Dual mode ion mobility spectrometer and method for ion mobility spectrometry
Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID
2007-08-21
Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.
Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.
2004-11-16
A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.
Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.
2005-11-22
A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing a device for transmitting ions from an ion source which allows the transmission of ions without significant delay to an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.
Pulsed discharge ionization source for miniature ion mobility spectrometers
Xu, Jun; Ramsey, J. Michael; Whitten, William B.
2004-11-23
A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.
NASA Astrophysics Data System (ADS)
Ali, Gul-e.; Ahmad, Ali; Masood, W.; Mirza, Arshad M.
2017-12-01
Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.
Linear electronic field time-of-flight ion mass spectrometers
Funsten, Herbert O.
2010-08-24
Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.
Space charge effect in spectrometers of ion mobility increment with planar drift chamber.
Elistratov, A A; Sherbakov, L A
2007-01-01
The effect of space charge on the ion beam in a spectrometer of ion mobility increment with the planar drift chamber has been investigated. A model for the drift of ions under a non-uniform high-frequency electric field(1-3) has been developed recently. We have amplified this model by taking space charge effect into account. The ion peak shape taking into consideration the space charge effect is obtained. The output current saturation effect limiting the rise of the ion peak with increasing ion density at the input of the drift chamber of a spectrometer is observed. We show that the saturation effect is caused by the following phenomenon. The maximum possible output ion density exists, depending on the ion type (constant ion mobility, k(0)) and the time of the motion of ions through the drift chamber. At the same time, the ion density does not depend on the parameters of the drift chamber.
Li, Hongli; Giles, Kevin; Bendiak, Brad; Kaplan, Kimberly; Siems, William F.; Hill, Herbert H.
2013-01-01
Monosaccharide structural isomers including sixteen methyl-D-glycopyranosides and four methyl-N-acetylhexosamines were subjected to ion mobility measurements by electrospray ion mobility mass spectrometry. Two ion mobility-MS systems were employed: atmospheric pressure drift tube ion mobility time-of-flight mass spectrometry and a Synapt G2 HDMS system which incorporates a low pressure traveling wave ion mobility separator. All the compounds were investigated as [M+Na]+ ions in the positive mode. A majority of the monosaccharide structural isomers exhibited different mobility drift times in either system, depending on differences in their anomeric and stereochemical configurations. In general, drift time patterns (relative drift times of isomers) matched between the two instruments. Higher resolving power was observed using the atmospheric pressure drift tube. Collision cross section values of monosaccharide structural isomers were directly calculated from the atmospheric pressure ion mobility experiments and a collision cross section calibration curve was made for the traveling wave ion mobility instrument. Overall, it was demonstrated that ion mobility-mass spectrometry using either drift tube or traveling wave ion mobility is a valuable technique for resolving subtle variations in stereochemistry among the sodium adducts of monosaccharide methyl glycosides. PMID:22339760
Kanu, Abu B; Hill, Herbert H
2007-10-15
This work demonstrated the potential of using a secondary drift gas of differing polarizability from the primary drift gas for confirmation of a positive response for drugs or explosives by ion mobility spectrometry (IMS). The gas phase mobilities of response ions for selected drugs and explosives were measured in four drift gases. The drift gases chosen for this study were air, nitrogen, carbon dioxide and nitrous oxide providing a range of polarizability and molecular weights. Four other drift gases (helium, neon, argon and sulfur hexafluoride) were also investigated but design limitations of the commercial instrument prevented their use for this application. When ion mobility was plotted against drift gas polarizability, the resulting slopes were often unique for individual ions, indicating that selectivity factors between any two analytes varied with the choice of drift gas. In some cases, drugs like THC and heroin, which are unresolved in air or nitrogen, were well resolved in carbon dioxide or nitrous oxide.
NASA Astrophysics Data System (ADS)
Prada, Svitlana V.; Bohme, Diethard K.; Baranov, Vladimir I.
2007-03-01
We report ion-mobility measurements with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR) designed to investigate ion molecule reactivity in organic mass spectrometry. Functionalized pentacene ions, which are generally unreactive were chosen for study to decouple drift/diffusion effects from reactivity (including clustering). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions. These capabilities were successfully employed in the measurement of ion mobilities in different modes of IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully implemented. The contribution of the quadrupole RF field to the drift dynamics also was taken into consideration.
Using different drift gases to change separation factors (alpha) in ion mobility spectrometry
Asbury; Hill
2000-02-01
The use of different drift gases to alter separation factors (alpha) in ion mobility spectrometry has been demonstrated. The mobility of a series of low molecular weight compounds and three small peptides was determined in four different drift gases. The drift gases chosen were helium, argon, nitrogen, and carbon dioxide. These drift gases provide a range of polarizabilities and molecular weights. In all instances, the compounds showed the greatest mobility in helium and the lowest mobility in carbon dioxide; however the percentage change of mobility for each compound was different, effectively changing the alpha value. The alpha value changes were primarily due to differences in drift gas polarizability but were also influenced by the mass of the drift gas. In addition, gas-phase ion radii were calculated in each of the different drift gases. These radii were then plotted against drift gas polarizability producing linear plots with r2 values greater than 0.99. The intercept of these plots provides the gas-phase radius of an ion in a nonpolarizing environment, whereas the slope is indicative of the magnitude of the ion's mobility change related to polarizability. It therefore, should be possible to separate any two compounds that have different slopes with the appropriate drift gas.
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.
2016-11-01
We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.
Drift and geodesic effects on the ion sound eigenmode in tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elfimov, A. G., E-mail: elfimov@if.usp.br; Smolyakov, A. I., E-mail: andrei.smolyakov@usask.ca; Melnikov, A. V.
A kinetic treatment of geodesic acoustic modes (GAMs), taking into account ion parallel dynamics, drift and the second poloidal harmonic effects is presented. It is shown that first and second harmonics of the ion sound modes, which have respectively positive and negative radial dispersion, can be coupled due to the geodesic and drift effects. This coupling results in the drift geodesic ion sound eigenmode with a frequency below the standard GAM continuum frequency. Such eigenmode may be able to explain the split modes observed in some experiments.
Effects of Geomagnetic Storms on the Postsunset Vertical Plasma Drift in the Equatorial Ionosphere
NASA Astrophysics Data System (ADS)
Huang, Chao-Song
2018-05-01
It has been observed that geomagnetic storms cause suppression of the occurrence of equatorial spread F or plasma bubbles in the evening sector. In this study, we use ion drift data measured by the Communication/Navigation Outage Forecasting System satellite over 6 years (2008-2014) to derive the dependence of the vertical ion drift at the prereversal enhancement peak on the strength of magnetic storms (the Dst index). It is found that the average vertical ion drift does not change much for Dst in the range between 0 and -60 nT but decreases approximately linearly with the increasing magnitude of Dst for Dst < -60 nT. The net decrease in the average vertical ion drift is 30 m/s when Dst changes from -60 to -90 nT. This result is derived when the ion drift data during the storm main phase are excluded, so the decrease of the vertical ion drift is caused by storm time disturbance dynamo. A possible interpretation of this phenomenon is that geomagnetic activity must be strong enough (e.g., Dst < -60 nT) so disturbance winds can reach the equatorial region and change plasma drifts there. The storm time disturbance dynamo becomes dominant in the equatorial ionospheric dynamics near the end of the storm main phase, 4.7 hr after the storm onset. The postsunset vertical ion drift is significantly decreased during the early stage of the storm recovery phase but becomes almost fully recovered when Dst increases close to -60 nT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, B. D.; Coughlan, N. J. A.; Markworth, P. B.
An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the devicemore » is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.« less
Tandem ion mobility spectrometry coupled to laser excitation
NASA Astrophysics Data System (ADS)
Simon, Anne-Laure; Chirot, Fabien; Choi, Chang Min; Clavier, Christian; Barbaire, Marc; Maurelli, Jacques; Dagany, Xavier; MacAleese, Luke; Dugourd, Philippe
2015-09-01
This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...
2016-11-05
Here in this paper, we present a case study of the H +, He +, and O + multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of thesemore » ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.
Here in this paper, we present a case study of the H +, He +, and O + multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of thesemore » ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.« less
Estimation of ion charge states using Van Allen Probes-RBSPICE: a case study
NASA Astrophysics Data System (ADS)
Farinas Perez, G.; Sibeck, D. G.
2017-12-01
We use data from the RBSPICE instrument aboard the Van Allen Probes spacecraft to identify particle injection events with ion drift echoes. We calculate the arrival time and drift period of the protons, helium and oxygen for every energy channel of the RBSPICE instrument. The ions drift period depends upon their energy and charge, as we know the particle energy and the time drift period, the charge state can be estimated for a dipolar magnetic field model. A drift-echo event occurred in May 23, 2013 at 0400 UT is analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Anne-Laure; Choi, Chang Min; Clavier, Christian
This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collisionmore » is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.« less
Davila, Stephen J; Hadjar, Omar; Eiceman, Gary A
2013-07-16
A linear pixel-based detector array, the IonCCD, is characterized for use under ambient conditions with thermal (<1 eV) positive ions derived from purified air and a 10 mCi (63)Ni foil. The IonCCD combined with a drift tube-ion mobility spectrometer permitted the direct detection of gas phase ions at atmospheric pressure and confirmed a limit of detection of 3000 ions/pixel/frame established previously in both the keV (1-2 keV) and the hyper-thermal (10-40 eV) regimes. Results demonstrate the "broad-band" application of the IonCCD over 10(5) orders in ion energy and over 10(10) in operating pressure. The Faraday detector of a drift tube for an ion mobility spectrometer was replaced with the IonCCD providing images of ion profiles over the cross-section of the drift tube. Patterns in the ion profiles were developed in the drift tube cross-section by control of electric fields between wires of Bradbury Nielson and Tyndall Powell shutter designs at distances of 1-8 cm from the detector. Results showed that ion beams formed in wire sets, retained their shape with limited mixing by diffusion and Coulombic repulsion. Beam broadening determined as 95 μm/cm for hydrated protons in air with moisture of ~10 ppmv. These findings suggest a value of the IonCCD in further studies of ion motion and diffusion of thermalized ions, enhancing computational results from simulation programs, and in the design or operation of ion mobility spectrometers.
A compact high resolution ion mobility spectrometer for fast trace gas analysis.
Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan
2013-09-21
Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.
NASA Astrophysics Data System (ADS)
Yamauchi, Masatoshi; Ebihara, Yusuke; Dandouras, Iannis; Nilsson, Hans
2014-05-01
Energy-latitude dispersed structured sub-keV ions in the inner magnetosphere drifts very slowly in the noon-to-afternoon sectors because the eastward corotation and the westward magnetic drift balances to each other there. However, majority of Cluster ion observation by the Cluster Ion Spectrometry (CIS) COmposition DIstribution Function (CODIF) instrument during 2001-2006 showed significant development or intensification (by more than factor of 3) within 1-2 h in that sector during the Cluster perigee traversals that quickly scans latitudinal structure at a fixed local time (Yamauchi et al., 2013). The frequent observations of significant inbound-outbound differences in the wedge-like dispersed ions by Cluster indicates either new injections or high eastward drift velocity even in the afternoon sector. To examine the former possibility, i.e., whether such sudden appearances in the dayside can be explained by the drift motion of ions that are formed during substorm-related injections, we numerically simulated two such examples, one at noon (8 September 2002) and the other in the afternoon (9 July 2001), based on the same ion drift simulation model that has successfully reproduced the ion pattern of an inbound-outbound symmetric event at 5 MLT observed by the Cluster CIS/CODIF instrument. The model uses backward phase-space mapping to a boundary at the nightside 8 Earth radii and forward numerical simulation using re-constructed distribution function at that boundary. For both examples, the ion drift model with finite duration (limited to 1-2 hours) of proton source in the nightside can explain the observed large inbound-outbound differences in the sub-keV proton population without any new sources. Ion drift motion is thus able to cause rapid changes of complicated ion populations, at remote places from the source long time after the substorm activities, although this result does not eliminate the possibility of having independent ionospheric sources. References: Yamauchi, M. et al.: Cluster observation of few-hour-scale evolution of structured plasma in the inner magnetosphere, Ann. Geophys., 31, 1569-1578, doi:10.5194/angeo-31-1569-2013, 2013.
Generation of zonal flows by electrostatic drift waves in electron-positron-ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaladze, T. D.; I. Vekua Institute of Applied Mathematics, Tbilisi State University, 2 University Str., 0186 Tbilisi; Shad, M.
2010-02-15
Generation of large-scale zonal flows by comparatively small-scale electrostatic drift waves in electron-positron-ion plasmas is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude drift waves having arbitrary wavelengths (as compared with the ion Larmor radius of plasma ions at the plasma electron temperature). Temperature inhomogeneity of electrons and positrons is taken into account assuming ions to be cold. To describe the generation of zonal flow generalized Hasegawa-Mima equation containing both vector and two scalar (of different nature) nonlinearities is used. A set of coupled equations describing the nonlinear interaction of drift wavesmore » and zonal flows is deduced. Explicit expressions for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. Enriched possibilities of zonal flow generation with different growth rates are revealed. The present theory can be used for interpretations of drift wave observations in laboratory and astrophysical plasmas.« less
Self-shielding flex-circuit drift tube, drift tube assembly and method of making
Jones, David Alexander
2016-04-26
The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.
Development of electron beam ion source for nanoprocess using highly charged ions
NASA Astrophysics Data System (ADS)
Sakurai, Makoto; Nakajima, Fumiharu; Fukumoto, Takunori; Nakamura, Nobuyuki; Ohtani, Shunsuke; Mashiko, Shinro; Sakaue, Hiroyuki
2005-07-01
Highly charged ion is useful to produce nanostructure on various materials, and is key tool to realize single ion implantation technique. On such demands for the application to nanotechnology, we have designed an electron bean ion source. The design stresses on the volume of drift tubes where highly charged ions are confined and the efficiency of ion extraction from the drift tube through collector electrode in order to obtain intense ion beam as much as possible. The ion source uses a discrete superconducting magnet cooled by a closed-cycle refrigerator in order to reduce the running costs and to simplify the operating procedures. The electrodes of electron gun, drift tubes, and collector are enclosed in ultrahigh vacuum tube that is inserted into the bore of the magnet system.
Method for enhancing the resolving power of ion mobility separations over a limited mobility range
Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D
2014-09-23
A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.
Spesyvyi, Anatolii; Španěl, Patrik
2015-09-15
Selected ion flow tube mass spectrometry, SIFT-MS, used for trace gas analyses has certain fundamental limitations that could be alleviated by adding a facility that allows reaction times and ion interaction energies to be varied. Thus, a selected ion flow-drift tube, SIFDT, has been created to explore the influence of an embedded electric field on these parameters and on reaction processes. The new SIFTD instrument was constructed using a miniature resistive glass drift tube. Arrival times of ions, t, analysed by a downstream quadrupole mass spectrometer over the m/z range 10-100 were studied by modulating the injected ion current using a gate lens. Single pulse modulation was compared with pseudorandom time multiplexing exploiting the Hadamard transformation. A simple model involving analysis of ethanol and water vapour mixture in air was used to explore the advantages of the SIFDT concept to SIFT-MS analysis. It is shown that the resistive glass drift tube is suitable for SIFDT experiments. The Hadamard transformation can be used to routinely determine reagent ion residence time in the flow-drift tube and also to observe differences in arrival times for different product ions. Two-dimensional data combining arrival time and mass spectra can be obtained rapidly. The calculated ion drift velocities vary with the reduced field strength, E/N, and the calculated ion mobilities agree with theoretical and previous literature values. This study has provided evidence that the SIFDT-MS technique can be implemented in a miniature and low-cost instrument and two- or three-dimensional data can be obtained (product ion count rates as functions of m/z, t and E/N) using the Hadamard transformation thus providing exciting possibilities for further analytical additions and extensions of the SIFT-MS technique. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Ion Velocity Measurements for the Ionospheric Connections Explorer
NASA Astrophysics Data System (ADS)
Heelis, R. A.; Stoneback, R. A.; Perdue, M. D.; Depew, M. D.; Morgan, W. A.; Mankey, M. W.; Lippincott, C. R.; Harmon, L. L.; Holt, B. J.
2017-10-01
The Ionospheric Connections Explorer (ICON) payload includes an Ion Velocity Meter (IVM) to provide measurements of the ion drift motions, density, temperature and major ion composition at the satellite altitude near 575 km. The primary measurement goal for the IVM is to provide the meridional ion drift perpendicular to the magnetic field with an accuracy of 7.5 m s-1 for all daytime conditions encountered by the spacecraft within 15° of the magnetic equator. The IVM will derive this parameter utilizing two sensors, a retarding potential analyzer (RPA) and an ion drift meter (IDM) that have a robust and successful flight heritage. The IVM described here incorporates improvements in the design and operation to produce the most sensitive device that has been fielded to date. It will specify the ion drift vector, from which the component perpendicular to the magnetic field will be derived. In addition it will specify the total ion density, the ion temperature and the fractional ion composition. These data will be used in conjunction with measurements from the other ICON instruments to uncover the important connections between the dynamics of the neutral atmosphere and the ionosphere through the generation of dynamo currents perpendicular to the magnetic field and collisional forces parallel to the magnetic field. Here the configuration and operation of the IVM instrument are described, as well as the procedures by which the ion drift velocity is determined. A description of the subsystem characteristics, which allow a determination of the expected uncertainties in the derived parameters, is also given.
NASA Astrophysics Data System (ADS)
Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F.; Hill, Herbert H.
2016-05-01
A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.
Stormtime transport of ring current and radiation belt ions
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.
1993-01-01
This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative ions equally spaced in drift time around the steady-state drift shell of interest (L equivalent to 3), we have estimated (from both our forward and our time-reversed simulations) the time-integrated radial-diffusion coefficients D(sup sim)(sub LL) for particles having selected values of mu approximately greater than 15 MeV/G. The results agree surprisingly well with the predictions (D(sup ql)(sub LL)) of quasilinear radial diffusion theory, despite the rather brief duration (approximately 3 hrs) of our model storm and despite the extreme variability (with frequency) of the spectral-density function that characterizes the applied electric field during our model storm. As expected, the values of D(sup sim)(sub LL) deduced (respectively) from our forward and time-reversed simulations agree even better with each other and with D(sup sim)(sub LL) when the impulse amplitudes which characterize the individual substorms of our model storm are systematically reduced.
Rapid subauroral ion drifts observed by Atmosphere Explorer C
NASA Technical Reports Server (NTRS)
Spiro, R. W.; Heelis, R. A.; Hanson, W. B.
1979-01-01
Results are presented for an investigation of rapid subauroral ion drift features using data obtained over a nearly five-year period from the ion RPA/drift meter on Atmosphere Explorer-C. These latitudinally narrow features are found to be confined predominantly to the local time sector between 18:00 and 02:00 hr. They occur either singly or as multiple events, one of which almost always straddles the equatorward edge of the auroral zone. Their occurrence probability suggests a dependence of magnetic substorm activity.
Cross-tail current, field-aligned current, and B(y)
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Lu, Chen; Larson, Douglas J.
1994-01-01
Orbits of individual charged particles were traced in a one-dimensional magnetic field model that included a uniform cross-tail component B(sub yo). The effects of B(sub yo) on the cross-tail current distribution j(sub y)(z), the average cross-tail drift velocity(nu(sub y)z), and the average pitch angle change(delta alpha) experienced during current sheet encounters were calculated. The addition of a B(sub yo) that exceeded several tenths of one nanotesla completely eliminated all resonance effects for odd-N orbits. An odd-N resonance involves ions that enter and exit the current sheet on the same side. Pitch angles of nearly all such ions changed substantially during a typical current sheet interaction, and there was no region of large cross-tail drift velocity in the presence of a modest B(sub yo). the addition of a very large B(sub yo) guide field in the direction that enhances the natural drift produces a large j(y) and small (Delta alpha) for ions with all energies. The addition of a modest B(sub yo) had less effect near even-N resonances. In this case, ions in a small energy range were found to undergo so little change in pitch angle that particles which originated in the ionosphere would pass through the current sheet and return to the conjugate ionosphere. Finally, the cross-tail drift of ions from regions dominated by stochastic orbits to regions dominated by either resonant or guiding center orbits was considered. The ion drift speed changed substantially during such transitions. The accompanying electrons obey the guiding center equations, so electron drift is more uniform. Any difference between gradients in the fluxes associated with electron and ion drifts requires the presence of a Birkeland current in order to maintain charge neutrality. This plasma sheet region therefore serves as a current generator. The analysis predicts that the resulting Birkeland current connects to the lowest altitude equatorial regions in which ions drift to or from a point at which stochastic orbits predominate. The proposed mechanism appears only in analyses that include non-guiding-center effects.
Space charge effect in spectrometers of ion mobility increment with cylindrical drift chamber.
Elistratov, A A; Sherbakov, L A
2007-01-01
We have amplified the model for the drift of ions under a non-uniform high-frequency electric field by taking space charge effect into account. By this means, we have investigated the effect of space charge on the dynamics of a single type of ions in a spectrometer of ion mobility increment with a cylindrical drift chamber. The counteraction of the space charge effect and the focusing effect is investigated. The output ion current saturation caused by the effect of the space charge is observed. The shape of the ion peak taking into consideration the space charge effect has been obtained. We show that the effect of the space charge is sufficient for the relative ion density greater than 10 ppt by order of magnitude (for a cylindrical geometry spectrometer with typical parameters).
Turbulent Transport of Fast Ions in the Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Zhou, Shu; Heidbrink, William; McWilliams, Roger; Boehmer, Heinrich; Carter, Troy; Popovich, Pavel; Tripathi, Shreekrishna; Vincena, Steve; Jenko, Frank
2010-11-01
Due to gyroradius averaging and drift-orbit averaging, the transport of fast ions by microturbulence is often smaller than for thermal ions. In this experiment, Strong drift wave turbulence is observed in LAPD on gradients produced by a plate obstacle. Energetic lithium ions orbit through the turbulent region. Scans with a collimated analyzer and with probes give detailed profiles of the fast ion spatial distribution and of the fluctuating fields. The fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Unlike the diffusive transport caused by Coulomb collisions, in this case the turbulent transport is non-diffusive. Analysis and simulation suggest that the fast ions interact ballistically with stationary two-dimensional electrostatic turbulence. The energy dependence of the transport is well explained by gyro-averaging theory. In new experiments, different sources and obstacles alter the drift-wave turbulence to modify the nature of the transport.
Electronics for fast ion extraction from EBIS devices
NASA Astrophysics Data System (ADS)
Höltermann, H.; Becker, R.; Kleinod, M.; Müller, I.
2004-05-01
Future synchrotrons for cancer therapy could profit from single turn injection in terms of size, costs, and ease of operation [O. Kester, R. Becker, and M. Kleinod, Rev. Sci. Instrum. 67 (1996)]. Short (˜1.5 μs) and intense (˜1.3 mA) pulses of highly charged light ions (C6+, N7+, O8+) are a requirement for these future therapy facilities which can be provided by an EBIS ion source. Such a medically dedicated EBIS has an electron beam of 400 mA at 5 keV and needs an electron current density of 100 A/cm2 for a repetition rate of 10 Hz. To obtain a 1.5 μs ion pulse it is necessary to switch the drift tube potentials up to 1.6 kV (for a ratio of beam to drift tube of 1/20) in some 100 ns. To avoid spreading out of the pulse due to the restoration of the full space charge depression at locations where ions have already been extracted, the potentials applied to the drift tubes are changed with time. They will be adjusted for each drift tube according to the transit time of the ion pulse. Furthermore, the drift tubes are fully interpenetrating each other with tapered fingers in order to locally distribute the action of the applied potentials. This provides a potential wall, which is following the extracted ion pulse and results in a compressed short ion pulse for single turn injection into a synchrotron.
A statistical study of ion pitch-angle distributions
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Mcentire, R. W.; Lui, A. T. Y.; Krimigis, S. M.
1987-01-01
Preliminary results of a statistical study of energetic (34-50 keV) ion pitch-angle distributions (PADs) within 9 Re of earth provide evidence for an orderly pattern consistent with both drift-shell splitting and magnetopause shadowing. Normal ion PADs dominate the dayside and inner magnetosphere. Butterfly PADs typically occur in a narrow belt stretching from dusk to dawn through midnight, where they approach within 6 Re of earth. While those ion butterfly PADs that typically occur on closed drift paths are mainly caused by drift-shell splitting, there is also evidence for magnetopause shadowing in observations of more frequent butterfly PAD occurrence in the outer magnetosphere near dawn than dusk. Isotropic and gradient boundary PADs terminate the tailward extent of the butterfly ion PAD belt.
NASA Astrophysics Data System (ADS)
Haler, Jean R. N.; Massonnet, Philippe; Chirot, Fabien; Kune, Christopher; Comby-Zerbino, Clothilde; Jordens, Jan; Honing, Maarten; Mengerink, Ynze; Far, Johann; Dugourd, Philippe; De Pauw, Edwin
2018-01-01
Over the years, polymer analyses using ion mobility-mass spectrometry (IM-MS) measurements have been performed on different ion mobility spectrometry (IMS) setups. In order to be able to compare literature data taken on different IM(-MS) instruments, ion heating and ion temperature evaluations have already been explored. Nevertheless, extrapolations to other analytes are difficult and thus straightforward same-sample instrument comparisons seem to be the only reliable way to make sure that the different IM(-MS) setups do not greatly change the gas-phase behavior. We used a large range of degrees of polymerization (DP) of poly(ethylene oxide) PEO homopolymers to measure IMS drift times on three different IM-MS setups: a homemade drift tube (DT), a trapped (TIMS), and a traveling wave (T-Wave) IMS setup. The drift time evolutions were followed for increasing polymer DPs (masses) and charge states, and they are found to be comparable and reproducible on the three instruments. [Figure not available: see fulltext.
Heavy-ion dominance near Cluster perigees
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.
2015-12-01
Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.
Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; Siddiq, M.; Karim, S.
2009-04-15
Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation ofmore » shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v{sub *}/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v{sub *}/u>0) increases, whereas the slow drift shock (i.e., v{sub *}/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less
Matz, Laura M; Hill, Herbert H; Beegle, Luther W; Kanik, Isik
2002-04-01
Recent studies in electrospray ionization (ESI)/ion mobility spectrometry (IMS) have focussed on employing different drift gases to alter separation efficiency for some molecules. This study investigates four structurally similar classes of molecules (cocaine and metabolites, amphetamines, benzodiazepines, and small peptides) to determine the effect of structure on relative mobility changes in four drift gases (helium, nitrogen, argon, carbon dioxide). Collision cross sections were plotted against drift gas polarizability and a linear relationship was found for the nineteen compounds evaluated in the study. Based on the reduced mobility database, all nineteen compounds could be separated in one of the four drift gases, however, the drift gas that provided optimal separation was specific for the two compounds.
NASA Astrophysics Data System (ADS)
Gravier, E.; Plaut, E.
2013-04-01
Collisional drift waves and ion temperature gradient (ITG) instabilities are studied using a linear water-bag kinetic model [P. Morel et al., Phys. Plasmas 14, 112109 (2007)]. An efficient spectral method, already validated in the case of drift waves instabilities [E. Gravier et al., Eur. Phys. J. D 67, 7 (2013)], allows a fast solving of the global linear problem in cylindrical geometry. The comparison between the linear ITG instability properties thus computed and the ones given by the COLUMBIA experiment [R. G. Greaves et al., Plasma Phys. Controlled Fusion 34, 1253 (1992)] shows a qualitative agreement. Moreover, the transition between collisional drift waves and ITG instabilities is studied theoretically as a function of the ion temperature profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierre, Thiéry
2016-04-15
The low-frequency instability of a cylindrical poorly magnetized plasma with an inward-directed radial electric field is studied changing the gas pressure and the ion cyclotron frequency. The unstable frequency always decreases when the gas pressure is increased indicating collisional effects. At a fixed pressure, the unstable frequency increases with the magnetic field when the B-field is low and decreases at larger magnetic field strength. We find that the transition between these two regimes is obtained when the ion cyclotron frequency equals the ion-neutrals collision frequency. This is in agreement with the theory of the slow-ion drift instability induced by themore » collisional slowing of the electric ion drift [A. Simon, Phys. Fluids 6, 382 (1963)].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-20
An automated drift time extraction and computed associated collision cross section software tool for small molecule analysis with ion mobility spectrometry-mass spectrometry (IMS-MS). The software automatically extracts drift times and computes associated collision cross sections for small molecules analyzed using ion mobility spectrometry-mass spectrometry (IMS-MS) based on a target list of expected ions provided by the user.
Wingen, Andreas; Schmitz, Oliver; Evans, Todd E.; ...
2014-01-01
The heat flux patterns measured in low-collisionality DIII-D H-mode plasmas strongly deviate from simultaneously measured CII emission patterns, used as indicator of particle flux, during applied resonant magnetic perturbations. While the CII emission clearly shows typical striations, which are similar to magnetic footprint patterns obtained from vacuum field line tracing, the heat flux is usually dominated by one large peak at the strike point position. The vacuum approximation, which only considers applied magnetic fields and neglects plasma response and plasma effects, cannot explain the shape of the observed heat flux pattern. One possible explanation is the effect of particle drifts.more » This is included in the field line equations and the results are discussed with reference to the measurement. Electrons and ions show di fferent drift motions at thermal energy levels in a guiding center approximation. While electrons hardly deviate from the field lines, ions can drift several centimetres away from field line flux surfaces. A model is presented in which an ion heat flux, based on the ion drift motion from various kinetic energies as they contribute to a thermal Maxwellian distribution, is calculated. The simulated heat flux is directly compared to measurements with a varying edge safety factor q95. This analysis provides evidence for the dominate e ect of high-energy ions in carrying heat from the plasma inside the separatrix to the target. High-energy ions are deposited close to the unperturbed strike line while low-energy ions can travel into the striated magnetic topology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karas’, V. I., E-mail: karas@kipt.kharkov.ua; Kornilov, E. A.; Manuilenko, O. V.
2015-12-15
The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and inmore » the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.« less
NASA Astrophysics Data System (ADS)
Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.
2015-12-01
The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.
Mobilities of uranium and mercury ions in helium
NASA Technical Reports Server (NTRS)
Johnsen, R.; Biondi, M. A.
1972-01-01
The mobilities of mass-identified U(+) and Hg (+) ions in helium were determined in a drift tube-mass spectrometer. For uranium ions, a reduced mobility value is obtained at 305 K and a standard gas density of 2.69 x 10 to the 19th power/cu cm. The mobility of mercury ions is in agreement with two previous determinations. The effect of fast ion injection in drift mobility measurements is discussed, and a technique to circumvent these problems is described. The results are compared with existing theories of ion mobilities.
Characteristics of DC electric fields at dipolarization fronts
NASA Astrophysics Data System (ADS)
Laakso, Harri; Escoubet, Philippe; Masson, Arnaud
2016-04-01
We investigate the characteristics of DC electric field at dipolarization fronts and BBF's using multi-point Cluster observations. There are plenty of important issues that are considered, such as what kind of DC electric fields exist in such events and what are their spatial scales. One can also recognize if electrons and ions perform ExB drift motions in these events. To investigate this, we take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer. The calibrated observations of the three spectrometers are used to determine the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. This investigation also helps understand how well different measurements are calibrated.
NASA Astrophysics Data System (ADS)
Salewski, M.; Geiger, B.; Jacobsen, A. S.; Abramovic, I.; Korsholm, S. B.; Leipold, F.; Madsen, B.; Madsen, J.; McDermott, R. M.; Moseev, D.; Nielsen, S. K.; Nocente, M.; Rasmussen, J.; Stejner, M.; Weiland, M.; The EUROfusion MST1 Team; The ASDEX Upgrade Team
2018-03-01
We measure the deuterium density, the parallel drift velocity, and parallel and perpendicular temperatures (T_\\Vert , T_\\perp ) in non-Maxwellian plasmas at ASDEX Upgrade. This is done by taking moments of the ion velocity distribution function measured by tomographic inversion of five simultaneously acquired spectra of D_α -light. Alternatively, we fit the spectra using a bi-Maxwellian distribution function. The measured kinetic temperatures (T_\\Vert =9 keV, T_\\perp=11 keV) reveal the anisotropy of the plasma and are substantially higher than the measured boron temperature (7 keV). The Maxwellian deuterium temperature computed with TRANSP (6 keV) is not uniquely measurable due to the fast ions. Nevertheless, simulated kinetic temperatures accounting for fast ions based on TRANSP (T_\\Vert =8.3 keV, T_\\perp=10.4 keV) are in excellent agreement with the measurements. Similarly, the Maxwellian deuterium drift velocity computed with TRANSP (300 km s-1) is not uniquely measurable, but the simulated kinetic drift velocity accounting for fast ions agrees with the measurements (400 km s-1) and is substantially larger than the measured boron drift velocity (270 km s-1). We further find that ion cyclotron resonance heating elevates T_\\Vert and T_\\perp each by 2 keV without evidence for preferential heating in the D_α spectra. Lastly, we derive an expression for the 1D projection of an arbitrarily drifting bi-Maxwellian onto a diagnostic line-of-sight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gravier, E.; Plaut, E.
2013-04-15
Collisional drift waves and ion temperature gradient (ITG) instabilities are studied using a linear water-bag kinetic model [P. Morel et al., Phys. Plasmas 14, 112109 (2007)]. An efficient spectral method, already validated in the case of drift waves instabilities [E. Gravier et al., Eur. Phys. J. D 67, 7 (2013)], allows a fast solving of the global linear problem in cylindrical geometry. The comparison between the linear ITG instability properties thus computed and the ones given by the COLUMBIA experiment [R. G. Greaves et al., Plasma Phys. Controlled Fusion 34, 1253 (1992)] shows a qualitative agreement. Moreover, the transition betweenmore » collisional drift waves and ITG instabilities is studied theoretically as a function of the ion temperature profile.« less
Voltage sweep ion mobility spectrometry.
Davis, Eric J; Williams, Michael D; Siems, William F; Hill, Herbert H
2011-02-15
Ion mobility spectrometry (IMS) is a rapid, gas-phase separation technique that exhibits excellent separation of ions as a standalone instrument. However, IMS cannot achieve optimal separation power with both small and large ions simultaneously. Similar to the general elution problem in chromatography, fast ions are well resolved using a low electric field (50-150 V/cm), whereas slow drifting molecules are best separated using a higher electric field (250-500 V/cm). While using a low electric field, IMS systems tend to suffer from low ion transmission and low signal-to-noise ratios. Through the use a novel voltage algorithm, some of these effects can be alleviated. The electric field was swept from low to high while monitoring a specific drift time, and the resulting data were processed to create a 'voltage-sweep' spectrum. If an optimal drift time is calculated for each voltage and scanned simultaneously, a spectrum may be obtained with optimal separation throughout the mobility range. This increased the resolving power up to the theoretical maximum for every peak in the spectrum and extended the peak capacity of the IMS system, while maintaining accurate drift time measurements. These advantages may be extended to any IMS, requiring only a change in software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golyatina, R. I.; Maiorov, S. A., E-mail: mayorov-sa@mail.ru
The drift velocities of noble-gas and mercury ions in a constant homogeneous electric field are calculated using Monte Carlo simulations. The ion mobility is analyzed as a function of the field strength and gas temperature. The fitting parameters for calculating the drift velocity by the Frost formula at gas temperatures of 4.2, 77, 300, 1000, and 2000 K are obtained. A general approximate formula for the drift velocity as a function of the reduced field and gas temperature is derived.
NASA Technical Reports Server (NTRS)
Delcourt, D. C.; Horwitz, J. L.; Swinney, K. R.
1988-01-01
The influence of the interplanetary magnetic field (IMF) orientation on the transport of low-energy ions injected from the ionosphere is investigated using three-dimensional particle codes. It is shown that, unlike the auroral zone outflow, the ions originating from the polar cap region exhibit drastically different drift paths during southward and northward IMF. During southward IMF orientation, a 'two-cell' convection pattern prevails in the ionosphere, and three-dimensional simulations of ion trajectories indicate a preferential trapping of the light ions H(+) in the central plasma sheet, due to the wide azimuthal dispersion of the heavy ions, O(+). In contrast, for northward IMF orientation, the 'four-cell' potential distribution predicted in the ionosphere imposes a temporary ion drift toward higher L shells in the central polar cap. In this case, while the light ions can escape into the magnetotail, the heavy ions can remain trapped, featuring more intense acceleration (from a few electron volts up to the keV range) followed by precipitation at high invariant latitudes, as a consequence of their further travel into the tail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; Siddiq, M.; Karim, S.
2009-11-15
Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous electron-positron-ion (e-p-i) quantum magnetoplasma with neutrals in the background using the well known quantum hydrodynamic model. In this regard, Korteweg-de Vries-Burgers (KdVB) and Kadomtsev-Petviashvili-Burgers (KPB) equations are obtained. Furthermore, the solutions of KdVB and KPB equations are presented by using the tangent hyperbolic (tanh) method. The variation in the shock profile with the quantum Bohm potential, collision frequency, and the ratio of drift to shock velocity in the comoving frame, v{sub *}/u, is also investigated. It is found that increasing the positron concentration and collisionmore » frequency decreases the strength of the shock. It is also shown that when the localized structure propagates with velocity greater than the diamagnetic drift velocity (i.e., u>v{sub *}), the shock strength decreases. However, the shock strength is observed to increase when the localized structure propagates with velocity less than that of drift velocity (i.e., u
The Drift, Diffusion, and Reactions of Slow Ions in Gases.
1980-02-28
explaining plasma chemistry ; ionic transport data are required for the accurate determination of these rate coefficients. Observations on ionic identity and...34Studies of Ion Plasma Chemistry with Drift Tube Mass Spectrometers", Third International Symposium on Plasma Chemistry , Limoges, France, (July 1977
SAPS and SAID: Differences and implications on modeling
NASA Astrophysics Data System (ADS)
Anderson, P. C.; Landry, R. G.
2017-12-01
Large subauroral electric fields/ion drifts associated with geomagnetic activity and known as Polarization Jets [Galperin et al., 1973] or subauroral ion drifts (SAID) [Spiro et al., 1978] have been reported by a number of researchers over the years starting in the early 1970s. They are latitudinally narrow ( 1 - 3°), are primarily located between the late afternoon and early morning sectors, are extended several hours in magnetic local time, and have westward drifts that can exceed 5000 m/s. Foster et al., [2002] used Millstone Hill radar data to derive a statistical model of the subauroral ion drifts and coined the term SAPS (Subauroral Polarization Streams) to identify the sometimes broad region of subauroral drifts that the SAID are embedded within. While both are located in the subauroral region and closely associated with ionospheric conductivity and the region 2 field-aligned currents, they are in reality separate phenomena. We investigate this difference, their production mechanisms, and the implications for modeling them.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.
2017-01-01
We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of approximately 0.86. We assume that the correlation is the result of LHFR wave generation by the ions polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD)parallel and perpendicular to the ambient magnetic eld to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions polarization drift in the electric field of an EMIC wave.
Fast Ion extraction from the MedEBIS
NASA Astrophysics Data System (ADS)
Höltermann, H.; Becker, R.; Kleinod, M.; Müller, I.
2004-01-01
Cancer therapy synchrotrons profit from single turn injection in terms of size, costs and easy operation. The MEdically Dedicated EBIS (MEDEBIS), built in Frankfurt, will deliver short (~1.5 µs) and intense (~1.3 mA) pulses of highly charged light ions (C, N, O) to meet the requirements for therapy facilities. The MEDEBIS operates with an electron beam of 400 mA at 5 keV and a ratio of beam to drift tube of 1/20. Drift tube potentials up to 1.6 kV are switched in some 100 ns to deliver a 1.5 µs ion pulse at an axial field gradient of 6.5 kV/m. On extraction, all potentials applied to the drift tubes are set to a given primary potential to define the extraction gradient. During extraction the drift tubes are not held at constant voltage to avoid spreading out of the pulse due to the restoration of the full space charge depression at locations where ions have already been extracted. To locally distribute the action of the applied potentials the drift tubes are fully interpenetrating each other with tapered fingers. Combining these features result in a potential wall, which follows the extracted ion pulse and produces a compressed short ion pulse for single turn injection. In the future similar constructions could be considered for the RHIS EBIS device or proposed for LHC to provide the advantage with respect to lowest emittance and highest luminosity to the accelerators at BNL and CERN.
Collective Acceleration with Rotating Relativistic Electron Beams.
1980-04-11
experiments[ where rela- tivistic electron beams were injected into neutral gas filled drift tubes . This paper presents results of recent experiments in...was applied in the drift tube . Rander7 has measured the beamfront velocity, ion yield and ion momentum distribution for non- rotating beams in hydrogen...fields (axial and azimuthal) and currents induced in the drift tube wall.8 Diode voltage and current are V - 900 kV, I - 80 kA for r" - 100 ns, with
Negative Ion Time Projection Chamber operation with SF6 at nearly atmospheric pressure
NASA Astrophysics Data System (ADS)
Baracchini, E.; Cavoto, G.; Mazzitelli, G.; Murtas, F.; Renga, F.; Tomassini, S.
2018-04-01
We present the measurement of negative ion drift velocities and mobilities for innovative particle tracking detectors using gas mixtures based on SF6. This gas has recently received attention in the context of directional Dark Matter searches, thanks to its high Fluorine content, reduced diffusion and multiple species of charge carriers, which allow for full detector fiducialization. Our measurements, performed with a 5 cm drift distance Negative Ion Time Projection Chamber, show the possibility of negative ion operation in pure SF6 between 75 and 150 Torr with triple thin GEM amplification, confirming the attractive potentialities of this gas. Above all, our results with the mixture He:CF4:SF6 360:240:10 Torr demonstrate for the first time the feasibility of SF6‑ negative ion drift and gas gain in He at nearly atmospheric pressure, opening very interesting prospects for the next generation of directional Dark Matter detectors.
Fishbone Oscillations in the Experimental Advanced Superconductivity Tokamak
NASA Astrophysics Data System (ADS)
Xu, Li-Qing; Hu, Li-Qun; Yuan, Yi; Li, Ying-Ying; Zhong, Guo-Qiang; Liu, Hai-Qing; Chen, Kai-Yun; Shi, Tong-Hui; Duan, Yan-Min
2018-03-01
A fishbone oscillation was observed in the neutral beam injection plasma at Experimental Advanced Superconductivity Tokamak (EAST). This m = 1/n = 1 ( m, n: poloidal, toroidal mode numbers, respectively) typical internal kink mode travels in the ion-diamagnetism direction in the poloidal section with a rotation speed close to the ion diamagnetic drift frequency. A high thermal plasma beta and high amounts of energetic ions are necessary for the mode to develop. Fishbone oscillations can expel heavy impurities in the core, which favors sustaining a high-performance plasma. The born frequency of the fishbone oscillation is the ion diamagnetic drift frequency and the chirping down of the frequency during the initial growth phase is the result of a drop in iondiamagnetic drift frequency. The excitation energy is thought to be due to the thermal plasma pressure gradient; however, the development of a fishbone oscillation is related to energetic ions.
Lee, Jihyeon; Park, Sehwan; Cho, Soo Gyeong; Goh, Eun Mee; Lee, Sungman; Koh, Sung-Suk; Kim, Jeongkwon
2014-03-01
Corona discharge ionization combined with ion mobility spectrometry-mass spectrometry (IMS-MS) was utilized to investigate five common explosives: cyclonite (RDX), trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX), and 2,4-dinitrotoluene (DNT). The MS scan and the selected ion IMS analyses confirmed the identities of the existing ion species and their drift times. The ions observed were RDX·NO3(-), TNT(-), PETN·NO3(-), HMX·NO3(-), and DNT(-), with average drift times of 6.93 ms, 10.20 ms, 9.15 ms, 12.24 ms, 11.30 ms, and 8.89 ms, respectively. The reduced ion mobility values, determined from a standard curve calculated by linear regression of (normalized drift times)(-1) versus literature K0 values, were 2.09, 1.38, 1.55, 1.15, 1.25, and 1.60 cm(2) V(-1) s(-1), respectively. The detection limits were found to be 0.1 ng for RDX, 10 ng for TNT, 0.5 ng for PETN, 5.0 ng for HMX, and 10 ng for DNT. Simplified chromatograms were observed when nitrogen, as opposed to air, was used as the drift gas, but the detection limits were approximately 10 times worse (i.e., less sensitivity of detection). © 2013 Elsevier B.V. All rights reserved.
Irradiation of materials with short, intense ion pulses at NDCX-II
NASA Astrophysics Data System (ADS)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; Friedman, A.; Gilson, E. P.; Grote, D. P.; Ji, Q.; Kaganovich, I. D.; Ludewigt, B.; Persaud, A.; Sierra, C.; Silverman, M.; Stepanov, A. D.; Sulyman, A.; Treffert, F.; Waldron, W. L.; Zimmer, M.; Schenkel, T.
2017-06-01
We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.
Ionospheric vertical plasma drift perturbations due to the quasi 2 day wave
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Li, Tao; Dou, Xiankang
2015-05-01
The thermosphere-ionosphere-mesosphere-electrodynamics-general circulation model is utilized to study the vertical E × B drift perturbations due to the westward quasi 2 day wave with zonal wave numbers 2 and 3 (W2 and W3). The simulations show that both wind components contribute directly and significantly to the vertical drift, which is not merely confined to low latitudes. The vertical drifts at the equator induced by the total wind perturbations of W2 are comparable with that at middle latitudes, while the vertical drifts from W3 are much stronger at middle latitudes than at the equator. The ion drift perturbations induced by the zonal and meridional wind perturbations of W2 are nearly in-phase with each other, whereas the phase discrepancies of the ion drift induced by the individual wind component of W3 are much larger. This is because the wind perturbations of W2 and W3 have different latitudinal structures and phases, which result in different ionospheric responses through wind dynamo.
Drift wave stabilized by an additional streaming ion or plasma population
NASA Astrophysics Data System (ADS)
Bashir, M. F.; Vranjes, J.
2015-03-01
It is shown that the universally unstable kinetic drift wave in an electron-ion plasma can very effectively be suppressed by adding an extra flowing ion (or plasma) population. The effect of the flow of the added ions is essential, their response is of the type (vp h-vf 0) exp[-(vph-vf 0) 2] , where vf 0 is the flow speed and vp h is the phase speed parallel to the magnetic field vector. The damping is strong and it is mainly due to this ion exponential term, and this remains so for vf 0
Drift wave stabilized by an additional streaming ion or plasma population.
Bashir, M F; Vranjes, J
2015-03-01
It is shown that the universally unstable kinetic drift wave in an electron-ion plasma can very effectively be suppressed by adding an extra flowing ion (or plasma) population. The effect of the flow of the added ions is essential, their response is of the type (vph-vf0)exp[-(vph-vf0)2], where vf0 is the flow speed and vph is the phase speed parallel to the magnetic field vector. The damping is strong and it is mainly due to this ion exponential term, and this remains so for vf0
Improved momentum-transfer theory for ion mobility. 1. Derivation of the fundamental equation.
Siems, William F; Viehland, Larry A; Hill, Herbert H
2012-11-20
For the first time the fundamental ion mobility equation is derived by a bottom-up procedure, with N real atomic ion-atomic neutral collisions replaced by N repetitions of an average collision. Ion drift velocity is identified as the average of all pre- and postcollision velocities in the field direction. To facilitate velocity averaging, collisions are sorted into classes that "cool" and "heat" the ion. Averaging over scattering angles establishes mass-dependent relationships between pre- and postcollision velocities for the cooling and heating classes, and a combined expression for drift velocity is obtained by weighted addition according to relative frequencies of the cooling and heating encounters. At zero field this expression becomes identical to the fundamental low-field ion mobility equation. The bottom-up derivation identifies the low-field drift velocity as 3/4 of the average precollision ion velocity in the field direction and associates the passage from low-field to high-field conditions with the increasing dominance of "cooling" collisions over "heating" collisions. Most significantly, the analysis provides a direct path for generalization to fields of arbitrary strength.
Device for two-dimensional gas-phase separation and characterization of ion mixtures
Tang, Keqi [Richland, WA; Shvartsburg, Alexandre A [Richland, WA; Smith, Richard D [Richland, WA
2006-12-12
The present invention relates to a device for separation and characterization of gas-phase ions. The device incorporates an ion source, a field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer, an ion mobility spectrometry (IMS) drift tube, and an ion detector. In one aspect of the invention, FAIMS operating voltages are electrically floated on top of the IMS drift voltage. In the other aspect, the FAIMS/IMS interface is implemented employing an electrodynamic ion funnel, including in particular an hourglass ion funnel. The present invention improves the efficiency (peak capacity) and sensitivity of gas-phase separations; the online FAIMS/IMS coupling creates a fundamentally novel two-dimensional gas-phase separation technology with high peak capacity, specificity, and exceptional throughput.
Origin of CH+ in diffuse molecular clouds. Warm H2 and ion-neutral drift
NASA Astrophysics Data System (ADS)
Valdivia, Valeska; Godard, Benjamin; Hennebelle, Patrick; Gerin, Maryvonne; Lesaffre, Pierre; Le Bourlot, Jacques
2017-04-01
Context. Molecular clouds are known to be magnetised and to display a turbulent and complex structure where warm and cold phases are interwoven. The turbulent motions within molecular clouds transport molecules, and the presence of magnetic fields induces a relative velocity between neutrals and ions known as the ion-neutral drift (vd). These effects all together can influence the chemical evolution of the clouds. Aims: This paper assesses the roles of two physical phenomena which have previously been invoked to boost the production of CH+ under realistic physical conditions: the presence of warm H2 and the increased formation rate due to the ion-neutral drift. Methods: We performed ideal magnetohydrodynamical (MHD) simulations that include the heating and cooling of the multiphase interstellar medium (ISM), and where we treat dynamically the formation of the H2 molecule. In a post-processing step we compute the abundances of species at chemical equilibrium using a solver that we developed. The solver uses the physical conditions of the gas as input parameters, and can also prescribe the H2 fraction if needed. We validate our approach by showing that the H2 molecule generally has a much longer chemical evolution timescale compared to the other species. Results: We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low (0.3-30%) but nevertheless higher than its equilibrium value, and where the gas temperature is high (≳ 300 K). We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude up to values still 3-10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities from our ideal MHD simulations. We find that the ion-neutral drift velocity distribution peaks around 0.04 km s-1, and that high drift velocities are too rare to have a significant statistical impact on the abundances of CH+. Compared to previous works, our multiphase simulations reduce the spread in vd, and our self-consistent treatment of the ionisation leads to much reduced vd. Nevertheless, our resolution study shows that this velocity distribution is not converged: the ion-neutral drift has a higher impact on CH+ at higher resolution. On the other hand, our ideal MHD simulations do not include ambipolar diffusion, which would yield lower drift velocities. Conclusions: Within these limitations, we conclude that warm H2 is a key ingredient in the efficient formation of CH+ and that the ambipolar diffusion has very little influence on the abundance of CH+, mainly due to the small drift velocities obtained. However, we point out that small-scale processes and other non-thermal processes not included in our MHD simulation may be of crucial importance, and higher resolution studies with better controlled dissipation processes are needed.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
A Micromegas-based Directional Dark Matter Detector for Use with Negative Ion Gases
NASA Astrophysics Data System (ADS)
Nicoloff, Catherine; Battat, James
2017-01-01
Directional dark matter detectors seek to measure the direction of WIMP-induced nuclear recoils. The angular distribution of these recoils provides a unique signature that is not mimicked by any known background population. Low-pressure gas time projection chambers (TPCs) have a long and successful history in directional dark matter searches. The benefit of the low-pressure gas target is that nuclear recoils from dark matter extend long enough to be reliably reconstructed. For the last decade, the DRIFT collaboration has employed a MWPC-based negative-ion TPC for directional dark matter detection. DRIFT recently published the leading limit from a directional detector on the spin-dependent WIMP-proton interaction (1.1 pb at a WIMP mass of 100 GeV/c2) . Although the effective spatial granularity along the drift direction is 60 um, the MWPC wire spacing of 2 mm limits DRIFT's track reconstruction. DRIFT is now exploring TPC readouts that offer higher spatial resolution. Here, we report on one such effort that uses a Micromegas for gas amplification with orthogonal strips for charge signal readout. The detector can be used with both electron drift and negative ion gases. We will describe the detector design and present preliminary commissioning data taken in a surface laboratory. Research Corporation, NSF, and MA Space Grant.
Short intense ion pulses for materials and warm dense matter research
NASA Astrophysics Data System (ADS)
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.
Two-fluid equilibrium transition during multi-pulsing CHI in spherical torus
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2015-11-01
Two-fluid dynamo current drive has been studied to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The density gradient, poloidal flow shear, and radial electric shear enhanced by applying the second CHI pulse is observed around the separatrix in the high field side to cause not only the ExB drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The two-fluid equilibrium transition during the M-CHI in the ST is investigated by modelling the M-CHI in the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region due to the increase of the poloidal electron flow velocity in the central open flux column (OFC) region, while the diamagnetic profile is kept in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region due to the increase in the drift velocity and the Hall effect. As the ion diamagnetic drift velocity is changed in the same direction as the ExB drift velocity around the separatrix in the high field side through the negative ion pressure gradient there, the poloidal ion flow velocity is increased in the OFC region, enhancing the flow shear. The radial electric field shear around the separatrix is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The density is decreased in the closed flux region according to the generalized Bernoulli law and its negative gradient around the separatrix steepens.
Irradiation of materials with short, intense ion pulses at NDCX-II
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...
2017-05-31
Here, we present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11 ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6 eV)] He + ion beam is neutralizedmore » in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. In conclusion, quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; National Centre for Physics, Shahdara Valley Road, Islamabad; Zahoor, Sara
2016-09-15
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existencemore » regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.« less
NASA Astrophysics Data System (ADS)
Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali
2016-09-01
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.
NASA Astrophysics Data System (ADS)
Bluhm, Brian K.; Gillig, Kent J.; Russell, David H.
2000-11-01
In an effort to incorporate ion-molecule reaction chemistry with ion mobility measurements we designed and constructed a novel instrument that combines a Fourier-transform ion cyclotron resonance (ICR) mass spectrometer with an ion mobility drift cell and a time-of-flight mass spectrometer. Measured mobilities for Ar+ and CO+ in helium are in excellent agreement with accepted literature values demonstrating that there are no adverse effects from the magnetic field on ion mobility measurements. Drift cell pressure, extracted from the measured mobility of Ar+ in helium, indicate that a pressure of ˜0.25 Torr is achieved in the present configuration. There are significant technological challenges associated with combining ICR and ion mobility that occurred during construction of this instrument, such as differential pumping and aperture alignment are presented.
Measurements of Doppler-ion temperature and flow in the multi-pulsing CHI experiment on HIST
NASA Astrophysics Data System (ADS)
Hanao, T.; Ishihara, M.; Hirono, H.; Hyobu, T.; Ito, K.; Matsumoto, K.; Nakayama, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2012-10-01
The steady-state current sustainment of spherical torus (ST) configurations is expected to be achieved by Multi-pulsing Coaxial Helicity Injection (M-CHI) method. In the double-pulsing discharges, the plasma current can be sustained much longer against the resistive decay compared to the single CHI. The M-CHI has capabilities as a static ion heating method. Ion Doppler Spectrometer (IDS) measurements confirmed a significant increase in the ion temperature after the second CHI pulse. The ion heating mechanism is an important issue to be explored in the M-CHI experiments. It is considered due to the magnetic reconnection process of plasmoids and/or the damping of the Alfven wave. The ion heating becomes suppressed around the separatrix layer in the high field side where the amplitude of the magnetic fluctuations is minimized due to the poloidal flow shear. The shear flow generation is caused by ExB drift and ion diamagnetic drift. The contribution from the diamagnetic drift on the shear flow can be evaluated by measuring the flow velocity of hydrogen and impurity ions by using Mach probe and IDS. We will discuss the dependence of the ion heating characteristics on the variation of the density gradient by varying TF coil current.
Theoretical studies of defect formation and target heating by intense pulsed ion beams
NASA Astrophysics Data System (ADS)
Barnard, J. J.; Schenkel, T.; Persaud, A.; Seidl, P. A.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I.
2015-11-01
We present results of three studies related to experiments on NDCX-II, the Neutralized Drift Compression Experiment, a short-pulse (~ 1ns), high-current (~ 70A) linear accelerator for 1.2 MeV ions at LBNL. These include: (a) Coupled transverse and longitudinal envelope calculations of the final non-neutral ion beam transport, followed by neutralized drift and final focus, for a number of focus and drift lengths and with a series of ion species (Z =1-19). Predicted target fluences were obtained and target temperatures in the 1 eV range estimated. (b) HYDRA simulations of the target response for Li and He ions and for Al and Au targets at various ion fluences (up to 1012 ions/pulse/mm2) and pulse durations, benchmarking temperature estimates from the envelope calculations. (c) Crystal-Trim simulations of ion channeling through single-crystal lattices, with comparisons to ion transmission data as a function of orientation angle of the crystal foil and for different ion intensities and ion species. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and DE-AC02-76CH0307 (PPPL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-67521.
The effect of vertical drift on the equatorial F-region stability
NASA Technical Reports Server (NTRS)
Hanson, W. B.; Cragin, B. L.; Dennis, A.
1986-01-01
Time-dependent ionospheric model calculations for day-time and night-time solutions are presented. The behavior of the growth rate and ion-electron recombination rate for the Rayleigh-Taylor instability on the F-region bottomside is examined as a function of the vertical eastward electric field-magnetic field strength drift velocity. It is observed that on the bottomside F-layer the growth rate exceeds the ion-electron recombination rate even without vertical drift; however, an eastward electric field-magnetic field strength drift can produce an increase in the growth rate by an order of magnitude. The calculated data are compared with previous research and good correlation is detected. The formation of bubbles from a seeding mechanism is investigated.
Lithium-ion drifting: Application to the study of point defects in floating-zone silicon
NASA Technical Reports Server (NTRS)
Walton, J. T.; Wong, Y. K.; Zulehner, W.
1997-01-01
The use of lithium-ion (Li(+)) drifting to study the properties of point defects in p-type Floating-Zone (FZ) silicon crystals is reported. The Li(+) drift technique is used to detect the presence of vacancy-related defects (D defects) in certain p-type FZ silicon crystals. SUPREM-IV modeling suggests that the silicon point defect diffusivities are considerably higher than those commonly accepted, but are in reasonable agreement with values recently proposed. These results demonstrate the utility of Li(+) drifting in the study of silicon point defect properties in p-type FZ crystals. Finally, a straightforward measurement of the Li(+) compensation depth is shown to yield estimates of the vacancy-related defect concentration in p-type FZ crystals.
Medium and large-scale variations of dynamo-induced electric fields from AE ion drift measurements
NASA Technical Reports Server (NTRS)
Coley, W. R.; Mcclure, J. P.
1986-01-01
Current models of the low latitude electric field are largely based on data from incoherent scatter radars. These observations are extended through the addition of the rather extensive high quality electric field measurements from the Ion Drift Meter (IDM) aboard the Atmosphere Explorer (AE) spacecraft. Some preliminary results obtained from the Unified Abstract files of satellite AE-E are presented. This satellite was active from the end of 1975 through June 1981 in various elliptical and circular orbits having an inclination near 20 deg. The resulting data can be examined for the variation of ion drift with latitude, longitude, season, solar cycle, altitude, and magnetic activity. The results presented deal primarily with latitudinal variations of the drift features. Diagrams of data are given and briefly interpreted. The preliminary results presented here indicate that IDM data from the AE and the more recent Dynamics Explorer B spacecraft should continue to disclose some interesting and previously unobserved dynamical features of the low latitude F region.
NASA Astrophysics Data System (ADS)
Fernandez-Maestre, R.
2017-09-01
Ion mobility spectrometry (IMS) separates gas phase ions moving under an electric field according to their size-to-charge ratio. IMS is the method of choice to detect illegal drugs and explosives in customs and airports making accurate determination of reduced ion mobilities (K0) important for national security. An ion mobility spectrometer with electrospray ionization coupled to a quadrupole mass spectrometer was used to study uncertainties in buffer gas temperatures during mobility experiments. Differences up to 16°C were found in the buffer gas temperatures in different regions of the drift tube and up to 42°C between the buffer gas and the drift tube temperatures. The drift tube temperature is used as an approximation to the buffer gas temperature for the calculation of K0 because the buffer gas temperature is hard to measure. This is leading to uncertainties in the determination of K0 values. Inaccurate determination of K0 values yields false positives that delay the cargo and passengers in customs and airports. Therefore, recommendations are issued for building mobility tubes to assure a homogeneous temperature of the buffer gas. Because the temperature and other instrumental parameters are difficult to measure in IMS, chemical standards should always be used when calculating K0. The difference of 42°C between the drift tube and buffer gas temperatures found in these experiments produces a 10.5% error in the calculation of K0. This large inaccuracy in K0 shows the importance of a correct temperature measurement in IMS.
Kune, Christopher; Far, Johann; De Pauw, Edwin
2016-12-06
Ion mobility spectrometry (IMS) is a gas phase separation technique, which relies on differences in collision cross section (CCS) of ions. Ionic clouds of unresolved conformers overlap if the CCS difference is below the instrumental resolution expressed as CCS/ΔCCS. The experimental arrival time distribution (ATD) peak is then a superimposition of the various contributions weighted by their relative intensities. This paper introduces a strategy for accurate drift time determination using traveling wave ion mobility spectrometry (TWIMS) of poorly resolved or unresolved conformers. This method implements through a calibration procedure the link between the peak full width at half-maximum (fwhm) and the drift time of model compounds for wide range of settings for wave heights and velocities. We modified a Gaussian equation, which achieves the deconvolution of ATD peaks where the fwhm is fixed according to our calibration procedure. The new fitting Gaussian equation only depends on two parameters: The apex of the peak (A) and the mean drift time value (μ). The standard deviation parameter (correlated to fwhm) becomes a function of the drift time. This correlation function between μ and fwhm is obtained using the TWIMS calibration procedure which determines the maximum instrumental ion beam diffusion under limited and controlled space charge effect using ionic compounds which are detected as single conformers in the gas phase. This deconvolution process has been used to highlight the presence of poorly resolved conformers of crown ether complexes and peptides leading to more accurate CCS determinations in better agreement with quantum chemistry predictions.
The collisional drift mode in a partially ionized plasma. [in the F region
NASA Technical Reports Server (NTRS)
Hudson, M. K.; Kennel, C. F.
1974-01-01
The structure of the drift instability was examined in several density regimes. Let sub e be the total electron mean free path, k sub z the wave-vector component along the magnetic field, and the ratio of perpendicular ion diffusion to parallel electron streaming rates. At low densities (k sub z lambda 1) the drift mode is isothermal and should be treated kineticly. In the finite heat conduction regime square root of m/M k sub z Lambda sub 1) the drift instability threshold is reduced at low densities and increased at high densities as compared to the isothermal threshold. Finally, in the energy transfer limit (k sub z kambda sub e square root of m/M) the drift instability behaves adiabatically in a fully ionized plasma and isothermally in a partially ionized plasma for an ion-neutral to Coulomb collision frequency ratio.
Overtone Mobility Spectrometry (Part 2): Theoretical Considerations of Resolving Power
Valentine, Stephen J.; Stokes, Sarah T.; Kurulugama, Ruwan T.; Nachtigall, Fabiane M.; Clemmer, David E.
2009-01-01
The transport of ions through multiple drift regions is modeled in order to develop an equation that is useful for an understanding of the resolving power of an overtone mobility spectrometry (OMS) technique. It is found that resolving power is influenced by a number of experimental variables, including those that define ion mobility spectrometry (IMS) resolving power: drift field (E), drift region length (L), and buffer gas temperature (T). However, unlike IMS, the resolving power of OMS is also influenced by the number of drift regions (n), harmonic frequency value (m), and the phase number (ϕ) of the applied drift field. The OMS resolving power dependence upon the new OMS variables (n, m, and ϕ) scales differently than the square root dependence of the E, L, and T variables in IMS. The results provide insight about optimal instrumental design and operation. PMID:19230705
NASA Technical Reports Server (NTRS)
Coley, W. R.
1986-01-01
The establishment of the latitudinal and longitudinal structure of the low latitude dynamo electric (DE) field was initiated using data primarily from the Unified Abstract (UA) files of the Atmosphere Explorer E (AE-E) satellite. Mass plots of the vertical ion drift values were made for 1977, 1978, and 1979. The average diurnal variation of V sub v within 20 degrees of the dip equator is remarkably similar to that obtained at Jicamarca in the same years. The average meridional ion drift velocity vectors, obtained as a function of latitude by combining the average vertical and horizontal (nearly north-south) ion drift values from the AE-E, showed the expected variations with local time and season based on the well known equatorial fountain effect theory. The average diurnal variation of the vertical drift was found for four different ranges of dip latitude for a northern solstice season. The effect of the transequatorial neutral winds was as evident in this plotting format as in the meridional or fountain effect format. Finally, the average vertical drift velocity V sub v, not the east-west electric field E sub ew, was found to be approximately independent of longitude, as expected from the dynamo theory.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.
Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays
Li, Zheng; Chen, Wei
2016-07-05
A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.
NASA Astrophysics Data System (ADS)
Gravier, E.; Klein, R.; Morel, P.; Besse, N.; Bertrand, P.
2008-12-01
A new model is presented, named collisional-gyro-water-bag (CGWB), which describes the collisional drift waves and ion-temperature-gradient (ITG) instabilities in a plasma column. This model is based on the kinetic gyro-water-bag approach recently developed [P. Morel et al., Phys. Plasmas 14, 112109 (2007)] to investigate ion-temperature-gradient modes. In CGWB electron-neutral collisions have been introduced and are now taken into account. The model has been validated by comparing CGWB linear analysis with other models previously proposed and experimental results as well. Kinetic effects on collisional drift waves are investigated, resulting in a less effective growth rate, and the transition from collisional drift waves to ITG instability depending on the ion temperature gradient is studied.
Pitch Angle Dependence of Drift Resonant Ions Observed by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Rankin, R.; Wang, C.; Wang, Y.; Zong, Q. G.; Zhou, X.
2017-12-01
Acceleration and modulation of ring current ions by poloidal mode ULF waves is investigated. A simplified MHD model of ULF waves in a dipole magnetic field is presented that includes phase mixing to perpendicular scales determined by the ionospheric Pedersen conductivity. The wave model is combined with a full Lorentz force test particle code to study drift and drift bounce resonance wave-particle interactions. Ion trajectories are traced backward-in-time to an assumed form of the distribution function, and Liouville's method is used to reconstruct the phase space density response (PSD) poloidal mode waves observed by the Van Allen Probes. In spite of its apparent simplicity, simulations using the wave and test particle models are able to explain the acceleration of ions and energy dispersion observed by the Van Allen Probes. The paper focuses on the pitch angle evolution of the initial PSD as it responds to the action of ULF waves. An interesting aspect of the study is the formation of butterfly ion distributions as ions make periodic radial oscillations across L. Ions become trapped in an effective potential well across a limited range of L and follow trajectories that cause them to surf along constant phase fronts. The impications of this new trapping mechanism for both ions and electrons is discussed.
NASA Astrophysics Data System (ADS)
Landry, R. G.; Anderson, P. C.
2017-12-01
Subauroral ion drifts (SAID) are a phenomenon sometimes observed in the subauroral ionosphere in dusk to post-midnight magnetic local time sectors during magnetically active periods characterized by strong poleward electric fields that drive westward ion drifts greater than 1 km/s. SAIDs typically will span 1-2 degrees magnetic latitude and several hours in magnetic local time. SAIDs are often observed colocated with the midlatitude trough. The strong electric field can act to reduce the ionospheric conductivity further through enhanced recombination and vertical transport. The theory that SAIDs are generated by ionospheric Pedersen currents fed by ring current driven field-aligned currents (FAC) requires the decreased conductance associated with the midlatitude trough to produce the latitudinally narrow, large amplitude SAID electric field. Using Dynamics Explorer 2 (DE 2) plasma measurements of SAIDs from altitudes of 200 to 1000 km, we investigate the statistical variation of the ionospheric composition, temperature, and vertical ion drifts as a function of altitude. Using Defense Meteorological Satellite Program (DMSP) measurements from 1987-2012, we extend the empirical study at the DMSP altitude of 830 km to investigate how season, longitude, and any ionospheric preconditioning before SAID formation affect the likelihood of SAID occurrence and coincidence with FACs and ion density troughs.
May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A
2014-02-18
Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.
2014-01-01
Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877
Short intense ion pulses for materials and warm dense matter research
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; ...
2015-08-14
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10 10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientificmore » topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.« less
Simulation of ITG instabilities with fully kinetic ions and drift-kinetic electrons in tokamaks
NASA Astrophysics Data System (ADS)
Hu, Youjun; Chen, Yang; Parker, Scott
2017-10-01
A turbulence simulation model with fully kinetic ions and drift-kinetic electrons is being developed in the toroidal electromagnetic turbulence code GEM. This is motivated by the observation that gyrokinetic ions are not well justified in simulating turbulence in tokamak edges with steep density profile, where ρi / L is not small enough to be used a small parameter needed by the gyrokinetic ordering (here ρi is the gyro-radius of ions and L is the scale length of density profile). In this case, the fully kinetic ion model may be useful. Our model uses an implicit scheme to suppress high-frequency compressional Alfven waves and waves associated with the gyro-motion of ions. The ion orbits are advanced by using the well-known Boris scheme, which reproduces correct drift-motion even with large time-step comparable to the ion gyro-period. The field equation in this model is Ampere's law with the magnetic field eliminated by using an implicit scheme of Faraday's law. The current contributed by ions are computed by using an implicit δf method. A flux tube approximation is adopted, which makes the field equation much easier to solve. Numerical results of electromagnetic ITG obtained from this model will be presented and compared with the gyrokinetic results. This work is supported by U.S. Department of Energy, Office of Fusion Energy Sciences under Award No. DE-SC0008801.
Characteristics of DC electric fields in transient plasma sheet events
NASA Astrophysics Data System (ADS)
Laakso, H. E.; Escoubet, C. P.; Masson, A.
2015-12-01
We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.
Multi-point Measurements of Relativistic Electrons in the Magnetosphere
NASA Astrophysics Data System (ADS)
Li, X.; Selesnick, R.; Baker, D. N.; Blake, J. B.; Schiller, Q.; Blum, L. W.; Zhao, H.; Jaynes, A. N.; Kanekal, S.
2014-12-01
We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.
Majority of Solar Wind Intervals Support Ion-Driven Instabilities
NASA Astrophysics Data System (ADS)
Klein, K. G.; Alterman, B. L.; Stevens, M. L.; Vech, D.; Kasper, J. C.
2018-05-01
We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He2 + temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He2 + components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7% are unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5% of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates γ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively large He2 + drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.
Electrostatic ion-cyclotron waves in a nonuniform magnetic field
NASA Technical Reports Server (NTRS)
Cartier, S. L.; Dangelo, N.; Merlino, R. L.
1985-01-01
The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.
Majority of Solar Wind Intervals Support Ion-Driven Instabilities.
Klein, K G; Alterman, B L; Stevens, M L; Vech, D; Kasper, J C
2018-05-18
We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He^{2+} temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He^{2+} components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7% are unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5% of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates γ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively large He^{2+} drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.
The dynamo of the diurnal tide and its effect on the thermospheric circulation
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.
1990-01-01
A theoretical multiconstituent model (including O, N2, and O2) which describes the interactions between neutral winds, dynamo electric fields, and ion drifts is used to interpret observations that revealed a dominance of the fundamental diurnal tide in the upper thermosphere and at equatorial latitudes, and its effect on the thermospheric circulation. The model is shown to reproduce reasonably well the magnitudes of the neutral winds, ion drift velocities, and the ratio between the two. A solution for the neutral winds in which the dynamo electric field is forced to zero shows that the dynamo-induced ion drift is very important in accelerating the neutral atmosphere at higher altitudes. The dynamo interaction primarily affects the curl component of the field; its effect on the temperature and density perturbations is small.
NASA Technical Reports Server (NTRS)
Brinca, A. L.; Tsurutani, B. T.
1987-01-01
The characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies are examined using a model of solar wind permeated by dilute drifting ring distributions of electrons and oxygen ions with finite thermal spreads. The model has parameters compatible with the ICE observations at the Giacobini-Zinner comet. It is shown that cometary newborn ions with large perpendicular energies can excite a wave mode with rest frame frequencies in the order of the heavy ion cyclotron frequency, Omega(i), and unusual propagation characteristics at small obliquity angles. For parallel propagation, the mode is left-hand circularly polarized, might be unstable in a frequency range containing Omega(i), and moves in the direction of the newborn ion drift along the static magnetic field.
High-Voltage, High-Impedance Ion Beam Production
2009-06-01
the anode tube with a loosely-crumpled, thin aluminized- mylar foil. This spoils the virtual cathode and greatly reduces the neutron signal, as seen...ions follow ballistic (straight-line) trajectories in the drift tube (see Sec. VIII), then (except for the small displacement associated with bending...mTorr) ambient in the drift tube . Based on our previous experience, we would expect charge, but not necessarily current, neutralization of the beam
Negative Ion Drift Velocity and Longitudinal Diffusion in Mixtures of Carbon Disulfide and Methane
NASA Technical Reports Server (NTRS)
Dion, Michael P.; Son, S.; Hunter, S. D.; deNolfo, G. A.
2011-01-01
Negative ion drift velocity and longitudinal diffusion has been measured for gas mixtures of carbon disulfide (CS2) and methane (CH4)' Measurements were made as a function of total pressure, CS2 partial pressure and electric field. Constant mobility and thermal-limit longitudinal diffusion is observed for all gas mixtures tested. Gas gain for some of the mixtures is also included.
NASA Astrophysics Data System (ADS)
Lee, Seungjun; Lee, Myoung-Jae
2012-10-01
The electrostatic dust-cyclotron (EDC) waves in a magnetized dusty plasma was reported that they could be excited by gravity in a collisional plasma [1]. Rosenberg suggested that EDC waves could be excited by ions drifting along the magnetic field in a collisional plasma containing dust grains with large thermal speeds [2]. The existing investigations, however, focus on EDC volume waves in which the boundary effects are not considered. In this work, we attempt to obtain some physical results concerning the fundamental mode of EDC surface wave and the stability of wave by utilizing a kinetic method. The EDC surface wave is assumed to propagate along an external magnetic field at the interface between the plasma and the vacuum. The plasma is comprised of drifting ions flowing along an external magnetic field. To derive the growth rate of surface waves, we employ the specular reflection boundary conditions. The EDC surface wave is found to be unstable when the ion drift velocity is larger than the phase velocity of the wave. In addition, the wave becomes to be more unstable if dust particles carry more negative charges.[4pt] [1] N. D'Angelo, Phys. Lett. A 323, 445 (2004).[0pt] [2] M. Rosenberg, Phys. Scr. 82, 035505 (2010).
Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; ...
2012-05-31
In this study, the design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ionmore » driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B~100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasmaelectrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electrondynamics strongly affected by a weak applied magnetic field.« less
May, Jody C.; McLean, John A.
2013-01-01
The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations. PMID:23888124
May, Jody C; McLean, John A
2003-06-01
The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.
Effect of temperature degeneracy and Landau quantization on drift solitary waves and double layers
NASA Astrophysics Data System (ADS)
Shan, Shaukat Ali; Haque, Q.
2018-01-01
The linear and nonlinear drift ion acoustic waves have been investigated in an inhomogeneous, magnetized, dense degenerate, and quantized magnetic field plasma. The linear drift ion acoustic wave propagation along with the nonlinear structures like double layers and solitary waves has been found to be strongly dependent on the drift speed, magnetic field quantization parameter β, and the temperature degeneracy. The graphical illustrations show that the frequency of linear waves and the amplitude of the solitary waves increase with the increase in temperature degeneracy and Landau quantization effect, while the amplitude of the double layers decreases with the increase in η and T. The relevance of the present study is pointed out in the plasma environment of fast ignition inertial confinement fusion, the white dwarf stars, and short pulsed petawatt laser technology.
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2014-10-01
Two-fluid dynamo relaxation is examined to understand sustainment mechanism of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The steeper density gradient between the central open flux column (OFC) and closed flux regions by applying the second CHI pulse is observed to cause not only the
Spacecraft Interactions Studies with a 1 Kw Class Closed-Drift Hall Thruster
1998-01-31
Closed Drift Hall thruster plume with spacecraft surfaces and systems. Two basic interaction modes were investigated: (1) the influence of the plume...Spectrometer (MBMS) capable of discerning both the mass and energy of Hall thruster plume species, and the ion acoustic wave probe to measure the drift velocity of the plume plasma.
A parametric study of the drift-tearing mode using an extended-magnetohydrodynamic model
King, Jacob R.; Kruger, S. E.
2014-10-24
The linear, collisional, constant-ψ drift-tearing mode is analyzed for different regimes of the plasma-β, ion-skin-depth parameter space with an unreduced, extended-magnetohydrodynamic model. Here, new dispersion relations are found at moderate plasma β and previous drift-tearing results are classified as applicable at small plasma β.
On The Ion Drift Contribution To The Phase Velocity of Electrojet Irregularities
NASA Astrophysics Data System (ADS)
Uspensky, M.; Koustov, A.; Janhunen, P.; Pellinen, R.; Danskin, D.; Nozawa, S.
The ion drift effect is often ignored in the interpretation of VHF Doppler measure- ments. For example, in the STARE experiment it is assumed that the line-of-sight velocity measured at large flow angles is simply a cosine component of the true elec- tron drift. Previous studies seem to support this assumption, though only to a certain degree. In this study we consider a 3.5-hour morning event of joint STARE-EISCAT observa- tions for which the STARE-Finland radar velocity was mainly larger than the EISCAT convection component. A moderate 5-20 deg offset between the EISCAT convection azimuth and its STARE estimate was also observed. We show that both the STARE- Finland radar velocity "over-speed" and the azimuthal offset between the EISCAT and STARE convection vectors can be explained by fluid plasma theory arguments if the ion drift contribution to the irregularity phase velocity under the condition of moder- ate backscatter off-orthogonality is taken into account. The ion effects were enhanced because of a lifting up of the entire E-region seen by the EISCAT. It perhaps resulted in an increase of the STARE echo heights and aspect angles. The latter are of the order of 1 deg at the top of the electrojet layer. We also compare STARE convection magni- tudes and true velocities measured by the EISCAT to study the potential impact of the ion motions on the STARE velocity estimates.
Gyrophase drifts and the orbital evolution of dust at Jupiter's Gossamer Ring
NASA Technical Reports Server (NTRS)
Northrop, T. G.; Mendis, D. A.; Schaffer, Les
1989-01-01
The 'gyrophase drift' phenomenon in Jupiter's fine-dust 'gossamer ring' is presently shown to exceed the plasma-drag drift, and may be able to move small, charged grains either toward or away from synchronous radius. The grain gyrophase drifts toward the higher temperature in the presence of a radial gradient in plasma temperature; gyrophase drift will also occur in conjunction with a radial gradient in the relative concentrations of different plasma ion species, or even due to plasma-grain velocity variation associated with the grain's cycloidal motion through the plasma. The Poynting-Robertson drift is noted to be diminutive by comparison with either the plasma-drag or gyrophase drifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waltman, Melanie J.
2010-05-01
Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionizedmore » through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.« less
Nonlinear waves in electron-positron-ion plasmas including charge separation
NASA Astrophysics Data System (ADS)
Mugemana, A.; Moolla, S.; Lazarus, I. J.
2017-02-01
Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2007-01-01
We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.
Developing Si(Li) nuclear radiation detectors by pulsed electric field treatment
NASA Astrophysics Data System (ADS)
Muminov, R. A.; Radzhapov, S. A.; Saimbetov, A. K.
2009-08-01
Fabrication of Si(Li) nuclear radiation detectors using lithium ion drift under the action of a pulsed electric field is considered. Optimum treatment regime parameters are determined, including the pulse amplitude, duration, and repetition rate. Experimental data are presented, which show that the ion drift in a pulsed electric field decreases the semiconductor bulk compensation time by a factor of two to four and significantly increases the efficiency of detectors.
Atomic physics effects on tokamak edge drift-tearing modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahm, T.S.
1993-03-01
The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold {Delta}{sup Th}, produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.
Atomic physics effects on tokamak edge drift-tearing modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahm, T.S.
1993-03-01
The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold [Delta][sup Th], produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.
L-H transitions driven by ion heating in scrape-off layer turbulence (SOLT) model simulations
NASA Astrophysics Data System (ADS)
Russell, D. A.; D'Ippolito, D. A.; Myra, J. R.
2015-11-01
The original SOLT model now includes the evolution of ion pressure consistent with drift-ordering. It is a two-dimensional, electrostatic reduced model wherein closure relations, obtained by integrating the equations along the B-field, model parallel physics that includes sheath-mediated current and heat flux in the scrape-off-layer and electron drift waves inside the separatrix. Low (L) and high (H) confinement regimes are observed in SOLT simulations, depending on the strength of an ion pressure (i.e., ion heating) source localized inside the separatrix: With increasing heating, particle and energy confinement times at first decrease in the L-mode then rise in the H-mode. The L-H transition is marked by distinct changes in sheared-flow profiles. The addition of ion pressure dynamics enables modeling the self-consistent interaction between the ion diamagnetic drift and the radial electric field (mean and zonal flows). The roles of these sheared flows in mediating the L-H transition are explored. A new diagnostic, based on the density correlation function, is applied to study blob velocities in different regimes. Work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-97ER54392.
Steiner, Wes E; English, William A; Hill, Herbert H
2006-02-09
The ion mobilities and their respective masses of several classes of amines (primary, secondary, and tertiary) were measured by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS. The experimental data obtained were comparatively analyzed by the one-temperature kinetic theory of Chapman-Enskog. Several theoretical models were used to estimate the collision cross-sections; they include the rigid-sphere, polarization-limit, 12-6-4, and 12-4 potential models. These models were investigated to represent the interaction potentials contained within the collision integral that occurs between the polyatomic ions and the neutral drift gas molecules. The effectiveness of these collision cross-section models on predicting the mobility of these amine ions was explored. Moreover, the effects of drift gas selectivity on the reduced-mass term and in the collision cross-section term was examined. Use of a series of drift gases, namely, helium, neon, argon, nitrogen, and carbon dioxide, made it possible to distinguish between mass effects and polarizability effects. It was found that the modified 12-4 potential that compensates for the center of charge not being at the same location as the centers of mass showed improved agreement over the other collision cross-section models with respect to experimental data.
NASA Astrophysics Data System (ADS)
Sumida, Shuhei; Shinohara, Kouji; Ikezoe, Ryuya; Ichimura, Makoto; Sakamoto, Mizuki; Hirata, Mafumi; Ide, Shunsuke
2017-12-01
The Magneto-acoustic Cyclotron Instability (MCI) is a possible emission mechanism for Ion Cyclotron Emissions (ICEs). A dispersion model of the MCI driven by a drifting-ring-type ion velocity distribution has been proposed. In this study, the model was compared with the experimental observations of 3He ICEs [ICEs(3He)] on JT-60U. For this purpose, at first, velocity distributions of deuterium-deuterium fusion produced fast 3He ions at the time of an appearance of the ICE(3He) were evaluated by using a fast ion orbit following code under a realistic condition. The calculated distribution at the edge of the plasma on the midplane on the low field side is shown to have an inverted population and strong anisotropy. This distribution can be reasonably approximated by the drifting-ring-type distribution. Next, dispersions of the MCIs driven by the drifting-ring-type distribution were compared with those of observed ICEs(3He). The comparison shows that toroidal wavenumbers and frequencies of the calculated MCIs agree with those of the observed ICEs(3He).
Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry
NASA Astrophysics Data System (ADS)
Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Zhou; Yu, Quan; Qian, Xiang; Wang, Xiaohao
2015-08-01
Ion mobility spectrometry (IMS) is a key trace detection technique for toxic pollutants and explosives in the atmosphere. Ultraviolet radiation photoionization source is widely used as an ionization source for IMS due to its advantages of high selectivity and non-radioactivity. However, UV-IMS bring problems that UV rays will be launched into the drift tube which will cause secondary ionization and lead to the photoelectric effect of the Faraday disk. So air is often used as working gas to reduce the effective distance of UV rays, but it will limit the application areas of UV-IMS. In this paper, we propose a new structure of curved drift tube, which can avoid abnormally incident UV rays. Furthermore, using curved drift tube may increase the length of drift tube and then improve the resolution of UV-IMS according to previous research. We studied the homogeneity of electric field in the curved drift tube, which determined the performance of UV-IMS. Numerical simulation of electric field in curved drift tube was conducted by SIMION in our study. In addition, modeling method and homogeneity standard for electric field were also presented. The influences of key parameters include radius of gyration, gap between electrode as well as inner diameter of curved drift tube, on the homogeneity of electric field were researched and some useful laws were summarized. Finally, an optimized curved drift tube is designed to achieve homogenous drift electric field. There is more than 98.75% of the region inside the curved drift tube where the fluctuation of the electric field strength along the radial direction is less than 0.2% of that along the axial direction.
Webb, Ian K.; Garimella, Sandilya V. B.; Tolmachev, Aleksey V.; ...
2014-09-15
A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be deflected to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 torr. In the “dynamic mode” we show that mobility-selected ions can be switched intomore » the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. Ultimately, this development also provides the basis for e.g. the selection of specific mobilities for storage and accumulation, and key modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.« less
Effect of solenoidal magnetic field on drifting laser plasma
NASA Astrophysics Data System (ADS)
Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter
2013-04-01
An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.
Analytical and numerical treatment of resistive drift instability in a plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirnov, V. V., E-mail: vvmirnov@wisc.edu; Sauppe, J. P.; Hegna, C. C.
An analytic approach combining the effect of equilibrium diamagnetic flows and the finite ionsound gyroradius associated with electron−ion decoupling and kinetic Alfvén wave dispersion is derived to study resistive drift instabilities in a plasma slab. Linear numerical computations using the NIMROD code are performed with cold ions and hot electrons in a plasma slab with a doubly periodic box bounded by two perfectly conducting walls. A linearly unstable resistive drift mode is observed in computations with a growth rate that is consistent with the analytic dispersion relation. The resistive drift mode is expected to be suppressed by magnetic shear inmore » unbounded domains, but the mode is observed in numerical computations with and without magnetic shear. In the slab model, the finite slab thickness and the perfectly conducting boundary conditions are likely to account for the lack of suppression.« less
Jurado-Campos, Natividad; Garrido-Delgado, Rocío; Martínez-Haya, Bruno; Eiceman, Gary A; Arce, Lourdes
2018-08-01
Significant substances in emerging applications of ion mobility spectrometry such as breath analysis for clinical diagnostics and headspace analysis for food purity include low molar mass alcohols, ketones, aldehydes and esters which produce mobility spectra containing protonated monomers and proton-bound dimers. Spectra for all n- alcohols, aldehydes and ketones from carbon number three to eight exhibited protonated monomers and proton-bound dimers with ion drift times of 6.5-13.3 ms at ambient pressure and from 35° to 80 °C in nitrogen. Only n-alcohols from 1-pentanol to 1-octanol produced proton-bound trimers which were sufficiently stable to be observed at these temperatures and drift times of 12.8-16.3 ms. Polar functional groups were protected in compact structures in ab initio models for proton-bound dimers of alcohols, ketones and aldehydes. Only alcohols formed a V-shaped arrangement for proton-bound trimers strengthening ion stability and lifetime. In contrast, models for proton-bound trimers of aldehydes and ketones showed association of the third neutral through weak, non-specific, long-range interactions consistent with ion dissociation in the ion mobility drift tube before arriving at the detector. Collision cross sections derived from reduced mobility coefficients in nitrogen gas atmosphere support the predicted ion structures and approximate degrees of hydration. Copyright © 2018 Elsevier B.V. All rights reserved.
Effects of Convection Electric Fields on Modeled Plasmaspheric Densities and ccc Temperatures
NASA Technical Reports Server (NTRS)
Comfort, Richard H.; Richards, Phil G.; Liao, Jin-Hua; Craven, Paul D.
1998-01-01
This paper examines the effects of convection electric fields on plasmaspheric H+, O+, He+, and N+ densities and electron and ion temperatures. These effects are studied with the aid of the Field Line Interhemispheric Plasma (FLIP) model, which has recently been extended to include the effects of ExB drifts. The FLIP model solves the continuity and momentum equations for the major ion species as well as the energy equations for ions and electrons along entire drifting flux tubes from 100 km altitude in the northern hemisphere to 100 km altitude in the southern hemisphere. Electron heating in the ionosphere and plasmasphere is provided by the solution of two-stream equations for photoelectrons. The dawn-dusk electric field imposed by the solar wind causes changes in plasmaspheric density and temperature as the plasma drifts onto flux tubes having different volumes. In an idealized convection model, outward drifts in the afternoon cause decreases in the plasmasphere density and temperature while inward drifts in the evening cause increases in plasmasphere density and temperature. In this paper we examine the effects of convection electric fields on the rate of refilling of flux tubes and investigate the hypothesis that convection electric fields are responsible for the unusually high evening electron temperatures and the post-midnight density maxima often observed in the winter ionosphere above Millstone Hill.
Restrike Particle Beam Experiments on a Dense Plasma Focus.
1980-11-30
differentially pumped drift tube as shown in Figure 1. However, even the lOI of gas pressure in the drift space is sufficient to establish an equilibrium...pumped drift tube concept are five-fold: 1) Lower energy attenuation of the beam by neutral gas 2) Lower lateral spread of the beam caused by multiple...relatively low gas pressure through the use of a differentially pumped drift tube . The path makes it possible to observe ion energies to considerably lower
Distributed drift chamber design for rare particle detection in relativistic heavy ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellwied, R.; Bennett, M.J.; Bernardo, V.
2001-10-02
This report describes a multi-plane drift chamber that was designed and constructed to function as a topological detector for the BNL AGSE896 rare particle experiment. The chamber was optimized for good spatial resolution, two track separation, and a high uniform efficiency while operating in a 1.6 Tesla magnetic field and subjected to long term exposure from a 11.6 GeV/nucleon beam of 10**6 Au ions per second.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, J.Y.; Chan, V.S.; Harvey, R.W.
1984-08-06
The perpendicular heating in cyclotron waves tends to pile up the resonant particles toward the low magnetic field side with their banana tips localized to the resonant surface. A poloidal electric field with an E x B drift comparable to the ion vertical drift in a toroidal magnetic field may result. With the assumption of anomalous electron and neoclassical ion transport, density variations due to wave heating are discussed.
Kim, Hugh I.; Kim, Hyungjun; Pang, Eric S.; Ryu, Ernest K.; Beegle, Luther W.; Loo, Joseph A.; Goddard, William A.; Kanik, Isik
2009-01-01
A number of phosphatidylcholine (PC) cations spanning a mass range of 400 to 1000 Da are investigated using electrospray ionization mass spectrometry coupled with traveling wave ion mobility spectrometry (TWIMS). A high correlation between mass and mobility is demonstrated with saturated phosphatidylcholine cations in N2. A significant deviation from this mass-mobility correlation line is observed for the unsaturated PC cation. We found that the double bond in the acyl chain causes a 5% reduction in drift time. The drift time is reduced at a rate of ~1% for each additional double bond. Theoretical collision cross sections of PC cations exhibit good agreement with experimentally evaluated values. Collision cross sections are determined using the recently derived relationship between mobility and drift time in TWIMS stacked ring ion guide (SRIG) and compared to estimate collision cross-sections using empiric calibration method. Computational analysis was performed using the modified trajectory (TJ) method with nonspherical N2 molecules as the drift gas. The difference between estimated collision cross-sections and theoretical collision cross-sections of PC cations is related to the sensitivity of the PC cation collision cross-sections to the details of the ion-neutral interactions. The origin of the observed correlation and deviation between mass and mobility of PC cations is discussed in terms of the structural rigidity of these molecules using molecular dynamic simulations. PMID:19764704
NASA Astrophysics Data System (ADS)
Lai, Hanh; McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.; Almirall, José R.
2008-09-01
The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOSFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanh Lai; Timothy R. McJunkin; Carla J. Miller
2008-09-01
The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: 1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctlymore » predict the ion drift times; 2) a drift gas composition study evaluates the accuracy in predicting the resolution; and 3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.« less
Source and identification of heavy ions in the equatorial F layer.
NASA Technical Reports Server (NTRS)
Hanson, W. B.; Sterling, D. L.; Woodman, R. F.
1972-01-01
Further evidence is presented to show that the interpretation of some Ogo 6 retarding potential analyzer (RPA) results in terms of ambient Fe+ ions is correct. The Fe+ ions are observed only within dip latitudes of plus or minus 30 deg, and the reason for this latitudinal specificity is discussed in terms of a low-altitude source region and F region diffusion and electrodynamic drift. It is shown that the polarization field associated with the equatorial electrojet will raise ions to 160 km out of a chemical source region below 100 km but it will do so only in a narrow region centered on the dip equator. Subsequent vertical ExB drift, coupled with motions along the magnetic fields, can move the ions to greater heights and greater latitudes. There should be a resultant fountain of metallic ions rising near the equator that subsequently descends back to the E and D layers at tropical latitudes.
Planar ion trap (retarding potential analyzer) experiment for atmosphere explorer
NASA Technical Reports Server (NTRS)
Hanson, W. B.; Sanatani, S.; Lippincott, C. R.; Zuccaro, D. R.
1982-01-01
The retarding potential analyzer and drift meter were carried aboard all three Atmosphere Explorer spacecraft. These instruments measure the total thermal ion concentration and temperature, the bulk thermal ion velocity vector and some limited properties of the relative abundance of H(+), He(+), O(+) and molecular ions. These instruments functioned with no internal failures on all the spacecraft. On AE-E there existed some evidence for external surface contamination that damaged the integrity of the RPA sweep grids. This led to some difficulties in data reduction and interpretation that did not prove to be a disastrous problem. The AE-D spacecraft functioned for only a few months before it re-entered. During this time the satellite suffered from a nutation about the spin axis of about + or - 2 deg. This 2 deg modulation was superimposed upon the ion drift meter horizontal ion arrival angle output requiring the employment of filtering techniques to retrieve the real data.
Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E
2012-10-16
There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state.
NASA Astrophysics Data System (ADS)
Andima, Geoffrey; Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.
2018-01-01
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude -9.3°N) and Nairobi (Geographic coordinate 36.8°E, -1.3°N, and dip latitude -10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135-180°E and 270-300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270-300°E and 300-330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50-150 m s-1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique.
Sub-keV ring current ions as the tracer of substorm injection
NASA Astrophysics Data System (ADS)
Yamauchi, M.; Lundin, R.
2006-03-01
The dynamics of the energy-latitude dispersed sub-keV trapped ions inside the ring current region, the so-called wedge-like dispersions structure, were statistically studied using Viking satellite data. Probabilities with/without these signatures at various local times in the dayside are obtained in terms of different time-lags from the substorm activity monitored by the AE index. The structure appears in the early morning sector within a few hours after the substorm, and it slowly propagates eastward while decaying with a time scale of several hours. The result qualitatively confirmed the previous model that the wedge-like dispersions are originated from past substorm-related plasma injections into the nightside ring current region, and that the dispersion is formed when these injected plasma slowly moves eastward to the dayside by the drift motion (E×B (eastward), grad-<|B| (westward), and curvature (westward) drifts). However, the appearance of the structure is twice or three times faster than the model prediction, and some structure reaches even to the evening sector. The results indicate that the start location of the drift is not as far as midnight and that the drift speed is slightly faster than the model prediction. The former means that the substorm-related increase of hot plasma in the ring current region shifts or extends to the early morning sector for large substorms, and the latter means that the substantial electric field driving the sub-keV ion drift is slightly different from the model field. We also detected the evacuating effect starting right after the substorm (or storm) onset. The electric field imposed in the dayside magnetosphere seems to remove the remainder of trapped ions.
Computer simulations of electromagnetic cool ion beam instabilities. [in near earth space
NASA Technical Reports Server (NTRS)
Gary, S. P.; Madland, C. D.; Schriver, D.; Winske, D.
1986-01-01
Electromagnetic ion beam instabilities driven by cool ion beams at propagation parallel or antiparallel to a uniform magnetic field are studied using computer simulations. The elements of linear theory applicable to electromagnetic ion beam instabilities and the simulations derived from a one-dimensional hybrid computer code are described. The quasi-linear regime of the right-hand resonant ion beam instability, and the gyrophase bunching of the nonlinear regime of the right-hand resonant and nonresonant instabilities are examined. It is detected that in the quasi-linear regime the instability saturation is due to a reduction in the beam core relative drift speed and an increase in the perpendicular-to-parallel beam temperature; in the nonlinear regime the instabilities saturate when half the initial beam drift kinetic energy density is converted to fluctuating magnetic field energy density.
Study of negative hydrogen ion beam optics using the 3D3V PIC model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp; Nishioka, S.; Goto, I.
The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beammore » halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.« less
Development of Bipolar Pulse Accelerator for Pulsed Ion Beam Implantation to Semiconductor
NASA Astrophysics Data System (ADS)
Masugata, Katsumi; Kawahara, Yoshihiro; Mitsui, Chihiro; Kitamura, Iwao; Takahashi, Takakazu; Tanaka, Yasunori; Tanoue, Hisao; Arai, Kazuo
2002-12-01
To improve the purity of the ion beams new type of pulsed power ion accelerator named "bipolar pulse accelerator" was proposed. The accelerator consists of two acceleration gaps (an ion source gap and a post acceleration gap) and a drift tube, and a bipolar pulse is applied to the drift tube to accelerate the beam. In the accelerator intended ions are selectively accelerated and the purity of the ion beam is enhanced. As the first step of the development of the accelerator, a Br-type magnetically insulated acceleration gap is developed. The gap has an ion source of coaxial gas puff plasma gun on the grounded anode and a negative pulse is applied to the cathode to accelerate the ion beam. By using the plasma gun, ion source plasma (nitrogen) of current density around 100 A/cm2 is obtained. In the paper, the experimental results of the evaluation of the ion beam and the characteristics of the gap are shown with the principle and the design concept of the proposed accelerator.
Characteristics of Muti-pulsing CHI driven ST plasmas on HIST
NASA Astrophysics Data System (ADS)
Ishihara, M.; Hanao, T.; Ito, K.; Matsumoto, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2011-10-01
The flux amplification and sustainment of the ST configurations by operating in Multi-pulsing Coaxial Helicity Injection (M-CHI) method have been demonstrated on HIST. The multi-pulsing experiment was demonstrated in the SSPX spheromak device at LLNL. In the double pulsing discharges, we have observed that the plasma current has been sustained much longer against the resistive decay as compared to the single CHI. We have measured the radial profiles of the flow velocities by using Ion Doppler Spectrometer and Mach probes. The result shows that poloidal shear flow exists between the open flux column and the most outer closed flux surface. The poloidal velocity shear at the interface may be caused by the ion diamagnetic drift, because of a steep density gradient there. The radial electric field is determined by the flow velocities and the ion pressure gradient through the radial momentum balance equation. We have investigated the contribution of ExB or the ion pressure gradient on the poloidal velocity shear by comparing the impurity ion flow obtained from the IDS with the bulk ion flow from the Mach probe. It should be noted that the diamagnetic drift velocity of the impurity is much smaller than ExB drift velocity. We will discuss characteristics of M-CHI-driven ST plasmas by varying TF coil current and the line averaged electron density.
Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment
Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; ...
2016-05-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted onmore » the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.« less
Combined corona discharge and UV photoionization source for ion mobility spectrometry.
Bahrami, Hamed; Tabrizchi, Mahmoud
2012-08-15
An ion mobility spectrometer is described which is equipped with two non-radioactive ion sources, namely an atmospheric pressure photoionization and a corona discharge ionization source. The two sources cannot only run individually but are additionally capable of operating simultaneously. For photoionization, a UV lamp was mounted parallel to the axis of the ion mobility cell. The corona discharge electrode was mounted perpendicular to the UV radiation. The total ion current from the photoionization source was verified as a function of lamp current, sample flow rate, and drift field. Simultaneous operation of the two ionization sources was investigated by recording ion mobility spectra of selected samples. The design allows one to observe peaks from either the corona discharge or photoionization individually or simultaneously. This makes it possible to accurately compare peaks in the ion mobility spectra from each individual source. Finally, the instrument's capability for discriminating two peaks appearing in approximately identical drift times using each individual ionization source is demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L. J.; Mitchell, D. G.; Kletzing, C.
2017-12-01
It is known that proton is main contributor of the ring current and oxygen ions can make significant contribution during major magnetic storms. Ions are supplied to the ring current by radial transport from the plasma sheet. Convective transport of lower-energy protons and diffusive transport of higher-energy protons were reported to contribute to the storm-time and quiet-time ring current respectively [e.g., Gkioulidou et al., 2016]. However, supply mechanisms of the oxygen ions are not clear. To characterize the supply of oxygen ions to the ring current during magnetic storms, we studied the properties of energetic proton and oxygen ion phase space densities (PSDs) for specific magnetic moment (μ) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We here report on radial transport of high-energy (μ ≥ 0.5 keV/nT) oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm. Since protons show little change during this period, this oxygen radial transport is inferred to cause the development of the late main phase. Enhancement of poloidal magnetic fluctuations is simultaneously observed. We estimated azimuthal mode number ≤5 by using cross wavelet analysis with ground-based observation of IMAGE ground magnetometers. The fluctuations can resonate with drift and bounce motions of the oxygen ions. The results suggest that combination of the drift and drift-bounce resonances is responsible for the radial transport of high-energy oxygen ions into the deep inner magnetosphere. We also report on the radial transport of the high-energy oxygen ions into the deep inner magnetosphere during other magnetic storms.
Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma devicea)
NASA Astrophysics Data System (ADS)
Zhou, Shu; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Tripathi, S. K. P.; Van Compernolle, B.
2012-05-01
The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn /n˜δφ/kTe ˜ 0.5, f ˜ 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E × B drift through biasing the obstacle and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz and is enhanced with large bias and small Bz. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (ρfast/ρs ˜ 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (Er) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static Er are evaluated both analytically and numerically. Simulation results indicate that the Er induced transport is predominately convective.
2013-01-01
Background The goal of many proteomics experiments is to determine the abundance of proteins in biological samples, and the variation thereof in various physiological conditions. High-throughput quantitative proteomics, specifically label-free LC-MS/MS, allows rapid measurement of thousands of proteins, enabling large-scale studies of various biological systems. Prior to analyzing these information-rich datasets, raw data must undergo several computational processing steps. We present a method to address one of the essential steps in proteomics data processing - the matching of peptide measurements across samples. Results We describe a novel method for label-free proteomics data alignment with the ability to incorporate previously unused aspects of the data, particularly ion mobility drift times and product ion information. We compare the results of our alignment method to PEPPeR and OpenMS, and compare alignment accuracy achieved by different versions of our method utilizing various data characteristics. Our method results in increased match recall rates and similar or improved mismatch rates compared to PEPPeR and OpenMS feature-based alignment. We also show that the inclusion of drift time and product ion information results in higher recall rates and more confident matches, without increases in error rates. Conclusions Based on the results presented here, we argue that the incorporation of ion mobility drift time and product ion information are worthy pursuits. Alignment methods should be flexible enough to utilize all available data, particularly with recent advancements in experimental separation methods. PMID:24341404
Benjamin, Ashlee M; Thompson, J Will; Soderblom, Erik J; Geromanos, Scott J; Henao, Ricardo; Kraus, Virginia B; Moseley, M Arthur; Lucas, Joseph E
2013-12-16
The goal of many proteomics experiments is to determine the abundance of proteins in biological samples, and the variation thereof in various physiological conditions. High-throughput quantitative proteomics, specifically label-free LC-MS/MS, allows rapid measurement of thousands of proteins, enabling large-scale studies of various biological systems. Prior to analyzing these information-rich datasets, raw data must undergo several computational processing steps. We present a method to address one of the essential steps in proteomics data processing--the matching of peptide measurements across samples. We describe a novel method for label-free proteomics data alignment with the ability to incorporate previously unused aspects of the data, particularly ion mobility drift times and product ion information. We compare the results of our alignment method to PEPPeR and OpenMS, and compare alignment accuracy achieved by different versions of our method utilizing various data characteristics. Our method results in increased match recall rates and similar or improved mismatch rates compared to PEPPeR and OpenMS feature-based alignment. We also show that the inclusion of drift time and product ion information results in higher recall rates and more confident matches, without increases in error rates. Based on the results presented here, we argue that the incorporation of ion mobility drift time and product ion information are worthy pursuits. Alignment methods should be flexible enough to utilize all available data, particularly with recent advancements in experimental separation methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stow, Sarah M.; Causon, Tim J.; Zheng, Xueyun
Collision cross section (CCS) measurements resulting from ion mobility-mass spectrometry (IM-MS) experiments provide a promising orthogonal dimension of structural information in MS-based analytical separations. As with any molecular identifier, interlaboratory standardization must precede broad range integration into analytical workflows. In this study, we present a reference drift tube ion mobility mass spectrometer (DTIM-MS) where improvements on the measurement accuracy of experimental parameters influencing IM separations provide standardized drift tube, nitrogen CCS values (DTCCSN2) for over 120 unique ion species with the lowest measurement uncertainty to date. The reproducibility of these DTCCSN2 values are evaluated across three additional laboratories on amore » commercially available DTIM-MS instrument. The traditional stepped field CCS method performs with a relative standard deviation (RSD) of 0.29% for all ion species across the three additional laboratories. The calibrated single field CCS method, which is compatible with a wide range of chromatographic inlet systems, performs with an average, absolute bias of 0.54% to the standardized stepped field DTCCSN2 values on the reference system. The low RSD and biases observed in this interlaboratory study illustrate the potential of DTIM-MS for providing a molecular identifier for a broad range of discovery based analyses.« less
Short Intense Ion Pulses for Materials and Warm Dense Matter Research
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Lidia, S. M.; Persaud, A.; Stettler, M.; Takakuwa, J. H.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r <1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. We will describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components (arXiv:1506.05839). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Agarwal, Bishu; González-Méndez, Ramón; Lanza, Matteo; Sulzer, Philipp; Märk, Tilmann D; Thomas, Neil; Mayhew, Chris A
2014-09-18
We have investigated the reactions of NO(+), H3O(+), O2(+), and Kr(+) with picric acid (2,4,6 trinitrophenol, C6H3N3O7, PiA) using a time-of-flight mass spectrometer with a switchable reagent ion source. NO(+) forms a simple adduct ion PiA·NO(+), while H3O(+) reacts with PiA via nondissociative proton transfer to form PiAH(+). In contrast, both O2(+) and Kr(+) react with PiA by nondissociative charge transfer to produce PiA(+). For Kr(+), we also observe dissociation of PiA, producing NO2(+) with a branching percentage of approximately 40%. For the reagent ions H3O(+) and O2(+) (and operating the drift tube with normal laboratory air), we find that the intensities of the PiAH(+) and PiA(+) ions both exhibit a peak at a given drift-tube voltage (which is humidity dependent). This unusual behavior implies a peak in the detection sensitivity of PiA as a function of the drift-tube voltage (and hence E/N). Aided by electronic-structure calculations and our previous studies of trinitrotoluene and trinitrobenzene, we provide a possible explanation for the observed peak in the detection sensitivity of PiA.
Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code
Xu, X. Q.; Dudson, B. D.; Snyder, P. B.; ...
2011-09-23
A minimum set of equations based on the peeling–ballooning (P–B) model with nonideal physics effects (diamagnetic drift, E × B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P–B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P–B modes is being studied; we find that (1) the diamagnetic drift and Emore » × B drift stabilize the P–B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P–B mode, leading to resistive P–B mode; (3) anomalous electron and parallel ion viscosities destabilize the P–B mode, leading to a viscous P–B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P–B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable α-zones of ideal P–B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented.« less
Dynamic multiplexed analysis method using ion mobility spectrometer
Belov, Mikhail E [Richland, WA
2010-05-18
A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.
D'Autry, Ward; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Van Schepdael, Ann
2011-07-01
Gas chromatography-mass spectrometry is a well established analytical technique. However, mass spectrometers with electron ionization sources may suffer from signal drifts, hereby negatively influencing quantitative performance. To demonstrate this phenomenon for a real application, a static headspace-gas chromatography method in combination with electron ionization-quadrupole mass spectrometry was optimized for the determination of residual dichloromethane in coronary stent coatings. Validating the method, the quantitative performance of an original stainless steel ion source was compared to that of a modified ion source. Ion source modification included the application of a gold coating on the repeller and exit plate. Several validation aspects such as limit of detection, limit of quantification, linearity and precision were evaluated using both ion sources. It was found that, as expected, the stainless steel ion source suffered from signal drift. As a consequence, non-linearity and high RSD values for repeated analyses were obtained. An additional experiment was performed to check whether an internal standard compound would lead to better results. It was found that the signal drift patterns of the analyte and internal standard were different, consequently leading to high RSD values for the response factor. With the modified ion source however, a more stable signal was observed resulting in acceptable linearity and precision. Moreover, it was also found that sensitivity improved compared to the stainless steel ion source. Finally, the optimized method with the modified ion source was applied to determine residual dichloromethane in the coating of coronary stents. The solvent was detected but found to be below the limit of quantification. Copyright © 2011 Elsevier B.V. All rights reserved.
Drift dust acoustic soliton in the presence of field-aligned sheared flow and nonextensivity effects
NASA Astrophysics Data System (ADS)
Shah, AttaUllah; Mushtaq, A.; Farooq, M.; Khan, Aurangzeb; Aman-ur-Rehman
2018-05-01
Low frequency electrostatic dust drift acoustic (DDA) waves are studied in an inhomogeneous dust magnetoplasma comprised of dust components of opposite polarity, Boltzmannian ions, and nonextensive distributed electrons. The magnetic-field-aligned dust sheared flow drives the electrostatic drift waves in the presence of ions and electrons. The sheared flow decreases or increases the frequency of the DDA wave, mostly depending on its polarity. The conditions of instability for this mode, with nonextensivity and dust streaming effects, are discussed. The nonlinear dynamics is then investigated for the DDA wave by deriving the Koeteweg-deVries (KdV) nonlinear equation. The KdV equation yields an electrostatic structure in the form of a DDA soliton. The relevancy of the work to laboratory four component dusty plasmas is illustrated.
Infrared Chemiluminescence Studies of Ion-Molecule Reactions in a Flowing Afterglow.
1982-01-01
reaction rate constants and branching ratios have been addressed in drift tubes and flow drift systems, and the translational energy distribution of atomic...composed of about 40 thin cylindrical sections of flow tube , separated by mylar spacers and connected by precision resistors. In the region of LIF... tube radius (Albritton, 1967). For proper operation of a drift tube , ionic species of only one polarity can be present. Efficient separation of
High frequency fishbone driven by passing energetic ions in tokamak plasmas
NASA Astrophysics Data System (ADS)
Wang, Feng; Yu, L. M.; Fu, G. Y.; Shen, Wei
2017-05-01
High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835-8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energy δ {{W}k} is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work (Wang 2001 Phys. Rev. Lett. 86 5286-8). For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. Numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold {βc} for instability and decrease mode frequency.
High frequency fishbone driven by passing energetic ions in tokamak plasmas
Wang, Feng; Yu, L. M.; Fu, G. Y.; ...
2017-03-22
High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835–8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energymore » $$\\delta {{W}_{k}}$$ is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work. For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. As a result, numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold $${{\\beta}_{c}}$$ for instability and decrease mode frequency.« less
Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feinberg, B.
1995-02-01
Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Jinjia; Gong, Xueyu, E-mail: gongxueyu-usc@163.com; Xiang, Dong
The structure of the drift-island surface of passing fast ions (PFIs) is investigated in the presence of the resonant interaction with a magnetic island. Two overlapping regions of the drift-island surface and the magnetic island surface are found, one corresponding to local overlapping region and the other to non-local one. Here, the word “nonlocal” denotes that the resonances in the core plasma can have effects on the PFIs near the plasma boundary, while the “local” represents that the PFIs just near the resonant location are influenced. The nonlocal overlapping constructs a transport path along which the PFIs can become losses.more » There are three kinds of drift-island surfaces to join in forming the transport paths. A pitch angle region, which is called pitch angle gap, is found near the plasma boundary, where the drift-island surface cannot be formed and few PFIs are lost. The pitch-angle selective features of PFI losses are obtained by analyzing the three kinds of drift-island surfaces. The coupling between the crowd drift island surfaces and the collision can induce the prompt losses of PFIs and rapidly slowing down of PFI energy. The time of the prompt losses and the slowing down rate are calculated. Qualitatively, the theoretical results are in well agreement with the experimental observations in ASDEX Upgrade [M. García-Muñoz et al., Nucl. Fusion 47, L10 (2007)].« less
Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...
2015-02-03
Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β N limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β N, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma tomore » an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β N levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β N.« less
Stability of the magnetosonic wave in a cometary multi-ion plasma
NASA Astrophysics Data System (ADS)
Sreekala, G.; Varghese, Anu; Jayakumar, Neethu; Michael, Manesh; Sebastian, Sijo; Venugopal, Chandu
2017-05-01
A generalized dispersion relation of the magnetosonic wave in a four component plasma consisting of electrons and hydrogen ions of solar origin and positively and negatively charged oxygen ions of cometary origin has been derived by using the Vlasov-Maxwell kinetic model. Parallel to the magnetic field, the hydrogen and electron components are modeled by a drifting Maxwellian distribution; perpendicular to the magnetic field, we use a loss cone type distribution obtained by the subtraction of two Maxwellian distributions having different temperatures. The effect of change in the drift velocity of streaming components and number densities and temperatures of each species in driving the instability has been analyzed both analytically and numerically. For typical parameters at comet Halley, we find that both positively and negatively charged oxygen ions can drive the wave unstable.
Ewing, R G; Atkinson, D A; Eiceman, G A; Ewing, G J
2001-05-10
Ion mobility spectrometry has become the most successful and widely used technology for the detection of trace levels of nitro-organic explosives on handbags and carry on-luggage in airports throughout the US. The low detection limits are provided by the efficient ionization process, namely, atmospheric pressure chemical ionization (APCI) reactions in negative polarity. An additional level of confidence in a measurement is imparted by characterization of ions for mobilities in weak electric fields of a drift tube at ambient pressure. Findings from over 30 years of investigations into IMS response to these explosives have been collected and assessed to allow a comprehensive view of the APCI reactions characteristic of nitro-organic explosives. Also, the drift tube conditions needed to obtain particular mobility spectra have been summarized. During the past decade, improvements have occurred in IMS on the understanding of reagent gas chemistries, the influence of temperature on ion stability, and sampling methods. In addition, commercial instruments have been refined to provide fast and reliable measurements for on-site detection of explosives. The gas phase ion chemistry of most explosives is mediated by the fragile CONO(2) bonds or the acidity of protons. Thus, M(-) or M.Cl(-) species are found with only a few explosives and loss of NO(2), NO(3) and proton abstraction reactions are common and complicating pathways. However, once ions are formed, they appear to have stabilities on time scales equal to or longer than ion drift times from 5-20 ms. As such, peak shapes in IMS are suitable for high selectivity and sensitivity.
NASA Technical Reports Server (NTRS)
Leonhardt, J. W.; Bensch, H.; Berger, D.; Nolting, M.; Baumbach, J. I.
1995-01-01
The continuous monitoring of changes on the quality of ambient air is a field of advantage of ion mobility spectrometry. Benzene, Toluene, and Xylene are substances of special interest because of their toxicity. We present an optimized drift tube for ion mobility spectrometers, which uses photo-ionization tubes to produce the ions to be analyzed. The actual version of this drift tube has a length of 45 mm, an electric field strength established within the drift tube of about 180 V/cm and a shutter-opening-time of 400 mus. With the hydrogen tube used for ionisation a mean flux of 10(exp 12) photons/sq cm s was established for the experiments described. We discuss the results of investigations on Benzene, Toluene, and Xylene in normal used gasoline SUPER. The detection limits obtained with the ion mobility spectrometer developed in co-operation are in the range of 10 ppbv in this case. Normally, charge transfer from Benzene ions to Toluene takes place. Nevertheless the simultaneous determination in mixtures is possible by a data evaluation procedure developed for this case. The interferences found between Xylene and others are rather weak. The ion mobility spectra of different concentrations of gasoline SUPER are attached as an example for the resolution and the detection limit of the instrument developed. Resolution and sensitivity of the system are well demonstrated. A hand-held portable device produced just now is to be tested for special environmental analytical problems in some industrial and scientific laboratories in Germany.
Shutterless ion mobility spectrometer with fast pulsed electron source
NASA Astrophysics Data System (ADS)
Bunert, E.; Heptner, A.; Reinecke, T.; Kirk, A. T.; Zimmermann, S.
2017-02-01
Ion mobility spectrometers (IMS) are devices for fast and very sensitive trace gas analysis. The measuring principle is based on an initial ionization process of the target analyte. Most IMS employ radioactive electron sources, such as 63Ni or 3H. These radioactive materials have the disadvantage of legal restrictions and the electron emission has a predetermined intensity and cannot be controlled or disabled. In this work, we replaced the 3H source of our IMS with 100 mm drift tube length with our nonradioactive electron source, which generates comparable spectra to the 3H source. An advantage of our emission current controlled nonradioactive electron source is that it can operate in a fast pulsed mode with high electron intensities. By optimizing the geometric parameters and developing fast control electronics, we can achieve very short electron emission pulses for ionization with high intensities and an adjustable pulse width of down to a few nanoseconds. This results in small ion packets at simultaneously high ion densities, which are subsequently separated in the drift tube. Normally, the required small ion packet is generated by a complex ion shutter mechanism. By omitting the additional reaction chamber, the ion packet can be generated directly at the beginning of the drift tube by our pulsed nonradioactive electron source with only slight reduction in resolving power. Thus, the complex and costly shutter mechanism and its electronics can also be omitted, which leads to a simple low-cost IMS-system with a pulsed nonradioactive electron source and a resolving power of 90.
Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer
NASA Technical Reports Server (NTRS)
Herrero, Federico A.; Finne, Theodore T.
2010-01-01
Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about 350 mW. The entrance aperture has a diameter of 0.004 in. (0.10 mm) to provide the required energy resolution between 0.05 and 0.15. This design (see Figure 2) provides a WTS occupying a volume less than 40 cm(sup 3), on a footprint of diameter about 1.5 in. (38 mm). The Crossed SDEA offers many advantages in the measurements of neutral wind and ion drifts in the Earth's thermosphere. As such, it will be useful in future commercial satellites dedicated to monitoring the ionosphere with a view to improving the integrity and predictability of GPS operations.
Liu, Yintao; Jia, Renxu; Wang, Yucheng; Hu, Ziyang; Zhang, Yuming; Pang, Tiqiang; Zhu, Yuejin; Luan, Suzhen
2017-05-10
Zero drift can severely deteriorate the stability of the light-dark current ratio, detectivity, and responsivity of photodetectors. In this paper, the effects of a [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)-doped perovskite-based photodetector device on the inhibition of zero drift under dark state are discussed. Two kinds of photodetectors (Au/CH 3 NH 3 PbI x Cl 3-x /Au and Au/CH 3 NH 3 PbI x Cl 3-x :PCBM/Au) were prepared, and the materials and photodetector devices were measured by scanning electron microscopy, X-ray diffraction, photoluminescence, ultraviolet absorption spectra, and current-voltage and current-time measurements. It was found that similar merit parameters, including light-dark current ratio (∼10 2 ), detectivity (∼10 11 Jones), and responsivity were obtained for these two kinds of photodetectors. However, the drift of Au/CH 3 NH 3 PbI x Cl 3-x :PCBM/Au devices is negligible, while a drift of ∼0.2 V exists in Au/CH 3 NH 3 PbI x Cl 3-x /Au devices. A new model is proposed based on the hindering theory of ion (vacancy) migration, and it is believed that the dopant PCBM can hinder the ion (vacancy) migration of perovskite materials to suppress the phenomenon of zero drift in perovskite-based photodetectors.
Kaufmann, Anton; Butcher, Patrick; Maden, Kathry; Walker, Stephan; Widmer, Mirjam
2017-07-15
A screening concept for residues in complex matrices based on liquid chromatography coupled to ion mobility high-resolution mass spectrometry LC/IMS-HRMS is presented. The comprehensive four-dimensional data (chromatographic retention time, drift time, mass-to-charge and ion abundance) obtained in data-independent acquisition (DIA) mode was used for data mining. An in silico fragmenter utilizing a molecular structure database was used for suspect screening, instead of targeted screening with reference substances. The utilized data-independent acquisition mode relies on the MS E concept; where two constantly alternating HRMS scans (low and high fragmentation energy) are acquired. Peak deconvolution and drift time alignment of ions from the low (precursor ion) and high (product ion) energy scan result in relatively clean product ion spectra. A bond dissociation in silico fragmenter (MassFragment) supplied with mol files of compounds of interest was used to explain the observed product ions of each extracted candidate component (chromatographic peak). Two complex matrices (fish and bovine liver extract) were fortified with 98 veterinary drugs. Out of 98 screened compounds 94 could be detected with the in silico based screening approach. The high correlation among drift time and m/z value of equally charged ions was utilized for an orthogonal filtration (ranking). Such an orthogonal ion mobility based filter removes multiply charged ions (e.g. peptides and proteins from the matrix) as well as noise and artefacts. Most significantly, this filtration dramatically reduces false positive findings but hardly increases false negative findings. The proposed screening approach may offer new possibilities for applications where reference compounds are hardly or not at all commercially available. Such areas may be the analysis of metabolites of drugs, pyrrolizidine alkaloids, marine toxins, derivatives of sildenafil or novel designer drugs (new psychoactive substances). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu; Angus, J. R.
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionlessmore » and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.« less
Method and apparatus for ion mobility spectrometry with alignment of dipole direction (IMS-ADD)
Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA
2007-01-30
Techniques and instrumentation are described for analyses of substances, including complex samples/mixtures that require separation prior to characterization of individual components. A method is disclosed for separation of ion mixtures and identification of ions, including protein and other macromolecular ions and their different structural isomers. Analyte ions are not free to rotate during the separation, but are substantially oriented with respect to the drift direction. Alignment is achieved by applying, at a particular angle to the drift field, a much stronger alternating electric field that "locks" the ion dipoles with moments exceeding a certain value. That value depends on the buffer gas composition, pressure, and temperature, but may be as low as .about.3 Debye under certain conditions. The presently disclosed method measures the direction-specific cross-sections that provide the structural information complementing that obtained from known methods, and, when coupled to those methods, increases the total peak capacity and specificity of gas-phase separations. Simultaneous 2-D separations by direction-specific cross sections along and orthogonally to the ion dipole direction are also possible.
Assimilation of thermospheric measurements for ionosphere-thermosphere state estimation
NASA Astrophysics Data System (ADS)
Miladinovich, Daniel S.; Datta-Barua, Seebany; Bust, Gary S.; Makela, Jonathan J.
2016-12-01
We develop a method that uses data assimilation to estimate ionospheric-thermospheric (IT) states during midlatitude nighttime storm conditions. The algorithm Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE) uses time-varying electron densities in the F region, derived primarily from total electron content data, to estimate two drivers of the IT: neutral winds and electric potential. A Kalman filter is used to update background models based on ingested plasma densities and neutral wind measurements. This is the first time a Kalman filtering technique is used with the EMPIRE algorithm and the first time neutral wind measurements from 630.0 nm Fabry-Perot interferometers (FPIs) are ingested to improve estimates of storm time ion drifts and neutral winds. The effects of assimilating remotely sensed neutral winds from FPI observations are studied by comparing results of ingesting: electron densities (N) only, N plus half the measurements from a single FPI, and then N plus all of the FPI data. While estimates of ion drifts and neutral winds based on N give estimates similar to the background models, this study's results show that ingestion of the FPI data can significantly change neutral wind and ion drift estimation away from background models. In particular, once neutral winds are ingested, estimated neutral winds agree more with validation wind data, and estimated ion drifts in the magnetic field-parallel direction are more sensitive to ingestion than the field-perpendicular zonal and meridional directions. Also, data assimilation with FPI measurements helps provide insight into the effects of contamination on 630.0 nm emissions experienced during geomagnetic storms.
Stability of drift-cyclotron loss-cone waves in H-mode plasmas
Farmer, W. A.; Morales, G. J.
2016-05-24
The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×10 7 s -1.« less
Impact of centrifugal drifts on ion turbulent transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belli, Emily A.; Candy, J.
Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less
Impact of centrifugal drifts on ion turbulent transport
Belli, Emily A.; Candy, J.
2018-03-01
Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.
1989-01-01
A spatially two-dimensional electrostatic PIC simulation code was used to study the stability of a plasma equilibrium characterized by a localized transverse dc electric field and a field-aligned drift for L is much less than Lx, where Lx is the simulation length in the x direction and L is the scale length associated with the dc electric field. It is found that the dc electric field and the field-aligned current can together play a synergistic role to enable the excitation of electrostatic waves even when the threshold values of the field aligned drift and the E x B drift are individually subcritical. The simulation results show that the growing ion waves are associated with small vortices in the linear stage, which evolve to the nonlinear stage dominated by larger vortices with lower frequencies.
Method and apparatus for time dispersive spectroscopy
Tarver, III, Edward E.; Siems, William F.
2003-06-17
Methods and apparatus are described for time dispersive spectroscopy. In particular, a modulated flow of ionized molecules of a sample are introduced into a drift region of an ion spectrometer. The ions are subsequently detected by an ion detector to produce an ion detection signal. The ion detection signal can be modulated to obtain a signal useful in assaying the chemical constituents of the sample.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.; Araneda, J. A.
2016-02-01
We compare the results from 1.5D and 2.5D hybrid simulations (with fluid electrons, and kinetic/particle-in-cell protons and α particles) to investigate the effect of the solar wind expansion on the evolution of ion relative drifts in collisionless fast wind streams. We initialize the system with initial relative drifts and follow its evolution in time within and without the expanding box model, which takes into account the gradual solar wind expansion in the interplanetary medium. The decay of the differential streaming follows similar pattern in the 1.5D and 2.5D non-expanding cases. For the 1.5D studies we find no difference in the evolution of the initial relative drift speed with and without expansion, whereas in the two-dimensional case the differential streaming is further suppressed once the solar wind expansion is taken into account. This implies that a stronger acceleration source is required to compensate for the effect of the expansion and produce the observed solar wind acceleration rate. The 1.5D case shows stronger oscillations in all plasma properties with higher temperature anisotropies for the minor ions in the first few hundred gyro-periods of the simulations. Yet the preferential perpendicular heating for the minor ions is stronger in the 2.5D case with higher temperature anisotropies at the final stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkley, Eric D.; Baker, Erin S.; Crowell, Kevin L.
2013-02-20
Chemical cross-linking of proteins followed by proteolysis and mass spectrometric analysis of the resulting cross-linked peptides can provide insights into protein structure and protein-protein interactions. However, cross-linked peptides are by necessity of low stoichometry and have different physicochemical properties than linear peptides, routine unambiguous identification of the cross-linked peptides has remained difficult. To address this challenge, we demonstrated the use of liquid chromatography and ion mobility separations coupled with mass spectrometry in combination with a heavy-isotope labeling method. The combination of mixed-isotope cross-linking and ion mobility provided unique and easily interpretable spectral multiplet features for the intermolecular cross-linked peptides. Applicationmore » of the method to two different homodimeric proteins - SrfN, a virulence factor from Salmonella Typhimurium and SO_2176, a protein of unknown function from Shewanella oneidensis- revealed several cross-linked peptides from both proteins that were identified with a low false discovery rate (estimated using a decoy approach). A greater number of cross-linked peptides were identified using ion mobility drift time information in the analysis than when the data were summed across the drift time dimension before analysis. The identified cross-linked peptides migrated more quickly in the ion mobility drift tube than the unmodified peptides.« less
The drift chamber array at the external target facility in HIRFL-CSR
NASA Astrophysics Data System (ADS)
Sun, Y. Z.; Sun, Z. Y.; Wang, S. T.; Duan, L. M.; Sun, Y.; Yan, D.; Tang, S. W.; Yang, H. R.; Lu, C. G.; Ma, P.; Yu, Y. H.; Zhang, X. H.; Yue, K.; Fang, F.; Su, H.
2018-06-01
A drift chamber array at the External Target Facility in HIRFL-CSR has been constructed for three-dimensional particle tracking in high-energy radioactive ion beam experiments. The design, readout, track reconstruction program and calibration procedures for the detector are described. The drift chamber array was tested in a 311 AMeV 40Ar beam experiment. The detector performance based on the measurements of the beam test is presented. A spatial resolution of 230 μm is achieved.
Time-of-flight direct recoil ion scattering spectrometer
Krauss, A.R.; Gruen, D.M.; Lamich, G.J.
1994-09-13
A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.
2009-09-30
NTR 5025703. HONORS/AWARDS/PRIZES Hollis H. Jones, NASA Goddard AETD Award for Innovative Technology Development, July 2009, Applied Engineering and Technology Directorate, NASA GSFC, Greenbelt, Maryland. 5
NASA Astrophysics Data System (ADS)
Behar, E.; Tabone, B.; Nilsson, H.
2018-05-01
When interacting, the solar wind and the ionised atmosphere of a comet exchange energy and momentum. Our aim is to understand the influence of the average Parker spiral configuration of the solar wind magnetic field on this interaction. We compare the theoretical expectations of an analytical generalised gyromotion with Rosetta observations at comet 67P/Churyumov-Gerasimenko. A statistical approach allows one to overcome the lack of upstream solar wind measurement. We find that additionally to their acceleration along (for cometary pick-up ions) or against (for solar wind ions) the upstream electric field orientation and sense, the cometary pick-up ions are drifting towards the dawn side of the coma, while the solar wind ions are drifting towards the dusk side of the coma, independent of the heliocentric distance. The dynamics of the interaction is not taking place in a plane, as often assumed in previous works.
Self-organization and self-limitation in high power impulse magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, Andre
The plasma over the racetrack in high power impulse magnetron sputtering develops in traveling ionization zones. Power densities can locally reach 10{sup 9} W/m{sup 2}, which is much higher than usually reported. Ionization zones move because ions are 'evacuated' by the electric field, exposing neutrals to magnetically confined, drifting electrons. Drifting secondary electrons amplify ionization of the same ionization zone where the primary ions came from, while sputtered and outgassing atoms are supplied to the following zone(s). Strong density gradients parallel to the target disrupt electron confinement: a negative feedback mechanism that stabilizes ionization runaway.
Ion Outflow and Convection in the Polar Cap and Cleft as Measured by Tide, EFI, MFE and Timas
NASA Technical Reports Server (NTRS)
Elliott, H. A.; Craven, P. D.; Chandler, M. O.; Moore, T. E.; Maynard, N. C.; Peterson, W. K.; Lennartsson, O. W.; Shelley, E. G.; Mozer, F. S.; Russell, C. T.
1997-01-01
This study examines high-latitude ion outflows and velocities perpendicular to the magnetic field derived from moments of ion distributions measured by the TIDE (Thermal Ion Dynamics Experiment) instrument on the Polar satellite. Hydrogen and oxygen ions are shown to be E X B drifting in the polar cap and cleft regions with a speed of about 5-20 km/s at apogee (approximately 9 Re) and a speed of 1-2 km/s at perigee (approximately 1. 8 Re). E X B drifts are calculated from electric fields measured by EFI (Electric Field Instrument) and magnetic fields measured by MFE (Magnetic Field Experiment) both of which are also on Polar. How convection at Polar's perigee relates to potential patterns of the ionosphere will be discussed. In the cusp/cleft the distribution of hydrogen extends over a large enough range of energy to be measured by both TIDE and the Toroidal Imaging Mass-Angle Spectrograph (TIMAS). Such comparisons will be also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi
A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e.,more » a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.« less
NASA Technical Reports Server (NTRS)
Burchill, J. K.; Clemmons, J. H.; Knudsen, D. J.; Larsen, M.; Nicolls, M. J.; Pfaff, R. F.; Rowland, D.; Sangalli, L.
2012-01-01
We present in situ and ground-based measurements of the ratio k of ion cyclotronangular frequency to ion-neutral momentum transfer collision frequency to investigateionosphere-thermosphere (IT) coupling in the auroral E region. In situ observations were obtained by NASA sounding rocket 36.234, which was launched into the nightsideE region ionosphere at 1229 UT on 19 January 2007 from Poker Flat, AK. The payload carried instrumentation to determine ion drift angle and electric field vectors. Neutral winds were measured by triangulating a chemical tracer released from rocket 41.064 launched two minutes later. k is calculated from the rotation of the ion drift angle relative to the E-cross-B drift direction in a frame co-rotating with the payload. Between the altitudes of 118 km and 130 km k increases exponentially with a scale height of 9.3 +/- 0.7 km, deviating from an exponential above 130 km. k = 1 at an altitude z(sub0) of 119.9 +/- 0.5 km. The ratio was also estimated from Poker Flat Incoherent Scatter Radar (PFISR) measurements using the rotation of ion velocity with altitude. Exponential fits to the PFISR measurements made during the flight of 41.064 yield z(sub0) 115.9 +/- 1.2 km and a scale height of 9.1 +/- 1.0 km. Differences between in situ and ground-based measurements show that the E region atmospheric densities were structured vertically and/or horizontally on scales of 1 km to 10 km. There were no signs of ionospheric structure in ion density or ion temperature below scales of 1 km. The observations demonstrate the accuracy with which the in situ and PFISR data may be used as probes of IT coupling.
Decay of equatorial ring current ions and associated aeronomical consequences
NASA Technical Reports Server (NTRS)
Fok, M.-C.; Kozyra, J. U.; Nagy, A. F.; Rasmussen, C. E.; Khazanov, G. V.
1993-01-01
The decay of the major ion species which constitute the ring current is studied by solving the time evolution of their distribution functions during the recovery phase of a moderate geomagnetic storm. In this work, only equatorially mirroring particles are considered. Particles are assumed to move subject to E x B and gradient drifts. They also experience loses along their drift paths. Two loss mechanisms are considered: charge exchange with neutral hydrogen atoms and Coulomb collisions with thermal plasma in the plasmasphere. Thermal plasma densities are calculated with a plasmaspheric model employing a time-dependent convection electric field model. The drift-loss model successfully reproduces a number of important and observable features in the distribution function. Charge exchange is found to be the major loss mechanism for the ring current ions; however the important effects of Coulomb collisions on both the ring current and thermal populations are also presented. The model predicts the formation of a low-energy (less than 500 eV) ion population as a result of energy degradation caused by Coulomb collision of the ring current ions with the plasmaspheric electrons; this population may be one source of the low-energy ions observed during active and quiet periods in the inner magnetosphere. The energy transferred to plasmaspheric electrons through Coulomb collisions with ring current ions is believed to be the energy source for the electron temperature enhancement and the associated 6300 A (stable auroral red (SAR) arc) emission in the subauroral region. The calculated energy deposition rate is sufficient to produce a subauroral electron temperature enhancement and SAR arc emissions that are consistent with observations of these quantities during moderate magnetic activity levels.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.
2017-12-01
Non-thermal kinetic components such as deformed velocity distributions, temperature anisotropies and relative drifts between the multiple ion populations are frequently observed features in the collisionless fast solar wind streams near the Earth whose origin is still to be better understood. Some of the traditional models consider the formation of the temperature anisotropies through the effect of the solar wind expansion, while others assume in situ heating and particle acceleration by local fluctuations, such as plasma waves, or by spacial structures, such as advected or locally generated current sheets. In this study we consider the evolution of initial ion temperature anisotropies and relative drifts in the presence of plasma oscillations, such as ion-cyclotron and kinetic Alfven waves. We perform 2.5D hybrid simulations to study the evolution of observed fast solar wind plasma parcels, including the development of the plasma micro-instabilities, the field-particle correlations and the energy transfer between the multiple ion species. We consider two distinct cases of highly anisotropic and quickly drifting protons which excite ion-cyclotron waves and of moderately anisotropic slower protons, which co-exist with kinetic Alfven waves. The alpha particles for both cases are slightly anisotropic in the beginning and remain anisotropic throughout the simulation time. Both the imposed magnetic fluctuations and the initial differential streaming decrease in time for both cases, while the minor ions are getting heated. Finally we study the effects of the solar wind expansion and discuss its implications for the nonlinear evolution of the system.
Irradiation of materials with short, intense ion pulses at NDCX-II
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...
2017-05-31
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
Irradiation of materials with short, intense ion pulses at NDCX-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury
NASA Astrophysics Data System (ADS)
Aizawa, S.; Delcourt, D.; Terada, N.
2018-05-01
We examine the particle transport via the Kelvin-Helmholtz instability by using simulation. The heavy ions of planetary origin such as Na+ may experience prominent nonadiabatic energization as they ExB drift across large-scale rolled up vortices.
Global magnetic anomaly and aurora of Neptune
NASA Technical Reports Server (NTRS)
Cheng, Andrew F.
1990-01-01
The large offset and tilt of Neptune's dipole magnetic field combine to create a global magnetic anomaly, analogous to but much more important than earth's South Atlantic Anomaly. Energetic particle precipitation loss within the Neptune anomaly creates 'atmospheric drift shadows' within which particle fluxes are greatly reduced. The energetic particle dropout observed by Voyager near closest approach occurred near the predicted times when Voyager passed within the atmospheric drift shadow. Extremely soft, structured bursts of ions and electrons within the drift shadow may result from plasma wave-induced pitch angle scattering of trapped particles confined near the magnetic equator. The dropout does not necessarily imply that Voyager passed through an earth-like discrete auroral zone, as earlier reported. The ion and electron fluxes observed within the dropout period correspond to particles that must precipitate to Neptune's atmosphere within the anomaly region. This anomaly precipitation can account for a major portion of the ultraviolet emissions previously identified as Neptune aurora.
NASA Astrophysics Data System (ADS)
Ewing, R. G.; Eiceman, G. A.; Harden, C. S.; Stone, J. A.
2006-09-01
The rate constants for the dissociations, A2H+ --> AH+ + A, of the symmetrical proton bound dimers of 2,4-dimethylpyridine and dimethyl methylphosphonate have been determined using an ion mobility spectrometer operating with air as drift gas at ambient pressure. Reaction time was varied by varying the drift electric field. The rate constants were derived from the mobility spectra by determining the rate at which ions decomposed in the drift region. Arrhenius plots with a drift gas containing water vapor at 5 ppmv gave the following activation energies and pre-exponential factors: 2,4-dimethylpyridine, 94 +/- 2 kJ mol-1, log A (s-1) = 15.9 +/- 0.4; dimethyl methylphosphonate, 127 +/- 3 kJ mol-1, log A (s-1) = 15.6 +/- 0.3. The enthalpy changes for the decompositions calculated from the activation energies are in accord with literature values for symmetrical proton bound dimers of oxygen and nitrogen bases. The results for dimethyl methylphosphonate were obtained over the temperature range 478-497 K and are practically independent of water concentration (5-2000 ppmv). The activation energy for 2,4-dimethylpyridine, obtained over the temperature range 340-359 K, decreased to 31 kJ mol-1 in the presence of 2.0 x 103 ppmv of water. At the low temperature, a displacement reaction involving water may account for the decrease. The reduced mobilities of the protonated molecules and the proton bound dimers have been determined over a wide temperature range. While the values for the dimers are essentially independent of the water concentration in the drift gas, those of the protonated molecules show a strong dependence.
Time-of-flight direct recoil ion scattering spectrometer
Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.
1994-01-01
A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).
A morphological study of vertical ionospheric flows in the high-latitude F region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loranc, M.; St.-Maurice, J.P.; Hanson, W.B.
1991-03-01
The authors have studied the vertical bulk ion drift data recorded by the DE 2 satellite between 200 and 1,000 km altitudes. For this data set, they have found that field-aligned ion flows between 100 m s{sup {minus}1} and 3 km s{sup {minus}1} are a common occurence in the high-latitude F region. The flows are predominantly upward near the cusp region and throughout the auroral zone. Strong downward flows of somewhat smaller magnitude are also recorded but mostly over the polar cap. These statements are true for all drift speeds in excess of 50 m s{sup {minus}1} and for allmore » altitudes and magnetic activity levels sampled. The morphology of low-altitude upward flowing ions agrees well with the morphology of outflowing ions, ion beams, and ion conics observed at much higher altitudes, but the low-altitude fluxes are often considerably greater. This suggests that a large fraction of the upflowing ions actually returns to the ionosphere, to be observed as large downward ion fluxes. They propose that upflowing ion events are generated by sudden large changes in the ion temperature below the neutral exobase, where ion frictional heating dominates the ion energy balance. The sudden changes in temperature occur when the horizontal velocity of a convecting field tube increases rapidly in regions like the cusp.« less
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.
2018-05-01
The power spectra of magnetic field fluctuations in the solar wind typically follow a power-law dependence with respect to the observed frequencies and wave-numbers. The background magnetic field often influences the plasma properties, setting a preferential direction for plasma heating and acceleration. At the same time the evolution of the solar-wind turbulence at the ion and electron scales is influenced by the plasma properties through local micro-instabilities and wave-particle interactions. The solar-wind-plasma temperature and the solar-wind turbulence at sub- and sup-ion scales simultaneously show anisotropic features, with different components and fluctuation power in parallel with and perpendicular to the orientation of the background magnetic field. The ratio between the power of the magnetic field fluctuations in parallel and perpendicular direction at the ion scales may vary with the heliospheric distance and depends on various parameters, including the local wave properties and nonthermal plasma features, such as temperature anisotropies and relative drift speeds. In this work we have performed two-and-a-half-dimensional hybrid simulations to study the generation and evolution of anisotropic turbulence in a drifting multi-ion species plasma. We investigate the evolution of the turbulent spectral slopes along and across the background magnetic field for the cases of initially isotropic and anisotropic turbulence. Finally, we show the effect of the various turbulent spectra for the local ion heating in the solar wind.
Equatorial ionospheric response to the 2015 St. Patrick's Day magnetic storm
NASA Astrophysics Data System (ADS)
Huang, C.; Wilson, G. R.; Hairston, M. R.; Zhang, Y.; Wang, W.; Liu, J.
2016-12-01
The geomagnetic storm on 17 March 2015 was the strongest storm during solar cycle 24 and caused significant disturbances in the global ionosphere. We present measurements of the Defense Meteorological Satellite Program satellites and identify the dynamic response of the equatorial ionosphere to the storm. Large penetration and disturbance dynamo electric fields are detected in both the dusk and the dawn sectors, and the characteristics of the electric fields are dramatically different in the two local time sectors. Penetration electric field is strong in the evening sector, but disturbance dynamo electric field is dominant in the dawn sector. The dynamo process is first observed in the post-midnight sector 4 hours after the beginning of the storm main phase and lasts for 31 hours, covering the major part of the storm main phase and the initial 20 hours of the recovery phase. The dynamo vertical ion drift is upward (up to 200 m/s) in the post-midnight sector and downward (up to 80 m/s) in the early morning sector. The dynamo zonal ion drift is westward at these locations and reaches 100 m/s. The dynamo process causes large enhancements of the oxygen ion concentration, and the variations of the oxygen ion concentration are well correlated with the vertical ion drift. The observations suggest that disturbance dynamo becomes dominant in the post-midnight equatorial ionosphere even during the storm main phase when disturbance neutral winds arrive there. The results provide new insight into storm-time equatorial ionospheric dynamics.
Measurements of Turbulent Transport of Fast Ions in the LAPD
NASA Astrophysics Data System (ADS)
Zhang, Y.; Boehmer, H.; Heidbrink, W. W.; McWilliams, R.; Zhao, L.; Carter, T.; Leneman, D.; Vincena, S.
2004-11-01
Understanding the spatial transport induced by fluctuations is important to the confinement of magnetized plasmas. The paradox of fast ions being much better confined than thermal ions, i.e. the effective diffusion coefficient of fast ions being much smaller than that of thermal ions, has been observed experimentally [1], explained theoretically [2], and analyzed by simulations [3]. Gyroradius averaging and drift averaging are two predicted effects that are responsible for reduced fast-ion transport. Our goal is to quantitatively confirm these effects and make further exploration by measuring fast-ion transport as a function of gyroradius in the LArge Plasma Device (LAPD) plasma with well-characterized background fluctuations. A 3D gridded analyzer is used to measure the spatial profile of the beam produced by an ion gun launching 500 eV Argon ions [4]. Strong drift wave fluctuations are generated by inserting a disk into the center of the plasma. First results will be presented. [1] W. Heidbrink, G. Sadler, Nucl. Fusion, Vol. 34, p. 535 (1994); [2] P. C. Efthimion et al., Plasma Phys. and Cont. Nucl. Fusion Res., Vol. 1, p. 307 (1988); [3] G. Manfredi, R. Dendy, Phys. Rev. Lett. 76, p. 4360 (1996); [4] H. Boehmer et al. , Rev. Sci. Instrum. , Vol. 75, p. 1013 (2002)
Effective ion speeds at ˜200-250 km from comet 67P/Churyumov-Gerasimenko near perihelion
NASA Astrophysics Data System (ADS)
Vigren, E.; André, M.; Edberg, N. J. T.; Engelhardt, I. A. D.; Eriksson, A. I.; Galand, M.; Goetz, C.; Henri, P.; Heritier, K.; Johansson, F. L.; Nilsson, H.; Odelstad, E.; Rubin, M.; Stenberg-Wieser, G.; Tzou, C.-Y.; Vallières, X.
2017-07-01
In 2015 August, comet 67P/Churyumov-Gerasimenko, the target comet of the ESA Rosetta mission, reached its perihelion at ˜1.24 au. Here, we estimate for a three-day period near perihelion, effective ion speeds at distances ˜200-250 km from the nucleus. We utilize two different methods combining measurements from the Rosetta Plasma Consortium (RPC)/Mutual Impedance Probe with measurements either from the RPC/Langmuir Probe or from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Comet Pressure Sensor (COPS) (the latter method can only be applied to estimate the effective ion drift speed). The obtained ion speeds, typically in the range 2-8 km s-1, are markedly higher than the expected neutral outflow velocity of ˜1 km s-1. This indicates that the ions were de-coupled from the neutrals before reaching the spacecraft location and that they had undergone acceleration along electric fields, not necessarily limited to acceleration along ambipolar electric fields in the radial direction. For the limited time period studied, we see indications that at increasing distances from the nucleus, the fraction of the ions' kinetic energy associated with radial drift motion is decreasing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty Thakur, S.; Fedorczak, N.; Manz, P.
2012-08-15
Using laser induced fluorescence (LIF), radial profiles of azimuthal ion fluid velocity and ion temperature are measured in the controlled shear de-correlation experiment (CSDX) linear helicon plasma device. Ion velocities and temperatures are derived from the measured Doppler broadened velocity distribution functions of argon ions. The LIF system employs a portable, high power (>300 mW), narrowband ({approx}1 MHz) tunable diode laser-based system operating at 668.614 nm. Previous studies in CSDX have shown the existence of a radially sheared azimuthal flow as measured with time delay estimation methods and Mach probes. Here, we report the first LIF measurements of sheared plasmamore » fluid flow in CSDX. Above a critical magnetic field, the ion fluid flow profile evolves from radially uniform to peaked on axis with a distinct reversed flow region at the boundary, indicating the development of a sheared azimuthal flow. Simultaneously, the ion temperature also evolves from a radially uniform profile to a profile with a gradient. Measurements in turbulent and coherent drift wave mode dominated plasmas are compared.« less
Infrared Spectroscopy of Mobility-Selected H+-Gly-Pro-Gly-Gly (GPGG)
NASA Astrophysics Data System (ADS)
Masson, Antoine; Kamrath, Michael Z.; Perez, Marta A. S.; Glover, Matthew S.; Rothlisberger, U.; Clemmer, David E.; Rizzo, Thomas R.
2015-09-01
We report the first results from a new instrument capable of acquiring infrared spectra of mobility-selected ions. This demonstration involves using ion mobility to first separate the protonated peptide Gly-Pro-Gly-Gly (GPGG) into two conformational families with collisional cross-sections of 93.8 and 96.8 Å2. After separation, each family is independently analyzed by acquiring the infrared predissociation spectrum of the H2-tagged molecules. The ion mobility and spectroscopic data combined with density functional theory (DFT) based molecular dynamics simulations confirm the presence of one major conformer per family, which arises from cis/ trans isomerization about the proline residue. We induce isomerization between the two conformers by using collisional activation in the drift tube and monitor the evolution of the ion distribution with ion mobility and infrared spectroscopy. While the cis-proline species is the preferred gas-phase structure, its relative population is smaller than that of the trans-proline species in the initial ion mobility drift distribution. This suggests that a portion of the trans-proline ion population is kinetically trapped as a higher energy conformer and may retain structural elements from solution.
Radar studies of midlatitude ionospheric plasma drifts
NASA Astrophysics Data System (ADS)
Scherliess, L.; Fejer, B. G.; Holt, J.; Goncharenko, L.; Amory-Mazaudier, C.; Buonsanto, M. J.
2001-02-01
We use incoherent scatter radar measurements from Millstone Hill and Saint Santin to study the midlatitude F region electrodynamic plasma drifts during geomagnetically quiet and active periods. We present initially a local time, season, and solar flux dependent analytical model of the quiet time zonal and meridional
2017-11-01
Front view of the drift gas showerhead assembly showing the Faraday plate and insulating ceramic cemented in the center, (left) the drift gas...drift gas was preheated using a heater built in-house at WSU, which consisted of an 8 in. length of 1/8 in. stainless steel tubing wrapped with 3 ft...gate halves were then cemented together with an array of parallel 0.003 in. o.d. Alloy 46 wires (California Fine Wire Company) were spaced between them
Electric and magnetic drift of non-adiabatic ions in the earth's geomagnetic tail current sheet
NASA Technical Reports Server (NTRS)
Beard, D. B.; Cowley, S. W. H.
1985-01-01
It has been shown recently that nonadiabatic particles in the earth's magnetotail drift across the tail roughly as predicted for adiabatic particles with 90 deg pitch angles. In this paper it is shown that this result implies the existence of an approximate invariant of the motion. Adding the effect of convection associated electric fields, the approximate bounce averaged motion of nonadiabatic particles in the magnetotail can be obtained. Thus the particle motion and energization due to combined magnetic and electric drifts in the magnetotail are easily predicted.
Rodríguez-Maecker, Roman; Vyhmeister, Eduardo; Meisen, Stefan; Rosales Martinez, Antonio; Kuklya, Andriy; Telgheder, Ursula
2017-11-01
Static headspace gas chromatography-ion mobility spectrometry (SHS GC-IMS) is a relatively new analytical technique that has considerable potential for analysis of volatile organic compounds (VOCs). In this study, SHS GC-IMS was used for the identification of the major terpene components of various essential oils (EOs). Based on the data obtained from 25 terpene standards and 50 EOs, a database for fingerprint identification of characteristic terpenes and EOs was generated utilizing SHS GC-IMS for authenticity testing of fragrances in foods, cosmetics, and personal care products. This database contains specific normalized IMS drift times and GC retention indices for 50 terpene components of EOs. Initially, the SHS GC-IMS parameters, e.g., drift gas and carrier gas flow rates, drift tube, and column temperatures, were evaluated to determine suitable operating conditions for terpene separation and identification. Gas chromatography-mass spectrometry (GC-MS) was used as a reference method for the identification of terpenes in EOs. The fingerprint pattern based on the normalized IMS drift times and retention indices of 50 terpenes is presented for 50 EOs. The applicability of the method was proven on examples of ten commercially available food, cosmetic, and personal care product samples. The results confirm the suitability of SHS GC-IMS as a powerful analytical technique for direct identification of terpene components in solid and liquid samples without any pretreatment. Graphical abstract Fingerprint pattern identification of terpenes and essential oils using static headspace gas chromatography-ion mobility spectrometry.
Radiation effects on hole drift mobility in polysilanes
NASA Astrophysics Data System (ADS)
Seki, Shu; Shibata, Hiromi; Yoshida, Yoichi; Ishigure, Kenkichi; Tagawa, Seiichi
1997-03-01
The radiation effects on hole drift mobility in polysilane derivatives were studied in the present paper. The values of hole drift mobility (about 10 -4 cm 2/V·s) obtained by the DC Time-of-Flight (TOF) measurement were improved by ion beam irradiation for poly(methylphenylsilane) (PMPS) and poly(di-n-hexylsilane) (PDHS). The irradiated PMPS showed five times higher values of hole drift mobility than the non irradiated one. Their low photo-induced carrier yield, one of the highest barrier to use polysilanes as photoconductors, was also improved by the irradiation. The mechanism of the mobility improvement will be discussed in relation to the model of changes in the silicon skeleton structure induced by the radiation.
NASA Technical Reports Server (NTRS)
Cragin, B. L.; Hanson, W. B.; Mcclure, J. P.; Valladares, C. E.
1985-01-01
Equatorial bottomside sinusoidal (BSS) irregularities have been studied by applying techniques of cross-correlation and spectral analysis to the Atmosphere Explorer data set. The phase of the cross-correlations of the plasma number density is discussed and the two drift velocity components observed using the retarding potential analyzer and ion drift meter on the satellite are discussed. Morphology is addressed, presenting the geographical distributions of the occurrence of BSS events for the equinoxes and solstices. Physical processes including the ion Larmor flux, interhemispheric plasma flows, and variations in the lower F region Pedersen conductivity are invoked to explain the findings.
An Rf Focused Interdigital Ion Accelerating Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, D.A.
2003-08-26
An Rf Focused Interdigital (RFI) ion accelerating structure will be described. It represents an effective combination of the Wideroee (or interdigital) linac structure, used for many low frequency, heavy ion applications, and the rf electric quadrupole focusing used in the RFQ and RFD linac structures. As in the RFD linac structure, rf focusing is introduced into the RFI linac structure by configuring the drift tubes as two independent pieces operating at different electrical potentials as determined by the rf fields of the linac structure. Each piece (or electrode) of the RFI drift tube supports two fingers pointed inwards towards themore » opposite end of the drift tube forming a four-finger geometry that produces an rf quadrupole field along the axis of the linac for focusing the beam. However, because of the differences in the rf field configuration along the axis, the scheme for introducing rf focusing into the interdigital linac structure is quite different from that adopted for the RFD linac structure. The RFI linac structure promises to have significant size, efficiency, performance, and cost advantages over existing linac structures for the acceleration of low energy ion beams of all masses (light to heavy). These advantages will be reviewed. A 'cold model' of this new linac structure has been fabricated and the results of rf cavity measurements on this cold model will be presented.« less
Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration
NASA Astrophysics Data System (ADS)
Masugata, Katsumi; Shimizu, Yuichro; Fujioka, Yuhki; Kitamura, Iwao; Tanoue, Hisao; Arai, Kazuo
2004-12-01
To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named "bipolar pulse accelerator" was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density ≈25 A/cm2, duration ≈1.5 μs was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240 kV, duration 100 ns to the drift tube. Pulsed ion beam of current density ≈40 A/cm2, duration ≈50 ns was obtained at 41 mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness ≈500 nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.
NASA Technical Reports Server (NTRS)
Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.
2016-01-01
Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Axial motion of collector plasma in a relativistic backward wave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Renzhen; Chen, Changhua; Deng, Yuqun
2016-06-15
In this paper, it is proposed that plasma formed at the collector may drift back to the cathode and cause pulse shortening of the relativistic backward wave oscillator. Theoretical analysis shows that the axial drift velocity of plasma ions can be up to 5 mm/ns due to the presence of space charge potential provided by an intense relativistic electron beam. Particle-in-cell simulations indicate that the plasma electrons are initially trapped around the collector surface. With the accumulation of the plasma ions, a large electrostatic field forms and drives the plasma electrons to overcome the space charge potential and enter the beam-wavemore » interaction region along the magnetic field lines. As a result, the beam current modulation is disturbed and the output microwave power falls rapidly. The plasma ions move in the beam-wave interaction region with an average axial velocity of 5–8 mm/ns. After the plasma ions reach the diode region, the emitted current at the cathode rises due to the charge neutralizations by the ions. The impedance collapse leads to further decrease of the microwave power. In experiments, when the diode voltage and beam current were 850 kV and 9.2 kA, and the collector radius was 2.15 cm, the output microwave power was 2.4 GW with a pulse width of less than 20 ns. The ion drift velocity was estimated to be about 5 mm/ns. After an improved collector with 3.35 cm radius was adopted, the pulse width was prolonged to more than 30 ns.« less
Habchi, Baninia; Alves, Sandra; Jouan-Rimbaud Bouveresse, Delphine; Appenzeller, Brice; Paris, Alain; Rutledge, Douglas N; Rathahao-Paris, Estelle
2018-01-01
Due to the presence of pollutants in the environment and food, the assessment of human exposure is required. This necessitates high-throughput approaches enabling large-scale analysis and, as a consequence, the use of high-performance analytical instruments to obtain highly informative metabolomic profiles. In this study, direct introduction mass spectrometry (DIMS) was performed using a Fourier transform ion cyclotron resonance (FT-ICR) instrument equipped with a dynamically harmonized cell. Data quality was evaluated based on mass resolving power (RP), mass measurement accuracy, and ion intensity drifts from the repeated injections of quality control sample (QC) along the analytical process. The large DIMS data size entails the use of bioinformatic tools for the automatic selection of common ions found in all QC injections and for robustness assessment and correction of eventual technical drifts. RP values greater than 10 6 and mass measurement accuracy of lower than 1 ppm were obtained using broadband mode resulting in the detection of isotopic fine structure. Hence, a very accurate relative isotopic mass defect (RΔm) value was calculated. This reduces significantly the number of elemental composition (EC) candidates and greatly improves compound annotation. A very satisfactory estimate of repeatability of both peak intensity and mass measurement was demonstrated. Although, a non negligible ion intensity drift was observed for negative ion mode data, a normalization procedure was easily applied to correct this phenomenon. This study illustrates the performance and robustness of the dynamically harmonized FT-ICR cell to perform large-scale high-throughput metabolomic analyses in routine conditions. Graphical abstract Analytical performance of FT-ICR instrument equipped with a dynamically harmonized cell.
SAPS effects on thermospheric winds during the 17 March 2013 storm
NASA Astrophysics Data System (ADS)
Sheng, C.; Lu, G.; Wang, W.; Doornbos, E.; Talaat, E. R.
2017-12-01
Strong subauroral polarization streams (SAPS) were observed by DMSP satellites during the main phase of the 17 March 2013 geomagnetic storm. Both DMSP F18 and GOCE satellites sampled at 19 MLT during this period, providing near-simultaneous measurements of ion drifts and neutral winds near dusk. The fortuitous satellite conjunction allows us to directly examine the SAPS effects on thermospheric winds. In addition, two sets of model runs were carried out for this event: (1) the standard TIEGCM run with high-latitude forcing; (2) the SAPS-TIEGCM run by incoporating an empirical model of SAPS in the subauroral zone. The difference between these two runs represents the influence of SAPS forcing. In particular, we examine ion-neutral coupling at subauroral latitudes through detailed forcing term analysis to determine how the SAPS-related strong westward ion drifts alter thermospheric winds.
Fast detection of toxic industrial compounds by laser ion mobility spectrometry
NASA Astrophysics Data System (ADS)
Oberhuettinger, Carola; Langmeier, Andreas; Oberpriller, Helmut; Kessler, Matthias; Goebel, Johann; Mueller, Gerhard
2009-05-01
Trace detection of toxic industrial compounds has been investigated with the help of a laser ion mobility spectrometer (LIMS). The LIMS was equipped with a tuneable UV laser source for enabling two-photon ionization of the analyte gases and an ion drift tube for the measurement of the ion mobility. Different aromatic and aliphatic hydrocarbons as well as amines were investigated. We find that the first class of molecules can be well ionized due to the delocalization of their valence electron shells and the second due to the presence of non-bonding electrons in lone-pair orbitals. Selectivity of detection is attained on the basis of molecule-specific photo-ionization and drift time spectra. Ion currents were found to scale linearly with the substance concentration over several orders of magnitude down to the detection limits in the ppt range. As besides toxic industrial compounds, similar electron configurations also occur in illicit drugs, toxins and pharmaceutical substances, LIMS can be applied in a variety of fields ranging from environmental analysis, air pollution monitoring, drug detection and chemical process monitoring.
Development of an ion mobility spectrometer with UV ionization source to detect ketones and BTX
NASA Astrophysics Data System (ADS)
Ni, Kai; Guo, Jingran; Ou, Guangli; Lei, Yu; Wang, Xiaohao
2014-11-01
Ion mobility spectrometry (IMS) is an attractive material analysis technology for developing a miniaturized volatile organic compounds (VOCs) on-site monitoring sensor. Having simple instrumentation, IMS is especially suitable when portability and sensitivity are required. In this work, we designed an ion mobility spectrometer with UV ionization. The geometric parameters of the UV-IMS were optimized based on a numerical simulation. The simulation results demonstrated that the drift electric field in the drift region was approximately homogenous and in the reaction region had an ion focusing effect, which could improve the sensitivity and resolving power of the IMS. The UV-IMS has been constructed and used to detect VOCs, such as acetone, benzene, toluene and m-xylene (BTX). The resolution of these substance measured from the UV-IMS in the atmospheric conditions are about 30 and the limit of detection (LOD) is low to ppmv. The ion mobility module and electric circuit are integrated in a main PCB, which can facilitate mass production and miniaturization. The present UV-IMS is expected to become a tool of choice for the on-site monitoring for VOCs.
Loss of ring current O(+) ions due to interaction with Pc 5 waves
NASA Astrophysics Data System (ADS)
Li, Xinlin; Hudson, Mary; Chan, Anthony; Roth, Ilan
1993-01-01
A test particle code is used here to investigate ring current ion interaction with Pc 5 waves, combined with convection and corotation electric fields, with emphasis on the loss of O(+) ions over the dayside magnetosphere. A new loss mechanism for the O(+) ions due to the combined effects of convection and corotation electric fields and interactions with Pc 5 waves via a magnetic drift-bound resonance is presented. For given fields, whether a particle gains or losses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O(+) ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. Due to interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle is lost to the dayside magnetopause by a sunward E x B drift.
Hydrodynamic description of an unmagnetized plasma with multiple ion species. I. General formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simakov, Andrei N., E-mail: simakov@lanl.gov; Molvig, Kim
2016-03-15
A generalization of the Braginskii ion fluid description [S. I. Braginskii, Sov. Phys. - JETP 6, 358 (1958)] to the case of an unmagnetized collisional plasma with multiple ion species is presented. An asymptotic expansion in the ion Knudsen number is used to derive the individual ion species continuity, as well as the total ion mass density, momentum, and energy evolution equations accurate through the second order. Expressions for the individual ion species drift velocities with respect to the center of mass reference frame, as well as for the total ion heat flux and viscosity, which are required to closemore » the fluid equations, are evaluated in terms of the first-order corrections to the lowest order Maxwellian ion velocity distribution functions. A variational formulation for evaluating such corrections and its relation to the plasma entropy are presented. Employing trial functions for the corrections, written in terms of expansions in generalized Laguerre polynomials, and maximizing the resulting functionals produce two systems of linear equations (for “vector” and “tensor” portions of the corrections) for the expansion coefficients. A general matrix formulation of the linear systems as well as expressions for the resulting transport fluxes are presented in forms convenient for numerical implementation. The general formulation is employed in Paper II [A. N. Simakov and K. Molvig, Phys. Plasmas 23, 032116 (2016)] to evaluate the individual ion drift velocities and the total ion heat flux and viscosity for specific cases of two and three ion species plasmas.« less
MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma
NASA Technical Reports Server (NTRS)
Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.;
2016-01-01
In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..
Characteristics and transport effects of the electron drift instability in Hall-effect thrusters
NASA Astrophysics Data System (ADS)
Lafleur, T.; Baalrud, S. D.; Chabert, P.
2017-02-01
The large electron {E}× {B} drift (relative to the ions) in the azimuthal direction of Hall-effect thrusters is well known to excite a strong instability. In a recent paper (Lafleur et al 2016 Phys. Plasmas 23 053503) we demonstrated that this instability leads to an enhanced electron-ion friction force that increases the electron cross-field mobility to levels similar to those seen experimentally. Here we extend this work by considering in detail the onset criteria for the formation of this instability (both in xenon, and other propellants of interest), and identify a number of important characteristics that it displays within Hall-effect thrusters (HETs): including the appearance of an additional non-dimensionalized scaling parameter (the instability growth-to-convection ratio), which controls the instability evolution and amplitude. We also investigate the effect that the instability has on electron and ion heating in HETs, and show that it leads to an ion rotation in the azimuthal direction that is in agreement with that seen experimentally.
Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas
NASA Astrophysics Data System (ADS)
Adnan, Muhammad; Mahmood, S.; Qamar, Anisa
2014-09-01
Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg-de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.
NASA Astrophysics Data System (ADS)
Liu, Jing; Wang, Wenbin; Burns, Alan; Solomon, Stanley C.; Zhang, Shunrong; Zhang, Yongliang; Huang, Chaosong
2016-08-01
There are still uncertainties regarding the formation mechanisms for storm-enhanced density (SED) in the high and subauroral latitude ionosphere. In this work, we deploy the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) and GPS total electron content (TEC) observations to identify the principle mechanisms for SED and the tongue of ionization (TOI) through term-by-term analysis of the ion continuity equation and also identify the advantages and deficiencies of the TIEGCM in capturing high-latitude and subauroral latitude ionospheric fine structures for the two geomagnetic storm events occurring on 17 March 2013 and 2015. Our results show that in the topside ionosphere, upward E × B ion drifts are most important in SED formation and are offset by antisunward neutral winds and downward ambipolar diffusion effects. In the bottomside F region ionosphere, neutral winds play a major role in generating SEDs. SED signature in TEC is mainly caused by upward E × B ion drifts that lift the ionosphere to higher altitudes where chemical recombination is slower. Horizontal E × B ion drifts play an essential role in transporting plasma from the dayside convection throat region to the polar cap to form TOIs. Inconsistencies between model results and GPS TEC data were found: (1) GPS relative TEC difference between storm time and quiet time has "holes" in the dayside ion convection entrance region, which do not appear in the model results. (2) The model tends to overestimate electron density enhancements in the polar region. Possible causes for these inconsistencies are discussed in this article.
Correlation ion mobility spectroscopy
Pfeifer, Kent B [Los Lunas, NM; Rohde, Steven B [Corrales, NM
2008-08-26
Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.
Copper drift in high-dielectric-constant tantalum oxide thin films under bias temperature stress
NASA Astrophysics Data System (ADS)
Jain, Pushkar; Juneja, Jasbir S.; Mallikarjunan, A.; Rymaszewski, E. J.; Lu, T.-M.
2006-04-01
The use of high-dielectric-constant (high-κ) materials for embedded capacitors is becoming increasingly important. Tantalum oxide (Ta2O5) is a prominent candidate as a high-κ material for embedded capacitor use. Metal drift in Ta2O5 (κ˜25) was investigated by bias temperature stress and triangular voltage sweep testing techniques on metal/Ta2O5/SiO2/Si structures. At a temperature of 300°C and 0.75MV/cm bias conditions, Al, Ta, and Ti do not diffuse in Ta2O5, but Cu clearly showed a drift. The Cu drift is attributed to the lack of a stable Cu oxide which can limit Cu ion generation and penetration.
Guiding center model to interpret neutral particle analyzer results
NASA Technical Reports Server (NTRS)
Englert, G. W.; Reinmann, J. J.; Lauver, M. R.
1974-01-01
The theoretical model is discussed, which accounts for drift and cyclotron components of ion motion in a partially ionized plasma. Density and velocity distributions are systematically precribed. The flux into the neutral particle analyzer (NPA) from this plasma is determined by summing over all charge exchange neutrals in phase space which are directed into apertures. Especially detailed data, obtained by sweeping the line of sight of the apertures across the plasma of the NASA Lewis HIP-1 burnout device, are presented. Selection of randomized cyclotron velocity distributions about mean azimuthal drift yield energy distributions which compared well with experiment. Use of data obtained with a bending magnet on the NPA showed that separation between energy distribution curves of various mass species correlate well with a drift divided by mean cyclotron energy parameter of the theory. Use of the guiding center model in conjunction with NPA scans across the plasma aid in estimates of ion density and E field variation with plasma radius.
NASA Astrophysics Data System (ADS)
Ergun, R. E.; Chen, L.-J.; Wilder, F. D.; Ahmadi, N.; Eriksson, S.; Usanova, M. E.; Goodrich, K. A.; Holmes, J. C.; Sturner, A. P.; Malaspina, D. M.; Newman, D. L.; Torbert, R. B.; Argall, M. R.; Lindqvist, P.-A.; Burch, J. L.; Webster, J. M.; Drake, J. F.; Price, L.; Cassak, P. A.; Swisdak, M.; Shay, M. A.; Graham, D. B.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Dorelli, J. C.; Gershman, D.; Avanov, L.; Hesse, M.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Goldman, M. V.; Stawarz, J. E.; Schwartz, S. J.; Eastwood, J. P.; Hwang, K.-J.; Nakamura, R.; Wang, S.
2017-04-01
Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude ( 100 mV/m) E|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.
NASA Astrophysics Data System (ADS)
Farenc, Mathilde; Paupy, Benoit; Marceau, Sabrina; Riches, Eleanor; Afonso, Carlos; Giusti, Pierre
2017-07-01
Ion mobility coupled with mass spectrometry was proven to be an efficient way to characterize complex mixtures such as petroleum samples. However, the identification of isomeric species is difficult owing to the molecular complexity of petroleum and no availability of standard molecules. This paper proposes a new simple indicator to estimate the isomeric content of highly complex mixtures. This indicator is based on the full width at half maximum (FWHM) of the extracted ion mobility peak measured in millisecond or square angstrom that is corrected for instrumental factors such as ion diffusion. This value can be easily obtained without precisely identifying the number of isomeric species under the ion mobility peaks. Considering the Boduszynski model, the ion mobility profile for a particular elemental composition is expected to be a continuum of various isomeric species. The drift time-dependent fragmentation profile was studied and confirmed this hypothesis, a continuous evolution of the fragmentation profile showing that the larger alkyl chain species were detected at higher drift time values. This new indicator was proven to be a fast and efficient method to compare vacuum gas oils for which no difference was found using other analytical techniques.
Modeling of ion acceleration through drift and diffusion at interplanetary shocks
NASA Technical Reports Server (NTRS)
Decker, R. B.; Vlahos, L.
1986-01-01
A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Rastbood, E.; Khorashadizadeh, S. M.
The dielectric permittivity tensor of a magnetoactive current-driven plasma is obtained by employing the kinetic theory based on the Vlasov equation and Lorentz transformation formulas with an emphasize on the q-nonextensive statistics. By deriving the q-generalized dispersion relation of the low frequency modes in this plasma system, the possibility and properties of filamentation and ion acoustic instabilities are then studied. It is shown that the occurrence and the growth rate of these instabilities depend strongly on the nonextensive parameters, external magnetic field strength, and drift velocity. It is observed that the growth rate of ion acoustic instability is affected bymore » the magnetic field strength much more than that of the filamentation instability in the low frequency range. The external magnetic field facilitates the development of the ion-acoustic instability. It is also shown that the filamentation is the dominant instability only for the high value of drift velocity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yuling; Liu, Yue, E-mail: Yueqiang.Liu@ccfe.ac.uk, E-mail: liuyue@dlut.edu.cn; Liu, Chao
2016-01-15
A dispersion relation is derived for the stability of the resistive wall mode (RWM), which includes both the resistive layer damping physics and the toroidal precession drift resonance damping from energetic ions in tokamak plasmas. The dispersion relation is numerically solved for a model plasma, for the purpose of systematic investigation of the RWM stability in multi-dimensional plasma parameter space including the plasma resistivity, the radial location of the resistive wall, as well as the toroidal flow velocity. It is found that the toroidal favorable average curvature in the resistive layer contributes a significant stabilization of the RWM. This stabilizationmore » is further enhanced by adding the drift kinetic contribution from energetic ions. Furthermore, two traditionally assumed inner layer models are considered and compared in the dispersion relation, resulting in different predictions for the stability of the RWM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xing; Ibrahim, Yehia M.; Chen, Tsung-Chi
We report the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (µFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The µFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional information of detected features from the measured FAIMS compensation fields and IMS drift times, while also obtaining accurate ion masses. These separations thereby increase the overall separation power, resulting increased information content, and provide more complete characterization of more complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressuresmore » in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by e.g. improving isomeric separations and allowing detection of species obscured by “chemical noise” and other interfering peaks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Sukhmander; Malik, Hitendra K.
Role of ionization to Rayleigh instability is clarified in a Hall thruster plasma under the variety of profiles of electron drift velocity, namely, step-like profile (SLP) and two different super-Gaussian profiles (SGP1 and SGP2). For this, a relevant Rayleigh equation is derived and solved numerically using fourth-order Runge-Kutta method. Interestingly, an upper cutoff frequency of oscillations {omega}{sub max} is realized for the occurrence of the instability that shows dependence on the ionization rate {alpha}, electron drift velocity u{sub 0}, electron cyclotron frequency {Omega}, azimuthal wave number k{sub y}, plasma density n{sub 0}, density gradient {partial_derivative}n{sub 0}/{partial_derivative}x, ion (electron) thermal speedmore » V{sub thI}(V{sub thE}), and ion (electron) plasma frequency {omega}{sub pi}({omega}{sub pe}). The frequency {omega}{sub max} follows the trend {omega}{sub max} (for SGP2) >{omega}{sub max} (for SLP) >{omega}{sub max} (for SGP1) and shows a similar behaviour with ionization for all types of the velocity profiles. The instability is found to grow faster for the higher {alpha} and the ion temperature but it acquires lower rate under the effect of the higher electron temperature; the perturbed potential also varies in accordance with the growth rate. The electron temperature influences the growth rate and cutoff frequency less significantly in comparison with the ion temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ofman, Leon, E-mail: Leon.Ofman@nasa.gov; NASA Goddard Space Flight Center, Greenbelt, MD; Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv
Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects ofmore » background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.« less
Mobilities of ground-state and metastable O/+/, O2/+/, O/2+/, and O2/2+/ ions in helium and neon
NASA Astrophysics Data System (ADS)
Johnsen, R.; Biondi, M. A.; Hayashi, M.
1982-09-01
The ionic mobilities of O(+), O2(+), O(2+), and O2(2+) in helium and neon have been measured using a selected-ion drift apparatus (SIDA). It is found that the mobilities of both O(+) and O2(+) ions in the metastable states (2D or 4Pi u) are measurably smaller than those of the same ions carried out by using known, state-selective ion-molecule reactions. A similar mobility differentiation of ground-state and metastable ions was not observed for the O(2+) and O2(2+) ions.
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.; Hartle, R. E.; Kar, J.; Cloutier, P. A.; Taylor, H. A., Jr.; Brace, L. H.
1993-01-01
During the final, low solar activity phase of the Pioneer Venus (PV) mission, the Orbiter Ion Mass Spectrometer (OIMS) measurements found all ion species, in the midnight-dusk sector, reduced in concentration relative to that observed at solar maximum. Molecular ion species comprised a greater part of the total ion concentration as O(+) and H(+) had the greatest depletions. The nightside ionospheric states were strikingly similar to the isolated solar maximum 'disappearing' ionospheres. Both are very dynamic states characterized by a rapidly drifting plasma and 30-100 eV superthermal O(+) ions.
Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)
NASA Astrophysics Data System (ADS)
Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.
2012-02-01
The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.
Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.
Kondo, K; Yamamoto, T; Sekine, M; Okamura, M
2012-02-01
The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.
Struwe, W B; Benesch, J L; Harvey, D J; Pagel, K
2015-10-21
We report collision cross sections (CCS) of high-mannose N-glycans as [M + Na](+), [M + K](+), [M + H](+), [M + Cl](-), [M + H2PO4](-) and [M - H](-) ions, measured by drift tube (DT) ion mobility-mass spectrometry (IM-MS) in helium and nitrogen gases. Further analysis using traveling wave (TW) IM-MS reveal the existence of distinct conformers exclusive to [M - H](-) ions.
Physical requirements and milestones for the HIT-PoP Experiment
NASA Astrophysics Data System (ADS)
Jarboe, Thomas
2011-10-01
Recent success with HIT-SI demonstrates the viability of steady inductive helicity injection (SIHI) as a spheromak formation and sustainment method. Results include the sustainment of toroidal current of over 50 kA, up to 40 kA of plasma current that is separate from the injectors, toroidal flux up to 6 times the peak injected flux, and j/n > 1014Am. All were achieved with 10MW or less applied power. This paper explores the requirements for a confinement test of the concept using a larger proof of principle experiment. The confinement experiment must not exceed the beta limit, the drift parameter limit, or the wall loading limit, where the drift parameter is (drift of electrons relative to ions to produce current)/(ion thermal speed). It must also exceed a minimum j/n, a minimum n a, and a minimum electron temperature, where a is the minor radius. The drift parameter limit and beta limit appear to play defining roles in spheromak performance leading to a very favorable scaling of wall loading with size. The milestones sequence suggested is the following: 1. Startup at drift parameter and beta limit minimum density. 2. Raise current until j/n exceeds 10-14Am. 3. Raise the current and temperature until T ~ 50 eV for good ionization. 4. Raise the current and density until n a > 2x1019 m-2 for neutral screening. 5. Raise current and temperature until T > 200eV so magnetic confinement can be studied.
Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Lu, G.; Goertz, C. K.; Nishikawa, K. - I.
1994-01-01
The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which establishes a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L (sub parallel), restricts the growth of the fastest growing mode, with a wavelength lambda (sub m parallel), of the MBPI. The parallel electron heating at wave saturation scales approximately as (L (sub parallel)/lambda (sub m parallel)) (exp 1/2); (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. This reduces exponentially with time the relative drift between the ambient plasma and the neutrals. The timescale is inversely proportional to the Alfven velocity. (3) The transvers e charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. The loss of energetic electrons from the cloud seems to be larger in the direction of plasma drift relative to the neutrals, where the loss rate is characterized by the neutral drift velocity. It is also shown that a factor of 4 increase in the ambient plasma density, increases the CIV ionization yield by almost 2 orders of magnitude at the end of a typical run. It is concluded that a larger ambient plasma density can result in a larger CIV yield because of (1) larger seed ion production by non-CIV mechanisms, (2) smaller Alfven velocity and hence weak momentum coupling, and (3) smaller ratio of the ion beam density to the ambient ion density, and therefore a weaker modulation of the beam velocity. The simulation results are used to interpret various chemical release experiments in space.
Three-dimensional ring current decay model
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1995-01-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.
A three-dimensional ring current decay model
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1994-01-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawn and dusk sides of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always over-estimated. A newly-invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm-time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j(sub o)(1+Ay(exp n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.
Magnetically Controlled Upper Ionosphere of Mars
NASA Astrophysics Data System (ADS)
Majeed, T.; Al Aryani, O.; Al Mutawa, S.; Bougher, S. W.; Haider, S. A.
2017-12-01
The electron density (Ne) profiles measured by the Mars Express spacecraft over regions of strong crustal magnetic fields have shown anomalous characteristics of the topside plasma distribution with variable scale heights. One of such Ne profiles is located at 82oS and 180oE whose topside ionosphere is extended up to an altitude of 700 km. The crustal magnetic field at this southern site is nearly vertical and open to the access of solar wind plasma through magnetic reconnection with the interplanetary magnetic field. This can lead to the acceleration of electrons and ions during the daytime ionosphere. The downward accelerated electrons with energies >200 eV can penetrate deep into the Martian upper ionosphere along vertical magnetic field lines and cause heating, excitation and ionization of the background atmosphere. The upward acceleration of ions resulting from energy input by precipitating electrons can lead to enhance ion escape rate and modify scale heights of the topside ionosphere. We have developed a 1-D chemical diffusive model from 100 km to 400 km to interpret the Martian ionospheric structure at 82oS latitude. The primary source of ionization in the model is due to solar EUV radiation. An extra ionization source due to precipitating electrons of 0.25 keV, peaking near an altitude of 145 km is added in the model to reasonably reproduce the measured ionospheric structure below an altitude of 180 km. The behavior of the topside ionosphere can be interpreted by the vertical plasma transport caused by precipitating electrons. The vertical transport of plasma in our model is simulated by vertical ion velocities, whose values can be interpreted as drift velocities along magnetic field lines. We find that the variation of the topside Ne scale heights is sensitive to the magnitudes of upward and downward drifts with an imposed outward flux boundary condition at the top of the model. The model requires an upward flux of more than 107 ions cm-2 s-1 for both O2+ and O+, and drift speeds of 200 m/s to interpret the measured topside ionospheric structure for altitudes >180 km. The magnitudes of outward ion fluxes and drift velocities are compared with those simulated by existing models. The model results will be presented in comparison with the measured electron density profile. This work is supported by MBRSC, Dubai, UAE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaojie, E-mail: wangsj@ustc.edu.cn
It is found that the Lorentz force generated by the magnetic drift drives a generic plasma pinch flux of particle, energy and momentum through the Stokes-Einstein relation. The proposed theoretical model applies for both electrons and ions, trapped particles, and passing particles. An anomalous parallel current pinch due to the electrostatic turbulence with long parallel wave-length is predicted.
Drifts, currents, and power scrape-off width in SOLPS-ITER modeling of DIII-D
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; ...
2016-12-27
The effects of drifts and associated flows and currents on the width of the parallel heat flux channel (λ q) in the tokamak scrape-off layer (SOL) are analyzed using the SOLPS-ITER 2D fluid transport code. Motivation is supplied by Goldston’s heuristic drift (HD) model for λ q, which yields the same approximately inverse poloidal magnetic field dependence seen in multi-machine regression. The analysis, focusing on a DIII-D H-mode discharge, reveals HD-like features, including comparable density and temperature fall-off lengths in the SOL, and up-down ion pressure asymmetry that allows net cross-separatrix ion magnetic drift flux to exceed net anomalous ionmore » flux. In experimentally relevant high-recycling cases, scans of both toroidal and poloidal magnetic field (B tor and B pol) are conducted, showing minimal λ q dependence on either component of the field. Insensitivity to B tor is expected, and suggests that SOLPS-ITER is effectively capturing some aspects of HD physics. Absence of λ q dependence on B pol, however, is inconsistent with both the HD model and experimental results. As a result, the inconsistency is attributed to strong variation in the parallel Mach number, which violates one of the premises of the HD model.« less
Instabilities and transport in Hall plasmas with ExB drift
NASA Astrophysics Data System (ADS)
Smolyakov, Andrei
2016-10-01
Low temperature plasma with moderate magnetic field, where the ions are not or just weakly magnetized, i.e. the ion Larmor radius being larger or comparable to the characteristic length scale of interest (e.g. the size ofthe system), have distinctly different properties from strongly magnetized plasmas such as that for fusion applications. Such parameters regimes are generally defined here as Hall plasmas. The natural scale separation between the ion and electron Larmor radii in Hall plasma, further exploited by the application of the external electric field, offers unique applications in various plasma devices for material processing and electric propulsion. Plasmas in such devices are in strongly non-equilibrium state making it prone to a number of instabilities. This talk presents physics description of the dominant unstable modes in ExB Hall plasmas resulting in highly turbulent state with nonlinear coherent structures and anomalous electron current. Since ions are un-magnetized, fundamental instabilities operating in low temperature Hall plasmas are very different from much studied gradients (density, temperature and magnetic field) driven drift-wave turbulence in strongly magnetized plasmas for fusion applications. As a result the nonlinear saturation mechanisms, role of the ExB shear flows are also markedly different in such plasmas. We review the basic instabilities in these plasmas which are related to the ion-sound, low-hybrid and anti-drift modes, discuss nonlinear saturation and anomalous transport mechanisms. The advanced nonlinear fluid model for such plasmas and results of nonlinear simulations of turbulence and anomalous transport performed within a modified BOUT++ framework will be presented. Research supported by NSERC Canada and US AFOSR FA9550-15-1-0226.
NASA Technical Reports Server (NTRS)
Wu, Jian; Blanc, Michel; Alcayde, Denis; Barakat, Abdullah R.; Fontanari, Jean; Blelly, Pierre-Louis; Kofman, Wlodek
1992-01-01
EISCAT VHF radar was used to investigate the vertical flows of H(+) and O(+) ions in the topside high-latitude ionosphere. The radar transmitted a single long pulse to probe the ionosphere from 300 to 1200 km altitude. A calculation scheme is developed to deduce the H(+) drift velocity from the coupled momentum equations of H(+), O(+), and the electrons, using the radar data and a neutral atmosphere model. The H(+) vertical drift velocity was expressed as a linear combination of the different forces acting on the plasma. Two nights, one very quiet, one with moderate magnetic activity, were used to test the technique and to provide a first study of the morphology and orders of magnitudes of ion outflow fluxes over Tromso. O(+) vertical flows were found to be downward or close to zero most of the time in the topside ionosphere; they appeared to be strongly correlated with magnetic activity during the disturbed night. H(+) topside ion fluxes were always directed upward, with velocity reaching 500-1000 m/s. A permanent outflow of H(+) ions is inferred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitner, M.; Bieniosek, F.; Kwan, J.
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration between Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL), is currently constructing a new induction linear accelerator, called Neutralized Drift Compression eXperiment NDCX-II. The accelerator design makes effective use of existing components from LLNL's decommissioned Advanced Test Accelerator (ATA), especially induction cells and Blumlein voltage sources that have been transferred to LBNL. We have developed an aggressive acceleration 'schedule' that compresses the emitted ion pulse from 500 ns to 1 ns in just 15 meters. In the nominal design concept, 30more » nC of Li{sup +} are accelerated to 3.5 MeV and allowed to drift-compress to a peak current of about 30 A. That beam will be utilized for warm dense matter experiments investigating the interaction of ion beams with matter at high temperature and pressure. Construction of the accelerator will be complete within a period of approximately two and a half years and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers.« less
Irradiation of Materials using Short, Intense Ion Beams
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.
2016-10-01
We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).
Study and optimization of key parameters of a laser ablation ion mobility spectrometer
NASA Astrophysics Data System (ADS)
Ni, Kai; Li, Jianan; Tang, Binchao; Shi, Yuan; Yu, Quan; Qian, Xiang; Wang, Xiaohao
2016-11-01
Ion Mobility Spectrometry (IMS), having an advantage in real-time and on-line detection, is an atmospheric pressure detecting technique. LA-IMS (Laser Ablation Ion Mobility Spectrometry) uses Nd-YAG laser as ionization source, whose energy is high enough to ionize metal. In this work, we tested the signal in different electric field intensity by a home-made ion mobility spectrometer, using silicon wafers the sample. The transportation of metal ions was match with the formula: Td = d/K • 1/E, when the electric field intensity is greater than 350v/cm. The relationship between signal intensity and collection angle (the angle between drift tube and the surface of the sample) was studied. With the increasing of the collection angle, signal intensity had a significant increase; while the variation of incident angle of the laser had no significant influence. The signal intensity had a 140% increase when the collection angle varied from 0 to 45 degree, while the angle between the drift tube and incident laser beam keeping the same as 90 degree. The position of ion gate in LA-IMS(Laser Ablation Ion Mobility Spectrometry) is different from the traditional ones for the kinetic energy of the ions is too big, if the distance between ion gate and sampling points less than 2.5cm the ion gate will not work, the ions could go through ion gate when it closed. The SNR had been improved by define the signal when the ion gate is closed as background signal, the signal noise including shock wave and electrical field perturbation produced during the interaction between laser beam and samples is eliminated when the signal that the ion gate opened minus the background signal.
Hydrodynamic description of an unmagnetized plasma with multiple ion species. I. General formulation
Simakov, Andrei Nikolaevich; Molvig, Kim
2016-03-17
A generalization of the Braginskii ion fluid description [S. I. Braginskii, Sov. Phys. JETP 6, 358 (1958)] to the case of an unmagnetized collisional plasma with multiple ion species is presented. An asymptotic expansion in the ion Knudsen number is used to derive the individual ion species continuity, as well as the total ion mass density, momentum, and energy evolution equations accurate through the second order. Expressions for the individual ion species drift velocities with respect to the center of mass reference frame, as well as for the total ion heat flux and viscosity, which are required to close themore » fluid equations, are evaluated in terms of the first-order corrections to the lowest order Maxwellian ion velocity distribution functions. A variational formulation for evaluating such corrections and its relation to the plasma entropy are presented. Employing trial functions for the corrections, written in terms of expansions in generalized Laguerre polynomials, and maximizing the resulting functionals produces two systems of linear equations (for “vector” and “tensor” portions of the corrections) for the expansion coefficients. A general matrix formulation of the linear systems as well as expressions for the resulting transport fluxes are presented in forms convenient for numerical implementation. The general formulation is employed in the companion paper [A. N. Simakov and K. Molvig, Hydrodynamic description of an unmagnetized plasma with multiple ion species. II. Two and three ion species plasmas, submitted to Phys. Plasmas (2015)] to evaluate the individual ion drift velocities and the total ion heat flux and viscosity for specific cases of two and three ion species plasmas.« less
NASA Technical Reports Server (NTRS)
Barghouthi, I. A.; Barakat, A. R.; Schunk, R. W.
1994-01-01
Non-Maxwellian ion velocity distribution functions have been theoretically predicted and confirmed by observations, to occur at high latitudes. These distributions deviate from Maxwellian due to the combined effect of the E x B drift and ion-neutral collisions. At high altitude and/or for solar maximum conditions, the ion-to-neutral density ratio increases and, hence, the role of ion self-collisions becomes appreciable. A Monte Carlo simulation was used to investigate the behavior of O(+) ions that are E x B-drifting through a background of neutral O, with the effect of O(+) (Coulomb) self-collisions included. Wide ranges of the ion-to-neutral density ratio n(sub i)/n(sub n) and the electrostatic field E were considered in order to investigate the change of ion behavior with solar cycle and with altitude. For low altitudes and/or solar minimum (n(sub i)/n(sub n) less than or equal to 10(exp -5)), the effect of self-collisions is negligible. For higher values of n(sub i)/n(sub n), the effect of self-collisions becomes significant and, hence, the non-Maxwellian features of the O(+) distribution are reduced. The Monte Carlo results were compared to those that used simplified collision models in order to assess their validity. In general, the simple collision models tend to be more accurate for low E and for high n(sub i)/n(sub n).
Time-of-flight mass spectrometry: Introduction to the basics.
Boesl, Ulrich
2017-01-01
The intention of this tutorial is to introduce into the basic concepts of time-of-flight mass spectrometry, beginning with the most simple single-stage ion source with linear field-free drift region and continuing with two-stage ion sources combined with field-free drift regions and ion reflectors-the so-called reflectrons. Basic formulas are presented and discussed with the focus on understanding the physical relations of geometric and electric parameters, initial distribution of ionic parameters, ion flight times, and ion flight time incertitude. This tutorial is aimed to help the applicant to identify sources of flight time broadening which limit good mass resolution and sources of ion losses which limit sensitivity; it is aimed to stimulate creativity for new experimental approaches by discussing a choice of instrumental options and to encourage those who toy with the idea to build an own time-of-flight mass spectrometer. Large parts of mathematics are shifted into a separate chapter in order not to overburden the text with too many mathematical deviations. Rather, thumb-rule formulas are supplied for first estimations of geometry and potentials when designing a home-built instrument, planning experiments, or searching for sources of flight time broadening. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:86-109, 2017. © 2016 Wiley Periodicals, Inc.
Electron/ion whistler instabilities and magnetic noise bursts
NASA Technical Reports Server (NTRS)
Akimoto, K.; Gary, S. Peter; Omidi, N.
1987-01-01
Two whistler instabilities are investigated by means of the linear Vlasov dispersion equation. They are called the electron/ion parallel and oblique whistler instabilities, and are driven by electron/ion relative drifts along the magnetic field. It is demonstrated that the enhanced fluctuations from these instabilities can explain several properties of magnetic noise bursts in and near the plasma sheet in the presence of ion beams and/or field-aligned currents. At sufficiently high plasma beta, these instabilities may affect the current system in the magnetotail.
NASA Astrophysics Data System (ADS)
Singh, Sukhmander
2018-05-01
In the present paper we derive the plasma dispersion equation under the effect of ionization rate in a dust plasma to investigate the electrostatic ion cyclotron instability, where dust charge fluctuation is absent. It has one of the lowest threshold drift velocities among all the current-driven instabilities in isothermal plasma. The Electrostatic ion cyclotron instability in a dusty plasma containing electrons, light ions, and massive negatively charged dust grains which can be investigated both experimentally and theoretically.
Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System
NASA Technical Reports Server (NTRS)
Herrero, Federico; Jones, Hollis; Finne, Theodore; Nicholas, Andrew
2012-01-01
A document describes a suite that provides four simultaneous ion and neutral-atom measurements as a function of altitude, with variable sensitivity for neutral atmospheric species. The variable sensitivity makes it possible to extend the measurements over the altitude range of 100 to more than 700 km. The four instruments in the suite are (1) a neutral wind-temperature spectrometer (WTS), (2) an ion-drift ion-temperature spectrometer (IDTS), (3) a neutral mass spectrometer (NMS), and (4) an ion mass spectrometer (IMS).
Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury
NASA Astrophysics Data System (ADS)
Aizawa, Sae; Delcourt, Dominique; Terada, Naoki
2018-01-01
We investigate the transport of planetary ions in the magnetospheric flanks of Mercury. In situ measurements from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft show evidences of Kelvin-Helmholtz instability development in this region of space, due to the velocity shear between the downtail streaming flow of solar wind originating protons in the magnetosheath and the magnetospheric populations. Ions that originate from the planet exosphere and that gain access to this region of space may be transported across the magnetopause along meandering orbits. We examine this transport using single-particle trajectory calculations in model Magnetohydrodynamics simulations of the Kelvin-Helmholtz instability. We show that heavy ions of planetary origin such as Na+ may experience prominent nonadiabatic energization as they
Analytical and numerical treatment of drift-tearing modes in plasma slab
NASA Astrophysics Data System (ADS)
Mirnov, V. V.; Hegna, C. C.; Sovinec, C. R.; Howell, E. C.
2016-10-01
Two-fluid corrections to linear tearing modes includes 1) diamagnetic drifts that reduce the growth rate and 2) electron and ion decoupling on short scales that can lead to fast reconnection. We have recently developed an analytical model that includes effects 1) and 2) and important contribution from finite electron parallel thermal conduction. Both the tendencies 1) and 2) are confirmed by an approximate analytic dispersion relation that is derived using a perturbative approach of small ion-sound gyroradius ρs. This approach is only valid at the beginning of the transition from the collisional to semi-collisional regimes. Further analytical and numerical work is performed to cover the full interval of ρs connecting these two limiting cases. Growth rates are computed from analytic theory with a shooting method. They match the resistive MHD regime with the dispersion relations known at asymptotically large ion-sound gyroradius. A comparison between this analytical treatment and linear numerical simulations using the NIMROD code with cold ions and hot electrons in plasma slab is reported. The material is based on work supported by the U.S. DOE and NSF.
Campuzano, Iain; Bush, Matthew F; Robinson, Carol V; Beaumont, Claire; Richardson, Keith; Kim, Hyungjun; Kim, Hugh I
2012-01-17
We present the use of drug-like molecules as a traveling wave (T-wave) ion mobility (IM) calibration sample set, covering the m/z range of 122.1-609.3, the nitrogen collision cross-section (Ω(N(2))) range of 124.5-254.3 Å(2) and the helium collision cross-section (Ω(He)) range of 63.0-178.8 Å(2). Absolute Ω(N(2)) and Ω(He) values for the drug-like calibrants and two diastereomers were measured using a drift-tube instrument with radio frequency (RF) ion confinement. T-wave drift-times for the protonated diastereomers betamethasone and dexamethasone are reproducibly different. Calibration of these drift-times yields T-wave Ω(N(2)) values of 189.4 and 190.4 Å(2), respectively. These results demonstrate the ability of T-wave IM spectrometry to differentiate diastereomers differing in Ω(N(2)) value by only 1 Å(2), even though the resolution of these IM experiments were ∼40 (Ω/ΔΩ). Demonstrated through density functional theory optimized geometries and ionic electrostatic surface potential analysis, the small but measurable mobility difference between the two diastereomers is mainly due to short-range van der Waals interactions with the neutral buffer gas and not long-range charge-induced dipole interactions. The experimental RF-confining drift-tube and T-wave Ω(N(2)) values were also evaluated using a nitrogen based trajectory method, optimized for T-wave operating temperature and pressures, incorporating additional scaling factors to the Lennard-Jones potentials. Experimental Ω(He) values were also compared to the original and optimized helium based trajectory methods.
Ion mobility spectrometer with virtual aperture grid
Pfeifer, Kent B.; Rumpf, Arthur N.
2010-11-23
An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.
Stormtime ring current and radiation belt ion transport: Simulations and interpretations
NASA Technical Reports Server (NTRS)
Lyons, Larry R.; Gorney, David J.; Chen, Margaret W.; Schulz, Michael
1995-01-01
We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in a given model storm (e.g., reduction of all the impulse amplitudes by half reduces the discrepancy factor by at least its square root) and also when we average our results over an ensemble of 20 model storms (agreement is within a factor of 1.2 without impulse-amplitude reduction). We use our simulation results also to map phase-space densities f in accordance with Liouville's theorem. We find that the stormtime transport of approximately greater than 145-keV ions produces little change in f-bar the drift-averaged phase-space density on any drift shell of interest. However, the stormtime transport produces a major enhancement from the pre-storm phase-space density at energies approximately 30-145 keV, which are representative of the stormtime ring current.
Malik, Hitendra K; Singh, Sukhmander
2011-03-01
Rayleigh instability is investigated in a Hall thruster under the effect of finite temperature and density gradient of the plasma species. The instability occurs only when the frequency of the oscillations ω falls within a frequency band described by k{y}u₀+1/k_{y}∂²u_{0}/∂x²+Ω/k_{y}n_{0}∂n₀/∂x≪ω
Anomalous fluxes in the plateau regime for a weakly turbulent, magnetically confined plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1990-09-01
The anomalous particle and heat fluxes, together with the parallel electric current, are determined for a confined plasma in the plateau regime in the presence of weak electrostatic drift-wave turbulence. Proper account is taken of nonstationarity and of the finite ion Larmor radius (FLR). The quasineutrality of the drift-wave fluctuations imposes a consistency condition, by which the evaluation of the anomalous fluxes is closely related to the drift-wave dispersion equation. On the other hand, these fluxes are related to the thermodynamic forces via the poloidal fluxes. For the weak turbulence approximation considered here, a unified formulation of the anomalous transportmore » problem has been obtained, including all aspects of neoclassical theory. The complete set of transport coefficients is calculated and various relations between them are exhibited. It clearly appears, for instance, that the anomalous ion heat flux is a pure FLR effect that vanishes as the Larmor radius goes to zero. The Onsager symmetry is broken for anomalous transport. The Appendix is devoted to a general discussion of the concept of heat flux in turbulent plasmas.« less
NASA Astrophysics Data System (ADS)
Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.
2018-04-01
We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.
OBSERVATIONAL DETECTION OF DRIFT VELOCITY BETWEEN IONIZED AND NEUTRAL SPECIES IN SOLAR PROMINENCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khomenko, Elena; Collados, Manuel; Díaz, Antonio J., E-mail: khomenko@iac.es, E-mail: mcv@iac.es, E-mail: aj.diaz@uib.es
2016-06-01
We report the detection of differences in the ion and neutral velocities in prominences using high-resolution spectral data obtained in 2012 September at the German Vacuum Tower Telescope (Observatorio del Teide, Tenerife). A time series of scans of a small portion of a solar prominence was obtained simultaneously with high cadence using the lines of two elements with different ionization states, namely, Ca ii 8542 Å and He i 10830 Å. The displacements, widths, and amplitudes of both lines were carefully compared to extract dynamical information about the plasma. Many dynamical features are detected, such as counterstreaming flows, jets, andmore » propagating waves. In all of the cases, we find a very strong correlation between the parameters extracted from the lines of both elements, confirming that both lines trace the same plasma. Nevertheless, we also find short-lived transients where this correlation is lost. These transients are associated with ion-neutral drift velocities of the order of several hundred m s{sup −1}. The patches of non-zero drift velocity show coherence in time–distance diagrams.« less
Miniaturized Ion Mobility Spectrometer
NASA Technical Reports Server (NTRS)
Stimac, Robert M. (Inventor); Kaye, William J (Inventor)
2017-01-01
By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer (IMS) achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250 degrees Centigrade, and is uniquely sensitive, particularly to explosive chemicals.
Miniaturized Ion Mobility Spectrometer
NASA Technical Reports Server (NTRS)
Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)
2015-01-01
By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.
Turbulent cascade in a two-ion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Xin; Faculty of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000; Liu, San-Qiu, E-mail: sqlgroup@ncu.edu.cn
2014-11-15
It is shown that small but finite-amplitude drift wave turbulence in a two-ion-species plasma can be modeled by a Hasegawa-Mima equation. The mode cascade process and resulting turbulent spectrum are investigated. The spectrum is found to be similar to that of a two-component plasma, but the space and time scales of the turbulent cascade process can be quite different since they are rescaled by the presence of the second ion species.
Ion nose spectral structures observed by the Van Allen Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.
Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less
Ion nose spectral structures observed by the Van Allen Probes
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...
2016-11-22
Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less
Ion nose spectral structures observed by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.
2016-12-01
We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+ and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses, and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted by using a steady state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge-exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.
Ghosh, Tanushree; Rieger, Jana
2017-01-01
Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN) was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h) for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode. PMID:29099804
Design for gas chromatography-corona discharge-ion mobility spectrometry.
Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein
2012-11-20
A corona discharge ionization-ion mobility spectrometry (CD-IMS) with a novel sample inlet system was designed and constructed as a detector for capillary gas chromatography. In this design, a hollow needle was used instead of a solid needle which is commonly used for corona discharge creation, helping us to have direct axial interfacing for GC-IMS. The capillary column was passed through the needle, resulting in a reaction of effluents with reactant ions on the upstream side of the corona discharge ionization source. Using this sample introduction design, higher ionization efficiency was achieved relative to the entrance direction through the side of the drift tube. In addition, the volume of the ionization region was reduced to minimize the resistance time of compounds in the ionization source, increasing chromatographic resolution of the instrument. The effects of various parameters such as drift gas flow, makeup gas flow, and column tip position inside the needle were investigated. The designed instrument was exhaustively validated in terms of sensitivity, resolution, and reproducibility by analyzing the standard solutions of methyl isobutyl ketone, heptanone, nonanone, and acetophenone as the test compounds. The results obtained by CD-IMS detector were compared with those of the flame ionization detector, which revealed the capability of the proposed GC-IMS for two-dimensional separation (based on the retention time and drift time information) and identification of an analyte in complex matrixes.
Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion
NASA Astrophysics Data System (ADS)
Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.
2003-10-01
The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.
Transitional behavior of different energy protons based on Van Allen Probes observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Chao; Bortnik, Jacob; Chen, Lunjin
Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. In this paper, we statistically analyze ~1 eV to 50 keV hydrogen (H +) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H + dynamicsmore » under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H + behaviors within different energy ranges, which is consistent with previous theory predictions. Finally, using simple electric and magnetic field models in UBK coordinates, we have further constrained the source regions of different energy ions and their drift directions.« less
Transitional behavior of different energy protons based on Van Allen Probes observations
Yue, Chao; Bortnik, Jacob; Chen, Lunjin; ...
2016-12-09
Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. In this paper, we statistically analyze ~1 eV to 50 keV hydrogen (H +) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H + dynamicsmore » under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H + behaviors within different energy ranges, which is consistent with previous theory predictions. Finally, using simple electric and magnetic field models in UBK coordinates, we have further constrained the source regions of different energy ions and their drift directions.« less
On the stability of the internal kink mode in the banana regime
NASA Astrophysics Data System (ADS)
Fogaccia, G.; Romanelli, F.
1995-01-01
The stability of the internal kink mode is investigated taking into account the kinetic response associated to the trapped thermal ions. Ion-ion collisions and diamagnetic effects in the layer are also considered. A significant stabilizing contribution is obtained, even at low-β values, on the mode, which might be stable, on present experiments, even though predicted unstable according to the Bussac criterion [Bussac et al., Phys. Rev. Lett. 35, 1638 (1975)]. In addition, a trapped-ion instability is found, characterized by mode frequency of the order of the trapped-ion bounce-averaged magnetic drift frequency.
Bohnhorst, Alexander; Kirk, Ansgar T; Berger, Marc; Zimmermann, Stefan
2018-01-16
Ion mobility spectrometry is a powerful and low-cost technique for the identification of chemical warfare agents, toxic chemicals, or explosives in air. Drift tube ion mobility spectrometers (DT-IMS) separate ions by the absolute value of their low field ion mobility, while field asymmetric ion mobility spectrometers (FAIMS) separate them by the change of their ion mobility at high fields. However, using one of these devices alone, some common and harmless substances show the same response as the hazardous target substances. In order to increase the selectivity, orthogonal data are required. Thus, in this work, we present for the first time an ambient pressure ion mobility spectrometer which is able to separate ions both by their differential and low field mobility, providing additional information for selectivity enhancement. This novel field asymmetric time of flight ion mobility spectrometer (FAT-IMS) allows high repetition rates and reaches limits of detection in the low ppb range common for DT-IMS. The device consists of a compact 44 mm drift tube with a tritium ionization source and a resolving power of 70. An increased separation of four substances with similar low field ion mobility is shown: phosgene (K 0 = 2.33 cm 2 /(V s)), 1,1,2-trichlorethane (K 0 = 2.31 cm 2 /(V s)), chlorine (K 0 = 2.24 cm 2 /(V s)), and nitrogen dioxide (K 0 = 2.25 cm 2 /(V s)). Furthermore, the behavior and limits of detection for acetonitrile, dimethyl methylphosphonate, diisopropyl methyl phosphonate in positive polarity and carbon dioxide, sulfur dioxide, hydrochloric acid, cyanogen chloride, and hydrogen cyanide in negative polarity are investigated.
NASA Astrophysics Data System (ADS)
Kim, V. P.
2017-04-01
The long-term experience in controlling the electric field distribution in the discharge gaps of plasma accelerators and thrusters with closed electron drift and the key ideas determining the concepts of these devices and tendencies of their development are analyzed. It is shown that an electrostatic mechanism of ion acceleration in plasma by an uncompensated space charge of the cloud of magnetized electrons "kept" to the magnetic field takes place in the acceleration zones and that the electric field distribution can be controlled by varying the magnetic field in the discharge gap. The role played by the space charge makes the mechanism of ion acceleration in this type of thrusters is fundamentally different from the acceleration mechanism operating in purely electrostatic thrusters.
Hydrodynamic Model for Density Gradients Instability in Hall Plasmas Thrusters
NASA Astrophysics Data System (ADS)
Singh, Sukhmander
2017-10-01
There is an increasing interest for a correct understanding of purely growing electromagnetic and electrostatic instabilities driven by a plasma gradient in a Hall thruster devices. In Hall thrusters, which are typically operated with xenon, the thrust is provided by the acceleration of ions in the plasma generated in a discharge chamber. The goal of this paper is to study the instabilities due to gradients of plasma density and conditions for the growth rate and real part of the frequency for Hall thruster plasmas. Inhomogeneous plasmas prone a wide class of eigen modes induced by inhomogeneities of plasma density and called drift waves and instabilities. The growth rate of the instability has a dependences on the magnetic field, plasma density, ion temperature and wave numbers and initial drift velocities of the plasma species.
Rotation and kinetic modifications of the tokamak ideal-wall pressure limit.
Menard, J E; Wang, Z; Liu, Y; Bell, R E; Kaye, S M; Park, J-K; Tritz, K
2014-12-19
The impact of toroidal rotation, energetic ions, and drift-kinetic effects on the tokamak ideal wall mode stability limit is considered theoretically and compared to experiment for the first time. It is shown that high toroidal rotation can be an important destabilizing mechanism primarily through the angular velocity shear; non-Maxwellian fast ions can also be destabilizing, and drift-kinetic damping can potentially offset these destabilization mechanisms. These results are obtained using the unique parameter regime accessible in the spherical torus NSTX of high toroidal rotation speed relative to the thermal and Alfvén speeds and high kinetic pressure relative to the magnetic pressure. Inclusion of rotation and kinetic effects significantly improves agreement between measured and predicted ideal stability characteristics and may provide new insight into tearing mode triggering.
Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source
Okamura, M.; Sekine, M.; Ikeda, S.; ...
2015-03-13
To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Ja Hun; Varga, Tamas; Peden, Charles HF
2014-05-05
Cu-SSZ-13 has been shown to possess high activity and superior N2 formation selectivity in the selective catalytic reduction of NOx under oxygen rich conditions. Here, a combination of synchrotron-based (XRD and XANES) and vibrational (DRIFTS) spectroscopy tools have been used to follow the changes in the location and coordination environment of copper ions in a Cu-SSZ-13 zeolite during calcinations, reduction with CO, and adsorption of CO and H2O. XANES spectra collected during these procedures provides critical information not only on the variation in the oxidation state of the copper species in the zeolite structure, but also on the changes inmore » the coordination environment around these ions as they interact with the framework, and with different adsorbates (H2O and CO). Time-resolved XRD data indicate the movement of copper ions and the consequent variation of the unit cell parameters during dehydration. DRIFT spectra provide information about the adsorbed species present in the zeolite, as well as the oxidation states of and coordination environment around the copper ions. A careful analysis of the asymmetric T-O-T vibrations of the CHA framework perturbed by copper ions in different coordination environments proved to be especially informative. The results of this study will aid the identification of the location, coordination and oxidation states of copper ions obtained during in operando catalytic studies. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Part of this work (sample preparation) was performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle. All of the spectroscopy work reported here was carried out at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). NSLS is a national scientific user facility supported by the US DOE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowell, Kevin L.; Slysz, Gordon W.; Baker, Erin Shammel
2013-09-05
We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time, and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension.
Experiments on Plasma Turbulence Created by Supersonic Plasma Flows with Shear
2014-04-01
for producing a plasma column (in black). An insulated wire traverses the plasma and car - ries a pulsed current in x-direction. The unmagnetized ions... electric field which together with the B field around the wire causes an electron ExB drift. The ions are unmagnetized. A radial space charge electric field...by the self-consistent currents passing through the grid. These currents, consisting of electron and ion flows, are controlled by the electrical
Fink, Joel H.
1981-08-18
Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forme, F.R.E.; Fontaine, D.; Wahlund, J.E.
UHF and VHF data for the EISCAT incoherent scatter radar facility in northern Scandinavia is presented. Electron and ion temperatures, electron density, and ion drift velocity were measured from heights of 280 to 1500 km. Enhanced ion acoustic fluctuations are more observable with VHF than UHF radar due to wavelength effects. The fluctuations are usually associated with a large flux of precipitating electrons with energies from 100 ev to 10 kev. The spatial extent of the turbulent regions are determined. 23 refs., 6 figs.
NASA Astrophysics Data System (ADS)
Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.
2014-10-01
A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.
Kinetic feature of dipolarization fronts produced by interchange instability in the magnetotail
NASA Astrophysics Data System (ADS)
Lyu, Haoyu
2017-04-01
A two-dimensional extended MHD simulation is performed to study the kinetic feature of depolarization fronts (DF) in the scale of the ion inertial length / ion Larmor radius. The interchange instability, arising due to the force imbalance between the tailward gradient of thermal pressure and Earthward magnetic curvature force, self-consistently produces the DF in the near-Earth region. Numerical investigations indicate that the DF is a tangential discontinuity, which means that the normal plasma velocity across the DF should be zero in the reference system that is static with the DF structure. The electric system, including electric field and current, is determined by Hall effect arising in the scale of ion inertial length. Hall effect not only mainly contributes on the electric field normal to the tangent plane of the DF, increases the current along the tangent plane of the DF, but also makes the DF structure asymmetric. The drifting motion of the large-scale DF structure is determined by the FLR effect arising in the scale of ion Larmor radius. The ion magnetization velocity induced by the FLR effect is towards to duskward at the subsolar point of the DF, but the y component of velocity in the region after the DF, which dominantly results in the drifting motion of the whole mushroom structure towards the dawn.
Studies of waves and instabilities using increased beta, warm ion plasmas in LAPD
NASA Astrophysics Data System (ADS)
Carter, Troy; Dorfman, Seth; Gekelman, Walter; Vincena, Steve; van Compernolle, Bart; Tripathi, Shreekrishna; Pribyl, Pat; Morales, George
2015-11-01
A new plasma source based on a Lanthanum Hexaboride (LAB6) emissive cathode has been developed and installed on the LArge Plasma Device (LAPD) at UCLA. The new source provides a much higher discharge current density (compared to the standard LAPD Barium Oxide source) resulting in a factor of ~ 50 increase in plasma density and a factor of ~ 2 - 3 increase in electron temperature. Due to the increased density the ion-electron energy exchange time is shorter in the new plasma, resulting in warm ions (measured spectroscopically to be ~ 5 - 6 eV, up from <~ 1 eV in the standard source plasma). This increased pressure combined with lowered magnetic field provides access to magnetized plasmas with β up to order unity. Topics under investigation include the physics of Alfvén waves in increased β plasmas (dispersion and kinetic damping on ions), electromagnetic effects and magnetic transport in drift-Alfvén wave turbulence, and the excitation of ion-temperature-anisotropy driven modes such as the mirror and firehose instabilities. The capabilities of the new source will be discussed along with initial experimental resuls on electromagnetic drift-Alfvén wave turbulence and Alfvén wave propagation with increased plasma β. Supported by NSF and DOE.
Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.
Kondo, K; Kanesue, T; Tamura, J; Okamura, M
2010-02-01
Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, B.A.
1977-07-01
Cooling towers of power plants are used to dissipate waste heat into the atmosphere. If saline water is used for cooling, a saline aerosol known as drift is released into the atmosphere. Drift effects on vegetation are not well known. To simulate drift for a field study, cooling tower basin water was sprayed thirty separate times during a 46-day period in 1975 on Virginia pine (Pinus virginiana), flowering dogwood (Cornus florida), tulip tree (Liriodendron tulipfera), and California privet (Ligustrum ovalifolium), Norway spruce (Picea abies), and white ash (Fraxinus americana) were added in 1976 and all trees were sprayed 43 timesmore » during a 59-day period. Only dogwood leaves showed significant injury. Absence of injury on other species was probably due to the ability of their leaves to exclude, or reduce absorption of, toxic concentrations of the ions supplied.« less
Verification of continuum drift kinetic equation solvers in NIMROD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Held, E. D.; Ji, J.-Y.; Kruger, S. E.
Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speedmore » coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.« less
DIN 1.7035 Steel Modification with High Intensity Nitrogen Ion Implantation
NASA Astrophysics Data System (ADS)
Ryabchikov, A. I.; Sivin, D. O.; Anan'in, P. S.; Ivanova, A. I.; Uglov, V. V.; Korneva, O. S.
2018-06-01
The paper presents research results on the formation of deep ion-modified layers of the grade DIN 1.7035 alloy steel due to a high intensity, repetitively-pulsed nitrogen ion beams with the ion current density of up to 0.5 A/cm2. The formation of a low-energy, high intensity nitrogen ion beam is based on a plasma immersion ion extraction followed by the ballistic focusing in the equipotential drift region. The nitrogen ion implantation in steel specimens is performed at a 1.2 keV energy and 450, 500, 580 and 650°C temperatures during 60 minutes. The morphology, elementary composition and mechanical properties are investigated in deep layers of steel specimens alloyed with nitrogen ions.
SOL effects on the pedestal structure in DIII-D discharges
Sontag, Aaron C.; Chen, Xi; Canik, John; ...
2017-05-24
SOLPS analysis explains the differences in pedestal structure associated with different ion ∇B drift directions in DIII-D. Core transport models predict that fusion power scales roughly as the square of the pressure at the top of the pedestal, so understanding the effects that determine pedestal structure in steady-state operational scenarios is important to projecting scenarios developed in DIII-D to ITER and other devices. Both experiments and modeling indicate that scrape off layer (SOL) conditions are important in optimizing the pedestal structure for high-beta steady-state scenarios. The SOLPS code is used to provide interpretive analysis of the pedestal and SOL tomore » examine the nature of flows and fueling on the pedestal structure including the effects of drifts in the fluid model. This analysis shows that flows driven by the ion ∇B drift are outward when this drift is toward the x-point in a single-null divertor configuration (favorable ∇B direction for reduced H-mode power threshold), and inward when the drift is away from the x-point (unfavorable ∇B direction). It is hypothesized that these flows decrease the density gradient in the pedestal in the favorable direction, thereby stabilizing the kinetic ballooning mode (KBM) and increasing the pedestal width. Comparisons of pedestal structures in similarly shaped DIII-D steady-state plasmas confirm this change, showing increased density pedestal width and lower peak density and lower separatrix density with the favorable drift direction. The pedestal temperature is higher in the lower density case, resulting in an increased pedestal pressure, which indicates that the increased particle flux does not significantly degrade energy confinement. Modeling of cases with constant ∇B drift direction but changing between the more open lower divertor and more closed upper divertor show that there is increased fueling inside the pedestal with the more open geometry. As a result, the pedestal fueling rate for both attached and detached cases is always lower with more closed divertor geometry than in any cases with more open geometry.« less
SOL effects on the pedestal structure in DIII-D discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontag, Aaron C.; Chen, Xi; Canik, John
SOLPS analysis explains the differences in pedestal structure associated with different ion ∇B drift directions in DIII-D. Core transport models predict that fusion power scales roughly as the square of the pressure at the top of the pedestal, so understanding the effects that determine pedestal structure in steady-state operational scenarios is important to projecting scenarios developed in DIII-D to ITER and other devices. Both experiments and modeling indicate that scrape off layer (SOL) conditions are important in optimizing the pedestal structure for high-beta steady-state scenarios. The SOLPS code is used to provide interpretive analysis of the pedestal and SOL tomore » examine the nature of flows and fueling on the pedestal structure including the effects of drifts in the fluid model. This analysis shows that flows driven by the ion ∇B drift are outward when this drift is toward the x-point in a single-null divertor configuration (favorable ∇B direction for reduced H-mode power threshold), and inward when the drift is away from the x-point (unfavorable ∇B direction). It is hypothesized that these flows decrease the density gradient in the pedestal in the favorable direction, thereby stabilizing the kinetic ballooning mode (KBM) and increasing the pedestal width. Comparisons of pedestal structures in similarly shaped DIII-D steady-state plasmas confirm this change, showing increased density pedestal width and lower peak density and lower separatrix density with the favorable drift direction. The pedestal temperature is higher in the lower density case, resulting in an increased pedestal pressure, which indicates that the increased particle flux does not significantly degrade energy confinement. Modeling of cases with constant ∇B drift direction but changing between the more open lower divertor and more closed upper divertor show that there is increased fueling inside the pedestal with the more open geometry. As a result, the pedestal fueling rate for both attached and detached cases is always lower with more closed divertor geometry than in any cases with more open geometry.« less
NASA Astrophysics Data System (ADS)
Wieland, Volkmar; Pohl, Martin; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi
2016-03-01
For parameters that are applicable to the conditions at young supernova remnants, we present results of two-dimensional, three-vector (2D3V) particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at a 45^\\circ angle to the simulation plane to approximate three-dimensional (3D) physics. We developed an improved clean setup that uses the collision of two plasma slabs with different densities and velocities, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations due to shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales produced by the gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but is commensurate with {\\boldsymbol{E}}× {\\boldsymbol{B}} drift. We observe a stable supra-thermal tail in the ion spectra, but no electron acceleration because the amplitude of the Buneman modes in the shock foot is insufficient for trapping relativistic electrons. We see no evidence of turbulent reconnection. A comparison with other two-dimensional (2D) simulation results suggests that the plasma beta and the ion-to-electron mass ratio are not decisive for efficient electron acceleration, but the pre-acceleration efficacy might be reduced with respect to the 2D results once 3D effects are fully accounted for. Other microphysical factors may also play a part in limiting the amplitude of the Buneman waves or preventing the return of electrons to the foot region.
First-order finite-Larmor-radius fluid modeling of tearing and relaxation in a plasma pincha)
NASA Astrophysics Data System (ADS)
King, J. R.; Sovinec, C. R.; Mirnov, V. V.
2012-05-01
Drift and Hall effects on magnetic tearing, island evolution, and relaxation in pinch configurations are investigated using a non-reduced first-order finite-Larmor-radius (FLR) fluid model with the nonideal magnetohydrodynamics (MHD) with rotation, open discussion (NIMROD) code [C.R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)]. An unexpected result with a uniform pressure profile is a drift effect that reduces the growth rate when the ion sound gyroradius (ρs) is smaller than the tearing-layer width. This drift is present only with warm-ion FLR modeling, and analytics show that it arises from ∇B and poloidal curvature represented in the Braginskii gyroviscous stress. Nonlinear single-helicity computations with experimentally relevant ρs values show that the warm-ion gyroviscous effects reduce saturated-island widths. Computations with multiple nonlinearly interacting tearing fluctuations find that m = 1 core-resonant-fluctuation amplitudes are reduced by a factor of two relative to single-fluid modeling by the warm-ion effects. These reduced core-resonant-fluctuation amplitudes compare favorably to edge coil measurements in the Madison Symmetric Torus (MST) reversed-field pinch [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. The computations demonstrate that fluctuations induce both MHD- and Hall-dynamo emfs during relaxation events. The presence of a Hall-dynamo emf implies a fluctuation-induced Maxwell stress, and the simulation results show net transport of parallel momentum. The computed magnitude of force densities from the Maxwell and competing Reynolds stresses, and changes in the parallel flow profile, are qualitatively and semi-quantitatively similar to measurements during relaxation in MST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mestrovic, Ante; Chitsazzadeh, Shadi; Wells, Derek
2016-08-15
Purpose: To develop a highly sensitive patient specific QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments. Methods: A platform was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside the ArcCheck. The Quasar phantom controller uses a patient-specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. With this system the ion chamber is used to QA the correct phase of the gated delivery and the ArcCheck diodes are used to QA the overall dose distribution. This novelmore » approach requires a single plan delivery for a complete QA of a gated plan. The sensitivity of the gating QA procedure was investigated with respect to the following parameters: PTV size, exhale duration, baseline drift, gating window size. Results: The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse. Conclusion: This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns is currently undergoing to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.« less
NASA Astrophysics Data System (ADS)
Ferdousi, B.; Nishimura, Y.; Maruyama, N.; Lyons, L. R.
2017-12-01
Subauroral Polarization Streams (SAPS), which can be identified as intense northward electric field driving sunward plasma convection, are mostly observed at the dusk-premidnight subauroral region. Their existence is associated with the closure of region 2 field-aligned current (R2 FAC) through the low conductivity region equatorward of the electron equatorward boundary. Observations suggest that SAPS flow speed increases with geomagnetic activity. So far, most studies have focused on the magnetosphere-ionosphere (M-I) coupling process of SAPS. However, recent observation of subauroral neutral wind suggest that there is a strong interaction between SAPS and the thermosphere (T). In this study, we focus on the effect of thermospheric wind on the ionosphere plasma drift associated with SAPS during the March 17, 2013 "St. Patrick's day" geomagnetic storm. We use both observations and the self-consistent magnetosphere-ionosphere-thermosphere (M-I-T) numerical "RCM-CTIPe" model to study such a relation. Observation results from DMSP-18 and GOCE satellites show that as the storm progresses, sunward ion flows intensify and move equatorward, and are accompanied by strengthening of subauroral neutral winds with a 2-hour delay. Our model successfully reproduces time evolution of the sunward ion drift and neutral wind. However, the simulated ion drift spreads considerably wider in latitude than the observations. To seek for better agreement between the observation and simulation results, we adopt a conductance distribution more consistent with input from the magnetosphere based on RCM aurora precipitation. We also perform a force term analysis to investigate the rate of momentum transfer from the neutral wind to ion flow. We then compare simulation runs with and without thermosphere coupling to study the effect of the feedback from neutral winds to SAPS.
First-order finite-Larmor-radius fluid modeling of tearing and relaxation in a plasma pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. R.; Tech-X Corporation, 5621 Arapahoe Ave., Suite A Boulder, Colorado 80303; Sovinec, C. R.
Drift and Hall effects on magnetic tearing, island evolution, and relaxation in pinch configurations are investigated using a non-reduced first-order finite-Larmor-radius (FLR) fluid model with the nonideal magnetohydrodynamics (MHD) with rotation, open discussion (NIMROD) code [C.R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)]. An unexpected result with a uniform pressure profile is a drift effect that reduces the growth rate when the ion sound gyroradius ({rho}{sub s}) is smaller than the tearing-layer width. This drift is present only with warm-ion FLR modeling, and analytics show that it arises from {nabla}B and poloidal curvature represented in themore » Braginskii gyroviscous stress. Nonlinear single-helicity computations with experimentally relevant {rho}{sub s} values show that the warm-ion gyroviscous effects reduce saturated-island widths. Computations with multiple nonlinearly interacting tearing fluctuations find that m = 1 core-resonant-fluctuation amplitudes are reduced by a factor of two relative to single-fluid modeling by the warm-ion effects. These reduced core-resonant-fluctuation amplitudes compare favorably to edge coil measurements in the Madison Symmetric Torus (MST) reversed-field pinch [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. The computations demonstrate that fluctuations induce both MHD- and Hall-dynamo emfs during relaxation events. The presence of a Hall-dynamo emf implies a fluctuation-induced Maxwell stress, and the simulation results show net transport of parallel momentum. The computed magnitude of force densities from the Maxwell and competing Reynolds stresses, and changes in the parallel flow profile, are qualitatively and semi-quantitatively similar to measurements during relaxation in MST.« less
The electromagnetic interchange mode in a partially ionized collisional plasma. [spread F region
NASA Technical Reports Server (NTRS)
Hudson, M. K.; Kennel, C. F.
1974-01-01
A collisional electromagnetic dispersion relation is derived from two-fluid theory for the interchange mode coupled to the Alfven, acoustic, drift and entropy modes in a partially ionized plasma. The fundamental electromagnetic nature of the interchange model is noted; coupling to the intermediate Alfven mode is strongly stabilizing for finite k sub z. Both ion viscous and ion-neutral stabilization are included, and it was found that collisions destroy the ion finite Larmor radius cutoff at short perpendicular wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2013-03-07
LC-IMS-MS Feature Finder is a command line software application which searches for possible molecular ion signatures in multidimensional liquid chromatography, ion mobility spectrometry, and mass spectrometry data by clustering deisotoped peaks with similar monoisotopic mass values, charge states, elution times, and drift times. The software application includes an algorithm for detecting multiple conformations and co-eluting species in the ion mobility dimension. LC-IMS-MS Feature Finder is designed to create an output file with detected features that includes associated information about the detected features.
A Benign, Low Z Electron Capture Agent for Negative Ion TPCs
NASA Technical Reports Server (NTRS)
Martoff, C. J.; Dion, M. P.; Hosack, M.; Barton, D.; Black, J. K.
2008-01-01
We have identified nitromethane (CH3NO2) as an effective electron capture agent for negative ion TPCs (NITPCs). We present drift velocity and longitudinal diffusion measurements for negative ion gas mixtures using nitromethane as the capture agent. Not only is nitromethane substantially more benign than the only other identified capture agent, CS2, but its low atomic number will enable the use of the NITPC as a photoelectric X-ray polarimeter in the 1-10 keV band.
NASA Astrophysics Data System (ADS)
Erickson, M. H.; Wallace, H. W.; Jobson, B. T.
2012-02-01
A new approach was developed to measure the total abundance of long chain alkanes (C12 and above) in urban air using thermal desorption with a proton transfer reaction mass spectrometer (PTR-MS). These species are emitted in diesel exhaust and may be important precursors to secondary organic aerosol production in urban areas. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The yield of the fragment ions is a function of drift conditions. At a drift field strength of 80 Townsends, the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Higher drift field strengths yield greater normalized sensitivity implying that the proton affinity of the long chain n-alkanes is less than H2O. Analysis of diesel fuel shows the mass spectrum was dominated by alkanes (CnH2n+1), monocyclic aromatics, and an ion group with formula CnH2n-1 (m/z 97, 111, 125, 139). The PTR-MS was deployed in Sacramento, CA during the Carbonaceous Aerosols and Radiative Effects Study field experiment in June 2010. The ratio of the m/z 97 to 85 ion intensities in ambient air matched that found in diesel fuel. Total diesel exhaust alkane concentrations calculated from the measured abundance of m/z 85 ranged from the method detection limit of ~1 μg m-3 to 100 μg m-3 in several air pollution episodes. The total diesel exhaust alkane concentration determined by this method was on average a factor of 10 greater than the sum of alkylbenzenes associated with spark ignition vehicle exhaust.
Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo
2015-03-20
The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman, tabun and nitrogen mustards were higher. Some CWA simulants and organic solvents gave the ion peaks eluting at the similar positions of the CWAs, resulting in false positive alarms. Copyright © 2015 Elsevier B.V. All rights reserved.
Laser ion source with solenoid field
NASA Astrophysics Data System (ADS)
Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro
2014-11-01
Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.
Current-limited electron beam injection
NASA Technical Reports Server (NTRS)
Stenzel, R. L.
1977-01-01
The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.
NASA Astrophysics Data System (ADS)
Gan, Quan; Oberheide, Jens; Yue, Jia; Wang, Wenbin
2017-08-01
Using the thermosphere-ionosphere-mesosphere electrodynamics general circulation model simulations, we investigate the short-term ionospheric variability due to the child waves and altered tides produced by the nonlinear interaction between the 6 day wave and migrating tides. Via the Fourier spectral diagnostics and least squares fittings, the [21 h, W2] and [13 h, W1] child waves, generated by the interaction of the 6 day wave with the DW1 and SW2, respectively, are found to play the leading roles on the subdiurnal variability (e.g., ±10 m/s in the ion drift and 50% in the NmF2) in the F region vertical ion drift changes through the dynamo modulation induced by the low-latitude zonal wind and the meridional wind at higher latitudes. The relatively minor contribution of the [11 h, W3] child wave is explicit as well. Although the [29 h, W0] child wave has the largest magnitude in the E region, its effect is totally absent in the vertical ion drift due to the zonally uniform structure. But the [29 h, W0] child wave shows up in the NmF2. It is found that the NmF2 short-term variability is attributed to the wave modulations on both E region dynamo and in situ F region composition. Also, the altered migrating tides due to the interaction will not contribute to the ionospheric changes significantly.
NASA Astrophysics Data System (ADS)
Yue, Jia; Wang, Wenbin; Richmond, Arthur D.; Liu, Han-Li
2012-07-01
The Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to simulate the quasi-two-day wave (QTDW) modulation of the ionospheric dynamo and electron density. The QTDW can directly penetrate into the lower thermosphere and modulate the neutral winds at a period of two days. The QTDW modulation of the tidal amplitudes is not evident. The QTDW in zonal and meridional winds results in a quasi-two-day oscillation (QTDO) of the dynamo electric fields at southern midlatitudes, which is mapped into the conjugate northern magnetic midlatitudes. The QTDO of the electric fields in the E region is transmitted along the magnetic field lines to the F region and leads to the QTDOs of the vertical ion drift and total electron content (TEC) at low and mid latitudes. The QTDO of the vertical ion drift near the magnetic equator leads to the 2-day oscillation of the fountain effect. The QTDO of the TEC has two peaks at ±25 magnetic latitude (Mlat) and one near the dip equator. The equatorial peak is nearly out of phase with the ones at ±25 Mlat. The vertical ion drift at midlatitudes extends the QTDW response of the TEC to midlatitudes from the Equatorial Ionospheric Anomaly (EIA). Most differently from previous reports, we discover that the QTDW winds couple into the F region ionosphere through both the fountain effect and the middle latitude dynamos.
NASA Astrophysics Data System (ADS)
Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.
2018-02-01
Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.
Interchange mode excited by trapped energetic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp
2015-07-15
The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might bemore » associated with the fishbone mode in helical systems.« less
Electromagnetic nonlinear gyrokinetics with polarization drift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duthoit, F.-X.; Hahm, T. S., E-mail: tshahm@snu.ac.kr; Wang, Lu
2014-08-15
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen,more » Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.« less
Electromagnetic nonlinear gyrokinetics with polarization drift
NASA Astrophysics Data System (ADS)
Duthoit, F.-X.; Hahm, T. S.; Wang, Lu
2014-08-01
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.
Metallic ions in the equatorial ionosphere
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Goldberg, R. A.
1972-01-01
Four positive ion composition measurements of the equatorial E region made at Thumba, India, are presented. During the day, the major ions between 90 and 125 km are NO(+) and O2(+). A metallic ion layer centered at 92 km is observed, and found to contain Mg(+), Fe(+), Ca(+), K(+), Al(+), and Na(+) ions. The layer is explained in terms of a similarly shaped latitude distribution of neutral atoms which are photoionized and charge-exchanged with NO(+) and O2(+). Three body reactions form molecular metallic ions which are rapidly lost by dissociative ion-electron recombination. Nighttime observations show downward drifting of the metallic ion layer caused by equatorial dynamo effects. These ions react and form neutral metals which exchange charges with NO(+) and O2(+) to produce an observed depletion of those ions within the metallic ion region.
Radial plasma drifts deduced from VLF whistler mode signals - A modelling study
NASA Astrophysics Data System (ADS)
Poulter, E. M.; Andrews, M. K.; Bailey, G. J.; Moffett, R. J.
1984-05-01
VLF whistler mode signals have previously been used to infer radial plasma drifts in the equatorial plane of the plasmasphere and the field-aligned ionosphere-protonosphere coupling fluxes. Physical models of the plasmasphere consisting of O(+) adn H(+) ions along dipole magnetic field lines, and including radial E x B drifts, are applied to a mid-latitude flux tube appropriate to whistler mode signals received at Wellington, New Zealand, from the fixed frequency VLF transmitter NLK (18.6 kHz) in Seattle, U.S.A. These models are first shown to provide a good representation of the recorded Doppler shift and group delay data. They are then used to simulate the process of deducing the drifts and fluxes from the recorded data. Provided the initial whistler mode duct latitude and the ionospheric contributions are known, the drifts at the equatorial plane can be estimated to about + or - 20 m/s (approximately 10-15 percent), and the two hemisphere ionosphere-protonosphere coupling fluxes to about + or - 10 to the 12th/sq m-sec (approximately 40 percent).
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu
2017-09-01
Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.
NASA Astrophysics Data System (ADS)
Parkhomenko, A. I.; Shalagin, A. M.
2018-06-01
A mechanism for the segregation of calcium isotopes in the atmospheres of chemically peculiar (CP) stars due to light-induced drift (LID) of singly charged 48Ca+ ions is discussed. One peculiarity of Ca+ is that an adequate description of the effect of LID requires taking into account several energy levels of Ca+, and thus several pairs of relative differences ( ν i - ν k )/ ν i for the transport frequencies for collisions of levels i and k with neutral atoms (hydrogen, helium). The known real (calculated ab initio) interaction potentials are used to numerically calculate the factors ( ν i - ν k )/ ν i for several states of Ca+ for collisions with H and He atoms. These computations show that, at the temperatures characteristic of the atmospheres of CP stars, T = 6600-12 000 K, fairly high values are obtained for Ca+ ions, ( ν i - ν k )/ ν i ≈ 0.4-0.6. Simple, transparent computations demonstrate that the LID rates of Ca+ ions in the atmospheres of cool CP stars ( T eff = 6600 K) exceed the drift rate due to light pressure by two orders of magnitude. The LID is directed upward in the stellar atmosphere, and the heavy isotope 48Ca is pushed into upper layers of the atmosphere. This can explain the observed predominance of the heavy isotope 48Ca in the upper atmospheric layers of CP stars; according to the radiative-diffusion theory, the action of light pressure alone (in the absence of LID) would lead to sinking of the isotope 48Ca deeper into stellar atmosphere, following the lighter main isotope 40Ca. The 48Ca+ LIDrate decreases and its drift rate due to light pressure increases with growth of the effective temperatures in the atmospheres of CP stars. The manifestations of LID and light pressure are roughly comparable in the atmospheres of CP stars with effective temperatures near T eff = 9500 K.
A criterion for pure pair-ion plasmas and the role of quasineutrality in nonlinear dynamics
NASA Astrophysics Data System (ADS)
Saleem, H.
2007-01-01
A criterion is presented to decide whether a produced plasma can be called a pure pair-ion plasma or not. The theory is discussed in the light of recent experiments which claim that a pure pair-ion fullerene (C60±) plasma has been produced. It is also shown that the ion acoustic wave is replaced by the pair ion convective cell (PPCC) mode as the electron density becomes vanishingly small in a magnetized plasma comprised of positive and negative ions. The nonlinear dynamics of pure pair plasmas is described by two coupled equations which have no analog in electron-ion plasmas. In a stationary frame, it becomes similar to the Hasegawa-Mima equation but does not contain drift waves and ion acoustic waves.
NASA Technical Reports Server (NTRS)
Killeen, T. L.; Roble, R. G.
1984-01-01
A diagnostic processor (DP) was developed for analysis of hydrodynamic and thermodynamic processes predicted by the NCAR thermospheric general circulation model (TGCM). The TGCM contains a history file on the projected wind, temperature and composition fields at each grid point for each hour of universal time. The DP assimilates the history file plus ion drag tensors and drift velocities, specific heats, coefficients of viscosity, and thermal conductivity and calculates the individual forcing terms for the momentum and energy equations for a given altitude. Sample momentum forcings were calculated for high latitudes in the presence of forcing by solar radiation and magnetospheric convection with a 60 kV cross-tail potential, i.e., conditions on Oct. 21, 1981. It was found that ion drag and pressure forces balance out at F region heights where ion drift velocities are small. The magnetic polar cap/auroral zone boundary featured the largest residual force or net acceleration. Diurnal oscillations were detected in the thermospheric convection, and geostrophic balance was dominant in the E layer.
Global Structure and Sodium Ion Dynamics in Mercury's Magnetosphere With the Offset Dipole
NASA Astrophysics Data System (ADS)
Yagi, M.; Seki, K.; Matsumoto, Y.; Delcourt, D. C.; Leblanc, F.
2017-11-01
We conducted global magnetohydrodynamics (MHD) simulation of Mercury's magnetosphere with the dipole offset, which was revealed by MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) observations, in order to investigate its global structure under northward interplanetary magnetic field conditions. Sodium ion dynamics originating from the Mercury's exosphere is also investigated based on statistical trajectory tracing in the electric and magnetic fields obtained from the MHD simulations. The results reveal a north-south asymmetry characterized by open field lines around the southern polar region and northward deflection of the plasma sheet in the far tail. The asymmetry of magnetic field structure near the planet drastically affects trajectories of sodium ion and thus their pressure distributions and precipitation pattern onto the planet. Weaker magnetic field strength in the southern hemisphere than in the north increases ion loss by precipitation onto the planetary surface in the southern hemisphere. The "sodium ring," which is formed by high-energy sodium ions drifting around the planet, is also found in the vicinity of the planet. The sodium ring is almost circular under nominal solar wind conditions. The ring becomes partial under high solar wind density, because dayside magnetosphere is so compressed that there is no space for the sodium ions to drift around. In both cases, the sodium ring is formed by sodium ions that are picked up, accelerated in the magnetosheath just outside the magnetopause, and reentered into the magnetosphere due to combined effects of finite Larmor radius and convection electric field in the dawnside magnetosphere.
Yue, Chao; Li, Wen; Reeves, Geoffrey D.; ...
2016-07-01
Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Chao; Li, Wen; Reeves, Geoffrey D.
Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less
Loss of ring current O+ ions due to interaction with Pc 5 waves
NASA Astrophysics Data System (ADS)
Hudson, Mary; Chan, Anthony; Roth, Ilan
1993-01-01
The behavior of ring current ions in low-frequency geomagnetic pulsations is investigated analytically and numerically. We focus primarily on ring current O+ ions, whose flux increases dramatically during geomagnetic storms and decays at a rate which is not fully explained by collisional processes. This paper presents a new loss mechanism for the O+ ions due to the combined effects of convection and corotation electric fields and interaction with Pc 5 waves (wave period: 150-600 s) via a magnetic drift-bounce resonance. A test particle code has been developed to calculate the motion of the ring current O+ ions in a time-independent dipole magnetic field, and convection and corotation electric fields, plus Pc 5 wave fields, for which a simple analytical model has been formulated based on spacecraft observations. For given fields, whether a particle gains or loses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O+ ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. The former is due to the wave-particle interaction causing the ion to gain or lose energy, while the latter is due to the convection electric field. Our simulations show that, due to the interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle will be lost to the dayside magnetopause by a sunward E×B drift. This may contribute to the loss of O+ ions at intermediate energies (tens of keV) observed during the recovery phase of geomagnetic storms.
Mechanisms for the Dissipation of Alfven Waves in Near-Earth Space Plasma
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Krivorutsky, E. N.; Davis, John M. (Technical Monitor)
2002-01-01
Alfven waves are a major mechanism for the transport of electromagnetic energy from the distant part of the magnetosphere to the near-Earth space. This is especially true for the auroral and polar regions of the Earth. However, the mechanisms for their dissipation have remained illusive. One of the mechanisms is the formation of double layers when the current associated with Alfven waves in the inertial regime interact with density cavities, which either are generated nonlinearly by the waves themselves or are a part of the ambient plasma turbulence. Depending on the strength of the cavities, weak and strong double layers could form. Such double layers are transient; their lifetimes depend on that of the cavities. Thus they impulsively accelerate ions and electrons. Another mechanism is the resonant absorption of broadband Alfven- wave noise by the ions at the ion cyclotron frequencies. But this resonant absorption may not be possible for the very low frequency waves, and it may be more suited for electromagnetic ion cyclotron waves. A third mechanism is the excitation of secondary waves by the drifts of electrons and ions in the Alfven wave fields. It is found that under suitable conditions, the relative drifts between different ion species and/or between electrons and ions are large enough to drive lower hybrid waves, which could cause transverse accelerations of ions and parallel accelerations of electrons. This mechanism is being further studied by means of kinetic simulations using 2.5- and 3-D particle-in-cell codes. The ongoing modeling efforts on space weather require quantitative estimates of energy inputs of various kinds, including the electromagnetic energy. Our studies described here contribute to the methods of determining the estimates of the input from ubiquitous Alfven waves.
Laser ion source with solenoid field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanesue, Takeshi, E-mail: tkanesue@bnl.gov; Okamura, Masahiro; Fuwa, Yasuhiro
2014-11-10
Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10{sup 11}, which was provided by a single 1 J Nd-YAGmore » laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less
Laser ion source with solenoid field
Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; ...
2014-11-12
Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10 11,more » which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less
Ion mobility spectrometry for food quality and safety.
Vautz, W; Zimmermann, D; Hartmann, M; Baumbach, J I; Nolte, J; Jung, J
2006-11-01
Ion mobility spectrometry is known to be a fast and sensitive technique for the detection of trace substances, and it is increasingly in demand not only for protection against explosives and chemical warfare agents, but also for new applications in medical diagnosis or process control. Generally, a gas phase sample is ionized by help of ultraviolet light, ss-radiation or partial discharges. The ions move in a weak electrical field towards a detector. During their drift they collide with a drift gas flowing in the opposite direction and, therefore, are slowed down depending on their size, shape and charge. As a result, different ions reach the detector at different drift times, which are characteristic for the ions considered. The number of ions reaching the detector are a measure of the concentration of the analyte. The method enables the identification and quantification of analytes with high sensitivity (ng l(-1) range). The selectivity can even be increased - as necessary for the analyses of complex mixtures - using pre-separation techniques such as gas chromatography or multi-capillary columns. No pre-concentration of the sample is necessary. Those characteristics of the method are preserved even in air with up to a 100% relative humidity rate. The suitability of the method for application in the field of food quality and safety - including storage, process and quality control as well as the characterization of food stuffs - was investigated in recent years for a number of representative examples, which are summarized in the following, including new studies as well: (1) the detection of metabolites from bacteria for the identification and control of their growth; (2) process control in food production - beer fermentation being an example; (3) the detection of the metabolites of mould for process control during cheese production, for quality control of raw materials or for the control of storage conditions; (4) the quality control of packaging materials during the production of polymeric materials; and (5) the characterization of products - wine being an example. The challenges of such applications were operation in humid air, fast on-line analyses of complex mixtures, high sensitivity - detection limits have to be, for example, in the range of the odour limits - and, in some cases, the necessity of mobile instrumentation. It can be shown that ion mobility spectrometry is optimally capable of fulfilling those challenges for many applications.
Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock.
Chen, L-J; Wang, S; Wilson, L B; Schwartz, S; Bessho, N; Moore, T; Gershman, D; Giles, B; Malaspina, D; Wilder, F D; Ergun, R E; Hesse, M; Lai, H; Russell, C; Strangeway, R; Torbert, R B; F-Vinas, A; Burch, J; Lee, S; Pollock, C; Dorelli, J; Paterson, W; Ahmadi, N; Goodrich, K; Lavraud, B; Le Contel, O; Khotyaintsev, Yu V; Lindqvist, P-A; Boardsen, S; Wei, H; Le, A; Avanov, L
2018-06-01
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock
NASA Astrophysics Data System (ADS)
Chen, L.-J.; Wang, S.; Wilson, L. B.; Schwartz, S.; Bessho, N.; Moore, T.; Gershman, D.; Giles, B.; Malaspina, D.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C.; Strangeway, R.; Torbert, R. B.; F.-Vinas, A.; Burch, J.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W.; Ahmadi, N.; Goodrich, K.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L.
2018-06-01
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock
NASA Astrophysics Data System (ADS)
Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.
2018-05-01
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
Toroidal gyrofluid equations for simulations of tokamak turbulence
NASA Astrophysics Data System (ADS)
Beer, M. A.; Hammett, G. W.
1996-11-01
A set of nonlinear gyrofluid equations for simulations of tokamak turbulence are derived by taking moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with approximations that model the kinetic effects of parallel Landau damping, toroidal drift resonances, and finite Larmor radius effects. These equations generalize the work of Dorland and Hammett [Phys. Fluids B 5, 812 (1993)] to toroidal geometry by including essential toroidal effects. The closures for phase mixing from toroidal ∇B and curvature drifts take the basic form presented in Waltz et al. [Phys. Fluids B 4, 3138 (1992)], but here a more rigorous procedure is used, including an extension to higher moments, which provides significantly improved accuracy. In addition, trapped ion effects and collisions are incorporated. This reduced set of nonlinear equations accurately models most of the physics considered important for ion dynamics in core tokamak turbulence, and is simple enough to be used in high resolution direct numerical simulations.
Ion and electron temperatures in the SUMMA mirror device by emission spectroscopy
NASA Technical Reports Server (NTRS)
Patch, R. W.; Voss, D. E.; Reinmann, J. J.; Snyder, A.
1974-01-01
Ion and electron temperatures, and ion drift were measured in a superconducting magnetic mirror apparatus by observing the Doppler-broadened charge-exchange component of the 667.8 and 587.6 nanometer He lines in He plasma, and the H sub alpha and H sub beta lines in H2 plasma. The second moment of the line profiles was used as the parameter for determining ion temperature. Corrections for magnetic splitting, fine structure, monochromator slit function, and variation in charge-exchange cross section with energy are included. Electron temperatures were measured by the line ratio method for the corona model, and correlations of ion and electron temperatures with plasma parameters are presented.
Kinetic neoclassical transport in the H-mode pedestal
Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...
2014-07-16
Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrapeoff layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. We achieved quantitative agreement between the fluxdriven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles by adding random-walk particle diffusion to the guiding-center drift motion. Furthermore, we computed the radial electric field (Er) that maintains ambipolar transport across flux surfaces and to the wall self-consistently on closed and open magnetic field lines, and is in excellent agreement with experiment. The Ermore » inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport is primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-Ip parallel flows in the pedestal, ion temperature anisotropy and large impurity temperatures in the scrape-off layer.« less
Gyrokinetic δ f simulation of collisionless and semi-collisional tearing mode instabilities
NASA Astrophysics Data System (ADS)
Wan, Weigang; Chen, Yang; Parker, Scott
2004-11-01
The evolution of collisionless and semi-collisional tearing mode instabilities is studied using a three-dimensional particle-in-cell simulation model that utilizes the δ f-method with the split-weight scheme to enhance the time step, and a novel algorithm(Y. Chen and S.E. Parker, J. Comput. Phys. 198), 463 (2003) to accurately solve the Ampere's equation for experimentally relevant β values, βfracm_im_e≫ 1. We use the model of drift-kinetic electrons and gyrokinetic ions. Linear simulation results are benchmarked with eigenmode analysis for the case of fixed ions. In small box simulations the ions response can be neglected but for large box simulations the ions response is important because the width of perturbed current is larger than ρ_i.The nonlinear dynamics of magnetic islands will be studied and the results will be compared with previous theoretical studiesfootnote J.F. Drake and Y. C. Lee, Phys. Rev. Lett. 39, 453 (1977) on the saturation level and the electron bounce frequency. A collision operator is included in the electron drift kinetic equation to study the simulation in the semi-collisional regime. The algebraical growth stage has been observed and compared quantitatively with theory. Our progress on three-dimensional simulations of tearing mode instabilities will be reported.
Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank
2016-06-20
Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation.
Bell, J.S.
1959-09-15
An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.
Longitudinal waves in a perpendicular collisionless plasma shock. IV - Gradient B.
NASA Technical Reports Server (NTRS)
Gary, S. P.
1972-01-01
The consideration of elastic waves in a Vlasov plasma of unmagnetized ions and magnetized electrons undergoing E x B electron drift and gradient B drift, pursued in the earlier three parts, is brought to conclusion in this last part of the longitudinal wave study in a collisionless plasma shock. Detailed calculations of the effects of the beta sub e dimensionless parameter on the E x B electron drift instability are presented. It is shown that the range of propagation of the elastic waves about the perpendicular remains quite narrow, and that, for oblique propagation, the already narrow angular range of unstable waves is decreased by increases in the value of the beta sub e dimensionless parameter. Also, increases in wave number generally reduce the growth rate and the angular range of propagation.
Study of an ionic smoke sensor
NASA Astrophysics Data System (ADS)
Mokhtari, Z.; Holé, S.; Lewiner, J.
2013-05-01
Ionization smoke sensors are among the best smoke sensors; however, the little radioactive source they include is no longer desirable since it makes recycling more complicated. In this paper, we discuss an electrostatic system in which a corona discharge is used to generate the ions needed for smoke detection. We show how the velocity of ions is reduced in our system for a better interaction between smoke and drifting ions. The influence of smoke, temperature and moisture is studied. It is shown that the proposed sensor has good sensitivity compared with conventional ionic and optical smoke sensors.
Thermal-energy reactions of O2(2+) ions with O2, N2, CO2, NO, and Ne
NASA Technical Reports Server (NTRS)
Chatterjee, B. K.; Johnson, R.
1989-01-01
The paper presents results of drift-tube mass-spectrometer studies of the reactivity of doubly charged molecular oxygen ions with several molecules and neon atoms. Thermal-energ rate coefficients for the reactions with the molecular reactants were found to be large, close to the limiting Langevin rates. Charge transfer with neon atoms was observed, but the measured rate coefficient was only a small fraction of the Langevin rate. It is concluded that the measured rate constants for the reactions considereed refer to vibrationally excited ions.
1976-04-01
spectra are obtained for each peak detected in the CC effluent stream. In this mode of operation, the "total ion current" is usually used as a guide...correcting drift for both magnetic field and electrical field instruments. The peak setting is usually made to the 47 nearest 0.1 amu, and adjustments...su stances by charge transfer from nitric oxide ions (No ), however, the M14 ions are the base peak . This obser- vation by Jardine and Fenselau (44
Classical impurity ion confinement in a toroidal magnetized fusion plasma.
Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S
2012-03-23
High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Kwan, J
Earlier this year, the U.S. Department of Energy Office of Fusion Energy Sciences approved the NDCX-II project, a second-generation Neutralized Drift Compression eXperiment. NDCX-II is a collaborative effort of scientists and engineers from Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and the Princeton Plasma Physics Laboratory (PPPL), in a formal collaboration known as the Virtual National Laboratory for Heavy Ion Fusion Science (HIFS-VNL). Supported by $11 M of funding from the American Recovery and Reinvestment Act, construction at LBNL commenced in July of 2009, with completion anticipated in March of 2012. Applications of this facility will includemore » studies of: the basic physics of the poorly understood 'warm dense matter' regime of temperatures around 1 eV and densities near solid, using uniform, volumetric ion heating of thin foil targets; ion energy coupling into an ablating plasma (such as that which occurs in an inertial fusion target) using beams with time-varying kinetic energy; space-charge-dominated ion beam dynamics; and beam focusing and pulse compression in neutralizing plasma. The machine will complement facilities at GSI in Darmstadt, Germany, but will employ lower ion kinetic energies and commensurately shorter stopping ranges in matter. Much of this research will contribute directly toward the collaboration's ultimate goal of electric power production via heavy-ion beam-driven inertial confinement fusion ('Heavy-Ion Fusion', or HIF). In inertial fusion, a target containing fusion fuel is heated by energetic 'driver' beams, and undergoes a miniature thermonuclear explosion. Currently the largest U.S. research program in inertial confinement is at Livermore's National Ignition Facility (NIF), a multibillion-dollar, stadium-sized laser facility optimized for studying physics issues relevant to nuclear stockpile stewardship. Nonetheless, NIF is expected to establish the fundamental feasibility of fusion ignition on the laboratory scale, and thus advance this approach to fusion energy. Heavy ion accelerators have a number of attributes (such as efficiency, longevity, and use of magnetic fields for final focusing) that make them attractive candidates as Inertial Fusion energy (IFE) drivers As with LBNL's existing NDCX-I, the new machine will produce short ion pulses using the technique of neutralized drift compression. A head-to-tail velocity gradient is imparted to the beam, which then shortens as it drifts in neutralizing plasma that suppresses space-charge forces. NDCX-II will make extensive use of induction cells and other hardware from the decommissioned ATA facility at LLNL. Figure (1) shows the layout of the facility, to be sited in LBNL's Building 58 alongside the existing NDCX-I apparatus. This second-generation facility represents a significant upgrade from the existing NDCX-I. It will be extensible and reconfigurable; in the configuration that has received the most emphasis, each NDCX-II pulse will deliver 30 nC of ions at 3 MeV into a mm-scale spot onto a thin-foil target. Pulse compression to {approx} 1 ns occurs in the accelerator as well as in the drift compression line; the beam is manipulated using suitably tailored voltage waveforms in the accelerating gaps. NDCX-II employs novel beam dynamics. To use the 200 kV Blumlein power supplies from ATA (blue cylinders in the figure), the pulse duration must first be reduced to less than 70 ns. This shortening is accomplished in an initial stage of non-neutral drift compression, downstream of the injector and the first few induction cells. The compression is sufficiently rapid that fewer than ten long-pulse waveform generators are needed, with Blumleins powering the rest of the acceleration. Extensive simulation studies have enabled an attractive physics design; these employ both a new 1-D code (ASP) and the VNL's workhorse 2-D/3-D code Warp. Snapshots from a simulation movie (available online) appear in Fig. 2. Studies on a dedicated test stand are quantifying the performance of the ATA hardware and of pulsed solenoids that will provide transverse beam confinement (ions require much stronger fields than the electrons accelerated by ATA). For more information, see the recent article in the Berkeley Lab News and references therein. Joe Kwan is the NDCX-II project manager and Alex Friedman is the leader for the physics design.« less
Hager, Robert; Chang, C. S.
2016-04-08
As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hager, Robert; Chang, C. S.
As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov
As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less
FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matteini, L.; Schwartz, S. J.; Hellinger, P.
We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion speciesmore » have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.« less
NASA Astrophysics Data System (ADS)
Chouinard, Christopher D.; Cruzeiro, Vinícius Wilian D.; Beekman, Christopher R.; Roitberg, Adrian E.; Yost, Richard A.
2017-08-01
Drift tube ion mobility coupled with mass spectrometry was used to investigate the gas-phase structure of 25-hydroxyvitamin D3 (25OHD3) and D2 (25OHD2) epimers, and to evaluate its potential in rapid separation of these compounds. Experimental results revealed two distinct drift species for the 25OHD3 sodiated monomer, whereas only one of these conformations was observed for its epimer (epi25OHD3). The unique species allowed 25OHD3 to be readily distinguished, and the same pattern was observed for 25OHD2 epimers. Theoretical modeling of 25OHD3 epimers identified energetically stable gas-phase structures, indicating that both compounds may adopt a compact "closed" conformation, but that 25OHD3 may also adopt a slightly less energetically favorable "open" conformation that is not accessible to its epimer. Calculated theoretical collision cross-sections for these structures agreed with experimental results to <2%. Experimentation indicated that additional energy in the ESI source (i.e., increased temperature, spray voltage) affected the ratio of 25OHD3 conformations, with the less energetically favorable "open" conformation increasing in relative intensity. Finally, LC-IM-MS results yielded linear quantitation of 25OHD3, in the presence of the epimer interference, at biologically relevant concentrations. This study demonstrates that ion mobility can be used in tandem with theoretical modeling to determine structural differences that contribute to drift separation. These separation capabilities provide potential for rapid (<60 ms) identification of 25OHD3 and 25OHD2 in mixtures with their epimers.
Impact of the quasi-two-day traveling planetary wave on the ionosphere
NASA Astrophysics Data System (ADS)
Yue, J.; Wang, W.; Richmond, A. D.; Liu, H.; Chang, L. C.
2012-12-01
The Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to simulate the quasi-two-day wave (QTDW) modulation of the ionospheric dynamo and electron density. The QTDW can directly penetrate into the lower thermosphere and modulate the neutral winds at a period of two days. On the other hand, the QTDW can change the tidal amplitudes. The QTDW in zonal and meridional winds results in a quasi-two-day oscillation (QTDO) of the dynamo electric fields. The QTDO of the electric fields in the E-region is transmitted along the magnetic field lines to the F-region and leads to the QTDOs of the vertical ion drift and total electron content (TEC) at low and mid latitudes, leading to the 2-day oscillation of the fountain effect. Since the Earth's magnetic field has zonal wavenumber 1 and higher structures in geographic coordinates, the neutral wind dynamo and its associated vertical ion drift can be influenced by the wavenumber interaction between the QTDW and the magnetic field. Thus, longitudinal structures with other wavenumbers in the ionospheric fields, such as electric field, vertical ion drifts, electron densities and TEC, emerge from this interaction. Additionally, because the tides are damped/enhanced during a strong QTDW event, the overall fountain effect and the ionospheric morphology are changed.Amplitude (TECU) and phase (UT hour) of the QTDO of TEC as a function of day and latitude. The contour interval is 0.02 TECU and 4 hr, respectively. The color scale for the amplitude and phase is 0-0.3 TECU and 0 to 48 hr.
Lateral charge transport from heavy-ion tracks in integrated circuit chips
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.
1988-01-01
A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.
NASA Astrophysics Data System (ADS)
Mirza, Arshad M.; Masood, W.
2011-12-01
Nonlinear equations governing the dynamics of finite amplitude drift-ion acoustic-waves are derived by taking into account sheared ion flows parallel and perpendicular to the ambient magnetic field in a quantum magnetoplasma comprised of electrons and ions. It is shown that stationary solution of the nonlinear equations can be represented in the form of a tripolar vortex for specific profiles of the equilibrium sheared flows. The tripolar vortices are, however, observed to form on very short scales in dense quantum plasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.
Ion density evolution in a high-power sputtering discharge with bipolar pulsing
NASA Astrophysics Data System (ADS)
Britun, N.; Michiels, M.; Godfroid, T.; Snyders, R.
2018-06-01
Time evolution of sputtered metal ions in high power impulse magnetron sputtering (HiPIMS) discharge with a positive voltage pulse applied after a negative one (regime called "bipolar pulse HiPIMS"—BPH) is studied using 2-D density mapping. It is demonstrated that the ion propagation dynamics is mainly affected by the amplitude and duration of the positive pulse. Such effects as ion repulsion from the cathode and the ionization zone shrinkage due to electron drift towards the cathode are clearly observed during the positive pulse. The BPH mode also alters the film crystallographic structure, as observed from X-ray diffraction analysis.
The electron drift velocity, ion acoustic speed and irregularity drifts in high-latitude E-region
NASA Astrophysics Data System (ADS)
Uspensky, M. V.; Pellinen, R. J.; Janhunen, P.
2008-10-01
The purpose of this study is to examine the STARE irregularity drift velocity dependence on the EISCAT line-of-sight (los or l-o-s) electron drift velocity magnitude, VE×Blos, and the flow angle ΘN,F (superscript N and/or F refer to the STARE Norway and Finland radar). In the noon-evening sector the flow angle dependence of Doppler velocities, VirrN,F, inside and outside the Farley-Buneman (FB) instability cone (|VE×Blos|>Cs and |VE×Blos|
Drift Wave Chaos and Turbulence in a LAPTAG Plasma Physics experiment
NASA Astrophysics Data System (ADS)
Katz, Cami; Gekelman, Walter; Pribyl, Patrick; Wise, Joe; Birge-Lee, Henry; Baker, Bob; Marmie, Ken; Thomas, Sam; Buckley-Bonnano, Samuel
2015-11-01
Whenever there is a pressure gradient in a magnetized plasma drift waves occur spontaneously. Drift waves have density and electrical potential fluctuations but no self magnetic field. In our experiment the drift waves form spontaneously in a narrow plasma column. (ne = 5 ×1011 cm3 , Te = 5 eV , B = 200 Gauss, dia = 25 cm , L = 1 . 5 m). As the drift waves grow from noise simple averaging techniques cannot be used to map them out in space and time. The ion saturation current Isat n√{Te} is recorded for an ensemble of 50 shots on a fixed probe located on the density gradient and for a movable probe. The probe signals are not sinusoidal and are filtered to calculate the cross-spectral function CSF = ∫ ∑ nshot Ifix, ωr->1 , tImov , ω (r->1 + δr-> , t + τ) dt , which can be used to extract the temporal and spatially varying wave patterns. The dominant wave at 18 kHz is a rotating spiral with m =2. LAPTAG is a university-high school alliance outreach program, which has been in existence for over 20 years. Work done at the BaPSF and supported by NSF/DOE.
Analysis of drift effects on the tokamak power scrape-off width using SOLPS-ITER
NASA Astrophysics Data System (ADS)
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; Makowski, M. A.; Mordijck, S.; Rozhansky, V. A.; Senichenkov, I. Yu; Voskoboynikov, S. P.
2016-12-01
SOLPS-ITER, a comprehensive 2D scrape-off layer modeling package, is used to examine the physical mechanisms that set the scrape-off width ({λq} ) for inter-ELM power exhaust. Guided by Goldston’s heuristic drift (HD) model, which shows remarkable quantitative agreement with experimental data, this research examines drift effects on {λq} in a DIII-D H-mode magnetic equilibrium. As a numerical expedient, a low target recycling coefficient of 0.9 is used in the simulations, resulting in outer target plasma that is sheath limited instead of conduction limited as in the experiment. Scrape-off layer (SOL) particle diffusivity (D SOL) is scanned from 1 to 0.1 m2 s-1. Across this diffusivity range, outer divertor heat flux is dominated by a narrow (˜3-4 mm when mapped to the outer midplane) electron convection channel associated with thermoelectric current through the SOL from outer to inner divertor. An order-unity up-down ion pressure asymmetry allows net ion drift flux across the separatrix, facilitated by an artificial mechanism that mimics the anomalous electron transport required for overall ambipolarity in the HD model. At {{D}\\text{SOL}}=0.1 m2 s-1, the density fall-off length is similar to the electron temperature fall-off length, as predicted by the HD model and as seen experimentally. This research represents a step toward a deeper understanding of the power scrape-off width, and serves as a basis for extending fluid modeling to more experimentally relevant, high-collisionality regimes.
Analysis of drift effects on the tokamak power scrape-off width using SOLPS-ITER
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; ...
2016-11-02
SOLPS-ITER, a comprehensive 2D scrape-off layer modeling package, is used to examine the physical mechanisms that set the scrape-off width (more » $${{\\lambda}_{q}}$$ ) for inter-ELM power exhaust. Guided by Goldston's heuristic drift (HD) model, which shows remarkable quantitative agreement with experimental data, this research examines drift effects on $${{\\lambda}_{q}}$$ in a DIII-D H-mode magnetic equilibrium. As a numerical expedient, a low target recycling coefficient of 0.9 is used in the simulations, resulting in outer target plasma that is sheath limited instead of conduction limited as in the experiment. Scrape-off layer (SOL) particle diffusivity (D SOL) is scanned from 1 to 0.1 m2 s –1. Across this diffusivity range, outer divertor heat flux is dominated by a narrow (~3–4mm when mapped to the outer midplane) electron convection channel associated with thermoelectric current through the SOL from outer to inner divertor. An order-unity up–down ion pressure asymmetry allows net ion drift flux across the separatrix, facilitated by an artificial mechanism that mimics the anomalous electron transport required for overall ambipolarity in the HD model. At $${{D}_{\\text{SOL}}}=0.1$$ m2 s –1, the density fall-off length is similar to the electron temperature fall-off length, as predicted by the HD model and as seen experimentally. Furthermore, this research represents a step toward a deeper understanding of the power scrape-off width, and serves as a basis for extending fluid modeling to more experimentally relevant, high-collisionality regimes.« less
Combined effects of drift waves and neoclassical transport on density profiles in tokamaks
NASA Astrophysics Data System (ADS)
Houlberg, W. A.; Strand, P.
2005-10-01
The relative importance of neoclassical and anomalous particle transport depends on the charge number of the species being studied. The detailed particle balance including the EDWM [1] drift wave model for anomalous transport that includes ITG, TEM and in some cases ETG modes, and the neoclassical model NCLASS [2], are illustrated by simulations with the DEA particle transport code. DEA models the evolution of all ion species, and can be run in a mode to evaluate dynamic responses to perturbations or to conditions far from equilibrium by perturbing the profiles from the experimental measurements. The perturbations allow the fluxes to be decomposed into diffusive and convective (pinch) terms. The different scaling with charge number between drift wave and neoclassical models favors a stronger component of neoclassical transport for higher Z impurities through the effective pinch term. Although trace impurities illustrate a simple Ficks Law form, the main ions as well as higher concentrations of intrinsic impurities exhibit non-linear responses to the density gradients as well as off-diagonal gradient dependencies, leading to a more complicated response for the particle fluxes.[1] H. Nordman, et al., Plasma Phys. Control. Fusion 47 (2005) L11. [2] W.A. Houlberg, et al., Phys. Plasmas 4 (1997) 3230.
Performance Evaluation of the COBRA GEM for the Application of the TPC
NASA Astrophysics Data System (ADS)
Terasaki, Kohei; Hamagaki, Hideki; Gunji, Taku; Yamaguchi, Yorito
2014-09-01
Suppression of the back-drifting ions from avalanche region to drift space (IBF: Ion Backflow) is the key for a Time Projection Chamber (TPC) since IBF easily distorts the drift field. To suppress IBF, Gating Grid system is widely used for the TPC but this limits the data taking rate. Gas Electron Multiplier (GEM) has advantages in the reduction of IBF and high rate capability. By adopting GEM, it is possible to run a TPC continuously under high rate and high multiplicity conditions. Motivated by the study of IBF reduction for RICH with Thick COBRA, which has been developed by F. A. Amero et al., we developed COBRA GEMs for the application of a TPC. With a stack configuration, IBF reaches about 0.1 ~ 0.5%, which is ×5--10 better IBF than the standard GEMs. However, the measured energy resolution with COBRA is 20% (σ) and this is much worse than the resolution with standard GEMs. Measurement of long-time stability of gain indicates that gain of COBRA varies significantly due to charging up effect. Simulation studies based on Garfield++ are performed for understanding quantitatively the reasons of worse energy resolution and instability of gain. In this presentation, we will report the simulation studies together with the measured performance of the COBRA GEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zocco, A.; Plunk, G. G.; Xanthopoulos, P.
The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit wheremore » this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.« less
Rocket-borne thermal plasma instrument "MIPEX" for the ionosphere D, E layer in-situ measurements
NASA Astrophysics Data System (ADS)
Fang, H. K.; Chen, A. B. C.; Lin, C. C. H.; Wu, T. J.; Liu, K. S.; Chuang, C. W.
2017-12-01
In this presentation, the design concepts, performances and status of a thermal plasma particle instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)", which is going to be installed onboard a NSPO-funded hybrid rocket, to investigate the electrodynamic processes in ionosphere D, E layers above Taiwan are reported. MIPEX is capable of measuring plasma characteristics including ion temperature, ion composition, ion drift, electron temperature and plasma density at densities as low as 1-10 cm-1. This instrument package consists of an improved retarding potential analyzer with a channel electron multiplier (CEM), a simplified ion drift meter and a planar Langmuir probe. To achieve the working atmospheric pressure of CEM at the height of lower D layer ( 70km), a portable vacuum pump is also placed in the package. A prototype set of the MIPEX has been developed and tested in the Space Plasma Operation Chamber (SPOC) at NCKU, where in ionospheric plasma is generated by back-diffusion plasma sources. A plasma density of 10-106 cm-1, ion temperature of 300-1500 K and electron temperature of 1000-3000K is measured and verified. Limited by the flight platform and the performance of the instruments, the in-situ plasma measurements at the Mesosphere and lower Thermosphere is very challenging and rare. MIPEX is capable of extending the altitude of the effective plasma measurement down to 70 km height and this experiment can provide unique high-quality data of the plasma environment to explore the ion distribution and the electrodynamic processes in the Ionosphere D, E layers at dusk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.; Barnard, J.J.; Briggs, R.J.
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaborationof LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity"tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of Warm Dense Matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven Inertial Fusion Energy (IFE). Thesemore » goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned Advanced Test Accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ~;;30 nC pulse of Li+ ions to ~;;3 MeV, then compresses it to ~;;1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using analysis, an interactive one-dimensional kinetic simulation model, and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.« less
Nonlinear Kinetic Instabilities in Plasma Wakes
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.; Haakonsen, C. B.
2015-12-01
Relative motion of a plasma and an embedded perturbing solid objectproduces a plasma wake, which is kinetically unstable. For moons,asteroids, spacecraft, probes, and planets without a magnetosphere theresponse is dominantly electrostatic, although generally with abackground magnetic field. Using high-fidelity particle-in-cellsimulations, we have observed the development of kinetic instabilitiesand their non-linear consequences in representative wakes. We havealso explained the observations with semi-analytical non-lineartheory. The ion and electron distribution function shapes are stronglyperturbed in the wake region. The ions form two opposite beamsdirected inward along the guiding magnetic field, in part because ofthe attraction of the wake's electric potential well. The electrondistribution forms a notch or dimple (of reduced phase space density)localized in velocity to orbits that dwell near the wake axis (becauseof repulsion). Those orbits are de-energized by cross-field drift downthe potential-energy ridge. The resulting Langmuir instability spawnselectron holes. The holes that move faster than the ion beams areaccelerated out of the wake by its electrostatic field without growingsubstantially. Some holes, however, remain in the wake at essentiallyzero parallel velocity. They grow, as a result of the same mechanismthat formed the notch: cross-field drift from a lower to a higherdensity. When the density rises by a factor of order two or three,they grow large enough to perturb the ions, tap their free energy, anddisrupt the ion streams well before they would become ion-ionunstable. Crucially, these processes depend strongly on theion/electron mass ratio and require close to physical ratio (1836) insimulations, to reveal their characteristics. Electron holes arisingfrom these processes may be widely present and observable in spaceplasma wakes.
Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Pagel, Kevin; Thalassinos, Konstantinos; Struwe, Weston B.; Crispin, Max; Scrivens, Jim
2016-01-01
Nitrogen cross sections of hybrid and complex glycans released from the glycoproteins IgG, gp120 (from human immunodeficiency virus), ovalbumin, α1-acid glycoprotein, thyroglobulin and fucosylated glycoproteins from the human parotid gland were measured with a travelling-wave ion mobility mass spectrometer using dextran as the calibrant. The utility of this instrument for isomer separation was also investigated. Some isomers, such as Man3GlcNAc3 from chicken ovalbumin and Man3GlcNAc3Fuc1 from thyroglobulin could be partially resolved and identified by their negative ion fragmentation spectra. Several other larger glycans, however, although existing as isomers, produced only asymmetric rather than separated arrival time distributions (ATDs). Nevertheless, in these cases, isomers could often be detected by plotting extracted fragment ATDs of diagnostic fragment ions from the negative ion spectra obtained in the transfer cell of the Waters Synapt mass spectrometer. Coincidence in the drift times of all fragment ions with an overall asymmetric ATD profile usually suggested that separations were due to conformers or anomers, whereas symmetrical ATDs of fragments showing differences in drift times indicated isomer separation. Although some significant differences in cross sections were found for the smaller isomeric glycans, the differences found for the larger compounds were usually too small to be analytically useful. Possible correlations between cross sections and structural types were also investigated and it was found that complex glycans tended to have slightly smaller cross sections than high-mannose glycans of comparable molecular weight. In addition, biantennary glycans containing a core fucose and/or a bisecting GlcNAc residue fell on different mobility-m/z trend lines to those glycans not so substituted with both of these substituents contributing to larger cross sections. PMID:27477117
Electron Currents and Heating in the Ion Diffusion Region of Asymmetric Reconnection
NASA Technical Reports Server (NTRS)
Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; Andre, M.; Lindqvist, P. A.; Marklund, G. T.; Ergun, R. E.; Paterson, W. R.; Gershman, D. J.;
2016-01-01
In this letter the structure of the ion diffusion region of magnetic reconnection at Earths magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.
Magnetic Reconnection and Modification of the Hall Physics Due to Cold Ions at the Magnetopause
NASA Technical Reports Server (NTRS)
Andre, M.; Li, W.; Toldeo-Redondo, S.; Khotyaintsev, Yu. V.; Vaivads, A.; Graham, D. B.; Norgren, C.; Burch, J.; Lindqvist, P.-A.; Marklund, G.;
2016-01-01
Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohms law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the v x B drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.
Gradient Drift Turbulence from Electron Bite-Outs: Dependence on Atmospheric Parameters.
NASA Astrophysics Data System (ADS)
Young, M.; Oppenheim, M. M.; Dimant, Y. S.
2017-12-01
Electron bite-outs are regions of decreased electron density without a corresponding decrease in ion density, often caused by electron attachment to dust grains. They typically occur in the upper D-/lower E-region ionosphere and the accompanying electron gradient provides free energy to drive the gradient drift instability (GDI). The major difference between classical GDI and electron bite-out driven GDI is that the instability occurs on the top side of the bite-out region in the latter, as opposed to the bottom side in the former, in the presence of a vertical background electric field. Moreover, the mobile plasma population contains a gradient in only one species while the entire system remains quasineutral. This modified geometry presents new pathways for instabilities as the ions build up near the bite-out layer, leaving behind depletions that ascend away from the layer. Previous simulation runs showed that the presence of an electron gradient drives GDI-like turbulence even when ions and electrons start in momentum balance. Furthermore, a simulation run that replaced the electron bite-out with a layer of enhanced ion density, as though ions and electrons had filled in the bite-out region, did not lead to instability. This work examines the role of atmospheric parameters at altitudes between 80-100 km in instability formation and turbulence development, including the role of collisions in impeding instability growth as altitude decreases. Key parameters include the ambient electric field, which plays a critical role in triggering the gradient-drift instability; collision frequencies and temperature, which vary with altitude and effect the turbulent growth rate; and relative charge density of the bite-out, which increases the electron gradient strength. This work provides insight into how electron bite-out layers can produce turbulence that ground-based high frequency (HF) radars may be able to observe. The upper D-/lower E-region ionosphere is generally difficult to study in situ, making simulations of ground-based observables much more important. Assuming that electron bite-out layers result from dust charging in particular will allow the community to use the predictions of this work to study the ionospheric dust population.
Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force
NASA Astrophysics Data System (ADS)
Leung, Pak Hong; Landsman, Kevin A.; Figgatt, Caroline; Linke, Norbert M.; Monroe, Christopher; Brown, Kenneth R.
2018-01-01
In an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in order to execute multiqubit logical gates. Any residual entanglement between the internal and motional states of the ions results in loss of fidelity, especially when there are many spectator ions in the crystal. We propose using a frequency-modulated driving force to minimize such errors. In simulation, we obtained an optimized frequency-modulated 2-qubit gate that can suppress errors to less than 0.01% and is robust against frequency drifts over ±1 kHz . Experimentally, we have obtained a 2-qubit gate fidelity of 98.3(4)%, a state-of-the-art result for 2-qubit gates with five ions.
Characteristics of low-latitude ionospheric depletions and enhancements during solar minimum
NASA Astrophysics Data System (ADS)
Haaser, R. A.; Earle, G. D.; Heelis, R. A.; Klenzing, J.; Stoneback, R.; Coley, W. R.; Burrell, A. G.
2012-10-01
Under the waning solar minimum conditions during 2009 and 2010, the Ion Velocity Meter, part of the Coupled Ion Neutral Dynamics Investigation aboard the Communication/Navigation Outage Forecasting System satellite, is used to measure in situ nighttime ion densities and drifts at altitudes between 400 and 550 km during the hours 21:00-03:00 solar local time. A new approach to detecting and classifying well-formed ionospheric plasma depletions and enhancements (bubbles and blobs) with scale sizes between 50 and 500 km is used to develop geophysical statistics for the summer, winter, and equinox seasons during the quiet solar conditions. Some diurnal and seasonal geomagnetic distribution characteristics confirm previous work on equatorial irregularities and scintillations, while other elements reveal new behaviors that will require further investigation before they may be fully understood. Events identified in the study reveal very different and often opposite behaviors of bubbles and blobs during solar minimum. In particular, more bubbles demonstrating deeper density fluctuations and faster perturbation plasma drifts typically occur earlier near the magnetic equator, while blobs of similar magnitude occur more often far away from the geomagnetic equator closer to midnight.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Araneda, J. A.; Poedts, S.
2014-12-01
We consider parametric instabilities of finite-amplitude large-scale Alfven waves in a low-beta collisionless multi-species plasma, consisting of fluid electrons, kinetic protons and a drifting population of minor ions. Complementary to many theoretical studies, relying on fluid or multi-fluid approach, in this work we present the solutions of the parametric instability dispersion relation, including kinetic effects in the parallel direction, along the ambient magnetic field. This provides us with the opportunity to predict the importance of some wave-particle interactions like Landau damping of the daughter ion-acoustic waves for the given pump wave and plasma conditions. We apply the dispersion relation to plasma parameters, typical for low-beta collisionless solar wind close to the Sun. We compare the analytical solutions to the linear stage of hybrid numerical simulations and discuss the application of the model to the problems of preferential heating and differential acceleration of minor ions in the solar corona and the fast solar wind. The results of this study provide tools for prediction and interpretation of the magnetic field and particles data as expected from the future Solar Orbiter and Solar Probe Plus missions.
Spacecraft potential effects on the Dynamics Explorer 2 satellite
NASA Technical Reports Server (NTRS)
Anderson, P. C.; Hanson, W. B.; Coley, W. R.; Hoegy, W. R.
1994-01-01
The relationship between the plasma environment and spacecraft potential is examined for the Dynamics Explorer 2 (DE 2) spacecraft in an attempt to improve the accuracy of ion drift measurements by the retarding potential analyzer (RPA). Because of the DE 2 orbit characteristics (apogee near 1000 km and perigee near 300 km) and the configuration of conducting surfaces on the spacecraft, thermal electrons and ions constituted the only significant contributions to the charging currents to the spacecraft surface for the majority of geophysical conditions encountered. The geomagnetic field had considerable effect on the spacecraft potential due to magnetic field confinement of the electrons as well as to the V x B electric field resulting from the movement of the spacecraft across magnetic field lines. Using a database of inferred spacecraft potentials from the RPA, measured electron temperatures from the Langmuir probe (LANG), and calculated V x B electric fields, we derive an algorithm for determining the spacecraft potential (at the location of the RPA on the spacecraft) for any point of the DE 2 orbit. Knowledge of the spacecraft potential subsequently allows us to retrieve relatively accurate ion drifts from the RPA data.
Lew, V L; Freeman, C J; Ortiz, O E; Bookchin, R M
1991-01-01
We developed a mathematical model of the reticulocyte, seeking to explain how a cell with similar volume but much higher ionic traffic than the mature red cell (RBC) regulates its volume, pH, and ion content in physiological and abnormal conditions. Analysis of the fluxbalance required by reticulocytes to conserve volume and composition predicted the existence of previously unsuspected Na(+)-dependent Cl- entry mechanisms. Unlike mature RBCs, reticulocytes did not tend to return to their original state after brief perturbations. The model predicted hysteresis and drift in cell pH, volume, and ion contents after transient alterations in membrane permeability or medium composition; irreversible cell dehydration could thus occur by brief K+ permeabilization, transient medium acidification, or the replacement of external Na+ with an impermeant cation. Both the hysteresis and drift after perturbations were shown to depend on the pHi dependence of the K:Cl cotransport, a major reticulocyte transporter. This behavior suggested a novel mechanism for the generation of irreversibly sickled cells directly from reticulocytes, rather than in a stepwise, progressive manner from discocytes. Experimental tests of the model's predictions and the hypothesis are described in the following paper. PMID:1985088
NASA Technical Reports Server (NTRS)
Cartier, S. L.; Dangelo, N.; Merlino, R. L.
1986-01-01
A laboratory study related to energetic upstreaming ions in the ionosphere-magnetosphere system is described. The experiment was carried out in a cesium Q machine plasma with a region of nonuniform magnetic field. Electrostatic ion cyclotron waves were excited by drawing an electron current to a small biased exciter electrode. In the presence of the instability, ions are heated in the direction perpendicular to B. Using a gridded retarding potential ion energy analyzer, the evolution of the ion velocity distribution was followed as the ions passed through the heating region and subsequently flowed out along the diverging B field lines. As expected, the heated ions transfer their energy from perpendicular to parallel motion as they move through the region of diverging B field. Both their parallel thermal energy and the parallel drift energy increase at the expense of the perpendicular energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, J.W.; Arbelaez, D.; Bieniosek, F.M.
The Heavy Ion Fusion Science Virtual National Laboratory in the USA is constructing a new Neutralized Drift Compression eXperiment (NDCX-II) at LBNL. This facility is being developed for high energy density physics and inertial fusion energy research. The 12 m long induction linac in NDCX-II will produce a Li{sup +} beam pulse, at energies of 1.2-3 MeV, to heat target material to the warm dense matter regime ({approx} 1 eV). By making use of special acceleration voltage waveforms, 2.5T solenoid focusing, and neutralized drift compression, 20 - 50 nC of beam charge from the ion source will be compressed longitudinallymore » and radially to achieve a subnanosecond pulse length and mm-scale target spot size. The original Neutralized Drift Compression Experiment (NDCX-I) has successfully demonstrated simultaneous radial and longitudinal compression by imparting a velocity ramp to the ion beam, which then drifts in a neutralizing plasma to and through the final focussing solenoid and onto the target. At higher kinetic energy and current, NDCX-II will offer more than 100 times the peak energy fluence on target of NDCX-I. NDCX-II makes use of many parts from the decommissioned Advanced Test Accelerator (ATA) at LLNL. It includes 27 lattice periods between the injector and the neutralized drift compression section (Figure 1). There are 12 energized induction cells, 9 inactive cells which provide drift space, and 6 diagnostic cells which provide beam diagnostics and pumping. Custom pulsed power systems generate ramped waveforms for the first 7 induction cells, so as to quickly compress the beam from 600 ns at the injector down to 70 ns. After this compression, the high voltages of the ATA Blumleins are then used to rapidly add energy to the beam. The Blumleins were designed to match the ferrite core volt-seconds with pulses up to 250 kV and a fixed FWHM of 70 ns. The machine is limited to a pulse repetition rate of once every 20 seconds due to cooling requirements. The NDCX-II beam is highly space-charge dominated. The 1-D ASP code was used to synthesize high voltage waveform for acceleration, while the 3-D Warp particle-in-cell code was used for detailed design of the lattice. The Li{sup +} ion was chosen because its Bragg Peak energy (at {approx} 2 MeV) coincides with the NDCX-II beam energy. The 130 keV injector will have a 10.9 cm diameter ion source. Testing of small (0.64 cm diameter) lithium doped alumino-silicate ion sources has demonstrated the current density ({approx} 1 mA/cm{sup 2}) used in the design, with acceptable lifetime. A 7.6 cm diameter source has been successfully produced to verify that the coating method can be applied to such a large emitting area. The ion source will operate at {approx} 1275 C; thus a significant effort was made in the design to manage the 4 kW heating power and the associated cooling requirements. In modifying the ATA induction cells for NDCX-II, the low-field DC solenoids were replaced with 2.5 T pulsed solenoids. The beam pipe diameter was decreased in order to reduce the axial extent of the solenoid fringe fields and to make room for water cooling. In addition, an outer copper cylinder (water-cooled) was used to exclude the solenoid magnetic flux from the ferrite cores. Precise alignment is essential because the beam has a large energy spread due to the rapid pulse compression, such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. A novel pulsed-wire measurement method is used to align the pulsed solenoid magnets. Alignment accuracy has been demonstrated to within 100 {micro}m of the induction cell axis. The neutralized drift compression region after the last induction cell is approximately 1.2 m long and includes ferroelectric plasma sources (FEPS) fabricated by PPPL similar to those successfully operating in NDCX-I. The 8-T final focus pulsed solenoid, filtered cathodic arc plasma sources (FCAPS), and target chamber from NDCX-I are to be relocated to NDCX-II. The NDCX-II project started in July 2009 and is expected to complete in fall of 2011. As future funds become available, additional induction cells and pulsed power systems will be added to increase the beam energy.« less
Microdefects and self-interstitial diffusion in crystalline silicon
NASA Astrophysics Data System (ADS)
Knowlton, William Barthelemy
In this thesis, a study is presented of D-defects and self-interstitial diffusion in silicon using Li ion (Lisp+) drifting in an electric field and transmission electron microscopy (TEM). Obstruction of Lisp+ drifting has been found in wafers from certain but not all FZ p-type Si. Incomplete Lisp+ drifting always occurs in the central region of the wafers. This work established that interstitial oxygen is not responsible for hindering Lisp+ drifting. The Osb i concentration was measured ({˜}2× 10sp{15}\\ cmsp{-3}) by local vibrational mode Fourier transform infrared spectroscopy and did not vary radially across the wafer. TEM was performed on a samples from the partially Lisp+ drifted area and compared to regions without D-defects. Precipitates were found only in the region containing D-defects that had partially Lisp+ drifted. This result indicates D-defects are responsible for the precipitation that halts the Lisp+ drift process. The precipitates were characterized using selected area diffraction (SAD) and image contrast analysis. The results suggested that the precipitates may cause stacking faults and their identity may be lithium silicides such as Lisb{21}Sisb5\\ and\\ Lisb{13}Sisb4. TEM revealed a decreasing distribution of Li precipitates as a function of Lisp+ drift depth along the growth direction. A preliminary model is presented that simulates Lisp+ drifting. The objective of the model is to incorporate the Li precipitate density distribution and Lisp+ drift depth to extract the size and capture cross-section of the D-defects. Nitrogen (N) doping has been shown to eliminate D-defects as measured by conventional techniques. However, Lisp+ drifting has shown that D-defects are indeed still present. Lisp+ drifting is able to detect D-defects at concentrations lower than conventional techniques. Lisp+ drifting and D-defects provide a useful means to study Si self-interstitial diffusion. The process modeling program SUPREM-IV was used to simulate the results of Si self-interstitial diffusion obtained from Lisp+ drifting experiments. Anomalous results from the Si self-interstitial diffusion experiments forced a re-examination of the possibility of thermal dissociation of D-defects. Thermal annealing experiments that were performed support this possibility. A review of the current literature illustrates the need for more research on the effects of thermal processing on FZ Si to understand the dissolution kinetics of D-defects.
Micro faraday-element array detector for ion mobility spectroscopy
Gresham, Christopher A [Albuquerque, NM; Rodacy, Phillip J [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger [Tucson, AZ
2004-10-26
An ion mobility spectrometer includes a drift tube having a collecting surface covering a collecting area at one end of the tube. The surface comprises a plurality of closely spaced conductive elements on a non-conductive substrate, each conductive element being electrically insulated from each other element. A plurality of capacitive transimpedance amplifiers (CTIA) adjacent the collecting surface are electrically connected to the plurality of elements, so charge from an ion striking an element is transferred to the capacitor of the connected CTIA. A controller counts the charge on the capacitors over a period of time.
NASA Astrophysics Data System (ADS)
Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team
2008-07-01
Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.
Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations
Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.; ...
2016-01-11
The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolationmore » and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. Lastly, we observed a linear increase in ion intensity with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.« less
NASA Technical Reports Server (NTRS)
Brekke, A.; Doupnik, J. R.; Banks, P. M.
1974-01-01
Auroral zone E-region neutral winds have been derived from simultaneous measurements of ion drift velocities in different altitudes by the incoherent radar facility at Chatanika, Alaska, on a quiet day before and during the great magnetospheric storm of Aug. 3-9, 1972. The neutral wind expected for a day-night pressure asymmetry appears to be strongly opposed by ion drag and local pressure gradients in the auroral oval.
HILT - A heavy ion large area proportional counter telescope for solar and anomalous cosmic rays
NASA Technical Reports Server (NTRS)
Klecker, Berndt; Hovestadt, Dietrich; Scholer, M.; Arbinger, H.; Ertl, M.; Kaestle, H.; Kuenneth, E.; Laeverenz, P.; Seidenschwang, E.; Blake, J. B.
1993-01-01
The HILT sensor has been designed to measure heavy ion elemental abundances, energy spectra, and direction of incidence in the mass range from He to Fe and in the energy range 4 to 250 MeV/nucleon. With its large geometric factor of 60 sq cm sr the sensor is optimized to provide compositional and spectral measurements for low intensity cosmic rays (i.e. for small solar energetic particle events and for the anomalous component of cosmic rays). The instrument combines a large area ion drift chamber-proportional counter system with two arrays of 16 Li-drift solid state detectors and 16 CsI crystals. The multi dE/dx-E technique provides a low background mass and energy determination. The sensor also measures particle direction. Combining these measurements with the information on the spacecraft position and attitude in the low-altitude polar orbit, it will be possible to infer the ionic charge of the ions from the local cutoff of the Earth's magnetic field. The ionic charge in this energy range is of particular interest because it provides unique clues to the origin of these particles and has not been investigated systematically so far. Together with the other instruments on board SAMPEX (LEICA, MAST, and PET), a comprehensive measurement of the entire solar and anomalous particle population will be achieved.
Two-fluid flowing equilibria of spherical torus sustained by coaxial helicity injection
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Steinhauer, Loren; Nagata, Masayoshi
2007-11-01
Two-dimensional equilibria in helicity-driven systems using two-fluid model were previously computed, showing the existence of an ultra-low-q spherical torus (ST) configuration with diamagnetism and higher beta. However, this computation assumed purely toroidal ion flow and uniform density. The purpose of the present study is to apply the two-fluid model to the two-dimensional equilibria of helicity-driven ST with non-uniform density and both toroidal and poloidal flows for each species by means of the nearby-fluids procedure, and to explore their properties. We focus our attention on the equilibria relevant to the HIST device, which are characterized by either driven or decaying λ profiles. The equilibrium for the driven λ profile has a diamagnetic toroidal field, high-β (βt = 32%), and centrally broad density. By contrast, the decaying equilibrium has a paramagnetic toroidal field, low-β (βt = 10%), and centrally peaked density with a steep gradient in the outer edge region. In the driven case, the toroidal ion and electron flows are in the same direction, and two-fluid effects are less important since the ExB drift is dominant. In the decaying case, the toroidal ion and electron flows are opposite in the outer edge region, and two-fluid effects are significant locally in the edge due to the ion diamagnetic drift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, F.M.
1993-12-31
The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in term of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the thirteenth quarter, wet oxidation tests were done on coal samples from the Pennsylvania State Coal Bank. As-received and oxidized coal samples were studied bymore » Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy to detect functional groups that might be responsible for changing the hydrophobicity of coal samples. Coal samples from the Pennsylvania State Coal Bank were oxidized for 5 hours at room temperature using 10% H{sub 2}O{sub 2} at pH 1.0, 1.0 M HNO{sub 3} or 0.05 M Fe{sub 2}(SO{sub 4}){sub 3} at pH 1.0. Details of the experimental procedure used in the wet oxidation tests were provided in our September 30, 1993 report, along with results of ion-exchange analysis and film flotation tests on as-received and oxidized coal samples. Table II shows the weight percentage of carboxylic and phenolic group oxygen generated by oxidation with different treatments, as determined by ion-exchange. DRIFT spectroscopic analysis was done on as-received and oxidized samples to identify different functionalities directly, to supplement the information on carboxylic and phenolic groups obtained indirectly by ion-exchange methods. The procedure for DRIFT analysis was reported in our June 30, 1993 report.« less
Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.
Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J
2011-12-28
We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase measurements to be correlated to biomolecular structures in solution, low charge state ions should be analyzed. Further, to determine if different solution conditions give rise to ions of different structure, ions of similar charge state should be compared. Non-denatured protein ion densities are found to be in excellent agreement with non-denatured protein ion densities inferred from prior DMA and drift tube measurements made without charge reduction (all ions with densities in the 0.85-1.10 g cm(-3) range), showing that these ions are not strongly influenced by Coulombic stretching nor by analysis method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuomo, J.J.; Rossnagel, S.M.; Kaufman, H.R.
The work presented in this book deals with ion beam processing for basic sputter etching of samples, for sputter deposition of thin films, for the synthesis of material in thin form, and for the modification of the properties of thin films. The ion energy range covered is from a few tens of eV to about 10,000 eV, with primary interest in the range of about 20 to 1-2 keV, where implantation of the incident ion is a minor effect. Of the types of ion sources and devices available, this book examines principally broad beam ion sources, characterized by high fluxesmore » and large work areas. These sources include the ECR ion source, the Kaufman-type single- and multiple-grid sources, gridless sources such as the Hall effect or closed-drift source, and hydrid sources such as the ionized cluster beam system.« less
NASA Technical Reports Server (NTRS)
Voss, H. D.; Smith, L. G.
1974-01-01
An explanation was developed for the formation, near midnight at midlatitudes, of a broad electron density layer extending approximately from 120 to 180 km and usually referred to as the intermediate E layer. The responsible mechanism is believed to be the converging vertical ion drifts resulting from winds of the solar semidiurnal tide. Numerical solutions of the continuity equation appropriate to the intermediate layer is described for particular models of ion drift, diffusion coefficents, and ionization production. Analysis of rocket observations of the layer show that the ionization rate is highly correlated with the planetary geomagnetic index, K sub p. Particle flux measurements support the idea that energetic electrons are the principal source of this ionization. A semiconductor spectrometer experiment for investigation of the particle flux, spectrum, and angular properties was designed and successfully flown on a Nike Apache rocket. A detailed description of the theory, design, and calibration of the experiment and some preliminary results presented.
NASA Astrophysics Data System (ADS)
Schmitz, L.; Ruskov, E.; Deng, B. H.; Binderbauer, M.; Tajima, T.; Gota, H.; Tuszewski, M.
2016-03-01
Control of radial particle and thermal transport is instrumental for achieving and sustaining well-confined high-β plasma in a Field-Reversed Configuration (FRC). Radial profiles of low frequency ion gyro-scale density fluctuations (0.5≤kρs≤40), consistent with drift- or drift-interchange modes, have been measured in the scrape-off layer (SOL) and core of the C-2 Field-Reversed Configuration (FRC), together with the toroidal E×B velocity. It is shown here that axial electrostatic SOL biasing controls and reduces gyro-scale density fluctuations, resulting in very low FRC core fluctuation levels. When the radial E×B flow shearing rate decreases below the turbulence decorrelation rate, fluctuation levels increase substantially, concomitantly with onset of the n=2 instability and rapid loss of diamagnetism. Low turbulence levels, improved energy/particle confinement and substantially increased FRC life times are achieved when E×B shear near the separatrix is maintained via axial SOL biasing using an annular washer gun.
MMS Multipoint Electric Field Observations of Small-Scale Magnetic Holes
NASA Technical Reports Server (NTRS)
Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnus, Werner
2016-01-01
Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earths magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (p(sib i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.
Transport of light, trace impurities in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Rowan, W. L.; Bespamyatnov, I. O.; Liao, K. T.; Horton, W.; Fu, X. R.; Hughes, J. W.
2012-10-01
Light impurity profiles for boron were measured in ITB, H-mode, L-mode, and I-mode discharges in Alcator C-Mod. Within this wide range of modes, the profiles varied from peaked to hollow to flat. Specifically, hollow profiles are often observed in H-mode, while ITBs produce strong peaking, and L-mode produces moderate peaking. I-mode discharges are characterized by flat impurity profiles. For the study reported here, the profiles were measured with charge exchange recombination spectroscopy. The dependences of Rv/D were sought on dimensionless quantities including ion density scale length, effective charge, collisionality, and temperature scale length. We find that neoclassical transport consistently underestimates the measured transport. The excess measured transport is assumed to be turbulent. The strongest dependence of Rv/D is with temperature scale length. In addition, the measured transport was compared with the prediction of an analytical theory of drift wave turbulence that identifies transport implications for drift waves driven by ion and impurity density gradients.
A Comparison of Swarm Cross-Track Ion-Drifts and SuperDARN Line-of-Sight Velocities
NASA Astrophysics Data System (ADS)
Koustov, A. V.; Lavoie, D. B.; Kouznetsov, A.; Burchill, J. K.; Knudsen, D. J.
2017-12-01
Cross-track ion drifts measured by the Swarm-A satellite are compared with line-of-sight SuperDARN HF velocities in approximately the same directions. More than 200 Swarm-A passes over four polar cap SuperDARN radars in the northern and southern hemispheres are considered. Overall, the radar velocities are found to be smaller than the Swarm-derived velocities with the slope of the best linear fit line on the order of 0.5. Such relationship is in effect only for points with good quality of measurements by both instruments. In a number of cases, disagreements not only in the magnitude but also in the direction of the velocity are found. Potential reasons for disagreements are discussed. The comparison implies that Swarm cross-track velocity data are often compatible with those from SuperDARN radars and thus can be used for research. However, a careful examination of each piece of Swarm data is still highly desirable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; De Monte, V.; Di Lieto, A.
In the LEReC Cooling Section (CS) the RHIC ions are traveling together with and getting cooled by the LEReC electrons. The required cooling rate sets the limit of 150 urad on tolerable angles of the electrons in the CS. One of the components of overall electron angle is the angle of the e-beam trajectory with respect to the ion beam trajectory. We set the limit for electron trajectory angle to 100 urad. It is critical for preserving small trajectory angle to keep the transverse magnetic field inside the CS drifts within +/- 2.3 mG. The drifts in the CS mustmore » be shielded from the ambient magnetic fields of the RHIC tunnel, which can be as high as 0.5 G, to minimize the transverse field inside the CS vacuum chamber. In this paper we present the final design of the magnetic shielding of the LEReC CS and discuss the results of tests dedicated to studies of the shielding effectiveness.« less
NASA Astrophysics Data System (ADS)
Baker, J. B.; Greenwald, R. A.; Yin, Y.; Ruohoniemi, J. M.; Clausen, L.; Frissell, N. A.; Ribeiro, A. J.
2009-12-01
The Super Dual Auroral Radar Network (SuperDARN) provides continuous Doppler measurements of ionospheric plasma convection over extended spatial scales with high temporal resolution. First generation SuperDARN radars were constructed at magnetic latitudes near 60 degrees to optimize coverage during periods of moderate geomagnetic activity. In recent years there has been an expansion of the network to middle latitudes to increase coverage during enhanced geomagnetic activity, such as during magnetic storms. In this paper we present measurements of prompt penetration electric fields and sub-auroral ion drift (SAID) events observed by the Wallops and Blackstone radars at middle latitudes. Together, these two radars provide a capability to continuously examine the temporal evolution of these features over an extended local time sector. We present case studies and statistical results showing that transient sub-auroral flow enhancements occur over a wide range of magnetospheric disturbance levels and are often highly correlated with activity at higher latitudes.
Low-latitude zonal and vertical ion drifts seen by DE 2
NASA Technical Reports Server (NTRS)
Coley, W. R.; Heelis, R. A.
1989-01-01
Horizontal and vertical ion drift data from the DE 2 spacecraft have been used to determine average zonal and vertical plasma flow (electric field) characteristics in the +/- 26-deg dip latitude region during a time of high solar activity. The 'average data' local time profile for an apex height bin centered at 400 km indicates westward plasma flow from 0600 to 1900 solar local time ((SLT) with a maximum westward velocity of 80 m/s in the early afternoon. There is a sharp change to eastward flow at approximately 1900 hours with an early evening peak of 170 m/s. A secondary nighttime maximum exists at 0430 SLT preceeding the reversal to westward flow. This profile is in good agreement with Jicamarca, Peru, radar measurements made under similar solar maximum conditions. Haramonic analysis indicates a net superrotation which is strongest at lower apex altitudes. The diurnal term is dominant, but higher order terms through the quatradiurnal are significant.
Plasma Heating and Flow in an Auroral Arc
NASA Technical Reports Server (NTRS)
Moore, T. E.; Chandler, M. O.; Pollock, C. J.; Reasoner, D. L.; Arnoldy, R. L.; Austin, B.; Kintner, P. M.; Bonnell, J.
1996-01-01
We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of 0(+), He(+), and H(+), as well as tail heating events that occur independently of the core heating. The 0(+) velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that arc not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H(+) and He(+), and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.
Conceptional design of a heavy ion linac injector for HIRFL-CSRm
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Hu; Yuan, You-Jin; Xia, Jia-Wen; Yin, Xue-Jun; Du, Heng; Li, Zhong-Shan
2014-10-01
A room temperature heavy ion linac has been proposed as a new injector of the main Cooler Storage Ring (CSRm) at the Heavy Ion Research Facility in Lanzhou (HIRFL), which is expected to improve the performance of HIRFL. The linac injector can supply heavy ions with a maximum mass to charge ratio of 7 and an injection kinetic energy of 7.272 MeV/u for CSRm; the pulsed beam intensity is 3 emA with the duty factor of 3%. Compared with the present cyclotron injector, the Sector Focusing Cyclotron (SFC), the beam current from linac can be improved by 10-100 times. As the pre-accelerator of the linac, the 108.48 MHz 4-rod Radio Frequency Quadrupole (RFQ) accelerates the ion beam from 4 keV/u to 300 keV/u, which achieves the transmission efficiency of 95.3% with a 3.07 m long vane. The phase advance has been taken into account in the analysis of the error tolerance, and parametric resonances have been carefully avoided by adjusting the structure parameters. Kombinierte Null Grad Struktur Interdigital H-mode Drift Tube Linacs (KONUS IH-DTLs), which follow the RFQ, accelerate ions up to the energy of 7.272 MeV/u for CSRm. The resonance frequency is 108.48 MHz for the first two cavities and 216.96 MHz for the last 5 Drift Tube Linacs (DTLs). The maximum accelerating gradient can reach 4.95 MV/m in a DTL section with the length of 17.066 m, and the total pulsed RF power is 2.8 MW. A new strategy, for the determination of resonance frequency, RFQ vane voltage and DTL effective accelerating voltage, is described in detail. The beam dynamics design of the linac will be presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Barnard, J J; Briggs, R J
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity 'tilt' to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energymore » (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates an {approx} 30 nC pulse of Li{sup +} ions to {approx} 3 MeV, then compresses it to {approx} 1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.« less
NASA Astrophysics Data System (ADS)
Burchill, Johnathan Kerr
Low-energy (Ek ˜ 10-1--10 1 eV) ions comprise the bulk of Earth's ionosphere, and represent the initial stages of ion heating and outflow from Earth's auroral regions. The suprathermal ion imager (SII) is a fast (˜93 images/sec), compact, two-dimensional ion energy (0 < Ek < 20 eV) and direction-of-arrival analyzer designed to observe the energy distributions of these ions in detail, with emphasis on exploring small-scale (˜10--100 m) structure in the ionosphere. The SII was flown into an auroral substorm on the GEODESIC sounding rocket from Poker Flat, Alaska, on 26 February 2000. The technical element of this thesis deals with the development of a computer model of the SII, and techniques for extracting and interpreting physical quantities from the SII observations. Laboratory and in-flight calibrations demonstrate that the analyzer imaging capability departs from the ideal model. Nevertheless, the SII represents a technological step forward, and has yielded new scientific results. The scientific element of this thesis focuses on simultaneous observations of ion energy distributions and low-frequency plasma waves in the topside (500--1000 km) auroral ionosphere. GEODESIC encountered three types of plasma wave which have previously been associated with ion heating. However, heated ions were only observed in association with localized density depletions and wave enhancements known as lower-hybrid solitary structures (LHSS). Approximately 90% of the LHSS ion number density is comprised of the ambient isotropic sub-eV core population. The remaining 10% corresponds to transverse acceleration of ions (TAI) to within 5° transverse to the geomagnetic field and to mean energies up to 5--10 eV, consistent with previous findings. Contrary to previously published observations, the GEODESIC TAI is consistent with localized bulk heating of some of the ambient core. Ion heating was not observed in association with large-scale (>1 km) broadband extremely low frequency (BB ELF) wave enhancements. Similarly, no ion heating was detected in the presence of large amplitude, short perpendicular wavelength Alfven waves. Differences between low-frequency ion flow fluctuations and convection drift fluctuations can be explained only partially by ion polarization drift physics.
Kim, Jinok; Yoo, Gwangwe; Park, Jin; Park, Jin-Hong
2018-09-01
We investigated the effect of an electric field-based post exposure bake (EF-PEB) process on photoacid diffusion and pattern formation. To investigate the control of photoacid diffusion experimentally, the EF-PEB processes was performed at various temperatures. Cross sectional images of various EF-PEB processed samples were obtained by scanning electron microscopy (SEM) after ion beam milling. In addition, we conducted a numerical analysis of photoacid distribution and diffusion with following Fick's second law and compared the experimental results with our theoretical model. The drift distance was theoretically predicted by multiplying drift velocity and EF-PEB time, and the experimental values were obtained by finding the difference in pattern depths of PEB/EFPEB samples. Finally, an EF-PEB temperature of 85 °C was confirmed as the optimum condition to maximize photoacid drift distance using the electric field.
Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi
2016-10-01
The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
Fabrication of large area Si cylindric drift detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, W.; Kraner, H.W.; Li, Z.
1993-04-01
Advanced Si drift detector, a large area cylindrical drift detector (CDD), processing steps, with the exception of the ion implantation, were carried out in the BNL class 100 cleanroom. The double-side planer process technique was developed for the fabrication of CDD. Important improvements of the double-side planer process in this fabrication are the introduction of Al implantation protection mask and the remaining of a 1000 Angstroms oxide layer in the p-window during the implantation. Another important design of the CDD is the structure called ``river,`` which ,allows the current generated on Si-SiO{sub 2} interface to ``flow`` into the guard anode,more » and thus can minimize the leakage current at the signed anode. The test result showed that most of the signal anodes have the leakage current about 0.3 nA/cm{sup 2} for the best detector.« less
Dong, Ge; Bao, Jian; Bhattacharjee, Amitava; ...
2017-08-10
The compressional component of magnetic perturbation δB- || to can play an important role in drift-Alfvenic instabilities in tokamaks, especially as the plasma β increases (β is the ratio of kinetic pressure to magnetic pressure). In this work, we have formulated a gyrokinetic particle simulation model incorporating δB- ||, and verified the model in kinetic Alfven wave simulations using the Gyrokinetic Toroidal Code in slab geometry. Simulations of drift-Alfvenic instabilities in tokamak geometry shows that the kinetic ballooning mode (KBM) growth rate decreases more than 20% when δB- || is neglected for β e = 0.02, and that δB- ||more » to has stabilizing effects on the ion temperature gradient instability, but negligible effects on the collisionless trapped electron mode. Lastly, the KBM growth rate decreases about 15% when equilibrium current is neglected.« less
NASA Astrophysics Data System (ADS)
Lejosne, Solène; Mozer, F. S.
2017-09-01
We examine a characteristic feature of the magnetosphere-ionosphere coupling, namely, the persistent and latitudinally narrow bands of rapid westward ion drifts called the subauroral polarization streams (SAPS). Despite countless works on SAPS, information relative to their durations is lacking. Here we report on the first statistical analysis of more than 200 near-equatorial SAPS observations based on more than 2 years of Van Allen Probe electric drift measurements. First, we present results relative to SAPS radial locations and amplitudes. Then, we introduce two different ways to estimate SAPS durations. In both cases, SAPS activity is estimated to last for about 9 h on average. However, our estimates for SAPS duration are limited either by the relatively long orbital periods of the spacecraft or by the relatively small number of observations involved. Fifty percent of the events fit within the time interval [0;18] hours.
Titan's ion exosphere observed from Voyager 1
NASA Technical Reports Server (NTRS)
Hartle, R. E.; Sittler, E. C., Jr.; Ogilvie, K. W.; Scudder, J. D.; Lazarus, A. J.; Atreya, S. K.
1982-01-01
The plasma wake surrounding Titan in Saturn's rotating magnetosphere is characterized by a plasma which is denser and cooler than the surrounding subsonic magnetospheric plasma, and which is produced by the deflection of magnetospheric plasma around Titan and the addition of exospheric ions picked up by the rotating magnetosphere. A resemblance to the interaction between the solar wind and Venus is shown for the case of ion pickup in the ion exosphere outside Titan's magnetic tail and ion flow within the boundaries of the tail as Saturn's rotating magnetosphere interacts with Titan. The boundary of the tail is indicated by a sharp reduction in the flux of high-energy electrons, which are removed by inelastic scattering with the atmosphere and centrifugal drift produced when the electrons traverse the magnetic field draped around Saturn.
Pioneer Venus Orbiter planar retarding potential analyzer plasma experiment
NASA Technical Reports Server (NTRS)
Knudsen, W. C.; Bakke, J.; Spenner, K.; Novak, V.
1980-01-01
The retarding potential analyzer (RPA) on the Pioneer Venus Orbiter Mission measures most of the thermal plasma parameters within and near the Venusian ionosphere. Parameters include total ion concentration, concentrations of the more abundant ions, ion temperatures, ion drift velocity, electron temperature, and low-energy (0-50 eV) electron distribution function. Several functions not previously used in RPA's were developed and incorporated into this instrument to accomplish these measurements on a spinning spacecraft with a small bit rate. The more significant functions include automatic electrometer ranging with background current compensation; digital, quadratic retarding potential step generation for the ion and low-energy electron scans; a current sampling interval of 2 ms throughout all scans; digital logic inflection point detection and data selection; and automatic ram direction detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovaleva, I. Kh.
2012-10-15
In this paper, we consider theoretically nonlinear ion-cyclotron gradient-drift dissipative structures (oscillitons) in low ionospheric plasmas. Similar to Nonlinear Optics and Condensed Matter Physics, the Ginzburg-Landau equation for the envelope of electric wave fields is derived, and solutions for oscillitons in the form of solitons with chirp are examined. The whole dissipative structure constitutes a soliton with a moving charge-neutral density hump. Conditions for excitation and properties of the structures are considered.
Effect of electron-to-ion mass ratio on radial electric field generation in tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenqian; Dong, Jiaqi; Sheng, Zhengmao
Generation of coherent radial electric fields in plasma by drift-wave turbulence driven by plasma inhomogeneities is ab initio studied using gyro-kinetic particle simulation for conditions of operational tokamaks. In particular, the effect of the electron-to-ion mass ratio epsilon on the entire evolution of the plasma is considered. In conclusion, it is found that the electric field can be increased, and the turbulence-induced particle transport reduced, by making epsilon smaller, in agreement with many existing experimental observations.
Effect of electron-to-ion mass ratio on radial electric field generation in tokamak
Li, Zhenqian; Dong, Jiaqi; Sheng, Zhengmao; ...
2017-11-21
Generation of coherent radial electric fields in plasma by drift-wave turbulence driven by plasma inhomogeneities is ab initio studied using gyro-kinetic particle simulation for conditions of operational tokamaks. In particular, the effect of the electron-to-ion mass ratio epsilon on the entire evolution of the plasma is considered. In conclusion, it is found that the electric field can be increased, and the turbulence-induced particle transport reduced, by making epsilon smaller, in agreement with many existing experimental observations.
Control Infrastructure for a Pulsed Ion Accelerator
NASA Astrophysics Data System (ADS)
Persaud, A.; Regis, M. J.; Stettler, M. W.; Vytla, V. K.
2016-10-01
We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.
Control Infrastructure for a Pulsed Ion Accelerator
Persaud, A.; Regis, M. J.; Stettler, M. W.; ...
2016-07-27
We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.
Comprehensive mass spectrometric analysis of novel organic semiconductor molecules
NASA Astrophysics Data System (ADS)
Prada, Svitlana
This work presents a comprehensive mass spectrometry (MS) study of novel organic semiconductor molecules including ion mobility/reactivity measurements and trace elemental analysis. The organic molecules investigated here are important semiconductor materials for molecular electronic devices such as Organic Field-Effect Transistors (OFETs) and Light Emitted Diodes (LED). A high-performance orthogonal time-of flight mass spectrometer (TOF-MS) in combination with a matrix assisted laser desorption/ionization (MALDI) source operating at elevated pressure was used to perform MALDI/TOF analyses of pentacene and some of its derivatives with and without an added matrix. The observation of ion-molecule reactions between "cold" analyte ions and neutral analyte molecules in the gas phase has provided some insight into the mechanism of pentacene cluster formation and its functionalized derivatives. Furthermore, some of the matrices employed to assist the desorption/ionization process of these compounds were observed to influence the outcome via ion-molecule reactions of analyte ions and matrix molecules in the gas phase. The stability and reactivity of the compounds and their clusters in the MALDI plume during gas-phase expansion were evaluated; possible structures of the resulting clusters are discussed. The MALDI/TOF technique was also helpful in distinguishing between two isomeric forms of bis-[(triisopropylsilyl)-ethynyl]-pentacene. Furthermore, we reported ion mobility measurements of functionalized pentacene ions with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions for a prolong period of time. These capabilities were successfully employed in the measurement of ion mobilities in different modes of the IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully implemented. The contribution of the quadrupole RF field to the drift dynamics also was taken into consideration. The IMR was successfully employed in the ion-molecule reactions study of four functionalized pentacene derivatives such as TIPS, o-TIPS, 6,13-bis-[(triisopropylsilyl)-ethynyl]-pentacene-2,3-dicarbonitrile (TIPS(CN)2), and 6,13-bis-[(triisopropylsilyl)-ethynyl]-pentacene-2,3,9,10-tetracarbonitrile (TIPS(CN)4). Details of the IMR operation in this mode are extensively discussed. The purity of the starting material is one of the most important parameters for the fabrication of a molecular electronic device. We report the method of determination of trace elemental impurities (Li, Na, Al, Mg, Be, Pb, Mn, Co, Ti, Sn, Cu, Cr, V, Zn, Fe, Ca, K and Ni) in organic semiconductor materials, such as Tetracene, Anthracene, Pentacene, TIPS and Rubrene, using an inductively coupled plasma quadrupole mass spectrometer (ICP-MS) fitted with a dynamic reaction cell (DRC). The determination of Fe, Ca, K and Ni in the organic semiconductor materials was carried out using NH3 as a reaction gas in the DRC mode to obviate the effect of polyatomic isobaric interferences. The other trace elements such as Li, Na, Al, Mg, Be, Pb, Mn, Co, Ti, Sn, Cu, Cr, V and Zn have been determined under standard operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Ian K.; Garimella, Sandilya V. B.; Tolmachev, Aleksey V.
A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be deflected to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 torr. In the “dynamic mode” we show that mobility-selected ions can be switched intomore » the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. Ultimately, this development also provides the basis for e.g. the selection of specific mobilities for storage and accumulation, and key modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.
The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolationmore » and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. Lastly, we observed a linear increase in ion intensity with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.« less
Modeling and simulation of Cu diffusion and drift in porous CMOS backend dielectrics
NASA Astrophysics Data System (ADS)
Ali, R.; Fan, Y.; King, S.; Orlowski, M.
2018-06-01
With the advent of porous dielectrics, Cu drift-diffusion reliability issues in CMOS backend have only been exacerbated. In this regard, a modeling and simulation study of Cu atom/ion drift-diffusion in porous dielectrics is presented to assess the backend reliability and to explore conditions for a reliable Resistive Random Access Memory (RRAM) operation. The numerical computation, using elementary jump frequencies for a random walk in 2D and 3D, is based on an extended adjacency tensor concept. It is shown that Cu diffusion and drift transport are affected as much by the level of porosity as by the pore morphology. Allowance is made for different rates of Cu dissolution into the dielectric and for Cu absorption and transport at and on the inner walls of the pores. Most of the complex phenomena of the drift-diffusion transport in porous media can be understood in terms of local lateral and vertical gradients and the degree of their perturbation caused by the presence of pores in the transport domain. The impact of pore morphology, related to the concept of tortuosity, is discussed in terms of "channeling" and "trapping" effects. The simulations are calibrated to experimental results of porous SiCOH layers of 25 nm thickness, sandwiched between Cu and Pt(W) electrodes with experimental porosity levels of 0%, 8%, 12%, and 25%. We find that porous SICOH is more immune to Cu+ drift at 300 K than non-porous SICOH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.
2014-06-15
The diamagnetic drift effects on the low-n magnetohydrodynamic instabilities at the high-mode (H-mode) pedestal are investigated in this paper with the inclusion of bootstrap current for equilibrium and rotation effects for stability, where n is the toroidal mode number. The AEGIS (Adaptive EiGenfunction Independent Solutions) code [L. J. Zheng and M. T. Kotschenreuther, J. Comp. Phys. 211 (2006)] is extended to include the diamagnetic drift effects. This can be viewed as the lowest order approximation of the finite Larmor radius effects in consideration of the pressure gradient steepness at the pedestal. The H-mode discharges at Jointed European Torus is reconstructedmore » numerically using the VMEC code [P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)], with bootstrap current taken into account. Generally speaking, the diamagnetic drift effects are stabilizing. Our results show that the effectiveness of diamagnetic stabilization depends sensitively on the safe factor value (q{sub s}) at the safety-factor reversal or plateau region. The diamagnetic stabilization are weaker, when q{sub s} is larger than an integer; while stronger, when q{sub s} is smaller or less larger than an integer. We also find that the diamagnetic drift effects also depend sensitively on the rotation direction. The diamagnetic stabilization in the co-rotation case is stronger than in the counter rotation case with respect to the ion diamagnetic drift direction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, André; Ni, Pavel; Panjan, Matjaž
2013-09-30
Ion energy distribution functions measured for high power impulse magnetron sputtering show features, such as a broad peak at several 10 eV with an extended tail, as well as asymmetry with respect to E×B, where E and B are the local electric and magnetic field vectors, respectively. Here it is proposed that those features are due to the formation of a potential hump of several 10 V in each of the traveling ionization zones. Potential hump formation is associated with a negative-positive-negative space charge that naturally forms in ionization zones driven by energetic drifting electrons.
Traverse Focusing of Intense Charged Particle Beams with Chromatic Effects for Heavy Ion Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
James M. Mitrani, Igor D. Kaganovich, Ronald C. Davidson
A fi nal focusing scheme designed to minimize chromatic effects is discussed. The Neutralized Drift Compression Experiment-II (NDCX-II) will apply a velocity tilt for longitudinal bunch compression, and a fi nal focusing solenoid (FFS) for transverse bunch compression. In the beam frame, neutralized drift compression causes a suffi ciently large spread in axial momentum, pz , resulting in chromatic effects to the fi nal focal spot during transverse bunch compression. Placing a weaker solenoid upstream of a stronger fi nal focusing solenoid (FFS) mitigates chromatic effects and improves transverse focusing by a factor of approximately 2-4 for appropriate NDCX-II parameters.
The NDCX-II engineering design
NASA Astrophysics Data System (ADS)
Waldron, W. L.; Abraham, W. J.; Arbelaez, D.; Friedman, A.; Galvin, J. E.; Gilson, E. P.; Greenway, W. G.; Grote, D. P.; Jung, J.-Y.; Kwan, J. W.; Leitner, M.; Lidia, S. M.; Lipton, T. M.; Reginato, L. L.; Regis, M. J.; Roy, P. K.; Sharp, W. M.; Stettler, M. W.; Takakuwa, J. H.; Volmering, J.; Vytla, V. K.
2014-01-01
The Neutralized Drift Compression Experiment (NDCX-II) is a user facility located at Lawrence Berkeley National Laboratory which is uniquely designed for ion-beam-driven high energy density laboratory physics and heavy ion fusion research. Construction was completed in March 2012 and the facility is now in the commissioning phase. A significant amount of engineering was carried out in order to meet the performance parameters required for a wide range of target heating experiments while making the most cost-effective use of high-value hardware available from a decommissioned high current electron induction accelerator. The technical challenges and design of this new ion induction accelerator facility are described.
Plasma shape control by pulsed solenoid on laser ion source
NASA Astrophysics Data System (ADS)
Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.
2015-09-01
A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.
NASA Astrophysics Data System (ADS)
Masood, W.; Mirza, Arshad M.
2014-04-01
A set of nonlinear equations governing the dynamics of finite amplitude drift-ion acoustic-waves is derived for sheared ion flows parallel and perpendicular to the ambient magnetic field in the presence of Cairns and Kappa distributed electrons. It is shown that stationary solution of the nonlinear equations can be represented in the form of a tripolar vortex for specific profiles of the equilibrium sheared flows. The tripolar vortices are, however, observed to form on a scale of the order of ion Larmor radius ρ i which is calculated to be around a Kilometer for the plasma parameters found in the Saturn's E-ring. The relevance of the present investigation in planetary environments is also pointed out.
Filament velocity scaling laws for warm ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, P.; Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching; Carralero, D.
2013-10-15
The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevantmore » limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.« less
Plasma shape control by pulsed solenoid on laser ion source
Sekine, M.; Ikeda, S.; Romanelli, M.; ...
2015-05-28
A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled bymore » the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.« less
Leung, Ka-Ngo; Ehlers, Kenneth W.
1984-01-01
An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.
Leung, K.N.; Ehlers, K.W.
1982-08-06
An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.
Leung, K.N.; Ehlers, K.W.
1984-12-04
An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.
Determination of ammonia in ethylene using ion mobility spectrometry
NASA Technical Reports Server (NTRS)
Cross, J. H.; Limero, T. F.; Lane, J. L.; Wang, F.
1997-01-01
A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.
Time-resolved ion imaging at free-electron lasers using TimepixCam.
Fisher-Levine, Merlin; Boll, Rebecca; Ziaee, Farzaneh; Bomme, Cédric; Erk, Benjamin; Rompotis, Dimitrios; Marchenko, Tatiana; Nomerotski, Andrei; Rolles, Daniel
2018-03-01
The application of a novel fast optical-imaging camera, TimepixCam, to molecular photoionization experiments using the velocity-map imaging technique at a free-electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time-stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump-probe experiments, where drifts, for example, in the timing and pulse energy of the free-electron laser, severely limit the comparability of pump-probe scans for different fragments taken consecutively. In principle, this also allows ion-ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.
Evidence for ion heat flux in the light ion polar wind
NASA Technical Reports Server (NTRS)
Biddle, A. P.; Moore, T. E.; Chappell, C. R.
1985-01-01
Cold flowing hydrogen and helium ions have been observed using the retarding ion mass spectrometer on board the Dynamics Explorer 1 spacecraft in the dayside magnetosphere at subauroral latitudes. The ions show a marked flux asymmetry with respect to the relative wind direction. The observed data are fitted by a model of drifting Maxwellian distributions perturbed by a first order-Spritzer-Haerm heat flux distribution function. It is shown that both ion species are supersonic just equatorward of the auroral zone at L = 14, and the shape of asymmetry and direction of the asymmetry are consistent with the presence of an upward heat flux. At L = 6, both species evolve smoothly into warmer subsonic upward flows with downward heat fluxes. In the case of subsonic flows the downward heat flux implies a significant heat source at higher altitudes. Spin curves of the spectrometer count rate versus the spin phase angle are provided.
NASA Astrophysics Data System (ADS)
Akatsuka, Hiroshi; Takeda, Jun; Nezu, Atsushi
2016-09-01
To examine of the effect of the radial electric field on the azimuthal electron motion under E × B field for plasmas with magnetized electrons and non-magnetized ions, an experimental study is conducted by a stationary plasma flow. The argon plasma flow is generated by a DC arc generator under atmospheric pressure, followed by a cw expansion into a rarefied gas-wind tunnel with a uniform magnetic field 0 . 16 T. Inside one of the magnets, we set a ring electrode to apply the radial electric field. We applied an up-down probe for the analysis of the electron motion, where one of the tips is also used as a Langmuir probe to measure electron temperature, density and the space potential. We found that the order of the radial electric field is about several hundred V/m, which should be caused by the difference in the magnetization between electrons and ions. Electron saturation current indicates the existence of the E × B rotation of electrons, whose order is about 2000 - 4000 m/s. The order of the observed electron drift velocity is consistent with the theoretical value calculated from the applied magnetic field and the measured electric field deduced from the space potential.
Localized tearing modes in the magnetotail driven by curvature effects
NASA Technical Reports Server (NTRS)
Sundaram, A. K.; Fairfield, D. H.
1995-01-01
The stability of collisionless tearing modes is examined in the presence of curvature drift resonances and the trapped particle effects. A kinetic description for both electrons and ions is employed to investigate the stability of a two-dimensional equilibrium model. The main features of the study are to treat the ion dynamics properly by incorporating effects associated with particle trajectories in the tail fields and to include the linear coupling of trapped particle modes. Generalized dispersion relations are derived in several parameter regimes by considering two important sublayers of the reconnecting region. For a typical choice of parameters appropriate to the current sheet region, we demonstrate that localized tearing modes driven by ion curvature drift resonance effects are excited in the current sheet region with growth time of the order of a few seconds. Also, we examine nonlocal characteristics of tearing modes driven by curvature effects and show that modes growing in a fraction of a second arise when mode widths are larger than the current sheet width. Further, we show that trapped particle effects, in an interesting frequency regime, significantly enhance the growth rate of the tearing mode. The relevance of this theory for substorm onset phase and other features of the substorms is briefly discussed.
Room-temperature detection of mobile impurities in compound semiconductors by transient ion drift
NASA Astrophysics Data System (ADS)
Lyubomirsky, Igor; Rabinal, M. K.; Cahen, David
1997-05-01
We show that the transient ion drift (TID) method, which is based on recording junction capacitance under constant reverse bias [A. Zamouche, T. Heiser, and A. Mesli, Appl. Phys. Lett. 66, 631 (1995)], can be used not only for measurements of the diffusion coefficient of mobile impurities, but also to estimate the concentration of mobile species as part of the total dopant density. This is illustrated for CdTe, contaminated by Cu, and intentionally doped by Li or Ag and for CuInSe2. We show also that, with some restrictions, the TID method can be used if the mobile ions are major dopants. This is demonstrated using Schottky barriers on CdTe, and p-n junction devices in (Hg,Cd)Te, and CuInSe2. The values that we obtain for the diffusion coefficients (for Li, Ag, and Cu in CdTe and for Cu in CuInSe2) agree well with measured or extrapolated values, obtained by other methods, as reported in the literature. Furthermore, we could distinguish between diffusion and chemical reactions of dopants, as demonstrated for the case of Cu in CdTe and Ag-doped (Hg,Cd)Te. In the former case this allows us to separate copper-free from contaminated CdTe samples.
Development of a new ion mobility time-of-flight mass spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Yehia M.; Baker, Erin S.; Danielson, William F.
2015-02-01
Complex samples require multidimensional measurements with high resolution for full characterization of biological and environmental systems. To address this challenge, we developed a drift tube-based ion mobility spectrometry-Orbitrap mass spectrometry (IMS-Orbitrap MS) platform. To circumvent the timing difference between the fast IMS separation and the slow Orbitrap MS acquisition, we utilized a dual gate and pseudorandom sequence to multiplex ions into the drift tube and Orbitrap. The instrument was designed to operate in signal averaging (SA), single multiplexing (SM) and double multiplexing (DM) IMS modes to fully optimize the signal-to-ratio of the measurements. For the SM measurements, a previously developedmore » algorithm was used to reconstruct the IMS data, while a new algorithm was developed for the DM analyses. The new algorithm is a two-step process that first recovers the SM data from the encoded DM data and then decoded the SM data. The algorithm also performs multiple refining procedures in order to minimize the demultiplexing artifacts traditionally observed in such scheme. The new IMS-Orbitrap MS platform was demonstrated for the analysis of proteomic and petroleum samples, where the integration of IMS and high mass resolution proved essential for accurate assignment of molecular formulae.« less
NASA Astrophysics Data System (ADS)
Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.
2018-06-01
Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.
Energy Coupling During the August 2011 Magnetic Storm (Postprint)
2014-08-27
of the horizontal cross-track plasma drifts in this study. SSM sensors are triaxial fluxgate magnetometers that are mounted on 0.5m booms on the F15...Special Sensor for Ions Electrons and Scintillations (SSIES)). All of the satellites carry magnetometers (Special Sensor for Magnetic Fields (SSM)) to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, F.W.; Sun, Y.C.
1980-11-01
The steady-state solution of the nonlinear Vlasov-Poisson equations is reduced to a nonlinear eigenvalue problem for the case of double-layer (potential drop) boundary conditions. Solutions with no relative electron-ion drifts are found. The kinetic stability is discussed. Suggestions for creating these states in experiments and computer simulations are offered.
Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans.
Harvey, David J; Watanabe, Yasunori; Allen, Joel D; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B
2018-06-01
Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. Graphical Abstract ᅟ.
Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans
NASA Astrophysics Data System (ADS)
Harvey, David J.; Watanabe, Yasunori; Allen, Joel D.; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B.
2018-04-01
Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. [Figure not available: see fulltext.
Garimella, Sandilya V. B; Ibrahim, Yehia M.; Webb, Ian K.; ...
2014-09-26
Here we report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g.more » turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also feasible. Lastly, the performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.« less
ION INJECTION AT QUASI-PARALLEL SHOCKS SEEN BY THE CLUSTER SPACECRAFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johlander, A.; Vaivads, A.; Khotyaintsev, Yu. V.
2016-01-20
Collisionless shocks in space plasma are known to be capable of accelerating ions to very high energies through diffusive shock acceleration (DSA). This process requires an injection of suprathermal ions, but the mechanisms producing such a suprathermal ion seed population are still not fully understood. We study acceleration of solar wind ions resulting from reflection off short large-amplitude magnetic structures (SLAMSs) in the quasi-parallel bow shock of Earth using in situ data from the four Cluster spacecraft. Nearly specularly reflected solar wind ions are observed just upstream of a SLAMS. The reflected ions are undergoing shock drift acceleration (SDA) andmore » obtain energies higher than the solar wind energy upstream of the SLAMS. Our test particle simulations show that solar wind ions with lower energy are more likely to be reflected off the SLAMS, while high-energy ions pass through the SLAMS, which is consistent with the observations. The process of SDA at SLAMSs can provide an effective way of accelerating solar wind ions to suprathermal energies. Therefore, this could be a mechanism of ion injection into DSA in astrophysical plasmas.« less
Ion and impurity transport in turbulent, anisotropic magnetic fields
NASA Astrophysics Data System (ADS)
Negrea, M.; Petrisor, I.; Isliker, H.; Vogiannou, A.; Vlahos, L.; Weyssow, B.
2011-08-01
We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.
NASA Astrophysics Data System (ADS)
Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.
2018-04-01
Using a three-dimensional particle-in-cell simulation, we investigate the formation of dawn-dusk asymmetry in Earth's magnetotail. The magnetotail current sheet is compressed by an external driving electric field down to a thickness on the order of ion kinetic scales. In the resultant thin current sheet (TCS) where the magnetic field line curvature radius is much smaller than ion gyroradius, a significant portion of the ions becomes unmagnetized and decoupled from the magnetized electrons, giving rise to a Hall electric field Ez and an additional cross-tail current jy caused by the unmagnetized ions being unable to comove with the electrons in the Hall electric field. The Hall electric field transports via E × B drift magnetic flux and magnetized plasma dawnward, causing a reduction of the current sheet thickness and the normal magnetic field Bz on the duskside. This leads to an even stronger Hall effect (stronger jy and Ez) in the duskside TCS. Thus, due to the internal kinetic effects in the TCS, namely, the Hall effect and the associated dawnward E × B drift, the magnetotail dawn-dusk asymmetry forms in a short time without any global, long-term effects. The duskside preference of reconnection and associated dynamic phenomena (such as substorm onsets, dipolarizing flux bundles, fast flows, energetic particle injections, and flux ropes), which has been pervasively observed by spacecraft in the past 20 years, can thus be explained as a consequence of this TCS asymmetry.
Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaglia, D. J.; Burrell, K. H.; Chang, C. S.
The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T i profile.« less
Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal
Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...
2016-07-15
The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T i profile.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xinliang; Lu, Quanming; Hao, Yufei
2014-01-01
The parametric instabilities of an Alfvén wave in a proton-electron plasma system are found to have great influence on proton dynamics, where part of the protons can be accelerated through the Landau resonance with the excited ion acoustic waves, and a beam component along the background magnetic field is formed. In this paper, with a one-dimensional hybrid simulation model, we investigate the evolution of the parametric instabilities of a monochromatic left-hand polarized Alfvén wave in a proton-electron-alpha plasma with a low beta. When the drift velocity between the protons and alpha particles is sufficiently large, the wave numbers of themore » backward daughter Alfvén waves can be cascaded toward higher values due to the modulational instability during the nonlinear evolution of the parametric instabilities, and the alpha particles are resonantly heated in both the parallel and perpendicular direction by the backward waves. On the other hand, when the drift velocity of alpha particles is small, the alpha particles are heated in the linear growth stage of the parametric instabilities due to the Landau resonance with the excited ion acoustic waves. Therefore, the heating occurs only in the parallel direction, and there is no obvious heating in the perpendicular direction. The relevance of our results to the preferential heating of heavy ions observed in the solar wind within 0.3 AU is also discussed in this paper.« less
Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Herrero, Federico
2011-01-01
Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also provides a general approach that can obtain non-equilibrium distributions as may exist in the upper regions of the thermosphere, above 500 km and into the exosphere. Finally, WATS serves as a mass spectrometer, with very low mass resolution of roughly 1 part in 3, but easily separating atomic oxygen from molecular nitrogen.
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xu, X. Q.; Yan, Z.; Mckee, G. R.; Grierson, B. A.; Xia, T. Y.; Gao, X.
2018-02-01
A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n = 30 or k_θρ_i˜0.12 . The ion diamagnetic drift and E× B convection flow are balanced when the radial electric field (E r ) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density n_e˜1.5×1019 m-3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40 kHz and 10 kHz respectively. The poloidal wave number k_θ is about 0.2 cm -1 (k_θρ_i˜0.05 ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are ˜3.5-6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. The electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.
A large ungated TPC with GEM amplification
NASA Astrophysics Data System (ADS)
Berger, M.; Ball, M.; Fabbietti, L.; Ketzer, B.; Arora, R.; Beck, R.; Böhmer, F. V.; Chen, J.-C.; Cusanno, F.; Dørheim, S.; García, F.; Hehner, J.; Herrmann, N.; Höppner, C.; Kaiser, D.; Kis̆, M.; Kleipa, V.; Konorov, I.; Kunkel, J.; Kurz, N.; Leifels, Y.; Müllner, P.; Münzer, R.; Neubert, S.; Rauch, J.; Schmidt, C. J.; Schmitz, R.; Soyk, D.; Vandenbroucke, M.; Voss, B.; Walther, D.; Zmeskal, J.
2017-10-01
A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost 4 π. The high density of hits on a given particle track facilitates the task of pattern recognition in a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC). The design requirements have driven innovations in the construction of a light-weight field-cage, a supporting media flange, the GEM amplification and the readout system, which are presented in this paper. We further describe the support infrastructure such as gas, cooling and slow control. Finally, we report on the operation of the GEM-TPC in the FOPI experiment, and describe the calibration procedures which are applied to achieve the design performance of the device.
NASA Astrophysics Data System (ADS)
Woody, Craig; Azmoun, Babak; Majka, Richard; Phipps, Michael; Purschke, Martin; Smirnov, Nikolai
2018-02-01
A prototype detector is being developed which combines the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for particle identification. The TPC consists of a 10×10×10 cm3 drift volume where the charge is drifted to a 10×10 cm2 triple GEM detector. The charge is measured on a readout plane consisting of 2×10 mm2 chevron pads which provide a spatial resolution ˜ 100 μm per point in the chevron direction along with dE/dx information. The Cherenkov portion of the detector consists of a second 10×10 cm2 triple GEM with a photosensitive CsI photocathode on the top layer. This detector measures Cherenkov light produced in the drift gas of the TPC by high velocity particles which are above threshold. CF4 or CF4 mixtures will be used as the drift gas which are highly transparent to UV light and can provide excellent efficiency for detecting Cherenkov photons. The drift gas is also used as the operating gas for both GEM detectors. The prototype detector has been constructed and is currently being tested in the lab with sources and cosmic rays, and additional tests are planned in the future to study the detector in a test beam.
Optimization of Urea-EnFET Based on Ta2O5 Layer with Post Annealing
Lue, Cheng-En; Yu, Ting-Chun; Yang, Chia-Ming; Pijanowska, Dorota G.; Lai, Chao-Sung
2011-01-01
In this study, the urea-enzymatic field effect transistors (EnFETs) were investigated based on pH-ion sensitive field effect transistors (ISFETs) with tantalum pentoxide (Ta2O5) sensing membranes. In addition, a post N2 annealing was used to improve the sensing properties. At first, the pH sensitivity, hysteresis, drift, and light induced drift of the ISFETs were evaluated. After the covalent bonding process and urease immobilization, the urea sensitivity of the EnFETs were also investigated and compared with the conventional Si3N4 sensing layer. The ISFETs and EnFETs with annealed Ta2O5 sensing membranes showed the best responses, including the highest pH sensitivity (56.9 mV/pH, from pH 2 to pH 12) and also corresponded to the highest urea sensitivity (61 mV/pCurea, from 1 mM to 7.5 mM). Besides, the non-ideal factors of pH hysteresis, time drift, and light induced drift of the annealed samples were also lower than the controlled Ta2O5 and Si3N4 sensing membranes. PMID:22163862
Optimization of urea-EnFET based on Ta2O5 layer with post annealing.
Lue, Cheng-En; Yu, Ting-Chun; Yang, Chia-Ming; Pijanowska, Dorota G; Lai, Chao-Sung
2011-01-01
In this study, the urea-enzymatic field effect transistors (EnFETs) were investigated based on pH-ion sensitive field effect transistors (ISFETs) with tantalum pentoxide (Ta(2)O(5)) sensing membranes. In addition, a post N(2) annealing was used to improve the sensing properties. At first, the pH sensitivity, hysteresis, drift, and light induced drift of the ISFETs were evaluated. After the covalent bonding process and urease immobilization, the urea sensitivity of the EnFETs were also investigated and compared with the conventional Si(3)N(4) sensing layer. The ISFETs and EnFETs with annealed Ta(2)O(5) sensing membranes showed the best responses, including the highest pH sensitivity (56.9 mV/pH, from pH 2 to pH 12) and also corresponded to the highest urea sensitivity (61 mV/pC(urea), from 1 mM to 7.5 mM). Besides, the non-ideal factors of pH hysteresis, time drift, and light induced drift of the annealed samples were also lower than the controlled Ta(2)O(5) and Si(3)N(4) sensing membranes.
More evidence for azimuthal ion spin in HiPIMS discharges
NASA Astrophysics Data System (ADS)
Poolcharuansin, P.; Liebig, B.; Bradley, J. W.
2012-02-01
The velocity and energy distribution functions of ions escaping radially from the magnetic trap region of a HiPIMS discharge have been measured using a retarding field analyzer (RFA). Spatially and angularly resolved measurements recorded at a representative time show more energetic ions detected along a line-of-sight coincident with an oncoming rotating ion fluid, which circulates above the racetrack in the same direction as the electron E × B drift. The difference in the mean ion energies between measurements made into and against the direction of rotation is ~5 eV. Numerical solutions of the equation of motion for the ions accounting for azimuthal acceleration (modified two-stream instability model used by Lundin et al) have been found. The centripetal force caused by the radial electric field and a drag force term accounting for ion collisions revealed that only a small fraction (typically <5%) of the circulating ion flux can leave the discharge tangentially. Operating the discharge at different background pressures revealed an interplay between the azimuthal acceleration of ions, dominating under low pressure conditions and the scattering of ions into the RFA at higher pressure.
RF cavity design and qualification for proton accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teotia, Vikas; Malhotra, Sanjay; Ukarde, Priti
Alvarez type Drift Tube Linac (DTL) is used for acceleration of proton beam in low energy section of beta ranging from 0.04 to 0.40. DTL is cylindrical RF cavity resonating in TM010 mode at 352.21 MHz frequency. It consists of array of drift tubes arranged ensuring that DTL centre and Drift Tube centre are concentric. The Drift Tubes also houses Permanent Magnet Quadrupole for transverse focusing of proton beam. A twelve cell prototype of DTL section is designed, developed and fabricated at Bhabha Atomic Research Centre, Trombay. Complete DTL accelerator consists of eight such DTL sections. High frequency microwave simulationsmore » are carried out in SOPRANO, vector fields and COMSOL simulation software. This prototype DTL is 1640.56 mm long cavity with 520 mm ID, 600 mm OD and consists of eleven Drift Tubes, two RF end flanges, three slug tuners, six post couplers, three RF field monitors, one RF waveguide coupler, two DN100 vacuum flanges and DTL tank platform with alignment features. Girder based Drift tube mounting arrangement utilizing uncompressing energy of disc springs for optimum combo RF-vacuum seal compression is worked out and implemented. This paper discusses design of this RF vacuum cavity operating at high accelerating field gradient in ultra-high vacuum. Detailed vacuum design and results of RF and vacuum qualifications are discussed. Results on mechanical accuracy achieved on scaled pre-prototype are also presented. Paper summarizes the engineering developments carried out for this RF cavity and brings out the future activities proposed in indigenous development of high gradient RF cavities for ion accelerators. (author)« less
Gyrofluid theory and simulation of electromagnetic turbulence and transport in tokamak plasmas
NASA Astrophysics Data System (ADS)
Snyder, Philip Benjamin
1999-11-01
Turbulence and transport in toroidal plasmas is studied via the development of an electromagnetic gyrofluid model, and its implementation in realistic nonlinear simulations. This work extends earlier electrostatic gyrofluid models to include magnetic fluctuations and non-adiabatic passing electron dynamics. A new set of electron fluid equations is derived from the drift kinetic equation, via an expansion in the electron-ion mass ratio. These electron equations include descriptions of linear and nonlinear drift motion, Landau damping, and electron-ion collisions. Ion moment equations are derived from the electromagnetic gyrokinetic equation, and the gyrokinetic Poisson's Equation and Ampere's Law close the system. The model is benchmarked with linear gyrokinetic calculations, and good agreement is found for both the finite-β ion temperature gradient (ITG) and kinetic Alfvén ballooning (KBM) instabilities. Nonlinear simulations of ITG and KBM-driven turbulence are performed in toroidal flux tube geometry at a range of values of plasma β, and electromagnetic effects are found to significantly impact turbulent heat and particle transport. At low values of β, transport is reduced, as expected due to the finite-β stabilization of the ITG mode. However, as β approaches the Ideal-MHD stability threshold, transport can increase. In the presence of dissipation provided by a model of electron Landau damping and electron-ion collisions, this transport increase can be quite dramatic. Finally, the results of the simulations are compared to tokamak experiments, and encouraging agreement is found with measured density and temperature fluctuation spectra. Direct comparisons of transport fluxes reveal that electromagnetic effects are important at characteristic edge parameters, bringing predicted fluxes more closely in line with observations.
Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath
NASA Astrophysics Data System (ADS)
Jarvinen, R.; Vainio, R.; Palmroth, M.; Juusola, L.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Turc, L.; von Alfthan, S.
2018-02-01
We report ion acceleration by flux transfer events in the terrestrial magnetosheath in a global two-dimensional hybrid-Vlasov polar plane simulation of Earth's solar wind interaction. In the model we find that propagating flux transfer events created in magnetic reconnection at the dayside magnetopause drive fast-mode bow waves in the magnetosheath, which accelerate ions in the shocked solar wind flow. The acceleration at the bow waves is caused by a shock drift-like acceleration process under stationary solar wind and interplanetary magnetic field upstream conditions. Thus, the energization is not externally driven but results from plasma dynamics within the magnetosheath. Energetic proton populations reach the energy of 30 keV, and their velocity distributions resemble time-energy dispersive ion injections observed by the Cluster spacecraft in the magnetosheath.
Second order kinetic theory of parallel momentum transport in collisionless drift wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang, E-mail: lyang13@mails.tsinghua.edu.cn; Southwestern Institute of Physics, Chengdu 610041; Gao, Zhe
A second order kinetic model for turbulent ion parallel momentum transport is presented. A new nonresonant second order parallel momentum flux term is calculated. The resonant component of the ion parallel electrostatic force is the momentum source, while the nonresonant component of the ion parallel electrostatic force compensates for that of the nonresonant second order parallel momentum flux. The resonant component of the kinetic momentum flux can be divided into three parts, including the pinch term, the diffusive term, and the residual stress. By reassembling the pinch term and the residual stress, the residual stress can be considered as amore » pinch term of parallel wave-particle resonant velocity, and, therefore, may be called as “resonant velocity pinch” term. Considering the resonant component of the ion parallel electrostatic force is the transfer rate between resonant ions and waves (or, equivalently, nonresonant ions), a conservation equation of the parallel momentum of resonant ions and waves is obtained.« less
Plasma and Energetic Particle Behaviors During Asymmetric Magnetic Reconnection at the Magnetopause
NASA Technical Reports Server (NTRS)
Lee, S. H.; Zhang, H.; Zong, Q.-G.; Otto, A.; Sibeck, D. G.; Wang, Y.; Glassmeier, K.-H.; Daly, P.W.; Reme, H.
2014-01-01
The factors controlling asymmetric reconnection and the role of the cold plasma population in the reconnection process are two outstanding questions. We present a case study of multipoint Cluster observations demonstrating that the separatrix and flow boundary angles are greater on the magnetosheath than on the magnetospheric side of the magnetopause, probably due to the stronger density than magnetic field asymmetry at this boundary. The motion of cold plasmaspheric ions entering the reconnection region differs from that of warmer magnetosheath and magnetospheric ions. In contrast to the warmer ions, which are probably accelerated by reconnection in the diffusion region near the subsolar magnetopause, the colder ions are simply entrained by ??×?? drifts at high latitudes on the recently reconnected magnetic field lines. This indicates that plasmaspheric ions can sometimes play only a very limited role in asymmetric reconnection, in contrast to previous simulation studies. Three cold ion populations (probably H+, He+, and O+) appear in the energy spectrum, consistent with ion acceleration to a common velocity.
Energetic ion acceleration at collisionless shocks
NASA Technical Reports Server (NTRS)
Decker, R. B.; Vlahos, L.
1985-01-01
An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx. 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity.
ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS
2017-06-30
17394 4 / 13 HALL EFFECT THRUSTERS Hall Effect Thrusters (HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid...HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ...Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ Electron ExB Drift Unmagnetized Ions Results in Hall Current
NASA Technical Reports Server (NTRS)
Roth, J. R.; Gerdin, G. A.
1976-01-01
The toroidal ring of plasma contained in the NASA Lewis bumpy-torus superconducting magnet facility may be biased to positive or negative potentials approaching 50 kilovolts by applying direct-current voltages of the respective polarity to 12 or fewer of the midplane electrode rings. The electric fields which are responsible for heating the ions by E/B drift then point radially outward or inward. The low-frequency fluctuations below the ion cyclotron frequency appeared to be dominated by rotating spokes.
Parasitic momentum flux in the tokamak core
Stoltzfus-Dueck, T.
2017-03-06
A geometrical correction to the E × B drift causes an outward flux of co-current momentum whenever electrostatic potential energy is transferred to ion parallel flows. The robust, fully nonlinear symmetry breaking follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The resulting rotation peaking is counter-current and scales as temperature over plasma current. Lastly, this peaking mechanism can only act when fluctuations are low-frequency enough to excite ion parallel flows, which may explain some recent experimental observations related to rotation reversals.
Brandt, C; Thakur, S C; Light, A D; Negrete, J; Tynan, G R
2014-12-31
Spatiotemporal splitting events of drift wave (DW) eigenmodes due to nonlinear coupling are investigated in a cylindrical helicon plasma device. DW eigenmodes in the radial-azimuthal cross section have been experimentally observed to split at radial locations and recombine into the global eigenmode with a time shorter than the typical DW period (t≪fDW(-1)). The number of splits correlates with the increase of turbulence. The observed dynamics can be theoretically reproduced by a Kuramoto-type model of a network of radially coupled azimuthal eigenmodes. Coupling by E×B-vortex convection cell dynamics and ion gyro radii motion leads to cross-field synchronization and occasional mode splitting events.
NASA Technical Reports Server (NTRS)
1979-01-01
Detectors of various types are discussed, taking into account drift chambers, calorimetry, multiwire proportional chambers, signal processing, the use of semiconductors, and photo/optical applications. Circuits are considered along with instrumentation for space, nuclear medicine instrumentation, data acquisition and systems, environmental instrumentation, reactor instrumentation, and nuclear power systems. Attention is given to a new approach to high accuracy gaseous detectors, the current status of electron mobility and free-ion yield in high mobility liquids, a digital drift chamber digitizer system, the stability of oxides in high purity germanium, the quadrant photomultiplier, and the theory of imaging with a very limited number of projections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltzfus-Dueck, T.; Scott, B.
An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less
Kinetic Simulations of Particle Acceleration at Shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caprioli, Damiano; Guo, Fan
2015-07-16
Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shockmore » drift acceleration; and electron DSA is efficient at oblique shocks.« less
NASA Astrophysics Data System (ADS)
Jhang, Hogun
2018-05-01
We show that the threshold condition for the toroidal ion temperature gradient (ITG) mode with an inverted density profile can be derived from a simple physics argument. The key in this picture is that the density inversion reduces the ion compression due to the ITG mode and the electron drift motion mitigates the poloidal potential build-up. This condition reproduces the same result that has been reported from a linear gyrokinetic calculation [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. The destabilizing role of trapped electrons in toroidal geometry is easily captured in this picture.
A comment on plasma 'pile-up' in the F-region
NASA Technical Reports Server (NTRS)
Rishbeth, H.; Hanson, W. B.
1974-01-01
At ionospheric heights, the geomagnetic field is virtually incompressible. In consequence, an electromagnetic drift can only compress the F-region plasma by moving it in a direction in which the field becomes stronger. This paper examines the rate of compression at mid-latitudes for three different assumptions about the ion motion.
NASA Astrophysics Data System (ADS)
Foerster, M.; Doornbos, E.; Haaland, S.
2016-12-01
Solar wind and IMF interaction with the geomagnetic field sets up a large-scale plasma circulation in the Earth's magnetosphere and the magnetically tightly connected ionosphere. The ionospheric ExB ion drift at polar latitudes accelerates the neutral gas as a nondivergent momentum source primarily in force balance with pressure gradients, while the neutral upper thermosphere circulation is essentially modified by apparent forces due to Earth's rotation (Coriolis and centrifugal forces) as well as advection and viscous forces. The apparent forces affect the dawn and dusk side asymmetrically, favouring a large dusk-side neutral wind vortex, while the non-dipolar portions of the Earth's magnetic field constitute significant hemispheric differences in magnetic flux and field configurations that lead to essential interhemispheric differences of the ion-neutral interaction. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns based on measurements of the electron drift instrument (EDI) on board the Cluster satellites and by the accelerometer on board the CHAMP, GOCE, and Swarm spacecraft, respectively.
A Multi Water Bag model of drift kinetic electron plasmaa
NASA Astrophysics Data System (ADS)
Morel, Pierre; Ghiro, Florent Dreydemy; Berionni, Vincent; Coulette, David; Besse, Nicolas; Gürcan, Özgür D.
2014-08-01
A Multi Water Bag model is proposed for describing drift kinetic plasmas in a magnetized cylindrical geometry, relevant for various experimental devices, solar wind modeling... The Multi Water Bag (MWB) model is adapted to the description of a plasma with kinetic electrons as well as an arbitrary number of kinetic ions. This allows to describe the kinetic dynamics of the electrons, making possible the study of electron temperature gradient (ETG) modes, in addition to the effects of non adiabatic electrons on the ion temperature gradient (ITG) modes, that are of prime importance in the magnetized plasmas micro-turbulence [X. Garbet, Y. Idomura, L. Villard, T.H. Watanabe, Nucl. Fusion 50, 043002 (2010); J.A. Krommes, Ann. Rev. Fluid Mech. 44, 175 (2012)]. The MWB model is shown to link kinetic and fluid descriptions, depending on the number of bags considered. Linear stability of the ETG modes is presented and compared to the existing results regarding cylindrical ITG modes [P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, W. Garbet, Ph. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)].
SAPS/SAID revisited: A causal relation to the substorm current wedge
NASA Astrophysics Data System (ADS)
Mishin, Evgeny; Nishimura, Yukitoshi; Foster, John
2017-08-01
We present multispacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 min, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1 and Region 2 sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.
SAID/SAPS Revisited: A Causal Relation to the Substorm Current Wedge
NASA Astrophysics Data System (ADS)
Mishin, E. V.
2017-12-01
We present multi-spacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 minutes, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1- and Region 2-sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.
NASA Technical Reports Server (NTRS)
Anagnostopoulos, G. C.; Sarris, E. T.; Krimigis, S. M.
1988-01-01
The efficiency of proposed shock acceleration mechanisms as they operate at the bow shock in the presence of a seed energetic particle population was examined using data from simultaneous observations of energetic solar-origin protons, carried out by the IMP 7 and 8 spacecraft in the vicinity of the quasi-parallel (dawn) and quasi-perpendicular (dusk) regions of the earth's bow shock, respectively. The results of observations (which include acceleration effects in the intensities of the energetic protons with energies as high as 4 MeV observed at the vicinity of the dusk bow shock, but no evidence for any particle acceleration at the energy equal to or above 50 keV at the dawn side of the bow shock) indicate that the acceleration of a seed particle population occurs only at the quasi-perpendicular bow shock through shock drift acceleration and that the major source of observed upstream ion populations is the leakage of magnetospheric ions of energies not less than 50 keV, rather than in situ acceleration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Ahmed M.; Prabhakaran Nair Syamala Amma, Aneesh; Garimella, Venkata BS
2018-03-21
Ion mobility (IM) is rapidly gaining attention for the analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM has limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. These can be readily obtainable in structures for lossless ion manipulations (SLIM), which are fabricated from electric fields that are generated by appropriate potentials applied to arrays of electrodes patterned on twomore » parallel surfaces. In this work we have investigated the relationship between the various SLIM variables, such as electrode dimensions, inter-surface gap, and the TW applied voltages, that directly impact the fields experienced by ions. Ion simulation and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric field. The variables explored impact both ion confinement and the observed IM resolution in Structures for Lossless Ion Manipulations (SLIM) modules.« less
Polymers for Traveling Wave Ion Mobility Spectrometry Calibration
NASA Astrophysics Data System (ADS)
Duez, Quentin; Chirot, Fabien; Liénard, Romain; Josse, Thomas; Choi, ChangMin; Coulembier, Olivier; Dugourd, Philippe; Cornil, Jérôme; Gerbaux, Pascal; De Winter, Julien
2017-07-01
One of the main issues when using traveling wave ion mobility spectrometry (TWIMS) for the determination of collisional cross-section (CCS) concerns the need for a robust calibration procedure built from referent ions of known CCS. Here, we implement synthetic polymer ions as CCS calibrants in positive ion mode. Based on their intrinsic polydispersities, polymers offer in a single sample the opportunity to generate, upon electrospray ionization, numerous ions covering a broad mass range and a large CCS window for different charge states at a time. In addition, the key advantage of polymer ions as CCS calibrants lies in the robustness of their gas-phase structure with respect to the instrumental conditions, making them less prone to collisional-induced unfolding (CIU) than protein ions. In this paper, we present a CCS calibration procedure using sodium cationized polylactide and polyethylene glycol, PLA and PEG, as calibrants with reference CCS determined on a home-made drift tube. Our calibration procedure is further validated by testing the polymer calibration to determine CCS of numerous different ions for which CCS are reported in the literature. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Ahmed M.; Prabhakaran, Aneesh; Garimella, Sandilya V. B.
Ion mobility (IM) is rapidly gaining attention for the analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM has limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. These can be readily obtainable in structures for lossless ion manipulations (SLIM), which are fabricated from electric fields that are generated by appropriate potentials applied to arrays of electrodes patterned on twomore » parallel surfaces. In this work we have investigated the relationship between the various SLIM variables, such as electrode dimensions, inter-surface gap, and the TW applied voltages, that directly impact the fields experienced by ions. Ion simulation and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric field. The variables explored impact both ion confinement and the observed IM resolution in Structures for Lossless Ion Manipulations (SLIM) modules.« less
Energetic Particles Dynamics in Mercury's Magnetosphere
NASA Technical Reports Server (NTRS)
Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.
2013-01-01
We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface
The development of magnetic field measurement system for drift-tube linac quadrupole
NASA Astrophysics Data System (ADS)
Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin
2015-06-01
In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.
Martin-Esteban, A; Slowikowski, B; Grobecker, K H
2004-06-17
Solid sampling-electrothermal vaporisation-inductively coupled plasma-mass spectrometry (SS-ETV-ICP-MS) is an attractive technique for the direct simultaneous determination of trace elements in solid samples and especially in long-term studies (i.e. assessment of the homogeneity of reference materials). However, during these studies a downward drift in the instrument sensitivity has been observed due likely to deposits on the sampling and skimmer cones and on the ion lens of the mass spectrometer. Accordingly, in this paper, several means of correcting and/or suppressing sensitivity drift are proposed and evaluated for the monitoring of Cd, Cu, Hg, Mn, Pb, Sb, Se, Sn, Tl, U and V in different reference materials of inorganic and organic (biological) origin. From that studies, the combination of the use of the argon dimer as internal standard together with a modification in the ETV-ICP connection tube seems to be the best mean of getting stable sensitivity during at least 60 consecutive ETV runs.
Plasma-filled applied B ion diode experiments using a plasma opening switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renk, T.J.
1994-12-15
In order for a plasma opening switch (POS) to open quickly and transfer power efficiently from an inductively charged vacuum transmission line to an applied B ion diode, the load impedance of the ion diode may be required to have an initial low impedance phase. A plasma-filled diode has such an impedance history. To test the effect of a plasma-filled diode on POS-diode coupling, a drifting plasma was introduced from the cathode side of an applied B ion diode operated on the LION accelerator (1.5 MV, 4 [Omega], 40 ns) at Cornell University. This plasma readily crossed the 2.1 Tmore » magnetic insulation field of the diode, and resulted in both increased diode electrical power, and an increased ability of the ion beam to remove material from a target. The plasma did not appear to have a noticeable effect on local beam steering angle.« less
NASA Technical Reports Server (NTRS)
Biddle, A. P.; Reynolds, J. M.
1986-01-01
The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.
Retarding potential analyzer for the Pioneer-Venus Orbiter Mission
NASA Technical Reports Server (NTRS)
Knudsen, W. C.; Bakke, J.; Spenner, K.; Novak, V.
1979-01-01
The retarding potential analyzer on the Pioneer-Venus Orbiter Mission has been designed to measure most of the thermal plasma parameters within and near the Venusian ionosphere. Parameters include total ion concentration, concentrations of the more abundant ions, ion temperatures, ion drift velocity, electron temperature, and low-energy (0-50 eV) electron distribution function. To accomplish these measurements on a spinning vehicle with a small telemetry bit rate, several functions, including decision functions not previously used in RPA's, have been developed and incorporated into this instrument. The more significant functions include automatic electrometer ranging with background current compensation; digital, quadratic retarding potential step generation for the ion and low-energy electron scans; a current sampling interval of 2 ms throughout all scans; digital logic inflection point detection and data selection; and automatic ram direction detection. Extensive numerical simulation and plasma chamber tests have been conducted to verify adequacy of the design for the Pioneer Mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitsazzadeh, S; Wells, D; Mestrovic, A
2016-06-15
Purpose: To develop a QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments. Methods: An interface was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside an ArcCheck diode array. The Quasar phantom controller used a patient specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. An amplitude-based RPM tracking system was specified to turn the beam on during the exhale phase of the breathing pattern. SABR plans were developed using Eclipse for liver PTVs ranging in sizemore » from 3-12 cm in diameter using a 2-arc VMAT technique. Dose was measured in the middle of the penumbra region, where the high dose gradient allowed for sensitive detection of any inaccuracies in gated dose delivery. The overall fidelity of the dose distribution was confirmed using ArcCheck. The sensitivity of the gating QA procedure was investigated with respect to the following four parameters: PTV size, duration of exhale, baseline drift, and gating window size. Results: The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse. Conclusion: This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns will be required to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.« less
NASA Astrophysics Data System (ADS)
Förster, Matthias; Cnossen, Ingrid
2013-09-01
The nondipolar portions of the Earth's main magnetic field constitute substantial differences between the two hemispheres. Beside the magnetic flux densities and patterns being different in the Northern Hemisphere (NH) and Southern Hemisphere (SH), also the offset between the invariant magnetic and the geographic poles is larger in the SH than in the NH. We investigated the effects of this magnetic field asymmetry on the high-latitude thermosphere and ionosphere using global numerical simulations and compared our results with recent observations. While the effects on the high-latitude plasma convection are small, the consequences for the neutral wind circulation are substantial. The cross-polar neutral wind and ion drift velocities are generally larger in the NH than the SH, and the hemispheric difference shows a semidiurnal variation. The neutral wind vorticity is likewise larger in the NH than in the SH, with the difference probably becoming larger for higher solar activity. In contrast, the spatial variance of the neutral wind is considerably larger in the SH polar region, with the hemispheric difference showing a strong semidiurnal variation. Its phase is similar to the phase of the semidiurnal variation of the hemispheric magnitude differences. Hemispheric differences in ion drift and neutral wind magnitude are most likely caused partly by the larger magnetic flux densities in the near-polar regions of the SH and partly by the larger offset between the invariant and geographic pole in the SH, while differences in spatial variance are probably just caused by the latter. We conclude that the asymmetry of the magnetic field, both in strength and in orientation, establishes substantial hemispheric differences in the neutral wind and plasma drift in the high-latitude upper atmosphere, which can help to explain observed hemispheric differences found with the Cluster/Electron Drift Instrument (EDI) and the Challenging Minisatellite Payload (CHAMP).
U-Pb SHRIMP dating of uraniferous opals
Nemchin, A.A.; Neymark, L.A.; Simons, S.L.
2006-01-01
U-Pb and U-series analyses of four U-rich opal samples using sensitive high-resolution ion microprobe (SHRIMP) demonstrate the potential of this technique for the dating of opals with ages ranging from several tens of thousand years to millions of years. The major advantages of the technique, compared to the conventional thermal ionisation mass spectrometry (TIMS), are the high spatial resolution (???20 ??m), the ability to analyse in situ all isotopes required to determine both U-Pb and U-series ages, and a relatively short analysis time which allows obtaining a growth rate of opal as a result of a single SHRIMP session. There are two major limitations to this method, determined by both current level of development of ion probes and understanding of ion sputtering processes. First, sufficient secondary ion beam intensities can only be obtained for opal samples with U concentrations in excess of ???20 ??g/g. However, this restriction still permits dating of a large variety of opals. Second, U-Pb ratios in all analyses drifted with time and were only weakly correlated with changes in other ratios (such as U/UO). This drift, which is difficult to correct for, remains the main factor currently limiting the precision and accuracy of the U-Pb SHRIMP opal ages. Nevertheless, an assumption of similar behaviour of standard and unknown opals under similar analytical conditions allowed successful determination of ages with precisions of ???10% for the samples investigated in this study. SHRIMP-based U-series and U-Pb ages are consistent with TIMS dating results of the same materials and known geological timeframes. ?? 2005 Elsevier B.V. All rights reserved.
An LC-IMS-MS Platform Providing Increased Dynamic Range for High-Throughput Proteomic Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Erin Shammel; Livesay, Eric A.; Orton, Daniel J.
2010-02-05
A high-throughput approach and platform using 15 minute reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking twenty reference peptides at varying concentrations from 1 ng/mL to 10 µg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected thirteen out of the twenty spiked peptides that had concentrations ≥100 ng/mL.more » In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for nineteen of the twenty peptides with all spiking level present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects, but in turn limits the achievable dynamic range compared to the TOF detector.« less
"Trunk-like" heavy ion structures observed by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Wolf, R. A.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B. A.; Niehof, J. T.; MacDonald, E. A.; Friedel, R.; Ferradas, C. P.; Luo, H.
2015-10-01
Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report "trunk-like" ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6-2.6, magnetic local time (MLT) = 9.1-10.5, and magnetic latitude (MLAT) = -2.4-0.09°, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are energy = 4.5-0.7 keV, L = 3.6-2.5, MLT = 9.1-10.7, and MLAT = -2.4-0.4°. Results from backward ion drift path tracings indicate that the trunks are likely due to (1) a gap in the nightside ion source or (2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.
The multi-species Farley-Buneman instability in the solar chromosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M.
2014-03-10
Empirical models of the solar chromosphere show intense electron heating immediately above its temperature minimum. Mechanisms such as resistive dissipation and shock waves appear insufficient to account for the persistence and uniformity of this heating as inferred from both UV lines and continuum measurements. This paper further develops the theory of the Farley-Buneman instability (FBI) which could contribute substantially to this heating. It expands upon the single-ion theory presented by Fontenla by developing a multiple-ion-species approach that better models the diverse, metal-dominated ion plasma of the solar chromosphere. This analysis generates a linear dispersion relationship that predicts the critical electronmore » drift velocity needed to trigger the instability. Using careful estimates of collision frequencies and a one-dimensional, semi-empirical model of the chromosphere, this new theory predicts that the instability may be triggered by velocities as low as 4 km s{sup -1}, well below the neutral acoustic speed. In the Earth's ionosphere, the FBI occurs frequently in situations where the instability trigger speed significantly exceeds the neutral acoustic speed. From this, we expect neutral flows rising from the photosphere to have enough energy to easily create electric fields and electron Hall drifts with sufficient amplitude to make the FBI common in the chromosphere. If so, this process will provide a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.« less
The Multi-species Farley-Buneman Instability in the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M.; Fontenla, Juan M.
2014-03-01
Empirical models of the solar chromosphere show intense electron heating immediately above its temperature minimum. Mechanisms such as resistive dissipation and shock waves appear insufficient to account for the persistence and uniformity of this heating as inferred from both UV lines and continuum measurements. This paper further develops the theory of the Farley-Buneman instability (FBI) which could contribute substantially to this heating. It expands upon the single-ion theory presented by Fontenla by developing a multiple-ion-species approach that better models the diverse, metal-dominated ion plasma of the solar chromosphere. This analysis generates a linear dispersion relationship that predicts the critical electron drift velocity needed to trigger the instability. Using careful estimates of collision frequencies and a one-dimensional, semi-empirical model of the chromosphere, this new theory predicts that the instability may be triggered by velocities as low as 4 km s-1, well below the neutral acoustic speed. In the Earth's ionosphere, the FBI occurs frequently in situations where the instability trigger speed significantly exceeds the neutral acoustic speed. From this, we expect neutral flows rising from the photosphere to have enough energy to easily create electric fields and electron Hall drifts with sufficient amplitude to make the FBI common in the chromosphere. If so, this process will provide a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.
NASA Astrophysics Data System (ADS)
Ji, Q.; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Friedman, A.; Grote, D. P.; Persaud, A.; Barnard, J. J.; Schenkel, T.
2016-02-01
The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ˜1 eV using intense, short pulses (˜1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He+ ions leads to more uniform energy deposition of the target material than Li+ ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li+ ions from a hot plate type ion source. He+ beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.
Ji, Q; Seidl, P A; Waldron, W L; Takakuwa, J H; Friedman, A; Grote, D P; Persaud, A; Barnard, J J; Schenkel, T
2016-02-01
The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ∼1 eV using intense, short pulses (∼1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He(+) ions leads to more uniform energy deposition of the target material than Li(+) ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li(+) ions from a hot plate type ion source. He(+) beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.
Ji, Q.; Seidl, P. A.; Waldron, W. L.; ...
2015-11-12
In this paper, the neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ~1 eV using intense, short pulses (~1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He + ions leads to more uniform energy deposition of the target material than Li + ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li + ions frommore » a hot plate type ion source. He + beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. Finally, the accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.« less
Spatial and Temporal Extent of Ion Spectral Structures at the Inner Edge of the Plasma Sheet
NASA Astrophysics Data System (ADS)
Ferradas, C.; Reeves, G. D.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Skoug, R. M.; Funsten, H. O.
2017-12-01
Several ion spectral structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift and loss in the highly dynamic environment of the inner magnetosphere. Their study helps us understand ion access and losses in this region. Several studies have found that these structures vary with geomagnetic activity, local time, and ion species, but their spatial and temporal extent remain undetermined. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers onboard the Van Allen Probes to analyze the spectral structures in the energy range of 1- 50 keV. HOPE measurements on both Van Allen Probes spacecraft enable us to resolve the extent of these ion structures in space and time. As the structures respond to changes in the convection electric field on a variety of time scales, the lapping of the two spacecraft on time scales of minutes to hours helps determine their spatial and temporal evolution.
Verification of nonlinear particle simulation of radio frequency waves in fusion plasmas
NASA Astrophysics Data System (ADS)
Kuley, Animesh; Bao, Jian; Lin, Zhihong
2015-11-01
Nonlinear global particle simulation model has been developed in GTC to study the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic. Boris push scheme for the ion motion has been implemented in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron, ion Bernstein and lower hybrid waves. The nonlinear GTC simulation of the lower hybrid wave shows that the amplitude of the electrostatic potential is oscillatory due to the trapping of resonant electrons by the electric field of the lower hybrid wave. The nonresonant parametric decay is observed an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating with a heating rate proportional to the pump wave intensity. This work is supported by PPPL subcontract number S013849-F and US Department of Energy (DOE) SciDAC GSEP Program.
Energetic particles at venus: galileo results.
Williams, D J; McEntire, R W; Krimigis, S M; Roelof, E C; Jaskulek, S; Tossman, B; Wilken, B; Stüdemann, W; Armstrong, T P; Fritz, T A; Lanzerotti, L J; Roederer, J G
1991-09-27
At Venus the Energetic Particles Detector (EPD) on the Galileo spacecraft measured the differential energy spectra and angular distributions of ions >22 kiloelectron volts (keV) and electrons > 15 keV in energy. The only time particles were observed by EPD was in a series of episodic events [0546 to 0638 universal time (UT)] near closest approach (0559:03 UT). Angular distributions were highly anisotropic, ordered by the magnetic field, and showed ions arriving from the hemisphere containing Venus and its bow shock. The spectra showed a power law form with intensities observed into the 120- to 280-keV range. Comparisons with model bow shock calculations show that these energetic ions are associated with the venusian foreshock-bow shock region. Shock-drift acceleration in the venusian bow shock seems the most likely process responsible for the observed ions.
The photodetachment cross-section and threshold energy of negative ions in carbon dioxide
NASA Technical Reports Server (NTRS)
Helmy, E. M.; Woo, S. B.
1974-01-01
Threshold energy and sunlight photodetachment measurements on negative carbon dioxide ions, using a 2.5 kw light pressure xenon lamp, show that: (1) Electron affinity of CO3(+) is larger than 2.7 e.V. and that an isomeric form of CO3(+) is likely an error; (2) The photodetachment cross section of CO3(-) will roughly be like a step function across the range of 4250 to 2500A, having its threshold energy at 4250A; (3) Sunlight photodetachment rate for CO3(-) is probably much smaller than elsewhere reported; and (4) The probability of having photodetached electrons re-attach to form negative ions is less than 1%. Mass identifying drift tube tests confirm that the slower ion is CO3(-), formed through the O(-) + 2CO2 yields CO3(-) + CO2 reaction.
Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA
2008-03-11
A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.
2009-06-17
Electric and magnetic-field perturbations were measured by ion drift meters (IDM) and triaxial fluxgate magnetometers on DMSP F13. F15, and F16...we also regard DMSP as providing lower-bound estimates of the true *pc. The triaxial fluxgate SSM sensors are either mounted on the spacecraft
Modelling of minority ion cyclotron current drive during the activated phase of ITER
NASA Astrophysics Data System (ADS)
Laxåback, M.; Hellsten, T.
2005-12-01
Neoclassical tearing modes, triggered by the long-period sawteeth expected in tokamaks with large non-thermal α-particle populations, may impose a severe β limit on experiments with large fusion yields and on reactors. Sawtooth destabilization by localized current drive could relax the β limit and improve plasma performance. 3He minority ion cyclotron current drive around the sawtooth inversion radius has been planned for ITER. Several ion species, including beam injected D ions and fusion born α particles, are however also resonant in the plasma and may represent a parasitic absorption of RF power. Modelling of minority ion cyclotron current drive in an ITER-FEAT-like plasma is presented, including the effects of ion trapping, finite ion drift orbit widths, wave-induced radial transport and the coupled evolution of wave fields and resonant ion distributions. The parasitic absorption of RF power by the other resonant species is concluded to be relatively small, but the 3He minority current drive is nevertheless negligible due to the strong collisionality of the 3He ions and the drag current by toroidally counter-rotating background ions and co-rotating electrons. H minority current drive is found to be a significantly more effective alternative.
Existence regimes for shocks in inhomogeneous magneto-plasmas having entropy
NASA Astrophysics Data System (ADS)
Iqbal, Javed; Yaqub Khan, M.
2018-04-01
The finding of connection of plasma density and temperature with entropy gives an incitement to study different plasma models with respect to entropy. Nonlinear dissipative one- and two-dimensional structures (shocks) are investigated in nonuniform magnetized plasma with respect to entropy. The dissipation comes in the medium through ion-neutral collisions. The linear dispersion relation is derived. The Korteweg-deVries-Burgers and Kadomtsev-Petviashvili-Burgers equations are derived for nonlinear drift waves in 1-D and 2-D by employing the drift approximation. It is found that vd/u ( vd is the diamagnetic drift velocity and u is the velocity of nonlinear structure) plays a significant role in the shock formation. It is also found that entropy has a significant effect on the strength of shocks. It is noticed that v d/u determines the rarefactive and compressive nature of the shocks. It is observed that upper and lower bounds exist for the shock velocity. It is also observed that the existing regimes for both one- and two-dimensional shocks for kappa distributed electrons are different from shocks with Cairns distributed electrons. Both rarefactive and compressive shocks are found for the 1-D drift waves with kappa distributed electrons. Interestingly, it is noticed that entropy enhances the strength of one- and two-dimensional shocks.
Interpretations of the impact of cross-field drifts on divertor flows in DIII-D with UEDGE
Jaervinen, Aaro E.; Allen, Steve L.; Groth, Mathias; ...
2017-01-27
Simulations using the multi-fluid code UEDGE indicates that, in low confinement (Lmode) plasmas in DIII-D, recycling driven flows dominate poloidal particle flows in the divertor, whereas E×B drift flows dominate the radial particle flows. In contrast, in high confinement (H-mode) conditions E×B drift flows dominate both poloidal and radial particle flows in the divertor. UEDGE indicates that the toroidal C 2+ flow velocities in the divertor plasma are entrained within 30% to the background deuterium flow in both Land H-mode plasmas in the plasma region where the CIII 465 nm emission is measured. Therefore, UEDGE indicates that the Carbon Dopplermore » Coherence Imaging System (CIS), measuring the toroidal velocity of the C 2+ ions, can provide insight to the deuterium flows in the divertor. Parallel-to-B velocity dominates the toroidal divertor flow; direct drift impact being less than 1%. Toroidal divertor flow is predicted to reverse when the magnetic field is reversed. This is explained by the parallel-B flow towards the nearest divertor plate corresponding to opposite toroidal directions in opposite toroidal field configurations. Due to strong poloidal E×B flows in H-mode, net poloidal particle transport can be in opposite direction than the poloidal component of the parallel-B plasma flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, L.; Manning, B.; Bowden, N. S.
The MICROMEGAS (MICRO-MEsh GAseous Structure) charge amplification structure has found wide use in many detection applications, especially as a gain stage for the charge readout of Time Projection Chambers (TPCs). We report on the behavior of a MICROMEGAS TPC when operated in a high-energy (up to 800 MeV) neutron beam. It is found that neutron-induced reactions can cause discharges in some drift gas mixtures that are stable in the absence of the neutron beam. The discharges result from recoil ions close to the MICROMEGAS that deposit high specific ionization density and have a limited diffusion time. And for a binarymore » drift gas, increasing the percentage of the molecular component (quench gas) relative to the noble component and operating at lower pressures generally improves stability.« less