Quantifying Particle Numbers and Mass Flux in Drifting Snow
NASA Astrophysics Data System (ADS)
Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael
2016-12-01
We compare two of the most common methods of quantifying mass flux, particle numbers and particle-size distribution for drifting snow events, the snow-particle counter (SPC), a laser-diode-based particle detector, and particle tracking velocimetry based on digital shadowgraphic imaging. The two methods were correlated for mass flux and particle number flux. For the SPC measurements, the device was calibrated by the manufacturer beforehand. The shadowgrapic imaging method measures particle size and velocity directly from consecutive images, and before each new test the image pixel length is newly calibrated. A calibration study with artificially scattered sand particles and glass beads provides suitable settings for the shadowgraphical imaging as well as obtaining a first correlation of the two methods in a controlled environment. In addition, using snow collected in trays during snowfall, several experiments were performed to observe drifting snow events in a cold wind tunnel. The results demonstrate a high correlation between the mass flux obtained for the calibration studies (r ≥slant 0.93) and good correlation for the drifting snow experiments (r ≥slant 0.81). The impact of measurement settings is discussed in order to reliably quantify particle numbers and mass flux in drifting snow. The study was designed and performed to optimize the settings of the digital shadowgraphic imaging system for both the acquisition and the processing of particles in a drifting snow event. Our results suggest that these optimal settings can be transferred to different imaging set-ups to investigate sediment transport processes.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-08-24
This study presents a numerical investigation on using the Jacobian-free Newton–Krylov (JFNK) method to solve the two-phase flow four-equation drift flux model with realistic constitutive correlations (‘closure models’). The drift flux model is based on Isshi and his collaborators’ work. Additional constitutive correlations for vertical channel flow, such as two-phase flow pressure drop, flow regime map, wall boiling and interfacial heat transfer models, were taken from the RELAP5-3D Code Manual and included to complete the model. The staggered grid finite volume method and fully implicit backward Euler method was used for the spatial discretization and time integration schemes, respectively. Themore » Jacobian-free Newton–Krylov method shows no difficulty in solving the two-phase flow drift flux model with a discrete flow regime map. In addition to the Jacobian-free approach, the preconditioning matrix is obtained by using the default finite differencing method provided in the PETSc package, and consequently the labor-intensive implementation of complex analytical Jacobian matrix is avoided. Extensive and successful numerical verification and validation have been performed to prove the correct implementation of the models and methods. Code-to-code comparison with RELAP5-3D has further demonstrated the successful implementation of the drift flux model.« less
Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less
Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2017-08-07
This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less
NASA Technical Reports Server (NTRS)
Cragin, B. L.; Hanson, W. B.; Mcclure, J. P.; Valladares, C. E.
1985-01-01
Equatorial bottomside sinusoidal (BSS) irregularities have been studied by applying techniques of cross-correlation and spectral analysis to the Atmosphere Explorer data set. The phase of the cross-correlations of the plasma number density is discussed and the two drift velocity components observed using the retarding potential analyzer and ion drift meter on the satellite are discussed. Morphology is addressed, presenting the geographical distributions of the occurrence of BSS events for the equinoxes and solstices. Physical processes including the ion Larmor flux, interhemispheric plasma flows, and variations in the lower F region Pedersen conductivity are invoked to explain the findings.
The generalized drift flux approach: Identification of the void-drift closure law
NASA Technical Reports Server (NTRS)
Boure, J. A.
1989-01-01
The main characteristics and the potential advantages of generalized drift flux models are presented. In particular it is stressed that the issue on the propagation properties and on the mathematical nature (hyperbolic or not) of the model and the problem of closure are easier to tackle than in two fluid models. The problem of identifying the differential void-drift closure law inherent to generalized drift flux models is then addressed. Such a void-drift closure, based on wave properties, is proposed for bubbly flows. It involves a drift relaxation time which is of the order of 0.25 s. It is observed that, although wave properties provide essential closure validity tests, they do not represent an easily usable source of quantitative information on the closure laws.
Energetic-particle drift motions in the outer dayside magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, R.C.
1987-01-01
Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B pockets in the geomagnetic field. These pockets are theoretically capable of temporarily trapping azimuthally-drifting electrons and modifying electron directional distributions. The Lawrence Livermore National Laboratory's scanning electron spectrometer aboard the OGO-5 satellite provided detailed energetic (E > 70 keV) electron pitch-angle distributions throughout the magnetosphere. Distributions obtained in the outer dayside magnetosphere over a wide range of longitudes show unusual flux features. This study analyzes drift-shell branching caused by themore » minimum-B pockets, and interprets the observed flux features in terms of an adiabatic-shell branching and rejoining process. The author examines the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field mode. He finds that shell branching and rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. He also finds a good correlation between the itch angles that mark the transition from branched to unbranched shells in the model and the distinctive features of the OGO-5 distributions.« less
Experimental investigation of drifting snow in a wind tunnel
NASA Astrophysics Data System (ADS)
Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael
2015-11-01
Drifting snow has a significant impact on snow distribution in mountains, prairies as well as on glaciers and polar regions. In all these environments, the local mass balance is highly influenced by drifting snow. Despite most of the model approaches still rely on the assumption of steady-state and equilibrium saltation, recent advances have proven the mass-transport of drifting snow events to be highly intermittent. A clear understanding of such high intermittency has not yet been achieved. Therefore in our contribution we investigate mass- and momentum fluxes during drifting snow events, in order to better understand that the link between snow cover erosion and deposition. Experiments were conducted in a cold wind tunnel, employing sensors for the momentum flux measurements, the mass flux measurement and for the snow depth estimation over a certain area upstream of the other devices. Preliminary results show that the mass flux is highly intermittent at scales ranging from eddy turnover time to much larger scales. The former scales are those that contribute the most to the overall intermittency and we observe a link between the turbulent flow structures and the mass flux of drifting snow at those scales. The role of varying snow properties in inducing drifting snow intermittency goes beyond such link and is expected to occur at much larger scales, caused by the physical snow properties such as density and cohesiveness.
Romero, N.; Gresswell, R.E.; Li, J.L.
2005-01-01
We examined the influence of riparian vegetation patterns on coastal cutthroat trout Oncorhynchus clarki clarki diet and prey from the summer of 2001 through the spring of 2002. Benthic and drifting invertebrates, allochthonous prey, and fish diet were collected from deciduous, conifer, and mixed sections of three Oregon coastal watersheds. The nine sites were best characterized as a continuum of deciduous cover, and shrub cover and proportion of deciduous canopy were positively correlated (r = 0.74). Most sources of prey (benthic invertebrate biomass, allochthonous invertebrate inputs, aquatic and total invertebrate drift) and aquatic prey ingested by coastal cutthroat trout were greater where shrub cover was more abundant. Only aquatic drift, total invertebrate drift, and allochthonous invertebrates were positively correlated with deciduous vegetation. Compared with coniferous sites, allochthonous invertebrates under deciduous and mixed canopies were almost 30% more abundant. Stream discharge likely influenced seasonal fluxes of aquatic invertebrate biomass in the benthos and drift. Aquatic insects dominated gut contents during this study; however, terrestrial prey were most common in the diet during the summer and fall. In the Pacific northwest, systematic removal of deciduous riparian vegetation to promote conifers may have unintended consequences on food resources of coastal cutthroat trout and aquatic food web interactions. ?? 2005 NRC.
Wingen, Andreas; Schmitz, Oliver; Evans, Todd E.; ...
2014-01-01
The heat flux patterns measured in low-collisionality DIII-D H-mode plasmas strongly deviate from simultaneously measured CII emission patterns, used as indicator of particle flux, during applied resonant magnetic perturbations. While the CII emission clearly shows typical striations, which are similar to magnetic footprint patterns obtained from vacuum field line tracing, the heat flux is usually dominated by one large peak at the strike point position. The vacuum approximation, which only considers applied magnetic fields and neglects plasma response and plasma effects, cannot explain the shape of the observed heat flux pattern. One possible explanation is the effect of particle drifts.more » This is included in the field line equations and the results are discussed with reference to the measurement. Electrons and ions show di fferent drift motions at thermal energy levels in a guiding center approximation. While electrons hardly deviate from the field lines, ions can drift several centimetres away from field line flux surfaces. A model is presented in which an ion heat flux, based on the ion drift motion from various kinetic energies as they contribute to a thermal Maxwellian distribution, is calculated. The simulated heat flux is directly compared to measurements with a varying edge safety factor q95. This analysis provides evidence for the dominate e ect of high-energy ions in carrying heat from the plasma inside the separatrix to the target. High-energy ions are deposited close to the unperturbed strike line while low-energy ions can travel into the striated magnetic topology.« less
Radial plasma drifts deduced from VLF whistler mode signals - A modelling study
NASA Astrophysics Data System (ADS)
Poulter, E. M.; Andrews, M. K.; Bailey, G. J.; Moffett, R. J.
1984-05-01
VLF whistler mode signals have previously been used to infer radial plasma drifts in the equatorial plane of the plasmasphere and the field-aligned ionosphere-protonosphere coupling fluxes. Physical models of the plasmasphere consisting of O(+) adn H(+) ions along dipole magnetic field lines, and including radial E x B drifts, are applied to a mid-latitude flux tube appropriate to whistler mode signals received at Wellington, New Zealand, from the fixed frequency VLF transmitter NLK (18.6 kHz) in Seattle, U.S.A. These models are first shown to provide a good representation of the recorded Doppler shift and group delay data. They are then used to simulate the process of deducing the drifts and fluxes from the recorded data. Provided the initial whistler mode duct latitude and the ionospheric contributions are known, the drifts at the equatorial plane can be estimated to about + or - 20 m/s (approximately 10-15 percent), and the two hemisphere ionosphere-protonosphere coupling fluxes to about + or - 10 to the 12th/sq m-sec (approximately 40 percent).
NASA Astrophysics Data System (ADS)
Stanton, T. P.; Shaw, W. J.
2014-12-01
Since 2002, a series of 28 Autonomous Ocean Flux Buoys have been deployed in the Beaufort Sea and from the North Pole Environmental Observatory. These long-term ice-deployed instrument systems primarily measure vertical turbulent fluxes of heat, salt and momentum at a depth of 2 - 6 m below the ocean/ice interface, while concurrently measuring current profile every 2m down to approximately 40-50m depth, within the seasonal pycnocline. Additional sensors have been added to measure local ice melt rates acoustically, and finescale thermal structure from the eddy correlation flux sensor up into the ice to resolve summer near-surface heating. The AOFB buoys have typically been co-located with Ice Tethered Profilers, that measure the upper ocean T/S structure and ice mass balance instruments. Comparisons of near-surface heat fluxes, heat content and vertical structure over the last decade will be made for buoys in the Beaufort Sea and Transpolar Drift between the North Pole and Spitzbergen. The effects of enhanced basal melting from ice/albedo feedbacks can be clearly seen in the low ice concentration summer conditions found more recently in the Beaufort Sea, while there are less pronounced effects of enhanced summer surface heating in the higher ice concentrations still found in the transpolar drift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, M.
1977-10-01
In view of the practical importance of the drift-flux model for two-phase flow analysis in general and in the analysis of nuclear-reactor transients and accidents in particular, the kinematic constitutive equation for the drift velocity has been studied for various two-phase flow regimes. The constitutive equation that specifies the relative motion between phases in the drift-flux model has been derived by taking into account the interfacial geometry, the body-force field, shear stresses, and the interfacial momentum transfer, since these macroscopic effects govern the relative velocity between phases. A comparison of the model with various experimental data over various flow regimesmore » and a wide range of flow parameters shows a satisfactory agreement.« less
NASA Technical Reports Server (NTRS)
Voss, H. D.; Smith, L. G.
1974-01-01
An explanation was developed for the formation, near midnight at midlatitudes, of a broad electron density layer extending approximately from 120 to 180 km and usually referred to as the intermediate E layer. The responsible mechanism is believed to be the converging vertical ion drifts resulting from winds of the solar semidiurnal tide. Numerical solutions of the continuity equation appropriate to the intermediate layer is described for particular models of ion drift, diffusion coefficents, and ionization production. Analysis of rocket observations of the layer show that the ionization rate is highly correlated with the planetary geomagnetic index, K sub p. Particle flux measurements support the idea that energetic electrons are the principal source of this ionization. A semiconductor spectrometer experiment for investigation of the particle flux, spectrum, and angular properties was designed and successfully flown on a Nike Apache rocket. A detailed description of the theory, design, and calibration of the experiment and some preliminary results presented.
Anomalous fluxes in the plateau regime for a weakly turbulent, magnetically confined plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1990-09-01
The anomalous particle and heat fluxes, together with the parallel electric current, are determined for a confined plasma in the plateau regime in the presence of weak electrostatic drift-wave turbulence. Proper account is taken of nonstationarity and of the finite ion Larmor radius (FLR). The quasineutrality of the drift-wave fluctuations imposes a consistency condition, by which the evaluation of the anomalous fluxes is closely related to the drift-wave dispersion equation. On the other hand, these fluxes are related to the thermodynamic forces via the poloidal fluxes. For the weak turbulence approximation considered here, a unified formulation of the anomalous transportmore » problem has been obtained, including all aspects of neoclassical theory. The complete set of transport coefficients is calculated and various relations between them are exhibited. It clearly appears, for instance, that the anomalous ion heat flux is a pure FLR effect that vanishes as the Larmor radius goes to zero. The Onsager symmetry is broken for anomalous transport. The Appendix is devoted to a general discussion of the concept of heat flux in turbulent plasmas.« less
Monitoring the South Atlantic Anomaly Using ATSR
NASA Astrophysics Data System (ADS)
Casadio, Stefano; Arino, Olivier; Serpe, Danilo
2010-12-01
Space mission planning needs to quantify the risks arising from exposure to high doses of radiation, as to both the effects on human health and the impact on instrumental efficiency. Constant monitoring of the South Atlantic Anomaly (SAA) is therefore required as it is a major cause of radiation flux increase. In order to address this need, the time evolution of the particle induced noise of the SWIR channels of the Along Track Scanning Radiometer (ATSR) instrument series is analysed in the 1991-2009 time window. The data considered in this work are the night-time SWIR hot spots generated by energetic particles hitting the ATSR detectors when satellites pass through the SAA region. To avoid misinterpretation of results, hot spots due to wildfires (individuated from the ATSR World Fire Atlas products) have been removed. The location and area of the SAA are inferred by fitting a two-dimensional, elliptical Gaussian equation to the SWIR (1.6 μm) night- time hot spots detected over the SAA region. The location of the SAA is found to drift westwards with an average drift rate of about 0.35 deg/yr and northward with an average drift rate of about 0.12 deg/yr. These results are in very good agreement with latest works. Irregularities are found where the speed of the drift changes and the SAA moves eastward and southward, especially in the late 1991 and 2002-2003 time windows. These drift anomalies are attributed to geomagnetic jerks. Results indicate that, as expected, the strength and the area of the SAA are anti-correlated with the sun-spot numbers (SSN) and the 11.7 cm Solar Flux (SF).
NASA Astrophysics Data System (ADS)
Tu, W.; Reeves, G. D.; Cunningham, G.; Selesnick, R. S.; Li, X.; Looper, M. D.
2012-12-01
Since its launch in 1992, SAMPEX has been continuously providing measurements of radiation belt electrons at low altitude, which are not only ideal for the direct quantification of the electron precipitation loss in the radiation belt, but also provide data coverage in a critical region for global radiation belt data assimilation models. However, quantitatively combining high-altitude and low-earth-orbit (LEO) measurements on the same L-shell is challenging because LEO measurements typically contain a dynamic mixture of trapped and precipitating populations. Specifically, the electrons measured by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). To simulate the low-altitude electron distribution observed by SAMPEX/PET, a drift-diffusion model has been developed that includes the effects of azimuthal drift and pitch angle diffusion. The simulation provides direct quantification of the rates and variations of electron loss to the atmosphere, a direct input to our Dynamic Radiation Environment Assimilation Model (DREAM) as the electron loss lifetimes. The current DREAM uses data assimilation to combine a 1D radial diffusion model with observational data of radiation belt electrons. In order to implement the mixed electron measurements from SAMPEX into DREAM, we need to map the SAMPEX data from low altitude to high altitudes. To perform the mapping, we will first examine the well-known 'global coherence' of radiation belt electrons by comparing SAMPEX electron fluxes with the energetic electron data from LANL GEO and GPS spacecraft. If the correlation is good, we can directly map the SAMPEX fluxes to high altitudes based on the global coherence; if not, we will use the derived pitch angle distribution from the drift-diffusion model to map up the field and test the mapping by comparing to the high-altitude flux measurements. Then the globally mapped electron fluxes can be assimilated into DREAM. This new implementation of SAMPEX data will greatly augment the data coverage of DREAM and contribute to the global specification of the radiation belt environment.
Measurement of the dynamo effect in a plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, H.; Prager, S.C.; Almagri, A.F.
1995-11-01
A series of the detailed experiments has been conducted in three laboratory plasma devices to measure the dynamo electric field along the equilibrium field line (the {alpha} effect) arising from the correlation between the fluctuating flow velocity and magnetic field. The fluctuating flow velocity is obtained from probe measurement of the fluctuating E x B drift and electron diamagnetic drift. The three major findings are (1) the {alpha} effect accounts for the dynamo current generation, even in the time dependence through a ``sawtooth`` cycle; (2) at low collisionality the dynamo is explained primarily by the widely studied pressureless Magnetohydrodynamic (MHD)more » model, i.e., the fluctuating velocity is dominated by the E x B drift; (3) at high collisionality, a new ``electron diamagnetic dynamo`` is observed, in which the fluctuating velocity is dominated by the diamagnetic drift. In addition, direct measurements of the helicity flux indicate that the dynamo activity transports magnetic helicity from one part of the plasma to another, but the total helicity is roughly conserved, verifying J.B. Taylor`s conjecture.« less
Dividing phases in two-phase flow and modeling of interfacial drag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumo, T.; Rajamaeki, M.
1997-07-01
Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities ofmore » disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz.« less
The stretching of magnetic flux tubes in the convective overshoot region
NASA Technical Reports Server (NTRS)
Fisher, George H.; Mcclymont, Alexander N.; Chou, Dean-Yi
1991-01-01
The present study examines the fate of a magnetic flux tube initially lying at the bottom of the solar convective overshoot region. Stretching of the flux tube, e.g., by differential rotation, reduces its density, causing it to rise quasi-statically (a process referred to as vertical flux drift) until it reaches the top of the overshoot region and enters the buoyantly unstable convection region, from which a portion of it may ultimately protrude to form an active region on the surface. It is suggested that vertical flux drift and flux destabilization are inevitable consequences of field amplification, and it is surmised that these phenomena should be considered in self-consistent models of solar and stellar dynamos operating in the overshoot region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuoka, Seikichi, E-mail: matsuoka@rist.or.jp; Satake, Shinsuke; Kanno, Ryutaro
2015-07-15
In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weightmore » δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E{sub r}. The peaked behavior of the neoclassical radial fluxes around E{sub r }={sub }0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account.« less
Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate
Sándor, Csand; Libál, Andras; Reichhardt, Charles; ...
2017-01-17
Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less
Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sándor, Csand; Libál, Andras; Reichhardt, Charles
Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less
Temporal Variations of Strength and Location of the South Atlantic Anomaly as Measured by RXTE
NASA Technical Reports Server (NTRS)
Wilms, Jorn; Felix, Furst; Rothschild, Richard E.; Pottschmidt, Katja; Smith, David M.; Lingenfelter, Richard
2009-01-01
The evolution of the particle background at an altitude of approx.540km during the time interval between 1996 and 2007 is studied using the particle monitor of the High Energy X-ray Timing Experiment on board NASA's Rossi X-ray Timing Explorer. A special emphasis of this study is the location and strength of the South Atlantic Anomaly (SAA). The size and strength of the SAA are anti-correlated with the the 10.7 cm radio flux of the Sun, which leads the SAA strength by approx.1 year reflecting variations in solar heating of the upper atmosphere. The location of the SAA is also found to drift westwards with an average drift rate of about 0.3deg/yr following the drift of the geomagnetic field configuration. Superimposed to this drift rate are irregularities, where the SAA suddenly moves eastwards and where furthermore the speed of the drift changes. The most prominent of these irregularities is found in the second quarter of 2003 and another event took place in 1999. We suggest that these events are previously unrecognized manifestations of the geomagnetic jerks of the Earth's magnetic field. Key words: space radiation environment, South Atlantic Anomaly, radiation monitors, Rossi X-ray Timing Explorer
Guiding center model to interpret neutral particle analyzer results
NASA Technical Reports Server (NTRS)
Englert, G. W.; Reinmann, J. J.; Lauver, M. R.
1974-01-01
The theoretical model is discussed, which accounts for drift and cyclotron components of ion motion in a partially ionized plasma. Density and velocity distributions are systematically precribed. The flux into the neutral particle analyzer (NPA) from this plasma is determined by summing over all charge exchange neutrals in phase space which are directed into apertures. Especially detailed data, obtained by sweeping the line of sight of the apertures across the plasma of the NASA Lewis HIP-1 burnout device, are presented. Selection of randomized cyclotron velocity distributions about mean azimuthal drift yield energy distributions which compared well with experiment. Use of data obtained with a bending magnet on the NPA showed that separation between energy distribution curves of various mass species correlate well with a drift divided by mean cyclotron energy parameter of the theory. Use of the guiding center model in conjunction with NPA scans across the plasma aid in estimates of ion density and E field variation with plasma radius.
NASA Astrophysics Data System (ADS)
Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert
2014-05-01
Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter's quantitative abilities, we modified the parameter, based on the comparisons with TLS data and the terrain and wind conditions specific to the research site. The modification is in a linear form f(x) = a * Sx, where a is a newly introduced parameter; f(x) yields the estimates for the snow height. We found that the parameter depends on the time period between the compared snow surfaces and the intensity of drifting snow events, which are linked to wind velocities. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter a. We could improve the parameters' correlations with measured snow heights and its ability to quantitatively describe snow distribution in the Col du Lac Blanc area. We believe that our work is also a prerequisite to further improve the parameter's ability to describe snow redistribution.
NASA Astrophysics Data System (ADS)
Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-06-01
The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.
Annual sediment flux estimates in a tidal strait using surrogate measurements
Ganju, N.K.; Schoellhamer, D.H.
2006-01-01
Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large. ?? 2006 Elsevier Ltd. All rights reserved.
Drift-Alfven wave mediated particle transport in an elongated density depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincena, Stephen; Gekelman, Walter
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function ofmore » frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.« less
NASA Astrophysics Data System (ADS)
Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai-Haase, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.
2015-12-01
Stream networks have recently been discovered to be major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross-comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams with different flow velocities. The study clearly shows that (1) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (2) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil collar to seal the chambers to the water surface, rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.
NASA Astrophysics Data System (ADS)
Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.
2015-09-01
Stream networks were recently discovered as major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams having different flow velocities. The study clearly shows that (1) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (2) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil seal to the water surface rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.
NASA Technical Reports Server (NTRS)
Wu, Jian; Blanc, Michel; Alcayde, Denis; Barakat, Abdullah R.; Fontanari, Jean; Blelly, Pierre-Louis; Kofman, Wlodek
1992-01-01
EISCAT VHF radar was used to investigate the vertical flows of H(+) and O(+) ions in the topside high-latitude ionosphere. The radar transmitted a single long pulse to probe the ionosphere from 300 to 1200 km altitude. A calculation scheme is developed to deduce the H(+) drift velocity from the coupled momentum equations of H(+), O(+), and the electrons, using the radar data and a neutral atmosphere model. The H(+) vertical drift velocity was expressed as a linear combination of the different forces acting on the plasma. Two nights, one very quiet, one with moderate magnetic activity, were used to test the technique and to provide a first study of the morphology and orders of magnitudes of ion outflow fluxes over Tromso. O(+) vertical flows were found to be downward or close to zero most of the time in the topside ionosphere; they appeared to be strongly correlated with magnetic activity during the disturbed night. H(+) topside ion fluxes were always directed upward, with velocity reaching 500-1000 m/s. A permanent outflow of H(+) ions is inferred.
Combined Satellite - and ULS-Derived Sea-Ice Flux in the Weddell Sea
NASA Technical Reports Server (NTRS)
Drinkwater, M.; Liu, X.; Harms, S.
2000-01-01
Several years of daily microwave satellite ice-drift are combined with moored Upward Looking Sonar (ULS) ice-drafts into an ice volume flux record at points along a flux gate across the Weddell Sea, Antarctica.
Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas
NASA Astrophysics Data System (ADS)
Huang, B.; Satake, S.; Kanno, R.; Sugama, H.; Matsuoka, S.
2017-02-01
The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 (2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E ×B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E ×B is sufficiently large compared to the magnetic drift velocities. For example, Mp≤0.4 where Mp is the poloidal Mach number. On the other hand, when E ×B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at Er≃0 . In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.
Effects of Convection Electric Fields on Modeled Plasmaspheric Densities and ccc Temperatures
NASA Technical Reports Server (NTRS)
Comfort, Richard H.; Richards, Phil G.; Liao, Jin-Hua; Craven, Paul D.
1998-01-01
This paper examines the effects of convection electric fields on plasmaspheric H+, O+, He+, and N+ densities and electron and ion temperatures. These effects are studied with the aid of the Field Line Interhemispheric Plasma (FLIP) model, which has recently been extended to include the effects of ExB drifts. The FLIP model solves the continuity and momentum equations for the major ion species as well as the energy equations for ions and electrons along entire drifting flux tubes from 100 km altitude in the northern hemisphere to 100 km altitude in the southern hemisphere. Electron heating in the ionosphere and plasmasphere is provided by the solution of two-stream equations for photoelectrons. The dawn-dusk electric field imposed by the solar wind causes changes in plasmaspheric density and temperature as the plasma drifts onto flux tubes having different volumes. In an idealized convection model, outward drifts in the afternoon cause decreases in the plasmasphere density and temperature while inward drifts in the evening cause increases in plasmasphere density and temperature. In this paper we examine the effects of convection electric fields on the rate of refilling of flux tubes and investigate the hypothesis that convection electric fields are responsible for the unusually high evening electron temperatures and the post-midnight density maxima often observed in the winter ionosphere above Millstone Hill.
A fluid modeling perspective on the tokamak power scrape-off width using SOLPS-ITER
NASA Astrophysics Data System (ADS)
Meier, Eric
2016-10-01
SOLPS-ITER, a 2D fluid code, is used to conduct the first fluid modeling study of the physics behind the power scrape-off width (λq). When drift physics are activated in the code, λq is insensitive to changes in toroidal magnetic field (Bt), as predicted by the 0D heuristic drift (HD) model developed by Goldston. Using the HD model, which quantitatively agrees with regression analysis of a multi-tokamak database, λq in ITER is projected to be 1 mm instead of the previously assumed 4 mm, magnifying the challenge of maintaining the peak divertor target heat flux below the technological limit. These simulations, which use DIII-D H-mode experimental conditions as input, and reproduce the observed high-recycling, attached outer target plasma, allow insights into the scrape-off layer (SOL) physics that set λq. Independence of λq with respect to Bt suggests that SOLPS-ITER captures basic HD physics: the effect of Bt on the particle dwell time ( Bt) cancels with the effect on drift speed ( 1 /Bt), fixing the SOL plasma density width, and dictating λq. Scaling with plasma current (Ip), however, is much weaker than the roughly 1 /Ip dependence predicted by the HD model. Simulated net cross-separatrix particle flux due to magnetic drifts exceeds the anomalous particle transport, and a Pfirsch-Schluter-like SOL flow pattern is established. Up-down ion pressure asymmetry enables the net magnetic drift flux. Drifts establish in-out temperature asymmetry, and an associated thermoelectric current carries significant heat flux to the outer target. The density fall-off length in the SOL is similar to the electron temperature fall-off length, as observed experimentally. Finally, opportunities and challenges foreseen in ongoing work to extrapolate SOLPS-ITER and the HD model to ITER and future machines will be discussed. Supported by U.S. Department of Energy Contract DESC0010434.
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2014-10-01
Two-fluid dynamo relaxation is examined to understand sustainment mechanism of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The steeper density gradient between the central open flux column (OFC) and closed flux regions by applying the second CHI pulse is observed to cause not only the
Two-fluid equilibrium transition during multi-pulsing CHI in spherical torus
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2015-11-01
Two-fluid dynamo current drive has been studied to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The density gradient, poloidal flow shear, and radial electric shear enhanced by applying the second CHI pulse is observed around the separatrix in the high field side to cause not only the ExB drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The two-fluid equilibrium transition during the M-CHI in the ST is investigated by modelling the M-CHI in the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region due to the increase of the poloidal electron flow velocity in the central open flux column (OFC) region, while the diamagnetic profile is kept in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region due to the increase in the drift velocity and the Hall effect. As the ion diamagnetic drift velocity is changed in the same direction as the ExB drift velocity around the separatrix in the high field side through the negative ion pressure gradient there, the poloidal ion flow velocity is increased in the OFC region, enhancing the flow shear. The radial electric field shear around the separatrix is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The density is decreased in the closed flux region according to the generalized Bernoulli law and its negative gradient around the separatrix steepens.
Hall Effect–Mediated Magnetic Flux Transport in Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue-Ning; Stone, James M.
2017-02-10
The global evolution of protoplanetary disks (PPDs) has recently been shown to be largely controlled by the amount of poloidal magnetic flux threading the disk. The amount of magnetic flux must also coevolve with the disk, as a result of magnetic flux transport, a process that is poorly understood. In weakly ionized gas as in PPDs, magnetic flux is largely frozen in the electron fluid, except when resistivity is large. When the disk is largely laminar, we show that the relative drift between the electrons and ions (the Hall drift), and the ions and neutral fluids (ambipolar drift) can playmore » a dominant role on the transport of magnetic flux. Using two-dimensional simulations that incorporate the Hall effect and ambipolar diffusion (AD) with prescribed diffusivities, we show that when large-scale poloidal field is aligned with disk rotation, the Hall effect rapidly drags magnetic flux inward at the midplane region, while it slowly pushes flux outward above/below the midplane. This leads to a highly radially elongated field configuration as a global manifestation of the Hall-shear instability. This field configuration further promotes rapid outward flux transport by AD at the midplane, leading to instability saturation. In quasi-steady state, magnetic flux is transported outward at approximately the same rate at all heights, and the rate is comparable to the Hall-free case. For anti-aligned field polarity, the Hall effect consistently transports magnetic flux outward, leading to a largely vertical field configuration in the midplane region. The field lines in the upper layer first bend radially inward and then outward to launch a disk wind. Overall, the net rate of outward flux transport is about twice as fast as that of the aligned case. In addition, the rate of flux transport increases with increasing disk magnetization. The absolute rate of transport is sensitive to disk microphysics, which remains to be explored in future studies.« less
Suppression of Collisionless Magnetic Reconnection in Asymmetric Current Sheets
NASA Technical Reports Server (NTRS)
Liu, Yi-Hsin; Hesse, Michael
2016-01-01
Using fully kinetic simulations, we study the suppression of asymmetric reconnection in the limit where the diamagnetic drift speed >> Alfven speed and the magnetic shear angle is moderate. We demonstrate that the slippage between electrons and the magnetic flux mitigates the suppression and can even result in fast reconnection that lacks one of the outflow jets. Through comparing a case where the diamagnetic drift is supported by the temperature gradient with a companion case that has a density gradient instead, we identify a robust suppression mechanism. The drift of the x-line is slowed down locally by the asymmetric nature of the x-line, and then the x-line is run over and swallowed by the faster-moving following flux.
Solar Electron Beams Detected in Hard X-Rays and Radio Waves
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.; Benz, Arnold O.; Dennis, Brian R.; Schwartz, Richard A.
1995-12-01
We present a statistical survey of electron beam signatures that are detected simultaneously at hard X-ray (HXR) and radio wavelengths during solar flares. For the identification of a simultaneous event we require a type III (normal-drifting or reverse-slope-drifting) radio burst that coincides (within ± 1 s) with a significant (≥ 3 σ HXR pulse of similar duration (≥ 1 s). Our survey covers all HXRBS/SMM and BATSE/CGRO flares that were simultaneously observed with the 0.1-1 GHz spectrometer Ikarus or the 0.1-3 GHz spectrometer Phoenix of ETH Zurich during 1980-1993. The major results and conclusions are as follows: 1. We identified 233 HXR pulses (out of 882) to be correlated with type III-like radio bursts: 77% with normal-drifting type III bursts, 34% with reverse-slope (RS)-drifting bursts, and 13% with oppositely drifting (III + RS) burst pairs. The majority of these cases provide evidence for acceleration of bidirectional electron beams. 2. The detailed correlation with type III-like radio bursts suggests that most of the subsecond fluctuations detectable in ≥ 25 keV HXR emission are related to discrete electron injections. This is also supported by the proportionality of the HXR pulse duration with the radio burst duration. The distribution of HXR pulse durations WX is found to have an exponential distribution, i.e., N(WX) ∝ exp (-WX/0.25 s) in the measured range of WX ≍ 0.5-1.5 s. 3. From oppositely drifting radio burst pairs we infer electron densities of ne = 109-1010 cm-3 at the acceleration site. From the absence of a frequency gap between the simultaneous start frequencies of upward and downward drifting radio bursts, we infer an upper limit of L ≤ 2000 km for the extent of the acceleration site and an acceleration time of Δt ≤ 3 ms for the (≥ 5 keV) radio-emitting electrons (in the case of parallel electric fields). 4. The relative timing between HXR pulses and radio bursts is best at the start frequency (of earliest radio detection), with a coincidence of ≲0.1 s in the statistical average, while the radio bursts are delayed at all other frequencies (in the statistical average). The timing is consistent with the scenario of electron injection at a mean coronal height of h ≍ 104 km. The radio-emitting electrons are found to have lower energies (≳ 5 keV) than the ≥ 25 keV HXR-emitting electrons. 5. The modulated HXR flux that correlates with electron beam signatures in radio amounts to 2%-6% of the total HXR count rate (for BATSE flares). The associated kinetic energy in electrons is estimated to be E = 4 × 1022-1027 ergs per beam, or Ne = 4 × 1028-1033 electrons per beam, considering the spread from the smallest to the largest flare detected by HXRBS. 6. The average drift rate of propagating electron beams is found here to be [dv/dt] = 0.10ν1.4 MHz km s-1 in the frequency range of ν = 200-3000 MHz, which is lower than expected from the Alvarez & Haddock relation for frequencies ≤ 550 MHz. 7. The frequency distributions of HXR fluxes (Fx) and radio type III burst fluxes (FR), which both can be characterized by a power law, are found to have a significantly different slope, i.e., N(Fx) ∝ Fx-1.87 versus N(FR) ∝ FR-1.28. The difference in the slope is attributed to the fundamental difference between incoherent and coherent emission processes. In summary, these findings suggest a flare scenario in which bidirectional streams of electrons are accelerated during solar flares at heights of 10 km above the photosphere in rather compact regions (L ≲ 2000 km). The acceleration site is likely to be located near the top of flare loops (defined by HXR double footpoints) or in the cusp above, where electrons have also access to open field lines or larger arches. The observed bidirectionality of electron beams favors acceleration mechanisms with oppositely directed electric fields or stochastic acceleration in an X-type reconnection geometry.
The South Atlantic Anomaly throughout the solar cycle
NASA Astrophysics Data System (ADS)
Domingos, João; Jault, Dominique; Pais, Maria Alexandra; Mandea, Mioara
2017-09-01
The Sun-Earth's interaction is characterized by a highly dynamic electromagnetic environment, in which the magnetic field produced in the Earth's core plays an important role. One of the striking characteristics of the present geomagnetic field is denoted the South Atlantic Anomaly (SAA) where the total field intensity is unusually low and the flux of charged particles, trapped in the inner Van Allen radiation belts, is maximum. Here, we use, on one hand, a recent geomagnetic field model, CHAOS-6, and on the other hand, data provided by different platforms (satellites orbiting the Earth - POES NOAA for 1998-2014 and CALIPSO for 2006-2014). Evolution of the SAA particle flux can be seen as the result of two main effects, the secular variation of the Earth's core magnetic field and the modulation of the density of the inner radiation belts during the solar cycle, as a function of the L value that characterises the drift shell, where charged particles are trapped. To study the evolution of the particle flux anomaly, we rely on a Principal Component Analysis (PCA) of either POES particle flux or CALIOP dark noise. Analysed data are distributed on a geographical grid at satellite altitude, based on a L-shell reference frame constructed from the moving eccentric dipole. Changes in the main magnetic field are responsible for the observed westward drift. Three PCA modes account for the time evolution related to solar effects. Both the first and second modes have a good correlation with the thermospheric density, which varies in response to the solar cycle. The first mode represents the total intensity variation of the particle flux in the SAA, and the second the movement of the anomaly between different L-shells. The proposed analysis allows us to well recover the westward drift rate, as well as the latitudinal and longitudinal solar cycle oscillations, although the analysed data do not cover a complete (Hale) magnetic solar cycle (around 22 yr). Moreover, the developments made here would enable us to forecast the impact of the South Atlantic Anomaly on space weather. A model of the evolution of the eccentric dipole field (magnitude, offset and tilt) would suffice, together with a model for the solar cycle evolution.
Developments on a SEM-based X-ray tomography system: Stabilization scheme and performance evaluation
NASA Astrophysics Data System (ADS)
Gomes Perini, L. A.; Bleuet, P.; Filevich, J.; Parker, W.; Buijsse, B.; Kwakman, L. F. Tz.
2017-06-01
Recent improvements in a SEM-based X-ray tomography system are described. In this type of equipment, X-rays are generated through the interaction between a highly focused electron-beam and a geometrically confined anode target. Unwanted long-term drifts of the e-beam can lead to loss of X-ray flux or decrease of spatial resolution in images. To circumvent this issue, a closed-loop control using FFT-based image correlation is integrated to the acquisition routine, in order to provide an in-line drift correction. The X-ray detection system consists of a state-of-the-art scientific CMOS camera (indirect detection), featuring high quantum efficiency (˜60%) and low read-out noise (˜1.2 electrons). The system performance is evaluated in terms of resolution, detectability, and scanning times for applications covering three different scientific fields: microelectronics, technical textile, and material science.
Nitrous oxide fluxes from a claypan soil overlying nitrate-enriched glacial drift
Pomes, M.L.; Wilkison, D.H.; McMahon, P.B.
1998-01-01
The closed chamber method was used to assess nitrous oxide (N2O) fluxes from corn (Zea mays, L.) fields during the 1995 growing season. The study area was characterized by a claypan soil overlying a nitrate (NO31-)-enriched glacial-drift aquifer. Denitrification produced N2O fluxes of 0.2-6.9 g ha-1 hr-1 early in the growing season. Fluxes increased with increasing soil temperature, soil water potential, and soil saturation. However, greatly diminished N2O fluxes (0.001-0.09 gha-1 hr-1) occurred when soil saturation increased to 94 percent. Losses of N2O increased linearly during the day and decreased at night, probably because of declining soil temperatures. Declines in soil saturation (less than 80 percent) and soil moisture potential (less than -10 kPa) produced late season N2O fluxes (0.03-0.8 g ha-1 hr-1) attributable to nitrification. Results indicate that denitrification would not significantly reduce claypan soil NO31- concentrations.
Record low sea-ice concentration in the central Arctic during summer 2010
NASA Astrophysics Data System (ADS)
Zhao, Jinping; Barber, David; Zhang, Shugang; Yang, Qinghua; Wang, Xiaoyu; Xie, Hongjie
2018-01-01
The Arctic sea-ice extent has shown a declining trend over the past 30 years. Ice coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-ice concentration (SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes. This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic (CARLIC)—is unique in our analysis period of 2003-15, and has not been previously reported in the literature. The CARLIC was not the result of ice melt, because sea ice was still quite thick based on in-situ ice thickness measurements. Instead, divergent ice drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector, which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water, increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea ice could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.
Impact of Cross-field Drifts on Detachment in DIII-D
NASA Astrophysics Data System (ADS)
Jaervinen, A. E.; Allen, S. L.; McLean, A. G.; Rognlien, T. D.; Samuell, C. M.; Porter, G. D.; Groth, M.; Hill, D. N.; Leonard, A. W.
2017-10-01
Simulations of DIII-D plasmas have revealed the strong role of E ×B-drifts in the low field side (LFS) detachment structure. High confinement modes (H-mode) with the ∇B-drift towards the X-point (fwd BT) enter detachment at 20% higher upstream density, ne,sep, than plasmas with the ∇B-drift away from the X-point (rev BT). In contrast, low confinement modes (L-mode) enter detachment at 10% lower ne,sep in fwd BT. Despite this, both L- and H-modes detached plasmas show strong target flux, JSAT, reduction with increasing ne,sep in fwd BT, while only a modest reduction occurs in rev BT. In fwd BT H-mode, a step-wise transition from attached to strongly detached conditions is observed with increasing ne,sep. UEDGE simulations indicate that the strong poloidal E ×B-drift in the private flux region in H-mode drives the difference for the detachment onset relative to L-mode. In fwd BT, the dependence of this poloidal E ×B-drift on the divertor conditions can reinforce the plasma into either attached or strongly detached state. In rev BT, radial E ×B-drift depletes strike-line ne, limiting the degree of detachment. Work supported by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, and LLNL LDRD project 17-ERD-020.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scervini, M.; Palmer, J.; Haggard, D.C.
2015-07-01
Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. They are crucial for the control of current nuclear reactors and for the development of GEN IV reactors. In nuclear applications thermocouples are strongly affected by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation formore » relatively short times compared to the life required for temperature sensors in nuclear applications. Previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of Nickel based thermocouples is limited to temperatures lower than 1000 deg. C due to drift related to phenomena other than nuclear irradiation. As part of a collaboration between Idaho National Laboratory (INL) and the University of Cambridge a variety of Type N thermocouples have been exposed at INL in an Advanced Gas Reactor mock-up test at 1150 deg. C for 2000 h, 1200 deg. C for 2000 h, 125 deg. C for 200 h and 1300 deg. C for 200 h, and later analysed metallurgically at the University of Cambridge. The use of electron microscopy allows to identify the metallurgical changes occurring in the thermocouples during high temperature exposure and correlate the time dependent thermocouple drift with the microscopic changes experienced by the thermoelements of different thermocouple designs. In this paper conventional Inconel 600 sheathed type N thermocouples and a type N using a customized sheath developed at the University of Cambridge have been investigated. The rationale for the superior performance of the type N using a customized sheath developed at the University of Cambridge is explained in comparison with the behavior of conventional type N Inconel 600 sheathed thermocouples. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L. Y.; Yu, J.; Cao, J. B.
After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less
Li, L. Y.; Yu, J.; Cao, J. B.; ...
2016-11-05
After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less
Drifts, currents, and power scrape-off width in SOLPS-ITER modeling of DIII-D
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; ...
2016-12-27
The effects of drifts and associated flows and currents on the width of the parallel heat flux channel (λ q) in the tokamak scrape-off layer (SOL) are analyzed using the SOLPS-ITER 2D fluid transport code. Motivation is supplied by Goldston’s heuristic drift (HD) model for λ q, which yields the same approximately inverse poloidal magnetic field dependence seen in multi-machine regression. The analysis, focusing on a DIII-D H-mode discharge, reveals HD-like features, including comparable density and temperature fall-off lengths in the SOL, and up-down ion pressure asymmetry that allows net cross-separatrix ion magnetic drift flux to exceed net anomalous ionmore » flux. In experimentally relevant high-recycling cases, scans of both toroidal and poloidal magnetic field (B tor and B pol) are conducted, showing minimal λ q dependence on either component of the field. Insensitivity to B tor is expected, and suggests that SOLPS-ITER is effectively capturing some aspects of HD physics. Absence of λ q dependence on B pol, however, is inconsistent with both the HD model and experimental results. As a result, the inconsistency is attributed to strong variation in the parallel Mach number, which violates one of the premises of the HD model.« less
NASA Astrophysics Data System (ADS)
Shaing, K. C.; Lee, H.; Seol, J.; Aydemir, A. Y.
2015-08-01
Theory for neoclassical toroidal plasma viscosity in the low collisionality regime is extended to the vicinity of the magnetic axis in tokamaks with broken symmetry. The toroidal viscosity is induced by particles drifting off the perturbed magnetic surface under the influence of the symmetry breaking magnetic field. In the region away from the magnetic axis, the drift orbit dynamics is governed by the bounce averaged drift kinetic equation in the low collisionality regimes. In the vicinity of the magnetic axis, it is the drift kinetic equation, averaged over the trapped particle orbits, i.e., potato orbits, that governs the drift dynamics. The orbit averaged drift kinetic equation is derived when collision frequency is low enough for trapped particles to complete their potato trajectories. The resultant equation is solved in the 1 /ν regime to obtain transport fluxes and, thus, toroidal plasma viscosity through flux-force relation. Here, ν is the collision frequency. The viscosity does not vanish on the magnetic axis, and has the same scalings as that in the region away from magnetic axis, except that the fraction of bananas is replaced by the fraction of potatoes. It also has a weak radial dependence. Modeling of plasma flow velocity V for the case where the magnetic surfaces are broken is also discussed.
An Energetic Electron Flux Dropout Due to Magnetopause Shadowing on 1 June 2013
NASA Astrophysics Data System (ADS)
Kang, Suk-Bin; Fok, Mei-Ching; Komar, Colin; Glocer, Alex; Li, Wen; Buzulukova, Natalia
2018-02-01
We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May to 1 June 2013 using Van Allen Probe (Radiation Belt Storm Probes (RBSP)) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During the storm main phase, L-shells at RBSP locations are greater than 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing, and drift loss all results in butterfly electron pitch angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs during the storm main phase since the maximum observable equatorial pitch angle from RBSP is not larger than 40° during this period. To investigate the causes of the dropout, the CIMI model is used as a global 4-D kinetic inner magnetosphere model. The CIMI model reproduces the dropout with very similar timing and flux levels and PADs along the RBSP trajectory for 593 keV. Furthermore, the CIMI simulation shows butterfly PADs for 593 keV during the storm main phase. Based on comparison of observations and simulations, we suggest that the dropout during this event mainly results from magnetopause shadowing.
NASA Astrophysics Data System (ADS)
Grande, M.; Carter, M.; Perry, C. H.
2002-03-01
We briefly review the radiation belts, before moving on to a more detailed examination of the relationship between the Disturbance Storm Time Index (Dst) and relativistic electron flux. We show that there is a strong correlation between the growth phase of storms, as represented by Dst, and dropouts in electron flux. Recovery is accompanied by growth of the electron flux. We calculate Electron Phase Space Density (PSD) as a function of adiabatic invariants using electron particle mesurements from the Imaging Electron Sensor (IES) and the High Sensitivity Telescope (HIST) on the CEPPAD experiment onboard POLAR. We present the time history of the phase space density through the year 1998 as L-sorted plots and look in detail at the May 98 storm. Comparison with the Tsyganenko 96 magnetic field model prediction for the last closed field line suggests that the loss of electrons may be directly caused by the opening of drift shells.
GEM-CEDAR Challenge: Poynting Flux at DMSP and Modeled Joule Heat
NASA Technical Reports Server (NTRS)
Rastaetter, Lutz; Shim, Ja Soon; Kuznetsova, Maria M.; Kilcommons, Liam M.; Knipp, Delores J.; Codrescu, Mihail; Fuller-Rowell, Tim; Emery, Barbara; Weimer, Daniel R.; Cosgrove, Russell;
2016-01-01
Poynting flux into the ionosphere measures the electromagnetic energy coming from the magnetosphere. This energy flux can vary greatly between quiet times and geomagnetic active times. As part of the Geospace Environment Modeling-coupling energetics and dynamics of atmospheric regions modeling challenge, physics-based models of the 3-D ionosphere and ionospheric electrodynamics solvers of magnetosphere models that specify Joule heat and empirical models specifying Poynting flux were run for six geomagnetic storm events of varying intensity. We compared model results with Poynting flux values along the DMSP-15 satellite track computed from ion drift meter and magnetic field observations. Although being a different quantity, Joule heat can in practice be correlated to incoming Poynting flux because the energy is dissipated primarily in high latitudes where Poynting flux is being deposited. Within the physics-based model group, we find mixed results with some models overestimating Joule heat and some models agreeing better with observed Poynting flux rates as integrated over auroral passes. In contrast, empirical models tend to underestimate integrated Poynting flux values. Modeled Joule heat or Poynting flux patterns often resemble the observed Poynting flux patterns on a large scale, but amplitudes can differ by a factor of 2 or larger due to the highly localized nature of observed Poynting flux deposition that is not captured by the models. In addition, the positioning of modeled patterns appear to be randomly shifted against the observed Poynting flux energy input. This study is the first to compare Poynting flux and Joule heat in a large variety of models of the ionosphere.
Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST
NASA Astrophysics Data System (ADS)
Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan
2017-10-01
Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.
Particle transport model sensitivity on wave-induced processes
NASA Astrophysics Data System (ADS)
Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna
2017-04-01
Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewhurst, J. M.; Hnat, B.; Dendy, R. O.
2009-07-15
The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity {nabla}{sup 2}{phi}, where {phi} is electrostatic potential, in a plasma with background density inhomogeneity {kappa}=-{partial_derivative} ln n{sub 0}/{partial_derivative}x and magnetic field strength inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. Finite C introduces interchange effects and {nabla}B drifts into the framework of drift turbulence through compressibility of the ExB and diamagnetic drifts. This paper addresses the direct computation of the radial ExB density flux {gamma}{sub n}=-n{partial_derivative}{phi}/{partial_derivative}y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive {gamma}{sub n} and tracer motion, and analytical underpinnings. Systematic trends emergemore » in the dependence on C of the skewness of the distribution of pointwise {gamma}{sub n} and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity {pi}={nabla}{sup 2}{phi}-n+({kappa}-C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation {gamma}{sub n}=({kappa}-C)D{sub x} between the radial density flux {gamma}{sub n} and the radial tracer diffusivity D{sub x}, which is shown to explain key trends in the simulations.« less
NASA Astrophysics Data System (ADS)
Zhan, Weijia; S. Rodrigues, Fabiano
2018-01-01
Previous studies have suggested that weakening downward plasma drifts can produce favorable conditions for the ionospheric Generalized Rayleigh-Taylor (GRT) instability and explain the occurrence of postmidnight equatorial spread F (ESF). We evaluated this hypothesis using numerical simulations aided by measurements and attempted to explain ESF events observed in the American sector during June solstice, low solar flux conditions. We analyzed plasma drifts and ESF measurements made by the incoherent scatter radar of the Jicamarca Radio Observatory (11.95° S, 76.87° W, ˜1° dip). We found adequate measurements during a prototypical, quiet time event on 4-5 June 2008 when the downward drifts weakened and a fully developed ESF appeared. The measured drifts were used as input for the SAMI2 model. SAMI2 reproduced an "apparent" uplift of the ionosphere based on h'F measurements that was consistent with expectations and observations. SAMI2 also provided parameters for estimation of the flux tube linear growth rates of GRT instability associated with the weakening drift event. We found that the weakening drifts did produce unstable conditions with positive growth rates. The growth rates, however, were slower than those obtained for typical, premidnight ESF events and those obtained for similar drift conditions in other longitude sectors. We show, however, that departures in the wind pattern, from climatological model predictions, can produce favorable conditions for instability development. Following the hypothesis of Huba and Krall (2013) and using SAMI2 simulations, we show that equatorward winds, when combined with weakening drifts, could have contributed to the unstable conditions responsible for the postmidnight ESF events.
NASA Astrophysics Data System (ADS)
Oimatsu, S.; Masahito, N.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; MacDowall, R. J.; Smith, C.; Mitchell, D. G.
2017-12-01
Poloidal Pc4 wave and proton flux oscillation due to the drift-bounce resonance are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux modulation is observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of poloidal Pc4 wave. We estimate the resonant energy to be 120 keV for pitch angle (α) of 20º-40º or 140º-160º, and 170-180 keV for α=40º-60º or 120º-140º. The drift-bounce resonance theory gives the resonant energy of 110-120 keV, which is consistent with the observation for small α (or large α when α≥90º), but slightly higher than the observation for large α (or small α when α≥90º). We consider that this discrepancy of the resonant energy is due to the drift shell splitting. In order to examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) in both outbound and inbound paths. Results showed positive gradient in both paths, which means that the energy is transferred from the protons to the wave. During the appearance of poloidal Pc4 wave, the Dst* index shows a sudden increase of 6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and the variation of proton flux by the drift-bounce resonance. The estimated energy loss is almost comparable for both cases. Therefore, we suggest that the energy transfer from the ring current protons to the wave via the drift-bounce resonance cause the increase of Dst* index.
Global magnetic anomaly and aurora of Neptune
NASA Technical Reports Server (NTRS)
Cheng, Andrew F.
1990-01-01
The large offset and tilt of Neptune's dipole magnetic field combine to create a global magnetic anomaly, analogous to but much more important than earth's South Atlantic Anomaly. Energetic particle precipitation loss within the Neptune anomaly creates 'atmospheric drift shadows' within which particle fluxes are greatly reduced. The energetic particle dropout observed by Voyager near closest approach occurred near the predicted times when Voyager passed within the atmospheric drift shadow. Extremely soft, structured bursts of ions and electrons within the drift shadow may result from plasma wave-induced pitch angle scattering of trapped particles confined near the magnetic equator. The dropout does not necessarily imply that Voyager passed through an earth-like discrete auroral zone, as earlier reported. The ion and electron fluxes observed within the dropout period correspond to particles that must precipitate to Neptune's atmosphere within the anomaly region. This anomaly precipitation can account for a major portion of the ultraviolet emissions previously identified as Neptune aurora.
Kunte, Pravin D; Alagarsamy, R; Hursthouse, A S
2013-06-01
The littoral drift regime along the northeastern coast of India was investigated by analyzing coastal drift indicators and shoreline changes based on multitemporal satellite images. The study of offshore turbidity patterns and quantitative estimation of suspended sediments was undertaken to understand the magnitude and direction of movement of sediment fluxes. The study revealed that: (1) the character of coastal landforms and sedimentation processes indicate that the sediment transport is bidirectional and monsoon dependent; (2) multidate, multitemporal analysis of satellite images helps to show the nature of sediment transport along the coast. The dominant net sediment transport is in a NE direction along the eastern coast of India. Finally, this assessment demonstrates the potential of remote sensing technology in understanding the coastal morphometric changes, long-term sediment transport, shoreline changes, and offshore turbidity distribution pattern and the implications for the transport of sediment-associated pollutants.
What the Sunspot Record Tells Us About Space Climate
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Wilson, Robert M.
2004-01-01
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modem measures of solar activity including: 10.7-cm radio flux, total irradiance, x-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modem measures of solar activity, and enough to provide important details about long-term variations in solar activity or Space Climate. The sunspot record shows: 1) sunspot cycles have periods of 131 plus or minus 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5 ) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period, 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 1.45 plus or minus 30 in 2010 while the following cycle should have a maximum of about 70 plus or minus 30 in 2023.
Improving Photometry and Stellar Signal Preservation with Pixel-Level Systematic Error Correction
NASA Technical Reports Server (NTRS)
Kolodzijczak, Jeffrey J.; Smith, Jeffrey C.; Jenkins, Jon M.
2013-01-01
The Kepler Mission has demonstrated that excellent stellar photometric performance can be achieved using apertures constructed from optimally selected CCD pixels. The clever methods used to correct for systematic errors, while very successful, still have some limitations in their ability to extract long-term trends in stellar flux. They also leave poorly correlated bias sources, such as drifting moiré pattern, uncorrected. We will illustrate several approaches where applying systematic error correction algorithms to the pixel time series, rather than the co-added raw flux time series, provide significant advantages. Examples include, spatially localized determination of time varying moiré pattern biases, greater sensitivity to radiation-induced pixel sensitivity drops (SPSDs), improved precision of co-trending basis vectors (CBV), and a means of distinguishing the stellar variability from co-trending terms even when they are correlated. For the last item, the approach enables physical interpretation of appropriately scaled coefficients derived in the fit of pixel time series to the CBV as linear combinations of various spatial derivatives of the pixel response function (PRF). We demonstrate that the residuals of a fit of soderived pixel coefficients to various PRF-related components can be deterministically interpreted in terms of physically meaningful quantities, such as the component of the stellar flux time series which is correlated with the CBV, as well as, relative pixel gain, proper motion and parallax. The approach also enables us to parameterize and assess the limiting factors in the uncertainties in these quantities.
Features of highly structured equatorial plasma irregularities deduced from CHAMP observations
NASA Astrophysics Data System (ADS)
Xiong, C.; Lühr, H.; Ma, S. Y.; Stolle, C.; Fejer, B. G.
2012-08-01
In this study five years of CHAMP (Challenging Mini-satellite Payload) fluxgate magnetometer (FGM) data is used to investigate the characteristics of Equatorial Plasma Bubbles (EPBs). We filtered the FGM data by using band-passes with four different cut-off periods to get the EPBs with different maximum spatial scale sizes in the meridional plane ranging from 76-608 km. Associated with the EPB observations at about 400 km, the typical altitude of CHAMP during the year 2000-2005, we also investigate the post-sunset equatorial vertical plasma drift data from ROCSAT-1 (Republic of China Satellite 1). Since the height of the F-layer is highly correlated with the vertical plasma drift and solar flux, we sorted the ROCSAT-1 data into different groups by F10.7. From the integrated vertical drift we have estimated the post-sunset uplift of the ionosphere. By comparing the properties of EPB occurrence for different scale sizes with the global distribution of plasma vertical uplift, we have found that EPBs reaching higher altitudes are more structured than those which are sampled by CHAMP near the top side of the depleted fluxtube. Such a result is in accord with 3-D model simulations (Aveiro and Hysell, 2010). Small-scale EPB structures are observed by CHAMP when the irregularities reach apex heights of 800 km and more. Such events are encountered primarily in the Brazilian sector during the months around November, when the post-sunset vertical plasma drift is high.
Clouds and ocean-atmosphere interactions. Final report, September 15, 1992--September 14, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, D.A.; Jensen, T.G.
1995-10-01
Predictions of global change based on climate models are influencing both national and international policies on energy and the environment. Existing climate models show some skill in simulating the present climate, but suffer from many widely acknowledged deficiencies. Among the most serious problems is the need to apply ``flux corrections`` to prevent the models from drifting away from the observed climate in control runs that do not include external perturbing influences such as increased carbon dioxide (CO{sub 2}) concentrations. The flux corrections required to prevent climate drift are typically comparable in magnitude to the observed fluxes themselves. Although there canmore » be many contributing reasons for the climate drift problem, clouds and their effects on the surface energy budget are among the prime suspects. The authors have conducted a research program designed to investigate global air-sea interaction as it relates to the global warming problem, with special emphasis on the role of clouds. Their research includes model development efforts; application of models to simulation of present and future climates, with comparison to observations wherever possible; and vigorous participation in ongoing efforts to intercompare the present generation of atmospheric general circulation models.« less
A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons
NASA Astrophysics Data System (ADS)
Green, J. C.; Kivelson, M. G.
2001-11-01
Using data from the Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD)-High Sensitivity Telescope (HIST) instrument on the Polar spacecraft and ground magnetometer data from the 210 meridian magnetometer chain, we test the ULF wave drift resonance theory proposed to explain relativistic electron phase space density enhancements. We begin by investigating changes in electron flux due to the ``Dst effect.'' The Dst effect refers to the adiabatic response of relativistic electrons to changes in the magnetic field characterized by the Dst index. The Dst effect, assuming no loss or addition of new electrons, produces reversible order of magnitude changes in relativistic electrons flux measured at fixed energy, but it cannot account for the flux enhancement that occurs in the recovery phase of most storms. Liouville's theorem states that phase space density expressed in terms of constant adiabatic invariants is unaffected by adiabatic field changes and thus is insensitive to the Dst effect. It is therefore useful to express flux measurements in terms of phase space densities at constant first, second and third adiabatic invariants. The phase space density is determined from the CEPPAD-HIST electron detector that measures differential directional flux of electrons from 0.7 to 9 MeV and the Tsyganenko 96 field model. The analysis is done for January to June 1997. The ULF wave drift resonance theory that we test proposes that relativistic electrons are accelerated by an m=2 toroidal or poloidal mode wave whose frequency equals the drift frequency of the electron. The theory is tested by comparing the relativistic electron phase space densities to wave power determined at three ground stations with L* values of 4.0, 5.7 and 6.2. Comparison of the wave data to the phase space densities shows that five out of nine storm events are consistent with the ULF wave drift resonance mechanism, three out of nine give ambiguous support to the model, and one event has high ULF wave power at the drift frequency of the electrons but no corresponding phase space density enhancement suggesting that ULF wave power alone is not sufficient to cause an electron response. Two explanations of the anomalous event are investigated including excessive loss of electrons to the magnetopause and wave duration.
NASA Astrophysics Data System (ADS)
Raju, K. P.
2018-05-01
The Calcium K spectroheliograms of the Sun from Kodaikanal have a data span of about 100 years and covers over 9 solar cycles. The Ca line is a strong chromospheric line dominated by chromospheric network and plages which are good indicators of solar activity. Length-scales and relative intensities of the chromospheric network have been obtained in the solar latitudes from 50 degree N to 50 degree S from the spectroheliograms. The length-scale was obtained from the half-width of the two-dimensional autocorrelation of the latitude strip which gives a measure of the width of the network boundary. As reported earlier for the transition region extreme ultraviolet (EUV) network, relative intensity and width of the chromospheric network boundary are found to be dependent on the solar cycle. A varying phase difference has been noticed in the quantities in different solar latitudes. A cross-correlation analysis of the quantities from other latitudes with ±30 degree latitude revealed an interesting phase difference pattern indicating flux transfer. Evidence of equatorward flux transfer has been observed. The average equatorward flux transfer was estimated to be 5.8 ms-1. The possible reasons of the drift could be meridional circulation, torsional oscillations, or the bright point migration. Cross-correlation of intensity and length-scale from the same latitude showed increasing phase difference with increasing latitude. We have also obtained the cross correlation of the quantities across the equator to see the possible phase lags in the two hemispheres. Signatures of lags are seen in the length scales of southern hemisphere near the equatorial latitudes, but no such lags in the intensity are observed. The results have important implications on the flux transfer over the solar surface and hence on the solar activity and dynamo.
L-H transitions driven by ion heating in scrape-off layer turbulence (SOLT) model simulations
NASA Astrophysics Data System (ADS)
Russell, D. A.; D'Ippolito, D. A.; Myra, J. R.
2015-11-01
The original SOLT model now includes the evolution of ion pressure consistent with drift-ordering. It is a two-dimensional, electrostatic reduced model wherein closure relations, obtained by integrating the equations along the B-field, model parallel physics that includes sheath-mediated current and heat flux in the scrape-off-layer and electron drift waves inside the separatrix. Low (L) and high (H) confinement regimes are observed in SOLT simulations, depending on the strength of an ion pressure (i.e., ion heating) source localized inside the separatrix: With increasing heating, particle and energy confinement times at first decrease in the L-mode then rise in the H-mode. The L-H transition is marked by distinct changes in sheared-flow profiles. The addition of ion pressure dynamics enables modeling the self-consistent interaction between the ion diamagnetic drift and the radial electric field (mean and zonal flows). The roles of these sheared flows in mediating the L-H transition are explored. A new diagnostic, based on the density correlation function, is applied to study blob velocities in different regimes. Work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-97ER54392.
Simulated Prompt Acceleration of Multi-MeV Electrons by the 17 March 2015 Interplanetary Shock
NASA Astrophysics Data System (ADS)
Hudson, Mary; Jaynes, Allison; Kress, Brian; Li, Zhao; Patel, Maulik; Shen, Xiao-Chen; Thaller, Scott; Wiltberger, Michael; Wygant, John
2017-10-01
Prompt enhancement of relativistic electron flux at L = 3-5 has been reported from Van Allen Probes Relativistic Electron Proton Telescope (REPT) measurements associated with the 17 March 2015 interplanetary shock compression of the dayside magnetosphere. Acceleration by ˜1 MeV is inferred on less than a drift timescale as seen in prior shock compression events, which launch a magnetosonic azimuthal electric field impulse tailward. This impulse propagates from the dayside around the flanks accelerating electrons in drift resonance at the dusk flank. Such longitudinally localized acceleration events produce a drift echo signature which was seen at >1 MeV energy on both Van Allen Probe spacecraft, with sustained observations by Probe B outbound at L = 5 at 2100 MLT at the time of impulse arrival, measured by the Electric Fields and Waves instrument. MHD test particle simulations are presented which reproduce drift echo features observed in the REPT measurements at Probe B, including the energy and pitch angle dependence of drift echoes observed. While the flux enhancement was short lived for this event due to subsequent inward motion of the magnetopause, stronger events with larger electric field impulses, as observed in March 1991 and the Halloween 2003 storm, produce enhancements which can be quantified by the inward radial transport and energization determined by the induction electric field resulting from dayside compression.
Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations
Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.; ...
2016-06-07
On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ~1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ~1300 to 0100 LT. We then concludemore » that the shock-induced electron dropout is not caused by the magnetopause shadowing. Furthermore, the dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.« less
Du, Yingge; Chambers, Scott A.
2014-10-20
Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%,more » which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.« less
Radar studies of midlatitude ionospheric plasma drifts
NASA Astrophysics Data System (ADS)
Scherliess, L.; Fejer, B. G.; Holt, J.; Goncharenko, L.; Amory-Mazaudier, C.; Buonsanto, M. J.
2001-02-01
We use incoherent scatter radar measurements from Millstone Hill and Saint Santin to study the midlatitude F region electrodynamic plasma drifts during geomagnetically quiet and active periods. We present initially a local time, season, and solar flux dependent analytical model of the quiet time zonal and meridional
Investigations of Particle Transport in the Texas Helimak
NASA Astrophysics Data System (ADS)
Taylor, E. I.; Rowan, W. L.; Gentle, K. W.; Huang, H.; Williams, C. B.
2016-10-01
The correlation between electrostatic turbulence and particle flux is investigated in a simple magnetic torus, the Helimak. The Helimak is an experimental realization of a sheared cylindrical slab that generates and heats a plasma with microwaves at 2.45 GHz and confines it in a helical magnetic field. Although it is MHD stable, the plasma is always in a nonlinearly saturated state of microturbulence. The causes of this turbulence are diverse and it is thought that it is either due to drift wave instabilities or interchange instabilites. The local particle flux is estimated over most of the plasma cross section by measuring the particle source using filtered cameras. Plasma flow along the field lines is physically similar to SOL flows in tokamaks. It is significant and can be measured directly as well as inferred from asymmetries in the electron density. The cross field transport due to electrostatic turbulence is measured as the cross correlation of radial electric field fluctuations with electron density fluctuations with the data acquired using Langmuir probes. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-04ER54766.
NASA Astrophysics Data System (ADS)
Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Guyomarc'h, Gilbert; Heiser, Micha; Nishimura, Kouichi
2015-04-01
Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns. It does not, however, provide a quantitative estimate of changes in snow depths. The objective of our research was to introduce a new parameter to quantify changes in snow depths in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its consistently bi-modal wind directions. Our work focused on two pronounced, approximately 10 m high terrain breaks, and we worked with 1 m resolution digital snow surface models (DSM). The DSM and measured changes in snow depths were obtained with high-accuracy terrestrial laser scan (TLS) measurements. First we calculated the terrain-based parameter Sx on a digital snow surface model and correlated Sx with measured changes in snow-depths (Δ SH). Results showed that Δ SH can be approximated by Δ SHestimated = α * Sx, where α is a newly introduced parameter. The parameter α has shown to be linked to the amount of snow deposited influenced by blowing snow flux. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter α . To simulate the development of the snow surface in dependency of Sx, SPC flux and time, we apply a simple cellular automata system. The system consists of raster cells that develop through discrete time steps according to a set of rules. The rules are based on the states of neighboring cells. Our model assumes snow transport in dependency of Sx gradients between neighboring cells. The cells evolve based on difference quotients between neighbouring cells. Our analyses and results are steps towards using the terrain-based parameter Sx, coupled with SPC data, to quantitatively estimate changes in snow depths, using high raster resolutions of 1 m.
NASA Astrophysics Data System (ADS)
Soulsby, C.; Rodgers, P.; Malcolm, I. A.; Dunn, S.
Geochemical and isotopic tracers have been shown to have widespread utility in catch- ment hydrology in terms of identifying hydrological source areas and characterising residence time distributions. In many cases application of tracer techniques has pro- vided insights into catchment functioning that could not be obtained from hydromet- ric and/or modelling studies alone. This paper will show how the use of tracers has contributed to an evolving perceptual model of hydrological pathways and runoff gen- eration processes in catchments in the Scottish highlands. In particular the paper will focus on the different insights that are gained at three different scales of analysis; (a) nested sub-catchments within a mesoscale (ca. 200 square kilometers) experimen- tal catchment; (b) hillslope-riparian interactions and (c) stream bed fluxes. Nested hydrometric and hydrochemical monitoring within the mesoscale Feugh catchment identified three main hydrological response units: (i) plateau peatlands which gener- ated saturation overland flow in the catchment headwaters, (ii) steep valley hillslopes which drain from the plateaux into (iii) alluvial and drift aquifers in the valley bottoms. End Member Mixing Analysis (EMMA) in 8 nested sub-catchments indicated that that stream water tracer concentrations can be modelled in terms of 2 dominant runoff pro- cesses; overland flow from the peat and groundwater from the drift aquifers. Ground- water contributions generally increased with catchment size, though this was moder- ated by the characteristics of individual sub-basins, with drift cover being particularly important. Hillslope riparian interactions were also examined using tracers, hydromet- ric data and a semi-distributed hydrological model. This revealed that in the glaciated, drift covered terrain of the Scottish highlands, extensive valley bottom aquifers effec- tively de-couple hillslope waters from the river channel. Thus, riparian groundwater appears to significantly contribute to storm runoff as well as sustain base flows. Water from steeper hillslopes appears to primarily recharge valley bottom aquifers. Fluxes from the drift aquifers into the stream bed were investigated using hydrometric and tracer techniques. Groundwater fluxes through the stream bed appear to be relatively localized relating to geological boundaries or changes in drift characteristics. How- ever, these fluxes are also controlled by morphological features in the river channel which exert a strong control on localized groundwater U surface water interactions. 1 If catchment hydrology is to contribute to a functional understanding of freshwater ecosystems it is argued that integrated tracer studies, at different scales and incorpo- rating both observations from field work and modelling applications, have a key role to play. 2
Kubo Resistivity of magnetic flux ropes
NASA Astrophysics Data System (ADS)
Gekelman, Walter; Dehaas, Tim; Pribyl, Pat; Vincena, Stephen; van Compernolle, Bart; Sydora, Rick; Tang, Shawn Wenjie
2017-10-01
Magnetic flux ropes are bundles of twisted magnetic fields and their associated current. They are common on the surface of the sun (and presumably all other stars) and are observed to have a large range of sizes and lifetimes. They can become unstable and resulting in coronal mass ejections that can travel to earth and indeed, have been observed by satellites. Two side by side flux ropes are generated in the LAPD device at UCLA. Using a series of novel diagnostics the following key quantities, B, u, Vp, n, Te have been measured at more than 48,000 spatial locations and 7,000 time steps. Every term in Ohm's law is also evaluated across and along the local magnetic field and the plasma resistivity derived and it is shown that Ohms law is non-local. The electron distribution function parallel and antiparallel to the background magnetic field was measured and found to be a drifting Kappa function. The Kubo AC conductivity at the flux rope rotation frequency, a 3X3 tensor, was evaluated using velocity correlations and will be presented. This yields meaningful results for the global resistivity. Frequency spectra and the presence of time domain structures may offer a clue to the enhanced resistivity. Work supported by the Department of Energy and National Science Foundation.
NASA Technical Reports Server (NTRS)
Su, S.-Y.; Mcpherron, R. L.; Konradi, A.; Fritz, T. A.
1980-01-01
The ultra-low-frequency modulation of ion flux densities at small pitch angles observed by ATS 6 is examined, with particular attention given to a detailed analysis of a representative event. ULF modulation events with maximum modulation at small pitch angles were identified 14 times during the first eight months of operation of the NOAA low-energy particle detector on ATS 6. For the event of October 23, 1974, maximum flux modulation, with a maximum/minimum intensity ratio of 3.7, was observed in the 100 to 150 keV detector at an angle of 32 deg to the ambient field. Spectral analysis of magnetic field data reveals a right elliptically polarized magnetic perturbation with a 96-sec period and a 5-gamma rms amplitude, propagating in the dipole meridian at an angle of about 15 deg to the ambient field and the dipole axis. Proton flux modulation is found to lag the field by up to 180 deg for the lowest-energy channel. Observations are compared with the drift wave, MHD slow wave, and bounce resonant interaction associated with transverse wave models, and it is found that none of the wave models can adequately account for all of the correlated particle and field oscillations.
Physical requirements and milestones for the HIT-PoP Experiment
NASA Astrophysics Data System (ADS)
Jarboe, Thomas
2011-10-01
Recent success with HIT-SI demonstrates the viability of steady inductive helicity injection (SIHI) as a spheromak formation and sustainment method. Results include the sustainment of toroidal current of over 50 kA, up to 40 kA of plasma current that is separate from the injectors, toroidal flux up to 6 times the peak injected flux, and j/n > 1014Am. All were achieved with 10MW or less applied power. This paper explores the requirements for a confinement test of the concept using a larger proof of principle experiment. The confinement experiment must not exceed the beta limit, the drift parameter limit, or the wall loading limit, where the drift parameter is (drift of electrons relative to ions to produce current)/(ion thermal speed). It must also exceed a minimum j/n, a minimum n a, and a minimum electron temperature, where a is the minor radius. The drift parameter limit and beta limit appear to play defining roles in spheromak performance leading to a very favorable scaling of wall loading with size. The milestones sequence suggested is the following: 1. Startup at drift parameter and beta limit minimum density. 2. Raise current until j/n exceeds 10-14Am. 3. Raise the current and temperature until T ~ 50 eV for good ionization. 4. Raise the current and density until n a > 2x1019 m-2 for neutral screening. 5. Raise current and temperature until T > 200eV so magnetic confinement can be studied.
Plasma and field observations of a compressional Pc 5 wave event
NASA Astrophysics Data System (ADS)
Baumjohann, W.; Sckopke, N.; LaBelle, J.; Klecker, B.; Lühr, H.; Glassmeier, K. H.
1987-11-01
The full complement of data obtained by all the instruments on board the AMPTE/IRM satellite during a Pc 5 wave event on October 24, 1984 is analyzed. Both energetic proton and electron fluxes were anticorrelated with the compressional magnetic field oscillations, indicating that the event belongs to the class of 'in-phase events'. The energetic proton data also exhibited a new feature: flux minima and maxima at low energies were observed somewhat later than those at higher energies. The magnetic and plasma pressure oscillations satisfy the pressure balance equation for the drift mirror mode much better than that for drift compressional Alfven waves. However, the classical criterion for the onset of the mirror instability is not satisfied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touma, Rony; Zeidan, Dia
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potentialmore » of the proposed scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaojie, E-mail: wangsj@ustc.edu.cn
It is found that the Lorentz force generated by the magnetic drift drives a generic plasma pinch flux of particle, energy and momentum through the Stokes-Einstein relation. The proposed theoretical model applies for both electrons and ions, trapped particles, and passing particles. An anomalous parallel current pinch due to the electrostatic turbulence with long parallel wave-length is predicted.
Yue, Chao; Li, Wen; Reeves, Geoffrey D.; ...
2016-07-01
Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Chao; Li, Wen; Reeves, Geoffrey D.
Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less
Decoupling of mass flux and turbulent wind fluctuations in drifting snow
NASA Astrophysics Data System (ADS)
Paterna, E.; Crivelli, P.; Lehning, M.
2016-05-01
The wind-driven redistribution of snow has a significant impact on the climate and mass balance of polar and mountainous regions. Locally, it shapes the snow surface, producing dunes and sastrugi. Sediment transport has been mainly represented as a function of the wind strength, and the two processes assumed to be stationary and in equilibrium. The wind flow in the atmospheric boundary layer is unsteady and turbulent, and drifting snow may never reach equilibrium. Our question is therefore: what role do turbulent eddies play in initiating and maintaining drifting snow? To investigate the interaction between drifting snow and turbulence experimentally, we conducted several wind tunnel measurements of drifting snow over naturally deposited snow covers. We observed a coupling between snow transport and turbulent flow only in a weak saltation regime. In stronger regimes it self-organizes developing its own length scales and efficiently decoupling from the wind forcing.
Mean Lagrangian drift in continental shelf waves
NASA Astrophysics Data System (ADS)
Drivdal, M.; Weber, J. E. H.
2012-04-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.
Radiation stress and mean drift in continental shelf waves
NASA Astrophysics Data System (ADS)
Weber, Jan Erik H.; Drivdal, Magnus
2012-03-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E̅̅ over the shelf region, the radiation stress tensor component S̅11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio S̅11/E̅ depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of latter depends on ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deepwater drilling accidents.
The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Rex, M.; Dethloff, K.; Shupe, M.; Sommerfeld, A.
2016-12-01
The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is a key international flagship initiative under the auspices of the International Arctic Science Committee (IASC). The main aim of MOSAiC is to improve our understanding of the functioning of the Arctic coupled system with a complex interplay between processes in the atmosphere, ocean, sea ice and ecosystem coupled through bio-geochemical interactions. The main objective of MOSAiC is to develop a better understanding of these important coupled-system processes so they can be more accurately represented in regional- and global-scale weather- and climate models. Observations covering a full annual cycle over the Arctic Ocean of many critical parameters such as cloud properties, surface energy fluxes, atmospheric aerosols, small-scale sea-ice and oceanic processes, biological feedbacks with the sea-ice ice and ocean, and others have never been made in the central Arctic in all seasons, and certainly not in a coupled system fashion. The main scientific goals focus on data assimilation for numerical weather prediction models, improved sea ice forecasts and climate models, ground truth for satellite remote sensing, energy budget and fluxes through interfaces, sources, sinks and cycles of chemical species, boundary layer processes, habitat conditions and primary productivity and stakeholder services. The MOSAiC Observatory will be deployed in, and drift with, the Arctic sea-ice pack for a full annual cycle, starting in fall 2019 and ending in fall 2020. Initial drift plans are to start in the newly forming fall sea-ice in the East Siberian Sea and follow the Transpolar Drift. The German Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research will made a huge contribution with the icebreaker Polarstern to serve as the central drifting observatory for this year long drift, and the US Department of Energy has committed a comprehensive atmospheric measurement suite. Many other nations and agencies have expressed interest in participation and in gaining access to this unprecedented observational dataset.
Reduced-Drift Virtual Gyro from an Array of Low-Cost Gyros.
Vaccaro, Richard J; Zaki, Ahmed S
2017-02-11
A Kalman filter approach for combining the outputs of an array of high-drift gyros to obtain a virtual lower-drift gyro has been known in the literature for more than a decade. The success of this approach depends on the correlations of the random drift components of the individual gyros. However, no method of estimating these correlations has appeared in the literature. This paper presents an algorithm for obtaining the statistical model for an array of gyros, including the cross-correlations of the individual random drift components. In order to obtain this model, a new statistic, called the "Allan covariance" between two gyros, is introduced. The gyro array model can be used to obtain the Kalman filter-based (KFB) virtual gyro. Instead, we consider a virtual gyro obtained by taking a linear combination of individual gyro outputs. The gyro array model is used to calculate the optimal coefficients, as well as to derive a formula for the drift of the resulting virtual gyro. The drift formula for the optimal linear combination (OLC) virtual gyro is identical to that previously derived for the KFB virtual gyro. Thus, a Kalman filter is not necessary to obtain a minimum drift virtual gyro. The theoretical results of this paper are demonstrated using simulated as well as experimental data. In experimental results with a 28-gyro array, the OLC virtual gyro has a drift spectral density 40 times smaller than that obtained by taking the average of the gyro signals.
Johnson, Margaret E.; Hummer, Gerhard
2012-01-01
We explore the theoretical foundation of different string methods used to find dominant reaction pathways in high-dimensional configuration spaces. Pathways are assessed by the amount of reactive flux they carry and by their orientation relative to the committor function. By examining the effects of transforming between different collective coordinates that span the same underlying space, we unmask artificial coordinate dependences in strings optimized to follow the free energy gradient. In contrast, strings optimized to follow the drift vector produce reaction pathways that are significantly less sensitive to reparameterizations of the collective coordinates. The differences in these paths arise because the drift vector depends on both the free energy gradient and the diffusion tensor of the coarse collective variables. Anisotropy and position dependence of diffusion tensors arise commonly in spaces of coarse variables, whose generally slow dynamics are obtained by nonlinear projections of the strongly coupled atomic motions. We show here that transition paths constructed to account for dynamics by following the drift vector will (to a close approximation) carry the maximum reactive flux both in systems with isotropic position dependent diffusion, and in systems with constant but anisotropic diffusion. We derive a simple method for calculating the committor function along paths that follow the reactive flux. Lastly, we provide guidance for the practical implementation of the dynamic string method. PMID:22616575
Characteristics of Muti-pulsing CHI driven ST plasmas on HIST
NASA Astrophysics Data System (ADS)
Ishihara, M.; Hanao, T.; Ito, K.; Matsumoto, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2011-10-01
The flux amplification and sustainment of the ST configurations by operating in Multi-pulsing Coaxial Helicity Injection (M-CHI) method have been demonstrated on HIST. The multi-pulsing experiment was demonstrated in the SSPX spheromak device at LLNL. In the double pulsing discharges, we have observed that the plasma current has been sustained much longer against the resistive decay as compared to the single CHI. We have measured the radial profiles of the flow velocities by using Ion Doppler Spectrometer and Mach probes. The result shows that poloidal shear flow exists between the open flux column and the most outer closed flux surface. The poloidal velocity shear at the interface may be caused by the ion diamagnetic drift, because of a steep density gradient there. The radial electric field is determined by the flow velocities and the ion pressure gradient through the radial momentum balance equation. We have investigated the contribution of ExB or the ion pressure gradient on the poloidal velocity shear by comparing the impurity ion flow obtained from the IDS with the bulk ion flow from the Mach probe. It should be noted that the diamagnetic drift velocity of the impurity is much smaller than ExB drift velocity. We will discuss characteristics of M-CHI-driven ST plasmas by varying TF coil current and the line averaged electron density.
Ambipolar diffusion drifts and dynamos in turbulent gases
NASA Technical Reports Server (NTRS)
Zweibel, Ellen G.
1988-01-01
Ambipolar drift in turbulent fluids are considered. Using mean-field electrodynamics, a two-scale theory originally used to study hydromagnetic dynamos, it is shown that magnetic fields can be advected by small-scale magnetosonic (compressional) turbulence or generated by Alfvenic (helical) turbulence. A simple dynamo theory is made and is compared with standard theories in which dissipation is caused by turbulent diffusion. The redistribution of magnetic flux in interstellar clouds is also discussed.
Kinetic stability analysis on electromagnetic filamentary structure
NASA Astrophysics Data System (ADS)
Lee, Wonjae; Krasheninnikov, Sergei
2014-10-01
A coherent radial transport of filamentary structures in SOL region is important for its characteristics that can increase unwanted high fluxes to plasma facing components. In the course of propagation in radial direction, the coherency of the filaments is significantly limited by electrostatic resistive drift instability (Angus et al., 2012). Considering higher plasma pressure, which would have more large impact in heat fluxes, electromagnetic effects will reduce the growth rate of the drift wave instability and increase the instabilities from electron inertial effects. According to a linear stability analysis on equations with fluid approximation, the maximum growth rate of the instability from the electron inertia is higher than that of drift-Alfvén wave instability in high beta filaments such as ELMs. However, the analysis on the high beta filaments requires kinetic approach, since the decreased collisionality will make the fluid approximation broken. Therefore, the kinetic analysis will be presented for the electromagnetic effects on the dynamics of filamentary structures. This work was supported by the USDOE Grants DE-FG02-04ER54739 and DE-SC0010413 at UCSD and also by the Kwanjeong Educational Foundation.
Energy Balance Bowen Ratio (EBBR) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D. R.
2016-01-01
The Energy Balance Bowen Ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors frommore » instrument offset drift.« less
Energy Balance Bowen Ratio Station (EBBR) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, DR
2011-02-23
The energy balance Bowen ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors frommore » instrument offset drift.« less
NASA Astrophysics Data System (ADS)
Dentith, Jennifer E.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Tindall, Julia C.; Smith, Robin S.
2018-05-01
Low-resolution, complex general circulation models (GCMs) are valuable tools for studying the Earth system on multi-millennial timescales. However, slowly evolving salinity drifts can cause large shifts in climatic and oceanic regimes over thousands of years. We test two different schemes for neutralising unforced salinity drifts in the FAMOUS GCM: surface flux correction and volumetric flux correction. Although both methods successfully maintain a steady global mean salinity, local drifts and subsequent feedbacks promote cooling (≈ 4 °C over 6000 years) and freshening (≈ 2 psu over 6000 years) in the North Atlantic Ocean, and gradual warming (≈ 0.2 °C per millennium) and salinification (≈ 0.15 psu per millennium) in the North Pacific Ocean. Changes in the surface density in these regions affect the meridional overturning circulation (MOC), such that, after several millennia, the Atlantic MOC (AMOC) is in a collapsed state, and there is a strong, deep Pacific MOC (PMOC). Furthermore, the AMOC exhibits a period of metastability, which is only identifiable with run lengths in excess of 1500 years. We also compare simulations with two different land surface schemes, demonstrating that small biases in the surface climate may cause regional salinity drifts and significant shifts in the MOC (weakening of the AMOC and the initiation then invigoration of PMOC), even when the global hydrological cycle has been forcibly closed. Although there is no specific precursor to the simulated AMOC collapse, the northwest North Pacific and northeast North Atlantic are important areas that should be closely monitored for trends arising from such biases.
Lee, Ko-Huan; Shaner, Pei-Jen L; Lin, Yen-Po; Lin, Si-Min
2016-05-01
Acoustic signals for mating are important traits that could drive population differentiation and speciation. Ecology may play a role in acoustic divergence through direct selection (e.g., local adaptation to abiotic environment), constraint of correlated traits (e.g., acoustic traits linked to another trait under selection), and/or interspecific competition (e.g., character displacement). However, genetic drift alone can also drive acoustic divergence. It is not always easy to differentiate the role of ecology versus drift in acoustic divergence. In this study, we tested the role of ecology and drift in shaping geographic variation in the advertisement calls of Microhyla fissipes. We examined three predictions based on ecological processes: (1) the correlation between temperature and call properties across M. fissipes populations; (2) the correlation between call properties and body size across M. fissipes populations; and (3) reproductive character displacement (RCD) in call properties between M. fissipes populations that are sympatric with and allopatric to a congener M. heymonsi. To test genetic drift, we examined correlations among call divergence, geographic distance, and genetic distance across M. fissipes populations. We recorded the advertisement calls from 11 populations of M. fissipes in Taiwan, five of which are sympatrically distributed with M. heymonsi. We found geographic variation in both temporal and spectral properties of the advertisement calls of M. fissipes. However, the call properties were not correlated with local temperature or the callers' body size. Furthermore, we did not detect RCD. By contrast, call divergence, geographic distance, and genetic distance between M. fissipes populations were all positively correlated. The comparisons between phenotypic Q st (P st) and F st values did not show significant differences, suggesting a role of drift. We concluded that genetic drift, rather than ecological processes, is the more likely driver for the geographic variation in the advertisement calls of M. fissipes.
Motion of charged particles in planetary magnetospheres with nonelectromagnetic forces
NASA Technical Reports Server (NTRS)
Huang, T. S.; Hill, T. W.; Wolf, R. A.
1988-01-01
Expressions are derived for the mirror point, the bounce period, the second adiabatic invariant, and the bounce-averaged azimuthal drift velocity as functions of equatorial pitch angle for a charged particle in a dipole magnetic field in the presence of centrifugal, gravitational, and Coriolis forces. These expressions are evaluated numerically, and the results are displayed graphically. The average azimuthal drift speed for a flux tube containing a thermal equilibrium plasma distribution is also evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Jie; Zong, Q. G.; Miyoshi, Y.
Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less
Ren, Jie; Zong, Q. G.; Miyoshi, Y.; ...
2017-08-30
Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less
Stangeby, Peter C.; Elder, J. David; McLean, Adam G.; ...
2017-03-27
We calculated the 2D spatial distributions of cross field drift velocities from 2D Thomson scattering measurements of T e and n e in the divertor and SOL of DIII-D. In contrast with the method that has been used on DIII-D where the 2D distribution of plasma potential V plasma is obtained from measurements of the probe floating potential of reciprocating probes, the present method does not require insertion of a probe into the plasma and can therefore be used in high power discharges. Furthermore, the 2D spatial distribution of V plasma is calculated from Ohm’s Law for the parallel electricmore » field E || along each flux tube, E || s || = -1.71dT e/ds || - T e/n edn e/ds ||, where the Thomson scattering values of T e and n e are used. To within a constant of integration, V plasma is obtained by integrating E || along the flux-tubes (field lines); the constant is obtained for each flux tube using the sheath drop at the target calculated from the characteristic of Langmuir probes built into the divertor tiles. The 2D distributions of E./01/2 = -dV4/ds./01/2, E452510/2 = -dV4/ds452510/2, v789 452510/2 = E./01/2/B and v789 ./01/2 = E452510/2/B are then calculated as well as the particle drift flux densities Γ789 452510/2 = nv789 452510/2 and Γ789 ./01/2 = nv789 ./01/2 for electrons, fuel ions and impurity ions, using the appropriate values of particle density, n.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stangeby, Peter C.; Elder, J. David; McLean, Adam G.
We calculated the 2D spatial distributions of cross field drift velocities from 2D Thomson scattering measurements of T e and n e in the divertor and SOL of DIII-D. In contrast with the method that has been used on DIII-D where the 2D distribution of plasma potential V plasma is obtained from measurements of the probe floating potential of reciprocating probes, the present method does not require insertion of a probe into the plasma and can therefore be used in high power discharges. Furthermore, the 2D spatial distribution of V plasma is calculated from Ohm’s Law for the parallel electricmore » field E || along each flux tube, E || s || = -1.71dT e/ds || - T e/n edn e/ds ||, where the Thomson scattering values of T e and n e are used. To within a constant of integration, V plasma is obtained by integrating E || along the flux-tubes (field lines); the constant is obtained for each flux tube using the sheath drop at the target calculated from the characteristic of Langmuir probes built into the divertor tiles. The 2D distributions of E./01/2 = -dV4/ds./01/2, E452510/2 = -dV4/ds452510/2, v789 452510/2 = E./01/2/B and v789 ./01/2 = E452510/2/B are then calculated as well as the particle drift flux densities Γ789 452510/2 = nv789 452510/2 and Γ789 ./01/2 = nv789 ./01/2 for electrons, fuel ions and impurity ions, using the appropriate values of particle density, n.« less
The Statistical Studies of 0.5-100 keV Electrons Near The ICME-drivens At 1 AU
NASA Astrophysics Data System (ADS)
Yang, L.; Wang, W.; Wang, L.; Li, G.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C. Y.; Bale, S. D.
2017-12-01
We present a statistical survey of the 0.5 - 100 keV electrons near the ICME-driven shocks at 1 AU, using the WIND/3DP electron measurements from 1995 to 2014. We select 74 good ICME-driven shocks, and use the "Rankine-Hugoniot" shock fitting technique to obtain the shock normal, θBn, magnetic compression ratio rB, and magnetosonic Mach number Ms. After averaging the electron data in the 10-minute interval immediately after the shock to obtain the sheath electron fluxes, Jsheath, and in the 2-hour quiet-time interval before the shock to obtain the pre-event electron fluxes, Jpre-event, we calculate the flux ratio, α, of Jsheath over Jpre-event. We find that, in the 59 quasi-perpendicular shocks, both Jsheath and Jpre-event are positively correlated with Ms and α is positively correlated with rB. In the 15 quasi-parallel cases, α is positively correlated with Ms, while neither Jsheath nor Jpre-event has any correlation with the shock parameters. Furthermore, we find that both the pre-event and sheath electron fluxes generally fit well to a double power-law spectrum, . At 0.5 - 2 keV, the fitted spectral index β1 ranges from 2.1 to 5.9, and it becomes larger in the sheah than in the pre-event in nearly a half of the 74 cases and remains the same in the other half of the cases. At 2 - 100 keV, the fitted index β2 ranges from 1.9 to 3.4, similar to the spectral indexes of solar wind superhalo electrons at quiet times (Wang et al., 2015). And β2 becomes larger in the sheah than in the pre-event in over half of the cases. In addition, neither β1 nor β2 is consistent with the diffusive shock theoretical predication. These results suggest that the shock drift acceleration may play a more important role in electron acceleration than the diffusive shock acceleration near 1 AU, and the interplanetary shock acceleration can contribute to the production of solar wind superhalo electrons.
Hewitt, Andrew J; Solomon, Keith R; Marshall, E J P
2009-01-01
A wind tunnel atomization study was conducted to measure the emission droplet size spectra for water and Glyphos (a glyphosate formulation sold in Colombia) + Cosmo-flux sprays for aerial application to control coca and poppy crops in Colombia. The droplet size spectra were measured in a wind tunnel for an Accu-Flo nozzle (with 16 size 0.085 [2.16 mm] orifices), under appropriate simulated aircraft speeds (up to 333 km/h), using a laser diffraction instrument covering a dynamic size range for droplets of 0.5 to 3,500 microm. The spray drift potential of the glyphosate was modeled using the AGDISP spray application and drift model, using input parameters representative of those occurring in Colombia for typical aerial application operations. The droplet size spectra for tank mixes containing glyphosate and Cosmo-Flux were considerably finer than water and became finer with higher aircraft speeds. The tank mix with 44% glyphosate had a D(v0.5) of 128 microm, while the value at the 4.9% glyphosate rate was 140 microm. These are classified as very fine to fine sprays. Despite being relatively fine, modeling showed that the droplets would not evaporate as rapidly as most similarly sized agricultural sprays because the nonvolatile proportion of the tank mix (active and inert adjuvant ingredients) was large. Thus, longer range drift is small and most drift that does occur will deposit relatively close to the application area. Drift will only occur downwind and, with winds of velocity less than the modeled maximum of 9 km/h, the drift distance would be substantially reduced. Spray drift potential might be additionally reduced through various practices such as the selection of nozzles, tank mix adjuvants, aircraft speeds, and spray pressures that would produce coarser sprays. Species sensitivity distributions to glyphosate were constructed for plants and amphibians. Based on modeled drift and 5th centile concentrations, appropriate no-spray buffer zones (distance from the end of the spray boom as recorded electronically +/-5%) for protection of sensitive plants were 50-120 m for coca spray scenarios and considerably lower for poppy spray scenarios. The equivalent buffer zone for amphibia was 5 m. The low toxicity of glyphosate to humans suggests that these aerial applications are not a concern for human health.
Aeolian transport in the field: A comparison of the effects of different surface treatments
NASA Astrophysics Data System (ADS)
Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin
2012-05-01
Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.
Fluid simulations of nonlocal dissipative drift-wave turbulence
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Cohen, R. H.; Crotinger, J. A.; Shestakov, A. I.
1995-03-01
A two-dimensional [2d(x,y)] fluid code has been developed to explore nonlocal dissipative drift-wave turbulence and anomalous transport. In order to obtain steady-state turbulence, the y-averaged fluctuating density
A long time low drift integrator with temperature control
NASA Astrophysics Data System (ADS)
Zhang, Donglai; Yan, Xiaolan; Zhang, Enchao; Pan, Shimin
2016-10-01
The output of an operational amplifier always contains signals that could not have been predicted, even with knowledge of the input and an accurately determined closed-loop transfer function. These signals lead to integrator zero-drift over time. A new type of integrator system with a long-term low-drift characteristic has therefore been designed. The integrator system is composed of a temperature control module and an integrator module. The aluminum printed circuit board of the integrator is glued to a thermoelectric cooler to maintain the electronic components at a stable temperature. The integration drift is automatically compensated using an analog-to-digital converter/proportional integration/digital-to-analog converter control circuit. Performance testing in a standard magnet shows that the proposed integrator, which has an integration time constant of 10 ms, has a low integration drift (<5 mV) over 1000 s after repeated measurements. The integrator can be used for magnetic flux measurements in most tokamaks and in the wire rope nondestructive test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot
Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. Themore » resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.« less
A long time low drift integrator with temperature control.
Zhang, Donglai; Yan, Xiaolan; Zhang, Enchao; Pan, Shimin
2016-10-01
The output of an operational amplifier always contains signals that could not have been predicted, even with knowledge of the input and an accurately determined closed-loop transfer function. These signals lead to integrator zero-drift over time. A new type of integrator system with a long-term low-drift characteristic has therefore been designed. The integrator system is composed of a temperature control module and an integrator module. The aluminum printed circuit board of the integrator is glued to a thermoelectric cooler to maintain the electronic components at a stable temperature. The integration drift is automatically compensated using an analog-to-digital converter/proportional integration/digital-to-analog converter control circuit. Performance testing in a standard magnet shows that the proposed integrator, which has an integration time constant of 10 ms, has a low integration drift (<5 mV) over 1000 s after repeated measurements. The integrator can be used for magnetic flux measurements in most tokamaks and in the wire rope nondestructive test.
Electron transport fluxes in potato plateau regime
NASA Astrophysics Data System (ADS)
Shaing, K. C.; Hazeltine, R. D.
1997-12-01
Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100% bootstrap current.
NASA Astrophysics Data System (ADS)
Chen, Bin
2017-10-01
QCMs (quasi-coherent modes) are well characterized in the edge of Alcator C-Mod, when operating in the Enhanced Dα (EDA) H-mode, a promising alternative regime for ELM (edge localized modes) suppressed operation. To improve the understanding of the physics behind the QCMs, three typical C-Mod EDA H-Mode discharges are simulated by BOUT + + using a six-field two-fluid model (based on the Braginskii equations). The simulated characteristics of the frequency versus wave number spectra of the modes is in reasonable agreement with phase contrast imaging data. The key simulation results are: 1) Linear spectrum analysis and the nonlinear phase relationship indicate the dominance of resistive-ballooning modes and drift-Alfven wave instabilities; 2) QCMs originate inside the separatrix; (3) magnetic flutter causes the mode spreading into the SOL; 4) the boundary electric field Er changes the turbulent characteristics of the QCMs and controls edge transport and the divertor heat flux width; 5) the magnitude of the divertor heat flux depends on the physics models, such as sources and sinks, sheath boundary conditions, and parallel heat flux limiting coefficient. The BOUT + + simulations have also been performed for inter-ELM periods of DIII-D and EAST discharges, and similar quasi-coherent modes have been found. The parallel electron heat fluxes projected onto the target from these BOUT + + simulations follow the experimental heat flux width scaling, in particular the inverse dependence of the width on the poloidal magnetic field with an outlier. Further turbulence statistics analysis shows that the blobs are generated near the pedestal peak gradient region inside the separatrix and contribute to the transport of the particle and heat in the SOL region. To understand the Goldston heuristic drift-based model, results will also be presented from self-consistent transport simulations with the electric and magnetic drifts in BOUT + + and with the sheath potential included in the SOL. Work supported by LLNL under Contract DE-AC52-07NA27344. This work was also supported by US DOE Grant DE-FC02-99ER54512, using Alcator C-Mod, a DOE Office of Science User Facility, and under the auspices of the CSC (No. 201506340019).
Andrews, M. T.; Rising, M. E.; Meierbachtol, K.; ...
2018-06-15
Wmore » hen multiple neutrons are emitted in a fission event they are correlated in both energy and their relative angle, which may impact the design of safeguards equipment and other instrumentation for non-proliferation applications. The most recent release of MCNP 6 . 2 contains the capability to simulate correlated fission neutrons using the event generators CGMF and FREYA . These radiation transport simulations will be post-processed by the detector response code, DRiFT , and compared directly to correlated fission measurements. DRiFT has been previously compared to single detector measurements, its capabilities have been recently expanded with correlated fission simulations in mind. Finally, this paper details updates to DRiFT specific to correlated fission measurements, including tracking source particle energy of all detector events (and non-events), expanded output formats, and digitizer waveform generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M. T.; Rising, M. E.; Meierbachtol, K.
Wmore » hen multiple neutrons are emitted in a fission event they are correlated in both energy and their relative angle, which may impact the design of safeguards equipment and other instrumentation for non-proliferation applications. The most recent release of MCNP 6 . 2 contains the capability to simulate correlated fission neutrons using the event generators CGMF and FREYA . These radiation transport simulations will be post-processed by the detector response code, DRiFT , and compared directly to correlated fission measurements. DRiFT has been previously compared to single detector measurements, its capabilities have been recently expanded with correlated fission simulations in mind. Finally, this paper details updates to DRiFT specific to correlated fission measurements, including tracking source particle energy of all detector events (and non-events), expanded output formats, and digitizer waveform generation.« less
The principal factors contributing to the flux of salt in a narrow, partially stratified estuary
NASA Astrophysics Data System (ADS)
Lewis, R. E.; Lewis, J. O.
1983-06-01
Observations of the velocity and salinity structure of the Tees estuary were made at eight stations along the estuary axis between Victoria Bridge and the sea during the summer of 1975. The measurements were made on ten separate tidal periods covering neap and spring tides. The data were collected over a period of relatively low freshwater flows and the residual current was found to have a strong dependence on the Stokes drift. At the upstream stations, the residuals were more than an order of magnitude greater than the currents anticipated from the freshwater discharge. Although the mean stratification decreased as the tidal range increased, the vertical circulation was stronger on spring tides than on neaps. Vertical variations in the amplitude and phase of the tidal current results in a current which strengthens the vertical circulation. However, this effect only made a relatively small contribution to the observed vertical circulation. The relative contribution of the individual salt flux terms to the net upstream transport of salt varies along the estuary. As the estuary narrows, the contribution by the oscillatory terms dominates that from the shear in the steady state flow. Of these oscillatory terms, the correlation of velocity and salinity fluctuations plays a key rôle in the salt transport. The depth mean values make a greater contribution than deviations from the depth mean and the flux due to phase variations over depth is smaller than either of these. Since the Stokes drift is compensated by a down-stream steady state flow, it does not contribute to the tidal mean transport of salt. At the seaward end of the estuary, the salt fluxes due to the steady state vertical shear and the convariance of the tidal fluctuations act in a complementary way to counter the seaward transport of salt by the freshwater flow. With the possible exceptions of the wide or narrow reaches of the Tees, the longitudinal fluxes of salt due to transverse variations in velocity, salinity and depth and turbulent fluctuations are of secondary importance as contributors to the estuary salt budget. On both neap and spring tides, the computed total salt transports at the Newport and Victoria bridges did not match the values required for a salt balance with the corresponding freshwater flows. These fluxes were probably the cause of the observed downstream displacement of the tidal mean salinity distribution between neap and spring tides.
Energetic Electron Acceleration, Injection, and Transport in Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Baker, D. N.; Lawrence, D. J.
2018-05-01
Electrons are accelerated in Mercury’s magnetotail by dipolarization events, flux ropes, and magnetic reconnection directly. Following energization, these electrons are injected close to Mercury where they drift eastward in Shabansky-like orbits.
Measurement of Spray Drift with a Specifically Designed Lidar System.
Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R
2016-04-08
Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift.
Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak
DOE R&D Accomplishments Database
Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))
1993-03-01
Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Dustin M., E-mail: dustin.m.fisher.gr@dartmouth.edu; Rogers, Barrett N., E-mail: barrett.rogers@dartmouth.edu; Rossi, Giovanni D.
The Large Plasma Device (LAPD) is modeled using the 3D Global Braginskii Solver code. Comparisons to experimental measurements are made in the low-bias regime in which there is an intrinsic E × B rotation of the plasma. In the simulations, this rotation is caused primarily by sheath effects and may be a likely mechanism for the intrinsic rotation seen in LAPD. Simulations show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant drivermore » of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices in the simulations are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the simulations at previously theorized values reduces the radial particle flux by about a factor of two, from values that are somewhat larger than the experimentally measured flux to values that are somewhat lower than the measurements. This reduction is due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport.« less
Three-dimensional ring current decay model
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1995-01-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.
A three-dimensional ring current decay model
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1994-01-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawn and dusk sides of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always over-estimated. A newly-invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm-time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j(sub o)(1+Ay(exp n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.
NASA Astrophysics Data System (ADS)
Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi
2018-01-01
We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.
Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and First Results
NASA Technical Reports Server (NTRS)
Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.
2016-01-01
The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.
THERMODYNAMIC SPECTRUM OF SOLAR FLARES BASED ON SDO/EVE OBSERVATIONS: TECHNIQUES AND FIRST RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuming; Zhou, Zhenjun; Liu, Kai
2016-03-15
The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-raymore » (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.« less
Drift effects on the tokamak power scrape-off width
NASA Astrophysics Data System (ADS)
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; Mordijck, S.; Rozhansky, V. A.; Senichenkov, I. Yu.; Voskoboynikov, S. P.
2015-11-01
Recent experimental analysis suggests that the scrape-off layer (SOL) heat flux width (λq) for ITER will be near 1 mm, sharply narrowing the planned operating window. In this work, motivated by the heuristic drift (HD) model, which predicts the observed inverse plasma current scaling, SOLPS-ITER is used to explore drift effects on λq. Modeling focuses on an H-mode DIII-D discharge. In initial results, target recycling is set to 90%, resulting in sheath-limited SOL conditions. SOL particle diffusivity (DSOL) is varied from 0.1 to 1 m2/s. When drifts are included, λq is insensitive to DSOL, consistent with the HD model, with λq near 3 mm; in no-drift cases, λq varies from 2 to 5 mm. Drift effects depress near-separatrix potential, generating a channel of strong electron heat convection that is insensitive to DSOL. Sensitivities to thermal diffusivities, plasma current, toroidal magnetic field, and device size are also assessed. These initial results will be discussed in detail, and progress toward modeling experimentally relevant high-recycling conditions will be reported. Supported by U.S. DOE Contract DE-SC0010434.
Modes of energy transfer from the solar wind to the inner magnetosphere
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Tornquist, M.; Koepke, M. E.
2009-12-01
The energy provided by the solar wind to geospace finds its way to the inner magnetosphere and leads to variations in the mid-latitude ground magnetic field. Through measurement of field disturbances and energetic particle fluxes one can show that the inner magnetospheric behavior is organized in large-scale modes of response. Each mode is excited by a different combination of solar wind plasma and field variables which often occur in characteristic geoeffective structures. We compare the wave field and energetic-electron modes of response to solar wind variables as obtained by filter and correlation techniques. Characteristic modes of response are found for low-frequency wave fields measured by mid- and high-latitude meridional arrays such as MEASURE and the geosynchronous field recorded by GOES magnetometers. The modes are similar to those obtained earlier for magnetospheric electron flux such as that measured by the HIST instrument on POLAR, and the similarity is used to determine the parameter range in L, MLT, time, and perpendicular energy for drift-resonant interaction. We present modeling results for the excitation of these wave fields during the passage of the interplanetary structures.
Spray drift reduction test method correlation
USDA-ARS?s Scientific Manuscript database
ASTM Standard E609 Terminology Relating to Pesticides defines drift as “The physical movement of an agrochemical through the air at the time of application or soon thereafter to any non or off target site.” Since there are many commercial tank mix adjuvants designed to reduce spray drift, ASTM esta...
Extensive electron transport and energization via multiple, localized dipolarizing flux bundles
NASA Astrophysics Data System (ADS)
Gabrielse, Christine; Angelopoulos, Vassilis; Harris, Camilla; Artemyev, Anton; Kepko, Larry; Runov, Andrei
2017-05-01
Using an analytical model of multiple dipolarizing flux bundles (DFBs) embedded in earthward traveling bursty bulk flows, we demonstrate how equatorially mirroring electrons can travel long distances and gain hundreds of keV from betatron acceleration. The model parameters are constrained by four Time History of Events and Macroscale Interactions during Substorms satellite observations, putting limits on the DFBs' speed, location, and magnetic and electric field magnitudes. We find that the sharp, localized peaks in magnetic field have such strong spatial gradients that energetic electrons ∇B drift in closed paths around the peaks as those peaks travel earthward. This is understood in terms of the third adiabatic invariant, which remains constant when the field changes on timescales longer than the electron's drift timescale: An energetic electron encircles a sharp peak in magnetic field in a closed path subtending an area of approximately constant flux. As the flux bundle magnetic field increases the electron's drift path area shrinks and the electron is prevented from escaping to the ambient plasma sheet, while it continues to gain energy via betatron acceleration. When the flux bundles arrive at and merge with the inner magnetosphere, where the background field is strong, the electrons suddenly gain access to previously closed drift paths around the Earth. DFBs are therefore instrumental in transporting and energizing energetic electrons over long distances along the magnetotail, bringing them to the inner magnetosphere and energizing them by hundreds of keV.
Investigation of surface boundary conditions for continuum modeling of RF plasmas
NASA Astrophysics Data System (ADS)
Wilson, A.; Shotorban, B.
2018-05-01
This work was motivated by a lacking general consensus in the exact form of the boundary conditions (BCs) required on the solid surfaces for the continuum modeling of Radiofrequency (RF) plasmas. Various kinds of number and energy density BCs on solid surfaces were surveyed, and how they interacted with the electric potential BC to affect the plasma was examined in two fundamental RF plasma reactor configurations. A second-order local mean energy approximation with equations governing the electron and ion number densities and the electron energy density was used to model the plasmas. Zero densities and various combinations of drift, diffusion, and thermal fluxes were considered to set up BCs. It was shown that the choice of BC can have a significant impact on the sheath and bulk plasma. The thermal and diffusion fluxes to the surface were found to be important. A pure drift BC for dielectric walls failed to produce a sheath.
Analysis of a Multi-Machine Database on Divertor Heat Fluxes
NASA Astrophysics Data System (ADS)
Makowski, M. A.
2011-10-01
A coordinated effort to measure divertor heat flux characteristics in fully attached, similarly shaped H-mode plasmas on C-Mod, DIII-D and NSTX was carried out in 2010 in order to construct a predictive scaling relation applicable to next step devices including ITER, FNSF, and DEMO. Few published scaling laws are available and those that have been published were obtained under widely varying conditions and divertor geometries, leading to conflicting predictions for this critically important quantity. This study was designed to overcome these deficiencies. Corresponding plasma parameters were systematically varied in each tokamak, resulting in a combined data set in which Ip varies by a factor 3, Bt varies by a factor of 14.5, and major radius varies by a factor of 2.6. The derived scaling relation consistently predicts narrower heat flux widths than relations currently in use. Analysis of the combined data set reveals that the primary dependence of the parallel heat flux width is robustly inverse with Ip. All three tokamaks independently demonstrate this dependence. The midplane SOL profiles in DIII-D are also found to steepen with higher Ip, similar to the divertor heat flux profiles. Weaker dependencies on the toroidal field and normalized Greenwald density, fGW, are also found, but vary across devices and with the measure of the heat flux width used, either FWHM or integral width. In the combined data set, the strongest size scaling is with minor radius resulting in an approximately linear dependence on a /Ip . This suggests a scaling correlated with the inverse of the poloidal field, as would be expected for critical gradient or drift-based transport. Supported by the US DOE under DE-AC52-07NA27344 and DE-FC02-04ER54698.
Field-aligned Poynting flux observations in the high-latitude ionosphere
NASA Astrophysics Data System (ADS)
Gary, J. B.; Heelis, R. A.; Hanson, W. B.; Slavin, J. A.
1994-06-01
We have used data from Dynamics Explorer 2 to investigate the rate of conversion of electromagnetic energy into both thermal and bulk flow particle kinetic energy in the high-latitude ionosphere. The flux tube integrated conversion rate E.J can be determined from spacecraft measurements of the electric and magnetic field vectors by deriving the field-aligned Poynting flux, S∥=S.B0, where B0 is in the direction of the geomagnetic field. Determination of the Poynting flux from satellite observations is critically dependent upon the establishment of accurate values of the fields and is especially sensitive to errors in the baseline (unperturbed) geomagnetic field. We discuss our treatment of the data in some detail, particularly in regard to systematically correcting the measured magnetic field to account for attitude changes and model deficiencies. S∥ can be used to identify the relative strengths of the magnetosphere and thermospheric winds as energy drivers and we present observations demonstrating the dominance of each of these. Dominance of the magnetospheric driver is indicated by S∥ directed into the ionosphere. Electromagnetic energy is delivered to and dissipated within the region. Dominance of the neutral wind requires that the conductivity weighted neutral wind speed in the direction of the ion drift be larger than the ion drift, resulting in observations of an upward directed Poynting flux. Electromagnetic energy is generated within the ionospheric region in this case. We also present observations of a case where the neutral atmosphere motion may be reaching a state of sustained bulk flow velocity as evidenced by very small Poynting flux in the presence of large electric fields.
High particle export over the continental shelf of the west Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Buesseler, Ken O.; McDonnell, Andrew M. P.; Schofield, Oscar M. E.; Steinberg, Deborah K.; Ducklow, Hugh W.
2010-11-01
Drifting cylindrical traps and the flux proxy 234Th indicate more than an order of magnitude higher sinking fluxes of particulate carbon and 234Th in January 2009 than measured by a time-series conical trap used regularly on the shelf of the west Antarctic Peninsula (WAP). The higher fluxes measured in this study have several implications for our understanding of the WAP ecosystem. Larger sinking fluxes result in a revised export efficiency of at least 10% (C flux/net primary production) and a requisite lower regeneration efficiency in surface waters. High fluxes also result in a large supply of sinking organic matter to support subsurface and benthic food webs on the continental shelf. These new findings call into question the magnitude of seasonal and interannual variability in particle flux and reaffirm the difficulty of using moored conical traps as a quantitative flux collector in shallow waters.
Herringbone bursts associated with type II solar radio emission
NASA Technical Reports Server (NTRS)
Cairns, I. H.; Robinson, R. D.
1987-01-01
Detailed observations of the herringbone (HB) fine structure on type II solar radio bursts are presented. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. The characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts are determined. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. These data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.
Scale Sizes of High-Latitude Neutral Mass Density Perturbations
NASA Astrophysics Data System (ADS)
Huang, C. Y.; Huang, Y.; Su, Y. J.; Huang, T.; Sutton, E. K.
2017-12-01
In a statistical study of neutral mass density maxima, we found for a select interval, that 57% of the maxima have correlated field-aligned current (FAC) signatures, indicative of localized Ohmic heating. However the remaining 43% do not, and we suggested that these maxima may be due to gravity waves generated by neutral heating. We follow up on this study by an investigation into the spatial scale sizes of the mass density maxima using high-resolution neutral density and FAC data from CHAMP, when the satellite is in conjunction with DMSP, which provides the corresponding ion drift velocity, particle precipitation and Poynting flux. The study shows the average scale sizes of the perturbations due to J x B heating, as well as the sizes of the waves generated by Joule heating.
Toward validation of a 3-D plasma turbulence model using LAPD data
NASA Astrophysics Data System (ADS)
Umansky, M. V.
2010-11-01
Detailed results from a 3-D fluid simulation of plasma turbulence are compared with experimental data from the Large Plasma Device (LAPD) at UCLA. LAPD is a magnetized plasma column experiment with a high repetition rate, allowing detailed time-and-space resolved probe data on plasma turbulence and transport. The large amount of data allows a thorough comparison with the simulation results. For the observed drift-type modes, LAPD plasmas are strongly collisional (φ*/νei1 and λei/L1), providing justification for a fluid treatment. Accordingly, the model is based on reduced Braginskii equations and is implemented in the framework of the BOUT code, originally developed at LLNL for tokamak edge plasmas. Analysis of linear plasma instabilities shows that resistive drift modes, rotation-driven interchange modes, and Kelvin-Helmholtz modes can all be important in LAPD and have comparable frequencies and growth rates. In nonlinear simulations using measured LAPD density profiles, evolution of instabilities and self-generated zonal flows results in a saturated turbulent state. Comparisons of these simulations with measurements in LAPD plasmas reveal good agreement, in particular in the frequency spectrum, spatial correlation, and amplitude probability distribution function of density fluctuations. Also, consistent with the experiment, the simulations indicate a great deal of similarity between plasma turbulence in LAPD and some features of tokamak edge turbulence. Similar to tokamak edge plasmas, density transport appears to be predominantly carried by large particle-flux events. Despite the intermittent character of the calculated turbulence, as indicated by fluctuation statistics, the turbulent particle flux is consistent with a diffusive model with diffusion coefficient close to the Bohm value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
H.E. Mynick, P. Xanthopoulos and A.H. Boozer
Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes.
Large Eddy Simulation of Heat Entrainment Under Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand
2018-01-01
Arctic sea ice has declined rapidly in recent decades. The faster than projected retreat suggests that free-running large-scale climate models may not be accurately representing some key processes. The small-scale turbulent entrainment of heat from the mixed layer could be one such process. To better understand this mechanism, we model the Arctic Ocean's Canada Basin, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) within the mixed layer trapping heat from solar radiation. We use large eddy simulation (LES) to investigate heat entrainment for different ice-drift velocities and different initial temperature profiles. The value of LES is that the resolved turbulent fluxes are greater than the subgrid-scale fluxes for most of our parameter space. The results show that the presence of the NSTM enhances heat entrainment from the mixed layer. Additionally there is no PSW heat entrained under the parameter space considered. We propose a scaling law for the ocean-to-ice heat flux which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of "The Great Arctic Cyclone of 2012" gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer.
NASA Astrophysics Data System (ADS)
Huber, A.; Chankin, A. V.
2017-06-01
A simple two-point representation of the tokamak scrape-off layer (SOL) in the conduction limited regime, based on the parallel and perpendicular energy balance equations in combination with the heat flux width predicted by a heuristic drift-based model, was used to derive a scaling for the cross-field thermal diffusivity {χ }\\perp . For fixed plasma shape and neglecting weak power dependence indexes 1/8, the scaling {χ }\\perp \\propto {P}{{S}{{O}}{{L}}}/(n{B}θ {R}2) is derived.
Handbook of the Radiation Regime of the Arctic Basin: Results from the Drift Stations
NASA Technical Reports Server (NTRS)
Mishin, A. A.; Marshunova, M. S.; Radionov, V. F. (Editor); Colony, R. (Editor)
1994-01-01
This Handbook summarizes the radiation data from the Soviet 'North Pole' drifting research stations operated in the Arctic from 1950 to 1991. The Handbook contains reduced mean monthly values of the fluxes of solar radiation for solar elevations up to 35 deg at 5 deg intervals, monthly totals of the net radiation and its constituents, and mean monthly values of the albedo of the sea-ice surfaces. The Handbook presents information of interest to specialists studying the physics of the atmosphere, climatology, geography, and related disciplines.
A Model for Stochastic Drift in Memory Strength to Account for Judgments of Learning
ERIC Educational Resources Information Center
Sikstrom, Sverker; Jonsson, Fredrik
2005-01-01
Previous research has shown that judgments of learning (JOLs) made immediately after encoding have a low correlation with actual cued-recall performance, whereas the correlation is high for delayed judgments. In this article, the authors propose a formal theory describing the stochastic drift of memory strength over the retention interval to…
MBARI CANON Experiment Visualization and Analysis
NASA Astrophysics Data System (ADS)
Fatland, R.; Oscar, N.; Ryan, J. P.; Bellingham, J. G.
2013-12-01
We describe the task of understanding a marine drift experiment conducted by MBARI in Fall 2012 ('CANON'). Datasets were aggregated from a drifting ADCP, from the MBARI Environmental Sample Processor, from Long Range Autonomous Underwater Vehicles (LRAUVs), from other in situ sensors, from NASA and NOAA remote sensing platforms, from moorings, from shipboard CTD casts and from post-experiment metagenomic analysis. We seek to combine existing approaches to data synthesis -- visual inspection, cross correlation and co.-- with three new ideas. This approach has the purpose of differentiating biological signals into three causal categories: Microcurrent advection, physical factors and microbe metabolism. Respective examples are aberrance from Lagrangian frame drift due to windage, changes in solar flux over several days, and microbial population responses to shifts in nitrate concentration. The three ideas we implemented are as follows: First, we advect LRAUV data to look for patterns in time series data for conserved quanitities such as salinity. We investigate whether such patterns can be used to support or undermine the premise of Lagrangian motion of the experiment ensemble. Second we built a set of configurable filters that enable us to visually isolate segments of data: By type, value, time, anomaly and location. Third we associated data hypotheses with a Bayesian inferrence engine for the purpose of model validation, again across sections taken from within the complete data complex. The end result is towards a free-form exploration of experimental data with low latency: from question to view, from hypothesis to test (albeit with considerable preparatory effort.) Preliminary results show the three causal categories shifting in relative influence.
Limitations of quasilinear transport theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1992-01-01
The anomalous fluxes are evaluated in the simplest possible geometric situation: drift waves in a shearless slab geometry, in the presence of density and temperature gradients. It is shown that, within the strict quasilinear framework, the linear transport equations relating the fluxes to the thermodynamic forces have serious limitations. Such a linear relation does not even exist for the ion energy flux. For all the fluxes, the first correction'' has a singularity whose location depends on the relative value of the density gradient and of the ion temperature gradient: its existence seriously restricts the domain of validity of the quasilinearmore » transport theory. The semiempirical quasilinear'' formulas used in the comparisons with experiments are also discussed.« less
Energy flux and characteristic energy of an elemental auroral structure
NASA Technical Reports Server (NTRS)
Lanchester, B. S.; Palmer, J. R.; Rees, M. H.; Lummerzheim, D.; Kaila, K.; Turunen, T.
1994-01-01
Electron density profiles acquired with the EISCAT radar at 0.2 s time resolution, together with TV images and photometric intensities, were used to study the characteristics of thin (less than 1 km) auroral arc structures that drifted through the field of view of the instruments. It is demonstrated that both high time and space resolution are essential for deriving the input parameters of the electron flux responsible for the elemental auroral structures. One such structure required a 400 mW/sq m (erg/sq cm s) downward energy flux carried by an 8 keV monochromatic electron flux equivalent to a current density of 50 micro Angstrom/sq m.
NASA Astrophysics Data System (ADS)
Santos, Ângela M.; Abdu, Mangalathayil A.; Souza, Jonas R.; Batista, Inez S.; Sobral, José H. A.
2017-11-01
The influence of the recent deep and prolonged solar minimum on the daytime zonal and vertical plasma drift velocities during quiet time is investigated in this work. Analyzing the data obtained from incoherent scatter radar from Jicamarca (11.95° S, 76.87° W) we observe an anomalous behavior of the zonal plasma drift during June 2008 characterized by lower than usual daytime westward drift and its early afternoon reversal to eastward. As a case study the zonal drift observed on 24 June 2008 is modeled using a realistic low-latitude ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE (SUPIM-INPE). The results show that an anomalously low zonal wind was mainly responsible for the observed anomalous behavior in the zonal drift. A comparative study of the vertical plasma drifts obtained from magnetometer data for some periods of maximum (2000-2002) and minimum solar activity (1998, 2008, 2010) phases reveal a considerable decrease on the E-region conductivity and the dynamo electric field during 2008. However, we believe that the contribution of these characteristics to the unusual behavior of the zonal plasma drift is significantly smaller than that arising from the anomalously low zonal wind. The SUPIM-INPE result of the critical frequency of the F layer (foF2) over Jicamarca suggested a lower radiation flux than that predicted by solar irradiance model (SOLAR2000) for June 2008.
NASA Astrophysics Data System (ADS)
Chen, M. W.; Schulz, M.; Lu, G.
2001-12-01
We obtain distributions of precipitating electrons by tracing drift shells of plasmasheet electrons in the limit of strong pitch angle diffusion in Dungey's model magnetosphere, which consists of a dipolar magnetic field plus a uniform southward field. Under strong pitch-angle diffusion particles drift so as to conserve an adiabatic invariant Λ equal to the enclosed phase-space volume (i.e., the cube of the particle momentum p times the occupied flux-tube volume per unit magnetic flux). In the past we applied a quiescent Stern-Volland electric-field model with a cross-tail potential drop of 25 kV and added to it a storm-associated Brice-Nishida cross-magnetospheric electric field with impulses to represent substorm effects. For the present study we use the more realistic Assimilative Model of Ionospheric Electrodynamics (AMIE). We use an analytical expansion to express the AMIE ionospheric potential as a function of latitude and magnetic local time. We map this AMIE potential to latitudes >= 50^o to magnetospheric field lines with (L \\ge 2.5) in Dungey's magnetic field model. We trace the bounce-averaged drift motion of representative plasmasheet electrons for values of \\Lambda corresponding to energies of 0.25-64 keV on field lines of equatorial radial distance r = 6 R_E (L = 5.7), which maps to \\approx 65^o$ latitude in the ionosphere. We use the simulation results to map stormtime phase space distributions taking into account loss due to precipitation. We consider 2 models of electron scattering: (1) the limit of strong scattering everywhere, and (2) an MLT-dependent scattering that is less than everywhere strong in the plasma sheet. From the phase space distributions we calculate the total precipitating electron energy flux into the ionosphere. For this study we focus on the October 19, 1998, storm. We compare qualitatively the simulated energy flux with X-ray intensity from Polar/PIXIE images during this storm.
Secular trends and climate drift in coupled ocean-atmosphere general circulation models
NASA Astrophysics Data System (ADS)
Covey, Curt; Gleckler, Peter J.; Phillips, Thomas J.; Bader, David C.
2006-02-01
Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observation unless constrained by ad hoc adjustments to interface fluxes. However, 11 modern coupled GCMs, including three that do not employ flux adjustments, behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, differ substantially among the models and may be problematic. Methods used to initialize coupled GCMs can mitigate climate drift but cannot eliminate it. Lengthy "spin-ups" of models, made possible by increasing computer power, are one reason for the improvements this paper documents.
Combined effects of drift waves and neoclassical transport on density profiles in tokamaks
NASA Astrophysics Data System (ADS)
Houlberg, W. A.; Strand, P.
2005-10-01
The relative importance of neoclassical and anomalous particle transport depends on the charge number of the species being studied. The detailed particle balance including the EDWM [1] drift wave model for anomalous transport that includes ITG, TEM and in some cases ETG modes, and the neoclassical model NCLASS [2], are illustrated by simulations with the DEA particle transport code. DEA models the evolution of all ion species, and can be run in a mode to evaluate dynamic responses to perturbations or to conditions far from equilibrium by perturbing the profiles from the experimental measurements. The perturbations allow the fluxes to be decomposed into diffusive and convective (pinch) terms. The different scaling with charge number between drift wave and neoclassical models favors a stronger component of neoclassical transport for higher Z impurities through the effective pinch term. Although trace impurities illustrate a simple Ficks Law form, the main ions as well as higher concentrations of intrinsic impurities exhibit non-linear responses to the density gradients as well as off-diagonal gradient dependencies, leading to a more complicated response for the particle fluxes.[1] H. Nordman, et al., Plasma Phys. Control. Fusion 47 (2005) L11. [2] W.A. Houlberg, et al., Phys. Plasmas 4 (1997) 3230.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zocco, A.; Plunk, G. G.; Xanthopoulos, P.
The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit wheremore » this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.« less
NASA Astrophysics Data System (ADS)
Nakayama, T.; Hanao, T.; Hirono, H.; Hyobu, T.; Ito, K.; Matsumoto, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Kanki, T.
2012-10-01
Spherical torus (ST) plasmas have been successfully maintained by Muti-pulsing Coaxial Helicity Injection (M-CHI) on HIST. This research object is to clarify relations between plasma characteristics and magnetic flux amplifications, and to compare magnetic field structures measured in the plasma interior to a flowing equilibrium calculation. Two-dimensional magnetic probe array has been newly introduced nearby the gun muzzle. The initial result shows that the diverter configuration with a single X-point can be formed after a bubble burst process of the plasma. The closed magnetic flux is surrounded by the open magnetic field lines intersecting with the gun electrodes. To evaluate the sustained configurations, we use the two-fluid equilibrium code containing generalized Bernoulli and Grad-Shafranov equations which was developed by L.C. Steinhauer. The radial profiles of plasma flow, density and magnetic fields measured on the midplane of the FC are consistent to the calculation. We also found that the poloidal shear flow generation is attributed to ExB drift and ion diamagnetic drift. In addition, we will study temporal behaviors of impurity lines such as OV and OVI during the flux amplification by VUV spectroscopic measurements.
Short-Term Forecasting of Radiation Belt and Ring Current
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching
2007-01-01
A computer program implements a mathematical model of the radiation-belt and ring-current plasmas resulting from interactions between the solar wind and the Earth s magnetic field, for the purpose of predicting fluxes of energetic electrons (10 keV to 5 MeV) and protons (10 keV to 1 MeV), which are hazardous to humans and spacecraft. Given solar-wind and interplanetary-magnetic-field data as inputs, the program solves the convection-diffusion equations of plasma distribution functions in the range of 2 to 10 Earth radii. Phenomena represented in the model include particle drifts resulting from the gradient and curvature of the magnetic field; electric fields associated with the rotation of the Earth, convection, and temporal variation of the magnetic field; and losses along particle-drift paths. The model can readily accommodate new magnetic- and electric-field submodels and new information regarding physical processes that drive the radiation-belt and ring-current plasmas. Despite the complexity of the model, the program can be run in real time on ordinary computers. At present, the program can calculate present electron and proton fluxes; after further development, it should be able to predict the fluxes 24 hours in advance
Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube
NASA Astrophysics Data System (ADS)
Lee, Sangyeop; Lindsay, Lucas
2017-05-01
Two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) single-wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations employing an optimized Tersoff potential for atomic interactions. We formally derive a formula for the contribution of drift motion of phonons to total heat flux at steady state. It is found that the drift motion of phonons carries more than 70 % and 90 % of heat at 300 and 100 K, respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if the SWCNT is long enough to avoid ballistic phonon transport. The dispersion relation of second sound is derived from the Peierls-Boltzmann transport equation with Callaway's scattering model and quantifies the speed of second sound and its relaxation. The speed of second sound is around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 µm in an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.
Magnetic field diffusion and dissipation in reversed-field plasmas
NASA Technical Reports Server (NTRS)
Drake, J. F.; Gladd, N. T.; Huba, J. D.
1981-01-01
A diffusion equation is derived which describes the evolution of a magnetic field in a plasma of arbitrary beta and resistivity. The equation is valid for a one-dimensional slab geometry, assumes the plasma remains in quasi-equilibrium throughout its evolution and does not include thermal transport. Scaling laws governing the rate of change of the magnetic energy, particle drift energy, and magnetic flux are calculated. It is found that the magnetic free energy can be substantially larger than the particle drift energy and can be an important energy reservoir in driving plasma instabilities (e.g., the lower-hybrid-drift instability). In addition, the effect of a spatially varying resistivity on the evolution of a reversed-field plasma is studied. The resistivity model used is based upon the anomalous transport properties associated with the nonlocal mode structure of the lower-hybrid-drift instability. The relevance of this research to laboratory plasmas (e.g., theta pinches, reversed-field theta pinches) and space plasmas (e.g., the earth's magnetotail) is discussed.
Analysis of drift effects on the tokamak power scrape-off width using SOLPS-ITER
NASA Astrophysics Data System (ADS)
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; Makowski, M. A.; Mordijck, S.; Rozhansky, V. A.; Senichenkov, I. Yu; Voskoboynikov, S. P.
2016-12-01
SOLPS-ITER, a comprehensive 2D scrape-off layer modeling package, is used to examine the physical mechanisms that set the scrape-off width ({λq} ) for inter-ELM power exhaust. Guided by Goldston’s heuristic drift (HD) model, which shows remarkable quantitative agreement with experimental data, this research examines drift effects on {λq} in a DIII-D H-mode magnetic equilibrium. As a numerical expedient, a low target recycling coefficient of 0.9 is used in the simulations, resulting in outer target plasma that is sheath limited instead of conduction limited as in the experiment. Scrape-off layer (SOL) particle diffusivity (D SOL) is scanned from 1 to 0.1 m2 s-1. Across this diffusivity range, outer divertor heat flux is dominated by a narrow (˜3-4 mm when mapped to the outer midplane) electron convection channel associated with thermoelectric current through the SOL from outer to inner divertor. An order-unity up-down ion pressure asymmetry allows net ion drift flux across the separatrix, facilitated by an artificial mechanism that mimics the anomalous electron transport required for overall ambipolarity in the HD model. At {{D}\\text{SOL}}=0.1 m2 s-1, the density fall-off length is similar to the electron temperature fall-off length, as predicted by the HD model and as seen experimentally. This research represents a step toward a deeper understanding of the power scrape-off width, and serves as a basis for extending fluid modeling to more experimentally relevant, high-collisionality regimes.
Relationships of models of the inner magnetosphere to the Rice Convection Model
NASA Astrophysics Data System (ADS)
Heinemann, M.; Wolf, R. A.
2001-08-01
Ideal magnetohydrodynamics is known to be inaccurate for the Earth's inner magnetosphere, where transport by gradient-curvature drift is nonnegligible compared to E×B drift. Most theoretical treatments of the inner plasma sheet and ring current, including the Rice Convection Model (RCM), treat the inner magnetospheric plasma in terms of guiding center drifts. The RCM assumes that the distribution function is isotropic, but particles with different energy invariants are treated as separate guiding center fluids. However, Peymirat and Fontaine [1994] developed a two-fluid picture of the inner magnetosphere, which utilizes modified forms of the conventional fluid equations, not guiding center drift equations. Heinemann [1999] argued theoretically that for inner magnetospheric conditions the fluid energy equation should include a heat flux term, which, in the case of Maxwellian plasma, was derived by Braginskii [1965]. We have now reconciled the Heinemann [1999] fluid approach with the RCM. The fluid equations, including the Braginskii heat flux, can be derived by taking appropriate moments of the RCM equations for the case of the Maxwellian distribution. The physical difference between the RCM formalism and the Heinemann [1999] fluid approach is that the RCM pretends that particles suffer elastic collisions that maintain the isotropy of the distribution function but do not change particle energies. The Heinemann [1999] fluid treatment makes a different physical approximation, namely that the collisions maintain local thermal equilibrium among the ions and separately among the electrons. For some simple cases, numerical results are presented that illustrate the differences in the predictions of the two formalisms, along with those of MHD, guiding center theory, and Peymirat and Fontaine [1994].
Analysis of drift effects on the tokamak power scrape-off width using SOLPS-ITER
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; ...
2016-11-02
SOLPS-ITER, a comprehensive 2D scrape-off layer modeling package, is used to examine the physical mechanisms that set the scrape-off width (more » $${{\\lambda}_{q}}$$ ) for inter-ELM power exhaust. Guided by Goldston's heuristic drift (HD) model, which shows remarkable quantitative agreement with experimental data, this research examines drift effects on $${{\\lambda}_{q}}$$ in a DIII-D H-mode magnetic equilibrium. As a numerical expedient, a low target recycling coefficient of 0.9 is used in the simulations, resulting in outer target plasma that is sheath limited instead of conduction limited as in the experiment. Scrape-off layer (SOL) particle diffusivity (D SOL) is scanned from 1 to 0.1 m2 s –1. Across this diffusivity range, outer divertor heat flux is dominated by a narrow (~3–4mm when mapped to the outer midplane) electron convection channel associated with thermoelectric current through the SOL from outer to inner divertor. An order-unity up–down ion pressure asymmetry allows net ion drift flux across the separatrix, facilitated by an artificial mechanism that mimics the anomalous electron transport required for overall ambipolarity in the HD model. At $${{D}_{\\text{SOL}}}=0.1$$ m2 s –1, the density fall-off length is similar to the electron temperature fall-off length, as predicted by the HD model and as seen experimentally. Furthermore, this research represents a step toward a deeper understanding of the power scrape-off width, and serves as a basis for extending fluid modeling to more experimentally relevant, high-collisionality regimes.« less
Asymmetric Magnetic Reconnection in the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.
2013-12-01
Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasmoid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.
Asymmetric Magnetic Reconnection in the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S. C.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.
2013-12-01
Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasm! oid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.
Anomalous transport in the H-mode pedestal of Alcator C-Mod discharges
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Hughes, J. W.; Greenwald, M. J.; Kritz, A. H.; Rafiq, T.
2017-02-01
Anomalous transport in the H-mode pedestal region of five Alcator C-Mod discharges, representing a collisionality scan is analyzed. The understanding of anomalous transport in the pedestal region is important for the development of a comprehensive model for the H-mode pedestal slope. In this research, a possible role of the drift resistive inertial ballooning modes (Rafiq et al 2010 Phys. Plasmas 17 082511) in the edge of Alcator C-Mod discharges is analyzed. The stability analysis, carried out using the TRANSP code, indicates that the DRIBM modes are strongly unstable in Alcator C-Mod discharges with large electron collisionality. An improved interpretive analysis of H-mode pedestal experimental data is carried out utilizing the additive flux minimization technique (Pankin et al 2013 Phys. Plasmas 20 102501) together with the guiding-center neoclassical kinetic XGC0 code. The neoclassical and neutral physics are simulated in the XGC0 code and the anomalous fluxes are computed using the additive flux minimization technique. The anomalous fluxes are reconstructed and compared with each other for the collisionality scan Alcator C-Mod discharges. It is found that the electron thermal anomalous diffusivities at the pedestal top increase with the electron collisionality. This dependence can also point to the drift resistive inertial ballooning modes as the modes that drive the anomalous transport in the plasma edge of highly collisional discharges.
Transport in a toroidally confined pure electron plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crooks, S.M.; ONeil, T.M.
1996-07-01
O{close_quote}Neil and Smith [T.M. O{close_quote}Neil and R.A. Smith, Phys. Plasmas {bold 1}, 8 (1994)] have argued that a pure electron plasma can be confined stably in a toroidal magnetic field configuration. This paper shows that the toroidal curvature of the magnetic field of necessity causes slow cross-field transport. The transport mechanism is similar to magnetic pumping and may be understood by considering a single flux tube of plasma. As the flux tube of plasma undergoes poloidal {ital E}{bold {times}}{ital B} drift rotation about the center of the plasma, the length of the flux tube and the magnetic field strength withinmore » the flux tube oscillate, and this produces corresponding oscillations in {ital T}{sub {parallel}} and {ital T}{sub {perpendicular}}. The collisional relaxation of {ital T}{sub {parallel}} toward {ital T}{sub {perpendicular}} produces a slow dissipation of electrostatic energy into heat and a consequent expansion (cross-field transport) of the plasma. In the limit where the cross section of the plasma is nearly circular the radial particle flux is given by {Gamma}{sub {ital r}}=1/2{nu}{sub {perpendicular},{parallel}}{ital T}({ital r}/{rho}{sub 0}){sup 2}{ital n}/({minus}{ital e}{partial_derivative}{Phi}/{partial_derivative}{ital r}), where {nu}{sub {perpendicular},{parallel}} is the collisional equipartition rate, {rho}{sub 0} is the major radius at the center of the plasma, and {ital r} is the minor radius measured from the center of the plasma. The transport flux is first calculated using this simple physical picture and then is calculated by solving the drift-kinetic Boltzmann equation. This latter calculation is not limited to a plasma with a circular cross section. {copyright} {ital 1996 American Institute of Physics.}« less
Statistical properties and correlation functions for drift waves
NASA Technical Reports Server (NTRS)
Horton, W.
1986-01-01
The dissipative one-field drift wave equation is solved using the pseudospectral method to generate steady-state fluctuations. The fluctuations are analyzed in terms of space-time correlation functions and modal probability distributions. Nearly Gaussian statistics and exponential decay of the two-time correlation functions occur in the presence of electron dissipation, while in the absence of electron dissipation long-lived vortical structures occur. Formulas from renormalized, Markovianized statistical turbulence theory are given in a local approximation to interpret the dissipative turbulence.
Control parameters of the martian dune field positions at planetary scale: tests by the MCD
NASA Astrophysics Data System (ADS)
allemand, pascal
2016-04-01
The surface of Mars is occupied by more than 500 dunes fields mainly located inside impact craters of the south hemisphere and near the north polar cap. The questions of the activity of martian dunes and of the localization of the martian dune fields are not completely solved. It has been demonstrated recently by image observation and image correlation that some of these dune fields are clearly active. The sand flux of one of them has been even estimated. But there is no global view of the degree of activity of each the dune fields. (2)The topography of impact craters in which dune fields are localized is an important factor of their position. But there is no consensus of the effect of global atmospheric circulation on dune field localization. These two questions are addressed using the results of Mars Climate Database 5.2 (MCD) (Millour, 2015; Forget et al., 1999). The wind fields of the MCD have been first validated against the observations made on active dune fields. Using a classical transport law, the Drift Potential (DP) and the Relative Drift Potential (RDP) have been computed for each dune fields. A good correlation exists between the position of dune fields and specific values of these two parameters. The activity of each dune field is estimated from these parameters and tested on some examples by image observations. Finally a map of sand flow has been computed at the scale of the planet. This map shows that sand and dust is trapped in specific regions. These regions correspond to the area of dune field concentration.
Sheared-flow induced confinement transition in a linear magnetized plasma
NASA Astrophysics Data System (ADS)
Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.
2012-01-01
A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.
2017-01-01
We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of approximately 0.86. We assume that the correlation is the result of LHFR wave generation by the ions polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD)parallel and perpendicular to the ambient magnetic eld to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions polarization drift in the electric field of an EMIC wave.
Al-Tamimi, Yahia Z; Helmy, Adel; Bavetta, Seb; Price, Stephen J
2009-01-01
Intraparenchymal monitoring devices play an important role in the daily management of head injury and other critically ill neurosurgical patients. Although zero drift data exist for the Camino system (Camino Laboratories, San Diego, CA), only in vitro data exist for the Codman system (Codman and Shurtleff, Inc., Raynham, MA). The aim of this study was to assess the extent of zero drift for the Codman intracranial pressure (ICP) monitor in patients being monitored in 2 neurointensive care units. This was a prospective study conducted at 2 neurointensive care units. Eighty-eight patients who required ICP monitoring and who presented to the 2 neurosurgical departments, Center 1 (n = 48) and Center 2 (n = 40), were recruited for participation. The duration of ICP monitoring was noted, as was the resultant pressure reading in normal saline on removing the ICP monitor (zero drift). The median absolute zero drift for the group was 2.0 mm Hg (interquartile range, 1-3 mm Hg). The median time in situ was 108 hours (interquartile range, 69-201 hours). There was a positive correlation between the drift and time of the probe spent in situ (Spearman's correlation coefficient = 0.342; P = 0.001). Of the readings, 20 and 2% showed a drift greater than 5 and 10 mm Hg in magnitude, respectively. These data demonstrate that a small amount of zero drift exists in ICP monitors and that this drift increases with time. The wide range in the data demonstrates that some drift readings are quite excessive. This reinforces the school of thought that, although ICP readings contribute significantly to the management of neurosurgical patients, they should be interpreted carefully and in conjunction with clinical and radiological assessment of patients.
Van Allen Probes Observations of Radiation Belt Acceleration associated with Solar Wind Shocks
NASA Astrophysics Data System (ADS)
Foster, J. C.; Wygant, J. R.; Baker, D. N.
2017-12-01
During a moderate solar wind shock event on 8 October 2013 the twin Van Allen Probes spacecraft observed the shock-induced electric field in the dayside magnetosphere and the response of the electron populations across a broad range of energies. Whereas other mechanisms populating the radiation belts close to Earth (L 3-5) take place on time scales of months (diffusion) or hours (storm and substorm effects), acceleration during shock events occurs on a much faster ( 1 minute) time scale. During this event the dayside equatorial magnetosphere experienced a strong dusk-dawn/azimuthal component of the electric field of 1 min duration. This shock-induced pulse accelerates radiation belt electrons for the length of time they are exposed to it creating "quasi-periodic pulse-like" enhancements in the relativistic (2 - 6 MeV) electron flux. Electron acceleration occurs on a time scale that is a fraction of their orbital drift period around the Earth. Those electrons whose drift velocity closely matches the azimuthal phase velocity of the shock-induced pulse stay in the accelerating wave as it propagates tailward and receive the largest increase in energy. Relativistic electron gradient drift velocities are energy-dependent, selecting a preferred range of energies (3-4 MeV) for the strongest enhancement. The time scale for shock acceleration is short with respect to the electron drift period ( 5 min), but long with respect to bounce and gyro periodicities. As a result, the third invariant is broken and the affected electron populations are displaced earthward experiencing an adiabatic energy gain. At radial distances tailward of the peak in phase space density, the impulsive inward displacement of the electron population produces a decrease in electron flux and a sequence of gradient drifting "negative holes".Dual spacecraft coverage of the 8 October 2013 event provided a before/after time sequence documenting shock effects.
NASA Astrophysics Data System (ADS)
Mukherjee, Arnab; Ankit, Kumar; Selzer, Michael; Nestler, Britta
2018-04-01
We employ the phase-field method to assess electromigration (EM) damage in wide polycrystalline interconnects due to grain-boundary grooving. An interplay of surface and grain-boundary diffusion is shown to drastically influence the mode of progressive EM damage. Rapid atomic transport along the surface leads to shape-preserving surface drift reminiscent of Blech drift-velocity experiments. On the other hand, a comparatively faster grain-boundary transport localizes the damage, resulting in the proliferation of intergranular slits with a shape-preserving tip. At steady state, the two regimes exhibit exponents of 1 and 3 /2 , respectively, in Black's law. While surface drift obeys an inverse scaling with grain size, slits exhibit a direct relationship at small sizes, with the dependence becoming weaker at larger ones. Furthermore, we explain the influence of curvature- or EM-mediated healing fluxes running along the surface on groove replenishment. Insights derived from phase-field simulations of EM in bicrystals are extended to investigate the multiphysics of mixed-mode damage of a polycrystalline interconnect line that is characterized by a drift of small grain surfaces, slit propagation, and coarsening. The triple and quadruple junctions are identified as prominent sites of failure.
Drive electrostatic plasma oscillations in a closed electron drift accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, A.I.; Nevrovskii, V.A.; Smirnov, V.A.
1973-09-01
The present work describes and experimental investigation of the perturbations created in the plasma of a closed electron drift accelerator (CEDA) by a time-varying potential applied to an electrode in the plasma. In particular, the driven electrostatic oscillations are in phase over the entire volume of the channel and the attenuation of the signal amplitude is sensitive to the direction of the electron flux in the accelerator. Certain aspects of the propagation of the harmonic signals and pulses in the plasma are established. A substantial drop in signal amplitude occurs between the electrode and the plasma. (auth)
Measurements and modeling of intra-ELM tungsten sourcing and transport in DIII-D
NASA Astrophysics Data System (ADS)
Abrams, T.; Leonard, A. W.; Thomas, D. M.; McLean, A. G.; Makowski, M. A.; Wang, H. Q.; Unterberg, E. A.; Briesemeister, A. R.; Rudakov, D. L.; Bykov, I.; Donovan, D.
2017-10-01
Intra-ELM tungsten erosion profiles in the DIII-D divertor, acquired via W I spectroscopy with high temporal and spatial resolution, are consistent with SDTrim.SP sputtering modeling using measured ion saturation currents and impact energies during ELMs as input and an ad-hoc 2% C2+ impurity flux. The W sputtering profile peaks close to the OSP both during and between ELMs in the favorable BT direction. In reverse BT the W source peaks close to the OSP between ELMs but strongly broadens and shifts outboard during ELMs, heuristically consistent with radially outward ion transport via ExB drifts. Ion impact energies during ELMs (inferred taking the ratio of divertor heat flux to the ion saturation current) are found to be approximately equal to Te,ped, lower than the 4*Te,ped value predicted by the Fundamenski/Moulton free streaming model. These impact energies imply both D main ions and C impurities contribute strongly to W sputtering during ELMs on DIII-D. This work represents progress towards a predictive model to link upstream conditions (i.e., pedestal height) and SOL impurity levels to the ELM-induced W impurity source at both the strike-point and far-target regions in the ITER divertor. Correlations between ELM size/frequency and SOL W fluxes measured via a midplane deposition probe will also be presented. Work supported by US DOE under DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Delon, C.; Druilhet, A.; Delmas, R.; Greenberg, J.
2000-08-01
The Relaxed Eddy Accumulation (REA) technique, implemented aboard aircraft, may be used to measure a wide variety of trace gas fluxes at a regional scale. Its principle is rather simple: air is sampled at a constant rate and the flux is calculated by multiplying a constant β (0.58 in field experiment and 0.62 in simulations) by the standard deviation of the vertical velocity and by the difference between the average concentrations of the scalar (trace gas) for updrafts and downdrafts. The storage of the chemical compound in reservoirs allows for trace gas analysis in laboratory, when in situ measurement with fast response and high sensitivity sensors are not available. The REA method was implemented on the Avion de Recherche Atmosphérique et de Télédétection aircraft during the Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO) campaign. The main requirement for accurate flux determination is the measurement of the vertical component of wind velocity in real time. A simulation technique was developed to evaluate the performance of an aircraft REA. The influence of the time lag between the vertical velocity (W) measurement and REA control was tested, as well as the offset of W, the threshold, and the filtering imposed on W. Correction factors, used in a deployment of aircraft REA, were deduced from this study. An additional simulation was performed to evaluate the influence of spatial or temporal drifts on the scalar. The simulation showed that the REA method is not more disturbed than the Eddy Correlation method by low frequencies of physical origin, such as topography. The REA method was used during EXPRESSO for the measurement of isoprene fluxes over the wet savanna and the evergreen rain forest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miettinen, Jaakko; Sairanen, Risto; Lindholm, Ilona
2002-07-01
The interest to study the dryout heat flux in particle beds is related to interest of quantify the debris coolability margins during a hypothetical severe reactor accident. When the molten core has relocated to the containment floor, one accident management concept is based on the cooling of the corium by the water injection on top. Earlier experimental and analytical work has concentrated on homogeneous particle beds at atmospheric pressures. For plant safety assessment in Finland, there is a need to consider heterogeneous particle mixtures, layered particle bed setups and varied pressures. A facility has been constructed at VTT to measuremore » dryout heat flux in a heterogeneous particle bed. The bed dimensions are 0.3 m in diameter and 0.6 m in height, with a mixture of 0.1 to 10 mm particles. The facility has a pressure range from atmospheric to 6 bar (overpressure). The bed is heated by spirals of a resistance band. The preliminary experiments have been carried out, but a more systematic set of data is expected to be available in the spring 2002. To support the experiments analytical models have been developed for qualification of the experimental results. The first comparison is done against various critical heat flux correlations developed in 1980's and 1990's for homogeneous bed conditions. The second comparison is done against 1-D and 0-D models developed by Lipinski. The most detailed analysis of the transient process conditions and dryout predictions are done by using the two-dimensional, drift-flux based thermohydraulic solution for the particle bed immersed into the water. The code is called PILEXP. Already the first validation results against the preliminary tests indicate that the transient process conditions and the mechanisms related to the dryout can be best explained and understood by using a multidimensional, transient code, where all details of the process control can be modeled as well. The heterogeneous bed and stratified bed can not be well considered by single critical heat flux correlations. (authors)« less
Evidence for ion heat flux in the light ion polar wind
NASA Technical Reports Server (NTRS)
Biddle, A. P.; Moore, T. E.; Chappell, C. R.
1985-01-01
Cold flowing hydrogen and helium ions have been observed using the retarding ion mass spectrometer on board the Dynamics Explorer 1 spacecraft in the dayside magnetosphere at subauroral latitudes. The ions show a marked flux asymmetry with respect to the relative wind direction. The observed data are fitted by a model of drifting Maxwellian distributions perturbed by a first order-Spritzer-Haerm heat flux distribution function. It is shown that both ion species are supersonic just equatorward of the auroral zone at L = 14, and the shape of asymmetry and direction of the asymmetry are consistent with the presence of an upward heat flux. At L = 6, both species evolve smoothly into warmer subsonic upward flows with downward heat fluxes. In the case of subsonic flows the downward heat flux implies a significant heat source at higher altitudes. Spin curves of the spectrometer count rate versus the spin phase angle are provided.
New theory of transport due to like-particle collisions
NASA Technical Reports Server (NTRS)
Oneil, T. M.
1985-01-01
Cross-magnetic-field transport due to like-particle collisions is discussed for the parameter regime lambda sub D much greater than r sub L, where lambda sub D is the Debye length and r sub L is the characteristic Larmor radius of the colliding particles. A new theory based on collisionally produced E x B drifts predicts a particle flux which exceeds the flux predicted previously, by the factor (lambda sub D/r sub L)-squared much greater than 1.
NASA Astrophysics Data System (ADS)
Prabhu, M.; Unnikrishnan, K.
2018-04-01
In the present work, we analyzed the daytime vertical E × B drift velocities obtained from Jicamarca Unattended Long-term Ionosphere Atmosphere (JULIA) radar and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca, and Piura in Peru for 22 geomagnetically disturbed events in which either SC has occurred or Dstmax < -50 nT during the period 2006-2011. The ΔH component of geomagnetic field is measured as the differences in the magnitudes of horizontal H component between magnetometer placed directly on the magnetic equator and one displaced 6-9° away. It will provide a direct measure of the daytime electrojet current, due to the eastward electric field. This will in turn gives the magnitude of vertical E × B drift velocity in the F region. A positive correlation exists between peak values of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of the events. It was observed that 45% of the events have daytime vertical E × B drift velocity peak in the magnitude range 10-20 m/s and 20-30 m/s and 20% have peak ΔH in the magnitude range 50-60 nT and 80-90 nT. It was observed that the time of occurrence of the peak value of both the vertical E × B drift velocity and the ΔH have a maximum (40%) probability in the same time range 11:00-13:00 LT. We also investigated the correlation between E × B drift velocity and Dst index and the correlation between delta H and Dst index. A strong positive correlation is found between E × B drift and Dst index as well as between delta H and Dst Index. Three different techniques of data analysis - linear, polynomial (order 2), and polynomial (order 3) regression analysis were considered. The regression parameters in all the three cases were calculated using the Least Square Method (LSM), using the daytime vertical E × B drift velocity and ΔH. A formula was developed which indicates the relationship between daytime vertical E × B drift velocity and ΔH, for the disturbed periods. The E × B drift velocity was then evaluated using the formulae thus found for the three regression analysis and validated for the 'disturbed periods' of 3 selected events. The E × B drift velocities estimated by the three regression analysis have a fairly good agreement with JULIA radar observed values under different seasons and solar activity conditions. Root Mean Square (RMS) errors calculated for each case suggest that polynomial (order 3) regression analysis provides a better agreement with the observations from among the three.
Impact of centrifugal drifts on ion turbulent transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belli, Emily A.; Candy, J.
Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less
Impact of centrifugal drifts on ion turbulent transport
Belli, Emily A.; Candy, J.
2018-03-01
Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less
Well logging interpretation of production profile in horizontal oil-water two phase flow pipes
NASA Astrophysics Data System (ADS)
Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke
2012-03-01
Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.
Analytic non-Maxwellian electron velocity distribution function in a Hall discharge plasma
NASA Astrophysics Data System (ADS)
Shagayda, Andrey; Tarasov, Alexey
2017-10-01
The electron velocity distribution function in the low-pressure discharges with the crossed electric and magnetic fields, which occur in magnetrons, plasma accelerators, and Hall thrusters with a closed electron drift, is not Maxwellian. A deviation from equilibrium is caused by a large electron mean free path relative to the Larmor radius and the size of the discharge channel. In this study, we derived in the relaxation approximation the analytical expression of the electron velocity distribution function in a weakly ionized Lorentz plasma with the crossed electric and magnetic fields in the presence of the electron density and temperature gradients in the direction of the electric field. The solution was obtained in the stationary approximation far from boundary surfaces, when diffusion and mobility are determined by the classical effective collision frequency of electrons with ions and atoms. The moments of the distribution function including the average velocity, the stress tensor, and the heat flux were calculated and compared with the classical hydrodynamic expressions. It was shown that a kinetic correction to the drift velocity stems from a contribution of the off-diagonal component of the stress tensor. This correction becomes essential if the drift velocity in the crossed electric and magnetic fields would be comparable to the thermal velocity of electrons. The electron temperature has three different components at a nonzero effective collision frequency and two different components in the limit when the collision frequency tends to zero. It is shown that, in the presence of ionization collisions, the components of the heat flux have additives that are not related to the temperature gradient, and arise because of the electron drift.
ISO Key Project: Exploring the full range of QUASAR/AGN properties
NASA Technical Reports Server (NTRS)
Wilkes, B.
1998-01-01
The PIA (PHOT Interactive Analysis) software was upgraded as new releases were made available by VILSPA. We have continued to analyze our data but, given the large number of still outstanding problems with the calibration and analysis (listed below), we remain unable to move forward on our scientific program. We have concentrated on observations with long (256 sec) exposure times to avoid the most extreme detector responsivity drift problems which occur with a change in observed flux level, ie. as one begins to observe a new target. There remain a significant number of problems with analyzing these data including: (1) the default calibration source (FCS) observations early in the mission were too short and affected by strong detector responsivity drifts; (2) the calibration of the FCS sources is not yet well-understood, particularly for chopped observations (which includes most of ours); (3) the detector responsivity drift is not well-understood and models are only now becoming available for fitting chopped data; (4) charged particle hits on the detector cause transient responsivity drifts which need to be corrected; (5) the "flat-field" calibration of the long-wavelength (array) detectors: C1OO, C200 leaves significant residual structure and so needs to be improved;(6) the vignetting correction, which affects detected flux levels in the array detectors, is not yet available; (7) the intra-filter calibrations are not yet available; and (8) the background above 60 microns has a significant gradient which results in spurious positive and negative "detections" in chopped observations. ISO Observation planning, conferences and talks, ground based observing and other grant related activities are also briefly discussed.
NASA Astrophysics Data System (ADS)
Carrano, Charles S.; Groves, Keith M.; Rino, Charles L.; Doherty, Patricia H.
2016-08-01
The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross-correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory-Scintillation Network Decision Aid (AFRL-SCINDA) network operates a small number of very high frequency (VHF) spaced-receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL-SCINDA network (25-30) and the Low-Latitude Ionospheric Sensor Network (35-50), but the receivers are too widely separated from each other for cross-correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single-station GNSS measurements of S4, σφ, and the propagation geometry. Unlike the spaced-receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σφ to S4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced-receiver measurements of zonal irregularity drift obtained from the AFRL-SCINDA network. While the spaced-receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors.
A 3-D morphometric analysis of erosional features in a contourite drift from offshore SE Brazil
NASA Astrophysics Data System (ADS)
Alves, Tiago M.
2010-12-01
A contourite drift from offshore Brazil is mapped in detail and investigated using state-of-the-art 3-D seismic data. The aim was to review the relevance of erosional features in contourite drifts accumulated on continental slopes. Topographically confined by growing salt diapirs, the mapped contourite ridge is limited by two erosional features, a contourite moat and a turbidite channel, showing multiple slide scars on it flanks. Associated with the latter features are thick accumulations of high-amplitude strata, probably comprising sandy/silty sediment of Miocene to Holocene age. The erosional unconformities are mostly observed in a region averaging 3.75km away from the axes of a channel and a moat, whose deposits interfinger with continuous strata in central parts of the contourite drift. The multiple unconformities observed are mostly related to slide scars and local erosion on the flanks of the drift. This work demonstrates that the existence of widespread unconformities within contourite drifts on continental slopes: (1) may not be as prominent as often documented, (2) are often diachronic and interfinger with correlative hiatuses or aggraded strata in axial regions of contourite drifts. Although less widespread than regional, or ocean-scale unconformities, these diachronous features result in significant hiatuses within contourite drifts and are, therefore, potentially mappable as relevant (regional-scale) unconformities on 2-D/3-D seismic data. Thus, without a full 3-D morphometric analysis of contourite drifts, significant errors may occur when estimating major changes in the dynamics of principal geostrophic currents based on single-site core data, or on direct correlations between stratigraphic surfaces of distinct contourite bodies.
Russell, David A.; D'Ippolito, Daniel A.; Myra, James R.; ...
2015-09-01
The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (“SOL Turbulence”) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured inmore » the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infra-red thermography, and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.« less
Kinetic neoclassical transport in the H-mode pedestal
Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...
2014-07-16
Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrapeoff layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. We achieved quantitative agreement between the fluxdriven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles by adding random-walk particle diffusion to the guiding-center drift motion. Furthermore, we computed the radial electric field (Er) that maintains ambipolar transport across flux surfaces and to the wall self-consistently on closed and open magnetic field lines, and is in excellent agreement with experiment. The Ermore » inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport is primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-Ip parallel flows in the pedestal, ion temperature anisotropy and large impurity temperatures in the scrape-off layer.« less
McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles
2016-10-19
Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.
The Return of Magnetic Flux to the Inner Saturnian Magnetosphere
NASA Astrophysics Data System (ADS)
Lai, Hairong; Russell, Christopher T.; Jia, Yingdong; Masters, Adam; Dougherty, Michele K.
2017-04-01
The addition of plasma to the rotating inner Saturnian magnetosphere drives the circulation of the magnetic flux. The magnetic flux is loaded with cold plasma originating from Enceladus and its plasma torus. It then convects outward to the tail region, is emptied of plasma during reconnection events, and returns buoyantly to the inner magnetosphere. Returning flux tubes carry hot and tenuous plasma that serves as a marker of this type of flux tube. The plasma inside the tubes drifts at different rates depending on energy in the curved and inhomogeneous magnetosphere when the tubes convect inward. This energy dispersion can be used to track the flux tube. With data from MAG and CAPS, we model the energy dispersion of the electrons to determine the age and the point of return of the 'empty' flux tubes. The results show that even the 'fresh' flux tubes are several hours old when seen and they start to return at 19 Saturn radii, near Titan's orbit. This supports the hypothesis that returning flux tubes generated by reconnection in the far-tail region are injected directly into the inner magnetosphere.
Heavy-ion dominance near Cluster perigees
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.
2015-12-01
Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.
Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube
Lee, Sangyeop; Lindsay, Lucas
2017-05-18
Here, two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) single wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations employing an optimized Tersoff potential for atomic interactions. We formally derive a formula for the contribution of drift motion of phonons to total heat flux at steady state. It is found that the drift motion of phonons carry more than 70% and 90% of heat at 300 K and 100 K, respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if the SWCNT is long enough to avoid ballistic phonon transport. Themore » dispersion relation of second sound is derived from the Peierls-Boltzmann transport equation with Callaway s scattering model and quantifies the speed of second sound and its relaxation. The speed of second sound is around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 m in an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.« less
Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangyeop; Lindsay, Lucas
Here, two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) single wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations employing an optimized Tersoff potential for atomic interactions. We formally derive a formula for the contribution of drift motion of phonons to total heat flux at steady state. It is found that the drift motion of phonons carry more than 70% and 90% of heat at 300 K and 100 K, respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if the SWCNT is long enough to avoid ballistic phonon transport. Themore » dispersion relation of second sound is derived from the Peierls-Boltzmann transport equation with Callaway s scattering model and quantifies the speed of second sound and its relaxation. The speed of second sound is around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 m in an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.« less
NASA Astrophysics Data System (ADS)
Förster, Matthias; Rashev, Mikhail; Haaland, Stein
2017-04-01
The Electron Drift Instrument (EDI) onboard Cluster can measure 500 eV and 1 keV electron fluxes with high time resolution during passive operation phases in its Ambient Electron (AE) mode. Data from this mode is available in the Cluster Science Archive since October 2004 with a cadence of 16 Hz in the normal mode or 128 Hz for burst mode telemetry intervals. The fluxes are recorded at pitch angles of 0, 90, and 180 degrees. This paper describes the calibration and validation of these measurements. The high resolution AE data allow precise temporal and spatial diagnostics of magnetospheric boundaries and will be used for case studies and statistical studies of low energy electron fluxes in the near-Earth space. We show examples of applications.
Neoclassical transport in toroidal plasmas with nonaxisymmetric flux surfaces
Belli, Emily A.; Candy, Jefferey M.
2015-04-15
The capability to treat nonaxisymmetric flux surface geometry has been added to the drift-kinetic code NEO. Geometric quantities (i.e. metric elements) are supplied by a recently-developed local 3D equilibrium solver, allowing neoclassical transport coefficients to be systematically computed while varying the 3D plasma shape in a simple and intuitive manner. Code verification is accomplished via detailed comparison with 3D Pfirsch–Schlüter theory. A discussion of the various collisionality regimes associated with 3D transport is given, with an emphasis on non-ambipolar particle flux, neoclassical toroidal viscosity, energy flux and bootstrap current. As a result, we compute the transport in the presence ofmore » ripple-type perturbations in a DIII-D-like H-mode edge plasma.« less
NASA Technical Reports Server (NTRS)
Imhof, W. L.; Gaines, E. E.; Mcglennon, J. P.; Baker, D. N.; Reeves, G. D.; Belian, R. D.
1994-01-01
Analyses are presented for the first high-time resolution multisatellite study of the spatial and temporal characteristics of a relativistic electron enhancement event with a rapid onset. Measurements of MeV electrons were made from two low-altitude polar orbiting satellites and three spacecraft at synchronous altitude. The electron fluxes observed by the low-altitude satellites include precipitating electrons in both the bounce and drift loss cones as well as electrons that are stably trapped, whereas the observations at geosynchronous altitude are dominated by the trapped population. The fluxes of greater than 1 MeV electrons at low-satellite altitude over a wide range of L shells tracked very well the fluxes greater than 0.93 MeV at synchronous altitude.
NASA Astrophysics Data System (ADS)
Oyekola, Oyedemi S.
2012-07-01
Equatorial and low-latitude electrodynamics plays a dominant role in determining the structure and dynamics of the equatorial and low-latitude ionospheric F-region. Thus, they constitute essential input parameters for quantitative global and regional modeling studies. In this work, hourly median value of ionosonde measurements namely, peak height F2-layer (hmF2), F2-layer critical frequency (foF2) and propagation factor M(3000)F2 made at near equatorial dip latitude, Ouagadougou, Burkina Faso (12oN, 1.5oW; dip: 1.5oN) and relevant F2-layer parameters such as thickness parameter (Bo), electron temperature (Te), ion temperature (Ti), total electron content (TEC) and electron density (Ne, at the fixed altitude of 300 km) provided by the International Reference Ionosphere (IRI) model for the longitude of Ouagadougou are contrasted with the IRI vertical drift model to explore in detail the monthly climatological behavior of equatorial ionosphere and the effects of equatorial vertical plasma drift velocities on the diurnal structure of F2-layer parameters. The analysis period covers four months representative of solstitial and equinoctial seasonal periods during solar minimum year of 1987 for geomagnetically quiet-day. We show that month-by-month morphological patterns between vertical E×B drifts and F2-layer parameters range from worst to reasonably good and are largely seasonally dependent. A cross-correlation analysis conducted between equatorial drift and F2-layer characteristics yield statistically significant correlations for equatorial vertical drift and IRI-Bo, IRI-Te and IRI-TEC, whereas little or no acceptable correlation is obtained with observational evidence. Assessment of the association between measured foF2, hmF2 and M(3000)F2 illustrates consistent much more smaller correlation coefficients with no systematic linkage. In general, our research indicates strong departure from simple electrodynamically controlled behavior.
NASA Astrophysics Data System (ADS)
Carrano, C. S.; Groves, K. M.; Valladares, C. E.; Delay, S. H.
2014-12-01
A complete characterization of field-aligned ionospheric irregularities responsible for the scintillation of satellite signals includes not only their spectral properties (power spectral strength, spectral index, anisotropy ratio, and outer-scale) but also their horizontal drift velocity. From a system impacts perspective, the horizontal drift velocity is important in that it dictates the rate of signal fading and also, to an extent, the level of phase fluctuations encountered by the receiver. From a physics perspective, studying the longitudinal morphology of zonal irregularity may lead to an improved understanding of the F region dynamo and regional electrodynamics at low latitudes. The irregularity drift at low latitudes is predominantly zonal and is most commonly measured by cross-correlating observations of satellite signals made by a pair of closely-spaced antennas. The AFRL-SCINDA network operates a small number of VHF spaced-antenna systems at low latitude stations for this purpose. A far greater number of GPS scintillation monitors are operated by AFRL-SCINDA (25-30) and the Low Latitude Ionospheric Sensor Network (35-50), but the receivers are situated too far apart to monitor the drift using cross-correlation techniques. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory (Rino, Radio Sci., 1979) to infer the zonal irregularity drift from single-station GPS measurements of S4, sigma-phi, and the propagation geometry alone. Unlike the spaced-receiver technique, this technique requires assumptions for the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment show that the ratio of sigma-phi to S4 is less sensitive to these parameters than it is to the zonal drift, and hence the zonal drift can be estimated with reasonable accuracy. In this talk, we first validate the technique using spaced VHF-antenna measurements of zonal irregularity drift from the AFRL-SCINDA network. Next, we discuss preliminary results from our investigation into the longitudinal morphology of zonal irregularity drift using the AFRL-SCINDA and LISN networks of GPS scintillation monitors.
Sniffle: a step forward to measure in situ CO 2 fluxes with the floating chamber technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribas-Ribas, Mariana; Kilcher, Levi F.; Wurl, Oliver
Understanding how the ocean absorbs anthropogenic CO 2 is critical for predicting climate change. We designed Sniffle, a new autonomous drifting buoy with a floating chamber, to measure gas transfer velocities and air-sea CO 2 fluxes with high spatiotemporal resolution. Currently, insufficient in situ data exist to verify gas transfer parameterizations at low wind speeds (<4 m s -1), which leads to underestimation of gas transfer velocities and, therefore, of air-sea CO 2 fluxes. The Sniffle is equipped with a sensor to consecutively measure aqueous and atmospheric pCO 2 and to monitor increases or decreases of CO 2 inside themore » chamber. During autonomous operation, a complete cycle lasts 40 minutes, with a new cycle initiated after flushing the chamber. The Sniffle can be deployed for up to 15 hours at wind speeds up to 10 m s -1. Floating chambers often overestimate fluxes because they create additional turbulence at the water surface. We correct fluxes by measuring turbulence with two acoustic Doppler velocimeters, one positioned directly under the floating chamber and the other positioned sideways, to compare artificial disturbance caused by the chamber and natural turbulence. The first results of deployment in the North Sea during the summer of 2016 demonstrate that the new drifting buoy is a useful tool that can improve our understanding of gas transfer velocity with in situ measurements. At low and moderate wind speeds and different conditions, the results obtained indicate that the observed tidal basin was acting as a source of atmospheric CO 2. Wind speed and turbulence alone could not fully explain the variance in gas transfer velocity. We suggest therefore, that other factors like surfactants, rain or tidal current will have an impact on gas transfer parameterizations.« less
Sniffle: a step forward to measure in situ CO 2 fluxes with the floating chamber technique
Ribas-Ribas, Mariana; Kilcher, Levi F.; Wurl, Oliver
2018-01-09
Understanding how the ocean absorbs anthropogenic CO 2 is critical for predicting climate change. We designed Sniffle, a new autonomous drifting buoy with a floating chamber, to measure gas transfer velocities and air-sea CO 2 fluxes with high spatiotemporal resolution. Currently, insufficient in situ data exist to verify gas transfer parameterizations at low wind speeds (<4 m s -1), which leads to underestimation of gas transfer velocities and, therefore, of air-sea CO 2 fluxes. The Sniffle is equipped with a sensor to consecutively measure aqueous and atmospheric pCO 2 and to monitor increases or decreases of CO 2 inside themore » chamber. During autonomous operation, a complete cycle lasts 40 minutes, with a new cycle initiated after flushing the chamber. The Sniffle can be deployed for up to 15 hours at wind speeds up to 10 m s -1. Floating chambers often overestimate fluxes because they create additional turbulence at the water surface. We correct fluxes by measuring turbulence with two acoustic Doppler velocimeters, one positioned directly under the floating chamber and the other positioned sideways, to compare artificial disturbance caused by the chamber and natural turbulence. The first results of deployment in the North Sea during the summer of 2016 demonstrate that the new drifting buoy is a useful tool that can improve our understanding of gas transfer velocity with in situ measurements. At low and moderate wind speeds and different conditions, the results obtained indicate that the observed tidal basin was acting as a source of atmospheric CO 2. Wind speed and turbulence alone could not fully explain the variance in gas transfer velocity. We suggest therefore, that other factors like surfactants, rain or tidal current will have an impact on gas transfer parameterizations.« less
A Standard Law for the Equatorward Drift of the Sunspot Zones
NASA Technical Reports Server (NTRS)
Hathaway, David H.
2012-01-01
The latitudinal location of the sunspot zones in each hemisphere is determined by calculating the centroid position of sunspot areas for each solar rotation from May 1874 to June 2012. When these centroid positions are plotted and analyzed as functions of time from each sunspot cycle maximum there appears to be systematic differences in the positions and equatorward drift rates as a function of sunspot cycle amplitude. If, instead, these centroid positions are plotted and analyzed as functions of time from each sunspot cycle minimum then most of the differences in the positions and equatorward drift rates disappear. The differences that remain disappear entirely if curve fitting is used to determine the starting times (which vary by as much as 8 months from the times of minima). The sunspot zone latitudes and equatorward drift measured relative to this starting time follow a standard path for all cycles with no dependence upon cycle strength or hemispheric dominance. Although Cycle 23 was peculiar in its length and the strength of the polar fields it produced, it too shows no significant variation from this standard. This standard law, and the lack of variation with sunspot cycle characteristics, is consistent with Dynamo Wave mechanisms but not consistent with current Flux Transport Dynamo models for the equatorward drift of the sunspot zones.
Abnormal Fixational Eye Movements in Amblyopia.
Shaikh, Aasef G; Otero-Millan, Jorge; Kumar, Priyanka; Ghasia, Fatema F
2016-01-01
Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. Thirty-six pediatric subjects with varying severity of amblyopia and eleven healthy age-matched controls held their gaze on a visual target. Eye movements were measured with high-resolution video-oculography during fellow eye-viewing and amblyopic eye-viewing conditions. Fixational saccades and drifts were analyzed in the amblyopic and fellow eye and compared with controls. We found an increase in the amplitude with decreased frequency of fixational saccades in children with amblyopia. These alterations in fixational eye movements correlated with the severity of their amblyopia. There was also an increase in eye position variance during drifts in amblyopes. There was no correlation between the eye position variance or the eye velocity during ocular drifts and the amplitude of subsequent fixational saccade. Our findings suggest that abnormalities in fixational saccades in amblyopia are independent of the ocular drift. This investigation of amblyopia in pediatric age group quantitatively characterizes the fixation instability. Impaired properties of fixational saccades could be the consequence of abnormal processing and reorganization of the visual system in amblyopia. Paucity in the visual feedback during amblyopic eye-viewing condition can attribute to the increased eye position variance and drift velocity.
Abnormal Fixational Eye Movements in Amblyopia
Shaikh, Aasef G.; Otero-Millan, Jorge; Kumar, Priyanka; Ghasia, Fatema F.
2016-01-01
Purpose Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. Methods Thirty-six pediatric subjects with varying severity of amblyopia and eleven healthy age-matched controls held their gaze on a visual target. Eye movements were measured with high-resolution video-oculography during fellow eye-viewing and amblyopic eye-viewing conditions. Fixational saccades and drifts were analyzed in the amblyopic and fellow eye and compared with controls. Results We found an increase in the amplitude with decreased frequency of fixational saccades in children with amblyopia. These alterations in fixational eye movements correlated with the severity of their amblyopia. There was also an increase in eye position variance during drifts in amblyopes. There was no correlation between the eye position variance or the eye velocity during ocular drifts and the amplitude of subsequent fixational saccade. Our findings suggest that abnormalities in fixational saccades in amblyopia are independent of the ocular drift. Discussion This investigation of amblyopia in pediatric age group quantitatively characterizes the fixation instability. Impaired properties of fixational saccades could be the consequence of abnormal processing and reorganization of the visual system in amblyopia. Paucity in the visual feedback during amblyopic eye-viewing condition can attribute to the increased eye position variance and drift velocity. PMID:26930079
Escape of asteroids from the main belt
NASA Astrophysics Data System (ADS)
Granvik, Mikael; Morbidelli, Alessandro; Vokrouhlický, David; Bottke, William F.; Nesvorný, David; Jedicke, Robert
2017-02-01
Aims: We locate escape routes from the main asteroid belt, particularly into the near-Earth-object (NEO) region, and estimate the relative fluxes for different escape routes as a function of object size under the influence of the Yarkovsky semimajor-axis drift. Methods: We integrated the orbits of 78 355 known and 14 094 cloned main-belt objects and Cybele and Hilda asteroids (hereafter collectively called MBOs) for 100 Myr and recorded the characteristics of the escaping objects. The selected sample of MBOs with perihelion distance q > 1.3 au and semimajor axis a < 4.1 au is essentially complete, with an absolute magnitude limit ranging from HV < 15.9 in the inner belt (a < 2.5 au) to HV < 14.4 in the outer belt (2.5 au < a < 4.1 au). We modeled the semimajor-axis drift caused by the Yarkovsky force and assigned four different sizes (diameters of 0.1, 0.3, 1.0, and 3.0 km) and random spin obliquities (either 0 deg or 180 deg) for each test asteroid. Results: We find more than ten obvious escape routes from the asteroid belt to the NEO region, and they typically coincide with low-order mean-motion resonances with Jupiter and secular resonances. The locations of the escape routes are independent of the semimajor-axis drift rate and thus are also independent of the asteroid diameter. The locations of the escape routes are likewise unaffected when we added a model for Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) cycles coupled with secular evolution of the rotation pole as a result of the solar gravitational torque. A Yarkovsky-only model predicts a flux of asteroids entering the NEO region that is too high compared to the observationally constrained flux, and the discrepancy grows larger for smaller asteroids. A combined Yarkovsky and YORP model predicts a flux of small NEOs that is approximately a factor of 5 too low compared to an observationally constrained estimate. This suggests that the characteristic timescale of the YORP cycle is longer than our canonical YORP model predicts.
Parasitic momentum flux in the tokamak core
Stoltzfus-Dueck, T.
2017-03-06
A geometrical correction to the E × B drift causes an outward flux of co-current momentum whenever electrostatic potential energy is transferred to ion parallel flows. The robust, fully nonlinear symmetry breaking follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The resulting rotation peaking is counter-current and scales as temperature over plasma current. Lastly, this peaking mechanism can only act when fluctuations are low-frequency enough to excite ion parallel flows, which may explain some recent experimental observations related to rotation reversals.
VizieR Online Data Catalog: GTC transit light curves of HAT-P-32b (Nortmann+, 2016)
NASA Astrophysics Data System (ADS)
Nortmann, L.; Palle, E.; Murgas, F.; Dreizler, S.; Iro, N.; Cabrera-Lavers, A.
2016-05-01
We provide two transit light curves of the hot Jupiter HAT-P-32b obtained on the nights of 2012/09/15 and 2012/09/30 using the OSIRIS instrument at the 10.4-m GTC telescope. The data was obtained by using OSIRIS in broad slit spectroscopy mode and covering the wavelength region between 518nm-918nm. For the night of 2012/09/30 we further provide twenty narrowband light curves which were created by summing the flux over 20-nm-wide channels instead over the whole wavelength region. We provide several auxiliary parameters of the observations which we have used to correct the data from correlated noise. These auxiliary parameters are the position drift of the stars on the CCD detector in spatial and dispersion direction, air mass and seeing (FWHM). (23 data files).
Radial transport of radiation belt electrons in kinetic field-line resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.
A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less
Radial transport of radiation belt electrons in kinetic field-line resonances
Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.; ...
2017-07-25
A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less
Ion flux oscillations and ULF waves observed by ARASE satellite and their origin
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Masahito, N.; Kasahara, S.; Yokota, S.; Keika, K.; Matsuoka, A.; Teramoto, M.; Nomura, R.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Shinohara, I.; Yoshizumi, M.
2017-12-01
The ARASE satellite, which was launched on December 20, 2016, is now observing thenightside inner magnetosphere. The inclination of the orbit is larger than those of otherrecent spacecraft flying in the inner magnetosphere such as THMEIS and Van Allen Probes.This unique orbit provides us new information on ULF waves since ULF waves havelatitudinal structure and the antinode of magnetic fluctuations of fundamental mode is athigh magnetic latitudes.Although Pc pulsations are predominantly observed on the dayside, ARASE satellitesometimes observes Pc4-5 pulsations on the nightside. Some of these waves are accompaniedwith energetic particle flux modulations. We found 6 events of the particle flux modulationsaccompanying Pc pulsations on the dawnside and nightside. Theoretical studies suggest thatULF waves detected at afternoon are generated by plasma instabilities like drift-mirror instability [Hasegawa, 1969] and drift-bounce resonance [Southwood et al, 1969].These instabilities cause plasma pressure disturbances or flux modulation of ions. Nonresonant ion clouds injected on the duskside are also considered to be one of the candidates ofULF wave driver [Zolotukhina, 1974]. We therefore discuss whether the ULF waves observedby ARASE satellite are generated internally or externally, and the flux modulations arecreated by plasma instabilities or the other non-resonant effects.On March 31, 2017, Medium-Energy Particle Experiments - Ion Mass Analyzer (MEPi)onboard ARASE detected ion flux oscillations at 12-70 keV with a period of 120 seconds inthe normal (NML) mode observation. NML mode observation provides details of the directionof particle movements. The pitch angle distribution of proton flux showed isotropic fluxoscillations. At the same time, Pc4 pulsations with the same oscillation period were observed.These flux and field perturbations were seen on the dawnside (4.3-5.9 MLT).ARASE found oscillations of ion count with a period of 130 seconds in the time-of-flight(TOF) mode observation at midnight on May 29, 2017. Therefore, we used the list data, that is createdfor onboard calibrations, to make a pitch angle distribution of ion counts. The pitch angledistribution did not have clear fluctuations, so that the oscillations may beattributed to angyrotropic particle distributions.
Drift and pseudomomentum in bounded turbulent shear flows
NASA Astrophysics Data System (ADS)
Phillips, W. R. C.
2015-10-01
This paper is concerned with the evaluation of two Lagrangian measures which arise in oscillatory or fluctuating shear flows when the fluctuating field is rotational and the spectrum of wave numbers which comprise it is continuous. The measures are the drift and pseudomomentum. Phillips [J. Fluid Mech. 430, 209 (2001), 10.1017/S0022112000002858] has shown that the measures are, in such instances, succinctly expressed in terms of Lagrangian integrals of Eulerian space-time correlations. But they are difficult to interpret, and the present work begins by expressing them in a more insightful form. This is achieved by assuming the space-time correlations are separable as magnitude, determined by one-point velocity correlations, and spatial diminution. The measures then parse into terms comprised of the mean Eulerian velocity, one-point velocity correlations, and a family of integrals of spatial diminution, which in turn define a series of Lagrangian time and velocity scales. The pseudomomentum is seen to be strictly negative and related to the turbulence kinetic energy, while the drift is mixed and strongly influenced by the Reynolds stress. Both are calculated for turbulent channel flow for a range of Reynolds numbers and appear, as the Reynolds number increases, to approach a terminal form. At all Reynolds numbers studied, the pseudomomentum has a sole peak located in wall units in the low teens, while at the highest Reynolds number studied, Reτ=5200 , the drift is negative in the vicinity of that peak, positive elsewhere, and largest near the rigid boundary. In contrast, the time and velocity scales grow almost logarithmically over much of the layer. Finally, the drift and pseudomomentum are discussed in the context of coherent wall layer structures with which they are intricately linked.
NASA Astrophysics Data System (ADS)
Scudder, J. D.; Salem, C. S.
2016-12-01
A new model for solar wind electrons provides an explanation for the origin of the non-thermal core-halo-strahl-superhalo VDF ubiquitously observed in the solar wind. Such kurtotic VDF's should be as common as the gradient induced occurrence of finite parallel electric fields that enforce quasi-neutrality in astrophysical plasmas. The velocity space separatrix of coulomb runaway predicts the observed scaling of the break point energy at 1AU of the electron VDF between thermal and suprathermal components and agrees well with the tabulations of its variation with radius. SERM quantitatively reproduces: 14 year IMP archives of the fraction of supra thermal electrons and the observed variation of the supra thermal density with local (nearly asymptotic) solar wind speed; the observed inverse correlation between halo density fraction and Th/Tc; and the reported, but theoretically unusual relative slippage of the core and halo that supports the heat flux. Requirements for quasi-neutrality (in the presence of runaways) lead to a quantitative non-local specification of the required supra thermal density fraction and the lowest even Legendre order approximate VDF that is symmetric, but kurtotic in the proton rest frame. The Stokes drift of the thermals suggested by runaway physics requires a counter drift of the non-locally returning suprathermals which determine the observed heat flux and thermal force contributions and the lowest order odd Legendre dependence of the VDF. The strahl is recovered as an extreme part of the non-local suprathermals. "Direct'' runaways caused by the parallel electric field are identified as an omnipresent source for the observed sunward portion of the non-thermal VDF. The source of the super halo electrons is suggested to be mirrored runaways produced at the base of the corona with subsequent near isotropization in the interplanetary medium.
On the utility of the ionosonde Doppler-derived EXB drift during the daytime
NASA Astrophysics Data System (ADS)
Joshi, L. M.; Sripathi, S.
2016-03-01
Vertical EXB drift measured using the ionosonde Doppler sounding during the daytime suffers from an underestimation of the actual EXB drift because the reflection height of the ionosonde signals is also affected by the photochemistry of the ionosphere. Systematic investigations have indicated a fair/good correlation to exist between the C/NOFS and ionosonde Doppler-measured vertical EXB drift during the daytime over magnetic equator. A detailed analysis, however, indicated that the linear relation between the ionosonde Doppler drift and C/NOFS EXB drift varied with seasons. Thus, solar, seasonal, and also geomagnetic variables were included in the Doppler drift correction, using the artificial neural network-based approach. The RMS error in the neural network was found to be smaller than that in the linear regression analysis. Daytime EXB drift was derived using the neural network which was also used to model the ionospheric redistribution in the SAMI2 model. SAMI2 model reproduced strong (weak) equatorial ionization anomaly (EIA) for cases when neural network corrected daytime vertical EXB drift was high (low). Similar features were also observed in GIM TEC maps. Thus, the results indicate that the neural network can be utilized to derive the vertical EXB drift from its proxies, like the ionosonde Doppler drift. These results indicate that the daytime ionosonde measured vertical EXB drift can be relied upon, provided that adequate corrections are applied to it.
Intonation in unaccompanied singing: accuracy, drift, and a model of reference pitch memory.
Mauch, Matthias; Frieler, Klaus; Dixon, Simon
2014-07-01
This paper presents a study on intonation and intonation drift in unaccompanied singing, and proposes a simple model of reference pitch memory that accounts for many of the effects observed. Singing experiments were conducted with 24 singers of varying ability under three conditions (Normal, Masked, Imagined). Over the duration of a recording, ∼50 s, a median absolute intonation drift of 11 cents was observed. While smaller than the median note error (19 cents), drift was significant in 22% of recordings. Drift magnitude did not correlate with other measures of singing accuracy, singing experience, or the presence of conditions tested. Furthermore, it is shown that neither a static intonation memory model nor a memoryless interval-based intonation model can account for the accuracy and drift behavior observed. The proposed causal model provides a better explanation as it treats the reference pitch as a changing latent variable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.
Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact withmore » electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.« less
NASA Astrophysics Data System (ADS)
Hao, Y.; Zong, Q.; Zhou, X.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S.; Spence, H. E.; Blake, J. B.; Reeves, G. D.
2017-12-01
We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90º pitch angle electrons, the phase change of the flux modulations across energy exceeds 180º, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.
NASA Astrophysics Data System (ADS)
Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X. R.; Liu, Y.; Fu, S. Y.; Spence, H. E.; Blake, J. B.; Reeves, G. D.
2017-08-01
We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.
Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.; ...
2017-07-10
Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact withmore » electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.« less
Flux-driven algebraic damping of m = 1 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas M.
2016-07-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.
Seasonality of light transmittance through Arctic sea ice during spring and summe
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Hudson, S. R.; Granskog, M. A.; Pavlov, A.; Taskjelle, T.; Kauko, H.; Katlein, C.; Geland, S.; Perovich, D. K.
2017-12-01
The energy budget of sea ice and the upper ocean during spring, summer, and autumn is strongly affected by the transfer of solar shortwave radiation through sea ice and into the upper ocean. Previous studies highlighted the great importance of the spring-summer transition, when incoming fluxes are highest and even small changes in surface albedo and transmittance have strong impacts on the annual budgets. The timing of melt onset and changes in snow and ice conditions are also crucial for primary productivity and biogeochemical processes. Here we present results from time series measurements of radiation fluxes through seasonal Arctic sea ice, as it may be expected to play a key role in the future Arctic. Our observations were performed during the Norwegian N-ICE drift experiment in 2015 and the Polarstern expedition PS106 in 2017, both studying sea ice north of Svalbard. Autonomous stations were installed to monitor spectral radiation fluxes above and under sea ice. The observation periods cover the spring-summer transition, including snow melt and early melt pond formation. The results show the direct relation of optical properties to under ice algae blooms and their influence on the energy budget. Beyond these results, we will discuss the latest plans and implementation of radiation measurements during the MOSAiC drift in 2019/2020. Then, a full annual cycle of radiation fluxes may be studied from manned and autonomous (buoys) measurements as well as using a remotely operated vehicle (ROV) as measurement platform. These measurements will be performed in direct relation with numerical simulations on different scales.
Theory based scaling of edge turbulence and implications for the scrape-off layer width
NASA Astrophysics Data System (ADS)
Myra, J. R.; Russell, D. A.; Zweben, S. J.
2016-11-01
Turbulence and plasma parameter data from the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40, 557 (2000)] is examined and interpreted based on various theoretical estimates. In particular, quantities of interest for assessing the role of turbulent transport on the midplane scrape-off layer heat flux width are assessed. Because most turbulence quantities exhibit large scatter and little scaling within a given operation mode, this paper focuses on length and time scales and dimensionless parameters between operational modes including Ohmic, low (L), and high (H) modes using a large NSTX edge turbulence database [Zweben et al., Nucl. Fusion 55, 093035 (2015)]. These are compared with theoretical estimates for drift and interchange rates, profile modification saturation levels, a resistive ballooning condition, and dimensionless parameters characterizing L and H mode conditions. It is argued that the underlying instability physics governing edge turbulence in different operational modes is, in fact, similar, and is consistent with curvature-driven drift ballooning. Saturation physics, however, is dependent on the operational mode. Five dimensionless parameters for drift-interchange turbulence are obtained and employed to assess the importance of turbulence in setting the scrape-off layer heat flux width λq and its scaling. An explicit proportionality of the width λq to the safety factor and major radius (qR) is obtained under these conditions. Quantitative estimates and reduced model numerical simulations suggest that the turbulence mechanism is not negligible in determining λq in NSTX, at least for high plasma current discharges.
Theory based scaling of edge turbulence and implications for the scrape-off layer width
Myra, J. R.; Russell, D. A.; Zweben, S. J.
2016-11-01
Turbulence and plasma parameter data from the National Spherical Torus Experiment (NSTX) is examined and interpreted based on various theoretical estimates. In particular, quantities of interest for assessing the role of turbulent transport on the midplane scrape-off layer heat flux width are assessed. Because most turbulence quantities exhibit large scatter and little scaling within a given operation mode, this paper focuses on length and time scales and dimensionless parameters between operational modes including Ohmic, low (L), and high (H) modes using a large NSTX edge turbulence database. These are compared with theoretical estimates for drift and interchange rates, profile modificationmore » saturation levels, a resistive ballooning condition, and dimensionless parameters characterizing L and H mode conditions. It is argued that the underlying instability physics governing edge turbulence in different operational modes is, in fact, similar, and is consistent with curvature-driven drift ballooning. Saturation physics, however, is dependent on the operational mode. Five dimensionless parameters for drift-interchange turbulence are obtained and employed to assess the importance of turbulence in setting the scrape-off layer heat flux width λ q and its scaling. An explicit proportionality of the width λ q to the safety factor and major radius (qR) is obtained under these conditions. Lastly, quantitative estimates and reduced model numerical simulations suggest that the turbulence mechanism is not negligible in determining λ q in NSTX, at least for high plasma current discharges.« less
Diffuse Reflectance FT-IR Of Surface Modified Kevlar
NASA Astrophysics Data System (ADS)
Benrashid, R.; Tesoro, G.; McKenzie, M. T., Jr.
1989-12-01
Diffuse reflectance FT-IR (DRIFT) has been applied to the characterization of surface modified Kevlar 29 and 49 fibers. The surface modifications include amination and sulfonation. The standard DRIFT experiment has been modified in the manner first described by Koenig et.al. 1 who used a KBR overlayer to enhance surface functional IR bands. The results from the DRIFT experiment have been correlated with those from a standard dye test. The results for degree of modification are in reasonable agreement between the two measurement approaches. However, the dye experiment is time-consuming and inconvenient. DRIFT has been shown to be useful in characterizing modified Kevlar surfaces in as-used conditions.
NASA Astrophysics Data System (ADS)
Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger
2018-03-01
This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.
NASA Astrophysics Data System (ADS)
Boyle, P. R.; Romans, B.; Norris, R. D.; Tucholke, B. E.; Swift, S. A.; Sexton, P. F.
2014-12-01
In the North Atlantic Ocean, contour-following bottom currents have eroded regional unconformities and deposited contourite drifts that exceed two km in thickness and extend for 100s of km. The character of deep-water masses that are conveyed through ocean basins by such currents influence global heat transfer and ocean-atmosphere partitioning of CO2. The Newfoundland Ridge Drift Complex lies directly under the modern Deep Western Boundary Current southeast of Newfoundland, close to the site of overturning in the northwest Atlantic Ocean and at the intersection of the warm Gulf Stream and cool Labrador surface currents. To the south are regions of the western North Atlantic basin that are influenced by southern- as well as northern-sourced bottom waters. Here, we document the evolution of North Atlantic deep-water circulation by seismic-stratigraphic analysis of the long-lived and areally extensive Newfoundland Ridge Drift Complex. IODP Expedition 342 boreholes provide age control on seismic units, allowing sedimentation patterns to be placed in a temporal framework. We find three major phases of sedimentation: pre-contourite drift (~115-50 Ma), active contourite drift (~50-2.6 Ma), and late-contourite drift (~2.6-0 Ma). Bottom-current-controlled deposition of terrigenous-rich sediment began at ~50 Ma, which correlates to the onset of a long-term global cooling trend. A further change in deep circulation near the Eocene-Oligocene transition (~30 Ma) is indicated by more focused drift sedimentation with greatly increased accumulation rates and stratal architecture dominated by mud waves. At ~2.6 Ma to present the axis of drift accumulation shifted markedly towards shallower water depths, corresponding with the onset of Northern Hemisphere ice sheets. We discuss how these reorganizations of deep circulation correlate with results of other North Atlantic seismic stratigraphic studies to the north and south.
Magnetically Controlled Upper Ionosphere of Mars
NASA Astrophysics Data System (ADS)
Majeed, T.; Al Aryani, O.; Al Mutawa, S.; Bougher, S. W.; Haider, S. A.
2017-12-01
The electron density (Ne) profiles measured by the Mars Express spacecraft over regions of strong crustal magnetic fields have shown anomalous characteristics of the topside plasma distribution with variable scale heights. One of such Ne profiles is located at 82oS and 180oE whose topside ionosphere is extended up to an altitude of 700 km. The crustal magnetic field at this southern site is nearly vertical and open to the access of solar wind plasma through magnetic reconnection with the interplanetary magnetic field. This can lead to the acceleration of electrons and ions during the daytime ionosphere. The downward accelerated electrons with energies >200 eV can penetrate deep into the Martian upper ionosphere along vertical magnetic field lines and cause heating, excitation and ionization of the background atmosphere. The upward acceleration of ions resulting from energy input by precipitating electrons can lead to enhance ion escape rate and modify scale heights of the topside ionosphere. We have developed a 1-D chemical diffusive model from 100 km to 400 km to interpret the Martian ionospheric structure at 82oS latitude. The primary source of ionization in the model is due to solar EUV radiation. An extra ionization source due to precipitating electrons of 0.25 keV, peaking near an altitude of 145 km is added in the model to reasonably reproduce the measured ionospheric structure below an altitude of 180 km. The behavior of the topside ionosphere can be interpreted by the vertical plasma transport caused by precipitating electrons. The vertical transport of plasma in our model is simulated by vertical ion velocities, whose values can be interpreted as drift velocities along magnetic field lines. We find that the variation of the topside Ne scale heights is sensitive to the magnitudes of upward and downward drifts with an imposed outward flux boundary condition at the top of the model. The model requires an upward flux of more than 107 ions cm-2 s-1 for both O2+ and O+, and drift speeds of 200 m/s to interpret the measured topside ionospheric structure for altitudes >180 km. The magnitudes of outward ion fluxes and drift velocities are compared with those simulated by existing models. The model results will be presented in comparison with the measured electron density profile. This work is supported by MBRSC, Dubai, UAE.
Snow drift: acoustic sensors for avalanche warning and research
NASA Astrophysics Data System (ADS)
Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.
Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long-term monitoring. Optical sensors (Schmidt, 1977; Brown and Pomeroy, 1989; Sato and Kimura, 1993) have been very successful for research applications, but suffer from the fact that they give a single flux value at one specific height. In addition, they have not been used, to our knowledge, for long-term monitoring applications or at remote sites. New developments of acoustic sensors have taken place recently (Chritin et al., 1999; Font et al., 1998). Jaedicke (2001) gives examples of possible applications of acoustic snow drift sensors. He emphasizes the advantages of acoustic sensors for snow drift monitoring at remote locations, but could not present any evaluation of the accuracy of the measurements. We present a complete evaluation of the new acoustic sensors for snow drift and discuss their applications for research or avalanche warning. We compare the suitability of sensors for operational applications.
Visual object tracking by correlation filters and online learning
NASA Astrophysics Data System (ADS)
Zhang, Xin; Xia, Gui-Song; Lu, Qikai; Shen, Weiming; Zhang, Liangpei
2018-06-01
Due to the complexity of background scenarios and the variation of target appearance, it is difficult to achieve high accuracy and fast speed for object tracking. Currently, correlation filters based trackers (CFTs) show promising performance in object tracking. The CFTs estimate the target's position by correlation filters with different kinds of features. However, most of CFTs can hardly re-detect the target in the case of long-term tracking drifts. In this paper, a feature integration object tracker named correlation filters and online learning (CFOL) is proposed. CFOL estimates the target's position and its corresponding correlation score using the same discriminative correlation filter with multi-features. To reduce tracking drifts, a new sampling and updating strategy for online learning is proposed. Experiments conducted on 51 image sequences demonstrate that the proposed algorithm is superior to the state-of-the-art approaches.
Large eddy simulation of heat entrainment under Arctic sea ice
NASA Astrophysics Data System (ADS)
Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand
2017-11-01
Sea ice cover in the Arctic has declined rapidly in recent decades. To better understand ice loss through bottom melting, we choose to study the Canada Basin of the Arctic Ocean, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) layer trapping heat from solar radiation. The interaction of these warm layers with a moving ice basal surface is investigated using large eddy simulation. We find that the presence of the NSTM enhances heat entrainment from the mixed layer. Another conclusion from our work is that there is no heat entrained from the PSW layer, even at the largest ice-drift velocity of 0.3 m s-1 considered. We propose a scaling law for the heat flux at the ice basal surface which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of `The Great Arctic Cyclone of 2012' gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer. We acknowledge funding from NOAA Grant NA15OAR4310172, the NSF, and the University of Houston start-up fund.
NASA Astrophysics Data System (ADS)
Rani, Sarma; Gupta, Vijay; Koch, Donald
2017-11-01
A stochastic theory is developed to predict the Radial Distribution Function (RDF) of monodisperse, rapidly settling, low-inertia particle pairs in isotropic turbulence. In the second version of the theory (T2), the dimensionless strain-rate and rotation-rate tensors ``seen'' by the primary particle are assumed to be Gaussian distributed, where the strain-rate and rotation-rate tensors are non-dimensionlized using the instantaneous dissipation rate and enstrophy, respectively. Accordingly, closure is again derived for the drift flux driving particle clustering, in the asympotic limits of Stokes number St =τp /τη << 1 , and settling paramater Sv = gτp /uη >> 1 . Only the drift flux differs for T1 and T2, while the diffusive flux remains the same. The RDFs for rapidly settling pairs again show an inverse power dependency on pair separation r with an exponent, c1, that is proportional to St2 . However, in contrast to T1, the c1 values predicted by T2 show good qualitative and resonable quantitative agreement with the c1 values obtained from DNS of settling particles in isotropic turbulence. Further, the T2-predicted c1 values are smaller than those obtained from DNS of non-settling particles in isotropic turbulence. Funding from the CBET Division of the National Science Foundation is gratefully acknowledged.
A possible closure relation for heat transport in the solar wind
NASA Technical Reports Server (NTRS)
Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.
1979-01-01
The objective of the present paper is to search for an empirical closure relation for solar wind heat transport that applies to a microscopic scale. This task is approached by using the quasi-linear wave-particle formalism proposed by Perkins (1973) as a guide to derive an equation relating the relative drift speed between core-electron and proton populations to local bulk flow conditions. The resulting relationship, containing one free parameter, is found to provide a good characterization of Los Alamos Imp electron data measuring during the period from March 1971 through August 1974. An empirical closure relation is implied by this result because of the observed proportionality between heat flux and relative drift speed.
Martingales, detrending data, and the efficient market hypothesis
NASA Astrophysics Data System (ADS)
McCauley, Joseph L.; Bassler, Kevin E.; Gunaratne, Gemunu H.
2008-01-01
We discuss martingales, detrending data, and the efficient market hypothesis (EMH) for stochastic processes x( t) with arbitrary diffusion coefficients D( x, t). Beginning with x-independent drift coefficients R( t) we show that martingale stochastic processes generate uncorrelated, generally non-stationary increments. Generally, a test for a martingale is therefore a test for uncorrelated increments. A detrended process with an x-dependent drift coefficient is generally not a martingale, and so we extend our analysis to include the class of ( x, t)-dependent drift coefficients of interest in finance. We explain why martingales look Markovian at the level of both simple averages and 2-point correlations. And while a Markovian market has no memory to exploit and presumably cannot be beaten systematically, it has never been shown that martingale memory cannot be exploited in 3-point or higher correlations to beat the market. We generalize our Markov scaling solutions presented earlier, and also generalize the martingale formulation of the EMH to include ( x, t)-dependent drift in log returns. We also use the analysis of this paper to correct a misstatement of the ‘fair game’ condition in terms of serial correlations in Fama's paper on the EMH. We end with a discussion of Levy's characterization of Brownian motion and prove that an arbitrary martingale is topologically inequivalent to a Wiener process.
Erratum: Evidence That a Deep Meridional Flow Sets the Sunspot Cycle Period
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Nandy, Dibyendu; Wilson, Robert M.; Reichmann, Edwin J.
2004-01-01
An error was made in entering the data. This changes the results concerning the length of the time lag between the variations in the meridional flow speed and those in the cycle amplitude. The final paragraph on page 667 should read: Finally, we study the relationship between the drift velocities and the amplitudes of the hemisphere/cycles. We compare the drift velocity at the maximum of the cycle to the amplitude of that cycle for that hemisphere. There is a positive (0.5) and significant (95%) correlation between the two. However, an even stronger relationship is found between the drift velocity and the amplitude of the N + 2 cycle. The correlation is stronger (0.7) and more significant (99%), as shown. This relationship is suggestive of a "memory" in the solar cycle, again a property of dynamo models that use meridional circulation. Indeed, the two-cycle lag is precisely the relationship found by Charbonneau & Dikpati. This behavior is, however, more difficult to interpret, and we elaborate on this in the next section. In either case, these correlations only explain part of the variance in cycle amplitude (25% for the current cycle and 50% for the N + 2 cycle). Obviously, other mechanisms, such as variations in the gradient in the rotation rate, also contribute to the cycle amplitude variations. Our investigation of possible connections between drift rates and the amplitudes of the N + 1 and N + 3 cycles gives no significant correlations at these alternative time lags.
NASA Astrophysics Data System (ADS)
Sripathi, S.; Singh, Ram; Banola, S.; Sreekumar, Sreeba; Emperumal, K.; Selvaraj, C.
2016-08-01
We present here characteristics of the Doppler drift measurements over Tirunelveli (8.73°N, 77.70°E; dip 0.5°N), an equatorial site over Southern India using Doppler interferometry technique of Canadian ionosonde. Three-dimensional bulk motions of the scatterers as reflected from the ionosphere are derived by using Doppler interferometry technique at selected frequencies using spaced receivers arranged in magnetic E-W and N-S directions. After having compared with Lowell's digisonde drifts at Trivandrum, we studied the temporal and seasonal variabilities of quiet time drifts for the year 2012. The observations showed higher vertical drifts during post sunset in the equinox followed by winter and summer seasons. The comparison of Doppler vertical drifts with the drifts obtained from (a) virtual height and (b) Fejer drift model suggests that Doppler vertical drifts are relatively higher as compared to the drifts obtained from model and virtual height methods. Further, it is seen that vertical drifts exhibited equinoctial asymmetry in prereversal enhancement quite similar to such asymmetry observed in the spread F in the ionograms and GPS L band scintillations. The zonal drifts, on the other hand, showed westward during daytime with mean drifts of ~150-200 m/s and correlated well with equatorial electrojet strength indicating the role of E region dynamo during daytime, while they are eastward during nighttime with mean drifts of ~100 m/s resembling F region dynamo process. Also, zonal drifts showed large westward prior to the spread F onset during autumn equinox than vernal equinox, suggesting strong zonal shears which might cause equinoctial asymmetry in spread F.
On the utility of the ionosonde Doppler derived EXB drift during the daytime
NASA Astrophysics Data System (ADS)
Mohan Joshi, Lalit; Sripathi, Samireddipelle
2016-07-01
Vertical EXB drift measured using the ionosonde Doppler sounding during the daytime suffers from an underestimation of the actual EXB drift. This is due to the photochemistry that determines the height of the F layer during the daytime, in addition to the zonal electric field. Systematic investigations have indicated a fair/good correlation to exist between the C/NOFS and ionosonde Doppler measured vertical EXB drift during the daytime over magnetic equator. A detailed analysis, however, indicated that the linear relation between the ionosonde Doppler drift and C/NOFS EXB drift varied with seasons. Thus, solar, seasonal and also geomagnetic variables were included in the Doppler drift correction, using the artificial neural network based approach. The RMS error in the neural network was found to be lesser than that in the linear regression analysis. Daytime EXB drift was derived using the neural network which was also used to model the ionospheic redistribution in the SAMI2 model. SAMI2 model reproduced strong (/weak) equatorial ionization anomaly (EIA) for cases when neural network corrected daytime vertical EXB drift was high (/low). Similar features were also observed in GIM TEC maps. Thus, the results indicate that the neural network can be utilized to derive the vertical EXB drift from its proxies, like the ionosonde Doppler drift. These results indicate that the daytime ionosonde measured vertical EXB drift can be relied upon, provided adequate corrections are applied to it.
Vlček, Jakub; Hoeck, Paquita E A; Keller, Lukas F; Wayhart, Jessica P; Dolinová, Iva; Štefka, Jan
2016-10-01
The extracellular subunit of the major histocompatibility complex MHCIIβ plays an important role in the recognition of pathogens and the initiation of the adaptive immune response of vertebrates. It is widely accepted that pathogen-mediated selection in combination with neutral micro-evolutionary forces (e.g. genetic drift) shape the diversity of MHCIIβ, but it has proved difficult to determine the relative effects of these forces. We evaluated the effect of genetic drift and balancing selection on MHCIIβ diversity in 12 small populations of Galápagos mockingbirds belonging to four different species, and one larger population of the Northern mockingbird from the continental USA. After genotyping MHCIIβ loci by high-throughput sequencing, we applied a correlational approach to explore the relationships between MHCIIβ diversity and population size by proxy of island size. As expected when drift predominates, we found a positive effect of population size on the number of MHCIIβ alleles present in a population. However, the number of MHCIIβ alleles per individual and number of supertypes were not correlated with population size. This discrepancy points to an interesting feature of MHCIIβ diversity dynamics: some levels of diversity might be shaped by genetic drift while others are independent and possibly maintained by balancing selection. © 2016 John Wiley & Sons Ltd.
Wang, Cheng; Li, Wei; Guo, Mingxing; Ji, Junfeng
2017-01-01
The bioavailability of heavy metals in soil is controlled by their concentrations and soil properties. Diffuse reflectance mid-infrared Fourier-transform spectroscopy (DRIFTS) is capable of detecting specific organic and inorganic bonds in metal complexes and minerals and therefore, has been employed to predict soil composition and heavy metal contents. The present study explored the potential of DRIFTS for estimating soil heavy metal bioavailability. Soil and corresponding wheat grain samples from the Yangtze River Delta region were analyzed by DRIFTS and chemical methods. Statistical regression analyses were conducted to correlate the soil spectral information to the concentrations of Cd, Cr, Cu, Zn, Pb, Ni, Hg and Fe in wheat grains. The principal components in the spectra influencing soil heavy metal bioavailability were identified and used in prediction model construction. The established soil DRIFTS-based prediction models were applied to estimate the heavy metal concentrations in wheat grains in the mid-Yangtze River Delta area. The predicted heavy metal concentrations of wheat grain were highly consistent with the measured levels by chemical analysis, showing a significant correlation (r2 > 0.72) with acceptable root mean square error RMSE. In conclusion, DRIFTS is a promising technique for assessing the bioavailability of soil heavy metals and related ecological risk. PMID:28198802
Statistical analysis of Hasegawa-Wakatani turbulence
NASA Astrophysics Data System (ADS)
Anderson, Johan; Hnat, Bogdan
2017-06-01
Resistive drift wave turbulence is a multipurpose paradigm that can be used to understand transport at the edge of fusion devices. The Hasegawa-Wakatani model captures the essential physics of drift turbulence while retaining the simplicity needed to gain a qualitative understanding of this process. We provide a theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent events in Hasegawa-Wakatani turbulence with enforced equipartition of energy in large scale zonal flows, and small scale drift turbulence. We find that for a wide range of adiabatic index values, the stochastic component representing the small scale turbulent eddies of the flow, obtained from the autoregressive integrated moving average model, exhibits super-diffusive statistics, consistent with intermittent transport. The PDFs of large events (above one standard deviation) are well approximated by the Laplace distribution, while small events often exhibit a Gaussian character. Furthermore, there exists a strong influence of zonal flows, for example, via shearing and then viscous dissipation maintaining a sub-diffusive character of the fluxes.
Analysis of edge stability for models of heat flux width
Makowski, Michael A.; Lasnier, Charles J.; Leonard, Anthony W.; ...
2017-05-12
Detailed measurements of the n e, and T e, and T i profiles in the vicinity of the separatrix of ELMing H-mode discharges have been used to examine plasma stability at the extreme edge of the plasma and assess stability dependent models of the heat flux width. The results are strongly contrary to the critical gradient model, which posits that a ballooning instability determines a gradient scale length related to the heat flux width. The results of this analysis are not sensitive to the choice of location to evaluate stability. Significantly, it is also found that the results are completelymore » consistent with the heuristic drift model for the heat flux width. Here the edge pressure gradient scales with plasma density and is proportional to the pressure gradient inferred from the equilibrium in accordance with the predictions of that theory.« less
NASA Astrophysics Data System (ADS)
Förster, Matthias; Cnossen, Ingrid
2013-09-01
The nondipolar portions of the Earth's main magnetic field constitute substantial differences between the two hemispheres. Beside the magnetic flux densities and patterns being different in the Northern Hemisphere (NH) and Southern Hemisphere (SH), also the offset between the invariant magnetic and the geographic poles is larger in the SH than in the NH. We investigated the effects of this magnetic field asymmetry on the high-latitude thermosphere and ionosphere using global numerical simulations and compared our results with recent observations. While the effects on the high-latitude plasma convection are small, the consequences for the neutral wind circulation are substantial. The cross-polar neutral wind and ion drift velocities are generally larger in the NH than the SH, and the hemispheric difference shows a semidiurnal variation. The neutral wind vorticity is likewise larger in the NH than in the SH, with the difference probably becoming larger for higher solar activity. In contrast, the spatial variance of the neutral wind is considerably larger in the SH polar region, with the hemispheric difference showing a strong semidiurnal variation. Its phase is similar to the phase of the semidiurnal variation of the hemispheric magnitude differences. Hemispheric differences in ion drift and neutral wind magnitude are most likely caused partly by the larger magnetic flux densities in the near-polar regions of the SH and partly by the larger offset between the invariant and geographic pole in the SH, while differences in spatial variance are probably just caused by the latter. We conclude that the asymmetry of the magnetic field, both in strength and in orientation, establishes substantial hemispheric differences in the neutral wind and plasma drift in the high-latitude upper atmosphere, which can help to explain observed hemispheric differences found with the Cluster/Electron Drift Instrument (EDI) and the Challenging Minisatellite Payload (CHAMP).
ERIC Educational Resources Information Center
Waller, Glenn; Stringer, Hannah; Meyer, Caroline
2012-01-01
Objective: Clinicians commonly "drift" away from using proven therapeutic techniques. This study examined the degree to which such drift occurs among cognitive behavioral therapy (CBT) clinicians working with a specific clinical population--adults with eating disorders. Method: The study used a correlational design. The participants were…
NASA Astrophysics Data System (ADS)
Couturier, C.; Riffard, Q.; Sauzet, N.; Guillaudin, O.; Naraghi, F.; Santos, D.
2017-11-01
Low-pressure gaseous TPCs are well suited detectors to correlate the directions of nuclear recoils to the galactic Dark Matter (DM) halo. Indeed, in addition to providing a measure of the energy deposition due to the elastic scattering of a DM particle on a nucleus in the target gas, they allow for the reconstruction of the track of the recoiling nucleus. In order to exclude the background events originating from radioactive decays on the surfaces of the detector materials within the drift volume, efforts are ongoing to precisely localize the track nuclear recoil in the drift volume along the axis perpendicular to the cathode plane. We report here the implementation of the measure of the signal induced on the cathode by the motion of the primary electrons toward the anode in a MIMAC chamber. As a validation, we performed an independent measurement of the drift velocity of the electrons in the considered gas mixture, correlating in time the cathode signal with the measure of the arrival times of the electrons on the anode.
[An Improved Cubic Spline Interpolation Method for Removing Electrocardiogram Baseline Drift].
Wang, Xiangkui; Tang, Wenpu; Zhang, Lai; Wu, Minghu
2016-04-01
The selection of fiducial points has an important effect on electrocardiogram(ECG)denoise with cubic spline interpolation.An improved cubic spline interpolation algorithm for suppressing ECG baseline drift is presented in this paper.Firstly the first order derivative of original ECG signal is calculated,and the maximum and minimum points of each beat are obtained,which are treated as the position of fiducial points.And then the original ECG is fed into a high pass filter with 1.5Hz cutoff frequency.The difference between the original and the filtered ECG at the fiducial points is taken as the amplitude of the fiducial points.Then cubic spline interpolation curve fitting is used to the fiducial points,and the fitting curve is the baseline drift curve.For the two simulated case test,the correlation coefficients between the fitting curve by the presented algorithm and the simulated curve were increased by 0.242and0.13 compared with that from traditional cubic spline interpolation algorithm.And for the case of clinical baseline drift data,the average correlation coefficient from the presented algorithm achieved 0.972.
NASA Astrophysics Data System (ADS)
Maute, A.; Hagan, M. E.; Richmond, A. D.; Roble, R. G.
2014-02-01
This modeling study quantifies the daytime low-latitude vertical E×B drift changes in the longitudinal wave number 1 (wn1) to wn4 during the major extended January 2006 stratospheric sudden warming (SSW) period as simulated by the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM), and attributes the drift changes to specific tides and planetary waves (PWs). The largest drift amplitude change (approximately 5 m/s) is seen in wn1 with a strong temporal correlation to the SSW. The wn1 drift is primarily caused by the semidiurnal westward propagating tide with zonal wave number 1 (SW1), and secondarily by a stationary planetary wave with zonal wave number 1 (PW1). SW1 is generated by the nonlinear interaction of PW1 and the migrating semidiurnal tide (SW2) at high latitude around 90-100 km. The simulations suggest that the E region PW1 around 100-130 km at the different latitudes has different origins: at high latitudes, the PW1 is related to the original stratospheric PW1; at midlatitudes, the model indicates PW1 is due to the nonlinear interaction of SW1 and SW2 around 95-105 km; and at low latitudes, the PW1 might be caused by the nonlinear interaction between DE2 and DE3. The time evolution of the simulated wn4 in the vertical E×B drift amplitude shows no temporal correlation with the SSW. The wn4 in the low-latitude vertical drift is attributed to the diurnal eastward propagating tide with zonal wave number 3 (DE3), and the contributions from SE2, TE1, and PW4 are negligible.
New advances in the partial-reflection-drifts experiment using microprocessors
NASA Technical Reports Server (NTRS)
Ruggerio, R. L.; Bowhill, S. A.
1982-01-01
Improvements to the partial reflection drifts experiment are completed. The results of the improvements include real time processing and simultaneous measurements of the D region with coherent scatter. Preliminary results indicate a positive correlation between drift velocities calculated by both methods during a two day interval. The possibility now exists for extended observations between partial reflection and coherent scatter. In addition, preliminary measurements could be performed between partial reflection and meteor radar to complete a comparison of methods used to determine velocities in the D region.
Optical Sensors for Monitoring Gamma and Neutron Radiation
NASA Technical Reports Server (NTRS)
Boyd, Clark D.
2011-01-01
For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.
NASA Astrophysics Data System (ADS)
Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.
2015-12-01
The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.
Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath
NASA Astrophysics Data System (ADS)
Jarvinen, R.; Vainio, R.; Palmroth, M.; Juusola, L.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Turc, L.; von Alfthan, S.
2018-02-01
We report ion acceleration by flux transfer events in the terrestrial magnetosheath in a global two-dimensional hybrid-Vlasov polar plane simulation of Earth's solar wind interaction. In the model we find that propagating flux transfer events created in magnetic reconnection at the dayside magnetopause drive fast-mode bow waves in the magnetosheath, which accelerate ions in the shocked solar wind flow. The acceleration at the bow waves is caused by a shock drift-like acceleration process under stationary solar wind and interplanetary magnetic field upstream conditions. Thus, the energization is not externally driven but results from plasma dynamics within the magnetosheath. Energetic proton populations reach the energy of 30 keV, and their velocity distributions resemble time-energy dispersive ion injections observed by the Cluster spacecraft in the magnetosheath.
Kim, Hugh I.; Kim, Hyungjun; Pang, Eric S.; Ryu, Ernest K.; Beegle, Luther W.; Loo, Joseph A.; Goddard, William A.; Kanik, Isik
2009-01-01
A number of phosphatidylcholine (PC) cations spanning a mass range of 400 to 1000 Da are investigated using electrospray ionization mass spectrometry coupled with traveling wave ion mobility spectrometry (TWIMS). A high correlation between mass and mobility is demonstrated with saturated phosphatidylcholine cations in N2. A significant deviation from this mass-mobility correlation line is observed for the unsaturated PC cation. We found that the double bond in the acyl chain causes a 5% reduction in drift time. The drift time is reduced at a rate of ~1% for each additional double bond. Theoretical collision cross sections of PC cations exhibit good agreement with experimentally evaluated values. Collision cross sections are determined using the recently derived relationship between mobility and drift time in TWIMS stacked ring ion guide (SRIG) and compared to estimate collision cross-sections using empiric calibration method. Computational analysis was performed using the modified trajectory (TJ) method with nonspherical N2 molecules as the drift gas. The difference between estimated collision cross-sections and theoretical collision cross-sections of PC cations is related to the sensitivity of the PC cation collision cross-sections to the details of the ion-neutral interactions. The origin of the observed correlation and deviation between mass and mobility of PC cations is discussed in terms of the structural rigidity of these molecules using molecular dynamic simulations. PMID:19764704
Long-term Spot-Coverage Variations of 13 BY Dra G-K Dwarfs
NASA Astrophysics Data System (ADS)
Alekseev, I. Yu.; Kozhevnikova, A. V.
2018-06-01
The results of spot-coverage modeling for 13 active G-K dwarf stars based on many-year photometric observations are presented. The results of UBV RI observations of eight stars performed at the Crimean Astrophysical Observatory were used together with data from the literature in this analysis. The spot-coverage parameters for 13 selected BY Dra active red dwarfs have been redetermined to improve the zonal spot-coverage model for the stellar photospheres, which currently allows for the presence of two active longitudes. Time variations of the spot-activity characteristics of these systems were analyzed with the aim of searching for possible cyclic variations. All the stars, with the exception of OU Gem and BE Cet, show fairly strong correlations between variations in the spot latitudes and spot areas, with absolute values of the correlation coefficients, R(< ϕ>, S), ranging from 0.38 to 0.92. For five stars, an anti-correlation between the mean latitude and area of the spots was found ( R(< ϕ>, S) from-0.24 to-0.73). This behavior may reflect the drift of spots toward the equator in the course of their development. Eight stars feature positive correlations, i.e. the spots drift towards the pole as their areas increase. Nine stars demonstrate activity cycles, which are reflected in photometric variations as well as variations of the spot areas and mean latitudes. The periods of the latitude drift of the spots are found for five stars; the magnitudes of the spot-latitude drift rates are lower than the corresponding value for sunspots by a factor of 1.5-3.
Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data.
de Cheveigné, Alain; Arzounian, Dorothée
2018-05-15
Electroencephalography (EEG), magnetoencephalography (MEG) and related techniques are prone to glitches, slow drift, steps, etc., that contaminate the data and interfere with the analysis and interpretation. These artifacts are usually addressed in a preprocessing phase that attempts to remove them or minimize their impact. This paper offers a set of useful techniques for this purpose: robust detrending, robust rereferencing, outlier detection, data interpolation (inpainting), step removal, and filter ringing artifact removal. These techniques provide a less wasteful alternative to discarding corrupted trials or channels, and they are relatively immune to artifacts that disrupt alternative approaches such as filtering. Robust detrending allows slow drifts and common mode signals to be factored out while avoiding the deleterious effects of glitches. Robust rereferencing reduces the impact of artifacts on the reference. Inpainting allows corrupt data to be interpolated from intact parts based on the correlation structure estimated over the intact parts. Outlier detection allows the corrupt parts to be identified. Step removal fixes the high-amplitude flux jump artifacts that are common with some MEG systems. Ringing removal allows the ringing response of the antialiasing filter to glitches (steps, pulses) to be suppressed. The performance of the methods is illustrated and evaluated using synthetic data and data from real EEG and MEG systems. These methods, which are mainly automatic and require little tuning, can greatly improve the quality of the data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Teramoto, M.; Hori, T.; Kurita, S.; Yoshizumi, M.; Saito, S.; Higashio, N.; Mitani, T.; Matsuoka, A.; Park, I.; Takashima, T.; Nomura, R.; Nose, M.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Shinohara, I.
2017-12-01
Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016. The Extremely High-Energy Electron Experiment (XEP) and High-Energy Electron Experiments (HEP-L and HEP-H) are carried by the ERG satellite to observe energetic electrons. These instruments frequently observed quasiperiodic modulations of energetic electron fluxes with period of 100-600 sec. Continuous flux modulations with the period of 600 s appeared in the 700keV-3.6MeV energy range during the period 0920UT-1120UT on March 31, 2017 when the ERG satellite was located at L 5.5-6.1 and MLT 3-4 h. We compare these flux modulations with the magnetic field observed by the Magnetic Field Experiment (MGF) on the ERG satellite. It is found that these flux modulations are not accompanied by corresponding magnetic signatures. It indicates that these quasiperiodic flux modulations are not caused by drift-resonant interactions between ULF waves and energetic electrons, at least locally. In this study, we will show several events and discuss possible mechanism for quasiperiodic flux modulations of energetic electrons on XEP and HEP.
The effect of vertical drift on the equatorial F-region stability
NASA Technical Reports Server (NTRS)
Hanson, W. B.; Cragin, B. L.; Dennis, A.
1986-01-01
Time-dependent ionospheric model calculations for day-time and night-time solutions are presented. The behavior of the growth rate and ion-electron recombination rate for the Rayleigh-Taylor instability on the F-region bottomside is examined as a function of the vertical eastward electric field-magnetic field strength drift velocity. It is observed that on the bottomside F-layer the growth rate exceeds the ion-electron recombination rate even without vertical drift; however, an eastward electric field-magnetic field strength drift can produce an increase in the growth rate by an order of magnitude. The calculated data are compared with previous research and good correlation is detected. The formation of bubbles from a seeding mechanism is investigated.
NASA Astrophysics Data System (ADS)
Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.
2018-04-01
Using a three-dimensional particle-in-cell simulation, we investigate the formation of dawn-dusk asymmetry in Earth's magnetotail. The magnetotail current sheet is compressed by an external driving electric field down to a thickness on the order of ion kinetic scales. In the resultant thin current sheet (TCS) where the magnetic field line curvature radius is much smaller than ion gyroradius, a significant portion of the ions becomes unmagnetized and decoupled from the magnetized electrons, giving rise to a Hall electric field Ez and an additional cross-tail current jy caused by the unmagnetized ions being unable to comove with the electrons in the Hall electric field. The Hall electric field transports via E × B drift magnetic flux and magnetized plasma dawnward, causing a reduction of the current sheet thickness and the normal magnetic field Bz on the duskside. This leads to an even stronger Hall effect (stronger jy and Ez) in the duskside TCS. Thus, due to the internal kinetic effects in the TCS, namely, the Hall effect and the associated dawnward E × B drift, the magnetotail dawn-dusk asymmetry forms in a short time without any global, long-term effects. The duskside preference of reconnection and associated dynamic phenomena (such as substorm onsets, dipolarizing flux bundles, fast flows, energetic particle injections, and flux ropes), which has been pervasively observed by spacecraft in the past 20 years, can thus be explained as a consequence of this TCS asymmetry.
Morphodynamics of dome dunes under unimodal wind regimes
NASA Astrophysics Data System (ADS)
Gao, Xin; Narteau, Clement; Rozier, Olivier
2017-04-01
Dome dunes are isolated sand piles with a rounded shape and no slip face. They are not only incipient or disappearing dunes, they can also reach a giant size and form dome-dune fields. Nevertheless, unlike other types of dunes, they have not been the subject of intense research, certainly because they result from complex multidirectional wind regimes. Here we analyze the morphodynamics of dome dunes under unimodal wind regimes. From numerical modeling using a normal distribution of sand flux orientation, we show that the transition from barchan to dome dunes occur when the standard deviation is larger than 40°. As confirmed by sand flux roses of dome-dune fields in arid deserts on Earth, it corresponds to RDP/DP-value of 0.8 (RDP/DP is the ratio between the resultant drift potential and the drift potential). Both in the field and in the numerical model, the transition from barchan to dome-dunes can also be captured from the coefficient of variation of the planar dune shape. Not surprisingly, smaller dome dunes are faster than larger ones. However, the dependence of dune migration rate on the RDP-value changes according to the presence or absence of slip faces because of the speed-up effect. Transient finger dunes may develop in dome-dune fields, but they rapidly break-up into smaller bodies. This shows that, contrary to bidirectional wind regimes, a large dispersion of sand flux orientation is not efficient in building longitudinal dunes.
Hydrodynamic description of an unmagnetized plasma with multiple ion species. I. General formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simakov, Andrei N., E-mail: simakov@lanl.gov; Molvig, Kim
2016-03-15
A generalization of the Braginskii ion fluid description [S. I. Braginskii, Sov. Phys. - JETP 6, 358 (1958)] to the case of an unmagnetized collisional plasma with multiple ion species is presented. An asymptotic expansion in the ion Knudsen number is used to derive the individual ion species continuity, as well as the total ion mass density, momentum, and energy evolution equations accurate through the second order. Expressions for the individual ion species drift velocities with respect to the center of mass reference frame, as well as for the total ion heat flux and viscosity, which are required to closemore » the fluid equations, are evaluated in terms of the first-order corrections to the lowest order Maxwellian ion velocity distribution functions. A variational formulation for evaluating such corrections and its relation to the plasma entropy are presented. Employing trial functions for the corrections, written in terms of expansions in generalized Laguerre polynomials, and maximizing the resulting functionals produce two systems of linear equations (for “vector” and “tensor” portions of the corrections) for the expansion coefficients. A general matrix formulation of the linear systems as well as expressions for the resulting transport fluxes are presented in forms convenient for numerical implementation. The general formulation is employed in Paper II [A. N. Simakov and K. Molvig, Phys. Plasmas 23, 032116 (2016)] to evaluate the individual ion drift velocities and the total ion heat flux and viscosity for specific cases of two and three ion species plasmas.« less
Patrick M.A. James; Barry Cooke; Bryan M.T. Brunet; Lisa M. Lumley; Felix A.H. Sperling; Marie-Josee Fortin; Vanessa S. Quinn; Brian R. Sturtevant
2015-01-01
Dispersal determines the flux of individuals, energy and information and is therefore a key determinant of ecological and evolutionary dynamics. Yet, it remains difficult to quantify its importance relative to other factors. This is particularly true in cyclic populations in which demography, drift and dispersal contribute to spatio-temporal variability in genetic...
Flux-gate magnetometer spin axis offset calibration using the electron drift instrument
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Nakamura, Rumi; Leinweber, Hannes K.; Chutter, Mark; Vaith, Hans; Baumjohann, Wolfgang; Steller, Manfred; Magnes, Werner
2014-10-01
Spin-stabilization of spacecraft immensely supports the in-flight calibration of on-board flux-gate magnetometers (FGMs). From 12 calibration parameters in total, 8 can be easily obtained by spectral analysis. From the remaining 4, the spin axis offset is known to be particularly variable. It is usually determined by analysis of Alfvénic fluctuations that are embedded in the solar wind. In the absence of solar wind observations, the spin axis offset may be obtained by comparison of FGM and electron drift instrument (EDI) measurements. The aim of our study is to develop methods that are readily usable for routine FGM spin axis offset calibration with EDI. This paper represents a major step forward in this direction. We improve an existing method to determine FGM spin axis offsets from EDI time-of-flight measurements by providing it with a comprehensive error analysis. In addition, we introduce a new, complementary method that uses EDI beam direction data instead of time-of-flight data. Using Cluster data, we show that both methods yield similarly accurate results, which are comparable yet more stable than those from a commonly used solar wind-based method.
Impact of resonant magnetic perturbations on nonlinearly driven modes in drift-wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leconte, M.; Diamond, P. H.; CMTFO and CASS, UCSD, California 92093
2012-05-15
In this work, we study the effects of resonant magnetic perturbations (RMPs) on turbulence, flows, and confinement in the framework of resistive drift wave turbulence. We extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large ({delta}B{sub r}/B{sub 0}). Both the vorticity flux (Reynolds stress) and particle flux are modulated. We derive an extended predator prey model which couples zonal potential and density dynamics to the evolutionmore » of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. We find states that are similar to the ZF-dominated state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude, the energy of zonal flows decreases and the turbulence energy increases with ({delta}B{sub r}/B{sub 0}), corresponding to a damping of zonal flows.« less
Buresh, Robert; Berg, Kris; Noble, John
2005-09-01
The purposes of this study were to determine the relationships between: (a) measures of body size/composition and heat production/storage, and (b) heat production/storage and heart rate (HR) drift during running at 95% of the velocity that elicited lactate threshold, which was determined for 20 healthy recreational male runners. Subsequently, changes in skin and tympanic temperatures associated with a vigorous 20-min run, HR, and VO2 data were recorded. It was found that heat production was significantly correlated with body mass (r = .687), lean mass (r = .749), and body surface area (BSA, r = .699). Heat storage was significantly correlated with body mass (r = .519), fat mass (r = .464), and BSA (r = .498). The percentage of produced heat stored was significantly correlated with body mass (r = .427), fat mass (r = .455), and BSA (r = .414). Regression analysis showed that the sum of body mass, percentage of body fat, BSA, lean mass, and fat mass accounted for 30% of the variability in heat storage. It was also found that HR drift was significantly correlated with heat storage (r = .383), percentage of produced heat stored (r = .433), and core temperature change (r = .450). It was concluded that heavier runners experienced greater heat production, heat storage, and core temperature increases than lighter runners during vigorous running.
Magsat attitude dynamics and control: Some observations and explanations
NASA Technical Reports Server (NTRS)
Stengle, T. H.
1980-01-01
Before its reentry 7 months after launch, Magsat transmitted an abundance of valuable data for mapping the Earth's magnetic field. As an added benefit, a wealth of attitude data for study by spacecraft dynamicists was also collected. Because of its unique configuration, Magsat presented new control problems. With its aerodynamic trim boom, attitude control was given an added dimension. Minimization of attitude drift, which could be mapped in relative detail, became the goal. Momentum control, which was accomplished by pitching the spacecraft in order to balance aerodynamic and gravity gradient torques, was seldom difficult to achieve. Several interesting phenomena observed as part of this activity included occasional momentum wheel instability and a rough correlation between solar flux and the pitch angle required to maintain acceptable momentum. An overview is presented of the attitude behavior of Magsat and some of the control problems encountered. Plausible explanations for some of this behavior are offered. Some of the control philosophy used during the mission is examined and aerodynamic trimming operations are summarized.
NASA Astrophysics Data System (ADS)
Perez, J. D.; Goldstein, J.; McComas, D. J.; Valek, P. W.; Fok, M. C. H.; Hwang, K. J.
2015-12-01
On 17-18 March 2015, there was a large (minimum SYM/H < -200 nT) geomagnetic storm. The Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which global distributions of ion flux, energy spectra, and pitch angle distributions are obtained. We will show how the observed ion pressure correlates with SYM/H. Examples of multiple peaks in the ion spatial distribution which may be due to multiple injections and/or energy and pitch angle dependent drift will be illustrated. Energy spectra will be shown to be non-Maxwellian, frequently having two peaks, one in the 10 keV range and another near 40 keV. Pitch angle distributions will be shown to have generally perpendicular anisotropy and that this can be time, space and energy dependent. The results are consistent with Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model simulations.
Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer
NASA Technical Reports Server (NTRS)
Herrero, Federico A.; Finne, Theodore T.
2010-01-01
Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about 350 mW. The entrance aperture has a diameter of 0.004 in. (0.10 mm) to provide the required energy resolution between 0.05 and 0.15. This design (see Figure 2) provides a WTS occupying a volume less than 40 cm(sup 3), on a footprint of diameter about 1.5 in. (38 mm). The Crossed SDEA offers many advantages in the measurements of neutral wind and ion drifts in the Earth's thermosphere. As such, it will be useful in future commercial satellites dedicated to monitoring the ionosphere with a view to improving the integrity and predictability of GPS operations.
Extreme event statistics in a drifting Markov chain
NASA Astrophysics Data System (ADS)
Kindermann, Farina; Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur
2017-07-01
We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.
Collisional transport across the magnetic field in drift-fluid models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madsen, J., E-mail: jmad@fysik.dtu.dk; Naulin, V.; Nielsen, A. H.
2016-03-15
Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation timesmore » using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport.« less
NASA Astrophysics Data System (ADS)
Hathaway, David H.; Nandy, Dibyendu; Wilson, Robert M.; Reichmann, Edwin J.
2004-02-01
An error was made in entering the data used in Figure 6. This changes the results concerning the length of the time lag between the variations in the meridional flow speed and those in the cycle amplitude. The final paragraph on page 667 should read: ``Finally, we study the relationship between the drift velocities and the amplitudes of the hemisphere/cycles. In Figure 5 we compare the drift velocity at the maximum of the cycle to the amplitude of that cycle for that hemisphere. There is a positive (0.5) and significant (95%) correlation between the two. However, an even stronger relationship is found between the drift velocity and the amplitude of the N+2 cycle. The correlation is stronger (0.7) and more significant (99%), as shown in Figure 6. This relationship is suggestive of a ``memory'' in the solar cycle, again a property of dynamo models that use meridional circulation. Indeed, the two-cycle lag is precisely the relationship found by Charbonneau & Dikpati (ApJ, 589, 665 [2003]). This behavior is, however, more difficult to interpret, and we elaborate on this in the next section. In either case, these correlations only explain part of the variance in cycle amplitude (25% for the current cycle and 50% for the N+2 cycle). Obviously, other mechanisms, such as variations in the gradient in the rotation rate, also contribute to the cycle amplitude variations. Our investigation of possible connections between drift rates and the amplitudes of the N+1 and N+3 cycles gives no significant correlations at these alternative time lags.'' The revised Figure 6 and its caption are given below
Galactic Cosmic-Ray Anistropy During the Forbush Decrease Starting 2013 April 13
NASA Astrophysics Data System (ADS)
Tortermpun, U.; Ruffolo, D.; Bieber, J. W.
2018-01-01
The flux of Galactic cosmic rays (GCRs) can undergo a Forbush decrease (FD) during the passage of a shock, sheath region, or magnetic flux rope associated with a coronal mass ejection (CME). Cosmic-ray observations during FDs can provide information complementary to in situ observations of the local plasma and magnetic field, because cosmic-ray distributions allow remote sensing of distant conditions. Here we develop techniques to determine the GCR anisotropy before and during an FD using data from the worldwide network of neutron monitors, for a case study of the FD starting on 2013 April 13. We find that at times with strong magnetic fluctuations and strong cosmic-ray scattering, there were spikes of high perpendicular anisotropy and weak parallel anisotropy. In contrast, within the CME flux rope there was a strong parallel anisotropy in the direction predicted from a theory of drift motions into one leg of the magnetic flux rope and out the other, confirming that the anisotropy can remotely sense a large-scale flow of GCRs through a magnetic flux structure.
NASA Astrophysics Data System (ADS)
Estapa, M. L.
2016-02-01
Autonomous, bio-optical profiling floats are poised to broaden the number and spatiotemporal resolution of observations of the ocean's biological pump. Here, we used multiple optical sensors aboard two bio-optical profiling floats (Navis BGCi, Sea-Bird) deployed in the Sargasso Sea to derive in situ proxies for particulate carbon (PC) flux, sub-mixed layer net community production (NCP) and to drive a model of net primary production (NPP). Profiles were collected at approximately 2-day resolution, and drift-phase PC flux observations were collected at subdaily resolution at a rotating cycle of observation depths between 150 and 1000 m. The magnitudes of NPP, PC flux, and their annually-averaged ratio were generally consistent with observations at the nearby Bermuda Atlantic Timeseries Study (BATS) site. PC flux and the export ratio were enhanced in the autumn as well as in the spring, and varied over short timescales possibly due to the influence of mesoscale eddies. The relatively shallow park depths and short profile cycle lengths allow us to identify ephemeral, subsurface bio-optical features and compare them to measured fluxes and satellite-observed surface properties.
Full-field drift Hamiltonian particle orbits in 3D geometry
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Graves, J. P.; Brunner, S.; Isaev, M. Yu
2011-02-01
A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.
NASA Astrophysics Data System (ADS)
Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin; Le Sommer, Julien
2018-05-01
Icebergs represent approximately half of Greenland's yearly mass loss, having important implications for biological productivity, freshwater fluxes in the ocean, and navigation. This study applies an iceberg model that uses integrated ocean fields (from surface to iceberg keel) to simulate the drift and decay of Greenland icebergs. This version of iceberg model (VERT) is compared with a more widely adopted version (SURF) which only uses surface ocean fields in its equations. We show that icebergs in VERT tend to drift along the shelf break, while in SURF they concentrate along the coastline. Additionally, we show that Greenland's southeast coast is the source of ˜60% of the icebergs that cross the interior of the Labrador Sea—a region that stages buoyancy-driven convection and is, therefore, sensitive to freshwater input.
NASA Astrophysics Data System (ADS)
Van Eester, Dirk
2005-03-01
A semi-analytical method is proposed to evaluate the dielectric response of a plasma to electromagnetic waves in the ion cyclotron domain of frequencies in a D-shaped but axisymmetric toroidal geometry. The actual drift orbit of the particles is accounted for. The method hinges on subdividing the orbit into elementary segments in which the integrations can be performed analytically or by tabulation, and it relies on the local book-keeping of the relation between the toroidal angular momentum and the poloidal flux function. Depending on which variables are chosen, the method allows computation of elementary building blocks for either the wave or the Fokker-Planck equation, but the accent is mainly on the latter. Two types of tangent resonance are distinguished.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Zhang, Hao; Davis, J Lynn
The energy efficiency of light-emitting diode (LED) technology compared to incandescent light bulbs has triggered an increased focus on solid state luminaries for a variety of lighting applications. Solid-state lighting (SSL) utilizes LEDs, for illumination through the process of electroluminescence instead of heating a wire filament as seen with traditional lighting. The fundamental differences in the construction of LED and the incandescent lamp results in different failure modes including lumen degradation, chromaticity shift and drift in the correlated color temperature. The use of LED-based products for safety-critical and harsh environment applications necessitates the characterization of the failure mechanisms and modes.more » In this paper, failure mechanisms and color stability has been studied for commercially available vertical structured thin film LED (VLED) under harsh environment conditions with and without the presence of contaminants. The VLED used for the study was mounted on a ceramic starboard in order to connect it to the current source. Contamination sources studied include operation in the vicinity of vulcanized rubber and adhesive epoxies in the presence of temperature and humidity. Performance of the VLEDs has been quantified using the measured luminous flux and color shift of the VLEDs subjected to both thermal and humidity stresses under a forward current bias of 350 mA. Results indicate that contamination can result in pre-mature luminous flux degradation and color shift in LEDs.« less
Turbulent transport regimes and the scrape-off layer heat flux width
NASA Astrophysics Data System (ADS)
Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.
2015-04-01
Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.
NASA Astrophysics Data System (ADS)
Berglund, J.; Mattila, J.; Rönnberg, O.; Heikkilä, J.; Bonsdorff, E.
2003-04-01
Submerged rooted macrophytes and drift algae were studied in shallow (0-1 m) brackish soft-bottom bays in the Åland Islands, N Baltic Sea, in 1997-2000. The study was performed by aerial photography and ground-truth sampling and the compatibility of the methods was evaluated. The study provided quantitative results on seasonal and inter-annual variation in growth, distribution and biomass of submerged macrophytes and drift algae. On an average, 18 submerged macrophyte species occurred in the studied bays. The most common species, by weight and occurrence, were Chara aspera, Cladophora glomerata, Pilayella littoralis and Potamogeton pectinatus. Filamentous green algae constituted 45-70% of the biomass, charophytes 25-40% and vascular plants 3-18%. A seasonal pattern with a peak in biomass in July-August was found and the mean biomass was negatively correlated with exposure. There were statistically significant differences in coverage among years, and among levels of exposure. The coverage was highest when exposure was low. Both sheltered and exposed bays were influenced by drift algae (30 and 60% occurrence in July-August) and there was a positive correlation between exposure and occurrence of algal accumulations. At exposed sites, most of the algae had drifted in from other areas, while at sheltered ones they were mainly of local origin. Data obtained by aerial photography and ground-truth sampling showed a high concordance, but aerial photography gave a 9% higher estimate than the ground-truth samples. The results can be applied in planning of monitoring and management strategies for shallow soft-bottom areas under potential threat of drift algae.
Cross-tail current, field-aligned current, and B(y)
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Lu, Chen; Larson, Douglas J.
1994-01-01
Orbits of individual charged particles were traced in a one-dimensional magnetic field model that included a uniform cross-tail component B(sub yo). The effects of B(sub yo) on the cross-tail current distribution j(sub y)(z), the average cross-tail drift velocity(nu(sub y)z), and the average pitch angle change(delta alpha) experienced during current sheet encounters were calculated. The addition of a B(sub yo) that exceeded several tenths of one nanotesla completely eliminated all resonance effects for odd-N orbits. An odd-N resonance involves ions that enter and exit the current sheet on the same side. Pitch angles of nearly all such ions changed substantially during a typical current sheet interaction, and there was no region of large cross-tail drift velocity in the presence of a modest B(sub yo). the addition of a very large B(sub yo) guide field in the direction that enhances the natural drift produces a large j(y) and small (Delta alpha) for ions with all energies. The addition of a modest B(sub yo) had less effect near even-N resonances. In this case, ions in a small energy range were found to undergo so little change in pitch angle that particles which originated in the ionosphere would pass through the current sheet and return to the conjugate ionosphere. Finally, the cross-tail drift of ions from regions dominated by stochastic orbits to regions dominated by either resonant or guiding center orbits was considered. The ion drift speed changed substantially during such transitions. The accompanying electrons obey the guiding center equations, so electron drift is more uniform. Any difference between gradients in the fluxes associated with electron and ion drifts requires the presence of a Birkeland current in order to maintain charge neutrality. This plasma sheet region therefore serves as a current generator. The analysis predicts that the resulting Birkeland current connects to the lowest altitude equatorial regions in which ions drift to or from a point at which stochastic orbits predominate. The proposed mechanism appears only in analyses that include non-guiding-center effects.
Comparative study of anti-drift nozzles' wear.
Bolly, G; Huyghebaert, B; Mostade, O; Oger, R
2002-01-01
When spraying, the drift is a restricting factor which reduces the efficiency of pesticides treatments and increases their impact on the environment. The use of anti-drift nozzles is the most common technique to reduce the drift effect. The basic principle of all anti-drift nozzles is to produce bigger droplets (Imag DLO, 1999) being less sensitive to the wind. The increase of the droplets' size is possible whether by reducing the spraying pressure (anti-drift fan nozzle) or by injecting air in the nozzle (air injection nozzles). This study aims at comparing the performances of the main anti-drift nozzles available on the Belgian market (Teejet DG and AI, Albuz ADI and AVI, Hardi ISO LD et AI). The study made it possible to compare thirteen different nozzles' sets according to their trademark, type and material. The study is based on the analysis of macroscopic parameters (flowrate, transversal distribution and individual distribution) as well as on the analysis of microscopic parameters (spraying deposit on artificial target). The evolution of these parameters is analysed according to the nozzle's wear. The wear is carried out artificially according to the "ISO 5682-1" standard (ISO 5682-1, 1996). The results confirmed the major influence of the manufacturing material on the nozzles' wear, ceramic being the most resistant material. Macroscopic as well as microscopic parameters variated according to the utilization time without any direct correlation. Indeed, most parameters variate in an uncertain way. It was however possible to establish a correlation between the wear time and the recovering rate and flowrate parameters. The utilization length is different depending on the type of nozzle, air injection nozzles being more resistant. At last, the analysis of microscopic parameters (spraying deposit) (Degré A., 1999), shows that the number of impacts is stable depending on the wear, while the size of impacts and the recovering rate increase.
Chandra Radiation Environment Modeling
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Blackwell, W. C.
2003-01-01
CRMFLX (Chandra Radiation Model of ion FluX) is a radiation environment risk mitigation tool for use as a decision aid in planning the operations times for Chandra's Advanced CCD Imaging Spectrometer (ACIS) detector. The accurate prediction of the proton flux environment with energies of 100 - 200 keV is needed in order to protect the ACIS detector against proton degradation. Unfortunately, protons of this energy are abundant in the region of space Chandra must operate, and on-board particle detectors do not measure proton flux levels of the required energy range. This presentation will describe the plasma environment data analysis and modeling basis of the CRMFLX engineering environment model developed to predict the proton flux in the solar wind, magnetosheath, and magnetosphere phenomenological regions of geospace. The recently released CRMFLX Version 2 implementation includes an algorithm that propagates flux from an observation location to other regions of the magnetosphere based on convective ExB and VB-curvature particle drift motions. This technique has the advantage of more completely filling out the database and makes maximum use of limited data obtained during high Kp periods or in areas of the magnetosphere with poor satellite flux measurement coverage.
The Evolution of a Snow Dune Field
NASA Astrophysics Data System (ADS)
Filhol, S.; Pirk, N.; Schuler, T.; Burkhart, J. F.
2017-12-01
On March 24, 2017 we observed the evolution of a snow dune field during a passing storm on the alpine plateau of Finse, Norway. With a terrestrial lidar we captured 15 high-resolution scans of the snow surface over an area of about 5000 m2 over the course of 7.5 hours from which we analyze morphological changes. An eddy covariance system located nearby at the Finse Alpine Research Station recorded wind and its turbulent structure, and measured the snow drifting flux with a FlowCapt sensor. This combined dataset provides novel insight into the responses and changes of the snow surface morphology exposed to storm constraints (e.g. wind speed, drifting flux). We found that individual dunes have moved 30 to 37 m over the course of 7.5 hours. The wavelength of the dunes varied from 10.3±3.1 m at the time of the first scan to 13.6±3.3 m at the last scan. Within this time period we observed individual dunes 1) migrating down wind, later becoming 2) temporarily nearly static as the wind speed dropped, and finally 3) migrating, growing, and merging into larger transverse dunes under strong wind conditions accompanied by large quantities of drifting snow. This dynamics can be considered analogous to sand dune behavior, however, on much shorter time scale (1h vs 10-100 years) and smaller spatial scale (10m vs 100m). The record of this event helps us to understand the morphological evolution of a snow surface during a blowing snow storm, and further illustrates the fate of self-sustained bedforms such as dunes in varying conditions. Such detailed description of erosion/deposition processes of the snow surface are crucial for improvements of land surface models, commonly applied to hydrological and ecological purposes.
NASA Astrophysics Data System (ADS)
Foerster, M.; Cnossen, I.; Haaland, S.
2013-12-01
The non-dipolar portions of Earth's main magnetic field constitute substantial differences between the geomagnetic field configurations of both hemispheres. They cause in particular different magnetic field flux densities in the opposite polar regions and different offsets of the invariant poles with respect to the rotation axis of the Earth. The offset is presently considerable larger (factor ~2) in the Southern Hemisphere compared to the Northern, which has substantial implications for the coupled magnetosphere-ionosphere-thermosphere system under the influence of external drivers. Recent observations have shown that the ionospheric/thermospheric response to solar wind and IMF dependent processes in the magnetosphere can be very dissimilar in the Northern and Southern Hemisphere. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns obtained from almost a decade of measurements starting in 2001 of the electron drift instrument (EDI) on board the Cluster satellites and an accelerometer on board the CHAMP spacecraft, respectively. Using the Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model, on the other hand, we simulated a 20-day spring equinox interval of low solar activity with both symmetric dipole and realistic (IGRF) geomagnetic field configurations to prove the importance of the hemispheric differences for the plasma and neutral wind dynamics. The survey of both the numerical simulation and the statistical observation results show some prominent asymmetries between the two hemispheres, which are likely due to the different geographic-geomagnetic offset, or even due to different patterns of geomagnetic flux densities. Plasma drift differences can partly be attributed to differing ionospheric conductivities. The forthcoming Swarm satellite mission will provide valuable observations for further detailed analyses of the North-South asymmetries of plasma convection and neutral wind dynamics.
Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses.
Smith, Kyle C; Weaver, James C
2011-08-19
Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jie; Wang Yuming; Liu Yang, E-mail: jzhang7@gmu.ed
We have developed a computational software system to automate the process of identifying solar active regions (ARs) and quantifying their physical properties based on high-resolution synoptic magnetograms constructed from Michelson Doppler Imager (MDI; on board the SOHO spacecraft) images from 1996 to 2008. The system, based on morphological analysis and intensity thresholding, has four functional modules: (1) intensity segmentation to obtain kernel pixels, (2) a morphological opening operation to erase small kernels, which effectively remove ephemeral regions and magnetic fragments in decayed ARs, (3) region growing to extend kernels to full AR size, and (4) the morphological closing operation tomore » merge/group regions with a small spatial gap. We calculate the basic physical parameters of the 1730 ARs identified by the auto system. The mean and maximum magnetic flux of individual ARs are 1.67 x 10{sup 22} Mx and 1.97 x 10{sup 23} Mx, while that per Carrington rotation are 1.83 x 10{sup 23} Mx and 6.96 x 10{sup 23} Mx, respectively. The frequency distributions of ARs with respect to both area size and magnetic flux follow a log-normal function. However, when we decrease the detection thresholds and thus increase the number of detected ARs, the frequency distribution largely follows a power-law function. We also find that the equatorward drifting motion of the AR bands with solar cycle can be described by a linear function superposed with intermittent reverse driftings. The average drifting speed over one solar cycle is 1{sup o}.83{+-}0{sup o}.04 yr{sup -1} or 0.708 {+-} 0.015 m s{sup -1}.« less
Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses
Smith, Kyle C.; Weaver, James C.
2012-01-01
Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (~16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. PMID:21756883
ERIC Educational Resources Information Center
Buresh, Robert; Berg, Kris; Noble, John
2005-01-01
The purposes of this study were to determine the relationships between: (a) measures of body size/composition and heat production/storage, and (b) heat production/storage and heart rate (HR) drift during running at 95 % of the velocity that elicited lactate threshold, which was determined for 20 healthy recreational male runners. Subsequently,…
Modulation of Internal Estimates of Gravity during and after Prolonged Roll-Tilts
Tarnutzer, Alexander A.; Bertolini, Giovanni; Bockisch, Christopher J.; Straumann, Dominik; Marti, Sarah
2013-01-01
Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56yo) repetitively adjusted a luminous arrow to the SVV over periods of 5min while upright, roll-tilted (±45°, ±90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5min) were found in 71% (±45°) and 78% (±90°) of runs. At ±90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ±45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central adaptation, most likely a shift in prior knowledge towards the previous roll orientation, to explain the post-tilt bias. PMID:24205099
Modulation of internal estimates of gravity during and after prolonged roll-tilts.
Tarnutzer, Alexander A; Bertolini, Giovanni; Bockisch, Christopher J; Straumann, Dominik; Marti, Sarah
2013-01-01
Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56 yo) repetitively adjusted a luminous arrow to the SVV over periods of 5 min while upright, roll-tilted (± 45°, ± 90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5 min) were found in 71% (± 45°) and 78% (± 90°) of runs. At ± 90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ± 45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71 sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central adaptation, most likely a shift in prior knowledge towards the previous roll orientation, to explain the post-tilt bias.
Thonusin, Chanisa; IglayReger, Heidi B; Soni, Tanu; Rothberg, Amy E; Burant, Charles F; Evans, Charles R
2017-11-10
In recent years, mass spectrometry-based metabolomics has increasingly been applied to large-scale epidemiological studies of human subjects. However, the successful use of metabolomics in this context is subject to the challenge of detecting biologically significant effects despite substantial intensity drift that often occurs when data are acquired over a long period or in multiple batches. Numerous computational strategies and software tools have been developed to aid in correcting for intensity drift in metabolomics data, but most of these techniques are implemented using command-line driven software and custom scripts which are not accessible to all end users of metabolomics data. Further, it has not yet become routine practice to assess the quantitative accuracy of drift correction against techniques which enable true absolute quantitation such as isotope dilution mass spectrometry. We developed an Excel-based tool, MetaboDrift, to visually evaluate and correct for intensity drift in a multi-batch liquid chromatography - mass spectrometry (LC-MS) metabolomics dataset. The tool enables drift correction based on either quality control (QC) samples analyzed throughout the batches or using QC-sample independent methods. We applied MetaboDrift to an original set of clinical metabolomics data from a mixed-meal tolerance test (MMTT). The performance of the method was evaluated for multiple classes of metabolites by comparison with normalization using isotope-labeled internal standards. QC sample-based intensity drift correction significantly improved correlation with IS-normalized data, and resulted in detection of additional metabolites with significant physiological response to the MMTT. The relative merits of different QC-sample curve fitting strategies are discussed in the context of batch size and drift pattern complexity. Our drift correction tool offers a practical, simplified approach to drift correction and batch combination in large metabolomics studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro
2017-07-01
We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.
3D two-fluid simulations of turbulence in LAPD
NASA Astrophysics Data System (ADS)
Fisher, Dustin M.
The Large Plasma Device (LAPD) is modeled using a modified version of the 3D Global Braginskii Solver code (GBS) for a nominal Helium plasma. The unbiased low-flow regime is explored in simulations where there is an intrinsic E x B rotation of the plasma. In the simulations this rotation is caused primarily by sheath effects with the Reynolds stress and J x B torque due to a cross-field Pederson conductivity having little effect. Explicit biasing simulations are also explored for the first time where the intrinsic rotation of the plasma is modified through boundary conditions that mimic the biasable limiter used in LAPD. Comparisons to experimental measurements in the unbiased case show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the unbiased simulations at previously theorized values reduces the radial particle flux due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport. In the biased runs the ion-neutral collisions have a much smaller effect due to the modification of the potential from sheath terms. In biasing the plasma to increase the intrinsic rotation, simulations show the emergence of a nonlinearly saturated coherent mode of order m = 6. In addition, the plasma inside of the cathode edge becomes quiescent due to the strong influence of the wall bias in setting up the equilibrium plasma potential. Biasing in the direction opposite to the intrinsic flow reduces the effective shear and leads to a stronger presence of drift modes that are seen to saturate when the KH drive has been suppressed. Both biasing cases show a moderate density confinement similarly seen in the experiment.
Late Pliocene Depositional History and Paleoclimate Reconstructions of the Southwest Pacific
NASA Astrophysics Data System (ADS)
Royce, B.; Patterson, M. O.; Pietras, J.
2017-12-01
Drift deposits off the eastern margin of New Zealand are important archives for the paleoclimate and paleoceanographic history of the southwest Pacific. Ocean Drilling Program (ODP) Site 1123 is located on the North Chatham rise drift just North of the westerly wind driven Subtropical Front (STF) and provides a record of near continuous sediment deposition since the Miocene along the southwest Pacific deep western boundary current (DWBC). While the Miocene and Late Pleistocene portion of this record have been well studied, the Late Pliocene record is less well developed. Southern Ocean geological records demonstrate that Late Pliocene cooling is the transient time bracketing the warmer than present Early Pliocene and bipolar glaciation at 2.7 Ma. A newly developed, robust, and astronomically tuned long-term record of benthic δ13C from ODP Site 1123 spanning the Early to Late Pliocene implies a reduction in Southern Ocean ventilation and lowering of preformed values from waters sourced along the Antarctic margin during the Late Pliocene. Thus, Late Pliocene Southern Hemisphere cooling and sea ice expansion may have drastically reduced outgassing and increased the burial of heat into the deep ocean. South Atlantic records off the west coast of Africa demonstrate an increase in the flux of iron to the open ocean during this time potentially enhancing surface ocean productivity and providing an additional cooling mechanism. Currently, atmospheric transport of dust to the Southern Ocean is dominated by persistent mid-latitude circumpolar westerly winds; this is particularly relevant for dust sourced from New Zealand. The Late Pliocene to Early Pleistocene uplift of the North Island axial ranges and South Island southern alps potentially provided a greater amount of not only sediment to the deep ocean, but also wind blow dust to the Pacific sector of the Southern Ocean. We will present a detailed high-resolution sedimentological study on the development of the Chatham Rise drift during the Late Pliocene in order to understand both the terrigenous flux rate of sediment into the southwest Pacific and changes in surface ocean productivity. Time series analysis on proxy data demonstrates a close coupling between orbital driven perturbations in climate and the depositional history of the Chatham Rise drift.
Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfvén Waves
NASA Astrophysics Data System (ADS)
Takahashi, Kazue; Oimatsu, Satoshi; Nosé, Masahito; Min, Kyungguk; Claudepierre, Seth G.; Chan, Anthony; Wygant, John; Kim, Hyomin
2018-01-01
Long-lasting second-harmonic poloidal standing Alfvén waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (˜10 mHz) were also observed in the energy (W) range 50-300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of ˜-200. The phase of the proton flux oscillations relative to the radial component of the wave magnetic field progresses with W, crossing 0 (northward moving protons) or 180° (southward moving protons) at W ˜ 120 keV. This feature is explained by drift-bounce resonance (mωd ˜ ωb) of ˜120 keV protons with the waves, where ωd and ωb are the proton drift and bounce frequencies. At lower energies, the proton phase space density (FH+) exhibits a bump-on-tail structure with ∂FH+/∂W>0 occurring in the 1-10 keV energy range. This FH+ is unstable and can excite P2 waves through bounce resonance (ω ˜ ωb), where ω is the wave frequency.
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2013-10-01
Multi-pulsing coaxial helicity injection (M-CHI) method which aims to achieve both quasi-steady sustainment and good confinement has been proposed as a refluxing scenario of the CHI. To explore the usefulness of the M-CHI for spherical torus (ST) configurations, the double-pulsing operations have been carried out in the HIST, verifying the flux amplification and the formation of the closed flux surfaces after the second CHI pulse. The purpose of this study is to investigate the properties of the magnetic field and plasma flow structures during the sustainment by comparing the results of plasma flow, density, and magnetic fields measurements with those of two-fluid equilibrium calculations. The two-fluid flowing equilibrium model which is described by a pair of generalized Grad-Shafranov equations for ion and electron surface variables and Bernoulli equations for density is applied to reconstruct the ST configuration with poloidal flow shear observed in the HIST. Due to the negative steep density gradient in high field side, the toroidal field has a diamagnetic profile (volume average beta, < β > = 68 %) in the central open flux column region. The ion flow velocity with strong flow shear from the separatrix in the inboard side to the core region is the opposite direction to the electron flow velocity due to the diamagentic drift through the density gradient. The electric field is relatively small in the whole region, and thus the Lorentz force nearly balances with the two-fluid effect which is particularly significant in a region with the steep density gradient due to the ion and electron diamagnetic drifts.
Flux Enhancements of > 30 keV Electrons at Low Drift Shells L < 1.2 During Last Solar Cycles
NASA Astrophysics Data System (ADS)
Suvorova, A. V.
2017-12-01
We present results of statistical analysis of enhancements of >30 keV electrons observed by the NOAA/POES satellites during solar cycles 23 and 24 (1998-2016) at low drift shells L < 1.2, so-called forbidden zone. We collected 1,750 days ( 25% of the total time) when fluxes of the forbidden energetic electrons (FEE) exceeded 103 (cm2 s sr)-1. We found 530 days, when FEE fluxes reached high intensity from 104 up to 107 (cm2 s sr)-1. It was found that the FEE enhancements were observed mostly often at the declining phases and solar minimum. More than 85% of the events occurred under fast solar wind (V > 450 km/s), high substorm activity (AL >150 nT), and enhanced interplanetary electric field perturbations (VδB > 1.5 mV/m). The FEE occurrence rate peaks around the local midnight. We have also found a quite unexpected annual variation of the FEE occurrence rate with a pronounced maximum from May to September, a minor peak in December-January, and minima at the equinoxes. The May-September peak, persisting at different solar cycle phases, was assumed to originate from high conductivity in the auroral ionosphere, which is controlled by the dipole tilt angle and provides better conditions for penetration of electric field perturbations into the inner magnetosphere. This allows explanation of the shape and amplitude of annual variation in the FEE occurrence rate from the convolution of the solar wind driver with the penetration conditions.
Electrostatic Fluxes and Plasma Rotation in the Edge Region of EXTRAP-T2R
NASA Astrophysics Data System (ADS)
Serianni, G.; Antoni, V.; Bergsåker, H.; Brunsell, P.; Drake, J. R.; Spolaore, M.; Sätherblom, H. E.; Vianello, N.
2001-10-01
The EXTRAP-T2 reversed field pinch has undergone a significant reconstruction into the new T2R device. This paper reports the first measurements performed with Langmuir probes in the edge region of EXTRAP-T2R. The radial profiles of plasma parameters like electron density and temperature, plasma potential, electrical fields and electrostatic turbulence-driven particle flux are presented. These profiles are interpreted in a momentum balance model where finite Larmor radius losses occur over a distance of about two Larmor radii from the limiter position. The double shear layer of the E×B drift velocity is discussed in terms of the Biglari-Diamond-Terry theory of turbulence decorrelation.
The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching
2012-01-01
The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.
Neutrino spectroscopy can probe the dark matter content in the Sun.
Lopes, Ilídio; Silk, Joseph
2010-10-22
After being gravitationally captured, low-mass cold dark-matter particles (mass range from 5 to ~50 × 10(9) electron volts) are thought to drift to the center of the Sun and affect its internal structure. Solar neutrinos provide a way to probe the physical processes occurring in the Sun's core. Solar neutrino spectroscopy, in particular, is expected to measure the neutrino fluxes produced in nuclear reactions in the Sun. Here, we show how the presence of dark-matter particles inside the Sun will produce unique neutrino flux distributions in (7)Be-ν and (8)B-ν, as well as (13)N-ν, (15)O-ν, and (17)F-ν.
Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring
NASA Astrophysics Data System (ADS)
Meyer, Amelie; Fer, Ilker; Sundfjord, Arild; Peterson, Algot K.
2017-06-01
Mixing and heat flux rates collected in the Eurasian Basin north of Svalbard during the N-ICE2015 drift expedition are presented. The observations cover the deep Nansen Basin, the Svalbard continental slope, and the shallow Yermak Plateau from winter to summer. Mean quiescent winter heat flux values in the Nansen Basin are 2 W m-2 at the ice-ocean interface, 3 W m-2 in the pycnocline, and 1 W m-2 below the pycnocline. Large heat fluxes exceeding 300 W m-2 are observed in the late spring close to the surface over the Yermak Plateau. The data consisting of 588 microstructure profiles and 50 days of high-resolution under-ice turbulence measurements are used to quantify the impact of several forcing factors on turbulent dissipation and heat flux rates. Wind forcing increases turbulent dissipation seven times in the upper 50 m, and doubles heat fluxes at the ice-ocean interface. The presence of warm Atlantic Water close to the surface increases the temperature gradient in the water column, leading to enhanced heat flux rates within the pycnocline. Steep topography consistently enhances dissipation rates by a factor of four and episodically increases heat flux at depth. It is, however, the combination of storms and shallow Atlantic Water that leads to the highest heat flux rates observed: ice-ocean interface heat fluxes average 100 W m-2 during peak events and are associated with rapid basal sea ice melt, reaching 25 cm/d.
Antarctic icebergs distributions 1992-2014
NASA Astrophysics Data System (ADS)
Tournadre, J.; Bouhier, N.; Girard-Ardhuin, F.; Rémy, F.
2016-01-01
Basal melting of floating ice shelves and iceberg calving constitute the two almost equal paths of freshwater flux between the Antarctic ice cap and the Southern Ocean. The largest icebergs (>100 km2) transport most of the ice volume but their basal melting is small compared to their breaking into smaller icebergs that constitute thus the major vector of freshwater. The archives of nine altimeters have been processed to create a database of small icebergs (<8 km2) within open water containing the positions, sizes, and volumes spanning the 1992-2014 period. The intercalibrated monthly ice volumes from the different altimeters have been merged in a homogeneous 23 year climatology. The iceberg size distribution, covering the 0.1-10,000 km2 range, estimated by combining small and large icebergs size measurements follows well a power law of slope -1.52 ± 0.32 close to the -3/2 laws observed and modeled for brittle fragmentation. The global volume of ice and its distribution between the ocean basins present a very strong interannual variability only partially explained by the number of large icebergs. Indeed, vast zones of the Southern Ocean free of large icebergs are largely populated by small iceberg drifting over thousands of kilometers. The correlation between the global small and large icebergs volumes shows that small icebergs are mainly generated by large ones breaking. Drifting and trapping by sea ice can transport small icebergs for long period and distances. Small icebergs act as an ice diffuse process along large icebergs trajectories while sea ice trapping acts as a buffer delaying melting.
Davis, Ryan W.; Carvalho, Benjamin J.; Jones, Howland D. T.; ...
2014-05-13
Great efforts have been made to elucidate the phenotypic responses of alga to varying levels of nutrients, osmotic environments, and photosynthetically active radiation intensities, though the role of interactions among these variables is largely nebulous. We also describe a general method for establishing and maintaining semi-continuous cultures of the halophilic microalgal production strain, Dunaliella viridis, that is independent of variations in salinity and illumination intensity. Using this method, the cultures were evaluated to elucidate the overlapping roles of photosynthetic and osmotic adaptation on the accumulation and compositional variation of the biomass, photosynthetic productivity, and physiological biomarkers, as well as spectroscopicmore » and morphological details at the single-cell level. Correlation matrices defining the relationships among the observables and based on variation of the illumination intensity and salinity were constructed for predicting bioproduct yields for varying culture conditions. Following maintenance of stable cultures for 6-week intervals, phenotypic responses to photo-osmotic drift were explored using a combination of single-cell hyperspectral fluorescence imaging and flow cytometry. In addition to morphological changes, release of lipid microparticles from the cells that is disproportionate to cell lysis was observed under hypotonic drift, indicating the existence of a reversible membrane permeation mechanism in Dunaliella. Furthermore, this phenomenon introduces the potential for low-cost strategies for recovering lipids and pigments from the microalgae by minimizing the requirement for energy intensive harvesting and dewatering of the biomass. The results should be applicable to outdoor culture, where seasonal changes resulting in variable solar flux and precipitation and evaporation rates are anticipated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Ryan W.; Carvalho, Benjamin J.; Jones, Howland D. T.
Great efforts have been made to elucidate the phenotypic responses of alga to varying levels of nutrients, osmotic environments, and photosynthetically active radiation intensities, though the role of interactions among these variables is largely nebulous. We also describe a general method for establishing and maintaining semi-continuous cultures of the halophilic microalgal production strain, Dunaliella viridis, that is independent of variations in salinity and illumination intensity. Using this method, the cultures were evaluated to elucidate the overlapping roles of photosynthetic and osmotic adaptation on the accumulation and compositional variation of the biomass, photosynthetic productivity, and physiological biomarkers, as well as spectroscopicmore » and morphological details at the single-cell level. Correlation matrices defining the relationships among the observables and based on variation of the illumination intensity and salinity were constructed for predicting bioproduct yields for varying culture conditions. Following maintenance of stable cultures for 6-week intervals, phenotypic responses to photo-osmotic drift were explored using a combination of single-cell hyperspectral fluorescence imaging and flow cytometry. In addition to morphological changes, release of lipid microparticles from the cells that is disproportionate to cell lysis was observed under hypotonic drift, indicating the existence of a reversible membrane permeation mechanism in Dunaliella. Furthermore, this phenomenon introduces the potential for low-cost strategies for recovering lipids and pigments from the microalgae by minimizing the requirement for energy intensive harvesting and dewatering of the biomass. The results should be applicable to outdoor culture, where seasonal changes resulting in variable solar flux and precipitation and evaporation rates are anticipated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K.C.; Hazeltine, R.D.
Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}
Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M
2015-05-01
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.
2015-05-15
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23more » pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.« less
Models of SOL transport and their relation to scaling of the divertor heat flux width in DIII-D
Makowski, M. A.; Lasnier, C. J.; Leonard, A. W.; ...
2014-10-06
Strong support for the critical pressure gradient model for the heat flux width has been obtained, in that the measured separatrix pressure gradient lies below and scales similarly to the pressure gradient limit obtained from the ideal, infinite-n stability codes, BALOO and 2DX, in all cases that have been examined. Predictions of a heuristic drift model for the heat flux width are also in qualitative agreement with the measurements. We obtained these results by using an improved high rep-rate and higher edge spatial resolution Thomson scattering system on DIII-D to measure the upstream electron temperature and density profiles. In ordermore » to compare theory and experiment, profiles of density, temperature, and pressure for both electrons and ions are needed as well values of these quantitities at the separatrix. We also developed a simple method to identify a proxy for the separatrix.« less
NASA Astrophysics Data System (ADS)
Christianson, D. S.; Beekwilder, N.; Chan, S.; Cheah, Y. W.; Chu, H.; Dengel, S.; O'Brien, F.; Pastorello, G.; Sandesh, M.; Torn, M. S.; Agarwal, D.
2017-12-01
AmeriFlux is a network of scientists who independently collect eddy covariance and related environmental observations at over 250 locations across the Americas. As part of the AmeriFlux Management Project, the AmeriFlux Data Team manages standardization, collection, quality assurance / quality control (QA/QC), and distribution of data submitted by network members. To generate data products that are timely, QA/QC'd, and repeatable, and have traceable provenance, we developed a semi-automated data processing pipeline. The new pipeline consists of semi-automated format and data QA/QC checks. Results are communicated via on-line reports as well as an issue-tracking system. Data processing time has been reduced from 2-3 days to a few hours of manual review time, resulting in faster data availability from the time of data submission. The pipeline is scalable to the network level and has the following key features. (1) On-line results of the format QA/QC checks are available immediately for data provider review. This enables data providers to correct and resubmit data quickly. (2) The format QA/QC assessment includes an automated attempt to fix minor format errors. Data submissions that are formatted in the new AmeriFlux FP-In standard can be queued for the data QA/QC assessment, often with minimal delay. (3) Automated data QA/QC checks identify and communicate potentially erroneous data via online, graphical quick views that highlight observations with unexpected values, incorrect units, time drifts, invalid multivariate correlations, and/or radiation shadows. (4) Progress through the pipeline is integrated with an issue-tracking system that facilitates communications between data providers and the data processing team in an organized and searchable fashion. Through development of these and other features of the pipeline, we present solutions to challenges that include optimizing automated with manual processing, bridging legacy data management infrastructure with various software tools, and working across interdisciplinary and international science cultures. Additionally, we discuss results from community member feedback that helped refine QA/QC communications for efficient data submission and revision.
NASA Technical Reports Server (NTRS)
Aprile, Elena
1992-01-01
In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.
Limitations of the clump-correlation theories of shear-induced turbulence suppression
NASA Astrophysics Data System (ADS)
Zhang, Y. Z.; Mahajan, S. M.
2017-05-01
The clump theory, primarily constructed by Dupree [Phys. Fluids 15, 334 (1972)] based on the moment approach and then generalized to the correlation theory [Y. Z. Zhang and S. M. Mahajan, Phys. Fluids B 5, 2000 (1993)], has long served as a basis for constructing theories of turbulence suppression by shear flow. In order to reveal the "intrinsic approximation" invoked in the clump-correlation theory, we examine a model based on two dimensional magnetized drift waves. After a rigorous derivation of the exact response function—a key to average the Green function of the system—we show that the Dupree, Zhang-Mahajan approach is recovered as the lowest order approximation in a small dimensionless parameter ϒ which is a triple product of the correlation time, wave number, and fluctuating drift velocity. The clump-correlation theory, thus, constitutes the Gaussian and lowest order non-Markovian process for a homogeneous stationary turbulence. We also provide, especially for the tokamak community, a readily usable formula to evaluate the effectiveness of shear-flow suppression; this formula pertains regardless of the specific model of correlation time.
Seasonal variation in drifting eggs and larvae in the upper Yangtze, China.
Jiang, Wei; Liu, Huan-Zhang; Duan, Zhong-Hua; Cao, Wen-Xuan
2010-05-01
From 5 March to 25 July 2008, ichthyoplankton drifting into the Three Gorges Reservoir from the upper reaches of the Yangtze River were sampled daily to investigate the species composition, abundance, and seasonal variation in early-stage fishes in this area. Twenty-eight species belonging to five orders and 17 families or subfamilies were identified by analyzing fish eggs and larvae, and a total of 14.16 billion individuals were estimated drifting through the sampling section during the investigation. Among the ichthyoplankton sampled, species in Cultrinae, Cobitidae, Gobioninae and Gobiidae, along with the common carp (Cyprinus carpio Linnaeus), comprised 89.6% of the total amount. Six peaks of drift density were identified during the sampling period, and a significant correlation was found between drift density with water discharge. The dominant species were different in each drift peak, indicating different spawning times for the major species. The total amount of the four major Chinese carps that drifted through the sampling section was estimated as 0.88 billion, indicating an increase in the population sizes of these species in the upper reaches of the Yangtze River after construction of the Three Gorges Dam. Actually, these reaches have become the largest spawning area for the four major Chinese carps in the Yangtze River. The large total amount of eggs and larvae drifting through this section demonstrated that the upper reaches of the Yangtze River provided important spawning sites for many fish species, and that conservation of this area should be of great concern.
NASA Astrophysics Data System (ADS)
Abel, Rafael; Boening, Claus
2015-04-01
Current practice in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in conjunction with a prescribed, and unresponsive, atmospheric state as given, e.g., by reanalysis products. This forcing formulation corresponds to assuming an atmosphere with infinite heat capacity, and effectively damps SST anomalies even on basin scales. It thus curtails an important negative feedback between meridional ocean heat transport and SST in the North Atlantic, rendering simulations of the AMOC in such models excessively sensitive to details in the freshwater fluxes. As a consequence, such simulations are known for spurious drift behaviors which can only partially controlled by introducing some (and sometimes strong) unphysical restoring of sea surface salinity. There have been several suggestions during the last 20 years for at least partially alleviating the problem by including some simplified model of the atmospheric boundary layer (AML) which allows a feedback of SST anomalies on the near-surface air temperature and humidity needed to calculate the surface fluxes. We here present simulations with a simple, only thermally active AML formulation (based on the 'CheapAML' proposed by Deremble et al., 2013) implemented in a global model configuration based on NEMO (ORCA05). In a suite of experiments building on the CORE-bulk forcing methodology, we examine some general features of the AML-solutions (in which only the winds are prescribed) in comparison to solutions with a prescribed atmosperic state. The focus is on the North Atlantic, where we find that the adaptation of the atmospheric temperature the simulated ocean state can lead to strong local modifications in the surface heat fluxes in frontal regions (e.g., the 'Northwest Corner'). We particularly assess the potential of the AML-forcing concept for obtaining AMOC-simulations with reduced spurious drift, without employing the traditional remedy of salinity restoring.
NASA Astrophysics Data System (ADS)
Moreaux, V.; Ceschia, E.; Delpierre, N.; Dufrêne, E.; Joffre, R.; Klumpp, K.; Berveiller, D.; Loustau, D.; Limousin, J. M.; Ourcival, J. M.; Brut, A.; Darsonville, O.; Lafont, S.; Piquemal, K.; Longdoz, B.
2017-12-01
The attribution of the significant inter-annual variability of long lived greenhouse gas (GHG) fluxes, between edaphic, meteorological variables and ecosystem management parameters - independently or in interaction, evolving as a long term drift or as extreme events - remains uncertain. Our research aims to quantify the potential impact of climatic drifts or anthropogenic and meteorological events on ecosystem-atmosphere exchanges of French sites by analyzing the long series (at least continuous 9 years, between 1996 and 2015) of eddy covariance (EC) fluxes. We firstly performed a homogeneously repost-processing of the raw EC data across 5 sites: three forest ecosystems (deciduous broad-leaved FR-Fon, evergreen broadleaved FR-Pue, and evergreen coniferous FR-Br), one extensive grassland (FR-Lq2) and one cropland (FR-Aur). These data, in terms of net ecosystem exchanges (NEE), gross primary production (GPP) and ecosystem respiration (Reco) were put together with the corresponding climatic and edaphic data and with the carbon stock inventory for an homogeneous statistical analysis and comparative interpretations. The standard protocol, excluding any Nakai's corrections, helped to reduce the influence of the methodology and experimental design on the temporal and spatial variability. The methodology adopted finally used 35% on average of flux data for all sites. Based on the first analysis of reprocessed data from the forests, no significant long term evolution of NEE, Reco and GPP through the studied periods despite [CO2] increase and long term change observed in environmental parameters. Combining all years, a respiration limitation at high air temperature was observed on the forest sites, with a LAI dependency for deciduous ecosystems, and REW dependency for evergreen southern sites. A dominant effect of air vapor stress, compared to edaphic stress was observed on GPP response to PPFD in the deciduous northern forest, significantly decreasing with VPD increase.
Augusto, Renan Maloni; Albuquerque, André Luis Pereira; Jaeger, Thomas; de Carvalho, Carlos Roberto Ribeiro; Caruso, Pedro
2017-02-01
The use of esophageal catheters with microtransducer promises advantages over traditional catheters with air-filled balloons. However, performance comparisons between these 2 types of catheters are scarce and incomplete. A catheter with a 9.5-cm air-filled balloon at the distal tip and a catheter with a microtransducer mounted within a flexible silicone rubber were tested in vitro and in vivo. In vitro, the response times of both catheters were compared, and the drift of the baseline pressure of the microtransducer catheter was evaluated over a 6-h period. In vivo, 11 healthy volunteers had both catheters inserted, and the drift of the baseline esophageal pressure was measured over a 3-h period. Also, the correlation and agreement of the baseline and changes in the esophageal pressure of both catheters were evaluated. In vitro, the microtransducer catheter had a response time significantly higher (262 × 114 Hz, P < .01) and a good pressure stability, with a mean baseline pressure drift of 1.4 cm H 2 O. In vivo, both catheters presented a small and similar baseline esophageal pressure drift (P = 0.08). For measurements of baseline and changes in esophageal pressure, the correlation and agreement between the catheters were poor, with a large bias between them. The catheter with the microtransducer had a small baseline pressure drift, similar to the air-filled balloon catheter. The low agreement between the catheters does not allow the microtransducer catheter to be used as a surrogate for the traditional air-filled balloon catheter. Copyright © 2017 by Daedalus Enterprises.
Kune, Christopher; Far, Johann; De Pauw, Edwin
2016-12-06
Ion mobility spectrometry (IMS) is a gas phase separation technique, which relies on differences in collision cross section (CCS) of ions. Ionic clouds of unresolved conformers overlap if the CCS difference is below the instrumental resolution expressed as CCS/ΔCCS. The experimental arrival time distribution (ATD) peak is then a superimposition of the various contributions weighted by their relative intensities. This paper introduces a strategy for accurate drift time determination using traveling wave ion mobility spectrometry (TWIMS) of poorly resolved or unresolved conformers. This method implements through a calibration procedure the link between the peak full width at half-maximum (fwhm) and the drift time of model compounds for wide range of settings for wave heights and velocities. We modified a Gaussian equation, which achieves the deconvolution of ATD peaks where the fwhm is fixed according to our calibration procedure. The new fitting Gaussian equation only depends on two parameters: The apex of the peak (A) and the mean drift time value (μ). The standard deviation parameter (correlated to fwhm) becomes a function of the drift time. This correlation function between μ and fwhm is obtained using the TWIMS calibration procedure which determines the maximum instrumental ion beam diffusion under limited and controlled space charge effect using ionic compounds which are detected as single conformers in the gas phase. This deconvolution process has been used to highlight the presence of poorly resolved conformers of crown ether complexes and peptides leading to more accurate CCS determinations in better agreement with quantum chemistry predictions.
Long-term stability of GOES-8 and -9 attitude control
NASA Astrophysics Data System (ADS)
Carr, James L.
1996-10-01
An independent audit of the in-orbit behavior of the GOES-8 and GOES-9 satellites has been conducted for the NASA/GSFC. This audit utilized star and landmark observations from the GOES imager to determine long-term histories for spacecraft attitude, orbital position, and instrument internal misalignments. The paper presents results from this audit. Long-term drifts are found in the attitude histories, whereas the misalignment histories are shown to be diurnally stable. The GOES image navigation and registration system is designed to compensate for instrument internal misalignments, and both the diurnally repeatable and drift components of the attitude. Correlations between GOES-8 and GOES-9 long-term roll and pitch drifts implicate the Earth sensor as the origin of these observed drifts. This results clearly demonstrates the enhanced registration stability to be obtained with stellar inertial attitude determination replacing or supplementing Earth sensor control on future GOES missions.
Sea Ice Drift Monitoring in the Bohai Sea Based on GF4 Satellite
NASA Astrophysics Data System (ADS)
Zhao, Y.; Wei, P.; Zhu, H.; Xing, B.
2018-04-01
The Bohai Sea is the inland sea with the highest latitude in China. In winter, the phenomenon of freezing occurs in the Bohai Sea due to frequent cold wave influx. According to historical records, there have been three serious ice packs in the Bohai Sea in the past 50 years which caused heavy losses to our economy. Therefore, it is of great significance to monitor the drift of sea ice and sea ice in the Bohai Sea. The GF4 image has the advantages of short imaging time and high spatial resolution. Based on the GF4 satellite images, the three methods of SIFT (Scale invariant feature - the transform and Scale invariant feature transform), MCC (maximum cross-correlation method) and sift combined with MCC are used to monitor sea ice drift and calculate the speed and direction of sea ice drift, the three calculation results are compared and analyzed by using expert interpretation and historical statistical data to carry out remote sensing monitoring of sea ice drift results. The experimental results show that the experimental results of the three methods are in accordance with expert interpretation and historical statistics. Therefore, the GF4 remote sensing satellite images have the ability to monitor sea ice drift and can be used for drift monitoring of sea ice in the Bohai Sea.
DC Electric Fields, Associated Plasma Drifts, and Irregularities Observed on the C/NOFS Satellite
NASA Technical Reports Server (NTRS)
Pfaff, R.; Freudenreich, H.; Klenzing, J.
2011-01-01
Results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth s low latitude ionosphere.
The Rubber Hand Illusion: Feeling of Ownership and Proprioceptive Drift Do Not Go Hand in Hand
Rohde, Marieke; Di Luca, Massimiliano; Ernst, Marc O.
2011-01-01
In the Rubber Hand Illusion, the feeling of ownership of a rubber hand displaced from a participant's real occluded hand is evoked by synchronously stroking both hands with paintbrushes. A change of perceived finger location towards the rubber hand (proprioceptive drift) has been reported to correlate with this illusion. To measure the time course of proprioceptive drift during the Rubber Hand Illusion, we regularly interrupted stroking (performed by robot arms) to measure perceived finger location. Measurements were made by projecting a probe dot into the field of view (using a semi-transparent mirror) and asking participants if the dot is to the left or to the right of their invisible hand (Experiment 1) or to adjust the position of the dot to that of their invisible hand (Experiment 2). We varied both the measurement frequency (every 10 s, 40 s, 120 s) and the mode of stroking (synchronous, asynchronous, just vision). Surprisingly, with frequent measurements, proprioceptive drift occurs not only in the synchronous stroking condition but also in the two control conditions (asynchronous stroking, just vision). Proprioceptive drift in the synchronous stroking condition is never higher than in the just vision condition. Only continuous exposure to asynchronous stroking prevents proprioceptive drift and thus replicates the differences in drift reported in the literature. By contrast, complementary subjective ratings (questionnaire) show that the feeling of ownership requires synchronous stroking and is not present in the asynchronous stroking condition. Thus, subjective ratings and drift are dissociated. We conclude that different mechanisms of multisensory integration are responsible for proprioceptive drift and the feeling of ownership. Proprioceptive drift relies on visuoproprioceptive integration alone, a process that is inhibited by asynchronous stroking, the most common control condition in Rubber Hand Illusion experiments. This dissociation implies that conclusions about feelings of ownership cannot be drawn from measuring proprioceptive drift alone. PMID:21738756
Simulation of a Rapid Dropout Event for Highly Relativistic Electrons with the RBE Model
NASA Technical Reports Server (NTRS)
Kang, S-B.; Fok, M.-C.; Glocer, A.; Min, K.-W.; Choi, C.-R.; Choi, E.; Hwang, J.
2016-01-01
A flux dropout is a sudden and sizable decrease in the energetic electron population of the outer radiation belt on the time scale of a few hours. We simulated a flux dropout of highly relativistic 2.5 MeV electrons using the Radiation Belt Environment model, incorporating the pitch angle diffusion coefficients caused by electromagnetic ion cyclotron (EMIC) waves for the geomagnetic storm events of 23-26 October 2002. This simulation showed a remarkable decrease in the 2.5 MeV electron flux during main phase of the storm, compared to those without EMIC waves. This decrease was independent of magnetopause shadowing or drift loss to the magnetopause. We suggest that the flux decrease was likely to be primarily due to pitch angle scattering to the loss cone by EMIC waves. Furthermore, the 2.5 MeV electron flux calculated with EMIC waves correspond very well with that observed from Solar Anomalous and Magnetospheric Particle EXplorer spacecraft. EMIC wave scattering is therefore likely one of the key mechanisms to understand flux dropouts. We modeled EMIC wave intensities by the Kp index. However, the calculated dropout is a several hours earlier than the observed one. We propose that Kp is not the best parameter to predict EMIC waves.
SOL effects on the pedestal structure in DIII-D discharges
Sontag, Aaron C.; Chen, Xi; Canik, John; ...
2017-05-24
SOLPS analysis explains the differences in pedestal structure associated with different ion ∇B drift directions in DIII-D. Core transport models predict that fusion power scales roughly as the square of the pressure at the top of the pedestal, so understanding the effects that determine pedestal structure in steady-state operational scenarios is important to projecting scenarios developed in DIII-D to ITER and other devices. Both experiments and modeling indicate that scrape off layer (SOL) conditions are important in optimizing the pedestal structure for high-beta steady-state scenarios. The SOLPS code is used to provide interpretive analysis of the pedestal and SOL tomore » examine the nature of flows and fueling on the pedestal structure including the effects of drifts in the fluid model. This analysis shows that flows driven by the ion ∇B drift are outward when this drift is toward the x-point in a single-null divertor configuration (favorable ∇B direction for reduced H-mode power threshold), and inward when the drift is away from the x-point (unfavorable ∇B direction). It is hypothesized that these flows decrease the density gradient in the pedestal in the favorable direction, thereby stabilizing the kinetic ballooning mode (KBM) and increasing the pedestal width. Comparisons of pedestal structures in similarly shaped DIII-D steady-state plasmas confirm this change, showing increased density pedestal width and lower peak density and lower separatrix density with the favorable drift direction. The pedestal temperature is higher in the lower density case, resulting in an increased pedestal pressure, which indicates that the increased particle flux does not significantly degrade energy confinement. Modeling of cases with constant ∇B drift direction but changing between the more open lower divertor and more closed upper divertor show that there is increased fueling inside the pedestal with the more open geometry. As a result, the pedestal fueling rate for both attached and detached cases is always lower with more closed divertor geometry than in any cases with more open geometry.« less
SOL effects on the pedestal structure in DIII-D discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontag, Aaron C.; Chen, Xi; Canik, John
SOLPS analysis explains the differences in pedestal structure associated with different ion ∇B drift directions in DIII-D. Core transport models predict that fusion power scales roughly as the square of the pressure at the top of the pedestal, so understanding the effects that determine pedestal structure in steady-state operational scenarios is important to projecting scenarios developed in DIII-D to ITER and other devices. Both experiments and modeling indicate that scrape off layer (SOL) conditions are important in optimizing the pedestal structure for high-beta steady-state scenarios. The SOLPS code is used to provide interpretive analysis of the pedestal and SOL tomore » examine the nature of flows and fueling on the pedestal structure including the effects of drifts in the fluid model. This analysis shows that flows driven by the ion ∇B drift are outward when this drift is toward the x-point in a single-null divertor configuration (favorable ∇B direction for reduced H-mode power threshold), and inward when the drift is away from the x-point (unfavorable ∇B direction). It is hypothesized that these flows decrease the density gradient in the pedestal in the favorable direction, thereby stabilizing the kinetic ballooning mode (KBM) and increasing the pedestal width. Comparisons of pedestal structures in similarly shaped DIII-D steady-state plasmas confirm this change, showing increased density pedestal width and lower peak density and lower separatrix density with the favorable drift direction. The pedestal temperature is higher in the lower density case, resulting in an increased pedestal pressure, which indicates that the increased particle flux does not significantly degrade energy confinement. Modeling of cases with constant ∇B drift direction but changing between the more open lower divertor and more closed upper divertor show that there is increased fueling inside the pedestal with the more open geometry. As a result, the pedestal fueling rate for both attached and detached cases is always lower with more closed divertor geometry than in any cases with more open geometry.« less
Nonequilibrium Molecular Energy Coupling and Conversion Mechanisms
2016-08-28
important role in gas discharges, molecular lasers, plasma chemical reactors, and high enthalpy gas dynamic flows . In these nonequilibrium...the expressions for the fluxes, N0 is the total number density, αdrv are the charged species drift velocities, v is the gas flow velocity, Dα and...the electrodes are very slow, compared to the gas flow in the radial direction. The boundary conditions for the energy equation (Eq. (II.5)) on the
Thakur, S C; Brandt, C; Light, A; Cui, L; Gosselin, J J; Tynan, G R
2014-11-01
We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.
Momentum flux parasitic to free-energy transfer
Stoltzfus-Dueck, T.; Scott, B.
2017-05-11
An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less
NASA Astrophysics Data System (ADS)
Sternal, Oliver; Engelbrecht, Eugene; Burger, Renier; Dunzlaff, Phillip; Ferreira, Stefan; Fichtner, Horst; Heber, Bernd; Kopp, Andreas; Potgieter, Marius; Scherer, Klaus
The transport of energetic particles in the heliosphere is usually described by the Parker trans-port equation including the physical processes of diffusion, drift, convection and adiabatic energy changes. The Ulysses spacecraft provides unique insight into the flux of MeV electrons at high latitudes. In this contribution, we compare our model results for the Parker HMF model and the Fisk-type Schwadron-Parker HMF model to Ulysses measurements. The elec-tron flux at high latitudes has been used as a remote sensing method to investigate the imprint of a Fisk-type HMF. We show here for the first time that such an imprint exists and deduce a limitation on the Fisk HMF angle β.
Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter
NASA Technical Reports Server (NTRS)
Fillius, Walker
1988-01-01
There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between the flux tube and the absorber when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities in drift encounters were computed for all regimes of particle energies and absorber sizes.
Threshold flux-controlled memristor model and its equivalent circuit implementation
NASA Astrophysics Data System (ADS)
Wu, Hua-Gan; Bao, Bo-Cheng; Chen, Mo
2014-11-01
Modeling a memristor is an effective way to explore the memristor properties due to the fact that the memristor devices are still not commercially available for common researchers. In this paper, a physical memristive device is assumed to exist whose ionic drift direction is perpendicular to the direction of the applied voltage, upon which, corresponding to the HP charge-controlled memristor model, a novel threshold flux-controlled memristor model with a window function is proposed. The fingerprints of the proposed model are analyzed. Especially, a practical equivalent circuit of the proposed model is realized, from which the corresponding experimental fingerprints are captured. The equivalent circuit of the threshold memristor model is appropriate for various memristors based breadboard experiments.
NASA Astrophysics Data System (ADS)
Muckenhuber, Stefan; Sandven, Stein
2017-04-01
An open-source sea ice drift algorithm for Sentinel-1 SAR imagery is introduced based on the combination of feature-tracking and pattern-matching. A computational efficient feature-tracking algorithm produces an initial drift estimate and limits the search area for the pattern-matching, that provides small to medium scale drift adjustments and normalised cross correlation values as quality measure. The algorithm is designed to utilise the respective advantages of the two approaches and allows drift calculation at user defined locations. The pre-processing of the Sentinel-1 data has been optimised to retrieve a feature distribution that depends less on SAR backscatter peak values. A recommended parameter set for the algorithm has been found using a representative image pair over Fram Strait and 350 manually derived drift vectors as validation. Applying the algorithm with this parameter setting, sea ice drift retrieval with a vector spacing of 8 km on Sentinel-1 images covering 400 km x 400 km, takes less than 3.5 minutes on a standard 2.7 GHz processor with 8 GB memory. For validation, buoy GPS data, collected in 2015 between 15th January and 22nd April and covering an area from 81° N to 83.5° N and 12° E to 27° E, have been compared to calculated drift results from 261 corresponding Sentinel-1 image pairs. We found a logarithmic distribution of the error with a peak at 300 m. All software requirements necessary for applying the presented sea ice drift algorithm are open-source to ensure free implementation and easy distribution.
NASA Astrophysics Data System (ADS)
Buscheck, T.; Glascoe, L.; Sun, Y.; Gansemer, J.; Lee, K.
2003-12-01
For the proposed Yucca Mountain geologic repository for high-level nuclear waste, the planned method of disposal involves the emplacement of cylindrical packages containing the waste inside horizontal tunnels, called emplacement drifts, bored several hundred meters below the ground surface. The emplacement drifts reside in highly fractured, partially saturated volcanic tuff. An important phenomenological consideration for the licensing of the proposed repository at Yucca Mountain is the generation of decay heat by the emplaced waste and the consequences of this decay heat. Changes in temperature will affect the hydrologic and chemical environment at Yucca Mountain. A thermohydrologic-modeling tool is necessary to support the performance assessment of the Engineered Barrier System (EBS) of the proposed repository. This modeling tool must simultaneously account for processes occurring at a scale of a few tens of centimeters around individual waste packages, for processes occurring around the emplacement drifts themselves, and for processes occurring at the multi-kilometer scale of the mountain. Additionally, many other features must be considered including non-isothermal, multiphase-flow in fractured porous rock of variable liquid-phase saturation and thermal radiation and convection in open cavities. The Multiscale Thermohydrologic Model (MSTHM) calculates the following thermohydrologic (TH) variables: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes. The TH variables are determined as a function of position along each of the emplacement drifts in the repository and as a function of waste-package (WP) type. These variables are determined at various generic locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert; they are also determined at various generic locations in the adjoining host rock; these variables are determined every 20 m for each emplacement drift in the repository. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow and captures the influence of the key engineering-design variables and natural-system factors affecting TH conditions in the emplacement drifts and adjoining host rock. Presented is a synopsis of recent MSTHM calculations conducted to support the Total System Performance Assessment for the License Application (TSPA-LA). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Relating chamber measurements to eddy correlation measurements of methane flux
R.J. Clement; S.B. Verma; E.S. Verry
1995-01-01
Methane fluxes were measured using eddy correlation and chamber techniques during 1991 and 1997 at a peatland in north central Minnesota. Comparisons of the two techniques were made using averages of methane flux data available during 1-week periods. The seasonal patterns of fluxes measured by the two techniques compared well. Chamber flux, in 1991, was about 1.8 mg m...
Turbulent transport regimes and the SOL heat flux width
NASA Astrophysics Data System (ADS)
Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.
2014-10-01
Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks, and for seeking possible mitigation schemes. Simulation and theory results using reduced edge/SOL turbulence models have produced SOL widths and scalings in reasonable accord with experiments in many cases. In this work, we attempt to qualitatively and conceptually understand various regimes of edge/SOL turbulence and the role of turbulent transport in establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. Recent SOLT turbulence code results are employed to understand the roles of these considerations and to develop analytical scalings. We find a heat flux width scaling with major radius R that is generally positive, consistent with older results reviewed in. The possible relationship of turbulence mechanisms to the heuristic drift mechanism is considered, together with implications for future experiments. Work supported by US DOE grant DE-FG02-97ER54392.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Jinjia; Gong, Xueyu; Xiang, Dong
The enhanced transport of passing energetic ions (PEIs) in presence of the resonant interactions with a rotating magnetic island is investigated within the drift kinetic framework. When the island rotation plays a role in the resonant interaction, we find that the velocities of PEIs satisfy a constraint relation of resonant flux surface in phase space. The resonant flux surfaces overlap with the magnetic flux surfaces in real space. A new transport channel responsible for the PEIs moving across the magnetic flux surfaces, i.e., continuously overlapping, is found. Two kinds of radial motions can be induced by the surface overlapping: onemore » arises from the coupling between the resonance and the collision with the background plasma and the other from not completely overlapping of the two surfaces. The two radial motions and the symmetry-breaking induced radial motion constitute the total radial motion. When the pitch-angle scattering rate is very weak, the surface-shear induced transport is dominant. Only a small increase in the collision rate can significantly influence the total transport.« less
Galactic CR in the Heliosphere according to NM data, 3. Results for even solar cycles 20 and 22.
NASA Astrophysics Data System (ADS)
Dorman, L.; Dorman, I.; Iucci, N.; Parisi, M.; Villoresi, G.; Zukerman, I.
We found that the maximum of correlation coefficient between cosmic ray (CR) intensity and solar activity (SA) variations is occurred for even cycles 20 and 22 for about two-three times in the shorter time than for odd cycles 19 and 21. We came to conclusion that this difference is caused by CR drift effects: during even cycle drifts produced the small increasing of CR global modulation (additional to the caused by convection-diffusion mechanism) in the period from minimum to maximum of SA, and after the maximum of SA up to the minimum- about the same decreasing of CR modulation. This gives sufficient decreasing of observed time lag between CR and- SA in even solar cycles. We analyzed monthly and 11 months smoothed data of (CR) intensity observed by neutron monitors with different cut-off rigidities for even solar cycles 20 and 22. We use a special model described the connection between solar activity (characterized by monthly sunspot numbers) and CR convection- diff usion global modulation with taking into account time-lag of processes in the Heliosphere relative to the active processes on the Sun. For taking into account drifts we use models described in literature. In the first we correct observed long-term CR modulation on drifts with different amplitudes from 0 (no drifts), then 0.15%, 0.25%,... up to 4%. For each expected amplitude of drifts we determine the correlation coefficient between expected CR variations and observed by neutron monitors with different cut - off rigidities for different times of solar wind transportation from the Sun to the boundary of the modulation region from 1 to 60 average months (it corresponds approximately to dimension of modulation region from about 6 to 360 AU). We compare observed res ults for even solar cycles 20 and 22.
Magnetopause Losses of Radiation Belt Electrons During a Recent Magnetic Storm
NASA Astrophysics Data System (ADS)
Lemon, C. L.; Chen, M.; Roeder, J. L.; Fennell, J. F.; Mulligan, T. L.; Claudepierre, S. G.
2013-12-01
We present results from Van Allen Probes observations during the magnetic storm of June 1, 2013, and compare them with simulations of the same event using the RCM-E model. The RCM-E calculates ion and electron transport in self-consistently computed electric and magnetic fields. We examine the effect of the perturbed ring current magnetic field on the transport of energetic electrons, and the significance of this transport for explaining the observed evolution of radiation belt fluxes during this event. The event is notable because it is a relatively simple storm in which strong convection persists for approximately 7 hours, injecting a moderately strong ring current (minimum Dst of -120 nT); convection then quickly shuts off, leading to a long and smooth recovery phase. We use RCM-E simulations, constrained by Van Allen Probes data, to asses the rate of magnetopause losses of electrons (magnetopause shadowing), and to calculate electron drift times and the evolution of electron phase space densities during the storm event. We recently modified the RCM-E plasma drift calculations to include relativistic treatment of electrons and a more realistic electron loss model. The new electron loss model, although still somewhat simplistic, gives much more accurate loss rates in the inner magnetosphere (including the radiation belts), which significantly affects the resulting electron fluxes compared to previous simulations. This, in turn, modifies the transport of ions and electrons via feedback with both the electric and magnetic fields. Our results highlight the effect of the ring current on the evolution of the radiation belt electrons, with particular emphasis on the role that magnetopause losses play in the observed variation of radiation belt electron fluxes during the storm.
Gyrofluid theory and simulation of electromagnetic turbulence and transport in tokamak plasmas
NASA Astrophysics Data System (ADS)
Snyder, Philip Benjamin
1999-11-01
Turbulence and transport in toroidal plasmas is studied via the development of an electromagnetic gyrofluid model, and its implementation in realistic nonlinear simulations. This work extends earlier electrostatic gyrofluid models to include magnetic fluctuations and non-adiabatic passing electron dynamics. A new set of electron fluid equations is derived from the drift kinetic equation, via an expansion in the electron-ion mass ratio. These electron equations include descriptions of linear and nonlinear drift motion, Landau damping, and electron-ion collisions. Ion moment equations are derived from the electromagnetic gyrokinetic equation, and the gyrokinetic Poisson's Equation and Ampere's Law close the system. The model is benchmarked with linear gyrokinetic calculations, and good agreement is found for both the finite-β ion temperature gradient (ITG) and kinetic Alfvén ballooning (KBM) instabilities. Nonlinear simulations of ITG and KBM-driven turbulence are performed in toroidal flux tube geometry at a range of values of plasma β, and electromagnetic effects are found to significantly impact turbulent heat and particle transport. At low values of β, transport is reduced, as expected due to the finite-β stabilization of the ITG mode. However, as β approaches the Ideal-MHD stability threshold, transport can increase. In the presence of dissipation provided by a model of electron Landau damping and electron-ion collisions, this transport increase can be quite dramatic. Finally, the results of the simulations are compared to tokamak experiments, and encouraging agreement is found with measured density and temperature fluctuation spectra. Direct comparisons of transport fluxes reveal that electromagnetic effects are important at characteristic edge parameters, bringing predicted fluxes more closely in line with observations.
Hydrodynamic description of an unmagnetized plasma with multiple ion species. I. General formulation
Simakov, Andrei Nikolaevich; Molvig, Kim
2016-03-17
A generalization of the Braginskii ion fluid description [S. I. Braginskii, Sov. Phys. JETP 6, 358 (1958)] to the case of an unmagnetized collisional plasma with multiple ion species is presented. An asymptotic expansion in the ion Knudsen number is used to derive the individual ion species continuity, as well as the total ion mass density, momentum, and energy evolution equations accurate through the second order. Expressions for the individual ion species drift velocities with respect to the center of mass reference frame, as well as for the total ion heat flux and viscosity, which are required to close themore » fluid equations, are evaluated in terms of the first-order corrections to the lowest order Maxwellian ion velocity distribution functions. A variational formulation for evaluating such corrections and its relation to the plasma entropy are presented. Employing trial functions for the corrections, written in terms of expansions in generalized Laguerre polynomials, and maximizing the resulting functionals produces two systems of linear equations (for “vector” and “tensor” portions of the corrections) for the expansion coefficients. A general matrix formulation of the linear systems as well as expressions for the resulting transport fluxes are presented in forms convenient for numerical implementation. The general formulation is employed in the companion paper [A. N. Simakov and K. Molvig, Hydrodynamic description of an unmagnetized plasma with multiple ion species. II. Two and three ion species plasmas, submitted to Phys. Plasmas (2015)] to evaluate the individual ion drift velocities and the total ion heat flux and viscosity for specific cases of two and three ion species plasmas.« less
Systematic Evaluation of Low-Frequency Hiss and Energetic Electron Injections
Shi, Run; Li, Wen; Ma, Qianli; ...
2017-10-05
Here, the excitation of low-frequency (LF) plasmaspheric hiss, over the frequency range from 20 Hz to 100 Hz, is systematically investigated by comparing the hiss wave properties with electron injections at energies from tens of keV to several hundreds of keV. Both particle and wave data from the Van Allen Probes during the period from September 2012 to June 2016 are used in the present study. Our results demonstrate that the intensity of LF hiss has a clear day-night asymmetry, and increases with increasing geomagnetic activity, similar to the behavior of normal hiss (approximately hundred of hertz to several kilohertz).more » The occurrence rate of LF hiss in association with electron injections is up to 80% in the outer plasmasphere ( L > 4) on the dayside, and the strong correlation extends to lower L shells for more active times. In contrast, at lower L shells ( L < 3.5), LF hiss is seldom associated with electron injections. The LF hiss with Poynting flux directed away from the equator is dominant at higher magnetic latitudes and higher L shells, suggesting a local amplification of LF hiss in the outer plasmasphere. The averaged electron fluxes are larger at higher L shells, where significant LF hiss wave events are observed. Our study suggests the importance of electron injections and their drift trajectories toward the dayside plasmasphere in locally amplifying the LF hiss waves detected by the Van Allen Probes.« less
Systematic Evaluation of Low-Frequency Hiss and Energetic Electron Injections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Run; Li, Wen; Ma, Qianli
Here, the excitation of low-frequency (LF) plasmaspheric hiss, over the frequency range from 20 Hz to 100 Hz, is systematically investigated by comparing the hiss wave properties with electron injections at energies from tens of keV to several hundreds of keV. Both particle and wave data from the Van Allen Probes during the period from September 2012 to June 2016 are used in the present study. Our results demonstrate that the intensity of LF hiss has a clear day-night asymmetry, and increases with increasing geomagnetic activity, similar to the behavior of normal hiss (approximately hundred of hertz to several kilohertz).more » The occurrence rate of LF hiss in association with electron injections is up to 80% in the outer plasmasphere ( L > 4) on the dayside, and the strong correlation extends to lower L shells for more active times. In contrast, at lower L shells ( L < 3.5), LF hiss is seldom associated with electron injections. The LF hiss with Poynting flux directed away from the equator is dominant at higher magnetic latitudes and higher L shells, suggesting a local amplification of LF hiss in the outer plasmasphere. The averaged electron fluxes are larger at higher L shells, where significant LF hiss wave events are observed. Our study suggests the importance of electron injections and their drift trajectories toward the dayside plasmasphere in locally amplifying the LF hiss waves detected by the Van Allen Probes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josh Sugar, Dave Robinson
2014-01-24
Performs a cross-correlation calculation to align images. This is particularly useful for aligning frames of a movie so that an object of interest does not spatially drift. For in situ microscopy experiments. Movies are collected where an object changes with time. At the same time, the object usually drifts too. This shifts the movie frames so that the object is aligned from frame to frame. Then it is easy to see the object changes without the added complication of it moving too.
Drift-driven evolution of electric signals in a Neotropical knifefish.
Picq, Sophie; Alda, Fernando; Bermingham, Eldredge; Krahe, Rüdiger
2016-09-01
Communication signals are highly diverse traits. This diversity is usually assumed to be shaped by selective forces, whereas the null hypothesis of divergence through drift is often not considered. In Panama, the weakly electric fish Brachyhypopomus occidentalis is widely distributed in multiple independent drainage systems, which provide a natural evolutionary laboratory for the study of genetic and signal divergence in separate populations. We quantified geographic variation in the electric signals of 109 fish from five populations, and compared it to the neutral genetic variation estimated from cytochrome oxidase I (COI) sequences of the same individuals, to test whether drift may be driving divergence of their signals. Signal distances were highly correlated with genetic distances, even after controlling for geographic distances, suggesting that drift alone is sufficient to explain geographic variation in electric signals. Significant differences at smaller geographic scales (within drainages) showed, however, that electric signals may evolve at a faster rate than expected under drift, raising the possibility that additional adaptive forces may be contributing to their evolution. Overall, our data point to stochastic forces as main drivers of signal evolution in this species and extend the role of drift in the evolution of communication systems to fish and electrocommunication. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Mutumi, Gregory L; Jacobs, David S; Winker, Henning
2017-06-01
Natural selection and drift can act on populations individually, simultaneously or in tandem and our understanding of phenotypic divergence depends on our ability to recognize the contribution of each. According to the quantitative theory of evolution, if an organism has diversified through neutral evolutionary processes (mutation and drift), variation of phenotypic characteristics between different geographic localities ( B ) should be directly proportional to the variation within localities ( W ), that is, B ∝ W . Significant deviations from this null model imply that non-neutral forces such as natural selection are acting on a phenotype. We investigated the relative contributions of drift and selection to intraspecific diversity using southern African horseshoe bats as a test case. We characterized phenotypic diversity across the distributional range of Rhinolophus simulator ( n = 101) and Rhinolophus swinnyi ( n = 125) using several traits associated with flight and echolocation. Our results suggest that geographic variation in both species was predominantly caused by disruptive natural selection ( B was not directly proportional to W ). Evidence for correlated selection (co-selection) among traits further confirmed that our results were not compatible with drift. Selection rather than drift is likely the predominant evolutionary process shaping intraspecific variation in traits that strongly impact fitness.
Comparison of simplified models in the prediction of two phase flow in pipelines
NASA Astrophysics Data System (ADS)
Jerez-Carrizales, M.; Jaramillo, J. E.; Fuentes, D.
2014-06-01
Prediction of two phase flow in pipelines is a common task in engineering. It is a complex phenomenon and many models have been developed to find an approximate solution to the problem. Some old models, such as the Hagedorn & Brown (HB) model, have been highlighted by many authors to give very good performance. Furthermore, many modifications have been applied to this method to improve its predictions. In this work two simplified models which are based on empiricism (HB and Mukherjee and Brill, MB) are considered. One mechanistic model which is based on the physics of the phenomenon (AN) and it still needs some correlations called closure relations is also used. Moreover, a drift flux model defined in steady state that is flow pattern dependent (HK model) is implemented. The implementation of these methods was tested using published data in the scientific literature for vertical upward flows. Furthermore, a comparison of the predictive performance of the four models is done against a well from Campo Escuela Colorado. Difference among four models is smaller than difference with experimental data from the well in Campo Escuela Colorado.
Nonlinear cross-field coupling on the route to broadband turbulence
NASA Astrophysics Data System (ADS)
Brandt, Christian; Thakur, Saikat C.; Cui, Lang; Gosselin, Jordan J.; Negrete, Jose, Jr.; Holland, Chris; Tynan, George R.
2013-10-01
In the linear magnetized plasma device CSDX (Controlled Shear De-correlation eXperiment) drift interchange modes are studied coexisting on top of a weak turbulence driven azimuthally symmetric, radially sheared plasma flow. In helicon discharges (helicon antenna diameter 15 cm) with increasing magnetic field (B <= 0 . 24 T) the system can be driven to fully developed broadband turbulence. Fast imaging using a refractive telescope setup is applied to study the dynamics in the azimuthal-radial cross-section. The image data is supported by Langmuir probe measurements. In the present study we examine the development of nonlinear transfer as the fully developed turbulence emerges. Nonlinear cross-field coupling between eigenmodes at different radial positions is investigated using Fourier decomposition of azimuthal eigenmodes. The coupling strength between waves at different radial positions is inferred to radial profiles and cross-field transport between adjacent magnetic flux surfaces. Nonlinear effects like synchronization, phase slippages, phase pulling and periodic pulling are observed. The effects of mode coupling and the stability of modes is compared to the dynamics of a coupled chain of Kuramoto oscillators.
NASA Technical Reports Server (NTRS)
Coffey, Victoria; Sazykin, Stan; Chandler, Michael O.; Hairston, Marc; Minow, Joseph I.; Anderson, Brian J.
2017-01-01
The magnetic storm that commenced on June 22-23, 2015 was one of the largest storms in our current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the shock wave on the magnetosphere. Observations from several spacecraft observed the dynamic response of the magnetosphere and ionosphere. MMS observatories in the near earth tail These low altitude measurements are correlated in the magnetosphere with particle flux dropouts measured by MMS We follow the timing of this storm in the ionosphere with the density depletions throughout the ISS orbits, DMSP drift velocities, and enhanced AMPERE Birkland currents. Together these observations and simulation results will be assembled to provide each region's context to the global dynamics and time evolution of the storm. The models during these event support and flesh out the puzzle of the global dynamics.
Peters, Winfried S; van Bel, Aart J E; Knoblauch, Michael
2006-01-01
Forisomes are contractile protein bodies that appear to control flux rates in the phloem of faboid legumes by reversibly plugging the sieve tubes. Plugging is triggered by Ca(2+) which induces an anisotropic deformation of forisomes, consisting of a longitudinal contraction and a radial expansion. By conventional light microscopy and confocal laser-scanning microscopy, the three-dimensional geometry of the forisome-sieve element-sieve plate complex in intact sieve tubes of leaflets of Vicia faba L. was reconstructed. Forisomes were mostly located close to sieve plates, and occasionally were observed drifting unrestrainedly along the sieve element, suggesting that they might be utilized as internal markers of flow direction. The diameter of forisomes in the resting state correlated with the diameter of their sieve elements, supporting the idea that radial expansion of forisomes is the geometric basis of reversible sieve tube plugging. Comparison of the present results regarding forisome geometry in situ with previously published data on forisome reactivity in vitro makes it questionable, however, whether forisomes are capable of completely sealing sieve tubes in V. faba leaves.
Modeling dynamic behavior of superconducting maglev systems under external disturbances
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He
2017-08-01
For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.
Robust image alignment for cryogenic transmission electron microscopy.
McLeod, Robert A; Kowal, Julia; Ringler, Philippe; Stahlberg, Henning
2017-03-01
Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. Copyright © 2016 Elsevier Inc. All rights reserved.
On High and Low Starting Frequencies of Type II Radio Bursts
NASA Astrophysics Data System (ADS)
Sharma, J.; Mittal, N.
2017-06-01
We have studied the characteristics of type II radio burst during the period May 1996 to March 2015, for the solar cycle 23 and 24, observed by WIND/WAVES radio instrument. A total of 642 events were recorded by the instrument during the study period. We have divided the events with two starting frequency range (high > 1 MHz; low ≤ 1MHz) as type II1 (i.e., 1-16 MHz) radio burst and type II2 (i.e., 20 KHz - 1020 KHz) radio burst which constitute the DH and km type II radio burst observed by WIND spacecraft, and determined their time and frequency characteristics. The mean drift rate of type II1 and type II2 radio bursts is 29.76 × 10-4 MHz/s and 0.17 × 10-4 MHz/s respectively, which shows that type II1 with high start frequency hase larger drift rate than the type II2 with low starting frequencies. We have also reported that the start frequency and the drift rate of type II1 are in good correlation, with a linear correlation coefficient of 0.58.
OBSERVATIONAL DETECTION OF DRIFT VELOCITY BETWEEN IONIZED AND NEUTRAL SPECIES IN SOLAR PROMINENCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khomenko, Elena; Collados, Manuel; Díaz, Antonio J., E-mail: khomenko@iac.es, E-mail: mcv@iac.es, E-mail: aj.diaz@uib.es
2016-06-01
We report the detection of differences in the ion and neutral velocities in prominences using high-resolution spectral data obtained in 2012 September at the German Vacuum Tower Telescope (Observatorio del Teide, Tenerife). A time series of scans of a small portion of a solar prominence was obtained simultaneously with high cadence using the lines of two elements with different ionization states, namely, Ca ii 8542 Å and He i 10830 Å. The displacements, widths, and amplitudes of both lines were carefully compared to extract dynamical information about the plasma. Many dynamical features are detected, such as counterstreaming flows, jets, andmore » propagating waves. In all of the cases, we find a very strong correlation between the parameters extracted from the lines of both elements, confirming that both lines trace the same plasma. Nevertheless, we also find short-lived transients where this correlation is lost. These transients are associated with ion-neutral drift velocities of the order of several hundred m s{sup −1}. The patches of non-zero drift velocity show coherence in time–distance diagrams.« less
NASA Astrophysics Data System (ADS)
Wong, S. K.; Chan, V. S.; Hinton, F. L.
2001-10-01
The classic solution of the linearized drift kinetic equations in neoclassical transport theory for large-aspect-ratio tokamak flux-surfaces relies on the variational principle and the choice of ``localized" distribution functions as trialfunctions.(M.N. Rosenbluth, et al., Phys. Fluids 15) (1972) 116. Somewhat unclear in this approach are the nature and the origin of the ``localization" and whether the results obtained represent the exact leading terms in an asymptotic expansion int he inverse aspect ratio. Using the method of matched asymptotic expansions, we were able to derive the leading approximations to the distribution functions and demonstrated the asymptotic exactness of the existing results. The method is also applied to the calculation of angular momentum transport(M.N. Rosenbluth, et al., Plasma Phys. and Contr. Nucl. Fusion Research, 1970, Vol. 1 (IAEA, Vienna, 1971) p. 495.) and the current driven by electron cyclotron waves.
Wave-driven butterfly distribution of Van Allen belt relativistic electrons.
Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D N; Spence, H E; Funsten, H O; Blake, J B
2015-10-05
Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day-night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.
Transport and discrete particle noise in gyrokinetic simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Lee, W. W.
2006-10-01
We present results from our recent investigations regarding the effects of discrete particle noise on the long-time behavior and transport properties of gyrokinetic particle-in-cell simulations. It is found that the amplitude of nonlinearly saturated drift waves is unaffected by discreteness-induced noise in plasmas whose behavior is dominated by a single mode in the saturated state. We further show that the scaling of this noise amplitude with particle count is correctly predicted by the fluctuation-dissipation theorem, even though the drift waves have driven the plasma from thermal equilibrium. As well, we find that the long-term behavior of the saturated system is unaffected by discreteness-induced noise even when multiple modes are included. Additional work utilizing a code with both total-f and δf capabilities is also presented, as part of our efforts to better understand the long- time balance between entropy production, collisional dissipation, and particle/heat flux in gyrokinetic plasmas.
A model of impulsive acceleration and transport of energetic particles in Mercury's magnetosphere
NASA Technical Reports Server (NTRS)
Baker, D. N.; Simpson, J. A.; Eraker, J. H.
1986-01-01
A qualitative model of substorm processes in the Mercury magnetosphere is presented based on Mariner 10 observations obtained in 1974-1975. The model is predicated on close analogies observed with the terrestrial case. Particular emphasis is given to energetic particle phenomena as observed by Mariner on March 29, 1974. The suggestion is supported that energetic particles up to about 500 keV are produced by strong induced electric fields at 3 to about 6 Mercury radii in the Hermean tail in association with substorm neutral line formation. The bursts of energetic particles produced are, in this model, subsequently confined on closed field lines near Mercury and drift adiabatically on quasi-trapped orbits for many tens of seconds. Such gradient and curvature drift of the particles can explain prominent periodicities of 5-10 s seen in the Mariner for greater than 170-keV electron flux profiles.
Experimental and Numerical Study of Drift Alfv'en Waves in LAPD
NASA Astrophysics Data System (ADS)
Friedman, Brett; Popovich, P.; Carter, T. A.; Auerbach, D.; Schaffner, D.
2009-11-01
We present a study of drift Alfv'en waves in linear geometry using experiments in the Large Plasma Device (LAPD) at UCLA and simulations from the Boundary Turbulence code (BOUT). BOUT solves the 3D time evolution of plasma parameters and turbulence using Braginskii fluid equations. First, we present a verification study of linear drift Alfven wave physics in BOUT, which has been modified to simulate the cylindrical geometry of LAPD. Second, we present measurements of density and magnetic field fluctuations in the LAPD plasma and the correlation of these fluctuations as a function of plasma parameters, including strength of the background field and discharge current. We also compare the measurements to nonlinear BOUT calculations using experimental LAPD profiles.
Gaze holding deficits discriminate early from late onset cerebellar degeneration.
Tarnutzer, Alexander A; Weber, K P; Schuknecht, B; Straumann, D; Marti, S; Bertolini, G
2015-08-01
The vestibulo-cerebellum calibrates the output of the inherently leaky brainstem neural velocity-to-position integrator to provide stable gaze holding. In healthy humans small-amplitude centrifugal nystagmus is present at extreme gaze-angles, with a non-linear relationship between eye-drift velocity and eye eccentricity. In cerebellar degeneration this calibration is impaired, resulting in pathological gaze-evoked nystagmus (GEN). For cerebellar dysfunction, increased eye drift may be present at any gaze angle (reflecting pure scaling of eye drift found in controls) or restricted to far-lateral gaze (reflecting changes in shape of the non-linear relationship) and resulting eyed-drift patterns could be related to specific disorders. We recorded horizontal eye positions in 21 patients with cerebellar neurodegeneration (gaze-angle = ±40°) and clinically confirmed GEN. Eye-drift velocity, linearity and symmetry of drift were determined. MR-images were assessed for cerebellar atrophy. In our patients, the relation between eye-drift velocity and gaze eccentricity was non-linear, yielding (compared to controls) significant GEN at gaze-eccentricities ≥20°. Pure scaling was most frequently observed (n = 10/18), followed by pure shape-changing (n = 4/18) and a mixed pattern (n = 4/18). Pure shape-changing patients were significantly (p = 0.001) younger at disease-onset compared to pure scaling patients. Atrophy centered around the superior/dorsal vermis, flocculus/paraflocculus and dentate nucleus and did not correlate with the specific drift behaviors observed. Eye drift in cerebellar degeneration varies in magnitude; however, it retains its non-linear properties. With different drift patterns being linked to age at disease-onset, we propose that the gaze-holding pattern (scaling vs. shape-changing) may discriminate early- from late-onset cerebellar degeneration. Whether this allows a distinction among specific cerebellar disorders remains to be determined.
X-ray observations of the burst source MXB 1728 - 34
NASA Technical Reports Server (NTRS)
Basinska, E. M.; Lewin, W. H. G.; Sztajno, M.; Cominsky, L. R.; Marshall, F. J.
1984-01-01
Where sufficient information has been obtained, attention is given to the maximum burst flux, integrated burst flux, spectral hardness, rise time, etc., of 96 X-ray bursts observed from March 1976 to March 1979. The integrated burst flux and the burst frequency appear to be correlated; the longer the burst interval, the larger the integrated burst flux, as expected on the basis of simple thermonuclear flash models. The maximum burst flux and the integrated burst flux are strongly correlated; for low flux levels their dependence is approximately linear, while for increasing values of the integrated burst flux, the flux at burst maximum saturates and reaches a plateau.
Eddy Correlation Flux Measurement System (ECOR) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, DR
2011-01-31
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.
1985-07-01
Datatape Division 4-1 5.0 REFERENCES Acuna, M.H. et. al., The MAGSAT Vector Magnetometer - A Precision Fluxgate Magnetometer for the Measurement of the...charting would consist of a triaxial, mutually orthogonal fluxgate magnetometer and an absolute scalar magnetometer to check the flux- gates drift...While space-ready, triaxial fluxgate magnetometers are not an off-the-shelf item, their design concepts are well understood. Their resolution of less
Definition phase study of the grand tour missions
NASA Technical Reports Server (NTRS)
Simpson, J. A.; Meyer, P.
1972-01-01
The research to define an energetic particle experiment for the OPTGT-MJS missions is reported. The studies reported include: (1) the use of silicon dectectors for low energy, low flux level measurements in the presence of RTG radiation and trapped electrons, (2) high energy proton damage of lithium-drifted and surface barrier silicon detectors, (3) the gas Cerenkov counter, (4) systems for detection of trapped high-energy protons in the presence of trapped electrons, and (5) reliability and redundancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khokhlov, M.Z.
1975-01-01
The position of regions where electron fluxes were recorded in November 1970 is analyzed from the data of satellite-borne charged particle analyzers. These regions are located at invariant latitudes ..lambda.. > 65/sup 0/ under geomagnetically quiet conditions and separate into low- and high-latitude zones. The electric drift speed in the high-latitude zone is estimated. 37 references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forme, F.R.E.; Fontaine, D.; Wahlund, J.E.
UHF and VHF data for the EISCAT incoherent scatter radar facility in northern Scandinavia is presented. Electron and ion temperatures, electron density, and ion drift velocity were measured from heights of 280 to 1500 km. Enhanced ion acoustic fluctuations are more observable with VHF than UHF radar due to wavelength effects. The fluctuations are usually associated with a large flux of precipitating electrons with energies from 100 ev to 10 kev. The spatial extent of the turbulent regions are determined. 23 refs., 6 figs.
A morphological study of vertical ionospheric flows in the high-latitude F region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loranc, M.; St.-Maurice, J.P.; Hanson, W.B.
1991-03-01
The authors have studied the vertical bulk ion drift data recorded by the DE 2 satellite between 200 and 1,000 km altitudes. For this data set, they have found that field-aligned ion flows between 100 m s{sup {minus}1} and 3 km s{sup {minus}1} are a common occurence in the high-latitude F region. The flows are predominantly upward near the cusp region and throughout the auroral zone. Strong downward flows of somewhat smaller magnitude are also recorded but mostly over the polar cap. These statements are true for all drift speeds in excess of 50 m s{sup {minus}1} and for allmore » altitudes and magnetic activity levels sampled. The morphology of low-altitude upward flowing ions agrees well with the morphology of outflowing ions, ion beams, and ion conics observed at much higher altitudes, but the low-altitude fluxes are often considerably greater. This suggests that a large fraction of the upflowing ions actually returns to the ionosphere, to be observed as large downward ion fluxes. They propose that upflowing ion events are generated by sudden large changes in the ion temperature below the neutral exobase, where ion frictional heating dominates the ion energy balance. The sudden changes in temperature occur when the horizontal velocity of a convecting field tube increases rapidly in regions like the cusp.« less
Measurements of dynamo effect on double-CHI pulse ST plasmas on HIST
NASA Astrophysics Data System (ADS)
Ito, K.; Hanao, T.; Ishihara, M.; Matsumoto, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2011-10-01
Coaxial Helicity injection (CHI) is an efficient current-drive method used in spheromak and spherical torus (ST) experiments. An anticipated issue for CHI is achieving good energy confinement, since it relies on the magnetic relaxation and dynamo. This is essentially because CHI cannot drive a dynamo directly inside a closed magnetic flux surface. Thus, it is an important issue to investigate dynamo effect to explore CHI current drive mechanisms in a new approach such as Multi-pulsing CHI method. To study the dynamo model with two-fluid Hall effects, we have started from the generalized Ohm law. We have measured each MHD dynamo term and Hall dynamo term separately by using Mach probe and Hall probe involving 3-axis magnetic pick-up coils. The result shows that the induced electric field due to MHD dynamo is large enough to sustain the mean toroidal current against resistive decay in the core region. In the other hand, the anti-dynamo effect in the MHD dynamo term is observed in the central open flux column (OFC) region. From the viewpoint of two-fluid theory, ion diamagnetic drift is opposite to the electron diamagnetic drift, maybe resulting in the anti-dynamo effect. Hall dynamo may arise from the fluctuating electron diamagnetic current due to high electron density gradient which is large in the OFC region.
Effect of NOAA satellite orbital drift on AVHRR-derived phenological metrics
Ji, Lei; Brown, Jesslyn
2017-01-01
The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center routinely produces and distributes a remote sensing phenology (RSP) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR) 1-km data compiled from a series of National Oceanic and Atmospheric Administration (NOAA) satellites (NOAA-11, −14, −16, −17, −18, and −19). Each NOAA satellite experienced orbital drift during its duty period, which influenced the AVHRR reflectance measurements. To understand the effect of the orbital drift on the AVHRR-derived RSP dataset, we analyzed the impact of solar zenith angle (SZA) on the RSP metrics in the conterminous United States (CONUS). The AVHRR weekly composites were used to calculate the growing-season median SZA at the pixel level for each year from 1989 to 2014. The results showed that the SZA increased towards the end of each NOAA satellite mission with the highest increasing rate occurring during NOAA-11 (1989–1994) and NOAA-14 (1995–2000) missions. The growing-season median SZA values (44°–60°) in 1992, 1993, 1994, 1999, and 2000 were substantially higher than those in other years (28°–40°). The high SZA in those years caused negative trends in the SZA time series, that were statistically significant (at α = 0.05 level) in 76.9% of the CONUS area. A pixel-based temporal correlation analysis showed that the phenological metrics and SZA were significantly correlated (at α = 0.05 level) in 4.1–20.4% of the CONUS area. After excluding the 5 years with high SZA (>40°) from the analysis, the temporal SZA trend was largely reduced, significantly affecting less than 2% of the study area. Additionally, significant correlation between the phenological metrics and SZA was observed in less than 7% of the study area. Our study concluded that the NOAA satellite orbital drift increased SZA, and in turn, influenced the phenological metrics. Elimination of the years with high median SZA reduced the influence of orbital drift on the RSP time series.
Capturing the Petermann Ice Island Flux With the CI2D3 Database
NASA Astrophysics Data System (ADS)
Crawford, A. J.; Crocker, G.; Mueller, D.; Saper, R.; Desjardins, L.; Carrieres, T.
2017-12-01
The Petermann Glacier ice tongue lost >460 km2 of areal extent ( 38 Gt of mass) due to three large calving events in 2008, 2010 and 2012, as well as three previously unrecorded events in 2011 and 2012. Hundreds of ice islands subsequently drifted south between Hall Basin and Newfoundland's Grand Banks, but no systematic data collection or analysis has been conducted for the full flux of fragments prior to the present study. To accomplish this, the Canadian Ice Service's extensive RADARSAT-1 and -2 synthetic aperture radar image archive was mined to create the Canadian Ice Island Drift, Deterioration and Detection (CI2D3) Database. Over 15000 fragments have been digitized in GIS software from 3200 SAR scenes. A unique characteristic of the database is the inclusion of the lineage (i.e., connecting repeat observations or mother-daughter fragments) for all tracked fragments with areas >0.25 km2. This genealogical information was used to isolate ice islands that were about to fracture in order to assess the environmental conditions and morphological characteristics that influence this deterioration mechanism. Fracture counts showed a significant relationship with sea ice concentration (r = -0.56). However, variations in relative thickness played a large role in fracturing likelihood regardless of sea ice conditions. The exceedance probability of the daughter fragment length was calculated, as is often conducted for offshore industry hazard assessment. Grounded ice islands, which are hazards to seafloor installations and disturb benthic ecology, were recognized from their negligible drift speeds and two grounding hot-spots were identified along the Coburg and eastern Baffin island coasts. Petermann ice islands have been noted to drift along specific isobaths due to the influence of bathymetry on ocean currents. 50% of observations occurred between the 100 and 300 m isobaths, and smaller ice islands were observed more frequently in deeper regions. The CI2D3 Database can be utilized for the development of operational models and remote sensing tools for ice island detection, as well as assessing the distribution of Greenland Ice Sheet freshwater. The database will contribute to the study of these large, tabular icebergs that are anticipated to continue calving in both Polar Regions, including at the Petermann Glacier.
NASA Astrophysics Data System (ADS)
Naaim, Florence; Picard, Ghislain; Bellot, Hervé; Arnaud, Laurent; Vionnet, Vincent
2017-04-01
Some elements of snow surface roughness, such as ripple or sastrugi, are a direct manifestation of wind erosion and in turn modify the near-surface wind field and consequently the horizontal snow mass fluxes. This leads to a negative feedback between wind strength and surface roughness that must be taken into account in numerical models. Formation of sastrugi, which are elongated metric-scale ridges of wind-packed snow whose longitudinal axis is parallel to the prevailing wind at the time of their formation, is still not well-understood. The first step to provide new information about the formation and evolution of such features is to integrate meteorological data and accurate description of geometrical properties. But the complex and dynamic surface of sastrugi cannot be easily captured by manual measurements (Bellot et al., 2014), which furthermore must be frequent as the formation of new landforms can happen very quickly. That's why the potential of a low-cost time-lapse terrestrial laserscan RLS (Picard et al., 2016) has been investigated during the winter seasons 2015-2016 and 2016-2017 at Col du Lac Blanc in the French Alps. This experimental test site, dedicated to drifting snow studies, and subject to the formation of sastrugi is well-suited for such study : accurate meteorological data, including drifting snow fluxes, are available each 10 minutes. RLS covered a surface area of around 200 m2 for a spatial horizontal resolution of nearly 2 cm and monitored successfully surface roughness once a day during the whole winter seasons. Sastrugi geometrical parameters, such as the frontal area and average height of roughness elements has been extracted from the RLS data and the sastrugi morphometry has be examined over two winter seasons in link with snow fall, drifting snow occurence and intensity and wind speed.
Pressure balance inconsistency exhibited in a statistical model of magnetospheric plasma
NASA Astrophysics Data System (ADS)
Garner, T. W.; Wolf, R. A.; Spiro, R. W.; Thomsen, M. F.; Korth, H.
2003-08-01
While quantitative theories of plasma flow from the magnetotail to the inner magnetosphere typically assume adiabatic convection, it has long been understood that these convection models tend to overestimate the plasma pressure in the inner magnetosphere. This phenomenon is called the pressure crisis or the pressure balance inconsistency. In order to analyze it in a new and more detailed manner we utilize an empirical model of the proton and electron distribution functions in the near-Earth plasma sheet (-50 RE < X < -10 RE), which uses the [1989] magnetic field model and a plasma sheet representation based upon several previously published statistical studies. We compare our results to a statistically derived particle distribution function at geosynchronous orbit. In this analysis the particle distribution function is characterized by the isotropic energy invariant λ = EV2/3, where E is the particle's kinetic energy and V is the magnetic flux tube volume. The energy invariant is conserved in guiding center drift under the assumption of strong, elastic pitch angle scattering. If, in addition, loss is negligible, the phase space density f(λ) is also conserved along the same path. The statistical model indicates that f(λ, ?) is approximately independent of X for X ≤ -35 RE but decreases with increasing X for X ≥ -35 RE. The tailward gradient of f(λ, ?) might be attributed to gradient/curvature drift for large isotropic energy invariants but not for small invariants. The tailward gradient of the distribution function indicates a violation of the adiabatic drift condition in the plasma sheet. It also confirms the existence of a "number crisis" in addition to the pressure crisis. In addition, plasma sheet pressure gradients, when crossed with the gradient of flux tube volume computed from the [1989] magnetic field model, indicate Region 1 currents on the dawn and dusk sides of the outer plasma sheet.
Tests of a robust eddy correlation system for sensible heat flux
NASA Astrophysics Data System (ADS)
Blanford, J. H.; Gay, L. W.
1992-03-01
Sensible heat flux estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. Flux totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible heat flux measurements can be combined with net radiation and soil heat flux measurements to estimate latent heat as a residual in the surface energy balance.
A temperature characteristic research and compensation design for micro-machined gyroscope
NASA Astrophysics Data System (ADS)
Fu, Qiang; di, Xin-Peng; Chen, Wei-Ping; Yin, Liang; Liu, Xiao-Wei
2017-02-01
The all temperature range stability is the most important technology of MEMS angular velocity sensor according to the principle of capacity detecting. The correlation between driven force and zero-point of sensor is summarized according to the temperature characteristic of the air-damping and resonant frequency of sensor header. A constant trans-conductance high-linearity amplifier is designed to realize the low phase-drift and low amplitude-drift interface circuit at all-temperature range. The chip is fabricated in a standard 0.5 μm CMOS process. Compensation achieved by driven force to zero-point drift caused by the stiffness of physical construction and air-damping is adopted. Moreover, the driven force can be obtained from the drive-circuit to avoid the complex sampling. The test result shows that the zero-point drift is lower than 30∘/h (1-sigma) at the temperature range from -40∘C to 60∘C after three-order compensation made by driven force.
Second order kinetic theory of parallel momentum transport in collisionless drift wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang, E-mail: lyang13@mails.tsinghua.edu.cn; Southwestern Institute of Physics, Chengdu 610041; Gao, Zhe
A second order kinetic model for turbulent ion parallel momentum transport is presented. A new nonresonant second order parallel momentum flux term is calculated. The resonant component of the ion parallel electrostatic force is the momentum source, while the nonresonant component of the ion parallel electrostatic force compensates for that of the nonresonant second order parallel momentum flux. The resonant component of the kinetic momentum flux can be divided into three parts, including the pinch term, the diffusive term, and the residual stress. By reassembling the pinch term and the residual stress, the residual stress can be considered as amore » pinch term of parallel wave-particle resonant velocity, and, therefore, may be called as “resonant velocity pinch” term. Considering the resonant component of the ion parallel electrostatic force is the transfer rate between resonant ions and waves (or, equivalently, nonresonant ions), a conservation equation of the parallel momentum of resonant ions and waves is obtained.« less
Flux-driven algebraic damping of m = 1 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas
2015-11-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produce a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. As electrons are swept around the ``cat's eye'' orbits of resonant wave-particle interaction, they form a dipole (m = 1) density distribution, and the electric field from this distribution produces an E × B drift of the core back to the axis, i.e. damps the m = 1 mode. Supported by National Science Foundation Grant PHY-1414570.
Air-ice CO2 fluxes and pCO2 dynamics in the Arctic coastal area (Amundsen Gulf, Canada)
NASA Astrophysics Data System (ADS)
Geilfus, Nicolas-Xavier; Tison, Jean Louis; Carnat, Gauthier; Else, Brent; Borges, Alberto V.; Thomas, Helmuth; Shadwick, Elizabeth; Delille, Bruno
2010-05-01
Sea ice covers about 7% of the Earth surface at its maximum seasonal extent. For decades sea ice was assumed to be an impermeable and inert barrier for air - sea exchange of CO2 so that global climate models do not include CO2 exchange between the oceans and the atmosphere in the polar regions. However, uptake of atmospheric CO2 by sea ice cover was recently reported raising the need to further investigate pCO2 dynamics in the marine cryosphere realm and related air-ice CO2 fluxes. In addition, budget of CO2 fluxes are poorly constrained in high latitudes continental shelves [Borges et al., 2006]. We report measurements of air-ice CO2 fluxes above the Canadian continental shelf and compare them to previous measurements carried out in Antarctica. We carried out measurements of pCO2 within brines and bulk ice, and related air-ice CO2 fluxes (chamber method) in Antarctic first year pack ice ("Sea Ice Mass Balance in Antarctica -SIMBA" drifting station experiment September - October 2007) and in Arctic first year land fast ice ("Circumpolar Flaw Lead" - CFL, April - June 2008). These 2 experiments were carried out in contrasted sites. SIMBA was carried out on sea ice in early spring while CFL was carried out in from the middle of the winter to the late spring while sea ice was melting. Both in Arctic and Antarctic, no air-ice CO2 fluxes were detected when sea ice interface was below -10°C. Slightly above -10°C, fluxes toward the atmosphere were observed. In contrast, at -7°C fluxes from the atmosphere to the ice were significant. The pCO2 of the brine exhibits a same trend in both hemispheres with a strong decrease of the pCO2 anti-correlated with the increase of sea ice temperature. The pCO2 shifted from a large over-saturation at low temperature to a marked under-saturation at high temperature. These air-ice CO2 fluxes are partly controlled by the permeability of the air-ice interface, which depends of the temperature of this one. Moreover, air-ice CO2 fluxes are driven by the air-ice pCO2 gradient. Hence, while the temperature is a leading factor in controlling magnitude of air-ice CO2 fluxes, pCO2 of the ice controls both magnitude and direction of fluxes. However, pCO2 in Arctic is significantly higher than in Antarctica. This difference could be due to a higher level of organic matter in Arctic. The degradation of this organic matter fuel CO2 efflux from the ice to the atmosphere in early spring. We observed evidence of CaCO3 precipitation, but only at the top of the ice. Implications in term of air-ice CO2 transfer of such CaCO3 precipitation will be discussed. In addition, salt-rich snow appears to strongly affect air-ice CO2 fluxes in the arctic. Borges, A. V., et al. (2006), Carbon dioxide in European coastal waters, Estuar. Coast. Shelf Sci., 70(3), 375-387.
Late Wisconsin and early holocene glacial history, inner Ross Embayment, Antarctica
NASA Technical Reports Server (NTRS)
Denton, George H.; Bockheim, James G.; Wilson, Scott C.; Stuiver, Minze
1991-01-01
Lateral drift sheets of outlet glaciers that pass through the Transantarctic Mountains constrain past changes of the huge Ross ice drainage system of the Antarctic Ice Sheet. Drift stratigraphy suggests correlation of Reedy III (Reedy Glacier), Beardmore, Britannia (Hatherton/Darwin Glaciers), Ross Sea (McMurdo Sound), and younger (Terra Nova Bay) drifts; radiocarbon dates place the outer limits of Ross Sea drift in late Wisconsin time at 24,000 to 13,000 yr B.P. Outlet glacier profiles from these drifts constrain late Wisconsin ice sheet surface elevations. Within these constraint, two extreme late Wisconsin reconstructions are given of the Ross ice drainage system. Both show little elevation change of the polar plateau coincident with extensive ice shelf grounding along the inner Ross Embayment. However, in the central Ross Embayment, one reconstruction shows floating shelf ice, where as the other shows a grounded ice sheet. Massive late Wisconsin/Holocene recession of grounded ice from the western Ross Embayment, which was underway at 13,040 yr B.P. and completed by 6600 to 6020 yr B.P., was accompanied by little change in plateau ice levels inland of the Transantarctic Mountains.
Motor Variability Arises from a Slow Random Walk in Neural State
Chaisanguanthum, Kris S.; Shen, Helen H.
2014-01-01
Even well practiced movements cannot be repeated without variability. This variability is thought to reflect “noise” in movement preparation or execution. However, we show that, for both professional baseball pitchers and macaque monkeys making reaching movements, motor variability can be decomposed into two statistical components, a slowly drifting mean and fast trial-by-trial fluctuations about the mean. The preparatory activity of dorsal premotor cortex/primary motor cortex neurons in monkey exhibits similar statistics. Although the neural and behavioral drifts appear to be correlated, neural activity does not account for trial-by-trial fluctuations in movement, which must arise elsewhere, likely downstream. The statistics of this drift are well modeled by a double-exponential autocorrelation function, with time constants similar across the neural and behavioral drifts in two monkeys, as well as the drifts observed in baseball pitching. These time constants can be explained by an error-corrective learning processes and agree with learning rates measured directly in previous experiments. Together, these results suggest that the central contributions to movement variability are not simply trial-by-trial fluctuations but are rather the result of longer-timescale processes that may arise from motor learning. PMID:25186752
The effect of clouds on the earth's radiation budget
NASA Technical Reports Server (NTRS)
Ziskin, Daniel; Strobel, Darrell F.
1991-01-01
The radiative fluxes from the Earth Radiation Budget Experiment (ERBE) and the cloud properties from the International Satellite Cloud Climatology Project (ISCCP) over Indonesia for the months of June and July of 1985 and 1986 were analyzed to determine the cloud sensitivity coefficients. The method involved a linear least squares regression between co-incident flux and cloud coverage measurements. The calculated slope is identified as the cloud sensitivity. It was found that the correlations between the total cloud fraction and radiation parameters were modest. However, correlations between cloud fraction and IR flux were improved by separating clouds by height. Likewise, correlations between the visible flux and cloud fractions were improved by distinguishing clouds based on optical depth. Calculating correlations between the net fluxes and either height or optical depth segregated cloud fractions were somewhat improved. When clouds were classified in terms of their height and optical depth, correlations among all the radiation components were improved. Mean cloud sensitivities based on the regression of radiative fluxes against height and optical depth separated cloud types are presented. Results are compared to a one-dimensional radiation model with a simple cloud parameterization scheme.
Correlated flux densities from VLBI observations with the DSN
NASA Technical Reports Server (NTRS)
Coker, R. F.
1992-01-01
Correlated flux densities of extragalactic radio sources in the very long baseline interferometry (VLBI) astrometric catalog are required for the VLBI tracking of Galileo, Mars Observer, and future missions. A system to produce correlated and total flux density catalogs was developed to meet these requirements. A correlated flux density catalog of 274 sources, accurate to about 20 percent, was derived from more than 5000 DSN VLBI observations at 2.3 GHz (S-band) and 8.4 GHz (X-band) using 43 VLBI radio reference frame experiments during the period 1989-1992. Various consistency checks were carried out to ensure the accuracy of the correlated flux densities. All observations were made on the California-Spain and California-Australia DSN baselines using the Mark 3 wideband data acquisition system. A total flux density catalog, accurate to about 20 percent, with data on 150 sources, was also created. Together, these catalogs can be used to predict source strengths to assist in the scheduling of VLBI tracking passes. In addition, for those sources with sufficient observations, a rough estimate of source structure parameters can be made.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Chen, Changsheng; Beardsley, Robert C.; Gao, Guoping; Qi, Jianhua; Lin, Huichan
2016-11-01
A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the sea ice in the Arctic over the period 1978-2014. The spatial-varying horizontal model resolution was designed to better resolve both topographic and baroclinic dynamics scales over the Arctic slope and narrow straits. The model-simulated sea ice was in good agreement with available observed sea ice extent, concentration, drift velocity and thickness, not only in seasonal and interannual variability but also in spatial distribution. Compared with six other Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME, and UW), the AO-FVCOM-simulated ice thickness showed a higher mean correlation coefficient of ˜0.63 and a smaller residual with observations. Model-produced ice drift speed and direction errors varied with wind speed: the speed and direction errors increased and decreased as the wind speed increased, respectively. Efforts were made to examine the influences of parameterizations of air-ice external and ice-water interfacial stresses on the model-produced bias. The ice drift direction was more sensitive to air-ice drag coefficients and turning angles than the ice drift speed. Increasing or decreasing either 10% in water-ice drag coefficient or 10° in water-ice turning angle did not show a significant influence on the ice drift velocity simulation results although the sea ice drift speed was more sensitive to these two parameters than the sea ice drift direction. Using the COARE 4.0-derived parameterization of air-water drag coefficient for wind stress did not significantly influence the ice drift velocity simulation.
NASA Astrophysics Data System (ADS)
Cisternas-Novoa, C.; Le Moigne, F. A. C.; Roa, J.; Wagner, H.; Engel, A.
2016-02-01
The downward flux of organic matter (OM) from the euphotic zone is critical to understand the biogeochemistry cycles in the ocean. Local changes in stratification, nutrient inputs, community structure and oxygen concentrations potentially affect the magnitude of OM flux. The Baltic Sea is a unique environment with strong natural gradients of primary productivity, nutrients and O2 concentrations. The genuine effect of oxygen minimum deficiency on the fate of sinking OM and the efficiency of the biologic carbon pump has yet to be clarified. Previous work suggested that under oxygen deficiency, nitrogen rich amino acids are preferentially utilized causing nitrogen loss from the water column (van Mooy et al., 2002, Kalvelage et al 2013). Here, we investigate how different oxygen conditions and surface productivity affect sinking particles flux and particles composition in the central Baltic Sea. Sinking OM was collected in June 2015 using surface-tethered free-drifting traps in the Gotland and Landsort deeps. Sinking particles were collected for a period of 48 and 24 hours at four depths from below the mixed layer and down to hypoxic deep waters (40, 60, 110 and 180 m). Fluxes of POC, PON, POP and amino acids were estimated. We will discuss the effect of low oxygen levels on the biological carbon pump associated with fluxes of OM and sinking particles.
NASA Astrophysics Data System (ADS)
Payne, D.; Argall, M. R.; Dors, I.; Ergun, R.; Farrugia, C. J.; Giles, B. L.; Russell, C.; Torbert, R. B.; Vaith, H.; Magnes, W.
2016-12-01
The electron drift instrument (EDI) on the Magnetospheric Multiscale (MMS) mission detects 0 and 180 degree pitch angle electrons on millisecond timescales. Using this data, we observe rapid variation of these electron fluxes in regions close to the magnetopause boundary. These variations in flux provide key insights into the dynamic field line configurations that arise from reconnection. These variations in the field detected by the spacecraft may be indicative of rapid reconnection or oscillations in the position of the boundary itself. By investigating these fluctuations near the magnetopause, we may be able to discover which of these processes, if any, are occurring. The results of this investigation may provide further insight into the process of reconnection and its effect on magnetic field topologies in the magnetosphere.
Divertor heat flux simulations in ELMy H-mode discharges of EAST
NASA Astrophysics Data System (ADS)
Xia, T. Y.; Xu, X. Q.; Wu, Y. B.; Huang, Y. Q.; Wang, L.; Zheng, Z.; Liu, J. B.; Zang, Q.; Li, Y. Y.; Zhao, D.; EAST Team
2017-11-01
This paper presents heat flux simulations for the ELMy H-mode on the Experimental Advanced Superconducting Tokamak (EAST) using a six-field two-fluid model in BOUT++. Three EAST ELMy H-mode discharges with different plasma currents I p and geometries are studied. The trend of the scrape-off layer width λq with I p is reproduced by the simulation. The simulated width is only half of that derived from the EAST scaling law, but agrees well with the international multi-machine scaling law. Note that there is no radio-frequency (RF) heating scheme in the simulations, and RF heating can change the boundary topology and increase the flux expansion. Anomalous electron transport is found to contribute to the divertor heat fluxes. A coherent mode is found in the edge region in simulations. The frequency and poloidal wave number kθ are in the range of the edge coherent mode in EAST. The magnetic fluctuations of the mode are smaller than the electric field fluctuations. Statistical analysis of the type of turbulence shows that the turbulence transport type (blobby or turbulent) does not influence the heat flux width scaling. The two-point model differs from the simulation results but the drift-based model shows good agreement with simulations.
Use of a Terrestrial LIDAR Sensor for Drift Detection in Vineyard Spraying
Gil, Emilio; Llorens, Jordi; Llop, Jordi; Fàbregas, Xavier; Gallart, Montserrat
2013-01-01
The use of a scanning Light Detection and Ranging (LIDAR) system to characterize drift during pesticide application is described. The LIDAR system is compared with an ad hoc test bench used to quantify the amount of spray liquid moving beyond the canopy. Two sprayers were used during the field test; a conventional mist blower at two air flow rates (27,507 and 34,959 m3·h−1) equipped with two different nozzle types (conventional and air injection) and a multi row sprayer with individually oriented air outlets. A simple model based on a linear function was used to predict spray deposit using LIDAR measurements and to compare with the deposits measured over the test bench. Results showed differences in the effectiveness of the LIDAR sensor depending on the sprayed droplet size (nozzle type) and air intensity. For conventional mist blower and low air flow rate; the sensor detects a greater number of drift drops obtaining a better correlation (r = 0.91; p < 0.01) than for the case of coarse droplets or high air flow rate. In the case of the multi row sprayer; drift deposition in the test bench was very poor. In general; the use of the LIDAR sensor presents an interesting and easy technique to establish the potential drift of a specific spray situation as an adequate alternative for the evaluation of drift potential. PMID:23282583
The measurement of linear frequency drift in oscillators
NASA Astrophysics Data System (ADS)
Barnes, J. A.
1985-04-01
A linear drift in frequency is an important element in most stochastic models of oscillator performance. Quartz crystal oscillators often have drifts in excess of a part in ten to the tenth power per day. Even commercial cesium beam devices often show drifts of a few parts in ten to the thirteenth per year. There are many ways to estimate the drift rates from data samples (e.g., regress the phase on a quadratic; regress the frequency on a linear; compute the simple mean of the first difference of frequency; use Kalman filters with a drift term as one element in the state vector; and others). Although most of these estimators are unbiased, they vary in efficiency (i.e., confidence intervals). Further, the estimation of confidence intervals using the standard analysis of variance (typically associated with the specific estimating technique) can give amazingly optimistic results. The source of these problems is not an error in, say, the regressions techniques, but rather the problems arise from correlations within the residuals. That is, the oscillator model is often not consistent with constraints on the analysis technique or, in other words, some specific analysis techniques are often inappropriate for the task at hand. The appropriateness of a specific analysis technique is critically dependent on the oscillator model and can often be checked with a simple whiteness test on the residuals.
Observations of X-ray and EUV fluxes during X-class solar flares and response of upper ionosphere
NASA Astrophysics Data System (ADS)
Mahajan, K. K.; Lodhi, Neelesh K.; Upadhayaya, Arun K.
2010-12-01
Most studies dealing with solar flare effects in the upper ionosphere, where ionization is caused by EUV photons, have been based upon X-ray fluxes measured by the SOLRAD and GOES series of satellites. To check the validity of such studies, we compare simultaneous observations of GOES X-ray fluxes and SOHO EUV fluxes for 10 X-class solar flares which occurred during the maximum phase of sunspot cycle 23. These include the greatest flare of 4 November 2003, the fourth greatest flare of 28 October 2003 and the 14 July 2000 Bastille Day flare. We find that the peak intensities of the X-ray and EUV fluxes for these flares are poorly correlated, and this poor correlation is again seen when larger data containing 70 X-class flares, which occurred during the period January 1996 to December 2006, are examined. However, this correlation improves vastly when the central meridian distance (CMD) of the flare location is taken into account. We also study the response of the upper ionosphere to these fluxes by using the midday total electron content (TEC), observed for these flares by Liu et al. (2006). We find that peak enhancement in TEC is highly correlated with peak enhancement in EUV flux. The correlation, though poor with the X-ray flux, improves greatly when the CMD of flare location is considered.
MIPS AGN and Galaxy Evolution Survey
NASA Astrophysics Data System (ADS)
Jannuzi, Buell; Armus, Lee; Borys, Colin; Brand, Kate; Brodwin, Mark; Brown, Michael; Cool, Richard; Desai, Vandana; Dey, Arjun; Dickinson, Mark; Dole, Herve; Eisenstein, Daniel; Kochanek, Christopher; Le Floc'h, Emeric; Morrison, Jane; Papovich, Casey; Perez-Gonzalez, Pablo; Rieke, George; Rieke, Marcia; Stern, Daniel; Weiner, Ben; Zehavi, Idit
2008-03-01
We propose a far-IR survey of the 9 square degree Bootes field of the NOAO Deep Wide-Field Survey (NDWFS) to 5-sigma flux limits of 0.2, 12.8 and 120 mJy to detect approximately 60000, 3000, and 400 sources at 24, 70 and 160 microns respectively. By combining observations at different roll angles, our maps will have excellent control of detector drifts, enabling precise fluctuation analyses in all three maps. In combination with the matching X-ray, UV, optical, near-IR, and mid-IR photometry, variability data, and the 22,000 spectroscopic redshifts for the field, we have three primary goals. First, we will survey the evolution of LIRGS/ULIRGS to redshifts of 0.6/1.3 at 24 microns and 0.4/0.8 at 70 microns. Over 500 0.6
TEC Variations Over Korean Peninsula During Magnetic Storm
NASA Astrophysics Data System (ADS)
Ji, E.-Y.; Choi, B.-K.; Kim, K.-H.; Lee, D.-H.; Cho, J.-H.; Chung, J.-K.; Park, J.-U.
2008-03-01
By analyzing the observations from a number of ground- and space-based instruments, including ionosonde, magnetometers, and ACE interplanetary data, we examine the response of the ionospheric TEC over Korea during 2003 magnetic storms. We found that the variation of vertical TEC is correlated with the southward turning of the interplanetary magnetic field B_z. It is suggested that the electric fields produced by the dynamo process in the high-latitude region and the prompt penetration in the low-latitude region are responsible for TEC increases. During the June 16 event, dayside TEC values increase more than 15%. And the ionospheric F2-layer peak height (hmF2) was ˜300km higher and the vertical E×B drift (estimated from ground-based magnetometer equatorial electrojet delta H) showed downward drift, which may be due to the ionospheric disturbance dynamo electric field produced by the large amount of energy dissipation into high-latitude regions. In contr! ast, during November 20 event, the nightside TEC increases may be due to the prompt penetration westward electric field. The ionospheric F2-layer peak height was below 200km and the vertical E×B drift showed downward drift. Also, a strong correlation is observed between enhanced vertical TEC and enhanced interplanetary electric field. It is shown that, even though TEC increases are caused by the different processes, the electric field disturbances in the ionosphere play an important role in the variation of TEC over Korea.
Quantification of the Precipitation Loss of Radiation Belt Electrons Observed by SAMPEX (Invited)
NASA Astrophysics Data System (ADS)
Tu, W.; Li, X.; Selesnick, R. S.; Looper, M. D.
2010-12-01
Based on SAMPEX/PET observations, the fluxes and the spatial and temporal variations of electron loss to the atmosphere in the Earth’s radiation belt were quantified using a drift-diffusion model that includes the effects of azimuthal drift and pitch angle diffusion. The measured electrons by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), or precipitating (in the bounce loss cone), and the model simulates the low-altitude electron distribution from SAMPEX. After fitting the model results to the data, the magnitudes and variations of the electron loss rate can be estimated based on the optimum model parameter values. In this presentation we give an overview of our method and published results, followed by some recent improvements we made on the model, including updating the quantified electron lifetimes more frequently (e.g., every two hours instead of half a day) to achieve smoother variations, estimating the adiabatic effects at SAMPEX’s orbit and their influence on our model results, and calculating the error bar associated with each quantified electron lifetime. This method combining a model with low-altitude observations provides direct quantification of the electron loss rate, as required for any accurate modeling of the radiation belt electron dynamics.
Galloway, Benjamin R.; Popmintchev, Dimitar; Pisanty, Emilio; ...
2016-09-09
Here, we present a semi-classical study of the effects of the Lorentz force on electrons during high harmonic generation in the soft and hard X-ray regions driven by near- and mid-infrared lasers with wavelengths from 0.8 to 20 μm, and at intensities below 10 15 W/cm 2. The transverse extent of the longitudinal Lorentz drift is compared for both Gaussian focus and waveguide geometries. Both geometries exhibit a longitudinal electric field component that cancels the magnetic Lorentz drift in some regions of the focus, once each full optical cycle. We show that the Lorentz force contributes a super-Gaussian scaling whichmore » acts in addition to the dominant high harmonic flux scaling of λ -(5-6) due to quantum diffusion. We predict that the high harmonic yield will be reduced for driving wavelengths > 6 μm, and that the presence of dynamic spatial mode asymmetries results in the generation of both even and odd harmonic orders. Remarkably, we show that under realistic conditions, the recollision process can be controlled and does not shut off completely even for wavelengths >10 μm and recollision energies greater than 15 keV.« less
Bottom current deposition in the Antarctic Wilkes Land margin during the Oligocene
NASA Astrophysics Data System (ADS)
Salabarnada, Ariadna; Escutia, Carlota; Nelson, Hans C.; Evangelinos, Dimitris; López-Quirós, Adrián
2017-04-01
Sediment cores collected from the Antarctic Wilkes Land continental rise at IODP site 1356 provide evidence for bottom current sedimentation taking place since the early Oligocene (i.e., 33.6 Ma) (Escutia et al., 2011). Correlation between site 1356 sediments and the regional grid of multichannel seismic reflection profiles, complemented with bathymetric data, allow us to differentiate a variety of contourite deposits resulting from the interaction between bottom currents and seafloor paleomorphologies. Contourite deposits are identified based on the seismic signature, reflector configuration and geometry of the depositional bodies as elongated-mounded drifts, giant mounded drifts, confined drifts, infill drifts, plastered drifts, sediment waves, and moats. Based on the spatial and temporal distribution of these deposits, we differentiate three phases in contourite deposition in this margin: Phase 1) from 33.6-28 Ma sheeted drift morphologies dominate, related to high-energy deposits associated with fast flowing currents during the early Oligocene; Phase 2) At around 28 Ma, mounded drift morphologies and moat channels start forming. Continued intensification of contour currents results in larger contourite morphologies such as giant mounded drifts and moats forming around structural heights present in the Wilkes Land basin (e.g, the Adelie Rift Block). Phase 3) A shift in current configuration is recorded at around 15 Ma above regional unconformity WL-U5, which marks the Oligocene-Miocene Transition. This change is shown by a migration to the North of the drift crests and by a dominance of down-slope sedimentation processes that is indicated by mass transport deposits and channel levee formation. We interpret the evolution of the contourite deposits during the Oligocene in this margin to be driven by changes in the intensity of bottom current activity over time resulting from ice sheet growth, evolution of bottom morphology and related changes in paleoceanographic configuration in the Southern Ocean. This contribution results from work funded by the Spanish Ministry of Economy and Competitivity Grant CTM2014-60451-C2-1-P and FEDER funds.
Vacuum ultraviolet imagery of the Virgo Cluster region. II - Total far-ultraviolet flux of galaxies
NASA Astrophysics Data System (ADS)
Kodaira, K.; Watanabe, T.; Onaka, T.; Tanaka, W.
1990-11-01
The total flux in the far-ultraviolet region around 150 nm was measured for more than 40 galaxies in the central region of the Virgo Cluster, using two imaging telescopes on board a sounding rocket. The observed far-ultraviolet flux shows positive correlations with the H I 21 cm flux and the far-infrared flux for spiral galaxies, and with the X-ray flux and the radio continuum flux for elliptical galaxies. The former correlations of spiral galaxies are interpreted in terms of star formation activity, which indicates substantial depletion in the Virgo galaxies in accordance with the H I stripping. The latter correlations of elliptical galaxies indicate possible far-ultraviolet sources of young population, in addition to evolved hot stars. Far-ultraviolet fluxes from two dwarf elliptical galaxies were obtained tentatively, indicating star formation activity in elliptical galaxies. A high-resolution UV imagery by HST would be effective to distinguish the young population and the old population in elliptical galaxies.
Aquatic Eddy Correlation: Quantifying the Artificial Flux Caused by Stirring-Sensitive O2 Sensors
Holtappels, Moritz; Noss, Christian; Hancke, Kasper; Cathalot, Cecile; McGinnis, Daniel F.; Lorke, Andreas; Glud, Ronnie N.
2015-01-01
In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m-2 d-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. For a sensor orientation typically used in field studies, the artificial flux could be predicted using a simplified mathematical model. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies. PMID:25635679
Menon, Madhav; Jaffe, Warwick; Watson, Tim; Webster, Mark
2015-07-01
FFR measurements have been limited by the handling characteristics of pressure wire (PW) systems, and by signal drift. This first-in-human study evaluated the safety and efficacy of a new monorail catheter (Navvus) to assess coronary FFR, compared to a PW system. Resting measurements were acquired with both systems. After initiating IV adenosine, FFR was measured with the PW alone, simultaneously using both systems, and again with PW alone. Any zero offset of PW or Navvus was then recorded. Navvus measured FFR in all patients in whom a PW recording was obtained (50 of 58 patients); there were no complications related to Navvus. Navvus FFR correlated well with PW FFR (r=0.87, slope 1.0, intercept -0.02). Within PW measurement accuracy, in no cases did Navvus FFR classify lesion significance differently from PW FFR. PW signal drift was significantly greater than Navvus (0.06±0.12 vs. 0.02±0.02, p=0.014). Navvus and PW FFR correlated well. Navvus had less sensor drift. This new catheter-based system offers an alternative method for measuring FFR, with some potential advantages over PW.
Kinda, G Bazile; Simard, Yvan; Gervaise, Cédric; Mars, Jérome I; Fortier, Louis
2013-07-01
This paper analyzes an 8-month time series (November 2005 to June 2006) of underwater noise recorded at the mouth of the Amundsen Gulf in the marginal ice zone of the western Canadian Arctic when the area was >90% ice covered. The time-series of the ambient noise component was computed using an algorithm that filtered out transient acoustic events from 7-min hourly recordings of total ocean noise over a [0-4.1] kHz frequency band. Under-ice ambient noise did not respond to thermal changes, but showed consistent correlations with large-scale regional ice drift, wind speed, and measured currents in upper water column. The correlation of ambient noise with ice drift peaked for locations at ranges of ~300 km off the mouth of the Amundsen Gulf. These locations are within the multi-year ice plume that extends westerly along the coast in the Eastern Beaufort Sea due to the large Beaufort Gyre circulation. These results reveal that ambient noise in Eastern Beaufort Sea in winter is mainly controlled by the same meteorological and oceanographic forcing processes that drive the ice drift and the large-scale circulation in this part of the Arctic Ocean.
Effects of Mixed Layer Shear on Vertical Heat Flux
2016-12-01
correlation of ice speed to heat flux (r = .312, p < .001). Relationships between ice speed and shear (r = .107, p < .001), ice speed and inverse ...Richardson number (r = .035, p = .256), inverse Richardson number and heat flux (r = .3, p < .001), heat content and heat flux (r = .084, p < .001) were...correlation of ice speed to heat flux (r = .312, p < .001). Relationships between ice speed and shear (r = .107, p < .001), ice speed and inverse Richardson
Analysis of a multi-machine database on divertor heat fluxesa)
NASA Astrophysics Data System (ADS)
Makowski, M. A.; Elder, D.; Gray, T. K.; LaBombard, B.; Lasnier, C. J.; Leonard, A. W.; Maingi, R.; Osborne, T. H.; Stangeby, P. C.; Terry, J. L.; Watkins, J.
2012-05-01
A coordinated effort to measure divertor heat flux characteristics in fully attached, similarly shaped H-mode plasmas on C-Mod, DIII-D, and NSTX was carried out in 2010 in order to construct a predictive scaling relation applicable to next step devices including ITER, FNSF, and DEMO. Few published scaling laws are available and those that have been published were obtained under widely varying conditions and divertor geometries, leading to conflicting predictions for this critically important quantity. This study was designed to overcome these deficiencies. Analysis of the combined data set reveals that the primary dependence of the parallel heat flux width is robustly inverse with Ip, which all three tokamaks independently demonstrate. An improved Thomson scattering system on DIII-D has yielded very accurate scrape off layer (SOL) profile measurements from which tests of parallel transport models have been made. It is found that a flux-limited model agrees best with the data at all collisionalities, while a Spitzer resistivity model agrees at higher collisionality where it is more valid. The SOL profile measurements and divertor heat flux scaling are consistent with a heuristic drift based model as well as a critical gradient model.
Pimkumwong, Narongrit; Wang, Ming-Shyan
2018-02-01
This paper presents another control method for the three-phase induction motor that is direct torque control based on constant voltage per frequency control technique. This method uses the magnitude of stator flux and torque errors to generate the stator voltage and phase angle references for controlling the induction motor by using constant voltage per frequency control method. Instead of hysteresis comparators and optimum switching table, the PI controllers and space vector modulation technique are used to reduce torque and stator-flux ripples and achieve constant switching frequency. Moreover, the coordinate transformations are not required. To implement this control method, a full-order observer is used to estimate stator flux and overcome the problems from drift and saturation in using pure integrator. The feedback gains are designed by simple manner to improve the convergence of stator flux estimation, especially in low speed range. Furthermore, the necessary conditions to maintain the stability for feedback gain design are introduced. The simulation and experimental results show accurate and stable operation of the introduced estimator and good dynamic response of the proposed control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pfaff, R.; Freudenreich, H.; Bromund, K.; Klenzing, J.; Rowland, D.; Maynard, N.
2010-01-01
Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. Finally, the data set includes a wide range of ELF/VLF/HF oscillations corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth's low latitude ionosphere.
Modeling Individual Differences in Response Time and Accuracy in Numeracy
Ratcliff, Roger; Thompson, Clarissa A.; McKoon, Gail
2015-01-01
In the study of numeracy, some hypotheses have been based on response time (RT) as a dependent variable and some on accuracy, and considerable controversy has arisen about the presence or absence of correlations between RT and accuracy, between RT or accuracy and individual differences like IQ and math ability, and between various numeracy tasks. In this article, we show that an integration of the two dependent variables is required, which we accomplish with a theory-based model of decision making. We report data from four tasks: numerosity discrimination, number discrimination, memory for two-digit numbers, and memory for three-digit numbers. Accuracy correlated across tasks, as did RTs. However, the negative correlations that might be expected between RT and accuracy were not obtained; if a subject was accurate, it did not mean that they were fast (and vice versa). When the diffusion decision-making model was applied to the data (Ratcliff, 1978), we found significant correlations across the tasks between the quality of the numeracy information (drift rate) driving the decision process and between the speed/ accuracy criterion settings, suggesting that similar numeracy skills and similar speed-accuracy settings are involved in the four tasks. In the model, accuracy is related to drift rate and RT is related to speed-accuracy criteria, but drift rate and criteria are not related to each other across subjects. This provides a theoretical basis for understanding why negative correlations were not obtained between accuracy and RT. We also manipulated criteria by instructing subjects to maximize either speed or accuracy, but still found correlations between the criteria settings between and within tasks, suggesting that the settings may represent an individual trait that can be modulated but not equated across subjects. Our results demonstrate that a decision-making model may provide a way to reconcile inconsistent and sometimes contradictory results in numeracy research. PMID:25637690
The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, J. R., E-mail: jdav@lle.rochester.edu; Betti, R.; Chang, P.-Y.
2015-11-15
The magnetohydrodynamics (MHD) of magnetic-field compression in laser-driven spherical targets is considered. Magnetic-field evolution is cast in terms of an effective fluid velocity, a convective term resulting from resistivity gradients, a resistive diffusion term, and a source term. Effective velocity is the sum of fluid velocity, drift velocity, and heat-flux velocity, given by electron heat flux divided by electron enthalpy density, which has two components: the perpendicular or Nernst velocity and the cross-field velocity. The Nernst velocity compresses the magnetic field as the heat front moves into gas. The cross-field velocity leads to dynamo generation of an azimuthal magnetic field.more » It is proposed that the heat-flux velocity should be flux limited using a “Nernst” flux limiter independent of the thermal flux limiter but should not exceed it. The addition of the MHD routines to the 1D, Lagrangian hydrocode LILAC and the Eulerian version of the 2D hydrocode DRACO is described, and the codes are used to model a magnetized spherical compression on the OMEGA laser. Thermal flux limiting at a shock front is found to cause unphysical electron temperature gradients that lead to large, unphysical magnetic fields caused by the resistivity gradient, so thermal flux limiting in the gas is removed. The Nernst term reduces the benefits of magnetization in inertial fusion. A Nernst flux limiter ≤0.12 is required in the gas in order to agree with measured neutron yield and increases in the neutron-averaged ion temperature caused by magnetization. This corresponds to preventing the Nernst velocity from exceeding the shock velocity, which prevents significant decoupling of the magnetic field and gas compression.« less
The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
Davies, J. R.; Betti, R.; Chang, P. -Y.; ...
2015-11-06
The magnetohydrodynamics (MHD) of magnetic-field compression in laser-driven spherical targets is considered. Magnetic-field evolution is cast in terms of an effective fluid velocity, a convective term resulting from resistivity gradients, a resistive diffusion term, and a source term. Effective velocity is the sum of fluid velocity, drift velocity, and heat-flux velocity, given by electron heat flux divided by electron enthalpy density, which has two components: the perpendicular or Nernst velocity and the cross-field velocity. The Nernst velocity compresses the magnetic field as a heat front moves into the gas. The cross-field velocity leads to dynamo generation of an azimuthal magneticmore » field. It is proposed that the heat-flux velocity should be flux limited using a “Nernst” flux limiter independent of the thermal flux limiter but should not exceed it. The addition of MHD routines to the 1-D, Lagrangian hydrocode LILAC and the Eulerian version of the 2-D hydrocode DRACO is described, and the codes are used to model a magnetized spherical compression on the OMEGA laser. Thermal flux limiting at a shock front is found to cause unphysical electron temperature gradients that lead to large, unphysical magnetic fields caused by the resistivity gradient, so thermal flux limiting in the gas is removed. The Nernst term reduces the benefits of magnetization in inertial fusion. In addition, a Nernst flux limiter ≤ 0.12 is required in the gas in order to agree with measured neutron yield and increases in the neutron-averaged ion temperature caused by magnetization. This corresponds to maintaining the Nernst velocity below the shock velocity, which prevents significant decoupling of the magnetic field and gas compression.« less
Using CO2:CO Correlations to Improve Inverse Analyses of Carbon Fluxes
NASA Technical Reports Server (NTRS)
Palmer, Paul I.; Suntharalingam, Parvadha; Jones, Dylan B. A.; Jacob, Daniel J.; Streets, David G.; Fu, Qingyan; Vay, Stephanie A.; Sachse, Glen W.
2006-01-01
Observed correlations between atmospheric concentrations of CO2 and CO represent potentially powerful information for improving CO2 surface flux estimates through coupled CO2-CO inverse analyses. We explore the value of these correlations in improving estimates of regional CO2 fluxes in east Asia by using aircraft observations of CO2 and CO from the TRACE-P campaign over the NW Pacific in March 2001. Our inverse model uses regional CO2 and CO surface fluxes as the state vector, separating biospheric and combustion contributions to CO2. CO2-CO error correlation coefficients are included in the inversion as off-diagonal entries in the a priori and observation error covariance matrices. We derive error correlations in a priori combustion source estimates of CO2 and CO by propagating error estimates of fuel consumption rates and emission factors. However, we find that these correlations are weak because CO source uncertainties are mostly determined by emission factors. Observed correlations between atmospheric CO2 and CO concentrations imply corresponding error correlations in the chemical transport model used as the forward model for the inversion. These error correlations in excess of 0.7, as derived from the TRACE-P data, enable a coupled CO2-CO inversion to achieve significant improvement over a CO2-only inversion for quantifying regional fluxes of CO2.
Atmospheric and oceanic forcing of Weddell Sea ice motion
NASA Astrophysics Data System (ADS)
Kottmeier, C.; Sellmann, Lutz
1996-09-01
The data from sea ice buoys, which were deployed during the Winter Weddell Sea Project 1986, the Winter Weddell Gyre Studies 1989 and 1992, the Ice Station Weddell in 1992, the Antarctic Zone Flux Experiment in 1994, and several ship cruises in Austral summers, are uniformly reanalyzed by the same objective methods. Geostrophic winds are derived after matching of the buoy pressure data with the surface pressure fields of the European Centre for Medium Range Weather Forecasts. The ratio between ice drift and geostrophic wind speeds is reduced when winds and currents oppose each other, when the atmospheric surface layer is stably stratified, and when the ice is under pressure near coasts. Over the continental shelves, the spatial inhomogeneity of tidal and inertial motion effectively controls the variability of divergence for periods below 36 hours. Far from coasts, speed ratios, which presumably reflect internal stress variations in the ice cover, are independent of drift divergence on the spatial scale of 100 km. To study basin-scale ice dynamics, all ice drift data are related to the geostrophic winds based on the complex linear model [Thorndike and Colony, 1982] for daily averaged data. The composite patterns of mean ice motion, geostrophic winds, and geostrophic surface currents document cyclonic basin-wide circulations. Geostrophic ocean currents are generally small in the Weddell Sea. Significant features are the coastal current near the southeastern coasts and the bands of larger velocities of ≈6 cm s-1 following the northward and eastward orientation of the continental shelf breaks in the western and northwestern Weddell Sea. In the southwestern Weddell Sea the mean ice drift speed is reduced to less than 0.5% of the geostrophic wind speed and increases rather continuously to 1.5% in the northern, central, and eastern Weddell Sea. The linear model accounts for less than 50% of the total variance of drift speeds in the southwestern Weddell Sea and up to 80% in the northern and eastern Weddell Sea.
NASA Astrophysics Data System (ADS)
Miyake, S.; Kataoka, R.; Sato, T.
2016-12-01
The solar modulation of galactic cosmic rays (GCRs), which is the variation of the terrestrial GCR flux caused by the heliospheric environmental change, is basically anti-correlated with the solar activity with so-called 11-year periodicity. In the current weak solar cycle 24, we expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude during the solar cycles 24, 25, and 26, we have developed the time-dependent and three-dimensional model of the solar modulation of GCRs. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind velocity, the strength of the interplanetary magnetic field, and its tilt angle. We solve the curvature and gradient drift motion of GCRs in the heliospheric magnetic field, and therefore reproduce the 22-year variation of the solar modulation of GCRs. It is quantitatively confirmed that our model reproduces the energy spectra observed by BESS and PAMELA. We then calculate the variation of the GCR energy spectra during the solar cycles 24, 25, and 26, by extrapolating the solar wind parameters and tilt angle. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In this presentation, we report the quantitative forecast values of the solar modulation of GCRs, neutron monitor counting rate, and the radiation dose at flight altitude up to the cycle 26, including the discussion of the charge sign dependence on those results.
NASA Astrophysics Data System (ADS)
Zhao, L.; Zhang, H.
2014-12-01
Anomalous cosmic rays (ACRs) carry crucial information on the coupling between solar wind and interstellar medium, as well as cosmic ray modulation within the heliosphere. Due to the distinct origins and modulation processes, the spectra and abundance of ACRs are significantly different from that of galactic cosmic rays (GCRs). Since the launch of NASA's ACE spacecraft in 1997, its CRIS and SIS instruments have continuously recorded GCR and ACR intensities of several elemental heavy-ions, spanning the whole cycle 23 and the cycle 24 maximum. Here we present a statistical comparison of ACR and GCR observed by ACE spacecraft and their possible relation to solar activity. While the differential flux of ACR also exhibits apparent anti-correlation with solar activity level, the flux of the latest prolonged solar minimum (year 2009) is approximately 5% lower than its previous solar minimum (year 1997). And the minimal level of ACR flux appears in year 2004, instead of year 2001 with the strongest solar activities. The negative indexes of the power law spectra within the energy range from 5 to 30 MeV/nuc also vary with time. The spectra get harder during the solar minimum but softer during the solar maximum. The approaching solar minimum of cycle 24 is believed to resemble the Dalton or Gleissberg Minimum with extremely low solar activity (Zolotova and Ponyavin, 2014). Therefore, the different characteristics of ACRs between the coming solar minimum and the previous minimum are also of great interest. Finally, we will also discuss the possible solar-modulation processes which is responsible for different modulation of ACR and GCR, especially the roles played by diffusion and drifts. The comparative analysis will provide valuable insights into the physical modulation process within the heliosphere under opposite solar polarity and variable solar activity levels.
Determination of Flux-Gate Magnetometer Spin Axis Offsets with the Electron Drift Instrument
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Nakamura, Rumi; Giner, Lukas; Teubenbacher, Robert; Chutter, Mark; Leinweber, Hannes K.; Magnes, Werner
2014-05-01
Spin-stabilization of spacecraft enormously supports the in-flight calibration of onboard flux-gate magnetometers (FGMs): eight out of twelve calibration parameters can be determined by minimization of spin tone and harmonics in the calibrated magnetic field measurements. From the remaining four parameters, the spin axis offset is usually obtained by analyzing observations of Alfvénic fluctuations in the solar wind. If solar wind measurements are unavailable, other methods for spin axis offset determination need to be used. We present two alternative methods that are based on the comparison of FGM and electron drift instrument (EDI) data: (1) EDI measures the gyration periods of instrument-emitted electrons in the ambient magnetic field. They are inversely proportional to the magnetic field strength. Differences between FGM and EDI measured field strengths can be attributed to inaccuracies in spin axis offset, if the other calibration parameters are accurately known. (2) For EDI electrons to return to the spacecraft, they have to be sent out in perpendicular direction to the ambient magnetic field. Minimization of the variance of electron beam directions with respect to the FGM-determined magnetic field direction also yields an estimate of the spin axis offset. Prior to spin axis offset determination, systematic inaccuracies in EDI gyration period measurements and in the transformation of EDI beam directions into the FGM spin-aligned reference coordinate system have to be corrected. We show how this can be done by FGM/EDI data comparison, as well.
NASA Astrophysics Data System (ADS)
Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.
2013-07-01
We compare the magnetic field data obtained from the Flux-Gate Magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the Electron Drift Instrument (EDI) onboard Cluster to determine the spin axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 nT and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ~ 0.6 nT was observed between July and October 2003. Using multi-point multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.
NASA Astrophysics Data System (ADS)
Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.
2014-01-01
We compare the magnetic field data obtained from the flux-gate magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the electron drift instrument (EDI) onboard Cluster to determine the spin-axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ∼ 0.6 nT was observed for Cluster 1 between July and October 2003. Using multipoint multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.
NASA Astrophysics Data System (ADS)
Olifer, L.; Mann, I. R.; Morley, S. K.; Ozeke, L. G.; Choi, D.
2018-05-01
We present observations of very fast radiation belt loss as resolved using high time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The time scale of these losses is revealed to be as short as ˜0.5-2 hr during intense magnetic storms, with some storms demonstrating almost total loss on these time scales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the September 2014 storm shows fast extinction but no recovery for around 2 weeks. By contrast, the moderate September 2012 storm which generated a three radiation belt morphology shows more gradual loss. We compute the last closed drift shell (LCDS) for each of these four storms and show a very strong correspondence between the LCDS and the loss patterns of trapped electrons in each storm. Most significantly, the location of the LCDS closely mirrors the high time resolution losses observed in GPS flux. The fast losses occur on a time scale shorter than the Van Allen Probes orbital period, are explained by proximity to the LCDS, and progress inward, consistent with outward transport to the LCDS by fast ultralow frequency wave radial diffusion. Expressing the location of the LCDS in L*, and not model magnetopause standoff distance in units of RE, clearly reveals magnetopause shadowing as the cause of the fast loss observed by the GPS satellites.
An Auroral Boundary-Oriented Model of Subauroral Polarization Streams (SAPS)
NASA Astrophysics Data System (ADS)
Landry, R. G.; Anderson, P. C.
2018-04-01
An empirical model of subauroral polarization stream (SAPS) electric fields has been developed using measurements of ion drifts and particle precipitation made by the Defense Meteorological Satellite Program from 1987 to 2012 and Dynamics Explorer 2 as functions of magnetic local time (MLT), magnetic latitude, the auroral electrojet index (AE), hemisphere, and day of year. Over 500,000 subauroral passes are used. This model is oriented in degree magnetic latitude equatorward of the aurora and takes median values instead of the mean to avoid the contribution of low occurrence frequency subauroral ion drifts so that the model is representative of the much more common, latitudinally broad, low-amplitude SAPS field. The SAPS model is in broad agreement with previous statistical efforts in the variation of the SAPS field with MLT and magnetic activity level, although the median field is weaker. Furthermore, we find that the median SAPS field is roughly conjugate in both hemispheres for all seasons, with a maximum in SAPS amplitude and width found for 1800-2000 MLT. The SAPS amplitude is found to vary seasonally only from about 1800-2000 MLT, maximizing in both hemispheres during equinox months. Because this feature exists despite controlling for the AE index, it is suggested that this is due to a seasonal variation in the flux tube averaged ionospheric conductance at MLT sectors where it is more likely that one flux tube footprint is in darkness while the other is in daylight.
NASA Astrophysics Data System (ADS)
le Roux, J. A.
2017-12-01
We developed previously a focused transport kinetic theory formalism with Fokker-plank coefficients (and its Parker transport limit) to model large-scale energetic particle transport and acceleration in solar wind regions with multiple contracting and merging small-scale flux ropes on MHD (inertial) scales (Zank et al. 2014; le Roux et al. 2015). The theory unifies the main acceleration mechanisms identified in particle simulations for particles temporarily trapped in such active flux rope structures, such as acceleration by the parallel electric field in reconnection regions between merging flux ropes, curvature drift acceleration in incompressible/compressible contracting and merging flux ropes, and betatron acceleration (e.g., Dahlin et al 2016). Initial analytical solutions of the Parker transport equation in the test particle limit showed that the energetic particle pressure from efficient flux-rope energization can potentially be high in turbulent solar wind regions containing active flux-rope structures. This requires taking into account the back reaction of energetic particles on flux ropes to more accurately determine the efficiency of energetic particles acceleration by small-scale flux ropes. To accomplish this goal we developed recently an extension of the kinetic theory to a kinetic-MHD level. We will present the extended theory showing the focused transport equation to be coupled to a solar wind MHD transport equation for small-scale flux-rope energy density extracted from a recently published nearly incompressible theory for solar wind MHD turbulence with a plasma beta of 1 (Zank et al. 2017). In the flux-rope transport equation appears new expressions for the damping/growth rates of flux-rope energy derived from assuming energy conservation in the interaction between energetic particles and small-scale flux ropes for all the main flux-rope acceleration mechanisms, whereas previous expressions for average particle acceleration rates have been explored in more detail. Future applications will involve exploring the relative role of diffusive shock and flux-ropes acceleration in the vicinity of traveling shocks in the supersonic solar wind near Earth where many flux-rope structures were detected recently (Hu et al 2017, this session).
McCamy, Michael B.; Otero-Millan, Jorge; Leigh, R. John; King, Susan A.; Schneider, Rosalyn M.; Macknik, Stephen L.; Martinez-Conde, Susana
2015-01-01
Human eyes move continuously, even during visual fixation. These “fixational eye movements” (FEMs) include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers. Due to the small magnitude of FEMs, obtaining reliable data can be challenging, however, and depends critically on the sensitivity and precision of the eye tracking system. Yet, no study has conducted an in-depth comparison of human FEM recordings obtained with the search coil (considered the gold standard for measuring microsaccades and drift) and with contemporary, state-of-the art video trackers. Here we measured human microsaccades and drift simultaneously with the search coil and a popular state-of-the-art video tracker. We found that 95% of microsaccades detected with the search coil were also detected with the video tracker, and 95% of microsaccades detected with video tracking were also detected with the search coil, indicating substantial agreement between the two systems. Peak/mean velocities and main sequence slopes of microsaccades detected with video tracking were significantly higher than those of the same microsaccades detected with the search coil, however. Ocular drift was significantly correlated between the two systems, but drift speeds were higher with video tracking than with the search coil. Overall, our combined results suggest that contemporary video tracking now approaches the search coil for measuring FEMs. PMID:26035820
NASA Astrophysics Data System (ADS)
Laithwaite, E. R.; Kuznetsov, S. B.
1980-09-01
A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.
Bipolarization and Poleward Flux Correlate during Xenopus Extract Spindle AssemblyV⃞
Mitchison, T.J.; Maddox, P.; Groen, A.; Cameron, L.; Perlman, Z.; Ohi, R.; Desai, A.; Salmon, E.D.; Kapoor, T.M.
2004-01-01
We investigated the mechanism by which meiotic spindles become bipolar and the correlation between bipolarity and poleward flux, using Xenopus egg extracts. By speckle microscopy and computational alignment, we find that monopolar sperm asters do not show evidence for flux, partially contradicting previous work. We account for the discrepancy by describing spontaneous bipolarization of sperm asters that was missed previously. During spontaneous bipolarization, onset of flux correlated with onset of bipolarity, implying that antiparallel microtubule organization may be required for flux. Using a probe for TPX2 in addition to tubulin, we describe two pathways that lead to spontaneous bipolarization, new pole assembly near chromatin, and pole splitting. By inhibiting the Ran pathway with excess importin-alpha, we establish a role for chromatin-derived, antiparallel overlap bundles in generating the sliding force for flux, and we examine these bundles by electron microscopy. Our results highlight the importance of two processes, chromatin-initiated microtubule nucleation, and sliding forces generated between antiparallel microtubules, in self-organization of spindle bipolarity and poleward flux. PMID:15385629
Size-dependent modification of asteroid family Yarkovsky V-shapes
NASA Astrophysics Data System (ADS)
Bolin, B. T.; Morbidelli, A.; Walsh, K. J.
2018-04-01
Context. The thermal properties of the surfaces of asteroids determine the magnitude of the drift rate cause by the Yarkovsky force. In the general case of Main Belt asteroids, the Yarkovsky force is indirectly proportional to the thermal inertia, Γ. Aim. Following the proposed relationship between Γ and asteroid diameter D, we find that asteroids' Yarkovsky drift rates might have a more complex size dependence than previous thought, leading to a curved family V-shape boundary in semi-major axis, a, vs. 1/D space. This implies that asteroids are drifting faster at larger sizes than previously considered decreasing on average the known ages of asteroid families. Methods: The V-Shape curvature is determined for >25 families located throughout the Main Belt to quantify the Yarkovsky size-dependent drift rate. Results: We find that there is no correlation between family age and V-shape curvature. In addition, the V-shape curvature decreases for asteroid families with larger heliocentric distances suggesting that the relationship between Γ and D is weaker in the outer MB possibly due to homogenous surface roughness among family members.
CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhar, Matej; Krucker, Säm; Battaglia, Marina
A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-raymore » fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.« less
Observations of field-aligned currents, particles, and plasma drift in the polar cusps near solstice
NASA Technical Reports Server (NTRS)
Bythrow, P. F.; Potemra, T. A.; Hoffman, R. A.
1982-01-01
Magnetic perturbations observed by the TRIAD magnetometer within two hours of an AE-C spacecraft pass provide field-aligned current data, from the same local time in the northern hemisphere, for a study of the polar cusp. The AE-C spinning mode has allowed the use of the Z-axis magnetometer for Birkeland current observations, in conjunction with particle and drift measurements. The average B(z) were found to be 1.9 nT and -1.1 nT during the first two hourly intervals on January 15, 1977. Measurements from the low energy electron experiment revealed intense fluxes of soft, cusp-like 100 eV Maxwellian electrons throughout the prenoon polar cap. The upward directed current can be identified as the dominant cusp current appropriate for B(y) values lower than zero, while the downward directed current, which has the appropriate sign of a dayside region 1 current, is observed to lie entirely within a westerly, antisunward-convecting plasma.
NASA Astrophysics Data System (ADS)
Thrysøe, A. S.; Løiten, M.; Madsen, J.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul
2018-03-01
The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms is present in the edge and SOL regions, those will influence the plasma parameters and thus the plasma confinement. In this paper, it is displayed how neutrals, described by a fluid model, introduce source terms in a plasma drift-fluid model due to inelastic collisions. The resulting source terms are included in a four-field drift-fluid model, and it is shown how an increasing neutral particle density in the edge and SOL regions influences the plasma particle transport across the last-closed-flux-surface. It is found that an appropriate gas puffing rate allows for the edge density in the simulation to be self-consistently maintained due to ionization of neutrals in the confined region.
Wave-driven butterfly distribution of Van Allen belt relativistic electrons
Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; ...
2015-10-05
Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth’s magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28more » June 2013 geomagnetic storm. In conclusion, simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. Finally, the current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.« less
The dependence of solar modulation on the sign of the cosmic ray particle charge
NASA Technical Reports Server (NTRS)
Garcia-Munoz, M.; Meyer, P.; Pyle, K. R.; Simpson, J. A.; Evenson, P. A.
1985-01-01
The solar modulation of galactic cosmic ray helium and electrons at 1 AU, within the 600-1000 MV magnetic rigidity interval, are compared for the period from 1965 through 1984. The time-intensity variations during the two solar maxima around 1970 and 1981 show that after 1970 the helium intensity recovers earlier than that of the electrons, whereas after 1981 the electron intensity recovers earlier than that of helium. The flux ratio of helium to electrons (He/e) undergoes a major increases during the 1969-1971 period and a major decrease during 1979-83. These experimental results can be interpreted as due to a dependence of the solar modulation of galactic cosmic rays on the sign of the particle charge, possibly as a consequence of drifts due to gradients and curvatures in the interplanetary magnetic field. However, the comparison of the shapes of the intensity-time curves of helium and electrons in the period 1970-1981 does not support a major specific prediction of the drift model.
Transitional behavior of different energy protons based on Van Allen Probes observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Chao; Bortnik, Jacob; Chen, Lunjin
Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. In this paper, we statistically analyze ~1 eV to 50 keV hydrogen (H +) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H + dynamicsmore » under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H + behaviors within different energy ranges, which is consistent with previous theory predictions. Finally, using simple electric and magnetic field models in UBK coordinates, we have further constrained the source regions of different energy ions and their drift directions.« less
Transitional behavior of different energy protons based on Van Allen Probes observations
Yue, Chao; Bortnik, Jacob; Chen, Lunjin; ...
2016-12-09
Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. In this paper, we statistically analyze ~1 eV to 50 keV hydrogen (H +) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H + dynamicsmore » under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H + behaviors within different energy ranges, which is consistent with previous theory predictions. Finally, using simple electric and magnetic field models in UBK coordinates, we have further constrained the source regions of different energy ions and their drift directions.« less
Bubble and Slug Flow at Microgravity Conditions: State of Knowledge and Open Questions
NASA Technical Reports Server (NTRS)
Colin, C.; Fabre, J.; McQuillen, J.
1996-01-01
Based on the experiments carried out over the past decade at microgravity conditions, an overview of our current knowledge of bubbly and slug flows is presented. The transition from bubble to slug flow, the void fraction and the pressure drop are discussed from the data collected in the literature. The transition from bubble to slug flow may be predicted by introducing a critical void fraction that depends on the fluid properties and the pipe diameter; however, the role of coalescence which controls this transition is not clearly understood. The void fraction may be accurately calculated using a drift-flux model. It is shown from local measurements that the drift of the gas with respect to the mixture is due to non-uniform radial distribution of void fraction. The pressure drop happens to be controlled by the liquid flow for bubbly flow whereas for slug flow the experimental results show that pressure drops is larger than expected. From this study, the guidelines for future research in microgravity are given.
Wave-driven butterfly distribution of Van Allen belt relativistic electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Fuliang; Yang, Chang; Su, Zhenpeng
Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth’s magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28more » June 2013 geomagnetic storm. In conclusion, simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. Finally, the current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.« less
Fall Freeze-up of Sea Ice in the Beaufort-Chukchi Seas Using ERS-1 SAR and Buoy Data
NASA Technical Reports Server (NTRS)
Holt, B.; Winebrenner, B.; D., Nelson E.
1993-01-01
The lowering of air temperatures below freezing in the fall indicates the end of summer melt and the onset of steady sea ice growth. The thickness and condition of ice that remains at the end of summer has ramifications for the thickness that that ice will attain at the end of the following winter. This period also designates a shifting of key fluxes from upper ocean freshening from ice melt to increased salinity from brine extraction during ice growth. This transitional period has been examined in the Beaufort and Chukchi Seas using ERS-1 SAR imagery and air temperatures from drifting buoys during 1991 and 1992. The SAR imagery is used to examine the condition and types of ice present in this period. Much of the surface melt water has drained off at this time. Air temperatures from drifting buoys coincident in time and within 100 km radius of the SAR imagery have been obtained...
Analysis of Helium Segregation on Surfaces of Plasma-Exposed Tungsten
NASA Astrophysics Data System (ADS)
Maroudas, Dimitrios; Hu, Lin; Hammond, Karl; Wirth, Brian
2015-11-01
We report a systematic theoretical and atomic-scale computational study of implanted helium segregation on surfaces of tungsten, which is considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations, including molecular statics to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile helium clusters (of 1-7 He atoms) in the near-surface region are attracted to the surface due to an elastic interaction force. This thermodynamic driving force induces drift fluxes of these mobile clusters toward the surface, facilitating helium segregation. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, at rates much higher than in the bulk material. This cluster dynamics has significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure.
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean-Marc; Dias, Frederic; Dibarboure, Gérald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frédéric; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Céline; Ubelmann, Clément; van Sebille, Erik; Xie, Jiping
2018-05-01
We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave-current interactions, air-sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.
NASA Astrophysics Data System (ADS)
Xie, Jun; Ni, Sidao; Chu, Risheng; Xia, Yingjie
2018-01-01
Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 s (e.g. GSC in 1992), especially in early days of global seismic networks. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC, PAS and PFO in the TERRAscope network as an example, the 26 s PL signal can be easily observed in the ambient noise cross-correlation function between these stations and a remote station OBN with interstation distance about 9700 km. The travel-time variation of this 26 s signal in the ambient noise cross-correlation function is used to infer clock error. A drastic clock error is detected during June 1992 for station GSC, but not found for station PAS and PFO. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of 25 s. Averaged over the three stations, the accuracy of the ambient noise cross-correlation function method with the 26 s source is about 0.3-0.5 s. Using this PL source, the clock can be validated for historical records of sparsely distributed stations, where the usual ambient noise cross-correlation function of short-period (<20 s) ambient noise might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. Further studies are also needed to investigate whether the 26 s source moves spatially and its effects on clock drift detection.
Zero drift of intraventricular and subdural intracranial pressure monitoring systems.
Chen, Li; Du, Hang-gen; Yin, Li-chun; He, Min; Zhang, Guo-jun; Tian, Yong; Wang, Cheng; Hao, Bi-lie; Li, Hong-yu
2013-01-01
To assess zero drift of intraventricular and subdural intracranial pressure (ICP) monitoring systems. A prospective study was conducted in patients who received Codman ICP monitoring in the neurosurgical department from January 2010 to December 2011. According to the location of sensors, the patients were categorized into two groups: intraventricular group and subdural group. Zero drift between the two groups and its association with the duration of ICP monitor were analyzed. Totally, 22 patients undergoing intraventricular ICP monitoring and 27 receiving subdural ICP monitoring were enrolled. There was no significant difference in duration of ICP monitoring, zero drift value and its absolute value between intraventricular and subdural groups (5.38 d+/-2.58 d vs 4.58 d+/-2.24 d, 0.77 mm Hg+/-2.18 mm Hg vs 1.03 mm Hg+/-2.06 mm Hg, 1.68 mm Hg+/-1.55 mm Hg vs 1.70 mm Hg+/-1.53 mm Hg, respectively; all P larger than 0.05). Absolute value of zero drift in both groups significantly rose with the increased duration of ICP monitoring (P less than 0.05) while zero drift value did not. Moreover, daily absolute value in the intraventricular group was significantly smaller than that in the subdural group (0.27 mm Hg+/-0.32 mm Hg vs 0.29 mm Hg+/-0.18 mm Hg, P less than 0.05). This study demonstrates that absolute value of zero drift significantly correlates with duration of both intraventricular and subdural ICP monitoring. Due to the smaller daily absolute value, ICP values recorded from intraventricular system may be more reliable than those from subdural system.
NASA Astrophysics Data System (ADS)
Chen, B.; Xu, X. Q.; Xia, T. Y.; Li, N. M.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Ye, M. Y.; Wan, Y. X.
2018-05-01
The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.
NASA Astrophysics Data System (ADS)
Chen, B.; Xu, X. Q.; Xia, T. Y.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Mao, S. F.; Ye, M. Y.; Wan, Y. X.
2017-11-01
The BOUT++ code has been exploited in order to improve the understanding of the role of turbulent modes in controlling edge transport and resulting scaling of the scrape-off layer (SOL) heat flux width. For the C-Mod enhanced D_α (EDA) H-mode discharges, BOUT++ six-field two-fluid nonlinear simulations show a reasonable agreement of upstream turbulence and divertor target heat flux behavior: (a) the simulated quasi-coherent modes show consistent characteristics of the frequency versus poloidal wave number spectra of the electromagnetic fluctuations when compared with experimental measurements: frequencies are around 60-120 kHz (experiment: about 70-110 kHz), k_θ are around 2.0 cm-1 which is similar to the phase contrast imaging data; (b) linear spectrum analysis is consistent with the nonlinear phase relationship calculation which indicates the dominance of resistive-ballooning modes and drift-Alfven wave instabilities; (c) the SOL heat flux width λq versus current I p scaling is reproduced by turbulent transport: the simulations yield similar λq to experimental measurements within a factor of 2. However the magnitudes of divertor heat fluxes can be varied, depending on the physics models, sources and sinks, sheath boundary conditions, or flux limiting coefficient; (d) Simple estimate by the ‘2-point model’ for λq is consistent with simulation. Moreover, blobby turbulent spreading is confirmed for these relatively high B p shots.
NASA Astrophysics Data System (ADS)
Yokoi, Naoya; Abe, Yoshiyuki; Kitamura, Minoru; Honda, Makio C.; Yamaguchi, Atsushi
2018-03-01
Seasonal changes in zooplankton swimmer (ZS) abundance, biomass and community structure were evaluated based on samples collected by moored sediment traps at a depth of 200 m in the subarctic (SA) and subtropical (ST) western North Pacific. Based on these samples, we made comparisons on two topics: 1) latitudinal (subarctic vs. subtropical) changes in ZS abundance, biomass and community and 2) quantitative differences between the ZS and particle organic carbon (POC) fluxes based on data from moored or drifting sediment traps. The results showed that the ZS flux was greater in the SA (annual mean: 311 ind. m-2 day-1 or 258 mg C m-2 day-1) than in the ST (135 ind. m-2 day-1 or 38 mg C m-2 day-1). The peak ZS flux was observed from July-August in the SA and from April-May in the ST. The dominant taxa were Copepoda and Chaetognatha in the SA and Ostracoda and Mollusca in the ST. These latitudinal differences are likely related to the dominance of large-sized Copepoda in the SA, regional differences in the timing of the spring phytoplankton bloom, and the magnitude and size structure of primary producers. The percent composition of ZS to the total C flux (= ZS+POC flux) varied by region: 85-95% in the SA and 47-75% in the ST. These differences between the ZS composition and the total C flux are most likely caused by the dominance of large-sized Copepoda (Neocalanus spp. and Eucalanus bungii) in the SA.
The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.
Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne
2014-01-01
Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a QST/FST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (QST) was compared with divergence at eight neutral microsatellite loci (FST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had QST values significantly lower than FST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (QST>FST). Estimates of heritability were high for all traits (means ranging between 0.55-0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.
Solid motor aft closure insulation erosion. [heat flux correlation for rate analysis
NASA Technical Reports Server (NTRS)
Stampfl, E.; Landsbaum, E. M.
1973-01-01
The erosion rate of aft closure insulation in a number of large solid propellant motors was empirically analyzed by correlating the average ablation rate with a number of variables that had previously been demonstrated to affect heat flux. The main correlating parameter was a heat flux based on the simplified Bartz heat transfer coefficient corrected for two-dimensional effects. A multiplying group contained terms related to port-to-throat ratio, local wall angle, grain geometry and nozzle cant angle. The resulting equation gave a good correlation and is a useful design tool.
Heating mechanism(s) for transition layers in giants
NASA Technical Reports Server (NTRS)
Bohm-Vitense, Erika; Mena-Werth, Jose
1991-01-01
The emission-line fluxes of lines originating in the lower parts of the transition layers between stellar chromospheres and coronas are studied. Simon and Drake (1989) suspect different heating mechanisms for 'hot' and cool stars. Changes in the flux ratios for the C IV to C II emission lines support this suspicion. Large C IV/C II line flux ratios appear to be indicative of magnetically controlled heating. A correlation between excess continuum flux around 1950 A and C II emission-line fluxes are confirmed for the cooler giants (late F and cooler). Excess continuum flux correlates positively with large C IV/C II line flux ratio. The excess continuum flux corresponds to an increase in temperature by several hundred degrees in layers with a mean optical depth of about 0.03. For chromospherically active stars these layers experience a mechanical flux deposition of the order of 1 percent of the total radiative flux. This flux is tentatively identified as an MHD wave flux similar to Alfven waves.
Plasma in Saturn's Nightside Magnetosphere and the Implications for Global Circulation
NASA Technical Reports Server (NTRS)
McAndrews, H.J.; Thomsen, M.F.; Arridge, C.S.; Jackman, C.M.; Wilson, R.J.; Henderson, M.G.; Tokar, R.L.; Khurana, K.K.; Sittler, E. C.; Coates, A.J.;
2009-01-01
We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50RS. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low-density population. Flux-tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass-release are evaluated using measured densities, angular velocities and magnetic field strength. The results suggest that for the relatively dense ion populations detectable by the ion mass spectrometer (IMS), the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass-loss and subsequently return to the inner magnetosphere significantly depleted of plasma.
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xu, X. Q.; Yan, Z.; Mckee, G. R.; Grierson, B. A.; Xia, T. Y.; Gao, X.
2018-02-01
A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n = 30 or k_θρ_i˜0.12 . The ion diamagnetic drift and E× B convection flow are balanced when the radial electric field (E r ) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density n_e˜1.5×1019 m-3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40 kHz and 10 kHz respectively. The poloidal wave number k_θ is about 0.2 cm -1 (k_θρ_i˜0.05 ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are ˜3.5-6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. The electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.
Reverse Current in Solar Flares
NASA Technical Reports Server (NTRS)
Knight, J. W., III
1978-01-01
An idealized steady state model of a stream of energetic electrons neutralized by a reverse current in the pre-flare solar plasma was developed. These calculations indicate that, in some cases, a significant fraction of the beam energy may be dissipated by the reverse current. Joule heating by the reverse current is a more effective mechanism for heating the plasma than collisional losses from the energetic electrons because the Ohmic losses are caused by thermal electrons in the reverse current which have much shorter mean free paths than the energetic electrons. The heating due to reverse currents is calculated for two injected energetic electron fluxes. For the smaller injected flux, the temperature of the coronal plasma is raised by about a factor of two. The larger flux causes the reverse current drift velocity to exceed the critical velocity for the onset of ion cyclotron turbulence, producing anomalous resistivity and an order of magnitude increase in the temperature. The heating is so rapid that the lack of ionization equilibrium may produce a soft X-ray and EUV pulse from the corona.
NASA Technical Reports Server (NTRS)
Judge, Darrell L.
1994-01-01
A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.
A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations
NASA Technical Reports Server (NTRS)
Judge, Darrell L.
1994-01-01
We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.
Flux-driven algebraic damping of m=2 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, C. Y.; O'Neil, T. M.
2016-10-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 2 diocotron modes. Due to small field asymmetries a low density halo of electrons is transported radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from the exponential spatial Landau damping in a linear wave-particle resonance. This poster uses analytic theory and simulations to explain the new flux-driven algebraic damping of the mode. As electrons are swept around the nonlinear ``cat's eye'' orbits of the resonant wave-particle interaction, they form a quadrupole (m = 2) density distribution, which sets up an electric field that acts back on the plasma core. The field causes an E × B drift motion that symmetrizes the core, i.e. damps the m = 2 mode. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451.
Measurement of 0.511-MeV gamma rays with a balloon-borne Ge/Li/ spectrometer
NASA Technical Reports Server (NTRS)
Ling, J. C.; Mahoney, W. A.; Willett, J. B.; Jacobson, A. S.
1977-01-01
A collimated high-resolution gamma ray spectrometer was flown on a balloon over Palestine, Texas, on June 10, 1974, to obtain measurements of the terrestrial and extraterrestrial 0.511-MeV gamma rays. The spectrometer consists of four 40-cu-cm Ge(Li) crystals operating in the energy range 0.06-10 MeV; this cluster of detectors is surrounded by a CsI(Na) anticoincidence shield. This system is used primarily to allow measurements of the two escape peaks associated with high-energy gamma ray lines. It also allows a measurement of the background component of the 0.511-MeV flux produced by beta(+) decays in materials inside the CsI(Na) shield. It is shown that the measurements of the atmospheric fluxes are consistent with earlier results after allowance is made for an additional component of the background due to beta(+) decays produced by neutron- and proton-initiated interactions with materials in and near the detector. Results of the extraterrestrial flux require an extensive detailed analysis of the time-varying background because of activation buildup and balloon spatial drifts.
Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare
NASA Astrophysics Data System (ADS)
Yu, S.; Chen, B.; Reeves, K.
2017-12-01
We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.
The Role of Convection in the Buildup of the Ring Current Pressure during the March 17, 2013 Storm
NASA Astrophysics Data System (ADS)
Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Skoug, R. M.; Funsten, H. O.; Larsen, B.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.
2016-12-01
On March 17, 2013, the Van Allen Probes, with their apogee 1 hour post-midnight, measured the H+ and O+ fluxes of ring current during a large geomagnetic storm. Detailed examination of the pressure build-up during the storm shows that there can be large differences in the pressure measured by the two spacecraft with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H+ and O+ pressure contributions are about equal during the main phase in the near-earth plasma sheet outside L=5.5, the O+ pressure becomes dominant at lower L-values. We test whether adiabatic convective transport from the near earth plasma sheet (L>5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer '96 electric field we model the drift trajectories to show that the key features can be explained by the drift of a changing source population and energy and L-shell dependent access and drift times. Finally, we show that the dominance of O+ at low L-shells is due partly to a plasma sheet source that is preferentially enhanced in O+ at lower energies (5-10 keV) and partly due to the time dependence in the source, combined with the longer drift times to low L-shells. No source of O+ inside L=5.5 is required.
On the Radio Detectability of Circumplanetary Discs
NASA Astrophysics Data System (ADS)
Zhu, Zhaohuan; Andrews, Sean M.; Isella, Andrea
2018-06-01
Discs around young planets, so-called circumplanetary discs (CPDs), are essential for planet growth, satellite formation, and planet detection. We study the millimetre and centimetre emission from accreting CPDs by using the simple α disc model. We find that it is easier to detect CPDs at shorter radio wavelengths (e.g. λ ≲ 1 mm). For example, if the system is 140 pc away from us, deep observations (e.g. 5 hours) at ALMA Band 7 (0.87 mm) are sensitive to as small as 0.03 lunar mass of dust in CPDs. If the CPD is around a Jupiter mass planet 20 AU away from the host star and has a viscosity parameter α ≲ 0.001, ALMA can detect this disc when it accretes faster than 10-10M⊙/yr. ALMA can also detect the "minimum mass sub-nebulae" disc if such a disc exists around a young planet in YSOs. However, to distinguish the embedded compact CPD from the circumstellar disc material, we should observe circumstellar discs with large gaps/cavities using the highest resolution possible. We also calculate the CPD fluxes at VLA bands, and discuss the possibility of detecting radio emission from jets/winds launched in CPDs. Finally we argue that, if the radial drift of dust particles is considered, the drifting timescale for millimetre dust in CPDs can be extremely short. It only takes 102-103 years for CPDs to lose millimetre dust. Thus, for CPDs to be detectable at radio wavelengths, mm-sized dust in CPDs needs to be replenished continuously, or the disc has a significant fraction of micron-sized dust or a high gas surface density so that the particle drifting timescale is long, or the radial drift is prevented by other means (e.g. pressure traps).
Stratospheric and Tropospheric Contributions to the Flux of Moist Static Energy Across 70ºN
NASA Astrophysics Data System (ADS)
Cardinale, C.; Rose, B. E. J.
2017-12-01
The flux of moist static energy (MSE) across 70ºN plays a key role in the energy budget and climate of the Arctic. This flux, which provides about 100 W/m2 heating of the polar cap, is usually studied from a vertically integrated perspective. Here we examine its vertical structure, using the MERRA-2 reanalysis to compute monthly fluxes of sensible, latent and potential energy across 70ºN for the period 1980-2016. The flux is bimodal, with peaks in the lower troposphere and in the stratosphere around 50 hPa, and is near zero at the tropopause. Distinctly different seasonal cycles are found for the stratospheric and tropospheric components. The fraction of the total integrated MSE flux occurring in the stratosphere is 19% during a typical winter and only 7% during summer. Interannual variability of the stratospheric flux is intimately connected to sudden stratospheric warming (SSW) events. Months in which SSWs are observed feature both an increased total flux and a larger fraction occurring in the stratosphere (up to 35% of the total). For comparison we also compute the MSE flux at 65ºS, and find a large increase in the total flux coincident with the only observed southern hemisphere SSW in 2002. The relationship between the tropospheric and stratospheric fluxes are explored through lead-lag correlations. The strongest correlation (+0.29) is found with the troposphere leading the stratosphere by 1 month. This positive correlation appears to be stronger during SSWs. With the stratosphere leading by 1 month, a weaker correlation of -0.14 is found. Qualitatively similar results are found at 65ºS. No trend is detected in the stratospheric flux. A statistically significant trend of -1.30 W/m2 per decade is found for the NH tropospheric flux.
NASA Astrophysics Data System (ADS)
Momary, Thomas W.; Baines, Kevin H.; Badman, Sarah; Brown, Robert H.; Buratti, Bonnie J.; Clark, Roger N.; Nicholson, Philip D.; Sotin, Christophe
2015-11-01
Once the home of the enigmatic String of Pearls feature on Saturn, the region of 34o N was the scene of a titanic storm system that swept around the planet in late 2010/2011. It left two things in its wake - a clear 5-μm bright zone around the planet, and a curious and persistent anticylone, both of which remain to this day. We have observed this anticyclone with Cassini/VIMS since 2011 and find that it seems to oscillate up and down latitudinally in this stormy region. Centered at 35.9o planetocentric latitude in May 2011, it drifted northward to 37.8o in 2012, hovered near 37o through 2013, then settled southward back down to ~35.9o in 2014. 2015 has it once again drifting northward to ~37o. It also periodically interacts with the dark band above it exchanging material in August 2013 and May 2015. We measured a prograde zonal drift speed of ~22 m/s in 2012, increasing as much as 60% through 2013, then relaxing back to a more moderate ~15 m/s in 2014 as the oval sagged southward. We expect its current 15.4 m/s rate to increase if it continues to drift northward in latitude, following the Voyager wind profile. The feature has varied in size as well, spanning 4.9o x 3.2o in 2011, elongating zonally to 7.3o x 2.9o by 2013, contracting in 2014 to an average of ~5.5o x ~2.9o, and growing again to ~9o x ~4o in 2015, with an extended tendril of material streaming off one edge in May. By August, it was symmetrically oval again. It has varied in terms of cloudiness, being ~90% 5-μm dark (obscured) in 2011, whereas by 2013 it was mostly bright (clear) with a thin dark edge, now returning to ~90% dark in 2015. By utilizing night observations to isolate thermal flux, we find that the mean 5-μm flux coming from the anticyclone has diminished steadily by about 50% since 2013. The storm latitude of ~34o N itself has remained remarkably 5-μm bright since 2011, but has begun to dim as well, and is now bisected by a thin dark cloudy ribbon which appears associated with the anticyclone. We are continuing to monitor the evolution of the anticyclone and the Storm Region over time with Cassini/VIMS.
Ionospheric climatology at Africa EIA trough stations during descending phase of sunspot cycle 22
NASA Astrophysics Data System (ADS)
Adebesin, B. O.; Rabiu, A. B.; Bolaji, O. S.; Adeniyi, J. O.; Amory-Mazaudier, C.
2018-07-01
The African equatorial ionospheric climatology during the descending phase of sunspot-cycle 22 (spanning 1992-1996) was investigated using 3 ionosondes located at Dakar (14.70 N, 342.60 E), Ouagadougou (12.420 N, 358.60 E), and Korhogo (9.510 N, 354.40 E). The variations in the virtual height of the F-layer (h'F), maximum electron density (NmF2), vertical plasma drift (Vp) and zonal electric field (Ey) were presented. Significant decrease in the NmF2 amplitude compared to h'F in all of the stations during the descending period is obvious. While NmF2 magnitude maximizes/minimizes during the E-seasons/J-season, h'F attained highest/lowest altitude in J-season/D-season for all stations. D-season anomaly was evident in NmF2 at all stations. For any season, the intensity (Ibt) of NmF2 noon-bite-out is highest at Dakar owning to fountain effect and maximizes in March-E season. Stations across the EIA trough show nearly coherence ionospheric climatology characteristics whose difference is of latitudinal origin. Hemispheric dependence in NmF2 is obvious, with difference more significant during high-solar activity and closes with decreasing solar activity. The variability in the plasma drift during the entire phase is suggested to emanate from solar flux variations, and additionally from enhanced leakage of electric fields from high-to low-latitudes. Existing African regional model of evening/nightttime pre-reversal plasma drift/sunspot number (PREpeak/R) relationship compares well with experimental observations at all stations with slight over-estimation. The correlation/root-mean-square-deviation (RMSdev) pair between the model and observed Vp during the descending phase recorded 94.9%/0.756, 92.4%/1.526, and 79.1%/3.612 at Korhogo, Ouagadougou and Dakar respectively. The Ey/h'F and Ey/NmF2 relationships suggest that zonal electric field is more active in the lifting of h'F and suppression of NmF2 during high- and moderate-solar activities when compared with low-solar activity. This is the first work to show higher bite-out at the equatorial northern-station (Dakar) than southern-station (Korhogo) using ionosonde data.
The ecology of flows and drift wave turbulence in CSDX: A model
NASA Astrophysics Data System (ADS)
Hajjar, R. J.; Diamond, P. H.; Tynan, G. R.
2018-02-01
This paper describes the ecology of drift wave turbulence and mean flows in the coupled drift-ion acoustic wave plasma of a CSDX linear device. A 1D reduced model that studies the spatiotemporal evolution of plasma mean density n ¯ , and mean flows v¯ y and v¯ z , in addition to fluctuation intensity ε, is presented. Here, ε=
Measuring the equations of state in a relaxed magnetohydrodynamic plasma.
Kaur, M; Barbano, L J; Suen-Lewis, E M; Shrock, J E; Light, A D; Brown, M R; Schaffner, D A
2018-01-01
We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.
Measuring the equations of state in a relaxed magnetohydrodynamic plasma
NASA Astrophysics Data System (ADS)
Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Brown, M. R.; Schaffner, D. A.
2018-01-01
We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurie, M.; Vlahovic, L.; Rondinella, V.V.
Temperature measurements in the nuclear field require a high degree of reliability and accuracy. Despite their sheathed form, thermocouples subjected to nuclear radiations undergo changes due to radiation damage and transmutation that lead to significant EMF drift during long-term fuel irradiation experiment. For the purpose of a High Temperature Reactor fuel irradiation to take place in the High Flux Reactor Petten, a dedicated fixed-point cell was jointly developed by LNE-Cnam and JRC-IET. The developed cell to be housed in the irradiation rig was tailor made to quantify the thermocouple drift during the irradiation (about two year duration) and withstand highmore » temperature (in the range 950 deg. C - 1100 deg. C) in the presence of contaminated helium in a graphite environment. Considering the different levels of temperature achieved in the irradiation facility and the large palette of thermocouple types aimed at surveying the HTR fuel pebble during the qualification test both copper (1084.62 deg. C) and gold (1064.18 deg. C) fixed-point materials were considered. The aim of this paper is to first describe the fixed-point mini-cell designed to be embedded in the reactor rig and to discuss the preliminary results achieved during some out of pile tests as much as some robustness tests representative of the reactor scram scenarios. (authors)« less
Simulation of ITG instabilities with fully kinetic ions and drift-kinetic electrons in tokamaks
NASA Astrophysics Data System (ADS)
Hu, Youjun; Chen, Yang; Parker, Scott
2017-10-01
A turbulence simulation model with fully kinetic ions and drift-kinetic electrons is being developed in the toroidal electromagnetic turbulence code GEM. This is motivated by the observation that gyrokinetic ions are not well justified in simulating turbulence in tokamak edges with steep density profile, where ρi / L is not small enough to be used a small parameter needed by the gyrokinetic ordering (here ρi is the gyro-radius of ions and L is the scale length of density profile). In this case, the fully kinetic ion model may be useful. Our model uses an implicit scheme to suppress high-frequency compressional Alfven waves and waves associated with the gyro-motion of ions. The ion orbits are advanced by using the well-known Boris scheme, which reproduces correct drift-motion even with large time-step comparable to the ion gyro-period. The field equation in this model is Ampere's law with the magnetic field eliminated by using an implicit scheme of Faraday's law. The current contributed by ions are computed by using an implicit δf method. A flux tube approximation is adopted, which makes the field equation much easier to solve. Numerical results of electromagnetic ITG obtained from this model will be presented and compared with the gyrokinetic results. This work is supported by U.S. Department of Energy, Office of Fusion Energy Sciences under Award No. DE-SC0008801.
Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range
NASA Technical Reports Server (NTRS)
Decker, Ryan K.
2017-01-01
Spatial separation of HR rawinsonde data is directly correlated with climatological tropospheric wind environment over ER. Stronger winds in the winter result in further downrange drift. Lighter winds in the summer result in the less horizontal drift during ascent. Maximum downrange distance can exceed 200 km during winter months. Data could misrepresent the environment the vehicle will experience during ascent. PRESTO uses all available data sources to produce the best representative, vertically complete atmosphere for launch vehicle DOL operations. Capability planned for use by NASA Space Launch System vehicle's first flight scheduled for Fall 2018.
Micro-bubbles and Micro-particles are Not Faithful Tracers of Turbulent Acceleration
NASA Astrophysics Data System (ADS)
Sun, Chao; Mathai, Varghese; Calzavarini, Enrico; Brons, Jon; Lohse, Detlef
2016-11-01
We report on the Lagrangian statistics of acceleration of small (sub-Kolmogorov) bubbles and tracer particles with Stokes number St <<1 in turbulent flow. At decreasing Reynolds number, the bubble accelerations show deviations from that of tracer particles, i.e. they deviate from the Heisenberg-Yaglom prediction and show a quicker decorrelation despite their small size and minute St. Using direct numerical simulations, we show that these effects arise due the drift of these particles through the turbulent flow. We theoretically predict this gravity-driven effect for developed isotropic turbulence, with the ratio of Stokes to Froude number or equivalently the particle drift-velocity governing the enhancement of acceleration variance and the reductions in correlation time and intermittency. Our predictions are in good agreement with experimental and numerical results. The present findings are relevant to a range of scenarios encompassing tiny bubbles and droplets that drift through the turbulent oceans and the atmosphere.
Drift-wave turbulence and zonal flow generation.
Balescu, R
2003-10-01
Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessho, Yasunori; Yokomizo, Osamu; Yoshimoto, Yuichiro
1997-03-01
Development and qualification results are described for a three-dimensional, time-domain core dynamics analysis program for commercial boiling water reactors (BWRs). The program allows analysis of the reactor core with a detailed mesh division, which eliminates calculational ambiguity in the nuclear-thermal-hydraulic stability analysis caused by reactor core regional division. During development, emphasis was placed on high calculational speed and large memory size as attained by the latest supercomputer technology. The program consists of six major modules, namely a core neutronics module, a fuel heat conduction/transfer module, a fuel channel thermal-hydraulic module, an upper plenum/separator module, a feedwater/recirculation flow module, and amore » control system module. Its core neutronics module is based on the modified one-group neutron kinetics equation with the prompt jump approximation and with six delayed neutron precursor groups. The module is used to analyze one fuel bundle of the reactor core with one mesh (region). The fuel heat conduction/transfer module solves the one-dimensional heat conduction equation in the radial direction with ten nodes in the fuel pin. The fuel channel thermal-hydraulic module is based on separated three-equation, two-phase flow equations with the drift flux correlation, and it analyzes one fuel bundle of the reactor core with one channel to evaluate flow redistribution between channels precisely. Thermal margin is evaluated by using the GEXL correlation, for example, in the module.« less
Long-period variations of wind parameters in the mesopause region and the solar cycle dependence
NASA Technical Reports Server (NTRS)
Greisiger, K. M.; Schminder, R.; Kuerschner, D.
1987-01-01
The solar cycle dependence of wind parameters below 100 km on the basis of long term continuous ionospheric drift measurements in the low frequency range is discussed. For the meridional prevailing wind no significant variation was found. The same comparison as for winter was done for summer where the previous investigations gave no correlation. Now the radar meteor wind measurement values, too, showed a significant negative correlation of the zonal prevailing wind with solar activity for the years 1976 to 1983. The ionospheric drift measurement results of Collm have the same tendency but a larger dispersion due to the lower accuracy of the harmonic analysis because of the shorter daily measuring interval in summer. Continuous wind observations in the upper mesopause region over more than 20 years revealed distinct long term variations, the origin of which cannot be explained with the present knowledge.
The MTV experiment: a test of time reversal symmetry using polarized 8Li
NASA Astrophysics Data System (ADS)
Murata, J.; Baba, H.; Behr, J. A.; Hirayama, Y.; Iguri, T.; Ikeda, M.; Kato, T.; Kawamura, H.; Kishi, R.; Levy, C. D. P.; Nakaya, Y.; Ninomiya, K.; Ogawa, N.; Onishi, J.; Openshaw, R.; Pearson, M.; Seitaibashi, E.; Tanaka, S.; Tanuma, R.; Totsuka, Y.; Toyoda, T.
2014-01-01
The MTV ( Mott Polarimetry for T- Violation Experiment) experiment at TRIUMF-ISAC ( Isotope Separator and ACcelerator), which aims to achieve the highest precision test of time reversal symmetry in polarized nuclear beta decay by measuring a triple correlation ( R-correlation), is motivated by the search for a new physics beyond the Standard Model. In this experiment, the existence of non-zero transverse electron polarization is examined utilizing the analyzing power of Mott scattering from a thin metal foil. Backward scattering electron tracks are measured using a multi-wire drift chamber for the first time. The MTV experiment was commissioned at ISAC in 2009 using an 80 % polarized 8Li beam at 107 pps, resulting in 0.1 % statistical precision on the R-parameter in the first physics run performed in 2010. Next generation cylindrical drift chamber (CDC) is now being installed for the future run.
Jeong, Jong Seok; Mkhoyan, K Andre
2016-06-01
Acquiring an atomic-resolution compositional map of crystalline specimens has become routine practice, thus opening possibilities for extracting subatomic information from such maps. A key challenge for achieving subatomic precision is the improvement of signal-to-noise ratio (SNR) of compositional maps. Here, we report a simple and reliable solution for achieving high-SNR energy-dispersive X-ray (EDX) spectroscopy spectrum images for individual atomic columns. The method is based on standard cross-correlation aided by averaging of single-column EDX maps with modifications in the reference image. It produces EDX maps with minimal specimen drift, beam drift, and scan distortions. Step-by-step procedures to determine a self-consistent reference map with a discussion on the reliability, stability, and limitations of the method are presented here.
Arvidsson, Tommy; Bergström, Lars; Kreuger, Jenny
2011-06-01
In this study, the collecting efficiency of different samplers of airborne drift was compared both in wind tunnel and in field experiments. The aim was to select an appropriate sampler for collecting airborne spray drift under field conditions. The wind tunnel study examined three static samplers and one dynamic sampler. The dynamic sampler had the highest overall collecting efficiency. Among the static samplers, the pipe cleaner collector had the highest efficiency. These two samplers were selected for evaluation in the subsequent field study. Results from 29 individual field experiments showed that the pipe cleaner collector on average had a 10% lower collecting efficiency than the dynamic sampler. However, the deposits on the pipe cleaners generally were highest at the 0.5 m level, and for the dynamic sampler at the 1 m level. It was concluded from the wind tunnel part of the study that the amount of drift collected on the static collectors had a more strongly positive correlation with increasing wind speed compared with the dynamic sampler. In the field study, the difference in efficiency between the two types of collector was fairly small. As the difference in collecting efficiency between the different types of sampler was small, the dynamic sampler was selected for further measurements of airborne drift under field conditions owing to its more well-defined collecting area. This study of collecting efficiency of airborne spray drift of static and dynamic samplers under field conditions contributes to increasing knowledge in this field of research. Copyright © 2011 Society of Chemical Industry.
Neuswanger, Jason R.; Wipfli, Mark S.; Rosenberger, Amanda E.; Hughes, Nicholas F.
2014-01-01
Drift-feeding fish are challenged to discriminate between prey and similar-sized particles of debris, which are ubiquitous even in clear-water streams. Spending time and energy pursuing debris mistaken as prey could affect fish growth and the fitness potential of different foraging strategies. Our goal was to determine the extent to which debris influences drift-feeding fish in clear water under low-flow conditions when the distracting effect of debris should be at a minimum. We used high-definition video to measure the reactions of drift-feeding juvenile Chinook salmon (Oncorhynchus tshawytscha) to natural debris and prey in situ in the Chena River, Alaska. Among all potential food items fish pursued, 52 % were captured and quickly expelled from the mouth, 39 % were visually inspected but not captured, and only 9 % were ingested. Foraging attempt rate was only moderately correlated with ingestion rate (Kendall’s τ = 0.55), raising concerns about the common use of foraging attempts as a presumed index of foraging success. The total time fish spent handling debris increased linearly with foraging attempt rate and ranged between 4 and 25 % of total foraging time among observed groups. Our results help motivate a revised theoretical view of drift feeding that emphasizes prey detection and discrimination, incorporating ideas from signal detection theory and the study of visual attention in cognitive ecology. We discuss how these ideas could lead to better explanations and predictions of the spatial behavior, prey selection, and energy intake of drift-feeding fish.
Flux-driven turbulence GDB simulations of the IWL Alcator C-Mod L-mode edge compared with experiment
NASA Astrophysics Data System (ADS)
Francisquez, Manaure; Zhu, Ben; Rogers, Barrett
2017-10-01
Prior to predicting confinement regime transitions in tokamaks one may need an accurate description of L-mode profiles and turbulence properties. These features determine the heat-flux width upon which wall integrity depends, a topic of major interest for research aid to ITER. To this end our work uses the GDB model to simulate the Alcator C-Mod edge and contributes support for its use in studying critical edge phenomena in current and future tokamaks. We carried out 3D electromagnetic flux-driven two-fluid turbulence simulations of inner wall limited (IWL) C-Mod shots spanning closed and open flux surfaces. These simulations are compared with gas puff imaging (GPI) and mirror Langmuir probe (MLP) data, examining global features and statistical properties of turbulent dynamics. GDB reproduces important qualitative aspects of the C-Mod edge regarding global density and temperature profiles, within reasonable margins, and though the turbulence statistics of the simulated turbulence follow similar quantitative trends questions remain about the code's difficulty in exactly predicting quantities like the autocorrelation time A proposed breakpoint in the near SOL pressure and the posited separation between drift and ballooning dynamics it represents are examined This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).
A gyrokinetic collision operator for magnetized Lorentz plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Chang; Ma Chenhao; Yu Xiongjie
2011-03-15
A gyrocenter collision operator for magnetized Lorentz plasmas is derived using the Fokker-Plank method. The gyrocenter collision operator consists of drift and diffusion terms in the gyrocenter coordinates, including the diffusion of the gyrocenter, which does not exist for the collision operator in the particle phase space coordinates. The gyrocenter collision operator also depends on the transverse electric field explicitly, which is crucial for the correct treatment of collisional effects and transport in the gyrocenter coordinates. The gyrocenter collision operator derived is applied to calculate the particle and heat transport fluxes in a magnetized Lorentz plasma with an electric field.more » The particle and heat transport fluxes calculated from our gyrocenter collision operator agree exactly with the classical Braginskii's result [S. I. Braginskii, Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1, p. 205: P. Helander and D. J. Sigmar, Collisional Transport in Magnetized Plasmas (Cambridge University, Cambridge, 2002), p. 65], which validates the correctness of our collision operator. To calculate the transport fluxes correctly, it is necessary to apply the pullback transformation associated with gyrocenter coordinate transformation in the presence of collisions, which also serves as a practical algorithm for evaluating collisional particle and heat transport fluxes in the gyrocenter coordinates.« less
Flux and spectral variation characteristics of 3C 454.3 at the GeV band
NASA Astrophysics Data System (ADS)
Zhang, Hai-Ming; Zhang, Jin; Lu, Rui-Jing; Yi, Ting-Feng; Huang, Xiao-Li; Liang, En-Wei
2018-04-01
We analyze the long-term lightcurve of 3C 454.3 observed with Fermi/LAT and investigate its relation to flux in the radio, optical and X-ray bands. By fitting the 1-day binned GeV lightcurve with multiple Gaussian functions (MGF), we propose that the typical variability timescale in the GeV band is 1–10 d. The GeV flux variation is accompanied by the spectral variation characterized as flux-tracking, i.e., “harder when brighter.” The GeV flux is correlated with the optical and X-ray fluxes, and a weak correlation between γ-ray flux and radio flux is also observed. The γ-ray flux is not correlated with the optical linear polarization degree for the global lightcurves, but they show a correlation for the lightcurves before MJD 56000. The power density spectrum of the global lightcurve shows an obvious turnover at ∼ 7.7 d, which may indicate a typical variability timescale of 3C 454.3 in the γ-ray band. This is also consistent with the derived timescales by fitting the global lightcurve with MGF. The spectral evolution and an increase in the optical linear polarization degree along with the increase in γ-ray flux may indicate that the radiation particles are accelerated and the magnetic field is ordered by the shock processes during the outbursts. In addition, the nature of 3C 454.3 may be consistent with a self-organized criticality system, similar to Sagittarius A*, and thus the outbursts could be from plasmoid ejections driven by magnetic reconnection. This may further support the idea that the jet radiation regions are magnetized.
Mountain-Scale Coupled Processes (TH/THC/THM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides themore » necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The Mountain-Scale THM Model focuses on evaluating the changes in 3-D UZ flow fields arising out of thermal stress and rock deformation during and after the thermal periods.« less
Sueker, J.K.; Clow, D.W.; Ryan, J.N.; Jarrett, R.D.
2001-01-01
Alpine/subalpine basins may exhibit substantial variability in solute fluxes despite many apparent similarities in basin characteristics. An evaluation of controls on spatial patterns in solute fluxes may allow development of predictive tools for assessing basin sensitivity to outside perturbations such as climate change or deposition of atmospheric pollutants. Relationships between basin physical characteristics, determined from geographical information system (GIS) tools, and solute fluxes and mineral weathering rates were explored for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, using correlation analyses for 1993 and 1994 data. Stream-water nitrate fluxes were correlated positively with basin characteristics associated with the talus environment; i.e., the fractional amounts of steep slopes (??? 30??), unvegetated terrain and young debris (primarily Holocene till) in the basins, and were correlated negatively with fractional amounts of subalpine meadow terrain. Correlations with nitrate indicate the importance of the talus environment in promoting nitrate flux and the mitigating effect of areas with established vegetation, such as subalpine meadows. Total mineral weathering rates for the basins ranged from about 300 to 600 mol ha-1 year -1. Oligoclase weathering accounted for 30 to 73% of the total mineral weathering flux, and was positively correlated with the amount of old debris (primarily Pleistocene glacial till) in the basins. Although calcite is found in trace amounts in bedrock, calcite weathering accounted for up to 44% of the total mineral weathering flux. Calcite was strongly correlated with steep slope, unvegetated terrain, and young debris-probably because physical weathering in steep-gradient areas exposes fresh mineral surfaces that contain calcite for chemical weathering. Oligoclase and calcite weathering are the dominant sources of alkalinity in the basins. However, atmospherically deposited acids consume much of the alkalinity generated by weathering of calcite and other minerals in the talus environment. Published in 2001 by John Wiley and Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sueker, Julie K.; Clow, David W.; Ryan, Joseph N.; Jarrett, Robert D.
2001-10-01
Alpine/subalpine basins may exhibit substantial variability in solute fluxes despite many apparent similarities in basin characteristics. An evaluation of controls on spatial patterns in solute fluxes may allow development of predictive tools for assessing basin sensitivity to outside perturbations such as climate change or deposition of atmospheric pollutants. Relationships between basin physical characteristics, determined from geographical information system (GIS) tools, and solute fluxes and mineral weathering rates were explored for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, using correlation analyses for 1993 and 1994 data. Stream-water nitrate fluxes were correlated positively with basin characteristics associated with the talus environment; i.e., the fractional amounts of steep slopes ( 30°), unvegetated terrain and young debris (primarily Holocene till) in the basins, and were correlated negatively with fractional amounts of subalpine meadow terrain. Correlations with nitrate indicate the importance of the talus environment in promoting nitrate flux and the mitigating effect of areas with established vegetation, such as subalpine meadows. Total mineral weathering rates for the basins ranged from about 300 to 600 mol ha-1 year-1. Oligoclase weathering accounted for 30 to 73% of the total mineral weathering flux, and was positively correlated with the amount of old debris (primarily Pleistocene glacial till) in the basins. Although calcite is found in trace amounts in bedrock, calcite weathering accounted for up to 44% of the total mineral weathering flux. Calcite was strongly correlated with steep slope, unvegetated terrain, and young debris - probably because physical weathering in steep-gradient areas exposes fresh mineral surfaces that contain calcite for chemical weathering. Oligoclase and calcite weathering are the dominant sources of alkalinity in the basins. However, atmospherically deposited acids consume much of the alkalinity generated by weathering of calcite and other minerals in the talus environment. Published in 2001 by John Wiley & Sons, Ltd.
Behavior of moving plasma in solenoidal magnetic field in a laser ion source
NASA Astrophysics Data System (ADS)
Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.
2016-02-01
In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.
Behavior of moving plasma in solenoidal magnetic field in a laser ion source.
Ikeda, S; Takahashi, K; Okamura, M; Horioka, K
2016-02-01
In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.
Scalable Graphene-Based Membranes for Ionic Sieving with Ultrahigh Charge Selectivity.
Hong, Seunghyun; Constans, Charlotte; Surmani Martins, Marcos Vinicius; Seow, Yong Chin; Guevara Carrió, Juan Alfredo; Garaj, Slaven
2017-02-08
Nanostructured graphene-oxide (GO) laminate membranes, exhibiting ultrahigh water flux, are excellent candidates for next generation nanofiltration and desalination membranes, provided the ionic rejection could be further increased without compromising the water flux. Using microscopic drift-diffusion experiments, we demonstrated the ultrahigh charge selectivity for GO membranes, with more than order of magnitude difference in the permeabilities of cationic and anionic species of equivalent hydration radii. Measuring diffusion of a wide range of ions of different size and charge, we were able to clearly disentangle different physical mechanisms contributing to the ionic sieving in GO membranes: electrostatic repulsion between ions and charged chemical groups; and the compression of the ionic hydration shell within the membrane's nanochannels, following the activated behavior. The charge-selectivity allows us to rationally design membranes with increased ionic rejection and opens up the field of ion exchange and electrodialysis to the GO membranes.
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Cassak, P.; Jia, X.; Gombosi, T. I.; Slavin, J. A.; Welling, D. T.; Markidis, S.; Peng, I. B.; Jordanova, V. K.; Henderson, M. G.
2017-12-01
We perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the interaction between the solar wind and Earth's magnetosphere. In this global simulation with magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC), both the dayside magnetopause reconnection region and the magnetotail reconnection region are covered with a kinetic particle-in-cell code iPIC3D, which is two-way coupled with the global MHD model BATS-R-US. We will describe the dayside reconnection related phenomena, such as the lower hybrid drift instability (LHDI) and the evolution of the flux transfer events (FTEs) along the magnetopause, and compare the simulation results with observations. We will also discuss the response of the magnetotail to the southward IMF. The onset of the tail reconnection and the properties of the magnetotail flux ropes will be discussed.
Aspect ratio effects on limited scrape-off layer plasma turbulence
NASA Astrophysics Data System (ADS)
Jolliet, Sébastien; Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo
2014-02-01
The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.
Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter
NASA Technical Reports Server (NTRS)
Fillius, Walker
1988-01-01
There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between flux tube and absorber, when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities have been computed in drift encounters for all regimes of particle energies and absorber sizes. This technique generalizes the approach to sweeping lifetimes, and is particularly suitable for attacking the inverse problem, where one is given a sweeping signature and wants to deduce the properties of the absorber(s).
Relation between perception of vertical axis rotation and vestibulo-ocular reflex symmetry
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Benolken, Martha S.
1991-01-01
Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in the subject's perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function which could be of either central or peripheral origin. Deviations from perfect vestibulocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. Researchers looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflective and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests on the same subjects of both perceptual bias and VOR symmetry were well correlated.
General correlation for prediction of critical heat flux ratio in water cooled channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pernica, R.; Cizek, J.
1995-09-01
The paper present the general empirical Critical Heat Flux Ration (CHFR) correlation which is valid for vertical water upflow through tubes, internally heated concentric annuli and rod bundles geometries with both wide and very tight square and triangular rods lattices. The proposed general PG correlation directly predicts the CHFR, it comprises axial and radial non-uniform heating, and is valid in a wider range of thermal hydraulic conditions than previously published critical heat flux correlations. The PG correlation has been developed using the critical heat flux Czech data bank which includes more than 9500 experimental data on tubes, 7600 data onmore » rod bundles and 713 data on internally heated concentric annuli. Accuracy of the CHFR prediction, statistically assessed by the constant dryout conditions approach, is characterized by the mean value nearing 1.00 and the standard deviation less than 0.06. Moverover, a subchannel form of the PG correlations is statistically verified on Westinghouse and Combustion Engineering rod bundle data bases, i.e. more than 7000 experimental CHF points of Columbia University data bank were used.« less
A formal approach for the prediction of the critical heat flux in subcooled water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardi, C.
1995-09-01
The critical heat flux (CHF) in subcooled water at high mass fluxes are not yet satisfactory correlated. For this scope a formal approach is here followed, which is based on an extension of the parameters and the correlation used for the dryout prediction for medium high quality mixtures. The obtained correlation, in spite of its simplicity and its explicit form, yields satisfactory predictions, also when applied to more conventional CHF data at low-medium mass fluxes and high pressures. Further improvements are possible, if a more complete data bank will be available. The main and general open item is the definitionmore » of a criterion, depending only on independent parameters, such as mass flux, pressure, inlet subcooling and geometry, to predict whether the heat transfer crisis will result as a DNB or a dryout phenomenon.« less
Simulations of particle and heat fluxes in an ELMy H-mode discharge on EAST using BOUT++ code
NASA Astrophysics Data System (ADS)
Wu, Y. B.; Xia, T. Y.; Zhong, F. C.; Zheng, Z.; Liu, J. B.; team3, EAST
2018-05-01
In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts on the Experimental Advanced Superconducting Tokamak (EAST), the BOUT++ six-field two-fluid model is used to simulate the pedestal collapse. The profiles from the EAST H-mode discharge #56129 are used as the initial conditions. Linear analysis shows that the resistive ballooning mode and drift-Alfven wave are two dominant instabilities for the equilibrium, and play important roles in driving ELMs. The evolution of the density profile and the growing process of the heat flux at divertor targets during the burst of ELMs are reproduced. The time evolution of the poloidal structures of T e is well simulated, and the dominant mode in each stage of the ELM crash process is found. The studies show that during the nonlinear phase, the dominant mode is 5, and it changes to 0 when the nonlinear phase goes to saturation after the ELM crash. The time evolution of the radial electron heat flux, ion heat flux, and particle density flux at the outer midplane (OMP) are obtained, and the corresponding transport coefficients D r, χ ir, and χ er reach maximum around 0.3 ∼ 0.5 m2 s‑1 at ΨN = 0.9. The heat fluxes at outer target plates are several times larger than that at inner target plates, which is consistent with the experimental observations. The simulated profiles of ion saturation current density (j s) at the lower outboard (LO) divertor target are compared to those of experiments by Langmuir probes. The profiles near the strike point are similar, and the peak values of j s from simulation are very close to the measurements.
Theory comparison and numerical benchmarking on neoclassical toroidal viscosity torque
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Park, Jong-Kyu; Liu, Yueqiang; Logan, Nikolas; Kim, Kimin; Menard, Jonathan E.
2014-04-01
Systematic comparison and numerical benchmarking have been successfully carried out among three different approaches of neoclassical toroidal viscosity (NTV) theory and the corresponding codes: IPEC-PENT is developed based on the combined NTV theory but without geometric simplifications [Park et al., Phys. Rev. Lett. 102, 065002 (2009)]; MARS-Q includes smoothly connected NTV formula [Shaing et al., Nucl. Fusion 50, 025022 (2010)] based on Shaing's analytic formulation in various collisionality regimes; MARS-K, originally computing the drift kinetic energy, is upgraded to compute the NTV torque based on the equivalence between drift kinetic energy and NTV torque [J.-K. Park, Phys. Plasma 18, 110702 (2011)]. The derivation and numerical results both indicate that the imaginary part of drift kinetic energy computed by MARS-K is equivalent to the NTV torque in IPEC-PENT. In the benchmark of precession resonance between MARS-Q and MARS-K/IPEC-PENT, the agreement and correlation between the connected NTV formula and the combined NTV theory in different collisionality regimes are shown for the first time. Additionally, both IPEC-PENT and MARS-K indicate the importance of the bounce harmonic resonance which can greatly enhance the NTV torque when E ×B drift frequency reaches the bounce resonance condition.
Rosenberger, A.E.; Dunham, J.B.; Buffington, J.M.; Wipfli, M.S.
2011-01-01
Wildfire and debris flows are important physical and ecological drivers in headwater streams of western North America. Past research has primarily examined short-term effects of these disturbances; less is known about longer-term impacts. We investigated wildfire effects on the invertebrate prey base for drift-feeding rainbow trout (Oncorhynchus mykiss, Walbaum) in Idaho headwater streams a decade after wildfire. Three stream types with different disturbance histories were examined: 1) unburned, 2) burned, and 3) burned followed by debris flows that reset channel morphology and riparian vegetation. The quantity of macroinvertebrate drift (biomass density) was more variable within than among disturbance categories. Average body weight and taxonomic richness of drift were significantly related to water temperature and influenced by disturbance history. During the autumn sampling period, the amount of terrestrial insects in rainbow trout diets varied with disturbance history and the amount of overhead canopy along the stream banks. Results indicate that there are detectable changes to macroinvertebrate drift and trout diet a decade after wildfire, and that these responses are better correlated with specific characteristics of the stream (water temperature, canopy cover) than with broad disturbance classes.
Intersaccadic drift velocity is sensitive to short-term hypobaric hypoxia.
Di Stasi, Leandro L; Cabestrero, Raúl; McCamy, Michael B; Ríos, Francisco; Catena, Andrés; Quirós, Pilar; Lopez, Jose A; Saez, Carolina; Macknik, Stephen L; Martinez-Conde, Susana
2014-04-01
Hypoxia, defined as decreased availability of oxygen in the body's tissues, can lead to dyspnea, rapid pulse, syncope, visual dysfunction, mental disturbances such as delirium or euphoria, and even death. It is considered to be one of the most serious hazards during flight. Thus, early and objective detection of the physiological effects of hypoxia is critical to prevent catastrophes in civil and military aviation. The few studies that have addressed the effects of hypoxia on objective oculomotor metrics have had inconsistent results, however. Thus, the question of whether hypoxia modulates eye movement behavior remains open. Here we examined the effects of short-term hypobaric hypoxia on the velocity of saccadic eye movements and intersaccadic drift of Spanish Air Force pilots and flight engineers, compared with a control group that did not experience hypoxia. Saccadic velocity decreased with time-on-duty in both groups, in correlation with subjective fatigue. Intersaccadic drift velocity increased in the hypoxia group only, suggesting that acute hypoxia diminishes eye stability, independently of fatigue. Our results suggest that intersaccadic drift velocity could serve as a biomarker of acute hypoxia. These findings may also contribute to our understanding of the relationship between hypoxia episodes and central nervous system impairments.
Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model
Bitzer, Sebastian; Park, Hame; Blankenburg, Felix; Kiebel, Stefan J.
2014-01-01
Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses. PMID:24616689
Olifer, Leonid; Mann, Ian R.; Morley, Steven Karl; ...
2018-04-20
We present observations of very fast radiation belt loss as resolved using high time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The time scale of these losses is revealed to be as short as ~0.5–2 hr during intense magnetic storms, with some storms demonstrating almost total loss on these time scales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the September 2014 storm shows fast extinction but no recovery for around 2 weeks. By contrast, themore » moderate September 2012 storm which generated a three radiation belt morphology shows more gradual loss. Here, we compute the last closed drift shell (LCDS) for each of these four storms and show a very strong correspondence between the LCDS and the loss patterns of trapped electrons in each storm. Most significantly, the location of the LCDS closely mirrors the high time resolution losses observed in GPS flux. The fast losses occur on a time scale shorter than the Van Allen Probes orbital period, are explained by proximity to the LCDS, and progress inward, consistent with outward transport to the LCDS by fast ultralow frequency wave radial diffusion. Expressing the location of the LCDS in L*, and not model magnetopause standoff distance in units of RE, clearly reveals magnetopause shadowing as the cause of the fast loss observed by the GPS satellites.« less
NASA Technical Reports Server (NTRS)
Watermann, Jurgen; Lummerzheim, Dirk; De La Beaujardiere, Odile; Newell, Patrick T.; Rich, Frederic J.
1994-01-01
We have examined Sondrestrom incoherent scatter radar observations of ionospheric plasma density and temperature distributions and measurements of F region ion drifts that were made during a prenoon pass of the Defense Meteorological Satellite Program (DMSP)-F7 satellite through the radar field of view. The spacecraft traversed a region of intense electron precipitation with a characteristic energy below approximately 200 eV. Particles with such low characteristic energies are believed to be directly or indirectly of magnetosheath origin. The precipitation region had a width about 2 deg invariant latitude and covered the low-latitude boundary layer (LLBL), the cusp, and the equatorward section of the plasma mantle (PM). The corotating radar observed a patch of enhanced electron density and elevated electron temperature in the F2 region between about 10.5 and 12 magnetic local time in the same invariant latitude range where DMSP-F7 detected the soft-electron flux. The ion drift pattern, also obtained by radar, shows that it is unlikely that the plasma patch was produced by solar radiation and advected into the radar field of view. We suggest that the radar observed modifications of the ionospheric plasma distribution, which resulted from direct entry of magnetosheath electrons into the magnetosphere and down to ionospheric altitudes. Model calculations of the ionospheric response to the observed electron precipitation support our interpretation. The spectral characteristics of the electron flux in the LLBL, cusp, and equatorward section of the PM were in this case too similar to allow to distinguish between them by using incoherent scatter radar measurements only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olifer, Leonid; Mann, Ian R.; Morley, Steven Karl
We present observations of very fast radiation belt loss as resolved using high time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The time scale of these losses is revealed to be as short as ~0.5–2 hr during intense magnetic storms, with some storms demonstrating almost total loss on these time scales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the September 2014 storm shows fast extinction but no recovery for around 2 weeks. By contrast, themore » moderate September 2012 storm which generated a three radiation belt morphology shows more gradual loss. Here, we compute the last closed drift shell (LCDS) for each of these four storms and show a very strong correspondence between the LCDS and the loss patterns of trapped electrons in each storm. Most significantly, the location of the LCDS closely mirrors the high time resolution losses observed in GPS flux. The fast losses occur on a time scale shorter than the Van Allen Probes orbital period, are explained by proximity to the LCDS, and progress inward, consistent with outward transport to the LCDS by fast ultralow frequency wave radial diffusion. Expressing the location of the LCDS in L*, and not model magnetopause standoff distance in units of RE, clearly reveals magnetopause shadowing as the cause of the fast loss observed by the GPS satellites.« less
Jet outflow and gamma-ray emission correlations in S5 0716+714
Rani, B.; Krichbaum, T. P.; Marscher, A. P.; ...
2014-11-06
Here, using millimeter very long baseline interferometry (VLBI) observations of the BL Lac object S5 0716+714 from August 2008 to September 2013, we investigate variations in the core flux density and orientation of the sub-parsec scale jet, i.e. position angle. The γ-ray data obtained by the Fermi Large Area Telescope are used to investigate the high-energy flux variations over the same time period. For the first time in any blazar, we report a significant correlation between the γ-ray flux variations and the position angle variations in the VLBI jet. The cross-correlation analysis also indicates a positive correlation such that themore » mm-VLBI core flux density variations are delayed with respect to the γ-ray flux by 82±32 days. This suggests that the high-energy emission is coming from a region located ≥(3.8±1.9) parsecs upstream of the mm-VLBI core (closer to the central black hole). Lastly, these results imply that the observed inner jet morphology has a strong connection with the observed γ-ray flares.« less
Jet outflow and gamma-ray emission correlations in S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, B.; Krichbaum, T. P.; Marscher, A. P.
Here, using millimeter very long baseline interferometry (VLBI) observations of the BL Lac object S5 0716+714 from August 2008 to September 2013, we investigate variations in the core flux density and orientation of the sub-parsec scale jet, i.e. position angle. The γ-ray data obtained by the Fermi Large Area Telescope are used to investigate the high-energy flux variations over the same time period. For the first time in any blazar, we report a significant correlation between the γ-ray flux variations and the position angle variations in the VLBI jet. The cross-correlation analysis also indicates a positive correlation such that themore » mm-VLBI core flux density variations are delayed with respect to the γ-ray flux by 82±32 days. This suggests that the high-energy emission is coming from a region located ≥(3.8±1.9) parsecs upstream of the mm-VLBI core (closer to the central black hole). Lastly, these results imply that the observed inner jet morphology has a strong connection with the observed γ-ray flares.« less
Correlation ion mobility spectroscopy
Pfeifer, Kent B [Los Lunas, NM; Rohde, Steven B [Corrales, NM
2008-08-26
Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.
Correlation between X-ray flux and rotational acceleration in Vela X-1
NASA Technical Reports Server (NTRS)
Deeter, J. E.; Boynton, P. E.; Shibazaki, N.; Hayakawa, S.; Nagase, F.
1989-01-01
The results of a search for correlations between X-ray flux and angular acceleration for the accreting binary pulsar Vela X-1 are presented. Results are based on data obtained with the Hakucho satellite during the interval 1982 to 1984. In undertaking this correlation analysis, it was necessary to modify the usual statistical method to deal with conditions imposed by generally unavoidable satellite observing constraints, most notably a mismatch in sampling between the two variables. The results are suggestive of a correlation between flux and the absolute value of the angular acceleration, at a significance level of 96 percent. The implications of the methods and results for future observations and analysis are discussed.
ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii
NASA Astrophysics Data System (ADS)
Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.
2018-05-01
We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.
NASA Astrophysics Data System (ADS)
Phipps Morgan, Jason; Ranero, Cesar; Vannucchi, Paola
2010-05-01
This study revisits the kinematics and tectonics of Central America subduction, synthesizing observations of marine bathymetry, high-resolution land topography, current plate motions, and the recent seismotectonic and magmatic history in this region. The inferred tectonic history implies that the Guatemala-El Salvador and Nicaraguan segments of this volcanic arc have been a region of significant arc tectonic extension; extension arising from the interplay between subduction roll-back of the Cocos Plate and the ~10-15 mm/yr slower westward drift of the Caribbean plate relative to the North American Plate. The ages of belts of magmatic rocks paralleling both sides of the current Nicaraguan arc are consistent with long-term arc-normal extension in Nicaragua at the rate of ~5-10 mm/yr, in agreement with rates predicted by plate kinematics. Significant arc-normal extension can ‘hide' a very large intrusive arc-magma flux; we suggest that Nicaragua is, in fact, the most magmatically robust section of the Central American arc, and that the volume of intrusive volcanism here has been previously greatly underestimated. Yet, this flux is hidden by the persistent extension and sediment infill of the rifting basin in which the current arc sits. Observed geochemical differences between the Nicaraguan arc and its neighbors which suggest that Nicaragua has a higher rate of arc-magmatism are consistent with this interpretation. Smaller-amplitude, but similar systematic geochemical correlations between arc-chemistry and arc-extension in Guatemala show the same pattern as the even larger variations between the Nicaragua arc and its neighbors. We are also exploring the potential implications of intra-arc extension for deformation processes along the subducting plate boundary and within the forearc ‘microplate'.
The inter-outburst behavior of cataclysmic variables
NASA Technical Reports Server (NTRS)
Szkody, Paula; Mattei, Janet A.; Waagen, Elizabeth O.; Stablein, Clay
1990-01-01
Existing International Ultraviolet Explorer (IUE) and American Association of Variable Star Observers (AAVSO) archive data was used to accomplish a large scale study of what happens to the ultraviolet flux of accretion disk systems during the quiescent intervals between outbursts and how it relates to the preceding outburst characteristics of amplitude and width. The data sample involved multiple IUE observations for 16 dwarf novae and 8 novae along with existing optical coverage. Results indicate that most systems show correlated ultraviolet (UV) flux behavior with interoutburst phase, with 60 percent of the dwarf novae and 50 percent of the novae having decreasing flux trends while 33 percent of the dwarf novae and 38 percent of the novae show rising UV flux during the quiescent interval. All of the dwarf novae with decreasing UV fluxes at 1475A have orbital periods longer than 4.4 hours, while all (except BV Cen) with flat or rising fluxes at 1475A have orbital periods less than two hours. There are not widespread correlations of the UV fluxes with the amplitude of the preceding outburst and no correlations with the width of the outburst. From a small sample (7) that have relatively large quiescent V magnitude changes between the IUE observations, most show a strong correlation between the UV and optical continuum. Interpretation of the results is complicated by not being able to determine how much the white dwarf contributes to the ultraviolet flux. However, it is now evident that noticeable changes are occurring in the hot zones in accreting systems long after the outburst, and not only for systems that are dominated by the white dwarf. Whether these differences are due to different outburst mechanisms or to changes on white dwarfs which provide varying contributions to the UV flux remains to be determined.
NASA Astrophysics Data System (ADS)
Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2017-10-01
In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.
Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring
NASA Astrophysics Data System (ADS)
Su, Yang
This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross-correlated phase and power measurements from GNSS receivers. Results of horizontal drift velocities and anisotropy ellipses derived from the parameters are shown for several detected events. Results show the possibility of routinely quantifying ionospheric irregularities by drifts and anisotropy. Error analysis on estimated properties is performed to further evaluate the estimation quality. Uncertainties are quantified by ensemble simulation of noise on the phase signals carried through to the observations of the spaced-receiver linear system. These covariances are then propagated through to uncertainties on drifts. A case study of a single scintillating satellite observed by the array is used to demonstrate the uncertainty estimation process. The distributed array is used in coordination with other measuring techniques such as incoherent scatter radar and optical all-sky imagers. These scintillations are correlated with auroral activity, based on all-sky camera images. Measurements and uncertainty estimates made over a 30-minute period are made and compared to a collocated incoherent scatter radar, and show good agreement in horizontal drift speed and direction during periods of scintillation for cases when the characteristic velocity is less than the drift velocity. The methods demonstrated are extensible to other zones and other GNSS arrays of varying size, number, ground distribution, and transmitter frequency.
TOPICAL REVIEW: Physics of thermoelectric cooling
NASA Astrophysics Data System (ADS)
Gurevich, Yu G.; Logvinov, G. N.
2005-12-01
A new approach is suggested to explain the Peltier effect. It assumes that the Peltier effect is not an isothermal effect. The approach is based on the occurrences of induced thermal fluxes in a structure which consists of two conducting media, through which a dc electric current flows. These induced thermal diffusion fluxes arise to compensate for the change in the thermal flux caused by the electric current (the drift thermal flux) flowing through the junction, in accordance with the general Le Châtelier-Braun principle. The occurrence of these thermal diffusion fluxes leads to temperature heterogeneity in the structure and, as a result, to a cooling or heating of the junction. Within the framework of this concept, the thermoelectric cooling is analysed. It is shown that in the general case the Peltier effect always occurs together with another thermoelectric effect. This thermoelectric effect is predicted for the first time, and we have called it the barrierless thermoelectric effect. Both these effects essentially depend on the junction surface thermal resistance. The Peltier effect disappears in the limiting case of a very large surface thermal resistance, while the barrierless effect disappears in the limiting case of a very small surface thermal resistance. The dependence of thermoelectric cooling on the geometrical dimensions of the structure is noted, and the corresponding interpretation of this fact is discussed. It is shown that the thermoelectric cooling (heating) is a thermodynamically reversible process in the linear approximation of the electric current applied.
NASA Astrophysics Data System (ADS)
Xie, Shengbo; Qu, Jianjun; Mu, Yanhu; Xu, Xiangtian
Mechanical control of drifting sand used to protect the Qinghai-Tibet Railway from sand damage inevitably results in sand deposition, and the change in radiation and heat flux after the ground surface is covered with sandy sediments remains unclear. These variations were studied in this work through field observations along with laboratory analyses and tests. After the ground surface was covered with sandy sediments produced by the mechanical control of sand in the Qinghai-Tibet Railway, the reflectivity increased, and the annual average reflectivity on the surface covered with sandy sediments was higher than that without sandy sediments, with the value increasing by 0.043. Moreover, the surface shortwave radiation increased, whereas the surface net radiation decreased. The annual average value of the surface shortwave radiant flux density on the sandy sediments was higher than that without sandy sediments, with the value increasing by 7.291 W·m-2. The annual average value of the surface net radiant flux density on the sandy sediments decreased by 9.639 W·m-2 compared with that without sandy sediments. The soil heat flux also decreased, and the annual average value of the heat flux in the sandy sediments decreased by 0.375 W·m-2 compared with that without sandy sediments. These variations caused the heat source on the surface of sandy sediments underground to decrease, which is beneficial for preventing permafrost from degradation in the section of sand control of the railway.
Belchansky, G.I.; Douglas, David C.; Platonov, Nikita G.
2008-01-01
Sea ice thickness (SIT) is a key parameter of scientific interest because understanding the natural spatiotemporal variability of ice thickness is critical for improving global climate models. In this paper, changes in Arctic SIT during 1982-2003 are examined using a neural network (NN) algorithm trained with in situ submarine ice draft and surface drilling data. For each month of the study period, the NN individually estimated SIT of each ice-covered pixel (25-km resolution) based on seven geophysical parameters (four shortwave and longwave radiative fluxes, surface air temperature, ice drift velocity, and ice divergence/convergence) that were cumulatively summed at each monthly position along the pixel's previous 3-yr drift track (or less if the ice was <3 yr old). Average January SIT increased during 1982-88 in most regions of the Arctic (+7.6 ?? 0.9 cm yr-1), decreased through 1996 Arctic-wide (-6.1 ?? 1.2 cm yr-1), then modestly increased through 2003 mostly in the central Arctic (+2.1 ?? 0.6 cm yr-1). Net ice volume change in the Arctic Ocean from 1982 to 2003 was negligible, indicating that cumulative ice growth had largely replaced the estimated 45 000 km3 of ice lost by cumulative export. Above 65??N, total annual ice volume and interannual volume changes were correlated with the Arctic Oscillation (AO) at decadal and annual time scales, respectively. Late-summer ice thickness and total volume varied proportionally until the mid-1990s, but volume did not increase commensurate with the thickening during 1996-2002. The authors speculate that decoupling of the ice thickness-volume relationship resulted from two opposing mechanisms with different latitudinal expressions: a recent quasi-decadal shift in atmospheric circulation patterns associated with the AO's neutral state facilitated ice thickening at high latitudes while anomalously warm thermal forcing thinned and melted the ice cap at its periphery. ?? 2008 American Meteorological Society.
Effect of environmental and material factors on the response of nanocomposite foam impact sensors
NASA Astrophysics Data System (ADS)
Bird, Evan; Merrell, Jake; Rosquist, Parker; Martineau, Adin; Bowden, Anton; Seeley, Matthew; Fullwood, David
2018-05-01
Nanocomposite foam (NCF) is a multifunctional material that can be used to measure impact. Interactions between the flexible polymer matrix and conductive particles dispersed throughout it produce a voltage signal under dynamic strain, which correlates to the magnitude of impact. Though promising in applications requiring both impact sensing and energy absorption, NCF’s voltage response has been observed to suffer from significant signal drift. This paper investigates several causes of variance in the response of NCF sensors to consistent impacts. These effects can be classified into three general types: recoverable transient effects (such as those relating to viscoelasticity or capacitive charging), environmental drift (due to humidity and temperature), and permanent signal decay from material degradation. The motivation for the study arises from various potential repeat-impact applications where periodic recalibration of the sensor would be difficult (such as a gait-tracking insole in use for a marathon event). A cyclic drop testing machine was used to apply consistent impacts to NCF, and drift resulting from each factor (in ranges typical of an insole environment) was experimentally isolated. Models representing each factor’s contribution to signal drift are presented. Of the factors investigated, humidity and temperature caused the most significant drift, with permanent material degradation accounting for only minor decay in voltage response. Transient effects were also observed, with a characteristic ‘warm-up’ (or ‘charging’) time required for the NCF to achieve steady-state; this phenomenon, and the related ‘recovery’ time for the material to return to its original state, were determined. The resultant data can be leveraged to implement a correction algorithm or other drift-compensating method to retain an NCF sensor’s accuracy in both long and short data collection scenarios.
Spatial variations in mortality in pelagic early life stages of a marine fish (Gadus morhua)
NASA Astrophysics Data System (ADS)
Langangen, Øystein; Stige, Leif C.; Yaragina, Natalia A.; Ottersen, Geir; Vikebø, Frode B.; Stenseth, Nils Chr.
2014-09-01
Mortality of pelagic eggs and larvae of marine fish is often assumed to be constant both in space and time due to lacking information. This may, however, be a gross oversimplification, as early life stages are likely to experience large variations in mortality both in time and space. In this paper we develop a method for estimating the spatial variability in mortality of eggs and larvae. The method relies on survey data and physical-biological particle-drift models to predict the drift of ichthyoplankton. Furthermore, the method was used to estimate the spatially resolved mortality field in the egg and larval stages of Barents Sea cod (Gadus morhua). We analyzed data from the Barents Sea for the period between 1959 and 1993 when there are two surveys available: a spring and a summer survey. An individual-based physical-biological particle-drift model, tailored to the egg and larval stages of Barents Sea cod, was used to predict the drift trajectories from the observed stage-specific distributions in spring to the time of observation in the summer, a drift time of approximately 45 days. We interpreted the spatial patterns in the differences between the predicted and observed abundance distributions in summer as reflecting the spatial patterns in mortality over the drift period. Using the estimated mortality fields, we show that the spatial variations in mortality might have a significant impact on survival to later life stages and we suggest that there may be trade-offs between increased early survival in off shore regions and reduced probability of ending up in the favorable nursing grounds in the Barents Sea. In addition, we show that accounting for the estimated mortality field, improves the correlation between a simulated recruitment index and observation-based indices of juvenile abundance.
Partitioning Carbon Dioxide and Water Vapor Fluxes Using Correlation Analysis
USDA-ARS?s Scientific Manuscript database
Partitioning of eddy covariance flux measurements is routinely done to quantify the contributions of separate processes to the overall fluxes. Measurements of carbon dioxide fluxes represent the difference between gross ecosystem photosynthesis and total respiration, while measurements of water vapo...
The contribution of the mitochondrial genome to sex-specific fitness variance.
Smith, Shane R T; Connallon, Tim
2017-05-01
Maternal inheritance of mitochondrial DNA (mtDNA) facilitates the evolutionary accumulation of mutations with sex-biased fitness effects. Whereas maternal inheritance closely aligns mtDNA evolution with natural selection in females, it makes it indifferent to evolutionary changes that exclusively benefit males. The constrained response of mtDNA to selection in males can lead to asymmetries in the relative contributions of mitochondrial genes to female versus male fitness variation. Here, we examine the impact of genetic drift and the distribution of fitness effects (DFE) among mutations-including the correlation of mutant fitness effects between the sexes-on mitochondrial genetic variation for fitness. We show how drift, genetic correlations, and skewness of the DFE determine the relative contributions of mitochondrial genes to male versus female fitness variance. When mutant fitness effects are weakly correlated between the sexes, and the effective population size is large, mitochondrial genes should contribute much more to male than to female fitness variance. In contrast, high fitness correlations and small population sizes tend to equalize the contributions of mitochondrial genes to female versus male variance. We discuss implications of these results for the evolution of mitochondrial genome diversity and the genetic architecture of female and male fitness. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
North Polar Radiative Flux Variability from 2002 Through 2014
NASA Technical Reports Server (NTRS)
Rutan, David; Rose, Fred; Doelling, David; Kato, Seiji; Smith, Bill, Jr.
2017-01-01
NASA's Clouds and the Earth's Radiant Energy System (CERES) project produces the SYN1Deg data product. SYN1deg provides global, 1deg gridded, hourly estimates of Top of Atmosphere (TOA) (CERES observations and calculations) and atmospheric and surface radiative flux (calculations). Examples of 12 year North Polar averages of some variables are shown to the right. Given recent interest in polar science we focus here on TOA and Surface validation of calculated irradiant fluxes. TOA upward longwave irradiance calculations match the CERES observations well both spatially and temporally with correlations remaining strong through PC 6. Compare SYN1Deg Calculations & Meteorological Teleconnections. TOA reflected shortwave irradiance calculations match the CERES observations well both spatially and temporally with correlations remaining string through PC 7. Comparing SYN1Deg calculations to teleconnection patterns requires expanding the area to 30N for EOF analyses. Correlating the Principal Components of various variables to teleconnection time series indicates which variable is most highly correlated with which teleconnection signal. The tables indicate the Pacific North American Oscillation is most correlated to the OLR EOF 1, and the North American Oscillation is correlated most closely to surface LW flux down EOF 1.
Chen, Peirong; Schönebaum, Simon; Simons, Thomas; Rauch, Dieter; Dietrich, Markus; Moos, Ralf; Simon, Ulrich
2015-01-01
Zeolites have been found to be promising sensor materials for a variety of gas molecules such as NH3, NOx, hydrocarbons, etc. The sensing effect results from the interaction of the adsorbed gas molecules with mobile cations, which are non-covalently bound to the zeolite lattice. The mobility of the cations can be accessed by electrical low-frequency (LF; mHz to MHz) and high-frequency (HF; GHz) impedance measurements. Recent developments allow in situ monitoring of catalytic reactions on proton-conducting zeolites used as catalysts. The combination of such in situ impedance measurements with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), which was applied to monitor the selective catalytic reduction of nitrogen oxides (DeNOx-SCR), not only improves our understanding of the sensing properties of zeolite catalysts from integral electric signal to molecular processes, but also bridges the length scales being studied, from centimeters to nanometers. In this work, recent developments of zeolite-based, impedimetric sensors for automotive exhaust gases, in particular NH3, are summarized. The electrical response to NH3 obtained from LF impedance measurements will be compared with that from HF impedance measurements, and correlated with the infrared spectroscopic characteristics obtained from the DRIFTS studies of molecules involved in the catalytic conversion. The future perspectives, which arise from the combination of these methods, will be discussed. PMID:26580627
Hurley, P M; Rand, J R; Pinson, W H; Fairbairn, H W; de Almeida, F F; Melcher, G C; Cordani, U G; Kawashita, K; Vandoros, P
1967-08-04
1) The distribution of age values obtained by potassium-argon determinations and whole-rock rubidium-strontium determinations appears to be almost identical for West African rocks of the pervasive Eburnean Orogenic Cycle and basement rocks at opposite locations in South America. 2) There is also a close correlation, with respect to potassium-argon age determinations on micas, rubidium-strontium determinations on total-rock samples, and the extent to which these two sets of values differ, between rocks of the Pan-African Orogenic Cycle and rocks of the Caririan Orogenic Cycle in Brazil, where these two groups of rocks lie opposite each other in the two continents. 3) When Africa and South America are "fitted together," the sharply defined boundary between the Eburnean and the Pan-African age provinces in West Africa strikes directly toward the corresponding age boundary in northeast Brazil. 4) The transition from the 550-million-year Pan-African age province to the 2000-million-year age province in the Congo Craton in Cameroun-Gabon is matched in the rocks near the corresponding part of the east coast of Brazil. However the geological and age data are insufficient to do more than suggest the possibility of another age-boundary correlation here. 5) The evidence reported here supports the hypothesis of continental drift.
Trainor, Thomas A.; Ray, R. L.
2011-09-09
A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from √( sNN)=200 GeV Au-Au collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude thatmore » the glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although η elongation of the same-side 2D peak remains undescribed.« less
Substorm Related ULF waves Observed in the Magnetosphere by BD-IES and Van Allan Probes
NASA Astrophysics Data System (ADS)
Zong, Q.
2017-12-01
By using the data return from the BD-IES instrument onboard an inclined (55°) geosynchronous orbit (IGSO) satellite together with geo-transfer orbit (GTO) Van Allen Probe A&B satellite, we analysis a substorm related ULF waves occurred on Feb 5, 2016 in the dawnside of the magnetosphere. Immediately after the substorm injection followed by energetic electron drift echoes, the electron flux was clearly and strongly varying on the ULF wave time scale. It is found that both toroidal and poloidal mode ULF waves with a period of 320 s. During the substorm injection, the IES onboard IGSO is outbound while both Van Allen Probe A&B satellites are inbound. This configuration of multiple satellite trajectories provides an unique opportunity to investigate substorm related ULF waves. When substorm injections are observed simultaneously with multiple spacecraft, they help elucidate potential mechanisms for particle transport and energization, a topic of great importance for understanding and modeling the magnetosphere. Two possible scenaria on ULF wave triggering are discussed: fast-mode compressional waves -driven field line resonance and ULF wave growth through drift resonance.
NASA Astrophysics Data System (ADS)
Foerster, M.; Doornbos, E.; Haaland, S.
2016-12-01
Solar wind and IMF interaction with the geomagnetic field sets up a large-scale plasma circulation in the Earth's magnetosphere and the magnetically tightly connected ionosphere. The ionospheric ExB ion drift at polar latitudes accelerates the neutral gas as a nondivergent momentum source primarily in force balance with pressure gradients, while the neutral upper thermosphere circulation is essentially modified by apparent forces due to Earth's rotation (Coriolis and centrifugal forces) as well as advection and viscous forces. The apparent forces affect the dawn and dusk side asymmetrically, favouring a large dusk-side neutral wind vortex, while the non-dipolar portions of the Earth's magnetic field constitute significant hemispheric differences in magnetic flux and field configurations that lead to essential interhemispheric differences of the ion-neutral interaction. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns based on measurements of the electron drift instrument (EDI) on board the Cluster satellites and by the accelerometer on board the CHAMP, GOCE, and Swarm spacecraft, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B
2011-01-01
We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation datamore » of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.« less
NASA Astrophysics Data System (ADS)
Carter, T. A.; Auerbach, D. W.; Brugman, B. T.
2007-11-01
Large amplitude kinetic Alfv'en waves (δB/B ˜1% > k/k) are generated in the Large Plasma Device (LAPD) at UCLA using loop antennas. Substantial electron heating is observed, localized to the wave current channels. The Poynting flux associated with the Alfv'en waves is substantial and the observed heating may be at least in part due to collisional and Landau damping of these waves. However, heating by antenna near inductive electric fields may also be responsible for the observations. A discussion of both possibilities will be presented, including measurements of near fields of the antenna. The heating structures the background plasma and results in the excitation of drift-Alfv'en waves. These drift waves then interact with the incident Alfv'en wave, causing sideband generation which results in a nearly broadband state at high wave power. This process may represent an alternate mechanism by which unidirectional kinetic Alfv'en waves can nonlinearly generate a turbulent spectrum. In addition to electron heating, evidence for background density modification and electron acceleration is observed and will be presented.
Particle export fluxes to the oxygen minimum zone of the eastern tropical North Atlantic
NASA Astrophysics Data System (ADS)
Engel, Anja; Wagner, Hannes; Le Moigne, Frédéric A. C.; Wilson, Samuel T.
2017-04-01
In the ocean, sinking of particulate organic matter (POM) drives carbon export from the euphotic zone and supplies nutrition to mesopelagic communities, the feeding and degradation activities of which in turn lead to export flux attenuation. Oxygen (O2) minimum zones (OMZs) with suboxic water layers (< 5 µmol O2 kg-1) show a lower carbon flux attenuation compared to well-oxygenated waters (> 100 µmol O2 kg-1), supposedly due to reduced heterotrophic activity. This study focuses on sinking particle fluxes through hypoxic mesopelagic waters (< 60 µmol O2 kg-1); these represent ˜ 100 times more ocean volume globally compared to suboxic waters, but they have less been studied. Particle export fluxes and attenuation coefficients were determined in the eastern tropical North Atlantic (ETNA) using two surface-tethered drifting sediment trap arrays with seven trapping depths located between 100 and 600 m. Data on particulate matter fluxes were fitted to the normalized power function Fz = F100 (z/100)-b, with F100 being the flux at a depth (z) of 100 m and b being the attenuation coefficient. Higher b values suggest stronger flux attenuation and are influenced by factors such as faster degradation at higher temperatures. In this study, b values of organic carbon fluxes varied between 0.74 and 0.80 and were in the intermediate range of previous reports, but lower than expected from seawater temperatures within the upper 500 m. During this study, highest b values were determined for fluxes of particulate hydrolyzable amino acids (PHAA), followed by particulate organic phosphorus (POP), nitrogen (PN), carbon (POC), chlorophyll a (Chl a) and transparent exopolymer particles (TEP), pointing to a sequential degradation of organic matter components during sinking. Our study suggests that in addition to O2 concentration, organic matter composition co-determines transfer efficiency through the mesopelagic. The magnitude of future carbon export fluxes may therefore also depend on how organic matter quality in the surface ocean changes under influence of warming, acidification and enhanced stratification.
NASA Astrophysics Data System (ADS)
Romero-Ibarra, Nancy; Silverberg, Norman
2011-10-01
The contents of 31 samples from free-drifting sediment traps deployed in the Gulf of St. Lawrence (GSL) were analyzed for the individual contribution of the different types of particles encountered to the total particulate organic carbon (POC) flux. Two trap models were used in 1993-1994: small traps at 50 m depth and large traps at 50 and 150 m. Total POC fluxes averaged 42 mg C m -2 d -1 for the more reliable large trap and 149 mg C m -2 d -1 for the small trap. The POC fluxes were attributed to different classes of particles based upon microscopically determined particle dimensions and carbon/volume algorithms available in the literature. Fecal pellets, followed by phytoplankton, were the major attributable components, with important contributions by microzooplankton, particularly during the summer of 1994. The mean fluxes for pellets (6 and 60 mg C m -2 d -1, for the large and small traps, respectively) and phytoplankton (3.2 and 42.9 mg C m -2 d -1) were in the range of those encountered in other areas of moderate primary productivity. Mean zooplankton carbon fluxes (1.8 and 8.5 mg C m -2 d -1, respectively), however, reflect higher than average zooplankton abundances in the GSL. The C fluxes of specific algal groups confirmed the existence of three trophic regimes previously identified from water column studies and numeric cell fluxes: (1) a period when diatoms were dominant during the spring, (2) a longer interval, which was dominated by dinoflagellates at most others times of the year, and (3) a period of transition during summer. Carbon of animal origin dominated the attributable flux, including an important fraction associated with heterotrophic dinoflagellates. The contribution of marine snow to the total flux (estimated as the difference between the total POC flux and the sum of the attributed components) frequently amounted to more than 60%. The true importance of marine snow remains uncertain, however, because the errors associated with each of the measured components accumulate to produce large uncertainties. The methodological problems involved are discussed.
Drift effects on the galactic cosmic ray modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurenza, M.; Storini, M.; Vecchio, A.
2014-02-01
Cosmic ray (CR) modulation is driven by both solar activity and drift effects in the heliosphere, although their role is only qualitatively understood as it is difficult to connect the CR variations to their sources. In order to address this problem, the Empirical Mode Decomposition technique has been applied to the CR intensity, recorded by three neutron monitors at different rigidities (Climax, Rome, and Huancayo-Haleakala (HH)), the sunspot area, as a proxy for solar activity, the heliospheric magnetic field magnitude, directly related to CR propagation, and the tilt angle (TA) of the heliospheric current sheet (HCS), which characterizes drift effectsmore » on CRs. A prominent periodicity at ∼six years is detected in all the analyzed CR data sets and it is found to be highly correlated with changes in the HCS inclination at the same timescale. In addition, this variation is found to be responsible for the main features of the CR modulation during periods of low solar activity, such as the flat (peaked) maximum in even (odd) solar cycles. The contribution of the drift effects to the global Galactic CR modulation has been estimated to be between 30% and 35%, depending on the CR particle energy. Nevertheless, the importance of the drift contribution is generally reduced in periods nearing the sunspot maximum. Finally, threshold values of ∼40°, ∼45°, and >55° have been derived for the TA, critical for the CR modulation at the Climax, Rome, and HH rigidity thresholds, respectively.« less
Correction of image drift and distortion in a scanning electron microscopy.
Jin, P; Li, X
2015-12-01
Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Distributed sensing of ionospheric irregularities with a GNSS receiver array
NASA Astrophysics Data System (ADS)
Su, Yang; Datta-Barua, Seebany; Bust, Gary S.; Deshpande, Kshitija B.
2017-08-01
We present analysis methods for studying the structuring and motion of ionospheric irregularities at the subkilometer scale sizes that produce L band scintillations. Spaced-receiver methods are used for Global Navigation Satellite System (GNSS) receivers' phase measurements over approximately subkilometer to kilometer length baselines for the first time. The quantities estimated by these techniques are plasma drift velocity, diffraction anisotropy magnitude and orientation, and characteristic velocity. Uncertainties are quantified by ensemble simulation of noise on the phase signals carried through to the observations of the spaced-receiver linear system. These covariances are then propagated through to uncertainties on drifts through linearization about the estimated values of the state. Five receivers of SAGA, the Scintillation Auroral Global Positioning System (GPS) Array, provide 100 Hz power and phase data for each channel at L1 frequency. The array is sited in the auroral zone at Poker Flat Research Range, Alaska. A case study of a single scintillating satellite observed by the array is used to demonstrate the spaced-receiver and uncertainty estimation process. A second case study estimates drifts as measured by multiple scintillating channels. These scintillations are correlated with auroral activity, based on all-sky camera images. Measurements and uncertainty estimates made over a 30 min period are compared to a collocated incoherent scatter radar and show good agreement in horizontal drift speed and direction during periods of scintillation for which the characteristic velocity is less than the drift velocity.