrophysics Data System (ADS)
Gutiérrez-Pichel, Manuel; Attwood, David; Taboada, Pablo; Mosquera, Víctor
Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic antidepressant drugs imipramine and desipramine hydrochlorides have been determined from density and ultrasound velocity measurements in the temperature range 288.15-313.15 K in buffered solution of pH 3.0 and 5.5. Critical concentrations for aggregation of these drugs were obtained from inflections on the plots of the sound velocity against drug concentration. Positive deviation from the Debye-Hückel limiting law of the apparent molal volume of imipramine provides evidence of limited association at concentrations below the critical concentration over the temperature range studied. Apparent molal adiabatic compressibilities of the aggregates formed by the drugs, calculated by combining the ultrasound velocity and density data, were typical of those for a stacked aggregate. The critical concentration and energy involved in the aggregation process of these drugs have been evaluated using isothermal titration calorimetry. The solvent-aggregate interactions have been discussed from compressibility and calorimetry data.
A modified Dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Dwoyer, D. M.
1983-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow has been developed. The revision incorporates balancing of massflow rates on each marching step in order to maintain front-to-back continuity during the calculation. Qualitative agreement with analytical predictions and experimental results has been obtained for some flows with well-known solutions.
A variational principle for compressible fluid mechanics: Discussion of the multi-dimensional theory
NASA Technical Reports Server (NTRS)
Prozan, R. J.
1982-01-01
The variational principle for compressible fluid mechanics previously introduced is extended to two dimensional flow. The analysis is stable, exactly conservative, adaptable to coarse or fine grids, and very fast. Solutions for two dimensional problems are included. The excellent behavior and results lend further credence to the variational concept and its applicability to the numerical analysis of complex flow fields.
Kataoka, Takeshi; Tsutahara, Michihisa
2004-03-01
We have developed a lattice Boltzmann model for the compressible Navier-Stokes equations with a flexible specific-heat ratio. Several numerical results are presented, and they agree well with the corresponding solutions of the Navier-Stokes equations. In addition, an explicit finite-difference scheme is proposed for the numerical calculation that can make a stable calculation with a large Courant number.
Over compression influence to the performances of the spark ignition engines
NASA Astrophysics Data System (ADS)
Rakosi, E.; Talif, S. G.; Manolache, G.
2016-08-01
This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.
Finite volume solution of the compressible boundary-layer equations
NASA Technical Reports Server (NTRS)
Loyd, B.; Murman, E. M.
1986-01-01
A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.
NASA Technical Reports Server (NTRS)
Paraska, Peter J.
1993-01-01
This report documents an analytical study of the response of unsymmetrically laminated cylinders subjected to thermally-induced preloading effects and compressive axial load. Closed-form solutions are obtained for the displacements and intralaminar stresses and recursive relations for the interlaminar shear stress were obtained using the closed-form intralaminar stress solutions. For the cylinder geometries and stacking sequence examples analyzed, several important and as yet undocumented effects of including thermally-induced preloading in the analysis are observed. It should be noted that this work is easily extended to include uniform internal and/or external pressure loadings and the application of strain and stress failure theories.
Bit-Grooming: Shave Your Bits with Razor-sharp Precision
NASA Astrophysics Data System (ADS)
Zender, C. S.; Silver, J.
2017-12-01
Lossless compression can reduce climate data storage by 30-40%. Further reduction requires lossy compression that also reduces precision. Fortunately, geoscientific models and measurements generate false precision (scientifically meaningless data bits) that can be eliminated without sacrificing scientifically meaningful data. We introduce Bit Grooming, a lossy compression algorithm that removes the bloat due to false-precision, those bits and bytes beyond the meaningful precision of the data.Bit Grooming is statistically unbiased, applies to all floating point numbers, and is easy to use. Bit-Grooming reduces geoscience data storage requirements by 40-80%. We compared Bit Grooming to competitors Linear Packing, Layer Packing, and GRIB2/JPEG2000. The other compression methods have the edge in terms of compression, but Bit Grooming is the most accurate and certainly the most usable and portable.Bit Grooming provides flexible and well-balanced solutions to the trade-offs among compression, accuracy, and usability required by lossy compression. Geoscientists could reduce their long term storage costs, and show leadership in the elimination of false precision, by adopting Bit Grooming.
NASA Astrophysics Data System (ADS)
Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang
2018-04-01
In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.
When is the Anelastic Approximation a Valid Model for Compressible Convection?
NASA Astrophysics Data System (ADS)
Alboussiere, T.; Curbelo, J.; Labrosse, S.; Ricard, Y. R.; Dubuffet, F.
2017-12-01
Compressible convection is ubiquitous in large natural systems such Planetary atmospheres, stellar and planetary interiors. Its modelling is notoriously more difficult than the case when the Boussinesq approximation applies. One reason for that difficulty has been put forward by Ogura and Phillips (1961): the compressible equations generate sound waves with very short time scales which need to be resolved. This is why they introduced an anelastic model, based on an expansion of the solution around an isentropic hydrostatic profile. How accurate is that anelastic model? What are the conditions for its validity? To answer these questions, we have developed a numerical model for the full set of compressible equations and compared its solutions with those of the corresponding anelastic model. We considered a simple rectangular 2D Rayleigh-Bénard configuration and decided to restrict the analysis to infinite Prandtl numbers. This choice is valid for convection in the mantles of rocky planets, but more importantly lead to a zero Mach number. So we got rid of the question of the interference of acoustic waves with convection. In that simplified context, we used the entropy balances (that of the full set of equations and that of the anelastic model) to investigate the differences between exact and anelastic solutions. We found that the validity of the anelastic model is dictated by two conditions: first, the superadiabatic temperature difference must be small compared with the adiabatic temperature difference (as expected) ɛ = Δ TSA / delta Ta << 1, and secondly that the product of ɛ with the Nusselt number must be small.
A Semianalytical Analysis of Compressible Electrophoretic Cake Formation
NASA Astrophysics Data System (ADS)
Kambham, Kiran K. R.; Tuncay, Kagan; Corapcioglu, M. Yavuz
1995-05-01
Leaks in geomembrane liners of waste landfills and liquid impoundments cause chemical contaminants to leak into the subsurface environment. A mathematical model is presented to simulate electrophoretic sealing of impoundment leaks. The model describes the formation of a compressible clay cake because of electrical and gravitational forces. The model includes mass balance equations for the solid particles and liquid phase, modified Darcy's law in an electrical field, and Terzaghi's definition of effective stress. The formulation is presented in the Eulerian coordinates. The resulting second-order, nonlinear partial differential equation and the lower boundary condition are linearized to obtain an analytical solution for time-dependent settlement. After discretizing in time the analytical solution is applied to simulate compression of an accreting sediment. In the simulation of an accreting sediment, solid fluxes on either side of suspension/sediment interface are coupled using a no-jump condition. The velocity of a discrete particle in the suspension zone is assumed to be equal to the algebraic sum of electrophoretic and Stoke's settling velocities. An empirical relationship available in the literature is used to account for the effect of concentration on the velocity of solid particles in the suspension zone. The validity of the semianalytical approach is partially verified using an exact steady state solution for self-weight consolidation. The simulation results obtained for a set of material parameters are presented graphically. It is noted that the electrokinetic consolidation of sediment continues even after the completion of electrophoretic settling of all clay particles. An analysis reveals that the electrophoretic cake formation process is quite sensitive to voltage gradient and the coefficient of compressibility.
On the wall-normal velocity of the compressible boundary-layer equations
NASA Technical Reports Server (NTRS)
Pruett, C. David
1991-01-01
Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x,y) plane to a computational (xi,eta) plane in which the evolution of the flow is 'slow' in the time-like xi direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem for a wide class of non-similar boundary-layer flows, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently nonlinear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. In light of recent research which shows mean-flow non-parallelism to significantly influence the stability of high-speed compressible flows, the contribution of the wall-normal velocity in the analysis of stability should not be routinely neglected. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally-accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly-accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which is extraordinarily smooth and accurate, and which satisfies the continuity equation nearly to machine precision. These qualities make the method well suited to the computation of the non-parallel mean flows needed by spatial direct numerical simulations (DNS) and parabolized stability equation (PSE) approaches to the analysis of stability.
NASA Astrophysics Data System (ADS)
Li, Zebo; Trinkle, Dallas R.
2017-04-01
We use a continuum method informed by transport coefficients computed using self-consistent mean field theory to model vacancy-mediated diffusion of substitutional Si solutes in FCC Ni near an a/2 [1 1 ¯0 ] (111 ) edge dislocation. We perform two sequential simulations: first under equilibrium boundary conditions and then under irradiation. The strain field around the dislocation induces heterogeneity and anisotropy in the defect transport properties and determines the steady-state vacancy and Si distributions. At equilibrium both vacancies and Si solutes diffuse to form Cottrell atmospheres with vacancies accumulating in the compressive region above the dislocation core while Si segregates to the tensile region below the core. Irradiation raises the bulk vacancy concentration, driving vacancies to flow into the dislocation core. The out-of-equilibrium vacancy fluxes drag Si atoms towards the core, causing segregation to the compressive region, despite Si being an oversized solute in Ni.
Geopolymer lightweight bricks manufactured from fly ash and foaming agent
NASA Astrophysics Data System (ADS)
Ibrahim, Wan Mastura Wan; Hussin, Kamarudin; Abdullah, Mohd Mustafa Al Bakri; Kadir, Aeslina Abdul
2017-04-01
This paper deals with the development of lightweight geopolymer bricks by using foaming agent and fly ash. The mix parameters analysed through a laboratory experiment with fix ratio of sodium silicate/sodium hydroxide solution mass ratio 2.5, fly ash/alkaline activator solution mass ratio 2.0, foaming agent/paste mass ratio 1:2 and molarity of sodium hydroxide solution used was 12M. Different curing temperature (Room Temperature, 60, 80) and foaming agent/water mass ratio (1:10 and 1:20) were studied. Compressive strength, density analysis, and water absorption has been investigated. The results show that the foamed geopolymer bricks with a lower foam/water mass ratio (1:10)and high curing temperature (80°C) leading to a better properties. Mixtures with a low density of around 1420 kg/m3 and a compressive strength of around 10 MPa were achieved.
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan
2001-01-01
Two numerical procedures, one based on artificial compressibility method and the other pressure projection method, are outlined for obtaining time-accurate solutions of the incompressible Navier-Stokes equations. The performance of the two method are compared by obtaining unsteady solutions for the evolution of twin vortices behind a at plate. Calculated results are compared with experimental and other numerical results. For an un- steady ow which requires small physical time step, pressure projection method was found to be computationally efficient since it does not require any subiterations procedure. It was observed that the artificial compressibility method requires a fast convergence scheme at each physical time step in order to satisfy incompressibility condition. This was obtained by using a GMRES-ILU(0) solver in our computations. When a line-relaxation scheme was used, the time accuracy was degraded and time-accurate computations became very expensive.
StimuFrac Compressibility as a Function of CO2 Molar Fraction
Carlos A. Fernandez
2016-04-29
Compressibility values were obtained in a range of pressures at 250degC by employing a fixed volume view cell completely filled with PAA aqueous solution and injecting CO2 at constant flow rate (0.3mL/min). Pressure increase as a function of supercritical CO2 (scCO2) mass fraction in the mixture was monitored. The plot shows the apparent compressibility of Stimufrac as a function of scCO2 mass fraction obtained in a pressure range between 2100-7000 psi at 250degC. At small mass fractions of scCO2 the compressibility increases probably due to the dissolution/reaction of CO2 in aqueous PAA and reaches a maximum at mCO2/mH2O = 0.06. Then, compressibility decreases showing a linear relationship with scCO2 mass fraction due to the continuous increase in density of the binary fluid associated to the pressure increase.
Avrin, D E; Andriole, K P; Yin, L; Gould, R G; Arenson, R L
2001-03-01
A hierarchical storage management (HSM) scheme for cost-effective on-line archival of image data using lossy compression is described. This HSM scheme also provides an off-site tape backup mechanism and disaster recovery. The full-resolution image data are viewed originally for primary diagnosis, then losslessly compressed and sent off site to a tape backup archive. In addition, the original data are wavelet lossy compressed (at approximately 25:1 for computed radiography, 10:1 for computed tomography, and 5:1 for magnetic resonance) and stored on a large RAID device for maximum cost-effective, on-line storage and immediate retrieval of images for review and comparison. This HSM scheme provides a solution to 4 problems in image archiving, namely cost-effective on-line storage, disaster recovery of data, off-site tape backup for the legal record, and maximum intermediate storage and retrieval through the use of on-site lossy compression.
Counterintuitive Behaviour of a Particle under the Action of an Oscillating Force
ERIC Educational Resources Information Center
Mohazzabi, Pirooz; Greenebaum, Ben
2011-01-01
When a free particle initially at rest is acted on by an oscillating force, it is intuitively expected to oscillate in place with the frequency of the force. However, careful solution of the classical equation of motion shows that this is only true for particular initial phases of the force; otherwise a steady drift is superimposed on the…
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
NASA Technical Reports Server (NTRS)
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Araneda, J. A.; Poedts, S.
2014-12-01
We consider parametric instabilities of finite-amplitude large-scale Alfven waves in a low-beta collisionless multi-species plasma, consisting of fluid electrons, kinetic protons and a drifting population of minor ions. Complementary to many theoretical studies, relying on fluid or multi-fluid approach, in this work we present the solutions of the parametric instability dispersion relation, including kinetic effects in the parallel direction, along the ambient magnetic field. This provides us with the opportunity to predict the importance of some wave-particle interactions like Landau damping of the daughter ion-acoustic waves for the given pump wave and plasma conditions. We apply the dispersion relation to plasma parameters, typical for low-beta collisionless solar wind close to the Sun. We compare the analytical solutions to the linear stage of hybrid numerical simulations and discuss the application of the model to the problems of preferential heating and differential acceleration of minor ions in the solar corona and the fast solar wind. The results of this study provide tools for prediction and interpretation of the magnetic field and particles data as expected from the future Solar Orbiter and Solar Probe Plus missions.
The mathematical model of dynamic stabilization system for autonomous car
NASA Astrophysics Data System (ADS)
Saikin, A. M.; Buznikov, S. E.; Shabanov, N. S.; Elkin, D. S.
2018-02-01
Leading foreign companies and domestic enterprises carry out extensive researches and developments in the field of control systems for autonomous cars and in the field of improving driver assistance systems. The search for technical solutions, as a rule, is based on heuristic methods and does not always lead to satisfactory results. The purpose of this research is to formalize the road safety problem in the terms of modern control theory, to construct the adequate mathematical model for solving it, including the choice of software and hardware environment. For automatic control of the object, it is necessary to solve the problem of dynamic stabilization in the most complete formulation. The solution quality of the problem on a finite time interval is estimated by the value of the quadratic functional. Car speed, turn angle and additional yaw rate (during car drift or skidding) measurements are performed programmatically by the original virtual sensors. The limit speeds at which drift, skidding or rollover begins are calculated programmatically taking into account the friction coefficient identified in motion. The analysis of the results confirms both the adequacy of the mathematical models and the algorithms and the possibility of implementing the system in the minimal technical configuration.
Nimbus 7 solar backscatter ultraviolet (SBUV) ozone products user's guide
NASA Technical Reports Server (NTRS)
Fleig, Albert J.; Mcpeters, R. D.; Bhartia, P. K.; Schlesinger, Barry M.; Cebula, Richard P.; Klenk, K. F.; Taylor, Steven L.; Heath, Donald F.
1990-01-01
Three ozone tape products from the Solar Backscatter Ultraviolet (SBUV) experiment aboard Nimbus 7 were archived at the National Space Science Data Center. The experiment measures the fraction of incoming radiation backscattered by the Earth's atmosphere at 12 wavelengths. In-flight measurements were used to monitor changes in the instrument sensitivity. Total column ozone is derived by comparing the measurements with calculations of what would be measured for different total ozone amounts. The altitude distribution is retrieved using an optimum statistical technique for the inversion. The estimated initial error in the absolute scale for total ozone is 2 percent, with a 3 percent drift over 8 years. The profile error depends on latitude and height, smallest at 3 to 10 mbar; the drift increases with increasing altitude. Three tape products are described. The High Density SBUV (HDSBUV) tape contains the final derived products - the total ozone and the vertical ozone profile - as well as much detailed diagnostic information generated during the retrieval process. The Compressed Ozone (CPOZ) tape contains only that subset of HDSBUV information, including total ozone and ozone profiles, considered most useful for scientific studies. The Zonal Means Tape (ZMT) contains daily, weekly, monthly and quarterly averages of the derived quantities over 10 deg latitude zones.
Variable Thermal-Force Bending of a Three-Layer Bar with a Compressible Filler
NASA Astrophysics Data System (ADS)
Starovoitov, E. I.; Leonenko, D. V.
2017-11-01
Deformation of a three-layer elastoplastic bar with a compressible filler in a temperature field is considered. To describe the kinematics of a pack asymmetric across its thickness, the hypothesis of broken line is accepted, according to which the Bernoulli hypothesis is true in thin bearing layers, and the Timoshenko hypothesis is valid for a filler compressible across the its thickness, with a linear approximation of displacements across the layer thickness. The work of filler in the tangential direction is taken into account. The physical stress-strain relations correspond to the theory of small elastoplastic deformations. Temperature variations are calculated from a formula obtained by averaging the thermophysical properties of layer materials across the bar thickness. Using the variational method, a system of differential equilibrium equations is derived. On the boundary, the kinematic conditions of simply supported ends of the bar are assumed. The solution of the boundary problem is reduced to the search for four functions, namely, deflections and longitudinal displacements of median surfaces of the bearing layers. An analytical solution is derived by the method of elastic solutions with the use of the Moskvitin theorem on variable loadings. Its numerical analysis is performed for the cases of continuous and local loads.
Tidal Amplitude for a Self-gravitating, Compressible Sphere
NASA Astrophysics Data System (ADS)
Hurford, T. A.; Greenberg, R.
2001-11-01
Most modern evaluations of tidal amplitude derive from the approach presented by Love [1]. Love's analysis for a homogeneous sphere assumed an incompressible material, which required introduction of a non-rigorously justified pressure term. We solve the more general case of arbitrary compressibility, which allows for a more straightforward derivation. We find the h2 love number of a body of radius R, density ρ , and surface gravity g to be h2 = \\Bigg[\\frac{{5}/{2}}{1+\\frac{19 \\mu}{2 \\rho g R}}\\Bigg] \\Bigg\\{ \\frac{2 \\rho g R (35+28\\frac{\\mu}{\\lambda}) + 19 \\mu (35+28\\frac{\\mu}{\\lambda})} {2 \\rho g R (35+31\\frac{\\mu}{\\lambda}) + 19 \\mu (35+{490}/{19}\\frac{\\mu}{\\lambda})}\\Bigg\\} λ the Lamé constant. This h2 is the product of Love's expression for h2 (in square brackets) and a ``compressibility-correction'' factor (in \\{\\} brackets). Unlike Love's expression, this result is valid for any degree of compressibility (i.e. any λ ). For the incompressible case (λ -> ∞ ) the correction factor approaches 1, so that h2 matches the classical form given by Love. In reality, of course, materials are not incompressible and the difference between our solution and Love's is significant. Assuming that the elastic terms dominate over the gravitational contribution (i.e. 19 μ /(2 ρ g R) >> 1), our solution can be ~ 7% percent larger than Love's solution for large μ /λ . If the gravity dominates (i.e. 19 μ /(2 ρ g R) << 1), our solution is ~ 10 % smaller than Love's solution for large μ /λ . For example, a rocky body (μ /λ ~ 1 [2]), Earth-sized (19μ /(2 ρ g R) ~ 1) body, h2 would be reduced by about 1% from the classical formula. Similarly, under some circumstances the l2 Love number for a uniform sphere could be 22% smaller than Love's evaluation. [1] Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, New York Dover Publications, 1944 [2] Kaula, W.M., An Introduction to Planetary Physics: The Terrestrial Planets, John Wiley & Sons, Inc., 1968
NASA Astrophysics Data System (ADS)
Fambri, Francesco; Dumbser, Michael; Zanotti, Olindo
2017-11-01
This paper presents an arbitrary high-order accurate ADER Discontinuous Galerkin (DG) method on space-time adaptive meshes (AMR) for the solution of two important families of non-linear time dependent partial differential equations for compressible dissipative flows : the compressible Navier-Stokes equations and the equations of viscous and resistive magnetohydrodynamics in two and three space-dimensions. The work continues a recent series of papers concerning the development and application of a proper a posteriori subcell finite volume limiting procedure suitable for discontinuous Galerkin methods (Dumbser et al., 2014, Zanotti et al., 2015 [40,41]). It is a well known fact that a major weakness of high order DG methods lies in the difficulty of limiting discontinuous solutions, which generate spurious oscillations, namely the so-called 'Gibbs phenomenon'. In the present work, a nonlinear stabilization of the scheme is sequentially and locally introduced only for troubled cells on the basis of a novel a posteriori detection criterion, i.e. the MOOD approach. The main benefits of the MOOD paradigm, i.e. the computational robustness even in the presence of strong shocks, are preserved and the numerical diffusion is considerably reduced also for the limited cells by resorting to a proper sub-grid. In practice the method first produces a so-called candidate solution by using a high order accurate unlimited DG scheme. Then, a set of numerical and physical detection criteria is applied to the candidate solution, namely: positivity of pressure and density, absence of floating point errors and satisfaction of a discrete maximum principle in the sense of polynomials. Furthermore, in those cells where at least one of these criteria is violated the computed candidate solution is detected as troubled and is locally rejected. Subsequently, a more reliable numerical solution is recomputed a posteriori by employing a more robust but still very accurate ADER-WENO finite volume scheme on the subgrid averages within that troubled cell. Finally, a high order DG polynomial is reconstructed back from the evolved subcell averages. We apply the whole approach for the first time to the equations of compressible gas dynamics and magnetohydrodynamics in the presence of viscosity, thermal conductivity and magnetic resistivity, therefore extending our family of adaptive ADER-DG schemes to cases for which the numerical fluxes also depend on the gradient of the state vector. The distinguished high-resolution properties of the presented numerical scheme standout against a wide number of non-trivial test cases both for the compressible Navier-Stokes and the viscous and resistive magnetohydrodynamics equations. The present results show clearly that the shock-capturing capability of the news schemes is significantly enhanced within a cell-by-cell Adaptive Mesh Refinement (AMR) implementation together with time accurate local time stepping (LTS).
Multicomponent 'dark' cnoidal waves: stability and soliton asymptotes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vysloukh, Victor A; Petnikova, V M; Rudenko, K V
1999-07-31
The problem of steady-state propagation of several mutually incoherent optical waves - components of 'dark' multicomponent solitons and cnoidal waves - through a photorefractive crystal with a drift nonlinearity of the defocusing type is considered and solved. Analytical expressions are obtained for the distributions of the optical field between the components of the resulting solutions, containing up to three self-consistent components inclusive. It is shown that these solutions are stable and that their spatial structure is retained in mutual collisions and after stochastic perturbations of the intensity distributions. (this issue is dedicated to the memory of s a akhmanov)
Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect
NASA Astrophysics Data System (ADS)
Good, Michael R. R.; Linder, Eric V.
2017-12-01
Radiation from accelerating mirrors in a Minkowski spacetime provides insights into the nature of horizons, black holes, and entanglement entropy. We introduce new, simple, symmetric and analytic moving mirror solutions and study their particle, energy, and entropy production. This includes an asymptotically static case with finite emission that is the black hole analog of complete evaporation. The total energy, total entropy, total particles, and spectrum are the same on both sides of the mirror. We also study its asymptotically inertial, drifting analog (which gives a black hole remnant) to explore differences in finite and infinite production.
A transformed path integral approach for solution of the Fokker-Planck equation
NASA Astrophysics Data System (ADS)
Subramaniam, Gnana M.; Vedula, Prakash
2017-10-01
A novel path integral (PI) based method for solution of the Fokker-Planck equation is presented. The proposed method, termed the transformed path integral (TPI) method, utilizes a new formulation for the underlying short-time propagator to perform the evolution of the probability density function (PDF) in a transformed computational domain where a more accurate representation of the PDF can be ensured. The new formulation, based on a dynamic transformation of the original state space with the statistics of the PDF as parameters, preserves the non-negativity of the PDF and incorporates short-time properties of the underlying stochastic process. New update equations for the state PDF in a transformed space and the parameters of the transformation (including mean and covariance) that better accommodate nonlinearities in drift and non-Gaussian behavior in distributions are proposed (based on properties of the SDE). Owing to the choice of transformation considered, the proposed method maps a fixed grid in transformed space to a dynamically adaptive grid in the original state space. The TPI method, in contrast to conventional methods such as Monte Carlo simulations and fixed grid approaches, is able to better represent the distributions (especially the tail information) and better address challenges in processes with large diffusion, large drift and large concentration of PDF. Additionally, in the proposed TPI method, error bounds on the probability in the computational domain can be obtained using the Chebyshev's inequality. The benefits of the TPI method over conventional methods are illustrated through simulations of linear and nonlinear drift processes in one-dimensional and multidimensional state spaces. The effects of spatial and temporal grid resolutions as well as that of the diffusion coefficient on the error in the PDF are also characterized.
Ultrasonic data compression via parameter estimation.
Cardoso, Guilherme; Saniie, Jafar
2005-02-01
Ultrasonic imaging in medical and industrial applications often requires a large amount of data collection. Consequently, it is desirable to use data compression techniques to reduce data and to facilitate the analysis and remote access of ultrasonic information. The precise data representation is paramount to the accurate analysis of the shape, size, and orientation of ultrasonic reflectors, as well as to the determination of the properties of the propagation path. In this study, a successive parameter estimation algorithm based on a modified version of the continuous wavelet transform (CWT) to compress and denoise ultrasonic signals is presented. It has been shown analytically that the CWT (i.e., time x frequency representation) yields an exact solution for the time-of-arrival and a biased solution for the center frequency. Consequently, a modified CWT (MCWT) based on the Gabor-Helstrom transform is introduced as a means to exactly estimate both time-of-arrival and center frequency of ultrasonic echoes. Furthermore, the MCWT also has been used to generate a phase x bandwidth representation of the ultrasonic echo. This representation allows the exact estimation of the phase and the bandwidth. The performance of this algorithm for data compression and signal analysis is studied using simulated and experimental ultrasonic signals. The successive parameter estimation algorithm achieves a data compression ratio of (1-5N/J), where J is the number of samples and N is the number of echoes in the signal. For a signal with 10 echoes and 2048 samples, a compression ratio of 96% is achieved with a signal-to-noise ratio (SNR) improvement above 20 dB. Furthermore, this algorithm performs robustly, yields accurate echo estimation, and results in SNR enhancements ranging from 10 to 60 dB for composite signals having SNR as low as -10 dB.
High speed inviscid compressible flow by the finite element method
NASA Technical Reports Server (NTRS)
Zienkiewicz, O. C.; Loehner, R.; Morgan, K.
1984-01-01
The finite element method and an explicit time stepping algorithm which is based on Taylor-Galerkin schemes with an appropriate artificial viscosity is combined with an automatic mesh refinement process which is designed to produce accurate steady state solutions to problems of inviscid compressible flow in two dimensions. The results of two test problems are included which demonstrate the excellent performance characteristics of the proposed procedures.
Numerical calculation of the internal flow field in a centrifugal compressor impeller
NASA Technical Reports Server (NTRS)
Walitt, L.; Harp, J. L., Jr.; Liu, C. Y.
1975-01-01
An iterative numerical method has been developed for the calculation of steady, three-dimensional, viscous, compressible flow fields in centrifugal compressor impellers. The computer code, which embodies the method, solves the steady three dimensional, compressible Navier-Stokes equations in rotating, curvilinear coordinates. The solution takes place on blade-to-blade surfaces of revolution which move from the hub to the shroud during each iteration.
NASA Astrophysics Data System (ADS)
Cattell, C.; Breneman, A.; Colpitts, C.; Dombeck, J.; Thaller, S.; Tian, S.; Wygant, J.; Fennell, J.; Hudson, M. K.; Ergun, Robert; Russell, C. T.; Torbert, Roy; Lindqvist, Per-Arne; Burch, J.
2017-09-01
Observations from Magnetospheric MultiScale ( 8
Ucar, Tamer; Hall, Franklin R; Tew, James E; Hacker, James K
2003-03-01
A wind tunnel study was conducted to determine pesticide deposition on commonly used windbreak tree species used as spray drift barriers and associated exposure of honey bees. Although it has been known that windbreaks are effective in reducing chemical drift from agricultural applications, there is still an enormous information and data gap on details of the dependence of the mechanism on the biological materials of the barriers and on standardization of relevant assessment methods. Beneficial arthropods like honey bees are adversely affected by airborne drift of pesticides. A study was initiated by first establishing a wind tunnel to create a controlled environment for capture efficiency work. Suitable spray parameters were determined after a preliminary study to construct and develop a wind tunnel protocol. A tracer dye solution was sprayed onto the windbreak samples and honey bees located in the wind tunnel at various simulated wind speeds. Analysis of data from this work has shown that needle-like foliage of windbreak trees captures two to four times more spray than broad-leaves. In addition, it was determined that, at lower wind speeds, flying bees tend to capture slightly more spray than bees at rest.
Heliocentric phasing performance of electric sail spacecraft
NASA Astrophysics Data System (ADS)
Mengali, Giovanni; Quarta, Alessandro A.; Aliasi, Generoso
2016-10-01
We investigate the heliocentric in-orbit repositioning problem of a spacecraft propelled by an Electric Solar Wind Sail. Given an initial circular parking orbit, we look for the heliocentric trajectory that minimizes the time required for the spacecraft to change its azimuthal position, along the initial orbit, of a (prescribed) phasing angle. The in-orbit repositioning problem can be solved using either a drift ahead or a drift behind maneuver and, in general, the flight times for the two cases are different for a given value of the phasing angle. However, there exists a critical azimuthal position, whose value is numerically found, which univocally establishes whether a drift ahead or behind trajectory is superior in terms of flight time it requires for the maneuver to be completed. We solve the optimization problem using an indirect approach for different values of both the spacecraft maximum propulsive acceleration and the phasing angle, and the solution is then specialized to a repositioning problem along the Earth's heliocentric orbit. Finally, we use the simulation results to obtain a first order estimate of the minimum flight times for a scientific mission towards triangular Lagrangian points of the Sun-[Earth+Moon] system.
High-Precision Tests of Stochastic Thermodynamics in a Feedback Trap
NASA Astrophysics Data System (ADS)
Gavrilov, Momčilo; Jun, Yonggun; Bechhoefer, John
2015-03-01
Feedback traps can trap and manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. Feedback traps allow one to choose an arbitrary virtual potential, do any time-dependent transformation of the potential, and measure various thermodynamic quantities such as stochastic work, heat, or entropy. In feedback-trap experiments, the dynamics of a trapped object is determined by the imposed potential but is also affected by drifts due to electrochemical reactions and by temperature variations in the electronic amplifier. Although such drifts are small for measurements on the order of seconds, they dominate on time scales of minutes or slower. In this talk, we present a recursive algorithm that allows real-time estimations of drifts and other particle properties. These estimates let us do a real-time calibration of the feedback trap. Having eliminated systematic errors, we were able to show that erasing a one-bit memory requires at least kT ln 2 of work, in accordance with Landauer's principle. This work was supported by NSERC (Canada).
SU-G-JeP1-15: Sliding Window Prior Data Assisted Compressed Sensing for MRI Lung Tumor Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, E; Wachowicz, K; Rathee, S
Purpose: Prior Data Assisted Compressed Sensing (PDACS) is a partial k-space acquisition and reconstruction method for mobile tumour (i.e. lung) tracking using on-line MRI in radiotherapy. PDACS partially relies on prior data acquired at the beginning of dynamic scans, and is therefore susceptible to artifacts in longer duration scan due to slow drifts in MR signal. A novel sliding window strategy is presented to mitigate this effect. Methods: MRI acceleration is simulated by retrospective removal of data from the fully sampled sets. Six lung cancer patients were scanned (clinical 3T MRI) using a balanced steady state free precession (bSSFP) sequencemore » for 3 minutes at approximately 4 frames per second, for a total of 650 dynamics. PDACS acceleration is achieved by undersampling of k-space in a single pseudo-random pattern. Reconstruction iteratively minimizes the total variations while constraining the images to satisfy both the currently acquired data and the prior data in missing k-space. Our novel sliding window technique (SW-PDACS), uses a series of distinct pseudo-random under-sampling patterns of partial k-space – with the prior data drawn from a sliding window of the most recent data available. Under-sampled data, simulating 2 – 5x acceleration are reconstructed using PDACS and SW-PDACS. Three quantitative metrics: artifact power, centroid error and Dice’s coefficient are computed for comparison. Results: Quantitively metric values from all 6 patients are averaged in 3 bins, each containing approximately one minute of dynamic data. For the first minute bin, PDACS and SW-PDACS give comparable results. Progressive decline in image quality metrics in bins 2 and 3 are observed for PDACS. No decline in image quality is observed for SW-PDACS. Conclusion: The novel approach presented (SW-PDACS) is a more robust for accelerating longer duration (>1 minute) dynamic MRI scans for tracking lung tumour motion using on-line MRI in radiotherapy. B.G. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2006-01-01
The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.
Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com; Mahalingam, A.; Uthayakumar, A.
We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons,more » study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.« less
NASA Astrophysics Data System (ADS)
Mishra, Phoolendra Kumar; Neuman, Shlomo P.
2010-07-01
We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.
NASA Astrophysics Data System (ADS)
Mishra, P. K.; Neuman, S. P.
2009-12-01
Tartakovsky and Neuman [2007] developed an analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering an unsaturated zone of infinite thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a linearized version of Richards’ equation in which both relative hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value. Both exponential functions were characterized by a common exponent. We present an improved solution in which relative hydraulic conductivity and water content are characterized by separate parameters and the unsaturated zone has finite thickness. Our four-parameter representation of these functions is more flexible than the three-parameter version of Mathias and Butler [2006], who consider flow in the unsaturated zone to be strictly vertical and the pumping well to be fully penetrating. We investigate the effects of unsaturated zone thickness and constitutive parameters on drawdown in the unsaturated and saturated zones as functions of position and time. We then use our new solution to analyze data from synthetic and real pumping tests.
Slow equilibration of reversed-phase columns for the separation of ionized solutes.
Marchand, D H; Williams, L A; Dolan, J W; Snyder, L R
2003-10-10
Reversed-phase columns that have been stored in buffer-free solvents can exhibit pronounced retention-time drift when buffered, low-pH mobile phases are used with ionized solutes. Whereas non-ionized compounds exhibit constant retention times within 20 min of the beginning of mobile phase flow, the retention of ionized compounds can continue to change (by 20% or more) for several hours. If mobile phase pH is changed from low to high and back again, an even longer time may be required before the column reaches equilibration at low pH. The speed of column equilibration for ionized solutes can vary significantly among different reversed-phase columns and is not affected by flow rate.
Light-weight reference-based compression of FASTQ data.
Zhang, Yongpeng; Li, Linsen; Yang, Yanli; Yang, Xiao; He, Shan; Zhu, Zexuan
2015-06-09
The exponential growth of next generation sequencing (NGS) data has posed big challenges to data storage, management and archive. Data compression is one of the effective solutions, where reference-based compression strategies can typically achieve superior compression ratios compared to the ones not relying on any reference. This paper presents a lossless light-weight reference-based compression algorithm namely LW-FQZip to compress FASTQ data. The three components of any given input, i.e., metadata, short reads and quality score strings, are first parsed into three data streams in which the redundancy information are identified and eliminated independently. Particularly, well-designed incremental and run-length-limited encoding schemes are utilized to compress the metadata and quality score streams, respectively. To handle the short reads, LW-FQZip uses a novel light-weight mapping model to fast map them against external reference sequence(s) and produce concise alignment results for storage. The three processed data streams are then packed together with some general purpose compression algorithms like LZMA. LW-FQZip was evaluated on eight real-world NGS data sets and achieved compression ratios in the range of 0.111-0.201. This is comparable or superior to other state-of-the-art lossless NGS data compression algorithms. LW-FQZip is a program that enables efficient lossless FASTQ data compression. It contributes to the state of art applications for NGS data storage and transmission. LW-FQZip is freely available online at: http://csse.szu.edu.cn/staff/zhuzx/LWFQZip.
General Solution of the Rayleigh Equation for the Description of Bubble Oscillations Near a Wall
NASA Astrophysics Data System (ADS)
Garashchuk, Ivan; Sinelshchikov, Dmitry; Kudryashov, Nikolay
2018-02-01
We consider a generalization of the Rayleigh equation for the description of the dynamics of a spherical gas bubble oscillating near an elastic or rigid wall. We show that in the non-dissipative case, i.e. neglecting the liquid viscosity and compressibility, it is possible to construct the general analytical solution of this equation. The corresponding general solution is expressed via the Weierstrass elliptic function. We analyze the dependence of this solution properties on the physical parameters.
A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry
NASA Astrophysics Data System (ADS)
Al-Marouf, M.; Samtaney, R.
2017-05-01
We present an embedded ghost fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.
NASA Astrophysics Data System (ADS)
Zeng, Huihui
2017-10-01
For the gas-vacuum interface problem with physical singularity and the sound speed being {C^{{1}/{2}}}-Hölder continuous near vacuum boundaries of the isentropic compressible Euler equations with damping, the global existence of smooth solutions and the convergence to Barenblatt self-similar solutions of the corresponding porous media equation are proved in this paper for spherically symmetric motions in three dimensions; this is done by overcoming the analytical difficulties caused by the coordinate's singularity near the center of symmetry, and the physical vacuum singularity to which standard methods of symmetric hyperbolic systems do not apply. Various weights are identified to resolve the singularity near the vacuum boundary and the center of symmetry globally in time. The results obtained here contribute to the theory of global solutions to vacuum boundary problems of compressible inviscid fluids, for which the currently available results are mainly for the local-in-time well-posedness theory, and also to the theory of global smooth solutions of dissipative hyperbolic systems which fail to be strictly hyperbolic.
Jamal, Muhammad Asghar; Rashad, Muhammad; Khosa, Muhammad Kaleem; Bhatti, Haq Nawaz
2015-04-15
Densities and ultrasonic velocity values for aqueous solutions of sodium saccharin (SS) has been measured as a function of concentration at 20.0-45.0 °C and atmospheric pressure using DSA-5000 M. The density and ultrasonic velocity values have been further used to calculate apparent molar volume, apparent specific volume, isentropic apparent molar compressibility and compressibility hydration numbers and reported. The values for apparent molar volume obtained at given temperatures showed negative deviations from Debye-Hückel limiting law and used as a direct measure of the ion-ion and ion-solvent interactions. The apparent specific volumes of the solute were calculated and it was found that these values of the investigated solutions lie on the borderline between the values reported for sweet substances. The sweetness response of the sweeteners is then explained in terms of their solution behaviours. Furthermore, the partial molar expansibility, its second derivative, (∂(2)V°/∂T(2)) as Hepler's constant and thermal expansion coefficient have been estimated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Finite-difference solution of the compressible stability eigenvalue problem
NASA Technical Reports Server (NTRS)
Malik, M. R.
1982-01-01
A compressible stability analysis computer code is developed. The code uses a matrix finite difference method for local eigenvalue solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used initial value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed which may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black box stability code. Sample stability calculations are presented for the boundary layer profiles of a Laminar Flow Control (LFC) swept wing.
NASA Technical Reports Server (NTRS)
Bailey, Harry E.; Beam, Richard M.
1991-01-01
Finite-difference approximations for steady-state compressible Navier-Stokes equations, whose two spatial dimensions are written in generalized curvilinear coordinates and strong conservation-law form, are presently solved by means of Newton's method in order to obtain a lifting-airfoil flow field under subsonic and transonnic conditions. In addition to ascertaining the computational requirements of an initial guess ensuring convergence and the degree of computational efficiency obtainable via the approximate Newton method's freezing of the Jacobian matrices, attention is given to the need for auxiliary methods assessing the temporal stability of steady-state solutions. It is demonstrated that nonunique solutions of the finite-difference equations are obtainable by Newton's method in conjunction with a continuation method.
Bending of Rectangular Plates with Large Deflections
NASA Technical Reports Server (NTRS)
Levy, Samuel
1942-01-01
The solution of von Karman's fundamental equations for large deflections of plates is presented for the case of a simply supported rectangular plate under combined edge compression and lateral loading. Numerical solutions are given for square plates and for rectangular plates with a width-span ratio of 3:1. The effective widths under edge compression are compared with effective widths according to von Karman, Bengston, Marguerre, and Cox and with experimental results by Ramberg, McPherson, and Levy. The deflections for a square plate under lateral pressure are compared with experimental and theoretical results by Kaiser. It is found that the effective widths agree closely with Marguerre's formula and with the experimentally observed values and that the deflections agree with the experimental results and with Kaiser's work.
A compressible solution of the Navier-Stokes equations for turbulent flow about an airfoil
NASA Technical Reports Server (NTRS)
Shamroth, S. J.; Gibeling, H. J.
1979-01-01
A compressible time dependent solution of the Navier-Stokes equations including a transition turbulence model is obtained for the isolated airfoil flow field problem. The equations are solved by a consistently split linearized block implicit scheme. A nonorthogonal body-fitted coordinate system is used which has maximum resolution near the airfoil surface and in the region of the airfoil leading edge. The transition turbulence model is based upon the turbulence kinetic energy equation and predicts regions of laminar, transitional, and turbulent flow. Mean flow field and turbulence field results are presented for an NACA 0012 airfoil at zero and nonzero incidence angles of Reynolds number up to one million and low subsonic Mach numbers.
An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, James Russell
2015-03-05
This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equationmore » of state and for the JWL equation of state.« less
Receptivity of the compressible mixing layer
NASA Astrophysics Data System (ADS)
Barone, Matthew F.; Lele, Sanjiva K.
2005-09-01
Receptivity of compressible mixing layers to general source distributions is examined by a combined theoretical/computational approach. The properties of solutions to the adjoint Navier Stokes equations are exploited to derive expressions for receptivity in terms of the local value of the adjoint solution. The result is a description of receptivity for arbitrary small-amplitude mass, momentum, and heat sources in the vicinity of a mixing-layer flow, including the edge-scattering effects due to the presence of a splitter plate of finite width. The adjoint solutions are examined in detail for a Mach 1.2 mixing-layer flow. The near field of the adjoint solution reveals regions of relatively high receptivity to direct forcing within the mixing layer, with receptivity to nearby acoustic sources depending on the source type and position. Receptivity ‘nodes’ are present at certain locations near the splitter plate edge where the flow is not sensitive to forcing. The presence of the nodes is explained by interpretation of the adjoint solution as the superposition of incident and scattered fields. The adjoint solution within the boundary layer upstream of the splitter-plate trailing edge reveals a mechanism for transfer of energy from boundary-layer stability modes to Kelvin Helmholtz modes. Extension of the adjoint solution to the far field using a Kirchhoff surface gives the receptivity of the mixing layer to incident sound from distant sources.
Electron transport fluxes in potato plateau regime
NASA Astrophysics Data System (ADS)
Shaing, K. C.; Hazeltine, R. D.
1997-12-01
Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100% bootstrap current.
Modeling absolute plate and plume motions
NASA Astrophysics Data System (ADS)
Bodinier, G. P.; Wessel, P.; Conrad, C. P.
2016-12-01
Paleomagnetic evidence for plume drift has made modeling of absolute plate motions challenging, especially since direct observations of plume drift are lacking. Predictions of plume drift arising from mantle convection models and broadly satisfying observed paleolatitudes have so far provided the only framework for deriving absolute plate motions over moving hotspots. However, uncertainties in mantle rheology, temperature, and initial conditions make such models nonunique. Using simulated and real data, we will show that age progressions along Pacific hotspot trails provide strong constraints on plume motions for all major trails, and furthermore that it is possible to derive models for relative plume drift from these data alone. Relative plume drift depends on the inter-hotspot distances derived from age progressions but lacks a fixed reference point and orientation. By incorporating paleolatitude histories for the Hawaii and Louisville chains we add further constraints on allowable plume motions, yet one unknown parameter remains: a longitude shift that applies equally to all plumes. To obtain a solution we could restrict either the Hawaii or Louisville plume to have latitudinal motion only, thus satisfying paleolatitude constraints. Yet, restricting one plume to latitudinal motion while all others move freely is not realistic. Consequently, it is only possible to resolve the motion of hotspots relative to an overall and unknown longitudinal shift as a function of time. Our plate motions are therefore dependent on the same shift via an unknown rotation about the north pole. Yet, as plume drifts are consequences of mantle convection, our results place strong constraints on the pattern of convection. Other considerations, such as imposed limits on plate speed, plume speed, proximity to LLSVP edges, model smoothness, or relative plate motions via ridge-spotting may add further constraints that allow a unique model of Pacific absolute plate and plume motions to be inferred. Our modeling suggests that the acquisition of new age and paleomagnetic data from hotspot trails where data are lacking would add valuable constraints on both plume and plate motions. At present, the limiting factor is inconsistencies between paleomagnetic, geometric, and chronologic data, leading to large uncertainties in the results.
NASA Astrophysics Data System (ADS)
Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George
2017-04-01
We present a unifying solution framework for the linearized compressible equations for two-dimensional linearly sheared unbounded flows using the Lie symmetry analysis. The full set of symmetries that are admitted by the underlying system of equations is employed to systematically derive the one- and two-dimensional optimal systems of subalgebras, whose connected group reductions lead to three distinct invariant ansatz functions for the governing sets of partial differential equations (PDEs). The purpose of this analysis is threefold and explicitly we show that (i) there are three invariant solutions that stem from the optimal system. These include a general ansatz function with two free parameters, as well as the ansatz functions of the Kelvin mode and the modal approach. Specifically, the first approach unifies these well-known ansatz functions. By considering two limiting cases of the free parameters and related algebraic transformations, the general ansatz function is reduced to either of them. This fact also proves the existence of a link between the Kelvin mode and modal ansatz functions, as these appear to be the limiting cases of the general one. (ii) The Lie algebra associated with the Lie group admitted by the PDEs governing the compressible dynamics is a subalgebra associated with the group admitted by the equations governing the incompressible dynamics, which allows an additional (scaling) symmetry. Hence, any consequences drawn from the compressible case equally hold for the incompressible counterpart. (iii) In any of the systems of ordinary differential equations, derived by the three ansatz functions in the compressible case, the linearized potential vorticity is a conserved quantity that allows us to analyze vortex and wave mode perturbations separately.
NASA Astrophysics Data System (ADS)
Zheng, H. W.; Shu, C.; Chew, Y. T.
2008-07-01
In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.
Poromechanics of compressible charged porous media using the theory of mixtures.
Huyghe, J M; Molenaar, M M; Baajens, F P T
2007-10-01
Osmotic, electrostatic, and/or hydrational swellings are essential mechanisms in the deformation behavior of porous media, such as biological tissues, synthetic hydrogels, and clay-rich rocks. Present theories are restricted to incompressible constituents. This assumption typically fails for bone, in which electrokinetic effects are closely coupled to deformation. An electrochemomechanical formulation of quasistatic finite deformation of compressible charged porous media is derived from the theory of mixtures. The model consists of a compressible charged porous solid saturated with a compressible ionic solution. Four constituents following different kinematic paths are identified: a charged solid and three streaming constituents carrying either a positive, negative, or no electrical charge, which are the cations, anions, and fluid, respectively. The finite deformation model is reduced to infinitesimal theory. In the limiting case without ionic effects, the presented model is consistent with Blot's theory. Viscous drag compression is computed under closed circuit and open circuit conditions. Viscous drag compression is shown to be independent of the storage modulus. A compressible version of the electrochemomechanical theory is formulated. Using material parameter values for bone, the theory predicts a substantial influence of density changes on a viscous drag compression simulation. In the context of quasistatic deformations, conflicts between poromechanics and mixture theory are only semantic in nature.
GPU Lossless Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kiely, Aaron B.; Klimesh, Matthew A.
2014-01-01
Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA(R). The implementation is based on the fast lossless (FL) compression algorithm reported in "Fast Lossless Compression of Multispectral-Image Data" (NPO- 42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which operates on hyperspectral data and achieves excellent compression performance while having low complexity. The FL compressor uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. The new Consultative Committee for Space Data Systems (CCSDS) Standard for Lossless Multispectral & Hyperspectral image compression (CCSDS 123) is based on the FL compressor. The software makes use of the highly-parallel processing capability of GPUs to achieve a throughput at least six times higher than that of a software implementation running on a single-core CPU. This implementation provides a practical real-time solution for compression of data from airborne hyperspectral instruments.
Physics-Based Computational Algorithm for the Multi-Fluid Plasma Model
2014-06-30
applying it to study laser - 20 Physics-Based Multi-Fluid Plasma Algorithm Shumlak Figure 6: Blended finite element method applied to the species...separation problem in capsule implosions. Number densities and electric field are shown after the laser drive has compressed the multi-fluid plasma and...6 after the laser drive has started the compression. A separation clearly develops. The solution is found using an explicit advance (CFL=1) for the
Causal implications of viscous damping in compressible fluid flows
Jordan; Meyer; Puri
2000-12-01
Classically, a compressible, isothermal, viscous fluid is regarded as a mathematical continuum and its motion is governed by the linearized continuity, Navier-Stokes, and state equations. Unfortunately, solutions of this system are of a diffusive nature and hence do not satisfy causality. However, in the case of a half-space of fluid set to motion by a harmonically vibrating plate the classical equation of motion can, under suitable conditions, be approximated by the damped wave equation. Since this equation is hyperbolic, the resulting solutions satisfy causal requirements. In this work the Laplace transform and other analytical and numerical tools are used to investigate this apparent contradiction. To this end the exact solutions, as well as their special and limiting cases, are found and compared for the two models. The effects of the physical parameters on the solutions and associated quantities are also studied. It is shown that propagating wave fronts are only possible under the hyperbolic model and that the concept of phase speed has different meanings in the two formulations. In addition, discontinuities and shock waves are noted and a physical system is modeled under both formulations. Overall, it is shown that the hyperbolic form gives a more realistic description of the physical problem than does the classical theory. Lastly, a simple mechanical analog is given and connections to viscoelastic fluids are noted. In particular, the research presented here supports the notion that linear compressible, isothermal, viscous fluids can, at least in terms of causality, be better characterized as a type of viscoelastic fluid.
Dense chitosan surgical membranes produced by a coincident compression-dehydration process
Dooley, Thomas P.; Ellis, April L.; Belousova, Maria; Petersen, Don; DeCarlo, Arthur A.
2012-01-01
High density chitosan membranes were produced via a novel manufacturing process for use as implantable resorbable surgical membranes. The innovative method utilizes the following three sequential steps: (1) casting an acidic chitosan solution within a silicon mold, followed by freezing; (2) neutralizing the frozen acidic chitosan solution in alkaline solution to facilitate polymerization; and (3) applying coincident compression-dehydration under a vacuum. Resulting membranes of 0.2 – 0.5 mm thickness have densities as high as 1.6 g/cm3. Inclusion of glycerol prior to the compression-dehydration step provides additional physical and clinical handling benefits. The biomaterials exhibit tensile strength with a maximum load as high as 10.9 N at ~ 2.5 mm width and clinically-relevant resistance to suture pull-out with a maximum load as high as 2.2 N. These physical properties were superior to those of a commercial reconstituted collagen membrane. The dense chitosan membranes have excellent clinical handling characteristics, such as pliability and “memory” when wet. They are semi-permeable to small molecules, biodegradable in vitro in lysozyme solution, and the rates of degradation are inversely correlated to the degree of deacetylation. Furthermore, the dense chitosan membranes are biocompatible and resorbable in vivo as demonstrated in a rat oral wound healing model. The unique combination of physical, in vitro, in vivo, and clinical handling properties demonstrate the high utility of dense chitosan membranes produced by this new method. The materials may be useful as surgical barrier membranes, scaffolds for tissue engineering, wound dressings, and as delivery devices for active ingredients. PMID:23565872
NASA Technical Reports Server (NTRS)
Hess, J. L.; Mack, D. P.; Stockman, N. O.
1979-01-01
A panel method is used to calculate incompressible flow about arbitrary three-dimensional inlets with or without centerbodies for four fundamental flow conditions: unit onset flows parallel to each of the coordinate axes plus static operation. The computing time is scarcely longer than for a single solution. A linear superposition of these solutions quite rigorously gives incompressible flow about the inlet for any angle of attack, angle of yaw, and mass flow rate. Compressibility is accounted for by applying a well-proven correction to the incompressible flow. Since the computing times for the combination and the compressibility correction are small, flows at a large number of inlet operating conditions are obtained rather cheaply. Geometric input is aided by an automatic generating program. A number of graphical output features are provided to aid the user, including surface streamline tracing and automatic generation of curves of curves of constant pressure, Mach number, and flow inclination at selected inlet cross sections. The inlet method and use of the program are described. Illustrative results are presented.
Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications.
Shi, Ling-Ling; Huang, Yuanding; Yang, Lei; Feyerabend, Frank; Mendis, Chamini; Willumeit, Regine; Ulrich Kainer, Karl; Hort, Norbert
2015-07-01
Magnesium alloys are promising candidates for biomedical applications. In this work, influences of composition and heat treatment on the microstructure, the mechanical properties and the corrosion behavior of Mg-Gd-Ca-Zr alloys as potential biomedical implant candidates were investigated. Mg5Gd phase was observed at the grain boundaries of Mg-10Gd-xCa-0.5Zr (x=0, 0.3, 1.2wt%) alloys. Increase in the Ca content led to the formation of additional Mg2Ca phase. The Ca additions increased both the compressive and the tensile yield strengths, but reduced the ductility and the corrosion resistance in cell culture medium. After solution heat treatment, the Mg5Gd particles dissolved in the Mg matrix. The compressive strength decreased, while the corrosion resistance improved in the solution treated alloys. After ageing at 200°C, metastable β' phase formed on prismatic planes and a new type of basal precipitates have been observed, which improved the compressive and tensile ultimate strength, but decreased the ductility. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Taboada, Pablo; Gutiérrez-Pichel, Manuel; Mosquera, Víctor
2004-03-01
Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic antidepressant drug clomipramine hydrochloride have been determined from density and ultrasound velocity measurements in the temperature range 288.15-313.15 K in buffered aqueous solution of pH 3.0 and 5.5. Critical concentrations of aggregation of this drug were obtained from inflections on the plots of the sound velocity against drug concentration. Apparent molal adiabatic compressibilities of the aggregates formed by the drug, calculated by combining the ultrasound velocity and density data, were typical of those for a stacked aggregate. From the temperature dependence of the critical concentration and using the mass action model combined with the Phillips definition of the critical concentration the thermodynamic standard quantities: free Gibbs energy, enthalpy and entropy of aggregate formation were calculated. The critical concentration and energy involved in the aggregation process of this drug have been also evaluated experimentally using isothermal titration calorimetry at 298.15 K. The solvent-drug interactions have been discussed from compressibility and calorimetry data.
Zodrow, E.L.; D'Angelo, J. A.; Mastalerz, Maria; Keefe, D.
2009-01-01
Cuticles have been macerated from suitably preserved compressed fossil foliage by Schulze's process for the past 150 years, whereas the physical-biochemical relationship between the "coalified layer" with preserved cuticle as a unit has hardly been investigated, although they provide complementary information. This relationship is conceptualized by an analogue model of the anatomy of an extant leaf: "vitrinite (mesophyll) + cuticle (biomacropolymer) = compression". Alkaline solutions from Schulze's process as a proxy for the vitrinite, are studied by means of liquid-solid states Fourier transform infrared spectroscopy (FTIR). In addition, cuticle-free coalified layers and fossilized cuticles of seed ferns mainly from Canada, Spain and Argentina of Late Pennsylvanian-Late Triassic age are included in the study sample. Infrared data of cuticle and alkaline solutions differ which is primarily contingent on the mesophyll +biomacropolymer characteristics. The compression records two pathways of organic matter transformation. One is the vitrinized component that reflects the diagenetic-post-diagenetic coalification history parallel with the evolution of the associated coal seam. The other is the cuticle that reflects the sum-total of evolutionary pathway of the biomacropolymer, its monomeric, or polymeric fragmentation, though factors promoting preservation include entombing clay minerals and lower pH conditions. Caution is advised when interpreting liquid-state-based FTIR data, as some IR signals may have resulted from the interaction of Schulze's process with the cuticular biochemistry. A biochemical-study course for taphonomy is suggested, as fossilized cuticles, cuticle-free coalified layers, and compressions are responses to shared physicogeochemical factors. ?? 2009 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wahls, Richard A.
1990-01-01
The method presented is designed to improve the accuracy and computational efficiency of existing numerical methods for the solution of flows with compressible turbulent boundary layers. A compressible defect stream function formulation of the governing equations assuming an arbitrary turbulence model is derived. This formulation is advantageous because it has a constrained zero-order approximation with respect to the wall shear stress and the tangential momentum equation has a first integral. Previous problems with this type of formulation near the wall are eliminated by using empirically based analytic expressions to define the flow near the wall. The van Driest law of the wall for velocity and the modified Crocco temperature-velocity relationship are used. The associated compressible law of the wake is determined and it extends the valid range of the analytical expressions beyond the logarithmic region of the boundary layer. The need for an inner-region eddy viscosity model is completely avoided. The near-wall analytic expressions are patched to numerically computed outer region solutions at a point determined during the computation. A new boundary condition on the normal derivative of the tangential velocity at the surface is presented; this condition replaces the no-slip condition and enables numerical integration to the surface with a relatively coarse grid using only an outer region turbulence model. The method was evaluated for incompressible and compressible equilibrium flows and was implemented into an existing Navier-Stokes code using the assumption of local equilibrium flow with respect to the patching. The method has proven to be accurate and efficient.
FaStore - a space-saving solution for raw sequencing data.
Roguski, Lukasz; Ochoa, Idoia; Hernaez, Mikel; Deorowicz, Sebastian
2018-03-29
The affordability of DNA sequencing has led to the generation of unprecedented volumes of raw sequencing data. These data must be stored, processed, and transmitted, which poses significant challenges. To facilitate this effort, we introduce FaStore, a specialized compressor for FASTQ files. FaStore does not use any reference sequences for compression, and permits the user to choose from several lossy modes to improve the overall compression ratio, depending on the specific needs. FaStore in the lossless mode achieves a significant improvement in compression ratio with respect to previously proposed algorithms. We perform an analysis on the effect that the different lossy modes have on variant calling, the most widely used application for clinical decision making, especially important in the era of precision medicine. We show that lossy compression can offer significant compression gains, while preserving the essential genomic information and without affecting the variant calling performance. FaStore can be downloaded from https://github.com/refresh-bio/FaStore. sebastian.deorowicz@polsl.pl. Supplementary data are available at Bioinformatics online.
Lee, HyungJune; Kim, HyunSeok; Chang, Ik Joon
2014-01-01
We propose a technique to optimize the energy efficiency of data collection in sensor networks by exploiting a selective data compression. To achieve such an aim, we need to make optimal decisions regarding two aspects: (1) which sensor nodes should execute compression; and (2) which compression algorithm should be used by the selected sensor nodes. We formulate this problem into binary integer programs, which provide an energy-optimal solution under the given latency constraint. Our simulation results show that the optimization algorithm significantly reduces the overall network-wide energy consumption for data collection. In the environment having a stationary sink from stationary sensor nodes, the optimized data collection shows 47% energy savings compared to the state-of-the-art collection protocol (CTP). More importantly, we demonstrate that our optimized data collection provides the best performance in an intermittent network under high interference. In such networks, we found that the selective compression for frequent packet retransmissions saves up to 55% energy compared to the best known protocol. PMID:24721763
NASA Astrophysics Data System (ADS)
Ambarita, H.; Sihombing, H. V.
2018-03-01
Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.
NASA Astrophysics Data System (ADS)
Glăvan, D. O.; Radu, I.; Babanatsas, T.; Babanatis Merce, R. M.; Kiss, I.; Gaspar, M. C.
2018-01-01
The paper presents a pneumatic system with two oscillating masses. The system is composed of a cylinder (framework) with mass m1, which has a piston with mass m2 inside. The cylinder (framework system) has one supplying channel for compressed air and one evicting channel for each work chamber (left and right of the piston). Functionality of the piston position comparatively with the cylinder (framework) is possible through the supplying or evicting of compressed air. The variable force that keeps the movement depends on variation of the pressure that is changing depending on the piston position according to the cylinder (framework) and to the section form that is supplying and evicting channels with compressed air. The paper presents the physical model/pattern, the mathematical model/pattern (differential equations) and numerical solution of the differential equations in hypothesis with the section form of supplying and evicting channels with compressed air is rectangular (variation linear) or circular (variation nonlinear).
Fabrication of hydrophobic compressed oil palm trunk surface by sol-gel process
NASA Astrophysics Data System (ADS)
Muzakir, Syafiqah; Salim, Nurjannah; Huda Abu Bakar, Nurul; Roslan, Rasidi; Sin, Lim Wan; Hashim, Rokiah
2018-04-01
Improvement of the robustness of hydrophobic surfaces is crucial to achieving commercial applications of these surfaces in such various areas as self-cleaning, water repellency and corrosion resistance. Compressed oil palm trunk (OPT) panel is one of potential product which can be used as panelling and indoor furniture application. By adding hydrophobic properties to compressed oil palm trunk panel might increase the application of compressed oil palm trunk especially for outdoor application. In this study, fabrication is using the sol-gel technique. Sol-gel was prepared by adding ethanol with Hexadecyl Trimethyl Ammonium Bromide (CTAB) solution with Tetraethyl Orthosilicate (TEOS) with surface modification of chlorotrimethylsilane (CTMS). The surface with hydrophobic coating was undergone surface analysis with contact angle machine with the aid of software SCA 20 and the determined of the morphology of surface with scanning electron microscope (SEM). The produced compressed oil palm trunk surfaces exhibited promising hydrophobic properties with a contact angle of 104° and the relatively better mechanical robustness.
Compressed digital holography: from micro towards macro
NASA Astrophysics Data System (ADS)
Schretter, Colas; Bettens, Stijn; Blinder, David; Pesquet-Popescu, Béatrice; Cagnazzo, Marco; Dufaux, Frédéric; Schelkens, Peter
2016-09-01
signal processing methods from software-driven computer engineering and applied mathematics. The compressed sensing theory in particular established a practical framework for reconstructing the scene content using few linear combinations of complex measurements and a sparse prior for regularizing the solution. Compressed sensing found direct applications in digital holography for microscopy. Indeed, the wave propagation phenomenon in free space mixes in a natural way the spatial distribution of point sources from the 3-dimensional scene. As the 3-dimensional scene is mapped to a 2-dimensional hologram, the hologram samples form a compressed representation of the scene as well. This overview paper discusses contributions in the field of compressed digital holography at the micro scale. Then, an outreach on future extensions towards the real-size macro scale is discussed. Thanks to advances in sensor technologies, increasing computing power and the recent improvements in sparse digital signal processing, holographic modalities are on the verge of practical high-quality visualization at a macroscopic scale where much higher resolution holograms must be acquired and processed on the computer.
... base of the eyelashes as well. Causes The exact cause of blepharitis is unknown. It is thought ... day. After the warm compresses, gently rub a solution of warm water and no-tears baby shampoo ...
Recovering Rare Earth Elements from Aqueous Solution with Porous Amine–Epoxy Networks
Wilfong, Walter Christopher; Kail, Brian W.; Bank, Tracy L.; ...
2017-05-12
Recovering aqueous rare earth elements (REEs) from domestic water sources is one key strategy to diminish the U.S.’s foreign reliance of these precious commodities. Herein, we synthesized an array of porous, amine–epoxy monolith and particle REE recovery sorbents from different polyamine, namely tetraethylenepentamine, and diepoxide (E2), triepoxide (E3), and tetra-epoxide (E4) monomer combinations via a polymer-induced phase separation (PIPS) method. The polyamines provided -NH 2 (primary amine) plus -NH (secondary amine) REE adsorption sites, which were partially reacted with C–O–C (epoxide) groups at different amine/epoxide ratios to precipitate porous materials that exhibited a wide range of apparent porosities and REEmore » recoveries/affinities. Specifically, polymer particles (ground monoliths) were tested for their recovery of La 3+, Nd 3+, Eu 3+, Dy 3+, and Yb 3+ (Ln 3+) species from ppm-level, model REE solutions (pH ≈ 2.4, 5.5, and 6.4) and a ppb-level, simulated acid mine drainage (AMD) solution (pH ≈ 2.6). Screening the sorbents revealed that E3/TEPA-88 (88% theoretical reaction of -NH 2 plus -NH) recovered, overall, the highest percentage of Ln 3+ species of all particles from model 100 ppm- and 500 ppm-concentrated REE solutions. Water swelling (monoliths) and ex situ, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (ground monoliths/particles) data revealed the high REE uptake by the optimized particles was facilitated by effective distribution of amine and hydroxyl groups within a porous, phase-separated polymer network. In situ DRIFTS results clarified that phase separation, in part, resulted from polymerization of the TEPA-E3 (N-N-diglycidyl-4-glycidyloxyaniline) species in the porogen via C–N bond formation, especially at higher temperatures. Most importantly, the E3/TEPA-88 material cyclically recovered >93% of ppb-level Ln 3+ species from AMD solution in a recovery–strip–recovery scheme, highlighting the efficacy of these materials for practical applications.« less
Accessing defect dynamics using intense, nanosecond pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persaud, A.; Barnard, J. J.; Guo, H.
2015-06-18
Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less
Shpotyuk, O; Brunner, M; Hadzaman, I; Balitska, V; Klym, H
2016-12-01
Mathematical models of degradation-relaxation kinetics are considered for jammed thick-film systems composed of screen-printed spinel Cu 0.1 Ni 0.1 Co 1.6 Mn 1.2 O 4 and conductive Ag or Ag-Pd alloys. Structurally intrinsic nanoinhomogeneous ceramics due to Ag and Ag-Pd diffusing agents embedded in a spinel phase environment are shown to define governing kinetics of thermally induced degradation under 170 °C obeying an obvious non-exponential behavior in a negative relative resistance drift. The characteristic stretched-to-compressed exponential crossover is detected for degradation-relaxation kinetics in thick-film systems with conductive contacts made of Ag-Pd and Ag alloys. Under essential migration of a conductive phase, Ag penetrates thick-film spinel ceramics via a considerable two-step diffusing process.
Martin, Guillaume; Roques, Lionel
2016-01-01
Various models describe asexual evolution by mutation, selection, and drift. Some focus directly on fitness, typically modeling drift but ignoring or simplifying both epistasis and the distribution of mutation effects (traveling wave models). Others follow the dynamics of quantitative traits determining fitness (Fisher’s geometric model), imposing a complex but fixed form of mutation effects and epistasis, and often ignoring drift. In all cases, predictions are typically obtained in high or low mutation rate limits and for long-term stationary regimes, thus losing information on transient behaviors and the effect of initial conditions. Here, we connect fitness-based and trait-based models into a single framework, and seek explicit solutions even away from stationarity. The expected fitness distribution is followed over time via its cumulant generating function, using a deterministic approximation that neglects drift. In several cases, explicit trajectories for the full fitness distribution are obtained for arbitrary mutation rates and standing variance. For nonepistatic mutations, especially with beneficial mutations, this approximation fails over the long term but captures the early dynamics, thus complementing stationary stochastic predictions. The approximation also handles several diminishing returns epistasis models (e.g., with an optimal genotype); it can be applied at and away from equilibrium. General results arise at equilibrium, where fitness distributions display a “phase transition” with mutation rate. Beyond this phase transition, in Fisher’s geometric model, the full trajectory of fitness and trait distributions takes a simple form; robust to the details of the mutant phenotype distribution. Analytical arguments are explored regarding why and when the deterministic approximation applies. PMID:27770037
Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E
2012-10-16
There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state.
Acoustic streaming in the cochlea under compressive bone conduction excitation
NASA Astrophysics Data System (ADS)
Aho, Katherine; Sunny, Megha; Nabat, Taoufik; Au, Jenny; Thompson, Charles
2012-02-01
This work examines the acoustic streaming in the cochlea. A model will be developed to examine the steady flow over a flexible boundary that is induced by compressive excitation of the cochlear capsule. A stokeslet based analysis of oscillatory flows was used to model fluid motion. The influence of evanescent modes on the pressure field is considered as the limit of the aspect ratio epsilon approaches zero. We will show a uniformly valid solution in space.
Quasi-one-dimensional compressible flow across face seals and narrow slots. 1: Analysis
NASA Technical Reports Server (NTRS)
Zuk, J.; Ludwig, L. P.; Johnson, R. L.
1972-01-01
An analysis is presented for compressible fluid flow across shaft face seals and narrow slots. The analysis includes fluid inertia, viscous friction, and entrance losses. Subsonic and choked flow conditions can be predicted and analyzed. The model is valid for both laminar and turbulent flows. Results agree with experiment and with solutions which are more limited in applicability. Results show that a parallel film can have a positive film stiffness under choked flow conditions.
A preliminary compressible second-order closure model for high speed flows
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Sarkar, Sutanu
1989-01-01
A preliminary version of a compressible second-order closure model that was developed in connection with the National Aero-Space Plane Project is presented. The model requires the solution of transport equations for the Favre-averaged Reynolds stress tensor and dissipation rate. Gradient transport hypotheses are used for the Reynolds heat flux, mass flux, and turbulent diffusion terms. Some brief remarks are made about the direction of future research to generalize the model.
Optimizing Cloud Based Image Storage, Dissemination and Processing Through Use of Mrf and Lerc
NASA Astrophysics Data System (ADS)
Becker, Peter; Plesea, Lucian; Maurer, Thomas
2016-06-01
The volume and numbers of geospatial images being collected continue to increase exponentially with the ever increasing number of airborne and satellite imaging platforms, and the increasing rate of data collection. As a result, the cost of fast storage required to provide access to the imagery is a major cost factor in enterprise image management solutions to handle, process and disseminate the imagery and information extracted from the imagery. Cloud based object storage offers to provide significantly lower cost and elastic storage for this imagery, but also adds some disadvantages in terms of greater latency for data access and lack of traditional file access. Although traditional file formats geoTIF, JPEG2000 and NITF can be downloaded from such object storage, their structure and available compression are not optimum and access performance is curtailed. This paper provides details on a solution by utilizing a new open image formats for storage and access to geospatial imagery optimized for cloud storage and processing. MRF (Meta Raster Format) is optimized for large collections of scenes such as those acquired from optical sensors. The format enables optimized data access from cloud storage, along with the use of new compression options which cannot easily be added to existing formats. The paper also provides an overview of LERC a new image compression that can be used with MRF that provides very good lossless and controlled lossy compression.
NASA Astrophysics Data System (ADS)
Gerbault, Muriel; Fontaine, Fabrice; Rabinowicz, Michel; Bystricky, Micha
2017-04-01
Surface volcanism at la Réunion and Hawaii occurs with an offset of 150-180 km upstream to the plume axis with respect to the plate motion. This striking observation raises questions about the forcing of plume-lithosphere thermo-mechanical interactions on melt trajectories beneath these islands. Based on visco-elasto-plastic numerical models handled at kilometric resolution, we propose to explain this offset by the development of compressional stresses at the base of the lithosphere, that result from elastic plate bending above the upward load exerted by the plume head. This horizontal compression adopts a disc shape centered around the plume axis, 20 km thick and 150 km in radius, at 50-70 km depth where the temperature varies from 600°C to 750°C. It lasts for 5 to 10 My in an oceanic plate of age greater than 70 My, a timing that is controlled by the visco-elastic relaxation time at 50-70 km depth. This period of time exceeds the time during which both the Somalian/East-African and Pacific plates drift over the Reunion and Hawaii plumes, respectively, thus rendering this basal compression a persistent feature. It is inferred that the buoyant melts percolating in the plume head pond below this zone of compression and eventually spread laterally until the most compressive principal elastic stresses reverse to the vertical, i.e., 150 km away from the plume head. There, melts propagate through dikes upwards to 35 km depth, where the plate curvature reverses and ambient compression diminishes. This 30-35 km depth may thus host magmatic reservoirs where melts pond, until further differentiation can relaunch ascension up to the surface and form a volcanic edifice. In a second stage, as the volcano grows because of melt accumulation at the top of the plate, the lithosphere is flexed downwards, inducing extra tensile stress at 30-35 km depth and compression at 15 km depth. It implies that now the melts pond at 15 km and form another magmatic reservoir lying just underneath the crust. These two processes explain the ponding of primary (shield) melts at 35 km and 15 km depths as partialy recorded below La Reunion, Mauritius or Hawaii volcanoes with seismic tomography.
Nonlinear waves in electron-positron-ion plasmas including charge separation
NASA Astrophysics Data System (ADS)
Mugemana, A.; Moolla, S.; Lazarus, I. J.
2017-02-01
Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.
Jeong, Jong Seok; Mkhoyan, K Andre
2016-06-01
Acquiring an atomic-resolution compositional map of crystalline specimens has become routine practice, thus opening possibilities for extracting subatomic information from such maps. A key challenge for achieving subatomic precision is the improvement of signal-to-noise ratio (SNR) of compositional maps. Here, we report a simple and reliable solution for achieving high-SNR energy-dispersive X-ray (EDX) spectroscopy spectrum images for individual atomic columns. The method is based on standard cross-correlation aided by averaging of single-column EDX maps with modifications in the reference image. It produces EDX maps with minimal specimen drift, beam drift, and scan distortions. Step-by-step procedures to determine a self-consistent reference map with a discussion on the reliability, stability, and limitations of the method are presented here.
One and two fluid numerical investigations of solar wind gas releases
NASA Astrophysics Data System (ADS)
Harold, James Benedict
1993-01-01
The dynamics of gas releases into high Mach number flowing plasmas are investigated. Emphasis is placed on systems of intermediate magnetization for which the scale size of the release lies between the ion and electron Larmor radii. The study is motivated by the December 1984 AMPTE (Active Magnetospheric Particle Tracer Explorer) solar wind barium release in which, contrary to the predictions of MHD theory, the barium cloud shifted transverse to the solar wind (in the uwind x B0 direction) before eventually turning downstream. Particular emphasis is given to identifying mechanisms responsible for this lateral motion. A modified MHD cold fluid approach that takes advantage of the supersonic nature of the problem forms the basis of this work. Two specific models are developed which incorporate large effective ion Larmor radius effects. The first is for a single ion species, the second for two ion species. Two physical effects are identified which are not present in the conventional MHD system: the Hall effect, based on a Hall magnetic drift wave, and a hybrid electrostatic ion cyclotron mode. Linear analysis shows that the effect of the Hall term is to propagate the upwind magnetic field compression azimuthally to the downwind side of the cloud, leading to a quasi-steady state field compression on the -uwind x BO side of the cloud. The cyclotron mode can lead to a similar compression through deflection of the solar wind ions into the uwind x BO direction. In each case the resulting compression leads to a transverse acceleration of the cloud. The relative importance of these two mechanisms is shown to depend on deltac / rc, the ratio of the collisionless skin depth to the cloud size. Nonlinear, two-dimensional simulations are performed for each model. These simulations produce the expected field compressions and the resultant lateral acceleration, in general qualitative agreement with the AMPTE experiment. The dependence of these mechanisms on the ratio deltac / rc is demonstrated. While no simulations are performed that precisely duplicate the parameters of the AMPTE release, the results suggest that the Hall effect, and possibly deflection of the solar wind by the cyclotron mode, constitute plausible mechanisms for the AMPTE shift.
Fluid-structure finite-element vibrational analysis
NASA Technical Reports Server (NTRS)
Feng, G. C.; Kiefling, L.
1974-01-01
A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.
A composite velocity procedure for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Khosla, P. K.; Rubin, S. G.
1982-01-01
A new boundary-layer relaxation procedure is presented. In the spirit of the theory of matched asymptotic expansions, a multiplicative composite of the appropriate velocity representations for the inviscid and viscous regions is prescribed. The resulting equations are structured so that far from the surface of the body the momentum equations lead to the Bernoulli relation for the pressure, while the continuity equation reduces to the familiar compressible potential equation. Close to the body surface, the governing equations and solution techniques are characteristic of those describing interacting boundary-layers; although, the full Navier-Stokes equations are considered here. Laminar flow calculations for the subsonic flow over an axisymmetric boattail simulator geometry are presented for a variety of Reynolds and Mach numbers. A strongly implicit solution method is applied for the coupled velocity components.
Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
NASA Astrophysics Data System (ADS)
Diosady, Laslo T.; Murman, Scott M.
2017-02-01
A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
A mass-balanced definition of corrected retention volume in gas chromatography.
Kurganov, A
2007-05-25
The mass balance equation of a chromatographic system using a compressible moving phase has been compiled for mass flow of the mobile phase instead of traditional volumetric flow allowing solution of the equation in an analytical form. The relation obtained correlates retention volume measured under ambient conditions with the partition coefficient of the solute. Compared to the relation in the ideal chromatographic system the equation derived contains an additional correction term accounting for the compressibility of the moving phase. When the retention volume is measured under the mean column pressure and column temperature the correction term is reduced to unit and the relation is simplified to those known for the ideal system. This volume according to International Union of Pure and Applied Chemistry (IUPAC) is called the corrected retention volume.
Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods
NASA Technical Reports Server (NTRS)
Diosady, Laslo T.; Murman, Scott M.
2016-01-01
space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Marcotte, Christopher D; Grigoriev, Roman O
2016-09-01
This paper introduces a numerical method for computing the spectrum of adjoint (left) eigenfunctions of spiral wave solutions to reaction-diffusion systems in arbitrary geometries. The method is illustrated by computing over a hundred eigenfunctions associated with an unstable time-periodic single-spiral solution of the Karma model on a square domain. We show that all leading adjoint eigenfunctions are exponentially localized in the vicinity of the spiral tip, although the marginal modes (response functions) demonstrate the strongest localization. We also discuss the implications of the localization for the dynamics and control of unstable spiral waves. In particular, the interaction with no-flux boundaries leads to a drift of spiral waves which can be understood with the help of the response functions.
Wave trapping and flow around an irregular near circular island in a stratified sea
NASA Astrophysics Data System (ADS)
Dyke, Phil
2005-12-01
Wave trapping and induced flow around an island is examined. The exactly circular island solutions are reprised and the solutions extended, and shown to apply to a stratified sea. The homogeneous solutions are then used to deduce the wave trapping and flow around a near circular island. It turns out that the cotidal pattern for a perfectly circular island is relatively immune to variations in geometry and radially dependent depth variations. This helps explain the similarity in the behaviour of the tides around various islands (the Pribilof Islands near Alaska, Oahu in Hawaii, Cook Island off north west Australia, Bermuda off the eastern coast of the USA, and Bear Island in the Norwegian Sea). The dominant steady drift and its rate of decay off-shore is also calculated.
NASA Astrophysics Data System (ADS)
Marcotte, Christopher D.; Grigoriev, Roman O.
2016-09-01
This paper introduces a numerical method for computing the spectrum of adjoint (left) eigenfunctions of spiral wave solutions to reaction-diffusion systems in arbitrary geometries. The method is illustrated by computing over a hundred eigenfunctions associated with an unstable time-periodic single-spiral solution of the Karma model on a square domain. We show that all leading adjoint eigenfunctions are exponentially localized in the vicinity of the spiral tip, although the marginal modes (response functions) demonstrate the strongest localization. We also discuss the implications of the localization for the dynamics and control of unstable spiral waves. In particular, the interaction with no-flux boundaries leads to a drift of spiral waves which can be understood with the help of the response functions.
Electronic and elastic mode locking in charge density wave conductors
NASA Astrophysics Data System (ADS)
Zettl, A.
1986-12-01
Mode locking phenomena are investigated in the charge density wave (CDW) materials NbSe 3 and TaS 3. The joint application of ac and dc electric fields results in free running and mode locked solutions for the CDW drift velocity, with associated ac-induced dynamic coherence lengths ξ D(ac) on the order of several hundred microns. The electronic response couples directly to the elastic properties of the crystal, with corresponding free running and mode locked solutions for the velocity of sound. Phase slip center-induced discontinuities in the CDW phase velocity lead to mode locked solutions with period doubling routes to chaos, and noisy precursor effects at bifurcation points. These results are discussed in terms of simple models of CDW domain synchronization, and internal CDW dynamics.
Waves and instabilities in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.
Drift-Free Humanoid State Estimation fusing Kinematic, Inertial and LIDAR Sensing
2014-08-01
registration to this map and other objects in the robot’s vicinity while also contributing to direct low-level control of a Boston Dynamics Atlas robot ...requirements. I. INTRODUCTION Dynamic locomotion of legged robotic systems remains an open and challenging research problem whose solution will enable...humanoids to perform tasks and reach places inaccessible to wheeled or tracked robots . Several research institutions are developing walking and running
Navigation in Difficult Environments: Multi-Sensor Fusion Techniques
2010-03-01
Hwang , Introduction to Random Signals and Applied Kalman Filtering, 3rd ed., John Wiley & Sons, Inc., New York, 1997. [17] J. L. Farrell, “GPS/INS...nav solution Navigation outputs Estimation of inertial errors ( Kalman filter) Error estimates Core sensor Incoming signal INS Estimates of signal...the INS drift terms is performed using the mechanism of a complementary Kalman filter. The idea is that a signal parameter can be generally
Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation
NASA Astrophysics Data System (ADS)
Zakir, U.; Haque, Q.; Imtiaz, N.; Qamar, A.
2015-12-01
> ) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn's magnetosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K.C.; Hazeltine, R.D.
Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}
Paraskeva, Christakis A.; Kalogerakis, Nicolas; Doyle, Patrick S.
2018-01-01
In the aftermath of oil spills in the sea, clouds of droplets drift into the seawater column and are carried away by sea currents. The fate of the drifting droplets is determined by natural attenuation processes, mainly dissolution into the seawater and biodegradation by oil-degrading microbial communities. Specifically, microbes have developed three fundamental strategies for accessing and assimilating oily substrates. Depending on their affinity for the oily phase and ability to proliferate in multicellular structures, microbes might either attach to the oil surface and directly uptake compounds from the oily phase, or grow suspended in the aqueous phase consuming solubilized oil, or form three-dimensional biofilms over the oil–water interface. In this work, a compound particle model that accounts for all three microbial strategies is developed for the biodegradation of solitary oil microdroplets moving through a water column. Under a set of educated hypotheses, the hydrodynamics and solute transport problems are amenable to analytical solutions and a closed-form correlation is established for the overall dissolution rate as a function of the Thiele modulus, the Biot number and other key parameters. Moreover, two coupled ordinary differential equations are formulated for the evolution of the particle size and used to investigate the impact of the dissolution and biodegradation processes on the droplet shrinking rate. PMID:29439555
Kapellos, George E; Paraskeva, Christakis A; Kalogerakis, Nicolas; Doyle, Patrick S
2018-02-12
In the aftermath of oil spills in the sea, clouds of droplets drift into the seawater column and are carried away by sea currents. The fate of the drifting droplets is determined by natural attenuation processes, mainly dissolution into the seawater and biodegradation by oil-degrading microbial communities. Specifically, microbes have developed three fundamental strategies for accessing and assimilating oily substrates. Depending on their affinity for the oily phase and ability to proliferate in multicellular structures, microbes might either attach to the oil surface and directly uptake compounds from the oily phase, or grow suspended in the aqueous phase consuming solubilized oil, or form three-dimensional biofilms over the oil-water interface. In this work, a compound particle model that accounts for all three microbial strategies is developed for the biodegradation of solitary oil microdroplets moving through a water column. Under a set of educated hypotheses, the hydrodynamics and solute transport problems are amenable to analytical solutions and a closed-form correlation is established for the overall dissolution rate as a function of the Thiele modulus, the Biot number and other key parameters. Moreover, two coupled ordinary differential equations are formulated for the evolution of the particle size and used to investigate the impact of the dissolution and biodegradation processes on the droplet shrinking rate.
A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning.
Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui
2016-05-25
In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles.
A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning
Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui
2016-01-01
In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles. PMID:27231917
Estimate of procession and polar motion errors from planetary encounter station location solutions
NASA Technical Reports Server (NTRS)
Pease, G. E.
1978-01-01
Jet Propulsion Laboratory Deep Space Station (DSS) location solutions based on two JPL planetary ephemerides, DE 84 and DE 96, at eight planetary encounters were used to obtain weighted least squares estimates of precession and polar motion errors. The solution for precession error in right ascension yields a value of 0.3 X 10 to the minus 5 power plus or minus 0.8 X 10 to the minus 6 power deg/year. This maps to a right ascension error of 1.3 X 10 to the minus 5 power plus or minus 0.4 X 10 to the minus 5 power deg at the first Voyager 1979 Jupiter encounter if the current JPL DSS location set is used. Solutions for precession and polar motion using station locations based on DE 84 agree well with the solution using station locations referenced to DE 96. The precession solution removes the apparent drift in station longitude and spin axis distance estimates, while the encounter polar motion solutions consistently decrease the scatter in station spin axis distance estimates.
A variational principle for compressible fluid mechanics. Discussion of the one-dimensional theory
NASA Technical Reports Server (NTRS)
Prozan, R. J.
1982-01-01
The second law of thermodynamics is used as a variational statement to derive a numerical procedure to satisfy the governing equations of motion. The procedure, based on numerical experimentation, appears to be stable provided the CFL condition is satisfied. This stability is manifested no matter how severe the gradients (compression or expansion) are in the flow field. For reasons of simplicity only one dimensional inviscid compressible unsteady flow is discussed here; however, the concepts and techniques are not restricted to one dimension nor are they restricted to inviscid non-reacting flow. The solution here is explicit in time. Further study is required to determine the impact of the variational principle on implicit algorithms.
Hanford's Simulated Low Activity Waste Cast Stone Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young
2013-08-20
Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process asmore » this time and could not be concluded.« less
NASA Technical Reports Server (NTRS)
Schneider, J.; Boccio, J.
1972-01-01
A computer program is described capable of determining the properties of a compressible turbulent boundary layer with pressure gradient and heat transfer. The program treats the two-dimensional problem assuming perfect gas and Crocco integral energy solution. A compressibility transformation is applied to the equation for the conservation of mass and momentum, which relates this flow to a low speed constant property flow with simultaneous mass transfer and pressure gradient. The resulting system of describing equations consists of eight ordinary differential equations which are solved numerically. For Part 1, see N72-12226; for Part 2, see N72-15264.
Ultrasonic and densimetric titration applied for acid-base reactions.
Burakowski, Andrzej; Gliński, Jacek
2014-01-01
Classical acoustic acid-base titration was monitored using sound speed and density measurements. Plots of these parameters, as well as of the adiabatic compressibility coefficient calculated from them, exhibit changes with the volume of added titrant. Compressibility changes can be explained and quantitatively predicted theoretically in terms of Pasynski theory of non-compressible hydrates combined with that of the additivity of the hydration numbers with the amount and type of ions and molecules present in solution. It also seems that this development could be applied in chemical engineering for monitoring the course of chemical processes, since the applied experimental methods can be carried out almost independently on the medium under test (harmful, aggressive, etc.).
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang G.; Schrecker, Matthew R. I.
2018-04-01
We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).
On tide-induced Lagrangian residual current and residual transport: 1. Lagrangian residual current
Feng, Shizuo; Cheng, Ralph T.; Pangen, Xi
1986-01-01
Residual currents in tidal estuaries and coastal embayments have been recognized as fundamental factors which affect the long-term transport processes. It has been pointed out by previous studies that it is more relevant to use a Lagrangian mean velocity than an Eulerian mean velocity to determine the movements of water masses. Under weakly nonlinear approximation, the parameter k, which is the ratio of the net displacement of a labeled water mass in one tidal cycle to the tidal excursion, is assumed to be small. Solutions for tides, tidal current, and residual current have been considered for two-dimensional, barotropic estuaries and coastal seas. Particular attention has been paid to the distinction between the Lagrangian and Eulerian residual currents. When k is small, the first-order Lagrangian residual is shown to be the sum of the Eulerian residual current and the Stokes drift. The Lagrangian residual drift velocity or the second-order Lagrangian residual current has been shown to be dependent on the phase of tidal current. The Lagrangian drift velocity is induced by nonlinear interactions between tides, tidal currents, and the first-order residual currents, and it takes the form of an ellipse on a hodograph plane. Several examples are given to further demonstrate the unique properties of the Lagrangian residual current.
Langevin dynamics in inhomogeneous media: Re-examining the Itô-Stratonovich dilemma
NASA Astrophysics Data System (ADS)
Farago, Oded; Grønbech-Jensen, Niels
2014-01-01
The diffusive dynamics of a particle in a medium with space-dependent friction coefficient is studied within the framework of the inertial Langevin equation. In this description, the ambiguous interpretation of the stochastic integral, known as the Itô-Stratonovich dilemma, is avoided since all interpretations converge to the same solution in the limit of small time steps. We use a newly developed method for Langevin simulations to measure the probability distribution of a particle diffusing in a flat potential. Our results reveal that both the Itô and Stratonovich interpretations converge very slowly to the uniform equilibrium distribution for vanishing time step sizes. Three other conventions exhibit significantly improved accuracy: (i) the "isothermal" (Hänggi) convention, (ii) the Stratonovich convention corrected by a drift term, and (iii) a newly proposed convention employing two different effective friction coefficients representing two different averages of the friction function during the time step. We argue that the most physically accurate dynamical description is provided by the third convention, in which the particle experiences a drift originating from the dissipation instead of the fluctuation term. This feature is directly related to the fact that the drift is a result of an inertial effect that cannot be well understood in the Brownian, overdamped limit of the Langevin equation.
NASA Astrophysics Data System (ADS)
Hayashi, M.; Yoshizumi, M.; Saito, S.; Matsumoto, Y.; Kurita, S.; Teramoto, M.; Hori, T.; Matsuda, S.; Shoji, M.; Machida, S.; Amano, T.; Seki, K.; Higashio, N.; Mitani, T.; Takashima, T.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Ishisaka, K.; Tsuchiya, F.; Kumamoto, A.; Matsuoka, A.; Shinohara, I.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.
2017-12-01
Relativistic electron fluxes of the outer radiation belt rapidly change in response to solar wind variations. One of the shortest acceleration processes of electrons in the outer radiation belt is wave-particle interactions between drifting electrons and fast-mode waves induced by compression of the dayside magnetopause caused by interplanetary shocks. In order to investigate this process by a solar wind pressure pulse, we perform a code-coupling simulation using the GEMSIS-RB test particle simulation (Saito et al., 2010) and the GEMSIS-GM global MHD magnetosphere simulation (Matsumoto et al., 2010). As a case study, an interplanetary pressure pulse with the enhancement of 5 nPa is used as the up-stream condition. In the magnetosphere, the fast mode waves with the azimuthal electric field ( negative 𝐸𝜙 : |𝐸&;#120601;| 10 mV/m, azimuthal mode number : m ≤ 2) propagates from the dayside to nightside, interacting with electrons. From the simulation results, we derived effective acceleration model and condition : The electrons whose drift velocities vd ≥ (π/2)Vfast are accelerated efficiently. On December 20, 2016, the Arase (ERG) satellite was launched , allowing more accurate multi-point simultaneous observation with other satellites. We will compare our simulation results with observations from Arase and Van Allen Probes, and investigate the acceleration condition of relativistic electrons associated with storm sudden commencement (SSC).
CWICOM: A Highly Integrated & Innovative CCSDS Image Compression ASIC
NASA Astrophysics Data System (ADS)
Poupat, Jean-Luc; Vitulli, Raffaele
2013-08-01
The space market is more and more demanding in terms of on image compression performances. The earth observation satellites instrument resolution, the agility and the swath are continuously increasing. It multiplies by 10 the volume of picture acquired on one orbit. In parallel, the satellites size and mass are decreasing, requiring innovative electronic technologies reducing size, mass and power consumption. Astrium, leader on the market of the combined solutions for compression and memory for space application, has developed a new image compression ASIC which is presented in this paper. CWICOM is a high performance and innovative image compression ASIC developed by Astrium in the frame of the ESA contract n°22011/08/NLL/LvH. The objective of this ESA contract is to develop a radiation hardened ASIC that implements the CCSDS 122.0-B-1 Standard for Image Data Compression, that has a SpaceWire interface for configuring and controlling the device, and that is compatible with Sentinel-2 interface and with similar Earth Observation missions. CWICOM stands for CCSDS Wavelet Image COMpression ASIC. It is a large dynamic, large image and very high speed image compression ASIC potentially relevant for compression of any 2D image with bi-dimensional data correlation such as Earth observation, scientific data compression… The paper presents some of the main aspects of the CWICOM development, such as the algorithm and specification, the innovative memory organization, the validation approach and the status of the project.
Sriraam, N.
2012-01-01
Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications. PMID:22489238
Sriraam, N
2012-01-01
Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications.
Matched Filtering for Heart Rate Estimation on Compressive Sensing ECG Measurements.
Da Poian, Giulia; Rozell, Christopher J; Bernardini, Riccardo; Rinaldo, Roberto; Clifford, Gari D
2017-09-14
Compressive Sensing (CS) has recently been applied as a low complexity compression framework for long-term monitoring of electrocardiogram signals using Wireless Body Sensor Networks. Long-term recording of ECG signals can be useful for diagnostic purposes and to monitor the evolution of several widespread diseases. In particular, beat to beat intervals provide important clinical information, and these can be derived from the ECG signal by computing the distance between QRS complexes (R-peaks). Numerous methods for R-peak detection are available for uncompressed ECG. However, in case of compressed sensed data, signal reconstruction can be performed with relatively complex optimisation algorithms, which may require significant energy consumption. This article addresses the problem of hearth rate estimation from compressive sensing electrocardiogram (ECG) recordings, avoiding the reconstruction of the entire signal. We consider a framework where the ECG signals are represented under the form of CS linear measurements. The QRS locations are estimated in the compressed domain by computing the correlation of the compressed ECG and a known QRS template. Experiments on actual ECG signals show that our novel solution is competitive with methods applied to the reconstructed signals. Avoiding the reconstruction procedure, the proposed method proves to be very convenient for real-time, low-power applications.
Luchese, Cláudia Leites; Uranga, Jone; Spada, Jordana Corralo; Tessaro, Isabel Cristina; de la Caba, Koro
2018-08-01
Blueberry waste from juice processing was valorised to develop starch films by compression moulding. The compression process resulted in hydrophobic films with water contact angles even higher than 100° for the films prepared with the highest blueberry waste content. Additionally, the film solubility was reduced by the incorporation of blueberry waste, regardless of the solution pH. These films also exhibited good barrier properties against UV light due to the aromatic compounds present in the blueberry waste. Furthermore, films showed a homogenous surface, although some pores appeared in the cross-section for the films with the highest blueberry waste content. Results highlighted the use of thermo-mechanical processes such as compression to manufacture sustainable films with enhanced properties through waste valorisation by the techniques actually employed at industrial scale. Copyright © 2018 Elsevier B.V. All rights reserved.
Experimental investigation of a transonic potential flow around a symmetric airfoil
NASA Technical Reports Server (NTRS)
Hiller, W. J.; Meier, G. E. A.
1981-01-01
Experimental flow investigations on smooth airfoils were done using numerical solutions for transonic airfoil streaming with shockless supersonic range. The experimental flow reproduced essential sections of the theoretically computed frictionless solution. Agreement is better in the expansion part of the of the flow than in the compression part. The flow was nearly stationary in the entire velocity range investigated.
Convergence acceleration of viscous flow computations
NASA Technical Reports Server (NTRS)
Johnson, G. M.
1982-01-01
A multiple-grid convergence acceleration technique introduced for application to the solution of the Euler equations by means of Lax-Wendroff algorithms is extended to treat compressible viscous flow. Computational results are presented for the solution of the thin-layer version of the Navier-Stokes equations using the explicit MacCormack algorithm, accelerated by a convective coarse-grid scheme. Extensions and generalizations are mentioned.
Heat Transfer to Surfaces of Finite Catalytic Activity in Frozen Dissociated Hypersonic Flow
NASA Technical Reports Server (NTRS)
Chung, Paul M.; Anderson, Aemer D.
1961-01-01
The heat transfer due to catalytic recombination of a partially dissociated diatomic gas along the surfaces of two-dimensional and axisymmetric bodies with finite catalytic efficiencies is studied analytically. An integral method is employed resulting in simple yet relatively complete solutions for the particular configurations considered. A closed form solution is derived which enables one to calculate atom mass-fraction distribution, therefore catalytic heat transfer distribution, along the surface of a flat plate in frozen compressible flow with and without transpiration. Numerical calculations are made to determine the atom mass-fraction distribution along an axisymmetric conical body with spherical nose in frozen hypersonic compressible flow. A simple solution based on a local similarity concept is found to be in good agreement with these numerical calculations. The conditions are given for which the local similarity solution is expected to be satisfactory. The limitations on the practical application of the analysis to the flight of the blunt bodies in the atmosphere are discussed. The use of boundary-layer theory and the assumption of frozen flow restrict application of the analysis to altitudes between about 150,000 and 250,000 feet.
NASA Astrophysics Data System (ADS)
Dikkar, A. B.; Pethe, G. B.; Aswar, A. S.
2016-02-01
The speed of sound ( u), density (ρ), and viscosity (η) of 2,4-dihydroxyacetophenone isonicotinoylhydrazone (DHAIH) have been measured in N, N-dimethyl formamide and dimethyl sulfoxide at equidistance temperatures 298.15, 303.15, 308.15, and 313.15 K. These data were used to calculate some important ultrasonic and thermodynamic parameters such as apparent molar volume ( V ϕ s st ), apparent molar compressibility ( K ϕ), partial molar volume ( V ϕ 0 ) and partial molar compressibility ( K ϕ 0 ), were estimated by using the values of ( V ϕ 0 ) and ( K ϕ), at infinite dilution. Partial molar expansion at infinite dilution, (ϕ E 0 ) has also been calculated from temperature dependence of partial molar volume V ϕ 0 . The viscosity data have been analyzed using the Jones-Dole equation, and the viscosity, B coefficients are calculated. The activation free energy has been calculated from B coefficients and partial molar volume data. The results have been discussed in the term of solute-solvent interaction occurring in solutions and it was found that DHAIH acts as a structure maker in present systems.