Surface controlled blade stabilizer
Russell, Larry R.
1983-01-01
Drill string stabilizer apparatus, controllable to expand and retract entirely from the surface by control of drill string pressure, wherein increase of drill string pressure from the surface closes a valve to create a piston means which is moved down by drill string pressure to expand the stabilizer blades, said valve being opened and the piston moving upward upon reduction of drill string pressure to retract the stabilizer blades. Upward and downward movements of the piston and an actuator sleeve therebelow are controlled by a barrel cam acting between the housing and the actuator sleeve.
Dynamics of a distributed drill string system: Characteristic parameters and stability maps
NASA Astrophysics Data System (ADS)
Aarsnes, Ulf Jakob F.; van de Wouw, Nathan
2018-03-01
This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.
Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling
NASA Astrophysics Data System (ADS)
Gupta, Sunit K.; Wahi, Pankaj
2018-01-01
We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.
Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.
1993-03-02
The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.
Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.
1993-01-01
The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.
Advantages and limitations of remotely operated sea floor drill rigs
NASA Astrophysics Data System (ADS)
Freudenthal, T.; Smith, D. J.; Wefer, G.
2009-04-01
A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional drilling. It has the advantage that the drill string stays in the drilled hole during the entire drilling process and prevents the drilled hole from collapsing while the inner core barrels comprising the drilled core sections are hooked up inside the drill string using a wire.
Resonant acoustic transducer and driver system for a well drilling string communication system
Chanson, Gary J.; Nicolson, Alexander M.
1981-01-01
The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.
Acoustic data transmission through a drill string
Drumheller, D.S.
1988-04-21
Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.
The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings
NASA Astrophysics Data System (ADS)
Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat
2018-06-01
In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.
Casper, William L [Rigby, ID; Clark, Don T [Idaho Falls, ID; Grover, Blair K [Idaho Falls, ID; Mathewson, Rodney O [Idaho Falls, ID; Seymour, Craig A [Idaho Falls, ID
2008-10-07
A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.
Distributed downhole drilling network
Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.
2006-11-21
A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.
Downhole drilling network using burst modulation techniques
Hall,; David R. , Fox; Joe, [Spanish Fork, UT
2007-04-03
A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.
Resonant acoustic transducer system for a well drilling string
Nardi, Anthony P.
1981-01-01
For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.
Resonant acoustic transducer system for a well drilling string
Kent, William H.; Mitchell, Peter G.
1981-01-01
For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.
Chemical stratigraphy of the Apollo 17 deep drill cores 70009-70007
NASA Technical Reports Server (NTRS)
Ehmann, W. D.; Ali, M. Z.
1977-01-01
A description is presented of an analysis of a total of 26 samples from three core segments (70009, 70008, 70007) of the Apollo 17 deep drill string. The deep drill string was taken about 700 m east of the Camelot Crater in the Taurus-Littrow region of the moon. Three core segments have been chemically characterized from the mainly coarse-grained upper portion of the deep drill string. The chemical data suggest that the entire 70007-70009 portion of the deep drill string examined was not deposited as a single unit, but was formed by several events sampling slightly different source materials which may have occurred over a relatively short period of time. According to the data from drill stem 70007, there were at least two phases of deposition. Core segment 70009 is probably derived from somewhat different source material than 70008. It seems to be a very well mixed material.
NASA Astrophysics Data System (ADS)
Shadrina, A.; Saruev, L.; Vasenin, S.
2016-09-01
This paper addresses the effectiveness of impact energy use in pilot bore directional drilling at pipe driving. We establish and develop new design-engineering principles for this method. These principles are based on a drill string construction with a new nipple thread connection and a generator construction of strain waves transferred through the drill string. The experiment was conducted on a test bench. Strain measurement is used to estimate compression, tensile, shear and bending stresses in the drill string during the propagation of elastic waves. Finally, the main directions of pilot bore directional drilling improvement during pipe driving are determinated. The new engineering design, as components of the pilot bore directional drilling technology are presented.
Insertion tube methods and apparatus
Casper, William L.; Clark, Don T.; Grover, Blair K.; Mathewson, Rodney O.; Seymour, Craig A.
2007-02-20
A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.
Method and apparatus of assessing down-hole drilling conditions
Hall, David R [Provo, UT; Pixton, David S [Lehl, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Fox, Joe [Spanish Fork, UT
2007-04-24
A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.
Surface control bent sub for directional drilling of petroleum wells
Russell, Larry R.
1986-01-01
Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.
Methods and systems for determining angular orientation of a drill string
Cobern, Martin E.
2010-03-23
Preferred methods and systems generate a control input based on a periodically-varying characteristic associated with the rotation of a drill string. The periodically varying characteristic can be correlated with the magnetic tool face and gravity tool face of a rotating component of the drill string, so that the control input can be used to initiate a response in the rotating component as a function of gravity tool face.
An Internal Coaxil Cable Seal System
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe
2004-12-23
The invention is a seal system for a coaxial cable more specifically an internal seal system placed within the coaxial cable and its constituent components. A series of seal stacks including flexible rigid rings and elastomeric rings are placed on load bearing members within the coaxial cable. The current invention is adapted to seal the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. During oil and gas exploration, a drill string can see a range of pressures and temperatures thus resulting in multiple combinations of temperature and pressure and increasing the difficulty of creating a robust seal for all combinations. The seal system can be used in a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System...
30 CFR 250.447 - When must I pressure test the BOP system?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... pressure test your BOP system (this includes the choke manifold, kelly valves, inside BOP, and drill-string... performance warrant; and (c) Before drilling out each string of casing or a liner. The District Manager may...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System...
Campbell, Gene K.
1983-01-01
A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.445 What...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop...
Impedance matched joined drill pipe for improved acoustic transmission
Moss, William C.
2000-01-01
An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.
Internal coaxial cable seal system
Hall, David R.; Sneddon, Cameron; Dahlgren, Scott Steven; Briscoe, Michael A.
2006-07-25
The invention is a seal system for a coaxial cable and is placed within the coaxial cable and its constituent components. A series of seal stacks including load ring components and elastomeric rings are placed on load bearing members within the coaxial cable sealing the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. The seal system can be used in a variety of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.
Colgate, Stirling A.
1984-01-01
Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.
30 CFR 250.614 - Well-control fluids, equipment, and operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... well is shut in and secured. (b) When coming out of the hole with drill pipe or a workover string, the... string and drill collars that may be pulled prior to filling the hole and the equivalent well-control... fluid volumes when filling the hole on trips; and (3) A recording mud-pit-level indicator to determine...
Downhole material injector for lost circulation control
Glowka, D.A.
1994-09-06
Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.
Hall, David R.; Pixton, David S.; Briscoe, Michael; McPherson, James
2007-12-04
A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.
Conformable apparatus in a drill string
Hall, David R [Provo, UT; Hall, Jr., H. Tracy; Pixton, David S [Lehi, UT; Fox, Joe [Spanish Fork, UT
2007-08-28
An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.
Seismic While Drilling Case Study in Shengli Oilfield, Eastern China
NASA Astrophysics Data System (ADS)
Wang, L.; Liu, H.; Tong, S.; Zou, Z.
2015-12-01
Seismic while drilling (SWD) is a promising borehole seismic technique with reduction of drilling risk, cost savings and increased efficiency. To evaluate the technical and economic benefits of this new technique, we carried out SWD survey at well G130 in Shengli Oilfield of Eastern China. Well G130 is an evaluation well, located in Dongying depression at depth more than 3500m. We used an array of portable seismometers to record the surface SWD-data, during the whole drilling progress. The pilot signal was being recorded continuously, by an accelerometer mounted on the top of the drill string. There were also two seismometers buried in the drill yard, one near diesel engine and another near derrick. All the data was being recorded continuously. According to mud logging data, we have processed and analyzed all the data. It demonstrates the drill yard noise is the primary noise among the whole surface wavefield and its dominant frequency is about 20Hz. Crosscorrelation of surface signal with the pilot signal shows its SNR is severely low and there is no any obvious event of drill-bit signals. Fortunately, the autocorrelation of the pilot signal shows clear BHA multiple and drill string multiple. The period of drill string multiple can be used for establishing the reference time (so-called zero time). We identified and removed different noises from the surface SWD-data, taking advantages of wavefield analysis. The drill-bit signal was retrieved from surface SWD-data, using seismic interferometry. And a reverse vertical seismic profile (RVSP) data set for the continuous drilling depth was established. The subsurface images derived from these data compare well with the corresponding images of 3D surface seismic survey cross the well.
The behavior of enclosed-type connection of drill pipes during percussive drilling
NASA Astrophysics Data System (ADS)
Shadrina, A.; Saruev, L.
2015-11-01
Percussion drilling is the efficient method to drill small holes (≥ 70 mm) in medium- hard and harder rocks. The existing types of drill strings for geological explorations are not intended for strain wave energy transfer. The description of the improved design of the drill string having enclosed-type nipple connections is given in this paper presents. This nipple connection is designed to be used in drilling small exploration wells with formation sampling. Experimental findings prove the effectiveness of the enclosed nipple connection in relation to the load distribution in operation. The paper presents research results of the connection behavior under quasistatic loading (compression-tension). Loop diagrams are constructed and analyzed in force-displacement coordinates. Research results are obtained for shear stresses occurred in the nipple connection. A mechanism of shear stress distribution is described for the wave strain propagation over the connecting element. It is shown that in the course of operation the drill pipe tightening reduces the shear stress three times.
Method and system for determining formation porosity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pittman, R.W.; Hermes, C.E.
1977-12-27
The invention discloses a method and/or system for measuring formation porosity from drilling response. It involves measuring a number of drilling parameters and includes determination of tooth dullness as well as determining a reference torque empirically. One of the drilling parameters is the torque applied to the drill string.
30 CFR 250.1625 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... SHELF Sulphur Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to... manifold valves, upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to...
30 CFR 250.1625 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...
30 CFR 250.1625 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...
30 CFR 250.1625 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...
Circuit for echo and noise suppression of accoustic signals transmitted through a drill string
Drumheller, Douglas S.; Scott, Douglas D.
1993-01-01
An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output.
A study of electro-osmosis as applied to drilling engineering
NASA Astrophysics Data System (ADS)
Hariharan, Peringandoor Raman
In the present research project. the application of the process of electro-osmosis has been extended to a variety of rocks during the drilling operation. Electro-osmosis has been utilized extensively to examine its influence in reducing (i) bit balling, (ii) coefficient of friction between rock and metal and (iii) bit/tool wear. An attempt has been made to extend the envelope of confidence in which electro-osmosis was found to be operating satisfactorily. For all the above cases the current requirements during electro-osmosis were identified and were recorded. A novel test method providing repeatable results has been developed to study the problem of bit balling in the laboratory through the design of a special metallic bob simulating the drill bit. A numerical parameter described as the Degree-of-Balling (DOB) defined by the amount of cuttings stuck per unit volume of rock cut for the same duration of time is being proposed as a means to quantitatively describe the balling process in the laboratory. Five different types of shales (Pierre I & II, Catoosa, Mancos and Wellington) were compared and evaluated for balling characteristics and to determine the best conditions for reducing bit balling with electro-osmosis in a variety of drilling fluids including fresh water, polymer solutions and field type drilling fluids. Through the design, fabrication and performing of experiments conducted with a model Bottom Hole Assembly (BHA). the feasibility of maintaining the drill bit separately at a negative potential and causing the current to flow through the rock back into the string through a near bit stabilizer has been demonstrated. Experiments conducted with this self contained arrangement for the application of electro-osmosis have demonstrated a substantial decrease in balling and increase in the rate of penetration (ROP) while drilling with both a roller cone and PDC microbit (1-1/4" dia.) in Pierre I and Wellington shales. It is believed that the results obtained from the model BHA will aid in scaling up to a full-scale prototype BHA for possible application in the field. Experiments conducted with electro-osmosis in a simulated drill string under loaded conditions have clearly demonstrated that the coefficient of friction (mu) can be reduced at the interface of a rotating cylinder (simulating the drill-pipe) and a rock (usually a type of shale), through electro-osmosis. Studies examined the influence of many variables such as drilling fluid, rock type, and current on mu. The need for the correct estimation of mu is for reliable correlation between values obtained in the laboratory with those observed in the field. The knowledge of the coefficient of friction (mu) is an important requirement for drill string design and well trajectory planning. The use of electro-osmosis in reducing bit/tool wear through experiments in various rocks utilizing a specially designed steel bob simulating the drill bit has clearly indicated a decreased average tool wear, varying from 35% in Pierre I shale up to 57% in sandstone when used with the tool maintained at a cathodic DC potential. (Abstract shortened by UMI.)
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT
2007-05-22
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT
2008-05-27
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison
2012-08-14
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison
2014-03-04
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT
2011-08-16
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison
2015-02-03
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
Circuit for echo and noise suppression of acoustic signals transmitted through a drill string
Drumheller, D.S.; Scott, D.D.
1993-12-28
An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.
Hall, David R.; Fox, Joe; Garner, Kory
2007-01-23
A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.
Guides emerge for cementing horizontal strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parcevaux, P.
1987-10-19
This article recommends the following guidelines for cementing of horizontal strings: turbulent flow displacement technique for ensuring vest casing centralization and a cement slurry with a density as close as possible to that of the drilling mud.
30 CFR 250.413 - What must my description of well drilling design criteria address?
Code of Federal Regulations, 2010 CFR
2010-07-01
... design criteria address? 250.413 Section 250.413 Mineral Resources MINERALS MANAGEMENT SERVICE... drilling design criteria address? Your description of well drilling design criteria must address: (a) Pore... phases, including the anticipated surface pressure used for designing the production string; (g) A single...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddoch, J.A.
1986-12-02
A mud saver valve is described for preventing drilling mud from escaping from a kelly when a drill string is broken below the kelly, the valve comprising: a tubular valve body having first and second ends, the first end being provided with means for attachment in fluid communicating relationship with the kelly, the second end being provided with means for attachment to the drill string; an annular seat fixed in the interior of the valve body adjacent its first end; a tubular closure member within the valve body. The closure member is provided with a selectively closed seating end formore » seating in valve closing engagement with the annular seat, an open non-seating end in fluid communicating relationship with the drill string, and an annular expansion in the outer diameter of the closure member adjacent the seating end; a top and bottom spacer ring disposed in sliding relationship around the tubular closure member intermediate the annular expansion and the non-seating end of the closure member. The spacer ring and annular expansion cooperatively define an annular chamber around the closure member; and a helical spring disposed around the closure member towards the annular seat.« less
Apparatus for downhole drilling communications and method for making and using the same
Normann, Randy A.; Lockwood, Grant J.; Gonzales, Meliton
1998-01-01
An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe.
Apparatus for downhole drilling communications and method for making and using the same
Normann, R.A.; Lockwood, G.J.; Gonzales, M.
1998-03-03
An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe. 6 figs.
Crater Morphology in the Phoenix Landing Ellipse: Insights Into Net Erosion and Ice Table Depth
NASA Technical Reports Server (NTRS)
Noe Dobrea, E. Z.; Stoker, C. R.; McKay, C. P.; Davila, A. F.; Krco, M.
2015-01-01
Icebreaker [1] is a Discovery class mission being developed for future flight opportunities. Under this mission concept, the Icebreaker payload is carried on a stationary lander, and lands in the same landing ellipse as Phoenix. Samples are acquired from the subsurface using a drilling system that penetrates into materials which may include loose or cemented soil, icy soil, pure ice, rocks, or mixtures of these. To avoid the complexity of mating additional strings, the drill is single-string, limiting it to a total length of 1 m.
NASA Astrophysics Data System (ADS)
Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei
2018-03-01
The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.
Dexterity Drills for the Student Violinist
ERIC Educational Resources Information Center
Darling, Cynthia
2007-01-01
Practical dexterity exercises are essential for the student violinist. Dimitri Hadjipetkov, the tricampus strings director at the Montclair Kimberley Academy in Montclair, New Jersey, identifies three main benefits resulting from dexterity drills and exercises: (1) strengthening the third and fourth finger in first position; (2) improving…
Downhole pipe selection for acoustic telemetry
Drumheller, Douglas S.
1995-01-01
A system for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver.
Impedance-matched drilling telemetry system
Normann, Randy A [Edgewood, NM; Mansure, Arthur J [Albuquerque, NM
2008-04-22
A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.
Hamada, Yohei; Kitamura, Manami; Yamada, Yasuhiro; Sanada, Yoshinori; Sugihara, Takamitsu; Saito, Saneatsu; Moe, Kyaw; Hirose, Takehiro
2018-02-14
A new method for evaluating the in situ rock strength beneath the seafloor is proposed and applied to the Nankai Trough accretionary prism. The depth-continuous in situ rock strength is a critical parameter for numerous studies in earth science, particularly for seismology and tectonics at plate convergence zones; yet, measurements are limited owing to a lack of drilled cores. Here, we propose a new indicator of strength, the equivalent strength (EST), which is determined only by drilling performance parameters such as drill string rotational torque, bit depth, and string rotational speed. A continuous depth profile of EST was drawn from 0 to 3000 m below the seafloor (mbsf) across the forearc basin and accretionary prism in the Nankai Trough. The EST did not show a significant increase around the forearc basin-accretionary prism boundary, but it did show a clear increase within the prism, ca. below 1500 mbsf. This result may indicate that even the shallow accretionary prism has been strengthened by horizontal compression derived from plate subduction. The EST is a potential parameter to continuously evaluate the in situ rock strength during drilling, and its accuracy of the absolute value can be improved by combining with laboratory drilling experiments.
Geothermal well drilling manual at Cerro Prieto
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez P., A.; Flores S., M.
The objective of the drilling manual is to solve all problems directly related to drilling during the construction of a well. In this case, the topics dealt which are drilling fluids and hydraulics to be applied in the field to improve drilling progress, eliminate risks and achieve good well-completion. There are other topics that are applicable such as drill bits and the drilling string, which are closely linked to drilling progress. On this occasion drilling fluid and hydraulics programs are presented, in addition to a computing program for a Casio FX-502P calculator to be applied in the field to optimizemore » hydraulics and in the analysis of hydraulics for development and exploration wells at their different intervals.« less
Downhole pipe selection for acoustic telemetry
Drumheller, D.S.
1995-12-19
A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.
Loaded Transducer Fpr Downhole Drilling Component
Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe
2005-07-05
A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.
Loaded transducer for downhole drilling components
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron
2006-02-21
A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."
NASA Astrophysics Data System (ADS)
Ujiie, K.; Inoue, T.; Ishiwata, J.
2015-12-01
Frictional strength at seismic slip rates is a key to evaluate fault weakening and rupture propagation during earthquakes. The Japan Trench First Drilling Project (JFAST) drilled through the shallow plate-boundary thrust, where huge displacements of ~50 m occurred during the 2011 Tohoku-Oki earthquake. To determine the downhole frictional strength at drilled site (Site C0019), we analyzed surface drilling data. The equivalent slip rate estimated from the rotation rate and inner and outer radiuses of the drill bit ranges from 0.8 to 1.3 m/s. The measured torque includes the frictional torque between the drilling string and borehole wall, the viscous torque between the drilling string and seawater/drilling fluid, and the drilling torque between the drill bit and sediments. We subtracted the former two from the measured torque using the torque data during bottom-up rotating operations at several depths. Then, the shear stress was calculated from the drilling torque taking the configuration of the drill bit into consideration. The normal stress was estimated from the weight on bit data and the projected area of the drill bit. Assuming negligible cohesion, the frictional strength was obtained by dividing shear stress by normal stress. The results show a clear contrast in high-velocity frictional strength across the plate-boundary thrust: the friction coefficient of frontal prism sediments (hemipelagic mudstones) in hanging wall is 0.1-0.2, while that in subducting sediments (hemipelagic to pelagic mudstones and chert) in footwall increases to 0.2-0.4. The friction coefficient of smectite-rich pelagic clay in the plate-boundary thrust is ~0.1, which is consistent with that obtained from high-velocity (1.3 m/s) friction experiments and temperature measurements. We conclude that surface drilling torque provides useful data to obtain a continuous downhole frictional strength.
30 CFR 250.447 - When must I pressure test the BOP system?
Code of Federal Regulations, 2013 CFR
2013-07-01
... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.447 When must I pressure test the BOP... BOP, and drill-string safety valve): (a) When installed; (b) Before 14 days have elapsed since your...
30 CFR 250.447 - When must I pressure test the BOP system?
Code of Federal Regulations, 2012 CFR
2012-07-01
... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.447 When must I pressure test the BOP... BOP, and drill-string safety valve): (a) When installed; (b) Before 14 days have elapsed since your...
30 CFR 250.447 - When must I pressure test the BOP system?
Code of Federal Regulations, 2014 CFR
2014-07-01
... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.447 When must I pressure test the BOP... BOP, and drill-string safety valve): (a) When installed; (b) Before 14 days have elapsed since your...
30 CFR 250.447 - When must I pressure test the BOP system?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.447 When must I pressure... valves, inside BOP, and drill-string safety valve): (a) When installed; (b) Before 14 days have elapsed...
30 CFR 250.423 - What are the requirements for pressure testing casing?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.423 What are the... for each string of casing. You may not resume drilling or other down-hole operations until you obtain...
Research on the Mechanism of In-Plane Vibration on Friction Reduction
Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang
2017-01-01
A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679
Electrical Transmission Line Diametrical Retention Mechanism
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe
2006-01-03
The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.
An automated tool joint inspection device for the drill string
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, M.C.; Dale, B.A.; Kusenberger, F.N.
1983-02-01
This paper discusses the development of an automated tool joint inspection device (i.e., the Fatigue Crack Detector), which is capable of detecting defects in the threaded region of drill pipe and drill collars. On the basis of inspection tests conducted at a research test facility and at drilling rig sites, this device is capable of detecting both simulated defects (saw slots and drilled holes) and service-induced defects, such as fatigue cracks, pin stretch (plastic deformation), mashed threads, and corrosion pitting. The system employs an electromagnetic flux-leakage principle and has several advantages over the conventional method of magnetic particle inspection.
Transducer for downhole drilling components
Hall, David R; Fox, Joe R
2006-05-30
A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.
30 CFR 250.421 - What are the casing and cementing requirements by type of casing string?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.421 What... drilling into formations known to contain oil or gas. If you encounter oil or gas or unexpected formation...
30 CFR 250.421 - What are the casing and cementing requirements by type of casing string?
Code of Federal Regulations, 2010 CFR
2010-07-01
... hazards, and water depthsSet casing immediately before drilling into formations known to contain oil or..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.421 What are the casing and cementing...
30 CFR 250.421 - What are the casing and cementing requirements by type of casing string?
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.421 What are the... Cementing requirements (a) Drive or Structural Set by driving, jetting, or drilling to the minimum depth as...
30 CFR 250.421 - What are the casing and cementing requirements by type of casing string?
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.421 What are the... Cementing requirements (a) Drive or Structural Set by driving, jetting, or drilling to the minimum depth as...
30 CFR 250.421 - What are the casing and cementing requirements by type of casing string?
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.421 What are the... Cementing requirements (a) Drive or Structural Set by driving, jetting, or drilling to the minimum depth as...
An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication
NASA Astrophysics Data System (ADS)
Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao
2014-05-01
For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.
Disposable telemetry cable deployment system
Holcomb, David Joseph
2000-01-01
A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.
Economic and statistical analysis of time limitations for spotting fluids and fishing operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, P.S.; Brinkmann, P.E.; Taneja, P.K.
1984-05-01
This paper reviews the statistics of ''Spotting Fluids'' to free stuck drill pipe as well as the economics and statistics of drill string fishing operations. Data were taken from Mobil Oil Exploration and Producing Southeast Inc.'s (MOEPSI) records from 1970-1981. Only those events which occur after a drill string becomes stuck are discussed. The data collected were categorized as Directional Wells and Straight Wells. Bar diagrams are presented to show the Success Ratio vs. Soaking Time for each of the two categories. An analysis was made to identify the elapsed time limit to place the spotting fluid for maximum probabilitymore » of success. Also determined was the statistical minimum soaking time and the maximum soaking time. For determining the time limit for fishing operations, the following criteria were used: 1. The Risked ''Economic Breakeven Analysis'' concept was developed based on the work of Harrison. 2. Statistical Probability of Success based on MOEPSI's records from 1970-1981.« less
An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael
2005-09-20
A seal for a coaxial cable electrical connector more specifically an internal seal for a coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transformer. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive core of the coaxial cable. The electrically insulating material also doubles as a seal to safegaurd against penetration of fluid, thus protecting against shorting out of the electrical connection. The seal is a multi-component seal, which is pre-compressed to a desired pressure rating. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string. The internal coaxial cable connector and its attendant seal can be used in a plurality of downhole tools, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.
Hydraulic drill string breakdown and bleed off unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeringue, F.J. Jr.
1987-02-17
An apparatus is described for use within an oil well rig for decoupling a tubing string into pipe segments comprising, in combination: rotary tong means for applying an unthreading torque to a first, upper pipe segment within the tubing string; torque resisting means for securing a second, lower pipe segment within the tubing string against the unthreading torque; containing means, intermediate the rotary tong means and the torque resisting means, enclosing a threaded joint of the tubing string, adapted for containing pressurized gases, liquids, and particulates, released from the threaded joint upon the decoupling; fluid communicating means for allowing fluidmore » communication between the containing means and a receiving point adapted for receiving the pressurized gases, liquids, and particulates; means for moving the rotary tong means, the torque resisting means and the containing means between a closed, engaging position with the tubing string and an open position; and means for horizontally moving the rotary tong means, the torque resisting means and the containing means between a position adjacent the tubing string and a position away from the tubing string.« less
String stabilized ribbon growth a method for seeding same
Sachs, Emanuel M.
1987-08-25
This invention is a method of initiating or seeding the growth of a crystalline or polycrystalline ribbon by the String Stabilized Ribbon Growth Method. The method for seeding the crystal growth comprises contacting a melt surface with a seed and two strings used in edge stabilization. The wetted strings attach to the wetted seed as a result of the freezing of the liquid melt. Upon drawing the seed, which is attached to the strings, away from the melt surface a melt liquid meniscus, a seed junction, and a growth interface forms. Further pulling of the attached seed causes a crystal ribbon to grow at the growth interface. The boundaries of the growing ribbon are: at the top the seed junction, at the bottom the freezing boundary of the melt liquid meniscus, and at the edges frozen-in strings.
Electrical transmission line diametrical retainer
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe
2004-12-14
The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...
Ejector subassembly for dual wall air drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolle, J.J.
1996-09-01
The dry drilling system developed for the Yucca Mountain Site Characterization Project incorporates a surface vacuum system to prevent drilling air and cuttings from contaminating the borehole wall during coring operations. As the drilling depth increases, however there is a potential for borehole contamination because of the limited volume of air which can be removed by the vacuum system. A feasibility analysis has shown that an ejector subassembly mounted in the drill string above the core barrel could significantly enhance the depth capacity of the dry drilling system. The ejector subassembly would use a portion of the air supplied tomore » the core bit to maintain a vacuum on the hole bottom. The results of a design study including performance testing of laboratory scale ejector simulator are presented here.« less
A new drilling method-Earthworm-like vibration drilling.
Wang, Peng; Ni, Hongjian; Wang, Ruihe
2018-01-01
The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.
Cosmic Strings Stabilized by Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Weigel, H.
2017-03-01
Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.
String Stability of a Linear Formation Flight Control System
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Ryan, Jack; Hanson, Curtis E.; Parle, James F.
2002-01-01
String stability analysis of an autonomous formation flight system was performed using linear and nonlinear simulations. String stability is a measure of how position errors propagate from one vehicle to another in a cascaded system. In the formation flight system considered here, each i(sup th) aircraft uses information from itself and the preceding ((i-1)(sup th)) aircraft to track a commanded relative position. A possible solution for meeting performance requirements with such a system is to allow string instability. This paper explores two results of string instability and outlines analysis techniques for string unstable systems. The three analysis techniques presented here are: linear, nonlinear formation performance, and ride quality. The linear technique was developed from a worst-case scenario and could be applied to the design of a string unstable controller. The nonlinear formation performance and ride quality analysis techniques both use nonlinear formation simulation. Three of the four formation-controller gain-sets analyzed in this paper were limited more by ride quality than by performance. Formations of up to seven aircraft in a cascaded formation could be used in the presence of light gusts with this string unstable system.
Production Of Hydroxylated Fatty Acids In Genetically Modified Plants
Hall, David R.; Fox, Joe
2002-05-21
An annular wire harness for use in drill pipe comprising two rings interconnected by one or more insulated conductors. The rings are positioned within annular grooves located within the tool joints and the conductors are fixed within grooves along the bore wall of the pipe. The rings may be recessed within annular grooves in order to permit refacing of the tool joint. The rings are provided with means for coupling a power and data signal from an adjacent pipe to the conductors in such a fashion that the signal may be transmitted along the drill pipe and along an entire drill string.
Conceptual waste packaging options for deep borehole disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Jiann -Cherng; Hardin, Ernest L.
This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to sealmore » the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low-profile threaded connections at each end. The internal-flush design would be suitable for loading waste that arrives from the originating site in weld-sealed, cylindrical canisters. Internal, tapered plugs with sealing filet welds would seal the tubing at each end. The taper would be precisely machined onto both the tubing and the plug, producing a metal-metal sealing surface that is compressed as the package is subjected to hydrostatic pressure. The lower plug would be welded in place before loading, while the upper plug would be placed and welded after loading. Conceptual Waste Packaging Options for Deep Borehole Disposal July 30, 2015 iv Threaded connections between packages would allow emplacement singly or in strings screwed together at the disposal site. For emplacement on a drill string the drill pipe would be connected directly into the top package of a string (using an adapter sub to mate with premium semi-flush tubing threads). Alternatively, for wireline emplacement the same package designs could be emplaced singly using a sub with wireline latch, on the upper end. Threaded connections on the bottom of the lowermost package would allow attachment of a crush box, instrumentation, etc.« less
Melt dumping in string stabilized ribbon growth
Sachs, Emanuel M.
1986-12-09
A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.
An ACC Design Method for Achieving Both String Stability and Ride Comfort
NASA Astrophysics Data System (ADS)
Yamamura, Yoshinori; Seto, Yoji; Nishira, Hikaru; Kawabe, Taketoshi
An investigation was made of a method for designing adaptive cruise control (ACC) so as to achieve a headway distance response that feels natural to the driver while at the same time obtaining high levels of both string stability and ride comfort. With this design method, the H∞ norm is adopted as the index of string stability. Additionally, two norms are introduced for evaluating ride comfort and natural vehicle behavior. The relationship between these three norms and headway distance response characteristics was analyzed, and an evaluation method was established for achieving high levels of the various performance characteristics required of ACC. An ACC system designed with this method was evaluated in driving tests conducted on a proving ground course, and the results confirmed that it achieved the targeted levels of string stability, ride comfort and natural vehicle behavior.
Remanent magnetization stratigraphy of lunar cores
NASA Technical Reports Server (NTRS)
Banerjee, S. K.; Gingrich, D.; Marvin, J. A.
1977-01-01
Depth dependent fluctuations have been observed in the natural remanent magnetizations (NRM) of drive cores and drill strings from Apollo 16 and 17 missions. Partial demagnetization of unstable secondary magnetizations and identification of characteristic error signals from a core which is known to have been recently disturbed allow us to identify and isolate the stable NRM stratigraphy in double drive core 60010/60009 and drill strings 60002-60004. The observed magnetization fluctuations persist after normalization to take into account depth dependent variations in the carriers of stable NRM. We tentatively ascribe the stable NRM stratigraphy to instantaneous records of past magnetic fields at the lunar surface and suggest that the stable NRM stratigraphy technique could develop as a new relative time-stratigraphic tool, to be used with other physical measurements such as relative intensity of ferromagnetic resonance and charged particle track density to study the evolution of the lunar regolith.
System and method for damping vibration in a drill string using a magnetorheological damper
Wassell, Mark Ellsworth; Burgess, Daniel E.; Barbely, Jason R.; Thompson, Fred Lamar
2018-05-22
A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid. A remanent magnetic field is induced in the valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils except temporarily when changing the amount of damping required. The current to be supplied to the coil for inducing a desired magnetic field in the valve is determined based on the limiting hysteresis curve of the valve and the history of the magnetization of the value using a binary search methodology. The history of the magnetization of the valve is expressed as a series of sets of current and it resulting magnetization at which the current experienced a reversal compared to prior values of the current.
Dynamical behavior and Jacobi stability analysis of wound strings
NASA Astrophysics Data System (ADS)
Lake, Matthew J.; Harko, Tiberiu
2016-06-01
We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.
NASA Astrophysics Data System (ADS)
Glass, B. J.; Cannon, H.; Bonaccorsi, R.; Zacny, K.
2006-12-01
The Drilling Automation for Mars Exploration (DAME) project's purpose is to develop and field-test drilling automation and robotics technologies for projected use in missions in the 2011-15 period. DAME includes control of the drilling hardware, and state estimation of both the hardware and the lithography being drilled and the state of the hole. A sister drill was constructed for the Mars Analog Río Tinto Experiment (MARTE) project and demonstrated automated core handling and string changeout in 2005 drilling tests at Rio Tinto, Spain. DAME focused instead on the problem of drill control while actively drilling while not getting stuck. Together, the DAME and MARTE projects demonstrate a fully automated robotic drilling capability, including hands-off drilling, adjustment to different strata and downhole conditions, recovery from drilling faults (binding, choking, etc.), drill string changeouts, core acquisition and removal, and sample handling and conveyance to in-situ instruments. The 2006 top-level goal of DAME drilling in-situ tests was to verify and demonstrate a capability for hands-off automated drilling, at an Arctic Mars-analog site. There were three sets of 2006 test goals, all of which were exceeded during the July 2006 field season. The first was to demonstrate the recognition, while drilling, of at least three of the six known major fault modes for the DAME planetary-prototype drill, and to employ the correct recovery or safing procedure in response. The second set of 2006 goals was to operate for three or more hours autonomously, hands-off. And the third 2006 goal was to exceed 3m depth into the frozen breccia and permafrost with the DAME drill (it had not gone further than 2.2m previously). Five of six faults were detected and corrected, there were 43 hours of hands-off drilling (including a 4 hour sequence with no human presence nearby), and 3.2m was the total depth. And ground truth drilling used small commercial drilling equipment in parallel in order to obtain cores and ice profiles at the drilling site. In the course of DAME drilling automation testing, the drilling-induced temperature gradients and their effects on encountered subsurface permafrost and ice layers were observed while drilling in frozen impact breccia at Haughton Crater. In repeated tests of robotic core removal processing and handling in the MARTE project, including field tests, cross-contamination issues arose between successive cores and samples, and procedures and metrics were developed for minimizing the cross-contamination. The MARTE core processing cross-contamination aspects were tested by analyzing a set of pristine samples (those stratigraphically known) vs. cuttings (loose clays) or artifacts from the robotic drilling (indurated clay layers). MARTE ground truth drilling, in parallel with the automated tests, provided control information on the discontinuity/continuity of the stratigraphic record (i.e., texture, color and structure of loose and consolidated materials).
NASA Astrophysics Data System (ADS)
Boswell, R. M.; Collett, T. S.; Frye, M.; McConnell, D.; Shedd, W.; Shelander, D.; Dai, J.; Mrozewski, S.; Guerin, G.; Cook, A.; Dufrene, R.; Godfriaux, P. D.; Roy, R.; Jones, E.
2009-12-01
The Gulf of Mexico gas hydrates Joint Industry Project (the JIP), a cooperative research program between the US Department of Energy and an international industrial consortium under the leadership of Chevron, conducted its “Leg II” logging-while-drilling operations in April and May of 2009. JIP Leg II was intended to expand the existing JIP work from previous emphasis on fine-grained sedimentary systems to the direct evaluation of gas hydrate in sand-dominated reservoirs. The selection of the locations for the JIP Leg II drilling were the result of a geological and geophysical prospecting approach that integrated direct geophysical evidence of gas hydrate-bearing strata with evidence of gas sourcing and migration and occurrence of sand reservoirs within the gas hydrate stability zone. Logging-while-drilling operations included the drilling of seven wells at three sites. The expedition experienced minimal operational problems with the advanced LWD tool string, and successfully managed a number of shallow drilling challenges, including borehole breakouts, and shallow gas and water flows. Two wells drilled in Walker Ridge block 313 (WR-313) confirmed the pre-drill predictions by discovering gas hydrates at high saturations in multiple sand horizons with reservoir thicknesses up to 50 ft. In addition, drilling in WR-313 discovered a thick, strata-bound interval of grain-displacing gas hydrate in shallow fine-grained sediments. Two of three wells drilled in Green Canyon block 955 (GC-955) confirmed the pre-drill prediction of extensive sand occurrence with gas hydrate fill along the crest of a structure with positive indications of gas source and migration. In particular, well GC955-H discovered ~100 ft of gas hydrate in sand at high saturations. Two wells drilled in Alaminos Canyon block 21 (AC-21) confirmed the pre-drill prediction of potential extensive occurrence of gas hydrates in shallow sand reservoirs at low to moderate saturations; however, further data collection and analyses at AC-21 will be needed to better understand the nature of the pore filling material. JIP Leg II fully met its scientific objectives with the collection of abundant high-quality data from gas hydrate bearing sands in the Gulf of Mexico. Ongoing work within the JIP will enable further validation of the geophysical and geological methods used to predict the occurrence of gas hydrate. Expedition results will also support the selection of locations for future JIP drilling, logging and coring operations.
Autonomous data transmission apparatus
Kotlyar, Oleg M.
1997-01-01
A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.
Phases and stability of non-uniform black strings
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Luna, Raimon; Martínez, Marina; Suzuki, Ryotaku; Tanabe, Kentaro
2018-05-01
We construct solutions of non-uniform black strings in dimensions from D ≈ 9 all the way up to D = ∞, and investigate their thermodynamics and dynamical stability. Our approach employs the large- D perturbative expansion beyond the leading order, including corrections up to 1 /D 4. Combining both analytical techniques and relatively simple numerical solution of ODEs, we map out the ranges of parameters in which non-uniform black strings exist in each dimension and compute their thermodynamics and quasinormal modes with accuracy. We establish with very good precision the existence of Sorkin's critical dimension and we prove that not only the thermodynamic stability, but also the dynamic stability of the solutions changes at it.
Passive and semi-active heave compensator: Project design methodology and control strategies.
Cuellar Sanchez, William Humberto; Linhares, Tássio Melo; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa
2017-01-01
Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator.
Ranging methods for developing wellbores in subsurface formations
MacDonald, Duncan [Houston, TX
2011-09-06
A method for forming two or more wellbores in a subsurface formation includes forming a first wellbore in the formation. A second wellbore is directionally drilled in a selected relationship relative to the first wellbore. At least one magnetic field is provided in the second wellbore using one or more magnets in the second wellbore located on a drilling string used to drill the second wellbore. At least one magnetic field is sensed in the first wellbore using at least two sensors in the first wellbore as the magnetic field passes by the at least two sensors while the second wellbore is being drilled. A position of the second wellbore is continuously assessed relative to the first wellbore using the sensed magnetic field. The direction of drilling of the second wellbore is adjusted so that the second wellbore remains in the selected relationship relative to the first wellbore.
Passive and semi-active heave compensator: Project design methodology and control strategies
Cuellar Sanchez, William Humberto; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa
2017-01-01
Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator. PMID:28813494
Thermal stabilization of superconducting sigma strings and their drum vortons
NASA Astrophysics Data System (ADS)
Carter, Brandon; Brandenberger, Robert H.; Davis, Anne-Christine
2002-05-01
We discuss various issues related to stabilized embedded strings in a thermal background. In particular, we demonstrate that such strings will generically become superconducting at moderately low temperatures, thus enhancing their stability. We then present a new class of defects-drum vortons-which arise when a small symmetry breaking term is added to the potential. We display these points within the context of the O(4) sigma model, relevant for hadrodynamics below the QCD scale. This model admits ``embedded defects'' (topological defect configurations of a simpler-in this case O(2) symmetric-model obtained by imposing an embedding constraint) that are unstable in the full model at zero temperature, but that can be stabilized (by electromagnetic coupling to photons) in a thermal gas at moderately high termperatures. It is shown here that below the embedded defect stabilization threshold, there will still be stabilized cosmic string defects. However, they will not be of the symmetric embedded vortex type, but of an ``asymmetric'' vortex type, and are automatically superconducting. In the presence of weak symmetry breaking terms, such as arise naturally when using the O(4) model for hadrodynamics, the strings become the boundary of a new kind of cosmic sigma membrane, with tension given by the pion mass. The string current would then make it possible for a loop to attain a (classically) stable equilibrium state that differs from an ``ordinary'' vorton state by the presence of a sigma membrane stretched across it in a drum-like configuration. Such defects will however be entirely destabilized if the symmetry breaking is too strong, as is found to be the case-due to the rather large value of the pion mass-in the hadronic application of the O(4) sigma model.
NASA Technical Reports Server (NTRS)
Harvey, Jill (Editor)
1989-01-01
A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.
Completion Report for Well ER-EC-5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Nevada
2004-10-01
Well ER-EC-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 342.6 meters below ground surface. The borehole diameter was then decreased to 31.1 centimeters for drilling to amore » total depth of 762.0 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 309.9 meters, 40 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 18 sidewall samples taken at various depths below 349.6 meters, supplemented by geophysical log data and results from detailed chemical and mineralogical analyses of rock samples. The well penetrated Tertiary-age tuffs of the Thirsty Canyon Group, caldera moat-filling sedimentary deposits, lava of the Beatty Wash Formation, and landslide breccia and tuffs of the Timber Mountain Group. The well reached total depth in welded ashflow tuff of the Ammonia Tanks Tuff after penetrating 440.1 meters of this unit, which is also the main water-producing unit in the well. The geologic interpretation of data from this well constrains the western margin of the Ammonia Tanks caldera to the west of the well location.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... stones. (3) The manufacturing, drilling, and stringing of pearls, imitation pearls, and beads designed... manufacturing industry is defined as follows: The manufacture of men's, women's and children's handkerchiefs..., employer, employee, goods, and production, as used in this part, is the same as in the Fair Labor Standards...
Autonomous data transmission apparatus
Kotlyar, O.M.
1997-03-25
A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, W.N.
1979-12-04
A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of lignosulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious materialmore » which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition fro cementing in a permafrost region of a wellbore.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, W.N.
1980-01-01
A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious materialmore » which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.« less
System and method for damping vibration in a drill string using a magnetorheological damper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wassell, Mark Ellsworth; Burgess, Daniel E; Barbely, Jason R
2012-01-03
A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil for inducing a magnetic field thatmore » alters the resistance of the magnetorheological fluid to flow between the first and second chambers, thereby increasing the damping provided by the valve. A remnant magnetic field is induced in one or more components of the magnetorheological fluid valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils during operation except temporarily when changing the amount of damping required, thereby eliminating the need for a turbine alternator power the magnetorheological fluid valve. A demagnetization cycle can be used to reduce the remnant magnetic field when necessary.« less
Downhole surge valve for earth boring apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, D.W.
1990-05-29
This patent describes a boring tool assembly having an underground percussion mole boring tool powered by a working fluid, the tool being driven through the earth by a rigid drill string pushed by a drilling frame, and a downhole valve assembly fixed between the downhole end of the drill string and the too, the improved downhole valve assembly. It comprises: a valve spool having an open first end, a closed second end and a peripheral sidewall, an axial bore extending partly through the valve spool from the open first end; a radial passage adjacent the closed second and of themore » valve spool, the radial passage extending radially from the valve spool axial bore through the valve spool peripheral sidewall; an axial groove in the peripheral sidewall of the valve spool; a valve body having a first end, a second end and a peripheral sidewall, an axial bore extending through the valve body, the valve spool extending through the valve body axial bore so that the second end of the valve body is adjacent the closed second end of the valve spool, the valve spool being axially moveable within the valve body axial bore; an axial slot; a free-floating key element; a valve housing; and seal means.« less
Repeatable reference for positioning sensors and transducers in drill pipe
Hall, David R.; Fox, Joe; Pixton, David S.; Hall, Jr., H. Tracy
2005-05-03
A drill pipe having a box end having a tapered thread, and an internal shoulder and an external face for engagement with a drill pipe pin end having a tapered mating thread, and an external shoulder and an external face adapted for data acquisition or transmission. The relative dimensions of the box and pin ends are precisely controlled so that when the tool joint is made up, a repeatable reference plane is established for transmitting power and tuning downhole sensors, transducers, and means for sending and receiving data along the drill string. When the power or data acquisition and transmission means are located in the tool joint, the dimensions of the tool joint are further proportioned to compensate for the loss of cross-sectional area in order maintain the joints ability to sustain nominal makeup torque.
Interaction between drilled shaft and mechanically stabilized earth (MSE) wall : technical report.
DOT National Transportation Integrated Search
2017-04-01
Drilled shafts are being constructed within the reinforced zone of mechanically stabilized earth (MSE) walls especially in the case of overpass bridges where the drilled shafts carry the bridge deck or traffic signs. The interaction between the drill...
Lunar drill footplate and casing
NASA Technical Reports Server (NTRS)
Maassen, Erik C.; Hendrix, Thomas H.; Morrison, Eddie W.; Phillips, Rodrick B.; Le, Vu Quang; Works, Bruce A.
1989-01-01
To prevent hole collapse during lunar drilling operations, a casing has been devised of a graphite reinforced polyimide composite which will be able to withstand the lunar environment. Additionally, this casing will be inserted into the ground in segments two meters long which will penetrate the regolith simultaneously with the auger. The vertical action of the mobile platform will provide a downward force to the casing string through a special adaptor, giving the casing the needed impetus to sink the anticipated depth of ten meters. Casing segments will be connected with a simple snap arrangement. Excess casing will be cut off by a cylindrical cutting tool which will also transport the excess casing away from the hole. A footplate will be incorporated to grasp the auger rod string during rod segment additions or removals. The footplate grasping mechanism will consist of a set of vice-like arms, one end of each bearing threaded to a common power screw. The power screw will be threaded such that one end's thread pitch opposes that of the other end. The weight of the auger and rod string will be transmitted through the arms to the power screw and absorbed by a set of three ball bearing assemblies. The power screw will be driven by a one-half horsepower brushless motor actuated by radio control. The footplate will rest on four short legs and be anchored with pins that are an integral part of each leg.
Signal connection for a downhole tool string
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe; Briscoe, Michael
2006-08-29
A signal transmission connection for a tool string used in exploration and production of natural resources, namely: oil, gas, and geothermal energy resources. The connection comprises first and second annular elements deployed in cooperative association with each other. The respective elements comprise inductive transducers that are capable of two-way signal transmission between each other, with downhole components of the tool string, and with ground-level equipment. The respective inductive transducers comprise one or more conductive loops housed within ferrite troughs, or within ferrite trough segments. When energized, the conductive loops produce a magnetic field suitable for transmitting the signal. The second element may be rotational in drilling applications. The respective elements may be fitted with electronic equipment to aid and manipulate the transmission of the signal. The first element may also be in communication with the World Wide Web.
Application of air hammer drilling technology in igneous rocks of Junggar basin
NASA Astrophysics Data System (ADS)
Zhao, Hongshan; Feng, Guangtong; Yu, Haiye
2018-03-01
There were many technical problems such as serious well deviation, low penetration rate and long drilling cycle in igneous rocks because of its hardness, strong abrasive and poor drillability, which severely influenced the exploration and development process of Junggar basin. Through analyzing the difficulties of gas drilling with roller bits in Well HS 2, conducting the mechanics experiments about igneous rock, and deeply describing the rock-breaking mechanism of air hammer drilling and its adaptability in igneous rocks, air hammer drilling can realize deviation control and fast drilling in igneous rocks of piedmont zone and avoid the wear and fatigue fracture of drilling strings due to its characteristics of low WOB, low RPM and high frequency impact. Through firstly used in igneous rocks of Well HS 201, compared with gas drilling with cone bit, the average penetration rate and one-trip footage of air hammer drilling respectively increased by more than 2.45 times and 6.42 times while the well deviation was always controlled less than 2 degrees. Two records for Block HS were set up such as the fastest penetration rate of 14.29m/h in Φ444.5mm well hole and the highest one-trip footage of 470.62m in Φ311.2mm well hole. So air hammer drilling was an effective way to realize optimal and fast drilling in the igneous rock formation of Junggar basin.
Ankle Spatting Compared to Bracing or Taping during Maximal-Effort Sprint Drills
REUTER, GRANT D; DAHL, ANGELA R; SENCHINA, DAVID S
2011-01-01
The purpose of this study was to compare the influences of 4 ankle conditions (no support, bracing, taping, taping + spatting; all in football cleats) during 2 maximal-effort field drills (40-yd dash and 34-yd cutting drill) on perceptions of comfort and stability and performance outcomes. Fourteen young adult males participated. Subjects’ perceptions of comfort and stability were assessed by visual analogue scales after each drill for each ankle condition. Time-to-completion and post-completion heart rate were recorded. For both drills, significant differences in comfort perception were found such that subjects perceived no support as equivocal to bracing but more comfortable than either taping or spatting + taping. Stability results differed by drill. For the dash, significant differences in stability perception were found such that subjects perceived no support as equivocal to bracing but less stable than either taping or spatting + taping. By contrast, for the cutting drill significant differences in stability perception were found such that subjects perceived their ankles as less stable during the no support condition as compared to all 3 other conditions. Generally, bracing was perceived as equivocal to all 3 other conditions for comfort and stability. There were no significant differences in time-to-completion or heart rate for any comparison. Compared to bracing or taping, spatting + taping (a) did not influence performance time in explosive/sprint-type drills, (b) was perceived as equivalent to taping alone in terms of ankle comfort and stability, and (c) was perceived as equivalent to bracing in terms of stability but not comfort. PMID:27478530
An assessment of the mechanical stability of wells offshore Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowrey, J.P.; Ottesen, S.
In 1991 lost time due to stuck pipe related drilling problems accounted for approximately 18% of total drilling time in Mobil Producing Nigeria Ultd.`s (MPN) offshore operations. The primary cause of stuck pipe was identified as mechanical wellbore instability. This paper presents an assessment of the mechanical stability of MPN`s wells offshore Nigeria. The objectives of the study were to: (1) determine the magnitude of the in-situ principal stresses and material properties of the troublesome Intra-Biafra and Qua Iboe shale sequences; (2) quantify the drilling fluid densities required to drill mechanically stable wells through these formations; (3) review and recommendmore » well planning and operational parameters which aid in minimizing wellbore stability-related drilling problems. The well-bore stability assessment was carried out with the aid of a 3-dimensional wellbore stability model using field derived data from the study area to corroborate the results. The collection and analysis of drilling data (borehole geometry and density logs, pore pressure, leak-off tests, local geology and other relevant well records) to determine the magnitude of the in-situ principal stresses, together with compressive strength tests on formation cores are discussed. Minimum safe drilling fluid densities to promote wellbore stability as a function of well geometry and depth are presented for the most troublesome shales drilled in the study area. Implementation of the results reduced wellbore stability related problems and associated trouble time to less than 5% in 1992.« less
NASA Astrophysics Data System (ADS)
Toy, V. G.; Maeda, L.; Toczko, S.; Eguchi, N.; Chester, F. M.; Mori, J. J.; Sawada, I.; Saruhashi, T.
2014-12-01
During IODP Expedition 343: The Japan Trench Fast Drilling Project (JFAST), two main boreholes were drilled from the D/V Chikyu in ~7000 m water depth. An uncored hole that penetrated to 850.5 meters below seafloor (mbsf) (total depth [TD] = 7740 meters below sea level [mbsl]) was documented using logging while drilling (LWD) tools. From an adjacent partially cored hole drilled to 844.5 mbsf (TD = 7734 mbsl) 21 cores were acquired that spanned the two main fault targets. The operations lasted 88 days. The drilling operation was very technically challenging. The drill string had to be withdrawn a number of times due to high seas, and technical issues; five holes were drilled (one abandoned after spud-in) and reoccupied in >6800 m water depth. A simple observatory was deployed in the wellhead installed during Exp 343 during the follow-up Exp 343T. In certain intervals during coring we mostly recovered loose, subrounded fine gravel clasts of the two major lithologies penetrated to those depths (silt and mudstones). We have performed particle shape and size analysis on these gravel aggregates. Particle shape variations apparent visually are not clearly quantified by conventional 'shape descriptors'. Variations in particle size distributions are apparent and we will discuss whether these relate to variations in drilling parameters.
Deep Borehole Disposal Remediation Costs for Off-Normal Outcomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finger, John T.; Cochran, John R.; Hardin, Ernest
2015-08-17
This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.
Composite drill pipe and method for forming same
Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin
2012-10-16
A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.
Influence of Drilling Speed on Stability of Tapered Dental Implants: An Ex Vivo Experimental Study.
Almeida, Karen P; Delgado-Ruiz, Rafael; Carneiro, Leandro G; Leiva, Alberto Bordonaba; Calvo-Guirado, Jose Luis; Gómez-Moreno, Gerardo; Malmström, Hans; Romanos, Georgios E
2016-01-01
The aim of this study was to evaluate whether the drilling speed used during implant site preparation influences primary stability. Eighty tapered designed implants (3.8 × 10 mm) were inserted following osteotomies created in solid rigid polyurethane foam (simulating bone type II) and cellular rigid polyurethane foam (simulating bone type IV). Half were prepared using drilling speeds of 800 rpm (low speed), and the other half were prepared using speeds of 1,500 rpm (high speed). Following insertion, implant primary stability was measured using Periotest and Osstell (resonance frequency analysis [RFA]) devices. Two-way analysis of variance (ANOVA) used for this study found that the drilling speed used to create the osteotomies appeared to have no significant impact on primary stability. The bone quality and not the osteotomy drilling speed seems to influence the implant primary stability.
Linear modal stability analysis of bowed-strings.
Debut, V; Antunes, J; Inácio, O
2017-03-01
Linearised models are often invoked as a starting point to study complex dynamical systems. Besides their attractive mathematical simplicity, they have a central role for determining the stability properties of static or dynamical states, and can often shed light on the influence of the control parameters on the system dynamical behaviour. While the bowed string dynamics has been thoroughly studied from a number of points of view, mainly by time-domain computer simulations, this paper proposes to explore its dynamical behaviour adopting a linear framework, linearising the friction force near an equilibrium state in steady sliding conditions, and using a modal representation of the string dynamics. Starting from the simplest idealisation of the friction force given by Coulomb's law with a velocity-dependent friction coefficient, the linearised modal equations of the bowed string are presented, and the dynamical changes of the system as a function of the bowing parameters are studied using linear stability analysis. From the computed complex eigenvalues and eigenvectors, several plots of the evolution of the modal frequencies, damping values, and modeshapes with the bowing parameters are produced, as well as stability charts for each system mode. By systematically exploring the influence of the parameters, this approach appears as a preliminary numerical characterisation of the bifurcations of the bowed string dynamics, with the advantage of being very simple compared to sophisticated numerical approaches which demand the regularisation of the nonlinear interaction force. To fix the idea about the potential of the proposed approach, the classic one-degree-of-freedom friction-excited oscillator is first considered, and then the case of the bowed string. Even if the actual stick-slip behaviour is rather far from the linear description adopted here, the results show that essential musical features of bowed string vibrations can be interpreted from this simple approach, at least qualitatively. Notably, the technique provides an instructive and original picture of bowed motions, in terms of groups of well-defined unstable modes, which is physically intuitive to discuss tonal changes observed in real bowed string.
Completion Report for Model Evaluation Well ER-5-5: Corrective Action Unit 98: Frenchman Flat
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Underground Test Area and Boreholes Programs and Operations
2013-01-18
Model Evaluation Well ER-5-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in July and August 2012 as part of a model evaluation well program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radiological data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unitmore » flow and transport models for their intended purpose. In particular, this well was designed to obtain data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test MILK SHAKE, conducted in Emplacement Hole U-5k in 1968, which were considered to be uncertain due to the unknown extent of a basalt lava-flow aquifer present in this area. Well ER-5-5 is expected to provide information to refine the Phase II Frenchman Flat hydrostratigraphic framework model, if necessary, as well as to support future groundwater flow and transport modeling. The 31.1-centimeter (cm) diameter hole was drilled to a total depth of 331.3 meters (m). The completion string, set at the depth of 317.2 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The 16.8-cm stainless-steel casing has one slotted interval open to the basalt lava-flow aquifer and limited intervals of the overlying and underlying alluvial aquifer. A piezometer string was also installed in the annulus between the completion string and the borehole wall. The piezometer is composed of 7.3-cm stainless-steel tubing suspended from 6.0-cm carbon-steel tubing. The piezometer string was landed at 319.2 m, to monitor the basalt lava-flow aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, preliminary water quality measurements, and water-level measurements. The well penetrated 331.3 m of Quaternary–Tertiary alluvium, including an intercalated layer of saturated basalt lava rubble. No well development or hydrologic testing was conducted in this well immediately after completion; however, a preliminary water level was measured in the piezometer string at the depth of 283.4 m on September 25, 2012. No tritium above the minimum detection limit of the field instruments was detected in this hole. Future well development, sampling, and hydrologic testing planned for this well will provide more accurate hydrologic information for this site. The stratigraphy, general lithology, and water level were as expected, though the expected basalt lava-flow aquifer is basalt rubble and not the dense, fractured lava as modeled. The lack of tritium transport is likely due to the difference in hydraulic properties of the basalt lava-flow rubble encountered in the well, compared to those of the fractured aquifer used in the flow and transport models.« less
Liu, Qingyou; Tang, Yang; Huang, Chongjun; Xie, Chong
2015-01-01
There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space. PMID:26186620
Identification of market trends with string and D2-brane maps
NASA Astrophysics Data System (ADS)
Bartoš, Erik; Pinčák, Richard
2017-08-01
The multidimensional string objects are introduced as a new alternative for an application of string models for time series forecasting in trading on financial markets. The objects are represented by open string with 2-endpoints and D2-brane, which are continuous enhancement of 1-endpoint open string model. We show how new object properties can change the statistics of the predictors, which makes them the candidates for modeling a wide range of time series systems. String angular momentum is proposed as another tool to analyze the stability of currency rates except the historical volatility. To show the reliability of our approach with application of string models for time series forecasting we present the results of real demo simulations for four currency exchange pairs.
Testing New Techniques for Mars Rover Rock-Drilling
2017-10-23
In the summer and fall of 2017, the team operating NASA's Curiosity Mars rover conducted tests in the "Mars Yard" at NASA's Jet Propulsion Laboratory, Pasadena, California, to develop techniques that Curiosity might be able to use to resume drilling into rocks on Mars. JPL robotics engineer Vladimir Arutyunov, in this June 29, 2017, photo, checks the test rover's drill bit at its contact point with a rock. Note that the stabilizer post visible to the right of the bit is not in contact with the rock, unlike the positioning used and photographed by Curiosity when drilling into rocks on Mars in 2013 to 2016. In late 2016, after Curiosity's drill had collected sample material from 15 Martian rocks, the drill's feed mechanism ceased working reliably. That motorized mechanism moved the bit forward or back with relation to the stabilizer posts on either side of the bit. In normal drilling by Curiosity, the stabilizers were positioned on the target rock first, and then the feed mechanism extended the rotation-percussion bit into the rock. In the alternative technique seen here, called "feed-extended drilling," the test rover's stabilizers are not used to touch the rock. The bit is advanced into the rock by motion of the robotic arm rather than the drill's feed mechanism. https://photojournal.jpl.nasa.gov/catalog/PIA22061
30 CFR 250.1623 - Well-control fluids, equipment, and operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...
30 CFR 250.1623 - Well-control fluids, equipment, and operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...
30 CFR 250.1623 - Well-control fluids, equipment, and operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...
Development of a Piezoelectric Rotary Hammer Drill
NASA Technical Reports Server (NTRS)
Domm, Lukas N.
2011-01-01
The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.
Interaction between drilled shaft and mechanically stabilized earth (MSE) wall : project summary.
DOT National Transportation Integrated Search
2015-08-31
Drilled shafts are being constructed within the reinforced zone of mechanically stabilized earth (MSE) walls (Figure 1). The drilled shafts may be subjected to horizontal loads and push against the front of the wall. Distress of MSE wall panels has b...
Synthesis of high-temperature viscosity stabilizer used in drilling fluid
NASA Astrophysics Data System (ADS)
Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun
2018-02-01
Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.
Santamaría-Arrieta, Gorka; Brizuela-Velasco, Aritza; Fernández-González, Felipe J.; Chávarri-Prado, David; Chento-Valiente, Yelko; Solaberrieta, Eneko; Diéguez-Pereira, Markel; Yurrebaso-Asúa, Jaime
2016-01-01
Background This study evaluated the influence of implant site preparation depth on primary stability measured by insertion torque and resonance frequency analysis (RFA). Material and Methods Thirty-two implant sites were prepared in eight veal rib blocks. Sixteen sites were prepared using the conventional drilling sequence recommended by the manufacturer to a working depth of 10mm. The remaining 16 sites were prepared using an oversize drilling technique (overpreparation) to a working depth of 12mm. Bone density was determined using cone beam computerized tomography (CBCT). The implants were placed and primary stability was measured by two methods: insertion torque (Ncm), and RFA (implant stability quotient [ISQ]). Results The highest torque values were achieved by the conventional drilling technique (10mm). The ANOVA test confirmed that there was a significant correlation between torque and drilling depth (p<0.05). However, no statistically significant differences were obtained between ISQ values at 10 or 12 mm drilling depths (p>0.05) at either measurement direction (cortical and medullar). No statistical relation between torque and ISQ values was identified, or between bone density and primary stability (p >0.05). Conclusions Vertical overpreparation of the implant bed will obtain lower insertion torque values, but does not produce statistically significant differences in ISQ values. Key words:Implant stability quotient, overdrilling, primary stability, resonance frequency analysis, torque. PMID:27398182
Toyoshima, Takeshi; Wagner, Wilfried; Klein, Marcus Oliver; Stender, Elmar; Wieland, Marco; Al-Nawas, Bilal
2011-03-01
Modifications of implant design have been intending to improve primary stability. However, little is known about investigation of a hybrid self-tapping implant on primary stability. The aims of this study were to evaluate the primary stability of two hybrid self-tapping implants compared to one cylindrical non-self-tapping implant, and to elucidate the relevance of drilling protocols on primary stability in an ex vivo model. Two types of hybrid self-tapping implants (Straumann® Bone Level implant [BL], Straumann® Tapered Effect implant [TE]) and one type of cylindrical non-self-tapping implant (Straumann® Standard Plus implant [SP]) were investigated in the study. In porcine iliac cancellous bones, 10 implants each were inserted either using standard drilling or under-dimensioned drilling protocol. The evaluation of implant-bone interface stability was carried out by records of maximum insertion torque, the Periotest® (Siemens, Bensheim, Germany), the resonance frequency analysis (RFA), and the push-out test. In each drilling group, the maximum insertion torque values of BL and TE were significantly higher than SP (p=.014 and p=.047, respectively). In each group, the Periotest values of TE were significantly lower than SP (p=.036 and p=.033, respectively). The Periotest values of BL and TE were significantly lower in the group of under-dimensioned drilling than standard drilling (p=.002 and p=.02, respectively). In the RFA, no statistical significances were found in implants between two groups and between implants in each group. In each group, the push-out values of BL and TE were significantly higher than SP (p=.006 and p=.049, respectively). Hybrid self-tapping implants could achieve a high primary stability which predicts them for use in low-density bone. However, there is still a debate to clarify the influence of under-dimensioned drilling on primary stability. © 2009, Copyright the Authors. Journal Compilation © 2011, Wiley Periodicals, Inc.
DOT National Transportation Integrated Search
2010-11-01
The design method for using a single row, spaced drilled shafts, socketed into a firm rock strata, to stabilize : an unstable slope has been developed in this research. The soil arching due to the presence of spaced : drilled shafts in a slope was ob...
Results from Testing of Two Rotary Percussive Drilling Systems
NASA Technical Reports Server (NTRS)
Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi
2010-01-01
The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.
Comparing Interval Management Control Laws for Steady-State Errors and String Stability
NASA Technical Reports Server (NTRS)
Weitz, Lesley A.; Swieringa, Kurt A.
2018-01-01
Interval Management (IM) is a future airborne spacing concept that leverages avionics to provide speed guidance to an aircraft to achieve and maintain a specified spacing interval from another aircraft. The design of a speed control law to achieve the spacing goal is a key aspect in the research and development of the IM concept. In this paper, two control laws that are used in much of the contemporary IM research are analyzed and compared to characterize steady-state errors and string stability. Numerical results are used to illustrate how the choice of control laws gains impacts the size of steady-state errors and string performance and the potential trade-offs between those performance characteristics.
New Rock-Drilling Method in 'Mars Yard' Test
2017-10-23
This photo taken in the "Mars Yard" at NASA's Jet Propulsion Laboratory, Pasadena, California, on Aug. 1, 2017, shows a step in development of possible alternative techniques that NASA's Curiosity Mars rover might be able to use to resume drilling into rocks on Mars. In late 2016, after Curiosity's drill had collected sample material from 15 Martian rocks in four years, the drill's feed mechanism ceased working reliably. That motorized mechanism moved the bit forward or back with relation to stabilizer posts on either side of the bit. In normal drilling by Curiosity, the stabilizers were positioned on the target rock first, and then the feed mechanism extended the rotation-percussion bit into the rock. In the alternative technique seen here, called "feed-extended drilling," the test rover's stabilizers are not used to touch the rock. The bit is advanced into the rock by motion of the robotic arm rather than the drill's feed mechanism. https://photojournal.jpl.nasa.gov/catalog/PIA22062
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Stability. 108.301 Section 108.301 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Stability... Mobile Offshore Drilling Units. [CGD 79-023, 48 FR 51008, Nov. 4, 1983] ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Stability. 108.301 Section 108.301 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Stability... Mobile Offshore Drilling Units. [CGD 79-023, 48 FR 51008, Nov. 4, 1983] ...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Stability. 108.301 Section 108.301 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Stability... Mobile Offshore Drilling Units. [CGD 79-023, 48 FR 51008, Nov. 4, 1983] ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Stability. 108.301 Section 108.301 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Stability... Mobile Offshore Drilling Units. [CGD 79-023, 48 FR 51008, Nov. 4, 1983] ...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Stability. 108.301 Section 108.301 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Stability... Mobile Offshore Drilling Units. [CGD 79-023, 48 FR 51008, Nov. 4, 1983] ...
Long Valley Deep Hole Geophysical Observatory --- Strain Instrumentation and Installation.
NASA Astrophysics Data System (ADS)
Sacks, S. I.; Linde, A.; Malin, P.; Roeloffs, E. A.; Hill, D. P.; Ellsworth, W. L.
2003-12-01
The Long Valley Exploratory Well, drilled in the middle of the resurgent dome in the Long Valley caldera, was started in 1989 and after rather checkered progress eventually reached a depth of about 9,831 feet. The hole is cased to a depth of 7178 feet with bare rock below that. At 8,500 feet there is an open fracture system with substantial permeability. One of the goals of the instrument installation is to enable monitoring of this deep aquifer. The most satisfactory rock away from obvious large fractures was at about 7,400 feet, and this was the installation depth. The instrumentation package consisted of a bottom hole seismometer at a depth of about 8500 feet, and a coupled instrument string that was cemented to the rock at a depth of 7400 feet. The instrument string, 73 feet long, had an inflatable packer with an extension at the bottom, coupled to a seismometer with a cement exit port above it, a 22 foot long spacing tube connected to a 20 foot long sensing volume strainmeter assembly. The strainmeter unit is essentially an annulus with the cementing pipe passing through it. In addition, two seismometer cables, two water bypass tubes and a packer inflation tube, pass through the strainmeter, which is actually two concentric strainmeters. The outer unit is a dilatometer and the inner unit is a vertical component strainmeter. Before installation, the strainmeters and the 8000 foot long stainless steel coupling tubes were filled with filtered and degassed water. The instrument string and attached bottom hole seismometer were then lowered down the hole attached to drill pipe. Two optical fiber vertical strainmeters (one interferometer and one time-of-flight loop) consisting of three fibers were attached to the drill pipe as it was installed. After the drill pipe reached target depth, it was secured to the well head. The packer, at the bottom of the instrument package, was inflated, thus providing a sealed bottom for the cement. Cement was then pumped down the drill pipe, through the strainmeter assembly and out the tube about 25 feet below the bottom of the strain sensing assembly. About 450 feet of the hole was cemented, the cement going into the casing. The coupling tubes from the strainmeters were connected to a surface mounted sensing head that had hydraulic amplification and electronic transducers. Pressure changes in the lower aquifer cause flow through two 1/4 inch diameter tubes into the annulus outside the mounting and cementing pipe. An opening sleeve in the installed pipe will allow the resulting water level changes to be monitored in a protected environment. All installed instrumentation seems to be functioning satisfactorily.
Stratigraphy and depositional history of the Apollo 17 drill core
NASA Technical Reports Server (NTRS)
Taylor, G. J.; Warner, R. D.; Keil, K.
1979-01-01
Lithologic abundances obtained from modal analyses of a continuous string of polished thin sections indicate that the Apollo 17 deep drill core can be divided into three main zones: An upper zone (0-19 cm depth) characterized by high abundances of agglutinates (30%) and a high ratio of mare to non-mare lithic fragments (less than 0.8); a coarse-grained layer (24-56 cm) rich in fragments of high-Ti mare basalts and mineral fragments derived from them, and poor in agglutinates (6%); and a lower zone (56-285 cm) characterized by variable but generally high agglutinate abundances (25%) and a low ratio of mare to nonmare lithic fragments (0.6). Using observations of the geology of the landing site, the principles of cratering dynamics, and the vast amount of data collected on the core, the following depositional history for the section of regolith sampled by the Apollo 17 drill core: was devised.
Downhole Data Transmission System
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe
2004-04-06
A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.
The String Stability of a Trajectory-Based Interval Management Algorithm in the Midterm Airspace
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.
2015-01-01
NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides terminal controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain a precise spacing interval behind a target aircraft. As the percentage of IM equipped aircraft increases, controllers may provide IM clearances to sequences, or strings, of IM-equipped aircraft. It is important for these strings to maintain stable performance. This paper describes an analytic analysis of the string stability of the latest version of NASA's IM algorithm and a fast-time simulation designed to characterize the string performance of the IM algorithm. The analytic analysis showed that the spacing algorithm has stable poles, indicating that a spacing error perturbation will be reduced as a function of string position. The fast-time simulation investigated IM operations at two airports using constraints associated with the midterm airspace, including limited information of the target aircraft's intended speed profile and limited information of the wind forecast on the target aircraft's route. The results of the fast-time simulation demonstrated that the performance of the spacing algorithm is acceptable for strings of moderate length; however, there is some degradation in IM performance as a function of string position.
Research on the Influence Factors of Emulsion Stability of Oil-in-water Drilling Fluid
NASA Astrophysics Data System (ADS)
Li, Xiaoxu; Sun, Yuxue; Chen, Xiangming; Wang, Zengkui; Xu, Jianjun
2018-01-01
The evaluation standard of emulsion stability of oil-in-water drilling fluid is determined in this paper, based on which an evaluation analysis is conducted for the influence factors of emulsion stability, including the addition of emulsifier, addition of stabilizer, stirring speed, weighing agent, clay, etc. to gain the corresponding regularity understanding.
DOT National Transportation Integrated Search
2010-11-01
The use of a row of spaced drilled shafts to stabilize unstable slopes along the highways offers many advantages compared to other slope stabilization techniques. Some of these advantages may include: (1) various construction techniques are available...
Moduli space potentials for heterotic non-Abelian flux tubes: Weak deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300
2010-09-15
We consider N=2 supersymmetric QCD with the U(N) gauge group (with no Fayet-Iliopoulos term) and N{sub f} flavors of massive quarks deformed by the mass term {mu} for the adjoint matter, W={mu}A{sup 2}, assuming that N{<=}N{sub f}<2N. This deformation breaks N=2 supersymmetry down to N=1. This theory supports non-Abelian flux tubes (strings) which are stabilized by W. They are referred to as F-term stabilized strings. We focus on the studies of such strings in the vacuum in which N squarks condense, at small {mu}, so that the Z{sub N} strings preserve, in a sense, their Bogomol'nyi-Prasad-Sommerfield nature. The (s)quark massesmore » are assumed to be nondegenerate. We calculate string tensions both in the classical and quantum regimes. Then we translate our results for the tensions in terms of the effective low-energy weighted CP(N{sub f}-1) model on the string world sheet. The bulk {mu} deformation makes this theory N=(0,2) supersymmetric heterotic weighted CP(N{sub f}-1) model in two dimensions. We find the deformation potential on the world sheet. This significantly expands the class of the heterotically deformed CP models emerging on the string world sheet compared to that suggested by Edalati and Tong. Among other things, we show that nonperturbative quantum effects in the bulk theory are exactly reproduced by the quantum effects in the world-sheet theory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, R. A.
The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in the Weinberg-Salam theory, particularly in the context of the electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the electroweak Z string,more » through the 'bag' phenomenon described by Vachaspati and Watkins ['Bound states can stabilize electroweak strings', Phys. Lett. B 318, 163-168 (1993)]. (Recently, cosmic strings have climbed back into interest due to a new evidence.) Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like 'gravitational' effect of this nonpropagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the {nu}{sub R} is nonzero in the physical vacuum.« less
Application of Nuclear Well Logging Techniques to Lunar Resource Assessment
NASA Technical Reports Server (NTRS)
Albats, P.; Groves, J.; Schweitzer, J.; Tombrello, T.
1992-01-01
The use of neutron and gamma ray measurements for the analysis of material composition has become well established in the last 40 years. Schlumberger has pioneered the use of this technology for logging wells drilled to produce oil and gas, and for this purpose has developed neutron generators that allow measurements to be made in deep (5000 m) boreholes under adverse conditions. We also make ruggedized neutron and gamma ray detector packages that can be used to make reliable measurements on the drill collar of a rotating drill string while the well is being drilled, where the conditions are severe. Modern nuclear methods used in logging measure rock formation parameters like bulk density and porosity, fluid composition, and element abundances by weight including hydrogen concentration. The measurements are made with high precision and accuracy. These devices (well logging sondes) share many of the design criteria required for remote sensing in space; they must be small, light, rugged, and able to perform reliably under adverse conditions. We see a role for the adaptation of this technology to lunar or planetary resource assessment missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Witter; Robert Knoll; William Rehm
2005-09-29
This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conductedmore » in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.« less
Forbidden territories in the string landscape
NASA Astrophysics Data System (ADS)
Kumar, Alok; Mukhopadhyay, Subir; Ray, Koushik
2007-12-01
Problems of stabilizing moduli of the type-IIB string theory on toroidal orientifolds T6/Z2, in presence of worldvolume fluxes on various D-branes, are considered. For Z2 actions, introducing either O9 or O3 planes, we rule out the possibility of moduli stabilization in a wide class of models with Script N = 1 supersymmetry, characterized by the type of fluxes turned on along D-brane worldvolume. Our results, in particular, imply that Abelian worldvolume fluxes can not by themselves stabilize closed string moduli, in a consistent supersymmtric model, for above orientifold compactifications. We also discuss other Z2 orientifolds of T6 and show that certain other brane wrappings are also ruled out by similar consistency requirements. In specific setups we consider examples with D9-branes wrapping on a complex three-torus with its world-volume fluxes taken to be semi-homogeneous bundles and D7-branes wrapping holomorphic four-cycles of the complex three-torus carrying world-volume fluxes.
Sadeghi, Rokhsareh; Miremadi, Asghar
2015-01-01
Objectives: Implant primary stability is one of the important factors in achieving implant success. The osteotome technique may improve primary stability in patients with poor bone quality. The aim of this study was to compare implant stability using two different techniques namely osteotome versus conventional drilling in the posterior maxilla. Materials and Methods: In this controlled randomized clinical trial, 54 dental implants were placed in 32 patients; 29 implants were placed in the osteotome group and 25 in the conventional drilling group. Implant stability was assessed at four time intervals namely at baseline, one, two and three months after implant placement using resonance frequency analysis (RFA). Results: Primary stability based on implant stability quotient (ISQ) units was 71.4±7 for the osteotome group and 67.4±10 for the control group. There was no statistically significant difference between the two groups in implant stability at any of the measurement times. In each group, changes in implant stability from baseline to one month and also from two months to three months post-operatively were not significant but from one month to two months after implant placement, implant stability showed a significant increase in both groups. Conclusion: The results of this study revealed that in both techniques, good implant stability was achieved and osteotome technique did not have any advantage compared to conventional drilling in this regard. PMID:27148375
Straight spinning cosmic strings in Brans-Dicke gravity
NASA Astrophysics Data System (ADS)
Dos Santos, S. Mittmann; da Silva, J. M. Hoff; Cindra, J. L.
2018-03-01
An exact solution of straight spinning cosmic strings in Brans-Dicke theory of gravitation is presented. The possibility of the existence of closed time-like curves around these cosmic strings is analyzed. Furthermore, the stability about the formation of the topological defect discussed here is checked. It is shown that the existence of a suitable choice for the integration constants in which closed time-like curves are not allowed. We also study the (im)possibility of using the obtained spacetime in the rotational curves problem.
NASA Astrophysics Data System (ADS)
Danielsson, U. H.; Dibitetto, G.; Vargas, S. C.
2017-11-01
We consider known examples of non-supersymmetric AdS7 and AdS4 solutions arising from compactifications of massive type IIA supergravity and study their stability, taking into account the coupling between closed- and open-string sector excitations. Generically, open strings are found to develop modes with masses below the Breitenlohner-Freedman (BF) bound. We comment on the relation with the Weak Gravity Conjecture, and how this analysis may play an important role in examining the validity of non-supersymmetric constructions in string theory.
Interaction with a field: a simple integrable model with backreaction
NASA Astrophysics Data System (ADS)
Mouchet, Amaury
2008-09-01
The classical model of an oscillator linearly coupled to a string captures, for a low price in technique, many general features of more realistic models for describing a particle interacting with a field or an atom in an electromagnetic cavity. The scattering matrix and the asymptotic in and out-waves on the string can be computed exactly and the phenomenon of resonant scattering can be introduced in the simplest way. The dissipation induced by the coupling of the oscillator to the string can be studied completely. In the case of a d'Alembert string, the backreaction leads to an Abraham-Lorentz-Dirac-like equation. In the case of a Klein-Gordon string, one can see explicitly how radiation governs the (meta)stability of the (quasi)bounded mode.
Stability of suspended gold and silver alloy monatomic chains
NASA Astrophysics Data System (ADS)
Fa, Wei; Dong, Jinming
2008-06-01
Using the first-principles plane wave pseudopotential method, we have studied the structures and stability of gold and silver alloy monatomic chains. It is found that minimizing system's enthalpy instead of its energy is critical to identify the stability of stretched alloy chains at zero temperature since the string tension can efficiently suppress the self-purification. Our simulations show that all the gold-containing chains do exhibit a local enthalpy minimum, giving a reasonable interpretation for the experimental observations of gold and silver alloy chains with different Ag concentrations [Bettini et al., Nat. Nanotechnol. 1, 182 (2006)]. These alloy chains are stabilized by the combined actions of the gold's relativistic effect and the string tension applied by the tip contacts, having similar geometrical structures to those of the pure gold chains.
Reporting from the Iceland Deep Drilling Project
NASA Astrophysics Data System (ADS)
Urban, Karl
2017-04-01
Geoscience-related topics are in many cases difficult to communicate to the public: Often they include dead soil which not easily tells lively stories. And it is hard to sell those topics to editors of public media. In addition the topics might also be politically supercharged if they are resource-related with a visible environmental impact. Therefore any researcher involved might be overcautious while talking to journalists. With a grant from the EGU Science Journalist Fellowship I travelled to Iceland in autumn 2016 to report about the Iceland Deep Drilling Project (IDDP). The project which started just weeks prior to my arrival aimed to drill the deepest borehole in a volcanically active region. During earlier trials the borehole collapsed or the drill string unintentionally hit magma. If successful the IDDP promises a much higher level of geothermal energy harvested. The IDDP was therefore ideally suited to be sold to public media outlets since Iceland's volcanic legacy easily tells a lively story. But the drilling's potential environmental impact makes it a political topic in Iceland - even though geothermal energy has a positive public perception. Therefore the IDDP included some pitfalls I observed several times before while reporting about geoscience research. Those could be circumvented if researchers and journalists knew better about their expectations before any interview takes place.
Wireline Deep Drill for the Exploration of Icy Bodies
NASA Technical Reports Server (NTRS)
Paulsen, G.; Zacny, K.; Mellerowicz, B.; Craft, J.; Bar-Cohen, Y.; Beegle, L.; Sherrit, S.; Badescu, M.; Corsetti, F.; Ibarra, Y.
2013-01-01
One of the most pressing current questions in space science is whether life has ever arisen anywhere else in the universe. Water is a critical prerequisite for all life-as-we-know-it, thus the possible exploration targets for extraterrestrial life are bodies that have or had copious liquid: Mars, Europa, and Enceladus. Due to the oxidizing nature of Mars' surface, as well as subsurface liquid water reservoirs present on Europa and Enceladus, the search for evidence of existing life must likely focus on subsurface locations, at depths sufficient to support liquid water or retain biologic signatures. To address these questions, an Auto-Gopher sampler has been developed that is a wireline type drill. This drill is suspended on a tether and its motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill is retracted from the borehole, the core is deposited into a sample transfer system, and the drill is lowered back into the hole. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections, which add significantly to the mass and the complexity of the system (i.e. penetration rate was 40 cm per hour). Drilling to 2 meter depth and recovering of cores every 10 cm took a total time of 15 hours (a single step of drilling 10 cm and retrieving the core was 45 minutes). Total energy to reach the 2 m depth was 500 Whr. The Weight on Bit was limited to less than 70 Newton. The core recovery was 100%.
Borehole Stability in High-Temperature Formations
NASA Astrophysics Data System (ADS)
Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang
2014-11-01
In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Witter; Robert Knoll; William Rehm
2005-02-01
This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial projectmore » meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.« less
NASA Astrophysics Data System (ADS)
Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Renken, J.; Zabel, M.; Wefer, G.
2011-12-01
State of the art technology for long-term monitoring of fluid migration within the sea floor is the sealing of a borehole with a Circulation Obviation Retrofit Kit (CORK) after sensor installation and/or fluid sampling devices within the drill string. However, the combined used of a drilling vessels and a remotely operated drilling (ROV) required for a CORK installation in the deep sea is a costly exercise that limits the number of monitoring stations installed. Robotic sea floor drill rigs are a cost effective alternative for shallow drillings down to 50-100 m below sea floor. Here we present a Mini-CORK system that is developed for installation with the sea floor drill rig MeBo. This rig was developed at MARUM Research Centre, University of Bremen in 2005 and can sample the sea floor in water depths up to 2000 m. The MeBo is deployed on the seabed and remotely controlled from the vessel. All required drill tools for wire-line core drilling down to 70 m below sea floor are stored on two rotating magazines and can be loaded below the top drive drill head for assembling the drill string. For one of the upcoming cruises with RV Sonne offshore Japan (Nankai Trough accretionary prism), MeBo will be used for the first time to place observatories. Two different designs have been developed. The first, relatively simple long-term device resembles a MeBo drill rod in its geometry, and contains a pressure and temperature transducer in the borehole plus an identical pair of transducers for seafloor reference. The device also contains a data logger, battery unit, and an acoustic modem so that data can be downloaded at any time from a ship of opportunity. The key element at the base of the observatory rod is a seal at the conical thread to separate the borehole hydraulically from the overlying water body. It is realized by an adapter, which also contains a hotstab hydraulic connection and an electrical connection. The second observatory device is a seafloor unit, which replaces part of the first unit and which is deployed by ROV. In essence, the upper portion of the former observatory is taken away by ROV, and an umbilical containing hydraulic lines and tubing to withdraw formation water from the borehole is plugged into the hotstab female adapter by ROV. At the far end, the umbilical is connected to a seafloor unit with battery power, data logger, P and T transducers, and the same acoustic modem as the former one. In addition, the latter contains osmo samplers and biological chambers (FLOCS) for in situ sampling and experiments. After the envisaged deployment period, the entire unit is replaced while an identical one is prepared on deck and lowered from the vessel. In theory, the MeBo hole infinitely serves as an access to depth since no electronic, but only tubing is lowered into the (open) hole. In summary, long-term borehole installations with MeBo offer an affordable way to measure key physical properties over time and sample the formation fluids for geochemistry and microbiology (in case of the second, ROV-deployed CORK).
Dillon, William P.; Klitgord, Kim D.; Paull, Charles K.; Grow, John A.; Ball, Mahlon M.; Dolton, Gordon L.; Powers, Richard B.; Khan, Abdul S.; Popenoe, Peter; Robb, James M.; Dillon, William P.
1980-01-01
This report summarizes our general knowledge of the petroleum potential, as well as problems and hazards associated with development of petroleum resources in the area proposed for nominations for lease sale number 56. This area includes the U.S. eastern continental margin from the North Carolina-Virginia border south to approximately Cape Canaveral, Florida and from three miles from shore, seaward to include the upper Continental Slope and inner Blake Plateau. The area for possible sales is shown in figure 1; major physiographic features of the region are shown in figure 2.No wells have been drilled for petroleum within this proposed lease area and no significant commercial production has been obtained onshore in the Southeast Georgia Embayment. The COST GE-1 stratigraphic test well, drilled on the Continental Shelf off Jacksonville, Fla. (fig- 1), reached basement at 3,300 m. The bottom third of the section consists of dominantly continental rocks that are typically poor sources of petroleum (Scholle, 1979) and the rocks that contain organic carbon adequate for generation of petroleum at the well are seen in seismic profiles always at shallow subbottom depths, so they probably have not reached thermal maturity. However, seismic profiles indicate that the sedimentary deposits thicken markedly in a seaward direction where more of the section was deposited under marine conditions; therefore, commercial accumulations of petroleum offshore are more likely.Several potential sources of environmental hazard exist. Among the most important are hurricanes, the Gulf Stream, and earthquakes. The potential danger from high wind, waves, storm surges, and storm-driven currents associated with hurricanes is obvious. Evidence for significant bottom scour by the Gulf Stream is abundant; such scour is a threat to the stability of bottom-mounted structures. The fast-flowing water also will hamper floating drill rigs and control of drill strings. A major earthquake of about magnitude 6.8 struck Charleston in 1886; it may have been associated with a zone of active seismicity that crosses South Carolina. The likelihood of a repetition of the 1886 event is presently not predictable but a seismic hazard must be assumed to exist.
Topics in Cosmic String Physics and Vacuum Stability of Field Theories
NASA Astrophysics Data System (ADS)
Dasgupta, Indranil
1998-01-01
In this thesis I examine aspects of the vacuum state of quantum field theories. Namely, I study topological defects in the vacuum which appear as localized regions of non-zero energy density if the model system is unable to relax to a homogeneous and isotropic ground state because of topological constraints. I also examine the stability of the so called false vacua in theories that have multiple vacuum states with different energy densities. I first consider topological defects in the form of strings and independently the decay of false vacua in models of particle physics where the presence of either defects or of false vacua leads to interesting phenomenology. Then I describe a situation in which the defects arising from topological properties of the vacuum in turn affect the stability of the vacuum itself. In the first part of this work (chapters 2 and 3), I explore the phenomenology of cosmic strings. I introduce new string-like topological defects that resemble pairs of strings bound together. I give an existence proof of these 'binary strings' and then develop their cosmological properties in detail. I then propose a simple extension of the Standard Model in which cosmic strings may form and then decay through baryon number violating interactions leading to baryogenesis. I show that the model has distinct and testable signatures. In the second part of this work (chapters 4 and 5), I examine the vacua of several proposed models of gauge mediated dynamical supersymmetry breaking and show that the viable vacua are often unstable. I develop a rigorous theory for approximating vacuum tunneling rates in multi-scalar field theories and by computing bounds on the decay rate of the vacua in these models obtain useful constraints on the parameter space. In the final part of this work (chapter 6), I develop a theory of vacuum tunneling induced by topological defects. I show that defects can speed up vacuum tunneling rates by seeding new kinds of bubbles during a first order phase transition. I then indicate possible phenomenological applications of this effect and develop simple approximation techniques for computing the rate of seeded tunneling.
Adventures in heterotic string phenomenology
NASA Astrophysics Data System (ADS)
Dundee, George Benjamin
In this Dissertation, we consider three topics in the study of effective field theories derived from orbifold compactifications of the heterotic string. In Chapter 2 we provide a primer for those interested in building models based on orbifold compactifications of the heterotic string. In Chapter 3, we analyze gauge coupling unification in the context of heterotic strings on anisotropic orbifolds. This construction is very much analogous to effective five dimensional orbifold GUT field theories. Our analysis assumes three fundamental scales, the string scale, M S, a compactification scale, MC, and a mass scale for some of the vector-like exotics, MEX; the other exotics are assumed to get mass at MS. In the particular models analyzed, we show that gauge coupling unification is not possible with MEX = M C and in fact we require MEX << MC ˜ 3 x 1016 GeV. We find that about 10% of the parameter space has a proton lifetime (from dimension six gauge exchange) 1033 yr ≲ tau(p → pi0e+) ≲ 1036 yr, which is potentially observable by the next generation of proton decay experiments. 80% of the parameter space gives proton lifetimes below Super-K bounds. In Chapter 4, we examine the relationship between the string coupling constant, gSTRING, and the grand unified gauge coupling constant, alphaGUT, in the models of Chapter 3. We find that the requirement that the theory be perturbative provides a non-trivial constraint on these models. Interestingly, there is a correlation between the proton decay rate (due to dimension six operators) and the string coupling constant in this class of models. Finally, we make some comments concerning the extension of these models to the six (and higher) dimensional case. In Chapter 5, we discuss the issues of supersymmetry breaking and moduli stabilization within the context of E8 ⊗ E8 heterotic orbifold constructions and, in particular, we focus on the class of "mini-landscape" models. These theories contain a non-Abelian hidden gauge sector which generates a non-perturbative superpotential leading to supersymmetry breaking and moduli stabilization. We demonstrate this effect in a simple model which contains many of the features of the more general construction. In addition, we argue that once supersymmetry is broken in a restricted sector of the theory, then all moduli are stabilized by supergravity effects. Finally, we obtain the low energy superparticle spectrum resulting from this simple model.
Checking Contact Points for Curiosity Drill
2013-06-05
This image demonstrates how engineers place the drill carried by NASA Mars rover Curiosity onto rock targets. They first set down the drill two stabilizing prongs near the target, as shown by the dashed line.
Tepedino, Michele; Masedu, Francesco; Chimenti, Claudio
2017-05-30
The aim of the present study was to evaluate the relationship between insertion torque and stability of miniscrews in terms of resistance against dislocation, then comparing a self-tapping screw with a self-drilling one. Insertion torque was measured during placement of 30 self-drilling and 31 self-tapping stainless steel miniscrews (Leone SpA, Sesto Fiorentino, Italy) in synthetic bone blocks. Then, an increasing pulling force was applied at an angle of 90° and 45°, and the displacement of the miniscrews was recorded. The statistical analysis showed a statistically significant difference between the mean Maximum Insertion Torque (MIT) observed in the two groups and showed that force angulation and MIT have a statistically significant effect on miniscrews stability. For both the miniscrews, an angle of 90° between miniscrew and loading force is preferable in terms of stability. The tested self-drilling orthodontic miniscrews showed higher MIT and greater resistance against dislocation than the self-tapping ones.
Kenzig, Allison R; Butler, James R; Priddy, Lauren B; Lacy, Kristen R; Elder, Steven H
2017-07-13
Fracture of the ilium is common orthopedic injury that often requires surgical stabilization in canine patients. Of the various methods of surgical stabilization available, application of a lateral bone plate to the ilium is the most common method of fixation. Many plating options are available, each having its own advantages and disadvantages. The purpose of this study was to evaluate the biomechanical properties of a 3.5 mm String-of-Pearls™ plate and a 3.5 mm dynamic compression plate in a cadaveric canine ilial fracture model. Hemipelves were tested in cantilever bending to failure and construct stiffness, yield load, displacement at yield, ultimate load, and mode of failure were compared. The mean stiffness of dynamic compression plate (116 ± 47 N/mm) and String-of-Pearls™ plate (107 ± 18 N/mm) constructs, mean yield load of dynamic compression plate (793 ± 333 N) and String-of-Pearls™ plate (860 ± 207 N) constructs, mean displacement at yield of dynamic compression plate (8.6 ± 3.0 mm) and String-of-Pearls™ plate (10.2 ± 2.8 mm) constructs, and ultimate load at failure of dynamic compression plate (936 ± 320 N) and String-of-Pearls™ plate (939 ± 191 N) constructs were not significantly different. No differences were found between constructs with respect to mode of failure. No significant biomechanical differences were found between String-of-Pearls™ plate and dynamic compression plate constructs in this simplified cadaveric canine ilial fracture model.
Accidental Kähler moduli inflation
NASA Astrophysics Data System (ADS)
Maharana, Anshuman; Rummel, Markus; Sumitomo, Yoske
2015-09-01
We study a model of accidental inflation in type IIB string theory where inflation occurs near the inflection point of a small Kähler modulus. A racetrack structure helps to alleviate the known concern that string-loop corrections may spoil Kähler Moduli Inflation unless having a significant suppression via the string coupling or a special brane setup. Also, the hierarchy of gauge group ranks required for the separation between moduli stabilization and inflationary dynamics is relaxed. The relaxation becomes more significant when we use the recently proposed D-term generated racetrack model.
Models for small-scale structure on cosmic strings. II. Scaling and its stability
NASA Astrophysics Data System (ADS)
Vieira, J. P. P.; Martins, C. J. A. P.; Shellard, E. P. S.
2016-11-01
We make use of the formalism described in a previous paper [Martins et al., Phys. Rev. D 90, 043518 (2014)] to address general features of wiggly cosmic string evolution. In particular, we highlight the important role played by poorly understood energy loss mechanisms and propose a simple Ansatz which tackles this problem in the context of an extended velocity-dependent one-scale model. We find a general procedure to determine all the scaling solutions admitted by a specific string model and study their stability, enabling a detailed comparison with future numerical simulations. A simpler comparison with previous Goto-Nambu simulations supports earlier evidence that scaling is easier to achieve in the matter era than in the radiation era. In addition, we also find that the requirement that a scaling regime be stable seems to notably constrain the allowed range of energy loss parameters.
Wellbore stability in oil and gas drilling with chemical-mechanical coupling.
Yan, Chuanliang; Deng, Jingen; Yu, Baohua
2013-01-01
Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale.
Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling
Deng, Jingen
2013-01-01
Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430
Geothermal observation wells, Mt. Hood, Oregon. Final report, October 4, 1977-July 9, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covert, W.F.; Meyer, H.J.
1979-11-01
Exploration drilling operations were conducted which included the deepening of an existing hole, designated as Old Maid Flat No. 1, from 1850 ft (564 m) to 4002 (1220 m) on the western approaches to Mt. Hood and the drilling of three new holes ranging from 940 ft (287 m) to 1340 ft (409 m). The Clear Fork hole, located in Old Maid Flat, was drilled to 1320 ft (402 m). The Zigzag hole was drilled to 940 ft (287 m) at the southwestern base of Mt. Hood in the Zigzag River valley. The remaining hole was drilled on the Timberlinemore » Lodge grounds which is on the south flank of Mt. Hood at an elevation of about 6000 ft (1829 m) above sea level. The deepening project designated as Old Maid Flat No. 1 encountered a maximum bottom hole temperature of about 180/sup 0/F (82/sup 0/C) and is to this date the deepest exploratory hole in the Mt. Hood vicinity. No significant drilling problems were encountered. The Clear Fork and Zigzag River holes were completed without significant problems. The Timberline Lodge hole encountered severe drilling conditions, including unconsolidated formations. Two strings of tools were left in the hole from structural collapse of the hole. The hole was scheduled as a 2000 ft (610 m) test. Drilling did not proceed beyond 1350 ft (412 m) and due to junk it was unobstructed to a depth of 838 ft (255 m). Observation pipe was installed to 735 ft (224 m) due to further disintegration of the hole. The work was prematurely terminated due to weather conditions.« less
46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...
46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...
46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...
46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...
46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...
Vafi, Kourosh; Brandt, Adam
2016-07-19
This paper introduces GHGfrack, an open-source engineering-based model that estimates energy consumption and associated GHG emissions from drilling and hydraulic fracturing operations. We describe verification and calibration of GHGfrack against field data for energy and fuel consumption. We run GHGfrack using data from 6927 wells in Eagle Ford and 4431 wells in Bakken oil fields. The average estimated energy consumption in Eagle Ford wells using lateral hole diameters of 8 (3)/4 and 6 (1)/8 in. are 2.25 and 2.73 TJ/well, respectively. The average estimated energy consumption in Bakken wells using hole diameters of 6 in. for horizontal section is 2.16 TJ/well. We estimate average greenhouse gas (GHG) emissions of 419 and 510 tonne of equivalent CO2 per well (tonne of CO2 eq/well) for the two aforementioned assumed geometries in Eagle Ford, respectively, and 417 tonne of CO2 eq/well for the case of Bakken. These estimates are limited only to GHG emissions from combustion of diesel fuel to supply energy only for rotation of drill string, drilling mud circulation, and fracturing pumps. Sensitivity analysis of the model shows that the top three key variables in driving energy intensity in drilling are the lateral hole diameter, drill pipe internal diameter, and mud flow rate. In hydraulic fracturing, the top three are lateral casing diameter, fracturing fluid volume, and length of the lateral.
Defining the upper viscosity limit for mineral slurries used in drilled shaft construction.
DOT National Transportation Integrated Search
2014-02-01
Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during : excavation and concreting. Florida Department of Transportation (FDOT) specifications require that the : mineral slurry used for all primary str...
Rotating Space Elevators: Classical and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Knudsen, Steven
We investigate a novel and unique dynamical system, the Rotating Space Elevator (RSE). The RSE is a multiply rotating system of strings reaching beyond the Earth geo-synchronous satellite orbit. Objects sliding along the RSE string ("climbers") do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in the space elevator technology which is how to supply the energy to the climbers moving along the string. The RSE is a double rotating floppy string. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in the double rotating frame. The RSE exhibits a variety of interesting dynamical phenomena studied in this thesis.
Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later
NASA Astrophysics Data System (ADS)
Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.
2001-12-01
Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were colonized by palm worms, limpets, and snails. Four other drill holes showed no hydrothermal flow nor visible evidence of down hole recharge. Mapping with Tiburon confirmed that the extent of hydrothermal venting at NESCA decreased dramatically since 1988. Formerly extensive colonies of Ridgia had vanished leaving no trace of their presence. Although hydrothermal venting has collapsed to a single mound, the temperature and composition of the fluids remained nearly unchanged. This is curious given that sediment pore fluids analyzed on Leg 169 included both high salinity and low salinity components of phase separated hydrothermal fluids in the shallow subsurface indicating that the hydrothermal field must have had a relatively recent (relative to the rate of pore fluid diffusion) high temperature history. Hydrothermal fluids presently venting at this site must be derived from an essentially homogeneous, approximately 215\\degC fluid reservoir that has declined in its fluid output on a decadal scale, but has not undergone significant changes in temperature and composition. Venting at the seafloor does not seem to have been affected by drilling in the hydrothermal field.
Red Dragon drill missions to Mars
NASA Astrophysics Data System (ADS)
Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris
2017-12-01
We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).
Handheld magnetic sensor for measurement of tension
NASA Astrophysics Data System (ADS)
Singal, K.; Rajamani, R.
2012-04-01
This letter develops an analytical formulation for measurement of tension in a string using a handheld sensor. By gently pushing the sensor against the string, the tension in the string can be obtained. An experimental sensor prototype is constructed to verify the analytical formulation. The centimeter-sized prototype utilizes three moving pistons and magnetic field based measurements of their positions. Experimental data show that the sensor can accurately measure tension on a bench top rig. The developed sensor could be useful in a variety of orthopedic surgical procedures, including knee replacement, hip replacement, ligament repair, shoulder stabilization, and tendon repair.
State-of-the-art in coalbed methane drilling fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltoiu, L.V.; Warren, B.K.; Natras, T.A.
2008-09-15
The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impactmore » on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.035 Definitions. (a... IA of this chapter: (1) Column stabilized unit. (2) Mobile offshore drilling unit. (3) Self-elevating... loaded or arranged for drilling, field transit, or ocean transit. (4) Severe storm condition means a...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.035 Definitions. (a... IA of this chapter: (1) Column stabilized unit. (2) Mobile offshore drilling unit. (3) Self-elevating... loaded or arranged for drilling, field transit, or ocean transit. (4) Severe storm condition means a...
Marković, Aleksa; Calvo-Guirado, José Luís; Lazić, Zoran; Gómez-Moreno, Gerardo; Ćalasan, Dejan; Guardia, Javier; Čolic, Snježana; Aguilar-Salvatierra, Antonio; Gačić, Bojan; Delgado-Ruiz, Rafael; Janjić, Bojan; Mišić, Tijana
2013-06-01
The aim of this study was to investigate the relationship between surgical techniques and implant macro-design (self-tapping/non-self-tapping) for the optimization of implant stability in the low-density bone present in the posterior maxilla using resonance frequency analysis (RFA). A total of 102 implants were studied. Fifty-six self-tapping BlueSkyBredent® (Bredent GmbH&Co.Kg®, Senden, Germany) and 56 non-self-tapping Standard Plus Straumann® (Institut Straumann AG®, Waldenburg, Switzerland) were placed in the posterior segment of the maxilla. Implants of both types were placed in sites prepared with either lateral bone-condensing or with bone-drilling techniques. Implant stability measurements were performed using RFA immediately after implant placement and weekly during a 12-week follow-up period. Both types of implants placed after bone condensing achieved significantly higher stability immediately after surgery, as well as during the entire 12-week observation period compared with those placed following bone drilling. After bone condensation, there were no significant differences in primary stability or in implant stability after the first week between both implant types. From 2 to 12 postoperative weeks, significantly higher stability was shown by self-tapping implants. After bone drilling, self-tapping implants achieved significantly higher stability than non-self-tapping implants during the entire follow-up period. The outcomes of the present study indicate that bone drilling is not an effective technique for improving implant stability and, following this technique, the use of self-tapping implants is highly recommended. Implant stability optimization in the soft bone can be achieved by lateral bone-condensing technique, regardless of implant macro-design. © 2011 Wiley Periodicals, Inc.
Method and apparatus for injecting particulate media into the ground
Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.
2004-12-28
An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.
Study of Laser Drilled Hole Quality of Yttria Stabilized Zirconia
NASA Astrophysics Data System (ADS)
Saini, Surendra K.; Dubey, Avanish K.; Pant, Piyush; Upadhyay, B. N.; Choubey, A.
2017-09-01
The Yttria Stabilized Zirconia ceramic is extensively used in aerospace, automotives, medical and microelectronics industries. These applications demand manufacturing of different macro and micro features with close tolerances in this material. To make miniature holes with accurate dimensions in advanced ceramics such as Yttria Stabilized Zirconia is very difficult due to its tailored attributes such as high toughness, hardness, strength, resistance to wear, corrosion and temperature. Due to inherent characteristics of laser drilling, researchers are working to fulfill the requirement of creation of micro holes in advanced ceramics. The present research investigates the laser drilling of 2 mm thick Yttria Stabilized Zirconia with the aim to achieve good micro holes with reduced geometrical inaccuracies and improved hole quality. The results show that multiple quality response comprising hole circularity, hole taper and recast layer thickness has been improved at optimally selected process parameters.
NASA Astrophysics Data System (ADS)
Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang
2014-05-01
SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud treatment and high temperature resistant cementing materials, and bionic bits,that is coupling bionic PDC tooth bit and diamond-impregnated bit for hard rock.All parts of CRUST-1 were successfully assembled along with the derrick and base lift and transported about 3456 kilometers from manufacture,GuangHan city in southwest China's Sichuan province,to the well site of SK-2 in end of 2013.SK-2 will be finished during next 4 years.
Effect of volumetric concentration of MWCNTs on the stability and thermal conductivity of nanofluids
NASA Astrophysics Data System (ADS)
Rehman, Wajid Ur; Bhat, A. H.; Suliamon, A. A.; Khan, Ihsan Ullah; Ullah, Hafeez
2016-11-01
Environmental concerns and running down of the fossil fuel deposits which are generally being used as base oil in Drilling Fluid/Mud have attended worldwide attention and thereby, researchers have focused on using environmentally friendly drilling fluids. This study demonstrates the preparation of drilling fluids and to explore the effect of increase in the volumetric concentration of nanoparticles on the stability and thermal conductivity of nanofluids. In this research, for the formation of nanofluids, Jatropha Seed Oil was used as the base oil with the addition of multi-walled carbon nanotubes as the nanoparticles using sonication technique. The raw multi-walled carbon nanotubes were characterized by using SEM for morphological examination. The prepared drilling fluid were characterized by using UV-Visible spectroscopic technique for analyzing the stability. Thermal Conductivity measurements were also carried out for heat transfer efficiency. It was observed that the heat transfer capability of the nanofluid ameliorates with the increase in the loading percentage of multi-walled carbon nanotubes.
Bone implant sockets made using three different procedures: a stability study in dogs
Campo, Julián
2012-01-01
Objective: This study compared the effects of three different methods of preparing bone implant sockets (drilling, osteotomes, and piezoelectric device) on osseointegration using resonance frequency analysis (RFA). Study Design: An experimental prospective study was designed. Material and Methods: Ten adult beagle dogs were studied. After 5 weeks, 23 out of 28 initially placed implants in the iliac crest were evaluated, comparing these three different procedures of bone implant socket. Student’s t-test (paired, two-tailed) was used to reveal differences among the three groups at each time point (SPSS 16.0, IL, USA). Results: After a 5-week healing period, the implants placed in sockets that were made using an osteotome or piezoelectric device were slightly more stable than those made by drilling. Reduced mechanical and heat injury to the bone is beneficial for maintaining and improving stability during the critical early healing period. Conclusion: Using RFA, there was evidence of a slight increase in implant stability in the iliac crest after 5 weeks of healing when the implant socket was made using a piezoelectric device or expansion procedure as compare with the drilling method. Key words:Bone implant sockets, drilling, osteotomes, piezoelectric, resonance frequency analysis, stability. PMID:24558558
Methods and system for subsurface stabilization using jet grouting
Loomis, Guy G.; Weidner, Jerry R.; Farnsworth, Richard K.; Gardner, Bradley M.; Jessmore, James J.
1999-01-01
Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, C W; Reisman, D B; McLean, H S
2007-05-30
A fusion reactor is described in which a moving string of mutually repelling compact toruses (alternating helicity, unidirectional Btheta) is generated by repetitive injection using a magnetized coaxial gun driven by continuous gun current with alternating poloidal field. An injected CT relaxes to a minimum magnetic energy equilibrium, moves into a compression cone, and enters a conducting cylinder where the plasma is heated to fusion-producing temperature. The CT then passes into a blanketed region where fusion energy is produced and, on emergence from the fusion region, the CT undergoes controlled expansion in an exit cone where an alternating poloidal fieldmore » opens the flux surfaces to directly recover the CT magnetic energy as current which is returned to the formation gun. The CT String Reactor (CTSTR) reactor satisfies all the necessary MHD stability requirements and is based on extrapolation of experimentally achieved formation, stability, and plasma confinement. It is supported by extensive 2D, MHD calculations. CTSTR employs minimal external fields supplied by normal conductors, and can produce high fusion power density with uniform wall loading. The geometric simplicity of CTSTR acts to minimize initial and maintenance costs, including periodic replacement of the reactor first wall.« less
Boring apparatus capable of boring straight holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, C.R.
The invention relates to a rock boring assembly for producing a straight hole for use in a drill string above a pilot boring bit of predetermined diameter smaller than the desired final hole size. The boring assembly comprises a small conical boring bit and a larger conical boring, the conical boring bits mounted on lower and upper ends of an enlongated spacer, respectively, and the major effective cutting diameters of each of the conical boring bits being at least 10% greater than the minor effective cutting diameter of the respective bit. The spacer has a cross-section resistant bending and spacesmore » the conical boring bits apart a distance at least 5 times the major cutting diameter of the small conical boring bit, thereby spacing the pivot points provided by the two conical boring bits to limit bodily angular deflection of the assembly and providing a substantial moment arm to resist lateral forces applied to the assembly by the pilot bit and drill string. The spacing between the conical bits is less than about 20 times the major cutting diameter of the lower conical boring bit to enable the spacer to act as a bend-resistant beam to resist angular deflection of the axis of either of the conical boring bits relative to the other when it receives uneven lateral force due to non-uniformity of cutting conditions about the circumference of the bit. Advantageously the boring bits also are self-advancing and feature skewed rollers. 7 claims.« less
Towards natural inflation from weakly coupled heterotic string theory
NASA Astrophysics Data System (ADS)
Abe, Hiroyuki; Kobayashi, Tatsuo; Otsuka, Hajime
2015-06-01
We propose natural inflation from the heterotic string theory on the "Swiss-Cheese" Calabi-Yau manifold with multiple U(1) magnetic fluxes. Such multiple U(1) magnetic fluxes stabilize the same number of the linear combination of the universal axion and Kähler axions, and one of the Kähler axions is identified as the inflaton. This axion decay constant can be determined by the size of one-loop corrections to the gauge kinetic function of the hidden gauge groups, which leads effectively to the trans-Planckian axion decay constant consistent with the Planck data. During the inflation, the real parts of the moduli are also stabilized by employing the nature of the "Swiss-Cheese" Calabi-Yau manifold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Witter; Robert Knoll; William Rehm
2006-06-30
This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conductedmore » in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.« less
NASA Astrophysics Data System (ADS)
Amirov, Elnur
2016-04-01
A new technology to acquire wireline quality pressure tests using a Logging While Drilling approach has been successfully implemented few years ago in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic. The Formation Tester While Drilling tool (GeoTap) uses a testing sequence similar to wireline tools. A single probe is extended to the borehole wall and a small pretest volume withdrawn from the formation. The resulting pressure transient is then analyzed for formation pressure, formation permeability and mobility information. Up-link and down-link capabilities have been added to achieve test control and quality feedback. An efficient downlink algorithm is used downhole to analyze the data. The parameters and pressure data are transmitted to the surface in real-time for continuous monitoring of the test. More detailed pressure data is recorded and retrieved after returning to surface. Use of a quartz gauge allows excellent accuracy. Azeri, Chirag and Guneshli fields consist of layered sand reservoirs alternation with shale sequences and detailed pressure data is acquired on a high percentage of wells in order to understand lateral and vertical continuity of different flow units. The formation tester can be utilized with the 'triple combo' Logging While Drilling string which eliminates the need to rig up wireline on many wells. Wireline formation tester runs are time consuming - particularly if high deviation or high overbalance conditions are encountered requiring pipe conveyed techniques. Non-Productive Time is high when the wireline tools are stuck and fishing operations are required. The Sperry Drilling GeoTap formation pressure tester service provides real-time formation pressure measurements. It bridges the critical gap between drilling safety and optimization, by providing early and reliable measurements of key reservoir properties, while improving reservoir understanding and completion design in real time. The GeoTap tester obtains direct pore-pressure measurements as the well is being drilled, with accuracy and precision comparable to that of wireline testers. The GeoTap service can eliminate the time, risk, and cost associated with running pipe-conveyed wireline test tools. It also measures annular and bore pressure while drilling, providing accurate, continuous, real-time hydrostatic pressure, and equivalent circulating density (ECD) information. This aids in determining and maintaining optimal mud weight, reduces formation damage, increases the rate of penetration, and increases operational safety. GeoTap benefits can be improvement of formation evaluation, real-time fluid gradients and fluid mobility (permeability/viscosity indicator), identification of fluid contact points, determination of reservoir connectivity/compartmentalization and depletion, increase safety of operation, determination of optimal mud weight and manage of ECD. We can also continuously monitor wellbore stability for assessments in order to reduce formation damage which in turns will help to increase drilling effectiveness (determine precise overbalance for maximizing ROP and continuously monitor hole-cleaning effectiveness with pressure-while-drilling, while reducing formation damage due to swab/surge). Save time and money by reducing rig down time associated with wireline testing. GeoTap Tool capable of performing more than 150 pressure tests per run and optional orientation of pressure measurement is available (top, right, bottom or left). GeoTap testing has been completed with encouraging results in many wells up to circa 3000m deep. Data has been acquired successfully both in a "Drill-Test-Drill' mode and a "Post-Drill-Test" mode. GeoTap tests have spanned wide ranges of borehole temperature, pressure, mobility as well as formation permeability and overbalance conditions. GeoTap tests in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic have proved that a logging while drilling approach can be successfully employed to acquire formation pressure data in open hole (which is also very useful for fluid gradient analysis, oil water and gas oil contacts delineation/identification).
NASA Astrophysics Data System (ADS)
Blume, F.; Herring, T.; Mattioli, G. S.; Feaux, K.; Walls, C. P.; Austin, K. E.; Dittmann, S. T.
2017-12-01
Geodetic-quality permanent GNSS stations have used a number of different monument styles for the purpose of ensuring that the motions of the GNSS antenna reflect those of the Earth's crust while minimizing non-tectonic motions near the surface. Monuments range from simple masts mounted on buildings or drilled into bedrock, costing a few hundred dollars to machine-drilled-braced monuments in soil costing tens of thousands. The stability of an individual monument will depend on its design, the construction techniques used to install it, and the local surface geology where it is installed. Previous studies have separately investigated pairs of identical monuments at a single site, monument type performance using global statistical analysis, and multiple monument styles at a single site, yet the stability of different monument types in similar geologic conditions has not been adequately determined. To better characterize the stability of various monument styles in diverse geologic conditions UNAVCO constructed two additional monuments at five existing PBO stations in 2013. Deep drilled-braced, short drilled-braced, and single mast type monuments were installed at sites with bedrock at the surface; deep drilled-braced, short driven-braced and pillar type monuments were installed at sites with alluvium or soil at the surface. The sites include a variety of geographic, hydrologic, and geologic conditions. Data collected from the PBO Multi-Monument Experiment have been analyzed using a variety of methods. Each site is characterized using quality-control parameters such as multipath, signal-to-noise and previously determined seasonal variations. High-precision processing by PBO Analysis Centers with GAMIT and GIPSY use regional and global schemes and yield time-series with millimeter-level that determine noise content, overall site stability relative to other PBO sites and differential motions between the individual monuments. Sub-millimeter results from single-frequency short-baseline processing efforts show further details of monument performance. Results show that while local site characteristics may dominate time-series stability, braced monuments outperform pillars in sediments, and an inexpensive mast installed in bedrock can be as stable as an expensive drilled-braced monument.
Load-resistant coaxial transmission line
Hall, David R.; Fox, Joe
2006-01-03
A transmission line for downhole tools that make up all or part of a tool string for drilling and production of oil, gas, and geothermal wells that can withstand the dynamic gravitational forces and other accelerations associated with downhole excavations. The transmission line has a metal tube, or outer conductor, that houses a coaxial wire inner conductor. A non-metallic dielectric material is interposed between the inner and outer conductors. The outer and inner conductors and the dielectric are sufficiently compressed together so that independent motion between them is abated. Compression of the components of the transmission line may be achieved by drawing the transmission through one or more dies in order to draw down the outer conductor onto the dielectric, or by expanding the inner conductor against the dielectric using a mandrel or hydraulic pressure. Non-metallic bead segments may be used in aid of the compression necessary to resist the dynamic forces and accelerations of drilling.
46 CFR 174.040 - Stability requirements: general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.040... draft for navigation, towing, or drilling afloat, or at a temporary draft when changing drafts. ...
46 CFR 174.040 - Stability requirements: general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.040... draft for navigation, towing, or drilling afloat, or at a temporary draft when changing drafts. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, I.Y.; Tirziu, A.; Tseytlin, A.A.
We consider circular strings rotating with equal spins S{sub 1}=S{sub 2}=S in two orthogonal planes in AdS{sub 5} and suggest that they may be dual to long gauge-theory operators built out of self-dual components of gauge field strength. As was found in hep-th/0404187, the one-loop anomalous dimensions of the such gauge-theory operators are described by an antiferromagnetic XXX{sub 1} spin chain and scale linearly with length L>>1. We find that in the case of rigid rotating string both the classical energy E{sub 0} and the 1-loop string correction E{sub 1} depend linearly on the spin S (within the stability regionmore » of the solution). This supports the identification of the rigid rotating string with the gauge-theory operator corresponding to the maximal-spin (ferromagnetic) state of the XXX{sub 1} spin chain. The energy of more general rotating and pulsating strings also happens to scale linearly with both the spin and the oscillation number. Such solutions should be dual to other lower-spin states of the spin chain, with the antiferromagnetic ground state presumably corresponding to the string pulsating in two planes with no rotation.« less
Conventional drilling versus piezosurgery for implant site preparation: a meta-analysis.
Sendyk, Daniel Isaac; Oliveira, Natacha Kalline; Pannuti, Claudio Mendes; Naclério-Homem, Maria da Graça; Wennerberg, Ann; Zindel Deboni, Maria Cristina
2018-03-27
The aim of this study was to evaluate the evidence of a correlation between the stability of dental implants placed by piezosurgery, compared with implants placed by conventional drilling. An electronic search in MEDLINE, SCOPUS and the Cochrane Library was undertaken until August 2016 and was supplemented by manual searches and by unpublished studies at OpenGray. Only randomized controlled clinical trials that reported implant site preparation with piezosurgery and with conventional drilling were considered eligible for inclusion in this review. Meta-analyses were performed to evaluate the impact of piezosurgery on implant stability. Of 456 references electronically retrieved, 3 were included in the qualitative analysis and quantitative synthesis. The pooled estimates suggest that there is no significant difference between piezosurgery and conventional drilling at baseline (WMD: 2.20; 95% CI: -5.09, 9,49; p = 0.55). At 90 days, the pooled estimates revealed a statistically significant difference (WMD: 3.63; 95% CI: 0.58, 6.67, p = 0.02) favouring piezosurgery. Implant stability is slightly improved when osteotomy was performed by a piezoelectric device. More randomized controlled clinical trials are needed to verify these findings.
Bifurcation analysis and phase diagram of a spin-string model with buckled states.
Ruiz-Garcia, M; Bonilla, L L; Prados, A
2017-12-01
We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.
Bifurcation analysis and phase diagram of a spin-string model with buckled states
NASA Astrophysics Data System (ADS)
Ruiz-Garcia, M.; Bonilla, L. L.; Prados, A.
2017-12-01
We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.
Sagheb, Keyvan; Kumar, Vinay V; Azaripour, Adriano; Walter, Christian; Al-Nawas, Bilal; Kämmerer, Peer W
2017-02-01
The aim of this ex vivo study was to compare implant insertion procedures using piezosurgery and conventional drilling in different qualities of bone. Implant bed preparation time, generated heat, and primary implant stability were analyzed. Fresh ex vivo porcine bone block samples (cancellous, mixed, and cortical bone) were obtained. The bone quality was quantified by ultrasound transmission velocity (UTV). Each bone sample received three implants of the same diameter using each of the techniques of piezosurgery and conventional twist drills. Time for preparation was taken and the temperature while performing the osteotomy was measured using infrared spectroscopy. The primary implant stability after osteotomy was measured using resonance frequency analysis (RFA) and extrusion torque (ET). ANOVA with post hoc Tukey test was carried out to compare the values for the three different groups. The UTV values strongly correlated with the density of the bone samples. There was a significant increase in time (threefold, P < 0.05 [302 s vs. 122 s in cortical bone]) but no difference in the temperature for the piezo group (~37°C in cortical bone). Regardless of the osteotomy technique, there was a statistically significant increase in RFA and ET values in implants inserted in cancellous bone (RFA: piezo 77, drill 76; ET: piezo 22, drill 21), mixed bone (RFA: piezo 85, drill 86; ET: piezo 105, drill 61), and cortical bone (RFA: piezo 90, drill 87; ET piezo 184, drill 79) samples, respectively (P < 0.05). In between the different osteotomy groups, there was no difference in the RFA values but significant higher ET values in mixed/cortical bone samples in favor for the piezosurgery group. Piezosurgery and conventional implant bed drilling procedure do have similar mechanical outcomes regarding primary stability with high RFA values, but the preparation does need more time for piezosurgery group, so that piezosurgery might be a valuable tool in only very specific cases for implant bed preparation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Classical and quantum stability in putative landscapes
Dine, Michael
2017-01-18
Landscape analyses often assume the existence of large numbers of fields, N, with all of the many couplings among these fields (subject to constraints such as local supersymmetry) selected independently and randomly from simple (say Gaussian) distributions. We point out that unitarity and perturbativity place significant constraints on behavior of couplings with N, eliminating otherwise puzzling results. In would-be flux compactifications of string theory, we point out that in order that there be large numbers of light fields, the compactification radii must scale as a positive power of N; scaling of couplings with N may also be necessary for perturbativity.more » We show that in some simple string theory settings with large numbers of fields, for fixed R and string coupling, one can bound certain sums of squares of couplings by order one numbers. This may argue for strong correlations, possibly calling into question the assumption of uncorrelated distributions. Finally, we consider implications of these considerations for classical and quantum stability of states without supersymmetry, with low energy supersymmetry arising from tuning of parameters, and with dynamical breaking of supersymmetry.« less
Classical and quantum stability in putative landscapes
NASA Astrophysics Data System (ADS)
Dine, Michael
2017-01-01
Landscape analyses often assume the existence of large numbers of fields, N , with all of the many couplings among these fields (subject to constraints such as local supersymmetry) selected independently and randomly from simple (say Gaussian) distributions. We point out that unitarity and perturbativity place significant constraints on behavior of couplings with N , eliminating otherwise puzzling results. In would-be flux compactifications of string theory, we point out that in order that there be large numbers of light fields, the compactification radii must scale as a positive power of N ; scaling of couplings with N may also be necessary for perturbativity. We show that in some simple string theory settings with large numbers of fields, for fixed R and string coupling, one can bound certain sums of squares of couplings by order one numbers. This may argue for strong correlations, possibly calling into question the assumption of uncorrelated distributions. We consider implications of these considerations for classical and quantum stability of states without supersymmetry, with low energy supersymmetry arising from tuning of parameters, and with dynamical breaking of supersymmetry.
NASA Astrophysics Data System (ADS)
Liu, Yang; D'Angelo, Ralph M.; Choi, Gloria; Zhu, Lingchen; Bose, Sandip; Zeroug, Smaine
2018-04-01
Once an oil and gas wellbore has been drilled, steel casings and cement slurry are placed to ensure structural support, protection from fluid invasion, and most importantly to provide zonal isolation. The actual wellbore and string structure is rarely concentric but rather is often an eccentric one, especially in deviated boreholes. The term "eccentricity" is used to describe how off-center a casing string is within another pipe or the open-hole. In a typical double-string configuration, the inner casing is eccentered with respect to the outer string which itself is also eccentered within the cylindrical hole. The annuli may or may not be filled with solid cement, and the cement may have liquid-filled channels or be disbonded over localized azimuthal ranges. The complexity of wave propagation along axial intervals is significant in that multiple modes can be excited and detected with characteristics that are affected by the various parameters, including eccentering, in a non-linear fashion. A successful diagnosis of cement flaws largely relies on a thorough understanding of the complex acoustic modal information. The present study employs both modeling and experiments to fully understand the acoustic wave propagation in the complex, fluid-solid nested, cylindrically layered structures, with geometric eccentricities. The experimental results show excellent agreement with the theoretical predictions from newly developed, borehole acoustic modeling approaches. As such, it provides the basis for better understanding the operative wave physics and providing the means for effective inspection methodologies to assess well integrity and zonal isolation of oil wells.
Iwai, Hiroaki; Motoyoshi, Mitsuru; Uchida, Yasuki; Matsuoka, Miho; Shimizu, Noriyoshi
2015-04-01
We evaluated the effects of screw placement angle on the frequency of root contact and the effects of root contact on screw stability, comparing self-drilling and self-tapping methods. In total, 80 patients with 142 screws (diameter, 1.6 mm; length, 8.0 mm) were included. Cone-beam computed tomography images were taken. Cortical bone thickness, interroot distance, shortest distance between the screw and adjacent tooth root, and screw placement angle were measured. The success rates of the screws were 91.5% for the self-drilling method and 94.4% for the self-tapping method (P >0.05). The self-drilling screws tended to contact the distal tooth roots in the right maxilla. In the self-drilling method, the failure rate was significantly higher in the root contact group than in the no-contact group (P <0.05). The success rate was not significantly different between the self-drilling and the self-tapping methods in the maxilla. Avoidance of tooth root contact may improve the success rate more in the self-drilling method than in the self-tapping method. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Nonspherically symmetric black string perturbations in the large dimension limit
NASA Astrophysics Data System (ADS)
Sadhu, Amruta; Suneeta, Vardarajan
2016-06-01
We consider nonspherically symmetric perturbations of the uncharged black string/flat black brane in the large dimension (D) limit of general relativity. We express the perturbations in a simplified form using variables introduced by Ishibashi and Kodama. We apply the large D limit to the equations and show that this leads to decoupling of the equations in the near-horizon and asymptotic regions. It also enables use of matched asymptotic expansions to obtain approximate analytical solutions and to analyze stability of the black string/brane. For a large class of nonspherically symmetric perturbations, we prove that there are no instabilities in the large D limit. For the rest, we provide additional matching arguments that indicate that the black string/brane is stable. In the static limit, we show that for all nonspherically symmetric perturbations, there is no instability. This is proof that the Gross-Perry-Yaffe mode for semiclassical black hole perturbations is the unique unstable mode even in the large D limit. This work is also a direct analytical indication that the only instability of the black string is the Gregory-Laflamme instability.
Non-perturbative effects and wall-crossing from topological strings
NASA Astrophysics Data System (ADS)
Collinucci, Andrés; Soler, Pablo; Uranga, Angel M.
2009-11-01
We argue that the Gopakumar-Vafa interpretation of the topological string partition function can be used to compute and resum certain non-perturbative brane instanton effects of type II CY compactifications. In particular the topological string A-model encodes the non-perturbative corrections to the hypermultiplet moduli space metric from general D1/D(-1)-brane instantons in 4d Script N = 2 IIB models. We also discuss the reduction to 4d Script N = 1 by fluxes and/or orientifolds and/or D-branes, and the prospects to resum brane instanton contributions to non-perturbative superpotentials. We argue that the connection between non-perturbative effects and the topological string underlies the continuity of non-perturbative effects across lines of BPS stability. We also confirm this statement in mirror B-model matrix model examples, relating matrix model instantons to non-perturbative D-brane instantons. The computation of non-perturbative effects from the topological string requires a 3d circle compactification and T-duality, relating effects from particles and instantons, reminiscent of that involved in the physical derivation of the Kontsevich-Soibelmann wall-crossing formula.
NASA Astrophysics Data System (ADS)
Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.
2018-01-01
A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.
Matys, Jacek; Flieger, Rafał; Tenore, Gianluca; Grzech-Leśniak, Kinga; Romeo, Umberto; Dominiak, Marzena
2018-04-01
It is important to identify factors that affect primary stability of orthodontic mini-implants because it determines the success of treatment. We assessed mini-implant primary stability (initial mechanical engagement with the bone) placed in pig jaws. We also assessed mini-implant insertion failure rate (mini-implant fracture, mini-implants to root contact). A total of 80 taper-shaped mini-implants (Absoanchor® Model SH1312-6; Dentos Inc., Daegu, Korea) 6 mm long with a diameter of 1.1 mm were used. Bone decortication was made before mini-implant insertion by means of three different methods: Group G1: Er:YAG laser (LiteTouch®, Light Instruments, Yokneam, Israel) at energy of 300 mJ, frequency 25 Hz, fluence 38.2 J/cm2, cooling 14 ml/min, tip 1.0 × 17 mm, distance 1 mm, time of irradiation 6 s; Group G2: drill (Hager & Meisinger GmbH, Hansemannstr, Germany); Group G3: piezosurgery (Piezotom Solo, Acteon, NJ, USA). In G4 group (control), mini-implants were driven by a self-drilling method. The primary stability of mini-implants was assessed by measuring damping characteristics between the implant and the tapping head of Periotest device (Gulden-Medizinteknik, Eschenweg, Modautal, Germany). The results in range between - 8 to + 9 allowed immediate loading. Significantly lower Periotest value was found in the control group (mean 0.59 ± 1.57, 95% CI 0.7, 2.4) as compared with Er:YAG laser (mean 4.44 ± 1.64, 95% CI 3.6, 5.3), piezosurgery (mean 17.92 ± 2.73, 95% CI 16.5, 19.3), and a drill (mean 5.91 ± 1.52, 95% CI 5.2, 6.6) (p < 0.05). The highest failure rate (33.3%) during mini-implant insertion was noted for self-drilling method (G4) as compared with G1, G2, and G3 groups (p < 0.05). The small diameter decortication by Er:YAG laser appeared to provide better primary stability as compared to drill and piezosurgery. Decortication of the cortical bone before mini-implant insertion resulted in reduced risk of implant fracture or injury of adjacent teeth. The high initial stability with a smaller diameter of the mini-implant resulted in increased risk of fracture, especially for a self-drilling method.
Geophysical investigations in deep horizontal holes drilled ahead of tunnelling
Carroll, R.D.; Cunningham, M.J.
1980-01-01
Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.
Beer, Andreas; Gahleitner, André; Holm, Anders; Birkfellner, Wolfgang; Homolka, Peter
2007-02-01
The aim of this study was to quantify the effect of adapted preparation on the insertion torque of self-tapping implants in cancellous bone. In adapted preparation, bone condensation - and thus, insertion torque - is controlled by changing the diameter of the drilling. After preparation of cancellous porcine vertebral bone with drills of 2.85, 3, 3.15 or 3.35 mm final diameters, Brånemark sytem Mk III implants (3.75 x 11.5 mm) were inserted in 141 sites. During implantation, the insertion torque was recorded. Prior to implant insertion, bone mineralization (bone mineral density (BMD)) was measured with dental quantative computed tomography. The BMD values measured at the implant position were correlated with insertion torque for varying bone condensation. Based on the average torque recorded during implant insertion into the pre-drilled canals with a diameter of 3 mm, torque increased by approximately 17% on reducing the diameter of the drill by 5% (to 2.85 mm). On increasing the diameter of the osteotomy to 3.15 mm (5%) or 3.35 mm (12%), torque values decreased by approximately 21% and 50%, respectively. The results demonstrate a correlation between primary stability (average insertion torque) and the diameter of the implant bed on using a screw-shaped implant. Thus, using an individualized bone mineralization-dependent drilling technique, optimized torque values could be achieved in all tested bone qualities with BMDs ranging from 330 to 500 mg/cm(3). The results indicate that using a bone-dependent drilling technique, higher torque values can also be achieved in poor bone using an individualized drilling resulting in higher bone condensation. As immediate function is dependent on primary stability (high insertion torque), this indicates that primary stability can be increased using a modified drilling technique in lesser mineralized bone.
Coordination in Fast Repetitive Violin-Bowing Patterns
Schoonderwaldt, Erwin; Altenmüller, Eckart
2014-01-01
We present a study of coordination behavior in complex violin-bowing patterns involving simultaneous bow changes (reversal of bowing direction) and string crossings (changing from one string to another). Twenty-two violinists (8 advanced amateurs, 8 students with violin as major subject, and 6 elite professionals) participated in the experiment. We investigated the influence of a variety of performance conditions (specific bowing patterns, dynamic level, tempo, and transposition) and level of expertise on coordination behavior (a.o., relative phase and amplitude) and stability. It was found that the general coordination behavior was highly consistent, characterized by a systematic phase lead of bow inclination over bow velocity of about 15° (i.e., string crossings were consistently timed earlier than bow changes). Within similar conditions, a high individual consistency was found, whereas the inter-individual agreement was considerably less. Furthermore, systematic influences of performance conditions on coordination behavior and stability were found, which could be partly explained in terms of particular performance constraints. Concerning level of expertise, only subtle differences were found, the student and professional groups (higher level of expertise) showing a slightly higher stability than the amateur group (lower level of expertise). The general coordination behavior as observed in the current study showed a high agreement with perceptual preferences reported in an earlier study to similar bowing patterns, implying that complex bowing trajectories for an important part emerge from auditory-motor interaction. PMID:25207542
Gravity Waves and Linear Inflation From Axion Monodromy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAllister, Liam; /Cornell U., LEPP /Cornell U., Phys. Dept.; Silverstein, Eva
2010-08-26
Wrapped branes in string compactifications introduce a monodromy that extends the field range of individual closed-string axions to beyond the Planck scale. Furthermore, approximate shift symmetries of the system naturally control corrections to the axion potential. This suggests a general mechanism for chaotic inflation driven by monodromy-extended closed-string axions. We systematically analyze this possibility and show that the mechanism is compatible with moduli stabilization and can be realized in many types of compactifications, including warped Calabi-Yau manifolds and more general Ricci-curved spaces. In this broad class of models, the potential is linear in the canonical inflaton field, predicting a tensormore » to scalar ratio r {approx} 0.07 accessible to upcoming cosmic microwave background (CMB) observations.« less
NASA Astrophysics Data System (ADS)
Singh, Harkirat; Wahi, Pankaj
2017-08-01
The motion of a string in the presence of a doubly curved obstacle is investigated. A mathematical model has been developed for a general shape of the obstacle. However, detailed analysis has been performed for a shape relevant to the Indian stringed musical instruments like Tanpura and Sitar. In particular, we explore the effect of obstacle's curvature in the plane perpendicular to the string axis on its motion. This geometrical feature of the obstacle introduces a coupling between motions in mutually perpendicular directions over and above the coupling due to the stretching nonlinearity. We find that only one planar motion is possible for our system. Small amplitude planar motions are stable to perturbations in the perpendicular direction resulting in non-whirling motions while large amplitude oscillations lead to whirling motions. The critical amplitude of oscillations, across which there is a transition in the qualitative behavior of the non-planar trajectories, is determined using Floquet theory. Our analysis reveals that a small obstacle curvature in a direction perpendicular to the string axis leads to a considerable reduction in the critical amplitudes required for initiation of whirling motions. Hence, this obstacle curvature has a destabilizing effect on the planar motions in contrast to the curvature along the string axis which stabilizes planar motions.
Evaluation of hybrid slurry resulting from the introduction of additives to mineral slurry.
DOT National Transportation Integrated Search
2011-09-01
Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during excavation : and concreting. Florida Department of Transportation (FDOT) specifications require the use of mineral slurry : for all primary struct...
Stacchi, Claudio; Vercellotti, Tomaso; Torelli, Lucio; Furlan, Fabio; Di Lenarda, Roberto
2013-04-01
The objective of the present investigation was to longitudinally monitor stability changes of implants inserted using traditional rotary instruments or piezoelectric inserts, and to follow their variations during the first 90 days of healing. A randomized, controlled trial was conducted on 20 patients. Each patient received two identical, adjacent implants in the upper premolar area: the test site was prepared with piezosurgery, and the control site was prepared using twist drills. Resonance frequency analysis measurements were taken by a blinded operator on the day of surgery and after 7, 14, 21, 28, 42, 56, and 90 days. At 90 days, 39 out of 40 implants were osseointegrated (one failure in the control group). Both groups showed an initial decrease in mean implant stability quotient (ISQ) values: a shift in implant stability to increasing ISQ values occurred after 14 days in the test group and after 21 days in the control group. The lowest mean ISQ value was recorded at 14 days for test implants (97.3% of the primary stability) and at 21 days for the control implants (90.8% of the primary stability). ISQ variations with respect to primary stability differed significantly between the two groups during the entire period of observation: from day 14 to day 42, in particular, the differences were extremely significant (p < .0001). All 39 implants were in function successfully at the visit scheduled 1 year after insertion. The findings from this study suggest that ultrasonic implant site preparation results in a limited decrease of ISQ values and in an earlier shifting from a decreasing to an increasing stability pattern, when compared with the traditional drilling technique. From a clinical point of view, implants inserted with the piezoelectric technique demonstrated a short-term clinical success similar to those inserted using twist drills. © 2011 Wiley Periodicals, Inc.
Baires-Campos, Felipe-Eduardo; Jimbo, Ryo; Fonseca-Oliveira, Maiolino-Thomaz; Moura, Camila; Zanetta-Barbosa, Darceny; Coelho, Paulo-Guilherme
2015-01-01
Background This study histologically evaluated two implant designs: a classic thread design versus another specifically designed for healing chamber formation placed with two drilling protocols. Material and Methods Forty dental implants (4.1 mm diameter) with two different macrogeometries were inserted in the tibia of 10 Beagle dogs, and maximum insertion torque was recorded. Drilling techniques were: until 3.75 mm (regular-group); and until 4.0 mm diameter (overdrilling-group) for both implant designs. At 2 and 4 weeks, samples were retrieved and processed for histomorphometric analysis. For torque and BIC (bone-to-implant contact) and BAFO (bone area fraction occupied), a general-linear model was employed including instrumentation technique and time in vivo as independent. Results The insertion torque recorded for each implant design and drilling group significantly decreased as a function of increasing drilling diameter for both implant designs (p<0.001). No significant differences were detected between implant designs for each drilling technique (p>0.18). A significant increase in BIC was observed from 2 to 4 weeks for both implants placed with the overdrilling technique (p<0.03) only, but not for those placed in the 3.75 mm drilling sites (p>0.32). Conclusions Despite the differences between implant designs and drilling technique an intramembranous-like healing mode with newly formed woven bone prevailed. Key words: Histomorphometry, biomechanical, in vivo, initial stability, insertion torque, osseointegration. PMID:25858087
Zhang, Yang; Xu, Caiqi; Dong, Shiqui; Shen, Peng; Su, Wei; Zhao, Jinzhong
2016-09-01
To provide an up-to-date assessment of the difference between anatomic double-bundle anterior cruciate ligament (ACL) reconstruction (DB-ACLR) and anatomic single-bundle ACL reconstruction (SB-ACLR). We hypothesized that anatomic SB-ACLR using independent femoral drilling technique would be able to achieve kinematic stability as with anatomic DB-ACLR. A comprehensive Internet search was performed to identify all therapeutic trials of anatomic DB-ACLR versus anatomic SB-ACLR. Only clinical studies of Level I and II evidence were included. The comparative outcomes were instrument-measured anterior laxity, Lachman test, pivot shift, clinical outcomes including objective/subjective International Knee Documentation Committee (IKDC) score, Lysholm score, Tegner activity scale and complication rates of extension/flexion deficits, graft failure, and early osteoarthritis. Subgroup analyses were performed for femoral tunnel drilling techniques including independent drilling and transtibial (TT) drilling. Twenty-two clinical trials of 2,261 anatomically ACL-reconstructed patients were included in the meta-analysis. Via TT drilling technique, anatomic DB-ACLR led to improved instrument-measured anterior laxity with a standard mean difference (SMD) of -0.42 (95% confidence interval [CI] = -0.81 to -0.02), less rotational instability measured by pivot shift (SMD = 2.76, 95% CI = 1.24 to 6.16), and higher objective IKDC score with odds ratio (OR) of 2.28 (95% CI = 1.19 to 4.36). Via independent drilling technique, anatomic DB-ACLR yielded better pivot shift (SMD = 2.04, 95% CI = 1.36 to 3.05). Anatomic DB-ACLR also revealed statistical significance in subjective IKDC score compared with anatomic SB-ACLR (SMD = 0.27, 95% CI = 0.05 to 0.49). Anatomic DB-ACLR showed better anterior and rotational stability and higher objective IKDC score than anatomic SB-ACLR via TT drilling technique. Via independent drilling technique, however, anatomic DB-ACLR only showed superiority of rotational stability. All clinical function outcomes except subjective IKDC score were not significantly different between anatomic DB-ACLR and SB-ACLR. Level II, meta-analysis of Level I and II studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Lahens, Bradley; Neiva, Rodrigo; Tovar, Nick; Alifarag, Adham M; Jimbo, Ryo; Bonfante, Estevam A; Bowers, Michelle M; Cuppini, Marla; Freitas, Helora; Witek, Lukasz; Coelho, Paulo G
2016-10-01
A bone drilling concept, namely osseodensification, has been introduced for the placement of endosteal implants to increase primary stability through densification of the osteotomy walls. This study investigated the effect of osseodensification on the initial stability and early osseointegration of conical and parallel walled endosteal implants in low density bone. Five male sheep were used. Three implants were inserted in the ilium, bilaterally, totaling 30 implants (n=15 conical, and n=15 parallel). Each animal received 3 implants of each type, inserted into bone sites prepared as follows: (i) regular-drilling (R: 2mm pilot, 3.2mm, and 3.8mm twist drills), (ii) clockwise osseodensification (CW), and (iii) counterclockwise (CCW) osseodensification drilling with Densah Bur (Versah, Jackson, MI, USA): 2.0mm pilot, 2.8mm, and 3.8mm multi-fluted burs. Insertion torque as a function of implant type and drilling technique, revealed higher values for osseodensification relative to R-drilling, regardless of implant macrogeometry. A significantly higher bone-to-implant contact (BIC) for both osseodensification techniques (p<0.05) was observed compared to R-drilling. There was no statistical difference in BIC as a function of implant type (p=0.58), nor in bone-area-fraction occupancy (BAFO) as a function of drilling technique (p=0.22), but there were higher levels of BAFO for parallel than conic implants (p=0.001). Six weeks after surgery, new bone formation along with remodeling sites was observed for all groups. Bone chips in proximity with the implants were seldom observed in the R-drilling group, but commonly observed in the CW, and more frequently under the CCW osseodensification technique. In low-density bone, endosteal implants present higher insertion torque levels when placed in osseodensification drilling sites, with no osseointegration impairment compared to standard subtractive drilling methods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mars Rover Step Toward Possible Resumption of Drilling
2017-10-23
NASA's Curiosity Mars rover conducted a test on Oct. 17, 2017, as part of the rover team's development of a new way to use the rover's drill. This image from Curiosity's front Hazard Avoidance Camera (Hazcam) shows the drill's bit touching the ground during an assessment of measurements by a sensor on the rover's robotic arm. Curiosity used its drill to acquire sample material from Martian rocks 15 times from 2013 to 2016. In December 2016, the drill's feed mechanism stopped working reliably. During the test shown in this image, the rover touched the drill bit to the ground for the first time in 10 months. The image has been adjusted to brighten shaded areas so that the bit is more evident. The date was the 1,848th Martian day, or sol, of Curiosity's work on Mars In drill use prior to December 2016, two contact posts -- the stabilizers on either side of the bit -- were placed on the target rock while the bit was in a withdrawn position. Then the motorized feed mechanism within the drill extended the bit forward, and the bit's rotation and percussion actions penetrated the rock. A promising alternative now under development and testing -- called feed-extended drilling -- uses motion of the robotic arm to directly advance the extended bit into a rock. In this image, the bit is touching the ground but the stabilizers are not. In the Sol 1848 activity, Curiosity pressed the drill bit downward, and then applied smaller sideways forces while taking measurements with a force/torque sensor on the arm. The objective was to gain understanding about how readings from the sensor can be used during drilling to adjust for any sideways pressure that might risk the bit becoming stuck in a rock. While rover-team engineers are working on an alternative drilling method, the mission continues to examine sites on Mount Sharp, Mars, with other tools. https://photojournal.jpl.nasa.gov/catalog/PIA22063
Drilled Shaft Foundations for Noise Barrier Walls and Slope Stabilization
DOT National Transportation Integrated Search
2002-12-01
This research project is focused on two primary objectives. The first objective relates to the development of a methodology for using the SPT (Standard Penetration Test) results to design the laterally loaded drilled shafts. The second objective aims...
First Drilled Sample on Mars Since 2016
2018-05-23
NASA's Curiosity rover successfully drilled a hole 2 inches (5.1 centimeters) deep in a target called "Duluth" on May 20, 2018. The hole is about .6 inches (1.6 centimeters) across. It was the first rock sample captured by the drill since October 2016. A mechanical issue took the drill offline in December 2016. Engineers at NASA's Jet Propulsion Laboratory in Pasadena, California, had to innovate a new way for the rover to drill in order to restore this ability. The new technique, called Feed Extended Drilling (FED) keeps the drill's bit extended out past two stabilizer posts that were originally used to steady the drill against Martian rocks. It lets Curiosity drill using the force of its robotic arm, a little more like a human would while drilling into a wall at home. This image was taken by Curiosity's Mast Camera (Mastcam) on Sol 2057. It has been white balanced and contrast-enhanced. https://photojournal.jpl.nasa.gov/catalog/PIA22325
New class of de Sitter vacua in string theory compactifications
NASA Astrophysics Data System (ADS)
Achúcarro, Ana; Ortiz, Pablo; Sousa, Kepa
2016-10-01
String theory contains few known working examples of de Sitter vacua, four-dimensional universes with a positive cosmological constant. A notorious obstacle is the stabilization of a large number—sometimes hundreds—of moduli fields that characterize the compact dimensions. We study the stability of a class of supersymmetric moduli (the complex structure moduli and dilaton in type-IIB flux compactifications) in the regime where the volume of the compact space is large but not exponentially large. We show that, if the number of moduli is very large, random matrix theory provides a new stability condition, a lower bound on the volume. We find a new class of stable vacua where the mass spectrum of these supersymmetric moduli is gapped, without requiring a large mass hierarchy between moduli sectors or any fine-tuning of the superpotential. We provide the first explicit example of this class of vacua in the P[1,1 ,1 ,6 ,9 ] 4 model. A distinguishing feature is that all fermions in the supersymmetric sector are lighter than the gravitino.
New PDC bit design reduces vibrational problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mensa-Wilmot, G.; Alexander, W.L.
1995-05-22
A new polycrystalline diamond compact (PDC) bit design combines cutter layout, load balancing, unsymmetrical blades and gauge pads, and spiraled blades to reduce problematic vibrations without limiting drilling efficiency. Stabilization improves drilling efficiency and also improves dull characteristics for PDC bits. Some PDC bit designs mitigate one vibrational mode (such as bit whirl) through drilling parameter manipulation yet cause or excite another vibrational mode (such as slip-stick). An alternative vibration-reducing concept which places no limitations on the operational environment of a PDC bit has been developed to ensure optimization of the bit`s available mechanical energy. The paper discusses bit stabilization,more » vibration reduction, vibration prevention, cutter arrangement, load balancing, blade layout, spiraled blades, and bit design.« less
NASA Astrophysics Data System (ADS)
Li, Zifeng
2016-12-01
This paper analyzes the mechanical and mathematical models in "Ritto et al. (2013) [1]". The results are that: (1) the mechanical model is obviously incorrect; (2) the mathematical model is not complete; (3) the differential equation is obviously incorrect; (4) the finite element equation is obviously not discretized from the corresponding mathematical model above, and is obviously incorrect. A mathematical model of dynamics should include the differential equations, the boundary conditions and the initial conditions.
Facility for testing ice drills
NASA Astrophysics Data System (ADS)
Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.
2017-05-01
The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.
NASA Astrophysics Data System (ADS)
Ning, F.; Wu, N.; Jiang, G.; Zhang, L.
2009-12-01
Under the condition of over-pressure drilling, the solid-phase and liquid-phase in drilling fluids immediately penetrate into the oceanic gas hydrates-bearing sediment, which causes the water content surrounding the borehole to increase largely. At the same time, the hydrates surrounding borehole maybe quickly decompose into water and gas because of the rapid change of temperature and pressure. The drilling practices prove that this two factors may change the rock characteristics of wellbore, such as rock strength, pore pressure, resistivity, etc., and then affect the logging response and evaluation, wellbore stability and well safty. The invasion of filtrate can lower the angle of friction and weaken the cohesion of hydrates-bearing sediment,which is same to the effect of invading into conventional oil and gas formation on borehole mechnical properties. The difference is that temperature isn’t considered in the invasion process of conventional formations while in hydrates-bearing sediments, it is a factor that can not be ignored. Temperature changes can result in hydrates dissociating, which has a great effect on mechanical properties of borehole. With the application of numerical simulation method, we studied the changes of pore pressure and variation of water content in the gas hydrates-bearing sediment caused by drilling fluid invasion under pressure differential and gas hydrate dissociation under temperature differential and analyzed their influence on borehole stability.The result of simulation indicated that the temperature near borehole increased quickly and changed hardly any after 6 min later. About 1m away from the borehole, the temperature of formation wasn’t affected by the temperature change of borehole. At the place near borehole, as gas hydrate dissociated dramatically and drilling fluid invaded quickly, the pore pressure increased promptly. The degree of increase depends on the permeability and speed of temperature rise of formation around bohole. If the formation has a low permeability and is heated quickly, the dissociated gas and water couldn’t flow away in time, which is likely to bring a hazard of excess pore pressure. Especially in the area near the wall of borehole, the increase degree of pore pressure is high than other area because the dissociation of gas hydrates is relatively violent and hydraulic gradient is bigger. We also studied the distribution of water saturation around borehole after 10min, 30min and 60min respectively. It revealed that along with the invasion of drilling fluid and dissociation of gas hydrate, the degree of water saturation increased gradually. The effect of gas hydrate dissociation and drilling fluids invasion on borehole stability is to weaken mechanical properties of wellbore and change the pore pressure, then changes the effective stress of gas hydrates-bearing sediment. So temperature, pressure in the borehole and filter loss of drilling fluids should be controlled strictly to prevent gas hydrates from decomposing largely and in order to keep the borehole stability in the gas hydrates-bearing formations.
Drilled Shaft Foundations for Noise Barrier Walls and Slope Stabilization : Executive Summary
DOT National Transportation Integrated Search
2002-12-01
This research project is focused on two primary objectives. The first objective relates to the development of a methodology for using the SPT (Standard Penetration Test) results to design the laterally loaded drilled shafts. The second objective aims...
Spinoff For Deepsea Drillships
NASA Technical Reports Server (NTRS)
1979-01-01
For deepwater operations the self-propelled oil drillship is employed. This type of vessel resembles a cargo ship except for its large derrick, which supports the drilling equipment. Extending from the drillship to the well thousands of feet steel tube usually one to two feet in diameter. The drilling equipment, or drill string, is lowered to the well through this riser. The riser is not rigid nor strictly vertical; it is described by one expert as "a very long piece of spaghetti," held in tension at the well and at the ship end by strong cables. Obviously, the ship must remain often for months-in a position directly over the well. If it were to drift excessively forward, aft or to either side, its movement could snap the riser and disrupt operations at a cost of millions. That's where space technology is playing a part. The same technology employed to locate a spacecraft in orbit and maintain a precise position is applicable to drillship operation. In space, automatic navigation equipment sights on reference points-the Earth, the sun or other stars--to determine spacecraft location. If the space mission requires the spacecraft to hold a certain position, it is accomplished by the firing of computer- directed control thrusters. Two major aerospace companies- Honeywell Inc. and TRW Inc.-have applied their extensive experience in spacecraft positioning and control to the offshore drilling technique known as dynamic positioning, meaning holding the drillship in precise position over the work site.
Deep Borehole Emplacement Mode Hazard Analysis Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevougian, S. David
This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent ofmore » this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.]« less
Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration
NASA Technical Reports Server (NTRS)
Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel
2005-01-01
Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important, either between a robotic drill and humans on Earth, or a human-tended drill and its visiting crew. The Mars Analog Rio Tinto Experiment (MARTE) is a current project that studies and simulates the remote science operations between an automated drill in Spain and a distant, distributed human science team. The Drilling Automation for Mars Exploration (DAME) project, by contrast: is developing and testing standalone automation at a lunar/martian impact crater analog site in Arctic Canada. The drill hardware in both projects is a hardened, evolved version of the Advanced Deep Drill (ADD) developed by Honeybee Robotics for the Mars Subsurface Program. The current ADD is capable of 20m, and the DAME project is developing diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The current drill automation architecture being developed by NASA and tested in 2004-06 at analog sites in the Arctic and Spain will add downhole diagnosis of different strata, bit wear detection, and dynamic replanning capabilities when unexpected failures or drilling conditions are discovered in conjunction with simulated mission operations and remote science planning. The most important determinant of future 1unar and martian drilling automation and staffing requirements will be the actual performance of automated prototype drilling hardware systems in field trials in simulated mission operations. It is difficult to accurately predict the level of automation and human interaction that will be needed for a lunar-deployed drill without first having extensive experience with the robotic control of prototype drill systems under realistic analog field conditions. Drill-specific failure modes and software design flaws will become most apparent at this stage. DAME will develop and test drill automation software and hardware under stressful operating conditions during several planned field campaigns. Initial results from summer 2004 tests show seven identifi distinct failure modes of the drill: cuttings-removal issues with low-power drilling into permafrost, and successful steps at executive control and initial automation.
NASA Astrophysics Data System (ADS)
Ning, Fulong; Zhang, Keni; Wu, Nengyou; Zhang, Ling; Li, Gang; Jiang, Guosheng; Yu, Yibing; Liu, Li; Qin, Yinghong
2013-06-01
To our knowledge, this study is the first to perform a numerical simulation and analysis of the dynamic behaviour of drilling mud invasion into oceanic gas-hydrate-bearing sediment (GHBS) and to consider the effects of such an invasion on borehole stability and the reliability of well logging. As a case study, the simulation background sets up the conditions of mud temperature over hydrate equilibrium temperature and overbalanced drilling, considering the first Chinese expedition to drill gas hydrate (GMGS-1). The results show that dissociating gas may form secondary hydrates in the sediment around borehole by the combined effects of increased pore pressure (caused by mud invasion and flow resistance), endothermic cooling that accompanies hydrate dissociation compounded by the Joule-Thompson effect and the lagged effect of heat transfer in sediments. The secondary hydrate ring around the borehole may be more highly saturated than the in situ sediment. Mud invasion in GHBS is a dynamic process of thermal, fluid (mud invasion), chemical (hydrate dissociation and reformation) and mechanical couplings. All of these factors interact and influence the pore pressure, flow ability, saturation of fluid and hydrates, mechanical parameters and electrical properties of sediments around the borehole, thereby having a strong effect on borehole stability and the results of well logging. The effect is particularly clear in the borehole SH7 of GMGS-1 project. The borehole collapse and resistivity distortion were observed during practical drilling and wireline logging operations in borehole SH7 of the GMGS-1.mud density (i.e. the corresponding borehole pressure), temperature and salinity have a marked influence on the dynamics of mud invasion and on hydrate stability. Therefore, perhaps well-logging distortion caused by mud invasion, hydrate dissociation and reformation should be considered for identifying and evaluating gas hydrate reservoirs. And some suitable drilling measurements need to be adopted to reduce the risk of well-logging distortion and borehole instability.
DOT National Transportation Integrated Search
2016-04-01
Proper performance of mineral slurries used to stabilize drilled shaft excavations is maintained by assuring the : density, viscosity, pH, and sand content stay within state specified limits. These limits have been set either by : past experience, re...
Field device to measure viscosity, density, and other slurry properties in drilled shafts [summary].
DOT National Transportation Integrated Search
2016-08-01
Proper performance of the mineral slurries used to stabilize drilled shaft excavations is : maintained by assuring that the density, viscosity, pH, and sand content of the slurry stay : within limits set by the Florida Department of Transportation (F...
Melde's Experiment on a Vibrating Liquid Foam Microchannel
NASA Astrophysics Data System (ADS)
Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe
2017-12-01
We subject a single Plateau border channel to a transverse harmonic excitation, in an experiment reminiscent of the historical one by Melde on vibrating strings, to study foam stability and wave properties. At low driving amplitudes, the liquid string exhibits regular oscillations. At large ones, a nonlinear regime appears and the acoustic radiation splits the channel into two zones of different cross section area, vibration amplitude, and phase difference with the neighboring soap films. The channel experiences an inertial dilatancy that is accounted for by a new Bernoulli-like relation.
Melde's Experiment on a Vibrating Liquid Foam Microchannel.
Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe
2017-12-08
We subject a single Plateau border channel to a transverse harmonic excitation, in an experiment reminiscent of the historical one by Melde on vibrating strings, to study foam stability and wave properties. At low driving amplitudes, the liquid string exhibits regular oscillations. At large ones, a nonlinear regime appears and the acoustic radiation splits the channel into two zones of different cross section area, vibration amplitude, and phase difference with the neighboring soap films. The channel experiences an inertial dilatancy that is accounted for by a new Bernoulli-like relation.
Use of a 90° drill and screwdriver for rib fracture stabilization.
Nickerson, Terry P; Kim, Brian D; Zielinski, Martin D; Jenkins, Donald; Schiller, Henry J
2015-03-01
Rib fracture stabilization has become a more accepted practice although stabilization of the most cephalad ribs presents a unique challenge. We present our experience with use of a 90° drill and screwdriver to bridge these difficult rib fractures. This retrospective review included patients who underwent rib fracture stabilization from August 1, 2009, through September 30, 2012. Patients were divided into two groups: those whose procedure used the 90° device and those that did not. Data were compared using standard statistical analysis and reported as percentages and medians [interquartile ranges]. P values <0.05 were considered significant. We identified 89 patients: 29 (33%) had 90° devices used and 60 (67%) did not. There were no differences between groups in age, sex, Trauma-Related Injury Severity Score, the presence of flail chest, occurrence of pneumonia, and intensive care unit or hospital length of stay. The Injury Severity Score was higher in the 90° group (22 vs. 16; P = 0.03). The highest rib stabilized was different between the 2 groups (3 [2-5] vs. 5 [2-9]; P = 0.001), with more third rib stabilizations in the 90° group (38 vs. 20%; P = 0.04) as well as more total number of ribs fixed (5 vs. 4; P = 0.001). There was no difference in operative time between the 2 groups. The surgical reach for rib fracture stabilization has been extended with use of a 90° drill and screwdriver. High fractures under the scapula where access is technically challenging can be stabilized without prolonging operative times.
NASA Technical Reports Server (NTRS)
Okon, Avi B.
2010-01-01
The Drill for the Mars Science Laboratory mission is a rotary-percussive sample acquisition device with an emphasis on toughness and robustness to handle the harsh environment on Mars. The unique challenges associated with autonomous drilling from a mobile robot are addressed. A highly compressed development schedule dictated a modular design architecture that satisfies the functional and load requirements while allowing independent development and testing of the Drill subassemblies. The Drill consists of four actuated mechanisms: a spindle that rotates the bit, a chuck that releases and engages bits, a novel voice-coil-based percussion mechanism that hammers the bit, and a linear translation mechanism. The Drill has three passive mechanisms: a replaceable bit assembly that acquires and collects sample, a contact sensor / stabilizer mechanism, and, lastly a flex harness service loop. This paper describes the various mechanisms that makeup the Drill and discusses the solutions to their unique design and development challenges.
Use of geostatistics in planning optimum drilling program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghose S.
1989-08-01
Application of geostatistics in the natural resources industry is well established. In a typical process of estimation, the statistically dependent geological data are used to predict the characteristics of a deposit. The estimator used is the best linear unbiased estimator (or BLUE), and a numerical factor of confidence is also provided. The natural inhomogeneity and anisotropy of a deposit are also quantified with preciseness. Drilling is the most reliable way of obtaining data for mining and related industries. However, it is often difficult to decide what is the optimum number of drill holes necessary for evaluation. In this paper, sequentialmore » measures of percent variation at 95% confidence level of a geological variable have been used to decipher economically optimum drilling density. A coal reserve model has been used to illustrate the method and findings. Fictitious drilling data were added (within the domain of population characteristics) in stages, to obtain a point of stability, beyond which the gain was significant (diminishing marginal benefit). The final relations are established by graphically projecting and comparing two variables - cost and precision. By mapping the percent variation at each stage, the localized areas of discrepancies can be identified. These are the locations where additional drilling is needed. The system can be controlled if performed at progressive stages and the preciseness toward stability is monitored.« less
46 CFR 174.070 - General damage stability assumptions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false General damage stability assumptions. 174.070 Section 174.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...
46 CFR 174.070 - General damage stability assumptions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false General damage stability assumptions. 174.070 Section 174.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...
The role of the unusual threonine string in the conversion of prion protein.
Abskharon, Romany; Wang, Fei; Vander Stel, Kayla J; Sinniah, Kumar; Ma, Jiyan
2016-12-16
The conversion of normal prion protein (PrP) into pathogenic PrP conformers is central to prion disease, but the mechanism remains unclear. The α-helix 2 of PrP contains a string of four threonines, which is unusual due to the high propensity of threonine to form β-sheets. This structural feature was proposed as the basis for initiating PrP conversion, but experimental results have been conflicting. We studied the role of the threonine string on PrP conversion by analyzing mouse Prnp a and Prnp b polymorphism that contains a polymorphic residue at the beginning of the threonine string, and PrP mutants in which threonine 191 was replaced by valine, alanine, or proline. The PMCA (protein misfolding cyclic amplification) assay was able to recapitulate the in vivo transmission barrier between PrP a and PrP b . Relative to PMCA, the amyloid fibril growth assay is less restrictive, but it did reflect certain properties of in vivo prion transmission. Our results suggest a plausible theory explaining the apparently contradictory results in the role of the threonine string in PrP conversion and provide novel insights into the complicated relationship among PrP stability, seeded conformational change, and prion structure, which is critical for understanding the molecular basis of prion infectivity.
Dynamics and stability of light-like tachyon condensation
NASA Astrophysics Data System (ADS)
Barnaby, Neil; Mulryne, David J.; Nunes, Nelson J.; Robinson, Patrick
2009-03-01
Recently, Hellerman and Schnabl considered the dynamics of unstable D-branes in the background of a linear dilaton. Remarkably, they were able to construct light-like tachyon solutions which interpolate smoothly between the perturbative and nonperturbative vacua, without undergoing the wild oscillations that plague time-like solutions. In their analysis, however, the full structure of the initial value problem for the nonlocal dynamical equations was not considered. In this paper, therefore, we reexamine the nonlinear dynamics of light-like tachyon condensation using a combination of numerical and analytical techniques. We find that for the p-adic string the monotonic behaviour obtained previously relied on a special choice of initial conditions near the unstable maximum. For generic initial conditions the wild oscillations come back to haunt us. Interestingly, we find an ``island of stability'' in initial condition space that leads to sensible evolution at late times. For the string field theory case, on the other hand, we find that the evolution is completely stable for generic choices of initial data. This provides an explicit example of a string theoretic system that admits infinitely many initial data but is nevertheless nonperturbatively stable. Qualitatively similar dynamics are obtained in nonlocal cosmologies where the Hubble damping plays a role very analogous to the dilaton gradient.
Energy conserving schemes for the simulation of musical instrument contact dynamics
NASA Astrophysics Data System (ADS)
Chatziioannou, Vasileios; van Walstijn, Maarten
2015-03-01
Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton's equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton's method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument.
NASA Astrophysics Data System (ADS)
Thompson, Nick; Watters, Robert J.; Schiffman, Peter
2008-04-01
Hawaiian Island flank failures are recognized as the largest landslide events on Earth, reaching volumes of several thousand cubic kilometers and lengths of over 200 km and occurring on an average of once every 100 000 years. The 3.1 km deep Hawaii Scientific Drilling Project (HSDP) enabled an investigation of the rock mass strength variations on the island of Hawaii [Schiffman, P., Watters, R.J., Thompson, N., Walton, A.W., 2006. Hyaloclastites and the slope stability of Hawaiian volcanoes: insights from the Hawaiian Scientific Drilling Project's 3-km drill core. Journal of Volcanology and Geothermal Research, 151 (1-3): 217-228]. This study builds on that of Schiffman et al. [Schiffman, P., Watters, R.J., Thompson, N., Walton, A.W., 2006. Hyaloclastites and the slope stability of Hawaiian volcanoes: Insights from the Hawaiian Scientific Drilling Project's 3-km drill core. Journal of Volcanology and Geothermal Research, 151 (1-3): 217-228] by considering more in-depth rock mass classification and strength testing methods of the HSDP core. Geotechnical core logging techniques combined with laboratory strength testing methods show that rock strength differences exist within the edifice. Comparing the rock strength parameters obtained from the various volcano lithologies identified weak zones, suggesting the possible location of future slip surfaces for large flank failures. Relatively weak rock layers were recognized within poorly consolidated hyaloclastite zones, with increases in strength based on degree of alteration. Subaerial and submarine basalt flows are found to be significantly stronger. With the aid of digital elevation models, cross-sections have been developed of key flank areas on the island of Hawaii. Limit equilibrium slope stability analyses are performed on each cross-section using various failure criteria for the rock mass strength calculations. Based on the stability analyses the majority of the slopes analyzed are considered stable. In cases where instability (i.e. failure) is predicted, decreased rock mass quality (strength) of the altered and highly poorly consolidated lithologies is found to have a significant influence. These lithologies are present throughout the Hawaiian Islands, representing potential failure surfaces for large flank collapses. Failure criterion input parameters are considered in sensitivity analyses as are the influences of certain external stability factors such as sea level variation and seismic loading.
Lewandrowski, K U; Lorente, C; Schomacker, K T; Flotte, T J; Wilkes, J W; Deutsch, T F
1996-01-01
Surgical reconstruction of bony defects in the maxillofacial region involves fixation of bony fragments with mini and micro plates. Bone stabilization during hole drilling is often challenging due to the need to apply pressure when using a conventional mechanical Hall drill. In addition, fragmentation of the fragile bones may occur and complicate the reconstruction. The pulsed Er:YAG laser offers an attractive alternative drilling modality because it does not require physical contact with the bone in order to drill holes, cuts bone with minimal thermal damage, and allows precise control of bone cutting. The objective of this study was to investigate the pulsed Er:YAG laser as an alternative to the mechanical bur by comparing bone healing using both modalities. Bone healing in an inferior border defect of the rat mandible was examined using either an Er:YAG laser or a mechanical bur for drilling. The healing of osteotomies in facial bones and of screw holes for plate stabilization of free bone fragments was studied. All defects healed by 4 weeks postoperatively. Histologic evaluation demonstrated no difference in the amount of newly formed woven bone at the osteotomy site or screw holes made by either the laser or the drill. The extent of thermal damage at the osteotomy sites was comparable in laser and mechanically cut bone fragments. On the basis of this study we suggest that the Er: YAG laser can be used clinically in thin, fragile bones in the maxillofacial region.
46 CFR 174.045 - Intact stability requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Intact stability requirements. 174.045 Section 174.045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.045...
46 CFR 174.085 - Flooding on column stabilized units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Flooding on column stabilized units. 174.085 Section 174.085 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...
46 CFR 174.085 - Flooding on column stabilized units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Flooding on column stabilized units. 174.085 Section 174.085 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...
46 CFR 174.050 - Stability on bottom.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Stability on bottom. 174.050 Section 174.050 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.050...
46 CFR 174.045 - Intact stability requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Intact stability requirements. 174.045 Section 174.045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.045...
46 CFR 174.065 - Damage stability requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Damage stability requirements. 174.065 Section 174.065 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.065...
46 CFR 174.065 - Damage stability requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Damage stability requirements. 174.065 Section 174.065 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.065...
46 CFR 174.050 - Stability on bottom.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Stability on bottom. 174.050 Section 174.050 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.050...
46 CFR 169.840 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... stability requirements. 169.840 Section 169.840 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations Tests, Drills, and Inspections § 169.840 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to...
46 CFR 169.840 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... stability requirements. 169.840 Section 169.840 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations Tests, Drills, and Inspections § 169.840 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to...
46 CFR 169.840 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... stability requirements. 169.840 Section 169.840 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations Tests, Drills, and Inspections § 169.840 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to...
NASA Astrophysics Data System (ADS)
Buick, R.
2010-12-01
The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale of the Hamersley Group near Yilgalong Creek. This location had been previously drilled by a mining company in the 1980’s and the core provided the highest biomarker yields of any Archean rocks thus far sampled. As it has been suggested that these biomarkers are non-indigenous contaminants, one possibility is that they were introduced into the drill-core at some time between drilling and sampling, so this hole tests that hypothesis. If biomarker concentrations and ratios differ significantly between the two adjacent holes with differing exposures to post-drilling contaminants, then clearly contamination has affected one or other of the cores. The third hole sampled an off-shore equivalent, through banded irons and kerogenous shales of the ~2.65 Ga Marra Mamba and Jeerinah Formations of the Hamersley Group near Cowcumba Creek. Another opportunity for contamination may arise during post-depositional but pre-drilling hydrocarbon migration, when biomarkers can potentially be introduced into previously barren rocks by younger oils, so this hole tests that possibility. As it was drilled through the same stratigraphic interval and structural domain as the second hole but in a different environment, biomarker ratios should be similar if contaminated but different if indigenous.
46 CFR 97.15-7 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... stability requirements. 97.15-7 Section 97.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-7 Verification of vessel compliance with applicable stability requirements. (a) Except as provided in paragraph (d...
46 CFR 196.15-7 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... stability requirements. 196.15-7 Section 196.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-7 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure...
46 CFR 131.513 - Verification of compliance with applicable stability requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Verification of compliance with applicable stability...) OFFSHORE SUPPLY VESSELS OPERATIONS Tests, Drills, and Inspections § 131.513 Verification of compliance with applicable stability requirements. (a) After loading but before departure, and at other times necessary to...
46 CFR 131.513 - Verification of compliance with applicable stability requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Verification of compliance with applicable stability...) OFFSHORE SUPPLY VESSELS OPERATIONS Tests, Drills, and Inspections § 131.513 Verification of compliance with applicable stability requirements. (a) After loading but before departure, and at other times necessary to...
46 CFR 131.513 - Verification of compliance with applicable stability requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Verification of compliance with applicable stability...) OFFSHORE SUPPLY VESSELS OPERATIONS Tests, Drills, and Inspections § 131.513 Verification of compliance with applicable stability requirements. (a) After loading but before departure, and at other times necessary to...
46 CFR 97.15-7 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... stability requirements. 97.15-7 Section 97.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-7 Verification of vessel compliance with applicable stability requirements. (a) Except as provided in paragraph (d...
46 CFR 196.15-7 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... stability requirements. 196.15-7 Section 196.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-7 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure...
46 CFR 97.15-7 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... stability requirements. 97.15-7 Section 97.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-7 Verification of vessel compliance with applicable stability requirements. (a) Except as provided in paragraph (d...
46 CFR 196.15-7 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... stability requirements. 196.15-7 Section 196.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-7 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure...
A Universal Rig for Supporting Large Hammer Drills: Reduced Injury Risk and Improved Productivity
Rempel, David; Barr, Alan
2015-01-01
Drilling holes into concrete with heavy hammer and rock drills is one of the most physically demanding tasks performed in commercial construction and poses risks for musculoskeletal disorders, noise induced hearing loss, hand arm vibration syndrome and silicosis. The aim of this study was to (1) use a participatory process to develop a rig to support pneumatic rock drills or large electric hammer drills in order to reduce the health risks and (2) evaluate the usability of the rig. Seven prototype rigs for supporting large hammer drills were developed and modified with feedback from commercial contractors and construction workers. The final design was evaluated by laborers and electricians (N=29) who performed their usual concrete drilling with the usual method and the new rig. Subjective regional fatigue was significantly less in the neck, shoulders, hands and arms, and lower back) when using the universal rig compared to the usual manual method. Usability ratings for the rig were significantly better than the usual method on stability, control, drilling, accuracy, and vibration. Drilling time was reduced by approximately 50% with the rig. Commercial construction contractors, laborers and electricians who use large hammer drills for drilling many holes should consider using such a rig to prevent musculoskeletal disorders, fatigue, and silicosis. PMID:26005290
SEMINAR PROCEEDINGS: RCRA CORRECTIVE ACTION STABILIZATION TECHNOLOGIES
The seminar publication provides an overview of many technologies that can be used in applying the stabilization concept to RCRA cleanup activities. Technologies discussed include covers, grouting, slurry walls, hydrofracture, horizontal well drilling, a vacuum extraction, and b...
Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system
NASA Astrophysics Data System (ADS)
Toumi, S.; Beji, L.; Mlayeh, R.; Abichou, A.
2018-01-01
To address security issues in oilwell drillstring system, the drilling operation handling which is in generally not autonomous but ensured by an operator may be drill bit destructive or fatal for the machine. To control of stick-slip phenomenon, the drillstring control at the right speed taking only the drillstring vibration is not sufficient as the mud dynamics and the pressure change around the drill pipes cannot be neglected. A coupled torsional vibration and pressure model is presented, and the well-posedness problem is addressed. As a Partial Differential Equation-Ordinary Differential Equation (PDE-ODE) coupled system, and in order to maintain a non destructive downhole pressure, we investigate the control stability with and without the damping term in the wave PDE. In terms of, the torsional variable, the downhole pressure, and the annulus pressure, the coupled system equilibrium is shown to be exponentially stable.
Petroleum scene heating in fledgling crude exporter Papua New Guinea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-18
Operators, paced by a feisty independent based in Port Moresby, have drilled a string of discoveries near the infrastructure of the Kutubu development project that supports Papua New Guinea crude exports. All signs point to the increasing likelihood of good sized -- maybe world class -- oil discoveries that promise to sustain exploration and development interest beyond 2000. Also in the offing are world class gas strikes that eventually could support a liquefied natural gas export project. And integration is the newest concept in Papua New Guinea petroleum. Efforts are under way to build the country's first refineries. Most operatorsmore » in Papua New Guinea believe thy have merely scratched the surface of the country's oil and gas potential. Thy agree there still will be frustrations and setbacks -- political as well as technical -- but the prevailing opinion is that these problems are no greater than they are in a number of other countries with similar exploration/development potential. The paper discusses the development of Papua New Guinea's oil and gas industry, and exploratory drilling in areas other than Kutubu.« less
Rod gripper, changer, and storage system
NASA Technical Reports Server (NTRS)
Benson, Mark; Demi, Todd; Mcneill, Robert; Waldo, Keith; Afghan, Alex; Oliver, Jim
1989-01-01
A rod changer and storage design is presented for the lunar deep drill apparatus to be used in conjunction with the Skitter walking platform. The design must take into account all of the lunar environment and working conditions. Some of these are: (1) the moon has one sixth the gravity of earth; (2) temperature gradients can range from about -170 to 265 C; (3) because of the high transportation costs, the design must be as light as possible; and (4) the process must be remotely operated (from earth or satellite) and must be automated. Because of Skitter's multiple degree of freedom movement, the design will utilize Skitter's movement to locate an implement and transport it from the rack to the drill string. The implement will be gripped by a thumb and two finger device, identified through an electronic sensing device on the thumb, and transported from the rack to the footplate and back from the footplate to the rack. The major designs discussed in this report have been broken down into three major areas: (1) gripper design (linear transport mechanism); (2) indexing system; and (3) rack design.
NASA Astrophysics Data System (ADS)
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2018-04-01
We rederive the equations of motion for relativistic strings, that is, one-dimensional elastic bodies whose internal energy depends only on their stretching, and use them to study circular string loops rotating in the equatorial plane of flat and black hole spacetimes. We start by obtaining the conditions for equilibrium, and find that: (i) if the string’s longitudinal speed of sound does not exceed the speed of light then its radius when rotating in Minkowski’s spacetime is always larger than its radius when at rest; (ii) in Minkowski’s spacetime, equilibria are linearly stable for rotation speeds below a certain threshold, higher than the string’s longitudinal speed of sound, and linearly unstable for some rotation speeds above it; (iii) equilibria are always linearly unstable in Schwarzschild’s spacetime. Moreover, we study interactions of a rotating string loop with a Kerr black hole, namely in the context of the weak cosmic censorship conjecture and the Penrose process. We find that: (i) elastic string loops that satisfy the null energy condition cannot overspin extremal black holes; (ii) elastic string loops that satisfy the dominant energy condition cannot increase the maximum efficiency of the usual particle Penrose process; (iii) if the dominant energy condition (but not the weak energy condition) is violated then the efficiency can be increased. This last result hints at the interesting possibility that the dominant energy condition may underlie the well known upper bounds for the efficiencies of energy extraction processes (including, for example, superradiance).
46 CFR 78.17-22 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... stability requirements. 78.17-22 Section 78.17-22 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Tests, Drills, and Inspections § 78.17-22 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure and at all other...
46 CFR 78.17-22 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... stability requirements. 78.17-22 Section 78.17-22 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Tests, Drills, and Inspections § 78.17-22 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure and at all other...
46 CFR 78.17-22 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... stability requirements. 78.17-22 Section 78.17-22 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Tests, Drills, and Inspections § 78.17-22 Verification of vessel compliance with applicable stability requirements. (a) After loading and prior to departure and at all other...
Tudisco, Cosimo; Bisicchia, Salvatore
2012-08-01
Incorrect bone tunnel position, particularly on the femoral side, is a frequent cause of failed anterior cruciate ligament reconstruction. Several studies have reported that drilling the femoral tunnel through the anteromedial portal allows a more anatomical placement on the lateral femoral condyle and higher knee stability than does transtibial reconstruction.In the current study, the femoral tunnel was drilled with transtibial (n=6) and anteromedial (n=6) portal techniques in 12 cadaveric knees. With appropriate landmarks inserted into bone tunnels, the direction and length of the tunnels were determined on anteroposterior and lateral radiographs. Knee stability was evaluated with a KT1000 arthrometer (MEDmetric Corporation, San Diego, California) and pivot shift test, comparing the pre- and postoperative values of both techniques. Finally, all knees were dissected to enhance vision of the insertion of the reconstructed ligament. The anteromedial portal technique led to better placement of the femoral tunnel in the coronal and sagittal planes, with higher knee stability according to the pivot shift test but not the KT1000 arthrometer. Anatomical and clinical results reported in the literature on transtibial and anteromedial portal techniques are controversial, but most of studies report better results with the anteromedial portal technique, especially regarding rotational stability. The current cadaveric study showed that the anteromedial portal technique provided better tunnel placement on the lateral femoral condyle in the coronal and sagittal planes, with an improvement in the rotational stability of the knee. Copyright 2012, SLACK Incorporated.
da Silva Neto, Ulisses Tavares; Joly, Julio Cesar; Gehrke, Sergio Alexandre
2014-02-01
We used resonance frequency analysis to evaluate the implant stability quotient (ISQ) of dental implants that were installed in sites prepared by either conventional drilling or piezoelectric tips. We studied 30 patients with bilateral edentulous areas in the maxillary premolar region who were randomised to have the implant inserted with conventional drilling, or with piezoelectric surgery. The stability of each implant was measured by resonance frequency analysis immediately after placement to assess the immediate stability (time 1) and again at 90 days (time 2) and 150 days (time 3). In the conventional group the mean (SD) ISQ for time 1 was 69.1 (6.1) (95% CI 52.4-77.3); for time 2, 70.7 (5.7) (95% CI 60.4-82.8); and for time 3, 71.7 (4.5) (95% CI 64.2-79.2). In the piezosurgery group the corresponding values were: 77.5 (4.6) (95% CI 71.1-84.3) for time 1, 77.0 (4.2) (95% CI, 69.7-85.2) for time 2, and 79.1 (3.1) (95% CI 74.5-87.3) for time 3. The results showed significant increases in the ISQ values for the piezosurgery group at each time point (p=0.04). The stability of implants placed using the piezoelectric method was greater than that of implants placed using the conventional technique. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Supersymmetrizing the Gorsky-Shifman-Yung soliton
NASA Astrophysics Data System (ADS)
Ireson, E.; Shifman, M.; Yung, A.
2018-05-01
We supersymmetrize the Hopfion studied by Gorsky et al. [Phys. Rev. D 88, 045026 (2013)., 10.1103/PhysRevD.88.045026]. This soliton represents a closed semilocal vortex string in U(1) gauge theory. It carries nonzero Hopf number due to the additional winding of a phase modulus as one moves along the closed string. We study this solution in N =2 supersymmetric QED with two flavors. As a preliminary exercise, we compactify one space dimension and consider a straight vortex with periodic boundary conditions. It turns out to be 1 /2 -BPS saturated. An additional winding along the string can be introduced and it does not spoil the BPS nature of the object. Next, we consider a ringlike vortex in a non-compact space and show that the circumference of the ring L can be stabilized once the previously mentioned winding along the string is introduced. Of course, the ringlike vortex is not BPS but its energy becomes close to the BPS bound if L is large, which can be guaranteed in the case that we have a large value of the angular momentum J . Thus we arrive at the concept of asymptotically BPS-saturated solitons. BPS saturation is achieved in the limit J →∞ .
Cai, Kun; Shi, Jiao; Liu, Ling-Nan; Qin, Qing-Hua
2017-09-13
A string of fullerenes is used for generating a nanotube by self-assembly of a black phosphorus (BP) nanoribbon at a temperature of 8 K. Among the fullerenes in the string, there are at least two fixed fullerenes placed along the edge of the BP ribbon for keeping its configuration stability during winding. By way of molecular dynamics simulations, it is found that successful generation of a BP nanotube depends on the bending stiffness of the ribbon and the attraction between the fullerenes and the ribbon. When the attraction is strong enough, the two edges (along the zigzag direction) of the BP ribbon will be able to bond covalently to form a nanotube. By the molecular dynamics approach, the maximum width of the BP ribbon capable of forming a nanotube with a perfect length is investigated in three typical models. The maximum width of the BP ribbon becomes larger with the string containing more fullerenes. This finding reveals a way to control the width of the BP ribbon which forms a nanotube. It provides guidance for fabricating a BP nanotube with a specified length, the same as to the width of the ribbon.
El Paso County Geothermal Project at Fort Bliss. Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lear, Jon; Bennett, Carlon; Lear, Dan
The El Paso County Geothermal Project at Fort Bliss was an effort to determine the scale and scope of geothermal resources previously identified on Fort Bliss’ McGregor Range in southern Otero County, New Mexico. The project was funded with a $5,000,000 grant to El Paso County from the U.S. Department of Energy (DOE) as part of the American Recovery and Reinvestment Act of 2009 and a $4,812,500 match provided by private sector partners. The project was administered through the DOE Golden Field Office to awardee El Paso County. The primary subcontractor to El Paso County and project Principal Investigator -more » Ruby Mountain Inc. (RMI) of Salt Lake City, Utah - assembled the project team consisting of Evergreen Clean Energy Management (ECEM) of Provo, Utah, and the Energy & Geoscience Institute at the University of Utah (EGI) in Salt Lake City, UT to complete the final phases of the project. The project formally began in May of 2010 and consisted of two preliminary phases of data collection and evaluation which culminated in the identification of a drilling site for a Resource Confirmation Well on McGregor Range. Well RMI 56-5 was drilled May and June 2013 to a depth of 3,030 ft. below ground level. A string of slotted 7 inch casing was set in 8.75 inch hole on bottom fill at 3,017 ft. to complete the well. The well was drilled using a technique called flooded reverse circulation, which is most common in mineral exploration. This technique produced an exceptionally large and complete cuttings record. An exciting development at the conclusion of drilling was the suspected discovery of a formation that has proven to be of exceptionally high permeability in three desalinization wells six miles to the south. Following drilling and preliminary testing and analysis, the project team has determined that the McGregor Range thermal anomaly is large and can probably support development in the tens of megawatts.« less
Drilling of bone: A comprehensive review
Pandey, Rupesh Kumar; Panda, S.S.
2013-01-01
Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771
Radioactivities vs. depth in Apollo 16 and 17 soil
NASA Technical Reports Server (NTRS)
Fireman, E. L.; D'Amico, J.; Defelice, J.
1973-01-01
The radioactivities of Ar-37, Ar-39, and H-3 measured at a number of depths for Apollo 16 and 17 soil are reported. The Ar-37 activities vs depth in the Apollo 16 drill string increased with depth and reached a broad maximum in the neighborhood of 50 g per sq cm before decreasing. The Ar-39 activities in Apollo 17 soil were higher than in Apollo 16 soil, probably owing to the higher Fe and Ti contents. The H-3 activities in Apollo 16 and 17 soil were quite similar and indicate that the 4 August 1972 flare produced very little H-3 compared to the amount produced by solar flares during the previous 50 years.
Polished Downhole Transducer Having Improved Signal Coupling
Hall, David R.; Fox, Joe
2006-03-28
Apparatus and methods to improve signal coupling in downhole inductive transmission elements to reduce the dispersion of magnetic energy at the tool joints and to provide consistent impedance and contact between transmission elements located along the drill string. A transmission element for transmitting information between downhole tools is disclosed in one embodiment of the invention as including an annular core constructed of a magnetically conductive material. The annular core forms an open channel around its circumference and is configured to form a closed channel by mating with a corresponding annular core along an annular mating surface. The mating surface is polished to provide improved magnetic coupling with the corresponding annular core. An annular conductor is disposed within the open channel.
The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics
Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.
2012-01-01
Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.
Drilling into Magma: Experiences at Kīlauea Iki Lava Lake, Hawaii
NASA Astrophysics Data System (ADS)
Helz, R. L.
2017-12-01
Several historic lava lakes (1959 Kīlauea Iki, 1963 Alae, and 1965 Makaopuhi) were drilled in the 20th century, and molten core recovered from them. Kīlauea Iki lava lake, the most extensively studied, was drilled in 1960-62, 1967, 1965, 1976, 1979, 1981 and 1988. A total of 1400 m feet of core was recovered, about 210 m of which was partially molten. The melt fraction varied from near zero to 40-45% by volume, with higher fractions in glassy ooze from below the crust/melt interface. Most of the 1960-1979 drill holes terminated in pre-existing melt-rich internal differentiates; the later (1981, 1988) drill holes were mostly stopped arbitrarily. When melt was reached and the string backed off to wireline the last interval of core, black glassy ooze immediately moved up the borehole. Repeated re-entry and ooze recovery never exhausted the melt-rich sources. The first deep hole that did not hit melt was KI79-1, which was stopped at 62.2 m after recovering 12 m of molten mush. Here the uncased drill hole backfilled not with black glassy ooze but with olivine-rich, partly crystalline mush. The first redrilled core (recovered between 50.8 and 53.9 m), which moved up over a period of 16 days after termination of the original hole, underwent extensive separation of melt from crystals as it flowed upward. After this interval was pulled, drilling resumed with the bottom of the hole at 52.9 m, and uniform olivine-rich mush was recovered from 52.9-54.25 m. Drilling resumed once more at 52.9 m and a further 3 m of ooze recovered. The bit reached a depth of 55.4 m when the core barrel was full, suggesting that the crystal-rich mush was rising into the core barrel spontaneously during drilling. The three cores recovered in reentering KI79-1 show the effect of unloading the confining pressure on mush layers, with melt moving toward the low-pressure area (the bottom of the hole) relative to crystals. All of the crystal-rich mushes are more melt-rich than the original core, with elevated TiO2, K2O and P2O5 levels at the same bulk MgO content. Grain-to-grain contacts were progressively eroded in the melt-inflated mushes, so that the mushes had no internal cohesion. Although their melt contents never reached 50% by volume, they were extremely mobile, rising into the drill hole in minutes rather than the days required for the initial backfilling of the hole.
Beneficial Use of Drilling Waste - A Wetland Restoration Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pioneer Natural Resources
2000-08-14
This project demonstrated that treated drill cuttings derived from oil and gas operations could be used as source material for rebuilding eroding wetlands in Louisiana. Planning to supply a restoration site, drill a source well, and provide part of the funding. Scientists from southeastern Louisiana University's (SLU) Wetland Biology Department were contracted to conduct the proposed field research and to perform mesocosm studies on the SLU campus. Plans were to use and abandoned open water drill slip as a restoration site. Dredged material was to be used to create berms to form an isolated cell that would then be filledmore » with a blend of dredged material and drill cuttings. Three elevations were used to test the substrates ability to support various alternative types of marsh vegetation, i.e., submergent, emergent, and upland. The drill cuttings were not raw cuttings, but were treated by either a dewatering process (performed by Cameron, Inc.) or by a stabilization process to encapsulate undesirable constituents (performed by SWACO, Division of Smith International).« less
NASA Astrophysics Data System (ADS)
Eggertsson, Guðjón H.; Lavallée, Yan; Kendrick, Jackie E.
2017-04-01
Krafla volcano, located in North-East Iceland, holds an active magmatic hydrothermal system. Since 1978, this system has been exploited for geothermal energy. Today it is exploited by Landsvirkjun National Power of Iceland and the system is generating 60 MWg from 18 wells, tapping into fluids at 200-300°C. In order to meet further demands of environmentally sustainable energy, Landsvirkjun aims to drill deeper and source fluids in the super-heated, super high-enthalpy system which resides deeper (at 400-600°C). In relation to this, the first well of the Icelandic Deep Drilling Project (IDDP) was drilled in Krafla in 2009. Drilling stopped at a depth of 2.1 km, when the drill string penetrated a rhyolitic magma body, which could not be bypassed despite attempts to side-track the well. This pioneering effort demonstrated that the area close to magma had great energy potential. Here we seek a constraint on the mechanical properties of reservoir rocks overlying the magmatic systems to gain knowledge on these systems to improve energy extraction. During two field surveys in 2015 and 2016, and through information gathered from drilling of geothermal wells, five main rock types were identified and sampled [and their porosities (i.e., storage capacities) where determined with a helium-pycnometer]: basalts (5-60% porosity), hyaloclastites (<35-45% porosity), obsidians (0.25-5% porosity), ignimbrites (13-18% porosity), and intrusive felsites and microgabbros (9-16% porosity). Samples are primarily from surface exposures, but selected samples were taken from cores drilled within the Krafla caldera, outside of the geothermal reservoir. Uniaxial and triaxial compressive strength tests have been carried out, as well as indirect tensile strength tests using the Brazilian disc method, to measure the rock strengths. The results show that the rock strength is inversely proportional to the porosity and strongly affected by the abundance of microcracks; some of the rocks are unusually weak considering their porosities, especially at low effective pressure as constrained at Krafla. The results also show that the porous lithologies may undergo significant compaction at relatively low loads (i.e., depth). Integration of the observed mechanical behaviour and associated permeability into future fluid flow simulations will aim to increase our understanding and exploitation of geothermal reservoirs.
High-pressure high-temperature rheological studies of colloidal suspensions with carbon nanotube
NASA Astrophysics Data System (ADS)
Baby, Anoop; Sadr, Reza; Yarc, Rommel; Amani, Mahmood
2017-11-01
Selection of the drilling fluid, drilling mud, is vital in minimizing the cost and time required for the drilling in oil fields. Drilling mud aids in cooling, lubricating drilling bit, removing the debries from the drill bore and maintaining the wellbore stability. Owing to the enhanced thermo-physical properties and stable nature, suspensions of nanoparticles have been suggested for drilling fluids. High-pressure and high-temperature rheology of a nanomud suspension (nano particles suspended in a mud solution) is studied here. The nanomud is prepared by dispersing a water-based drilling mud suspension (water with 1% Bentonite and 7% Barite particles) with multi-walled carbon nanotubes, MWCNT. The effect of pressure, temperature, and shear rate are independently studied for the various particle loading of the nanoparticles. Viscosity values are measured at a maximum pressure of 170MPa with temperatures ranging from ambient to 180oC. The effect of MWCNT concentration and variation in shear rate are also investigated A shear thinning non-Newtonian behavior is observed for the basemud and the nanomud samples for all cases. The basemud showed an increase in viscosity with an increase in pressure. However, with MWCNT particle addition, this trend is observed to have reversed.
Template-guided vs. non-guided drilling in site preparation of dental implants.
Scherer, Uta; Stoetzer, Marcus; Ruecker, Martin; Gellrich, Nils-Claudius; von See, Constantin
2015-07-01
Clinical success of oral implants is related to primary stability and osseointegration. These parameters are associated with delicate surgical techniques. We herein studied whether template-guided drilling has a significant influence on drillholes diameter and accuracy in an in vitro model. Fresh cadaveric porcine mandibles were used for drilling experiments of four experimental groups. Each group consisted of three operators, comparing guide templates for drilling with free-handed procedure. Operators without surgical knowledge were grouped together, contrasting highly experienced oral surgeons in other groups. A total of 180 drilling actions were performed, and diameters were recorded at multiple depth levels, with a precision measuring instrument. Template-guided drilling procedure improved accuracy on a very significant level in comparison with free-handed drilling operation (p ≤ 0.001). Inaccuracy of free-handed drilling became more significant in relation to measurement depth. High homogenic uniformity of template-guided drillholes was significantly stronger than unguided drilling operations by highly experienced oral surgeons (p ≤ 0.001). Template-guided drilling procedure leads to significantly enhanced accuracy. Significant results compared to free-handed drilling actions were achieved, irrespective of the clinical experience level of the operator. Template-guided drilling procedures lead to a more predictable clinical diameter. It shows that any set of instruments has to be carefully chosen to match the specific implant system. The current in vitro study is implicating an improvement of implant bed preparation but needs to be confirmed in clinical studies.
Effects of Condensation on Peri-implant Bone Density and Remodeling
Wang, L.; Wu, Y.; Perez, K.C.; Hyman, S.; Brunski, J.B.; Tulu, U.; Bao, C.; Salmon, B.; Helms, J.A.
2017-01-01
Bone condensation is thought to densify interfacial bone and thus improve implant primary stability, but scant data substantiate either claim. We developed a murine oral implant model to test these hypotheses. Osteotomies were created in healed maxillary extraction sites 1) by drilling or 2) by drilling followed by stepwise condensation with tapered osteotomes. Condensation increased interfacial bone density, as measured by a significant change in bone volume/total volume and trabecular spacing, but it simultaneously damaged the bone. On postimplant day 1, the condensed bone interface exhibited microfractures and osteoclast activity. Finite element modeling, mechanical testing, and immunohistochemical analyses at multiple time points throughout the osseointegration period demonstrated that condensation caused very high interfacial strains, marginal bone resorption, and no improvement in implant stability. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability. PMID:28048963
Effects of Condensation on Peri-implant Bone Density and Remodeling.
Wang, L; Wu, Y; Perez, K C; Hyman, S; Brunski, J B; Tulu, U; Bao, C; Salmon, B; Helms, J A
2017-04-01
Bone condensation is thought to densify interfacial bone and thus improve implant primary stability, but scant data substantiate either claim. We developed a murine oral implant model to test these hypotheses. Osteotomies were created in healed maxillary extraction sites 1) by drilling or 2) by drilling followed by stepwise condensation with tapered osteotomes. Condensation increased interfacial bone density, as measured by a significant change in bone volume/total volume and trabecular spacing, but it simultaneously damaged the bone. On postimplant day 1, the condensed bone interface exhibited microfractures and osteoclast activity. Finite element modeling, mechanical testing, and immunohistochemical analyses at multiple time points throughout the osseointegration period demonstrated that condensation caused very high interfacial strains, marginal bone resorption, and no improvement in implant stability. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability.
Volume requirements for aerated mud drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, B.; Rajtar, J.M.
1995-09-01
Aerated mud drilling has been recognized as having many advantages over conventional mud drilling, such ass higher penetration rate, less formation damage, minimized lost circulation, and lower drilling cost. In some areas, the use of aerated mud as a circulating medium for drilling oil and gas wells is becoming an attractive practice. Maintaining an optimum combination of liquid and air flow rates is important in aerated drilling operations. However, most drilling operators are unclear on what constitutes the ``optimum combination of the liquid and air flow rates.`` Guo et al. presented a mathematical approach to determining the flowing bottomhole pressuremore » (BHP) for aerated mud drilling. This paper addresses the use of Guo et al.`s mathematical model to determine liquid and air volume requirements considering wellbore stability, pipe sticking, and formation damage as well as the cuttings-carry capacity of the aerated mud. For a formation-damage-prevention point of view, the liquid fraction in the fluid stream should e as low as possible. However, a sufficient mud flow rate is always required to make the hole stable and to maintain the cuttings-carrying capacity of the aerated mud without injecting much air volume. This paper provides a simple approach to determining the liquid and air volume requirements for aerated mud drilling.« less
Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.
Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee
2017-02-01
Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P < 0.0001. No significant difference was identified comparing the first 5 cortices drilled to the last 5 cortices drilled for each bit. The P-values are as follows: Bosch (P = 0.73), Emerge (P = 0.09), Smith & Nephew (P = 0.08), Stryker (P = 0.086), and Synthes (P = 0.16). The industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.
Coupled Directional Stability of Multiple Ship Formations
2013-06-01
Papoulias, “Bifurcation analysis of line of sight vehicle guidance using sliding modes ,” Int. J. of Bifurcation and Chaos, vol. 1, p.4, 1991. [12] F...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) This thesis addresses the problem of coordinated motion control and the stability loss of surface...plane with no side slip. A state feedback control law is coupled with a line of sight guidance law to provide path control . A string of three vehicles
With string model to time series forecasting
NASA Astrophysics Data System (ADS)
Pinčák, Richard; Bartoš, Erik
2015-10-01
Overwhelming majority of econometric models applied on a long term basis in the financial forex market do not work sufficiently well. The reason is that transaction costs and arbitrage opportunity are not included, as this does not simulate the real financial markets. Analyses are not conducted on the non equidistant date but rather on the aggregate date, which is also not a real financial case. In this paper, we would like to show a new way how to analyze and, moreover, forecast financial market. We utilize the projections of the real exchange rate dynamics onto the string-like topology in the OANDA market. The latter approach allows us to build the stable prediction models in trading in the financial forex market. The real application of the multi-string structures is provided to demonstrate our ideas for the solution of the problem of the robust portfolio selection. The comparison with the trend following strategies was performed, the stability of the algorithm on the transaction costs for long trade periods was confirmed.
Primary bowing tremor: a task-specific movement disorder of string instrumentalists.
Lederman, Richard J
2012-12-01
Fear of a tremulous or unsteady bow is widespread among string instrumentalists. Faulty technique and performance anxiety have generally been blamed. The cases of 4 high-level violinists and 1 violist, 3 women and 2 men, with uncontrollable bow tremor are presented. Age at onset was from 16 to 75 years, and symptom duration 8 months to 20 years at the time of neurological evaluation. The degree of tremor varied with type of bow stroke and even the portion of the bow contacting the string. Only 1 patient had a slight postural tremor of the opposite limb. In 3 of 5 the tremor was task-specific; the other 2 had mild and nontroubling tremor with other activities. The tremor appeared to worsen over time but then seemed to stabilize. The characteristics of this tremor appear to be distinguishable from the features of both essential tremor and focal dystonia; comparison is made with representative string players afflicted by these other disorders. Analogy of this tremor is made with primary writing tremor, a well-defined task-specific movement disorder also sharing at least some features with both essential tremor and writers' cramp, a focal dystonia. Hence, it was decided to call this primary bowing tremor. Clinical features, family history, diagnostic studies, and responsiveness to treatment of primary writing tremor are discussed to emphasize the similarity to primary bowing tremor. This appears to represent a previously unreported form of task-specific movement disorder of string instrumentalists.
Coring device with a improved core sleeve and anti-gripping collar with a collective core catcher
DOE Office of Scientific and Technical Information (OSTI.GOV)
Story, A.L.; Filshtinsky, M.
1986-01-28
This patent describes an improved coring apparatus used in combination with a coring bit and drill string. This device consists of: an outer driving structure adapted to be connected at one end to the coring bit for cutting a core in a borehole, and at the other end to the lower end of the drill string in telescoping and co-rotatable manner therewith; an inner barrel disposed within the outer driving structure and including a lower end portion adjacent to the bit; first means supporting the inner barrel in spaced relationship to the outer driving structure while permitting rotation of themore » driving structure with respect to the inner barrel; a woven metal mesh sleeve mounted in surrounding relation on at least a portion of the exterior surface of the inner barrel; second means, connected to a free end of the sleeve opposite the leading portion of the sleeve, for maintaining the portion of the sleeve which surrounds the inner barrel in compression and to maintain an inside diameter greater than the outside diameter of the inner barrel of the portion of the sleeve surrounding the inner barrel while the portion of the sleeve positioned inside the inner barrel being in tension to grip and compress a core received within the sleeve and having an outside diameter less than the inside diameter of the inner barrel when in tension, wherein the second means is also for engaging the core when the means is drawn into the inner barrel, and third means positioned within the inner barrel and connected to the leading portion of the sleeve to draw the sleeve within the inner barrel and to apply tension to the portion of the sleeve within the barrel to encase and grip the core as it is cut.« less
Completion Report for Well ER-4-1 Corrective Action Unit 97: Yucca Flat/Climax Mine, Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, Jeffrey; Rehfeldt, Ken
Well ER-4-1 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled and completed from March 23 to April 13, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Yucca Flat/Climax Mine Corrective Action Unit (CAU) 97. The primary purpose of the well was to collect hydrogeologic data to assist in validating concepts of the groundwater flow system within the Yucca Flat/Climax Mine CAU, and to test for potential radionuclides in groundwater from the STRAIT (U4a) underground test. The completedmore » well includes one piezometer (p1), to a depth of 663.16 meters (m) (2,175.71 feet [ft]) below ground surface (bgs) and open from the Alluvial aquifer (AA3) to the Oak Spring Butte confining unit (OSBCU) hydrostratigraphic units; and a main completion (m1), which includes 6.625-inch (in.) casing with slotted interval (m1) installed to 906.80 m (2,975.05 ft) bgs in the Lower carbonate aquifer (LCA). A 13.375-in. diameter surface casing was installed from the surface to a depth of 809.00 m (2,654.21 ft) bgs. Well ER-4-1 experienced a number of technical issues during drilling, including borehole instability and sloughing conditions. An intermediate, 10.75-in./9.625-in. casing string was installed to 856.94 m (2,811.48 ft) bgs to control these issues. Borehole stability and erosion problems appear to be associated with the Tunnel Formation (Tn) and the Older tunnel beds (Ton). Overall efforts to stabilize the borehole were successful. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), a partial suite of geophysical logs to a maximum depth of 766.57 m (2,515 ft) bgs, water-quality measurements (including tritium), water-level measurements, and two depth-discrete bailer samples collected at 538.89 m and 646.18 m (1,768 ft and 2,120 ft) bgs respectively. The well penetrated 187.45 m (615 ft) of Quaternary/Tertiary alluvium (QTa), 671.47 m (2,203 ft) of Tertiary Volcanic rocks (Tv), and 66.20 m (217.19 ft) of Paleozoic rocks (|). The stratigraphy and lithology were generally as expected with some exceptions. The top of Paleozoic rocks (|) was predicted to occur at 822.35 m (2,698 ft) bgs and was intercepted at 858.93 m (2,818 ft), a difference of 36.58 m (120 ft). As expected, the Paleozoic rocks (|) are the principal water producing formation in Well ER-4-1. Depth to water was measured after drilling as follows: In the piezometers: p1 at 320.39 m (1,051.16 ft) bgs, (measured January 4, 2017); and in the main production casing interval: m1 at 539.17 m (1,768.92 ft) bgs, (measured December 12, 2016) Geophysical logs and depth-discrete bailer sample analytical results suggest likely zones of prompt injection (underground-test-related) fission products from 472.44 to 481.48 m (1,550 to 1,580 ft) bgs and at approximately 539.50 m (1,770 ft) bgs. Subsequent work at Well ER-4-1 will be included in future reports. Field measurements for tritium were mostly below the Safe Drinking Water Act limit (20,000 picocuries per liter) with the exception of two zones showing elevated tritium concentrations. The first zone is located at approximately 365.76 to 390.14 m (1,200 to 1,280 ft) bgs and a second zone at approximately 542.54 to 566.93 m (1,780 to 1,860 ft) bgs. All Fluid Management Plan requirements were met.« less
Offshore wellbore stability analysis based on fully coupled poro-thermo-elastic theory
NASA Astrophysics Data System (ADS)
Cao, Wenke; Deng, Jingen; Yu, Baohua; Liu, Wei; Tan, Qiang
2017-03-01
Drilling-induced tensile fractures are usually caused when the weight of mud is too high, and the effective tangential stress becomes tensile. It is thus hard to explain why tensile fractures are distributed along the lower part of a hole in an offshore exploration well when the mud weight is low. According to analysis, the reason could be the thermal effect, which cannot be ignored because of the drilling fluid and the cooling action of sea water during circulation. A heat transfer model is set up to obtain the temperature distribution of the wellbore and its formation by the finite difference method. Then, fully coupled poro-thermo-elastic theory is used to study the pore pressure and effective stress around the wellbore. By comparing it with both poroelastic and elastic models, it is indicated that the poroelastic effect is dominant at the beginning of circulation and inhibits tensile fractures from forming; then, the thermal effect becomes more important and decreases the effective tangential stress with the passing of time, so the drilling fluid and the cooling effect of sea water can cause tensile fractures to happen. Meanwhile, tensile fractures are shallow and not likely to lead to mud leakage with lower mud weight, which agrees with the actual drilling process. On the other hand, the fluid cooling effect could increase the strength of the rock and reduce the likelihood of shear failure, which would be beneficial for wellbore stability. So, the thermal effect cannot be neglected in offshore wellbore stability analysis, and mud weight and borehole exposure time should be controlled in the case of mud loss.
NASA Astrophysics Data System (ADS)
Riedel, M.; Collett, T. S.
2017-07-01
A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.
Riedel, Michael; Collett, Timothy S.
2017-01-01
A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.
The research of breaking rock with liquid-solid two-phase jet flow
NASA Astrophysics Data System (ADS)
Cheng, X. Z.; Ren, F. S.; Fang, T. C.
2018-03-01
Abstracts. Particle impact drilling is an efficient way of breaking rock, which is mainly used in deep drilling and ultra-deep drilling. The differential equation was established based on the theory of Hertz and Newton’s second law, through the analysis of particle impact rock, the depth of particles into the rock was obtained. The mathematical model was established based on the effect of water impact crack. The research results show when water jet speed is more than 40 m/s, rock stability coefficient is more than 1.0, the rock fracture appear. Through the experimental research of particle impact drilling facilities, analysis of cuttings and the crack size which was analyzed through Scanning electron microscope consistent with the theoretical calculation, the validity of the model was verified.
NASA Astrophysics Data System (ADS)
Ali Ahmadi, Mohammad; Galedarzadeh, Morteza; Reza Shadizadeh, Seyed
2017-12-01
Colloidal gas aphron-based (CGA) drilling fluids are defined as gas bubbles with diameters in ranges of 10 to 100 microns which are created by intensive stirring of an aphronizer surfactant solution at high speed. Furthermore, CGA-based drilling fluid properties like stability and aphron size distribution extremely depend on the inherent characteristics of the aphronizer surfactant. The selection of an appropriate surface active agent plays a vital role in the generation of micro-bubbles with the favorable characteristics. The primary motivation behind this paper is to evaluate the potential of new natural surfactants as aphronizer in CGA-based drilling fluids. Here, two new natural based surfactants derived from roots of Glycyrrhiza glabra and leaves of Matricaria recutita plant are implemented for the preparation of aphron-based fluids. The physico-chemical properties of the aphronized fluids prepared from these surfactants are studied by different fundamental tests comprising rheological characterizations, bubble size measurements, and stability tests. The effect of polymer and surfactant concentration was also evaluated. According to the experimental outcomes of this research, the two introduced natural surfactants are appropriate for generating CGA-based drilling fluids while they have no environmental impacts and have very low cost in comparison to commercial and industrial surfactants.
Drill string transmission line
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe
2006-03-28
A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.
Design of a Pneumatic Tool for Manual Drilling Operations in Confined Spaces
NASA Astrophysics Data System (ADS)
Janicki, Benjamin
This master's thesis describes the design process and testing results for a pneumatically actuated, manually-operated tool for confined space drilling operations. The purpose of this device is to back-drill pilot holes inside a commercial airplane wing. It is lightweight, and a "locator pin" enables the operator to align the drill over a pilot hole. A suction pad stabilizes the system, and an air motor and flexible drive shaft power the drill. Two testing procedures were performed to determine the practicality of this prototype. The first was the "offset drill test", which qualified the exit hole position error due to an initial position error relative to the original pilot hole. The results displayed a linear relationship, and it was determined that position errors of less than .060" would prevent the need for rework, with errors of up to .030" considered acceptable. For the second test, a series of holes were drilled with the pneumatic tool and analyzed for position error, diameter range, and cycle time. The position errors and hole diameter range were within the allowed tolerances. The average cycle time was 45 seconds, 73 percent of which was for drilling the hole, and 27 percent of which was for positioning the device. Recommended improvements are discussed in the conclusion, and include a more durable flexible drive shaft, a damper for drill feed control, and a more stable locator pin.
Wellbore stability analysis and its application in the Fergana basin, central Asia
NASA Astrophysics Data System (ADS)
Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han
2014-02-01
Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Paula D.; Flores, Karen A.; Lord, David L.
Bryan Mound 5 ( BM5 ) and West Hackberry 9 ( WH9 ) have the potential to create a significant amount of new storage space should the caverns be deemed "leach - ready". This study discusses the original drilling history of the caverns, surrounding geology, current stability, and, based on this culmination of data, makes a preliminary assessment of the leach potential for the cavern. The risks associated with leaching BM5 present substantial problems for the SPR . The odd shape and large amount of insoluble material make it difficult to de termine whether a targeted leach would have themore » desired effect and create useable ullage or further distort the shape with preferential leaching . T he likelihood of salt falls and damaged or severed casing string is significant . In addition, a targeted le ach would require the relocation of approximately 27 MMB of oil . Due to the abundance of unknown factors associated with this cavern, a targeted leach of BM5 is not recommended. A targeted leaching of the neck of WH 9 could potentially eliminate or diminis h the mid - cavern ledge result ing in a more stable cavern with a more favorable shape. A better understanding of the composition of the surrounding salt and a less complicated leaching history yields more confidence in the ability to successfully leach this region. A targeted leach of WH9 can be recommended upon the completion of a full leach plan with consideration of the impacts upon nearby caverns .« less
Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling
NASA Astrophysics Data System (ADS)
Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting
2018-02-01
Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep-water drilling through hydrate formation, the drilling fluid with low temperatures should be given priority. The drilling process should be kept under balanced pressures, and the drilling time should be shortened.
Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311
Torres, M.E.; Trehu, A.M.; Cespedes, N.; Kastner, M.; Wortmann, U.G.; Kim, J.-H.; Long, P.; Malinverno, A.; Pohlman, J.W.; Riedel, M.; Collett, T.
2008-01-01
Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SW-NE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~ 8??km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~ 49??mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23??cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and > 80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (> 63????m) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245??mbsf. ?? 2008 Elsevier B.V.
Symbol-string sensitivity and adult performance in lexical decision.
Pammer, Kristen; Lavis, Ruth; Cooper, Charity; Hansen, Peter C; Cornelissen, Piers L
2005-09-01
In this study of adult readers, we used a symbol-string task to assess participants' sensitivity to the position of briefly presented, non-alphabetic but letter-like symbols. We found that sensitivity in this task explained a significant proportion of sample variance in visual lexical decision. Based on a number of controls, we show that this relationship cannot be explained by other factors including: chronological age, intelligence, speed of processing and/or concentration, short term memory consolidation, or fixation stability. This approach represents a new way to elucidate how, and to what extent, individual variation in pre-orthographic visual and cognitive processes impinge on reading skills, and the results suggest that limitations set by visuo-spatial processes constrain visual word recognition.
The construction of ``realistic'' four-dimensional strings through orbifolds
NASA Astrophysics Data System (ADS)
Font, A.; Ibáñez, L. E.; Quevedo, F.; Sierra, A.
1990-02-01
We discuss the construction of "realistic" lower rank 4-dimensional strings, through symmetric orbifolds with background fields. We present Z 3 three-generation SU(3) × SU(2) × U(1) models as well as models incorporating a left-right SU(2) L × SU(2) R × U(1) B-L symmetry in which proton stability is automatically guaranteed. Conformal field theory selection rules are used to find the flat directions to all orders which lead to these low-rank models and to study the relevant Yukawa couplings. A hierarchical structure of quark-lepton masses appears naturally in some models. We also present a detailed study of the structure of the Z 3 × Z 3 orbifold including the generalized GSO projection, the effect of discrete torsion and the conformal field theory Yukawa coupling selection rules. All these points are illustrated with a three-generation Z 3 × Z 3 model. We have made an effort to write a self-contained presentation in order to make this material available to non-string experts interested in the phenomenological aspects of this theory.
NASA Astrophysics Data System (ADS)
Pomoni, Elli; Rastelli, Leonardo
2012-10-01
We consider an instance of the AdS/CFT duality where the bulk theory contains an open string tachyon, and study the instability from the viewpoint of the boundary field theory. We focus on the specific example of the AdS5 × S 5 background with two probe D7 branes intersecting at general angles. For generic angles supersymmetry is completely broken and there is an open string tachyon between the branes. The field theory action for this system is obtained by coupling to {N}=4 super Yang-Mills two {N}=2 hyper multiplets in the fundamental representation of the SU( N) gauge group, but with different choices of embedding of the two {N}=2 subalgebras into {N}=4 . On the field theory side we find a one-loop Coleman-Weinberg instability in the effective potential for the fundamental scalars. We identify a mesonic operator as the dual of the open string tachyon. By AdS/CFT, we predict the tachyon mass for small 't Hooft coupling (large bulk curvature) and confirm that it violates the AdS stability bound.
NASA Astrophysics Data System (ADS)
Sun, Dihua; Chen, Dong; Zhao, Min; Liu, Weining; Zheng, Linjiang
2018-07-01
In this paper, the general nonlinear car-following model with multi-time delays is investigated in order to describe the reactions of vehicle to driving behavior. Platoon stability and string stability criteria are obtained for the general nonlinear car-following model. Burgers equation and Korteweg de Vries (KdV) equation and their solitary wave solutions are derived adopting the reductive perturbation method. We investigate the properties of typical optimal velocity model using both analytic and numerical methods, which estimates the impact of delays about the evolution of traffic congestion. The numerical results show that time delays in sensing relative movement is more sensitive to the stability of traffic flow than time delays in sensing host motion.
NASA Astrophysics Data System (ADS)
Barshilia, Harish C.; Ghosh, Moumita; Shashidhara; Ramakrishna, Raja; Rajam, K. S.
2010-08-01
This work reports the performance of high speed steel drill bits coated with TiAlSiN nanocomposite coating at different Si contents (5.5-8.1 at.%) prepared using a four-cathode reactive pulsed direct current unbalanced magnetron sputtering system. The surface morphology of the as-deposited coatings was characterized using field emission scanning electron microscopy. The crystallographic structure, chemical composition and bonding structure were evaluated using X-ray diffraction, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, respectively. The corrosion behavior, mechanical properties and thermal stability of TiAlSiN nanocomposite coatings were also studied using potentiodynamic polarization, nanoindentation and Raman spectroscopy, respectively. The TiAlSiN coating thickness was approximately 2.5-2.9 μm. These coatings exhibited a maximum hardness of 38 GPa at a silicon content of approximately 6.9 at.% and were stable in air up to 850 °C. For the performance evaluation, the TiAlSiN coated drills were tested under accelerated machining conditions by drilling a 12 mm thick 304 stainless steel plate. Under dry conditions the uncoated drill bits failed after drilling 50 holes, whereas, TiAlSiN coated drill bits (Si = 5.5 at.%) drilled 714 holes before failure. Results indicated that for TiAlSiN coated drill bits the tool life increased by a factor of more than 14.
Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar
2014-11-01
Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.
Black branes and black strings in the astrophysical and cosmological context
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Chopovsky, Alexey; Zhuk, Alexander
2018-03-01
We consider Kaluza-Klein models where internal spaces are compact flat or curved Einstein spaces. This background is perturbed by a compact gravitating body with the dust-like equation of state (EoS) in the external/our space and an arbitrary EoS parameter Ω in the internal space. Without imposing any restrictions on the form of the perturbed metric and the distribution of the perturbed energy densities, we perform the general analysis of the Einstein and conservation equations in the weak-field limit. All conclusions follow from this analysis. For example, we demonstrate that the perturbed model is static and perturbed metric preserves the block-diagonal form. In a particular case Ω = - 1 / 2, the found solution corresponds to the weak-field limit of the black strings/branes. The black strings/branes are compact gravitating objects which have the topology (four-dimensional Schwarzschild spacetime) × (d-dimensional internal space) with d ≥ 1. We present the arguments in favour of these objects. First, they satisfy the gravitational tests for the parameterized post-Newtonian parameter γ at the same level of accuracy as General Relativity. Second, they are preferable from the thermodynamical point of view. Third, averaging over the Universe, they do not destroy the stabilization of the internal space. These are the astrophysical and cosmological aspects of the black strings/branes.
NASA Astrophysics Data System (ADS)
Roecker, S.; Thurber, C.; Shuler, A.; Liu, Y.; Zhang, H.; Powell, L.
2005-12-01
Five years of effort collecting and analyzing earthquake and explosion data in the vicinity of the SAFOD drill site culminated in the determination of the final trajectory for summer 2005's Phase 2 drilling. The trajectory was defined to optimize the chance of reaching one of two adjacent M2 "target earthquake" fault patches, whose centroids are separated horizontally by about 50 meters, with one or more satellite coreholes planned for Phase 3 drilling in summer 2007. Some of the most critical data for the final targeting were explosion data recorded on a Paulsson Geophysical Services, Inc., 80-element 3-component borehole string and earthquake data recorded on a pair of 3-component Duke University geophones in the SAFOD borehole. We are now utilizing the full 5-year dataset to refine our knowledge of three-dimensional (3D) crustal structure, wave propagation characteristics, and earthquake locations around SAFOD. These efforts are proceeding in parallel in several directions. Improved picks from a careful reanalysis of shear waves observed on the PASO array will be used in deriving an improved tomographic 3D wavespeed model. We are using finite-difference waveform modeling to investigate waveform complexity for earthquakes in and near the target region, including fault-zone head waves and strong secondary S-wave arrivals. A variety of waveform imaging methods are being applied to image fine-scale 3D structure and subsurface scatterers, including fault zones. In the process, we aim to integrate geophysical logging and geologic observations with our models to try to associate the target region earthquake activity, which is occurring on two fault strands about 280 meters apart, with shear zones encountered in the SAFOD Phase-2 borehole. These observations will be agumented and the target earthquake locations further refined over the next 2 years through downhole and surface recording of natural earthquakes and surface shots conducted at PASO station locations.
Burns, Joseph C.
2014-01-01
Sensory hair cell (HC) loss is a major cause of permanent hearing and balance impairments for humans and other mammals. Yet, fish, amphibians, reptiles, and birds readily replace HCs and recover from such sensory deficits. It is unknown what prevents replacement in mammals, but cell replacement capacity declines contemporaneously with massive postnatal thickening of F-actin bands at the junctions between vestibular supporting cells (SCs). In non-mammals, SCs can give rise to regenerated HCs, and the bands remain thin even in adults. Here we investigated the stability of the F-actin bands between SCs in ears from chickens and mice and Madin-Darby canine kidney cells. Pharmacological experiments and fluorescence recovery after photobleaching (FRAP) of SC junctions in utricles from mice that express a γ-actin–GFP fusion protein showed that the thickening F-actin bands develop increased resistance to depolymerization and exceptional stability that parallels a sharp decline in the cell replacement capacity of the maturing mammalian ear. The FRAP recovery rate and the mobile fraction of γ-actin–GFP both decreased as the bands thickened with age and became highly stabilized. In utricles from neonatal mice, time-lapse recordings in the vicinity of dying HCs showed that numerous SCs change shape and organize multicellular actin purse strings that reseal the epithelium. In contrast, adult SCs appeared resistant to deformation, with resealing responses limited to just a few neighboring SCs that did not form purse strings. The exceptional stability of the uniquely thick F-actin bands at the junctions of mature SCs may play an important role in restricting dynamic repair responses in mammalian vestibular epithelia. PMID:24478379
Burns, Joseph C; Corwin, Jeffrey T
2014-01-29
Sensory hair cell (HC) loss is a major cause of permanent hearing and balance impairments for humans and other mammals. Yet, fish, amphibians, reptiles, and birds readily replace HCs and recover from such sensory deficits. It is unknown what prevents replacement in mammals, but cell replacement capacity declines contemporaneously with massive postnatal thickening of F-actin bands at the junctions between vestibular supporting cells (SCs). In non-mammals, SCs can give rise to regenerated HCs, and the bands remain thin even in adults. Here we investigated the stability of the F-actin bands between SCs in ears from chickens and mice and Madin-Darby canine kidney cells. Pharmacological experiments and fluorescence recovery after photobleaching (FRAP) of SC junctions in utricles from mice that express a γ-actin-GFP fusion protein showed that the thickening F-actin bands develop increased resistance to depolymerization and exceptional stability that parallels a sharp decline in the cell replacement capacity of the maturing mammalian ear. The FRAP recovery rate and the mobile fraction of γ-actin-GFP both decreased as the bands thickened with age and became highly stabilized. In utricles from neonatal mice, time-lapse recordings in the vicinity of dying HCs showed that numerous SCs change shape and organize multicellular actin purse strings that reseal the epithelium. In contrast, adult SCs appeared resistant to deformation, with resealing responses limited to just a few neighboring SCs that did not form purse strings. The exceptional stability of the uniquely thick F-actin bands at the junctions of mature SCs may play an important role in restricting dynamic repair responses in mammalian vestibular epithelia.
2011-05-04
21 st Century Seapower, 2007. 87 “Sri Lanka – 2004 Tsunami,” www.disasterassessment.org/documents/B11- Srilanka -tsunami.pdf/ (accessed 14 April... Srilanka - tsunami.pdf/ (accessed 14 April 2011). Srivastava, Siddharth. “India Blasts Rivals’ Role in Sri Lanka.” Asia Times, 10 June 2009. http
R symmetries and a heterotic MSSM
NASA Astrophysics Data System (ADS)
Kappl, Rolf; Nilles, Hans Peter; Schmitz, Matthias
2015-02-01
We employ powerful techniques based on Hilbert and Gröbner bases to analyze particle physics models derived from string theory. Individual models are shown to have a huge landscape of vacua that differ in their phenomenological properties. We explore the (discrete) symmetries of these vacua, the new R symmetry selection rules and their consequences for moduli stabilization.
NASA Astrophysics Data System (ADS)
Song, I.; Huepers, A.; Olcott, K. A.; Saffer, D. M.; Dugan, B.; Strasser, M.
2013-12-01
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a long-term, multi-stage scientific drilling project launched for investigating fault mechanics and seismogenesis along subduction megathrusts. One main key to the mechanics of the plate boundary is understanding the absolute mechanical strength and the in situ stress along the megathrust. As part of efforts to access the Nankai Trough seismogenic zone, the NanTroSEIZE Integrated Ocean Drilling Program (IODP) project began riser-based drilling operations at Site C0002 (Hole C0002F) in 2010 during IODP Expedition 326, with the objective of reaching the plate interface at ~6800 meters below the seafloor (mbsf). The geology in this area is composed of the Kumano Forearc Basin sedimentary strata to ~940 mbsf, underlain by the inner accretionary wedge. IODP Expedition 326 drilled Hole C0002F to 872.5 mbsf, near the bottom of the Kumano Basin, and set a 20-inch casing string to 860.2 mbsf. During IODP Expedition 338 in 2012, the hole was extended to 2005.5 mbsf. At the beginning of the operation, a leak-off test (LOT) was conducted in the interval of 872.5-875.5 mbsf, to define the maximum mud weight for the next stage of logging-while-drilling (LWD). Drilling-out-cement (DOC) at the bottom of the hole prior to the LOT provided a 3-m long, 17-inch diameter open borehole for the LOT. For the LOT, this open hole interval was pressurized with the outer annulus closed by the blow out preventer (BOP) using drilling mud of density of 1100 kg/m3, and mud pressure was measured at the cement pumps. The bottom-hole pressure was calculated by the recorded pressure plus the static pressure of the mud column. The first cycle of pressurization was conducted with injection of drilling mud at 31.8 l/min. However, the leak-off pressure (LOP) was not clearly defined because a large volume of mud was lost. Therefore a second cycle was conducted with a higher drilling mud injection rate (47.7 l /min). The rapid increase in pressure with a lower volume of mud injected during the second cycle suggests that a good mud cake was formed around the borehole wall, possibly due to mud flowing into the formation during the first cycle. In the second cycle, we identify a LOP of ~32.0 MPa from the pressure-volume record, which we interpret as the least principal stress. The total vertical stress given by the integration of bulk density with respect to depth is 35.7 MPa, indicating that the LOP reflects the least horizontal stress. This result can be a solid basis to constrain the in situ state of stress from indirect stress indicators such as wellbore failures at other depths.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Special examination in lieu of drydocking for column stabilized units or surface type units when specifically approved by the Commandant. 107.265 Section 107.265 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Special examination in lieu of drydocking for column stabilized units or surface type units when specifically approved by the Commandant. 107.265 Section 107.265 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Special examination in lieu of drydocking for column stabilized units or surface type units when specifically approved by the Commandant. 107.265 Section 107.265 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Special examination in lieu of drydocking for column stabilized units or surface type units when specifically approved by the Commandant. 107.265 Section 107.265 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Special examination in lieu of drydocking for column stabilized units or surface type units when specifically approved by the Commandant. 107.265 Section 107.265 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS...
Long stroke jar bumper sub with safety sleeve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downen, J.L.; Sutliff, W.N.
1981-04-14
A hydraulic jar apparatus to be disposed in a drilling string embodying inner and outer telescopically arranged elements. Overlapping portions of the elements provide an annual chamber confining an operating liquid by an annular seal fixed to the outer element at the lower end of the chamber and an annular polly pack seal fixed to the outer element at the upper end of the chamber. A piston is extended radially from the inner element into the chamber and the chamber is divided by a cylinder on the outer element into low and high pressure sections. Impact shoulders are provided onmore » the elements in axially opposed relation to produce a jarring blow and the elements are telescopically coupled by a hexagonal spline sub assembly.« less
String-like cooperative motion in homogeneous melting
Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F.
2013-01-01
Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of “superheated” Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of “homogeneous” melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional “static” defect melting models. PMID:23556789
String-like cooperative motion in homogeneous melting.
Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F
2013-03-28
Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static" defect melting models.
Hydrodynamics of material removal by melt expulsion: Perspectives of laser cutting and drilling
NASA Astrophysics Data System (ADS)
Poprawe, Reinhart; Schulz, Wolfgang; Schmitt, Robert
With the introduction of fiber-guided radiation at 1 μ wavelength emitting in the milti-kW range at better beam quality than CO2-lasers the most established application in laser processing, namely laser fusion cutting, came back into the industrial and scientific focus. Laser sources with extraordinary optical and economical properties - disk and fiber lasers - in a stormy way enter the market of cutting machines so far reserved for the 10 μ radiation source and led to a volatile situation. The new laser sources can already address a market-relevant class of applications, namely, fusion cutting of steel up to a sheet thickness of 2 mm with pronounced advantages in productivity. However, there is a significant lack of cut quality for larger sheet thickness. The main reason for the drawback and its physical background are given. With the availability of cutting machines with 1 μ fiber-guided radiation the race for the worldwide market regarding the larger sheet thickness is opened and the priority issues to improve the cut quality are related to the three levels: wavelength, beam delivery and the application stage of the machine. The stability model called QuCut is presented which for the first time allows to analyze stability of cutting with fiber-guided radiation. Experimental ripple patterns and ripple spectra resolved with respect to the cutting depth are well reproduced by the new stability model. A number of different experimental methods towards an improved understanding of the dynamics in laser drilling are developed, however, there are gaps related to in-situ observation which is obscured by the hole walls. There are four novel experimental methods resolving the dynamics from a μms-down to a ns-time scale having a spatial resolution with respect to transient drilling depth on the μm scale. As result, the different mechanisms contributing to recast formation and dynamical features of drilling are revealed in more detail. In particular, the action of double pulses and its changes depending on the evolving drill are investigated.
Scientific objectives of the Gulf of Mexico gas hydrate JIP leg II drilling
Jones, Emrys; Latham, T.; McConnell, Daniel R.; Frye, Matthew; Hunt, J.H.; Shedd, William; Shelander, Dianna; Boswell, Ray; Rose, Kelly K.; Ruppel, Carolyn D.; Hutchinson, Deborah R.; Collett, Timothy S.; Dugan, Brandon; Wood, Warren T.
2008-01-01
The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico.This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate.The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand-prone sedimentary section that rises stratigraphically across the base of the gas hydrate stability zone and that has seismic indicators of gas hydrate.
Formation of ore minerals in metamorphic rocks of the German continental deep drilling site (KTB)
NASA Astrophysics Data System (ADS)
Kontny, A.; Friedrich, G.; Behr, H. J.; de Wall, H.; Horn, E. E.; Möller, P.; Zulauf, G.
1997-08-01
The German Continental Deep Drilling Program (KTB) drilled a 9.1 km deep profile through amphibolite facies metamorphic rocks and reached in situ temperatures of 265°C. Each lithologic unit is characterized by typical ore mineral assemblages related to the regional metamorphic conditions. Paragneisses contain pyrrhotite + rutile + ilmenite ± graphite, metabasic units bear ilmenite + rutile + pyrrhotite ± pyrite, and additionally, the so-called variegated units yield pyrrhotite + titanite assemblages. In the latter unit, magnetite + ilmenite + rutile + titanite assemblages related to the lower amphibolite facies breakdown of ilmenite-hematite solid solution also occur locally. Retrograde hydrothermal mineralization which commenced during Upper Carboniferous times is characterized by the following geochemical conditions: (1) low saline Na-K-Mg-Cl fluids with sulfur and oxygen fugacities at the pyrite-pyrrhotite buffer and temperatures of 400-500°C, (2) fluids with CO2, CH4±N2, andpH, Eh, sulfur, and oxygen fugacity in the stability field of graphite + pyrite at temperatures of 280-350° and (3) moderate to high saline Ca-Na-Cl fluids with CH4+ N2; sulfur and oxygen fugacity are in the stability field of pyrrhotite at temperatures <300°C. The latter environment is confirmed by in situ conditions found at the bottom of the deep drilling. Monoclinic, ferrimagnetic pyrrhotite is the main carrier of magnetization which disappears below about 8.6 km, corresponding to in situ temperatures of about 250°C. Below this depth, hexagonal antiferromagnetic pyrrhotite with a Curie temperature of 260°C is the stable phase. Temperature-dependent transformation of pyrrhotite and the reaching of its Curie isotherm within the Earth crust are one of the striking results of the KTB deep drilling project.
Emergence and stability of intermediate open vesicles in disk-to-vesicle transitions.
Li, Jianfeng; Zhang, Hongdong; Qiu, Feng; Shi, An-Chang
2013-07-01
The transition between two basic structures, a disk and an enclosed vesicle, of a finite membrane is studied by examining the minimum energy path (MEP) connecting these two states. The MEP is constructed using the string method applied to continuum elastic membrane models. The results reveal that, besides the commonly observed disk and vesicle, open vesicles (bowl-shaped vesicles or vesicles with a pore) can become stable or metastable shapes. The emergence, stability, and probability distribution of these open vesicles are analyzed. It is demonstrated that open vesicles can be stabilized by higher-order elastic energies. The estimated probability distribution of the different structures is in good agreement with available experiments.
Stability of the matrix model in operator interpretation
NASA Astrophysics Data System (ADS)
Sakai, Katsuta
2017-12-01
The IIB matrix model is one of the candidates for nonperturbative formulation of string theory, and it is believed that the model contains gravitational degrees of freedom in some manner. In some preceding works, it was proposed that the matrix model describes the curved space where the matrices represent differential operators that are defined on a principal bundle. In this paper, we study the dynamics of the model in this interpretation, and point out the necessity of the principal bundle from the viewpoint of the stability and diffeomorphism invariance. We also compute the one-loop correction which yields a mass term for each field due to the principal bundle. We find that the stability is not violated.
46 CFR 174.040 - Stability requirements: general.
Code of Federal Regulations, 2011 CFR
2011-10-01
... metacentric height in the upright equilibrium position for the full range of drafts, whether at the operating draft for navigation, towing, or drilling afloat, or at a temporary draft when changing drafts. ...
46 CFR 174.040 - Stability requirements: general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... metacentric height in the upright equilibrium position for the full range of drafts, whether at the operating draft for navigation, towing, or drilling afloat, or at a temporary draft when changing drafts. ...
Alentorn-Geli, Eduard; Samitier, Gonzalo; Álvarez, Pedro; Steinbacher, Gilbert
2010-01-01
Drilling of the femoral tunnel with the transtibial (TT) technique is widely used in bone-patellar tendon-bone (BPTB) anterior cruciate ligament (ACL) reconstruction. Recent studies suggest higher knee stability with the use of the anteromedial portal (AMP). The purpose of this study was to compare functional and clinical outcomes of BPTB ACL reconstruction using the TT or the AMP technique for drilling the femoral tunnel. All ACL reconstructions between January 2003 and April 2006 were approached for eligibility. Forty-seven patients met inclusion criteria (21 TT group and 26 AMP group). Blinded assessments of IKDC score, knee stability and range of motion, one-leg hop test, mid-quadriceps circumference, VAS for satisfaction with surgery, Lysholm and Tegner scores, and SF-12 questionnaire were obtained for both groups. Data on preoperative and postoperative surgical timing were retrospectively reviewed through the charts. The AMP group demonstrated a significantly lower recovery time from surgery to walking without crutches (p < 0.01), to return to normal life (p < 0.03), to return jogging (p < 0.03), to return training (p < 0.03), and to return to play (p < 0.03). Knee stability values measured with KT-1000, Lachman test, pivot-shift sign, and objective IKDC score assessments were significantly better for the AMP compared to TT group (p < 0.002, p < 0.03, p < 0.02, p < 0.015, respectively). No differences were found for VAS for satisfaction with surgery, Lysholm, Tegner, and SF-12 between both groups. The use of the AMP technique significantly improved the anterior-posterior and rotational knee stability, IKDC scores, and recovery time from surgery compared to the TT technique. PMID:20401753
Revisiting the stability of mini-implants used for orthodontic anchorage.
Yao, Chung-Chen Jane; Chang, Hao-Hueng; Chang, Jenny Zwei-Chieng; Lai, Hsiang-Hua; Lu, Shao-Chun; Chen, Yi-Jane
2015-11-01
The aim of this study is to comprehensively analyze the potential factors affecting the failure rates of three types of mini-implants used for orthodontic anchorage. Data were collected on 727 mini-implants (miniplates, predrilled titanium miniscrews, and self-drilling stainless steel miniscrews) in 220 patients. The factors related to mini-implant failure were investigated using a Chi-square test for univariate analysis and a generalized estimating equation model for multivariate analysis. The failure rate for miniplates was significantly lower than for miniscrews. All types of mini-implants, especially the self-drilling stainless steel miniscrews, showed decreased stability if the previous implantation had failed. The stability of predrilled titanium miniscrews and self-drilling stainless steel miniscrews were comparable at the first implantation. However, the failure rate of stainless steel miniscrews increased at the second implantation. The univariate analysis showed that the following variables had a significant influence on the failure rates of mini-implants: age of patient, type of mini-implant, site of implantation, and characteristics of the soft tissue around the mini-implants. The generalized estimating equation analysis revealed that mini-implants with miniscrews used in patients younger than 35 years, subjected to orthodontic loading after 30 days and implanted on the alveolar bone ridge, have a significantly higher risk of failure. This study revealed that once the dental surgeon becomes familiar with the procedure, the stability of orthodontic mini-implants depends on the type of mini-implant, age of the patient, implantation site, and the healing time of the mini-implant. Miniplates are a more feasible anchorage system when miniscrews fail repeatedly. Copyright © 2014. Published by Elsevier B.V.
Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids.
Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Qing, Yan; Wu, Yiqiang
2015-03-04
Rheological and filtration characteristics of drilling fluids are considered as two critical aspects to ensure the success of a drilling operation. This research demonstrates the effectiveness of cellulose nanoparticles (CNPs), including microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) in enhancing the rheological and filtration performances of bentonite (BT) water-based drilling fluids (WDFs). CNCs were isolated from MFC through sulfuric acid hydrolysis. In comparison with MFC, the resultant CNCs had much smaller dimensions, more negative surface charge, higher stability in aqueous solutions, lower viscosity, and less evident shear thinning behavior. These differences resulted in the distinctive microstructures between MFC/BT- and CNC/BT-WDFs. A typical "core-shell" structure was created in CNC/BT-WDFs due to the strong surface interactions among BT layers, CNCs, and immobilized water molecules. However, a similar structure was not formed in MFC/BT-WDFs. As a result, CNC/BT-WDFs had superior rheological properties, higher temperature stability, less fluid loss volume, and thinner filter cakes than BT and MFC/BT-WDFs. Moreover, the presence of polyanionic cellulose (PAC) further improved the rheological and filtration performances of CNC/BT-WDFs, suggesting a synergistic effect between PAC and CNCs.
Data Transmission System For A Downhole Component
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Fox, Joe; Briscoe, Michael
2005-01-18
The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.
Data transmission system for a downhole component
Hall, David R.; Hall, Jr., Tracy H.; Pixton, David S.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron; Briscoe, Michael A.
2006-05-09
The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.
Commission for the Accreditation of Birth Centers
... to start basic emergency care and stabilize the mother or baby so that they may be transferred. Regular emergency drills required for all staff to stay current with the necessary skills. A relationship with ...
Phase behavior of a simple dipolar fluid under shear flow in an electric field.
McWhirter, J Liam
2008-01-21
Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar fluid under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the fluid particles. The spatial structure of simple fluids at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the fluid. Simulations that employ a biased thermostat produce a string phase where particles align in strings with hexagonal symmetry along the direction of the flow. This phase is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the fluid particles, to stabilize the string phase. We explore several thermostatting mechanisms where either the kinetic or configurational fluid degrees of freedom are thermostated. Some of these mechanisms do not yield a string phase, but rather a shear-thickening phase; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.
Adam, Benjamin; Afzali, Bahman; Dominy, Katherine M; Chapman, Erin; Gill, Reeda; Hidalgo, Luis G; Roufosse, Candice; Sis, Banu; Mengel, Michael
2016-03-01
Histopathologic diagnoses in transplantation can be improved with molecular testing. Preferably, molecular diagnostics should fit into standard-of-care workflows for transplant biopsies, that is, formalin-fixed paraffin-embedded (FFPE) processing. The NanoString(®) gene expression platform has recently been shown to work with FFPE samples. We aimed to evaluate its methodological robustness and feasibility for gene expression studies in human FFPE renal allograft samples. A literature-derived antibody-mediated rejection (ABMR) 34-gene set, comprised of endothelial, NK cell, and inflammation transcripts, was analyzed in different retrospective biopsy cohorts and showed potential to molecularly discriminate ABMR cases, including FFPE samples. NanoString(®) results were reproducible across a range of RNA input quantities (r = 0.998), with different operators (r = 0.998), and between different reagent lots (r = 0.983). There was moderate correlation between NanoString(®) with FFPE tissue and quantitative reverse transcription polymerase chain reaction (qRT-PCR) with corresponding dedicated fresh-stabilized tissue (r = 0.487). Better overall correlation with histology was observed with NanoString(®) (r = 0.354) than with qRT-PCR (r = 0.146). Our results demonstrate the feasibility of multiplexed gene expression quantification from FFPE renal allograft tissue. This represents a method for prospective and retrospective validation of molecular diagnostics and its adoption in clinical transplantation pathology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
On viscoelastic cavitating flows: A numerical study
NASA Astrophysics Data System (ADS)
Naseri, Homa; Koukouvinis, Phoevos; Malgarinos, Ilias; Gavaises, Manolis
2018-03-01
The effect of viscoelasticity on turbulent cavitating flow inside a nozzle is simulated for Phan-Thien-Tanner (PTT) fluids. Two different flow configurations are used to show the effect of viscoelasticity on different cavitation mechanisms, namely, cloud cavitation inside a step nozzle and string cavitation in an injector nozzle. In incipient cavitation condition in the step nozzle, small-scale flow features including cavitating microvortices in the shear layer are suppressed by viscoelasticity. Flow turbulence and mixing are weaker compared to the Newtonian fluid, resulting in suppression of microcavities shedding from the cavitation cloud. Moreover, mass flow rate fluctuations and cavity shedding frequency are reduced by the stabilizing effect of viscoelasticity. Time averaged values of the liquid volume fraction show that cavitation formation is strongly suppressed in the PTT viscoelastic fluid, and the cavity cloud is pushed away from the nozzle wall. In the injector nozzle, a developed cloud cavity covers the nozzle top surface, while a vortex-induced string cavity emerges from the turbulent flow inside the sac volume. Similar to the step nozzle case, viscoelasticity reduces the vapor volume fraction in the cloud region. However, formation of the streamwise string cavity is stimulated as turbulence is suppressed inside the sac volume and the nozzle orifice. Vortical perturbations in the vicinity of the vortex are damped, allowing more vapor to develop in the string cavity region. The results indicate that the effect of viscoelasticity on cavitation depends on the alignment of the cavitating vortices with respect to the main flow direction.
NASA Astrophysics Data System (ADS)
Donets, D. E.; Donets, E. D.; Donets, E. E.; Salnikov, V. V.; Shutov, V. B.
2010-09-01
Electron String Ion Source (ESIS) Krion-2 (JINR, Dubna) was used for basic and applied research in various aspects of multiply charged heavy ions production. Energy recuperation mode in ESIS has been proofed first and used for production of highly charged ions 84Kr28+÷84Kr32+, 124Xe40÷124Xe44 and Au51+÷ Au54+. Krion-2 ESIS was mounted on high voltage (HV) platform of LU-20 Linac and used as an injector of highly charged ions during Nuclotron run N° 41. Krion-2 ESIS has produced 3.0.107 124Xe42+ ions per pulse of 7 μs duration. This ion beam was injected into LU-20 and Nuclotron, accelerated up to energy of 186 GeV and the extracted Xe beam was used for physics experiments. Electron String Ion Source Krion-2 demonstrated the high reliability and stability running during 30 days on HV platform. We believe that it is due to an extremely low electron beam power, provided by using the electron string mode of operation: 50 W pulse power and about 10 W average power. Other possible application of ESIS could be its use in injection complexes of synchrotrons and cyclotrons for cancer therapy. Slow and fast extraction of C4+ and C6+ beams from Krion-2 ESIS were preliminary studied towards ESIS optimization for medical accelerators requirements.
Afsharipour, Babak; Petracca, Francesco; Gasparini, Mauro; Merletti, Roberto
2016-12-01
Musicians activate their muscles in different patterns, depending on their posture, the instrument being played, and their experience level. Bipolar surface electrodes have been used in the past to monitor such activity, but this method is highly sensitive to the location of the electrode pair. In this work, the spatial distribution of surface EMG (sEMG) of the right trapezius and right and left erector spinae muscles were studied in 16 violin players and 11 cello players. Musicians played their instrument one string at a time in sitting position with/without backrest support. A 64 sEMG electrode (16×4) grid, 10mm inter-electrode distance (IED), was placed over the middle and lower trapezius (MT and LT) of the bowing arm. Two 16×2 electrode grids (IED=10mm) were placed on the left and right erector spinae muscles. Subjects played each of the four strings of the instrument either in large (1bow/s) or detaché tip/tail (8bows/s) bowing in two sessions (two days). In each of two days, measurements were repeated after half an hour of exercise to see the effect of exercise on the muscle activity and signal stability. A "muscle activity index" (MAI) was defined as the spatial average of the segmented active region of the RMS map. Spatial maps were automatically segmented using the watershed algorithm and thresholding. Results showed that, for violin players, sliding the bow upward from the tip toward the tail results in a higher MAI for the trapezius muscle than a downward bow. On the contrary, in cello players, higher MAI is produced in the tail to tip movement. For both instruments, an increasing MAI in the trapezius was observed as the string position became increasingly lateral, from string 1 (most medial) toward string 4 (most lateral). Half an hour of performance did not cause significant differences between the signal quality and the MAI values measured before and after the exercise. The MAI of the left and right erector spinae was smaller in the case of backrest support, especially for violin players. Back muscles of violin and cello players were activated asymmetrically, specifically in fast movements (detaché tip/tail). These findings demonstrate the sensitivity and stability of the technique and justify more extensive investigation following this proof of concept. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Dan; Ni, Wei; Cheng, Jianli; Wang, Zhuanpei; Wang, Ting; Guan, Qun; Zhang, Yun; Wu, Hao; Li, Xiaodong; Wang, Bin
2017-08-01
Three-dimensional (3D) flexible electrodes of stringed hollow nitrogen-doped (N-doped) carbon nanospheres as graded sulfur reservoirs and conductive frameworks were elaborately designed via a combination of the advantages of hollow structures, 3D electrodes and flexible devices. The as-prepared electrodes by a synergistic method of electrospinning, template sacrificing and activation for Li-S batteries without any binder or conductive additives but a 3D interconnected conductive network offered multiple transport paths for electrons and improved sulfur utilization and facilitated an easy access to Li+ ingress/egress. With the increase of density of hollow carbon spheres in the strings, the self-supporting composite electrode reveals an enhanced synergistic mechanism for sulfur confinement and displays a better cycling stability and rate performance. It delivers a high initial specific capacity of 1422.6 mAh g-1 at the current rate of 0.2C with the high sulfur content of 76 wt.%, and a much higher energy density of 754 Wh kg-1 and power density of 1901 Wh kg-1, which greatly improve the energy/power density of traditional lithium-sulfur batteries and will be promising for further commercial applications.
Meteorological Sensor Array (MSA)-Phase I. Volume 2 (Data Management Tool: Proof of Concept)
2014-10-01
directory of next hourly file to read *** utcString = CStr (CInt(utcString) + 1) utcString = String(2 - Len(utcString), Ŕ...hourly file to read *** utcString = CStr (CInt(utcString) + 1) utcString = String(2 - Len(utcString), Ŕ") & utcString
Recent scientific and operational achievements of D/V Chikyu
NASA Astrophysics Data System (ADS)
Taira, Asahiko; Toczko, Sean; Eguchi, Nobu; Kuramoto, Shin'ichi; Kubo, Yusuke; Azuma, Wataru
2014-12-01
The D/V Chikyu, a scientific drilling vessel, is equipped with industry-standard riser capabilities. Riser drilling technology enables remarkable drilling and downhole logging capabilities and provides unprecedented hole-stability, enabling the shipboard team to retrieve high-quality wire-line logging data as well as well-preserved core samples. The 11 March 2011 Tohoku Oki mega-earthquake and tsunami cost over 18,000 casualties in NE Japan. Chikyu, docked in the Port of Hachinohe, was damaged by the tsunami. By April 2012, the ship was back in operation; drilling the toe of the Japan Trench fault zone where topographic surveys suggested there was up to 50 m eastward motion, the largest earthquake rupture ever recorded. During Integrated Ocean Drilling Program (IODP) Expeditions 343 and 343 T, Chikyu drilled 850 m below sea floor (mbsf) in 6,900+ m water depth and recovered core samples of a highly brecciated shear zone composed of pelagic claystone. A subseafloor observatory looking for temperature signatures caused by the fault friction during the earthquake, was installed and later successfully recovered. The recovered temperature loggers recorded data from which the level of friction during the mega-earthquake slip could be determined. Following Exp. 343, Chikyu began IODP Exp. 337, a riser drilling expedition into the Shimokita coal beds off Hachinohe, to study the deep subsurface biosphere in sedimentary units including Paleogene-Neogene coal beds. New records in scientific ocean drilling were achieved in deepest penetration (drilling reached 2,466 mbsf) and sample recovery. Currently Chikyu is conducting deep riser drilling at the Nankai Trough in the final stage of the NanTroSEIZE campaign. During the years 2011 to 2013, including drilling in the Okinawa Hydrothermal System, Chikyu's operational and scientific achievements have demonstrated that the ship's capabilities are vital for opening new frontiers in earth and biological sciences.
Diverter/bop system and method for a bottom supported offshore drilling rig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roche, J.R.; Alexander, G.G.; Carbaugh, W.L.
1986-07-01
A system is described adapted for alternative use as a diverter or a blowout preventer for a bottom supported drilling rig and adapted for connection to a permanent housing attached to rig structural members beneath a drilling rig rotary table, the permanent housing having an outlet connectable to a rig fluid system flow line. The system consists of: a fluid flow controller having a controller housing with a lower cylindrical opening and an upper cylindrical opening and a vertical path therebetween and a first outlet passage and a second outlet passage provided in its wall, a packing element disposed withinmore » the controller housing, and annular piston means adapted for moving from a first position to a second position, whereby in the first position the piston means wall prevents interior fluid from communicating with the outlet passages in the controller housing wall and in the second position the piston means wall allows fluid communication of interior fluid with the outlet passages and urges the annular packing element to close about an object extending through the bore of the controller housing or to close the vertical flow path through through the controller housing in the absence of any object in the vertical flow path, means for connecting a vent line to the outlet passage provided in the controller housing wall, a lower telescoping spool having a lower joining means at its lower end for joining alternatively to structural casing or to a mandrel connected to a conductor string cemented within the structural casing and an upper connection means at its upper end for connection to the lower cylindrical opening of the fluid flow controller, and an upper telescoping spool having a lower connection means for connection to the upper cylindrical opening of the fluid flow controller.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N., E-mail: sergei.molotkov@gmail.com
2012-12-15
Any key-generation session contains a finite number of quantum-state messages, and it is there-fore important to understand the fundamental restrictions imposed on the minimal length of a string required to obtain a secret key with a specified length. The entropy uncertainty relations for smooth min and max entropies considerably simplify and shorten the proof of security. A proof of security of quantum key distribution with phase-temporal encryption is presented. This protocol provides the maximum critical error compared to other protocols up to which secure key distribution is guaranteed. In addition, unlike other basic protocols (of the BB84 type), which aremore » vulnerable with respect to an attack by 'blinding' of avalanche photodetectors, this protocol is stable with respect to such an attack and guarantees key security.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen
The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-basedmore » drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.« less
RF transmission line and drill/pipe string switching technology for down-hole telemetry
Clark, David D [Santa Fe, NM; Coates, Don M [Santa Fe, NM
2007-08-14
A modulated reflectance well telemetry apparatus having an electrically conductive pipe extending from above a surface to a point below the surface inside a casing. An electrical conductor is located at a position a distance from the electrically conductive pipe and extending from above the surface to a point below the surface. Modulated reflectance apparatus is located below the surface for modulating well data into a RF carrier transmitted from the surface and reflecting the modulated carrier back to the surface. A RF transceiver is located at the surface and is connected between the electrically conductive pipe and the electrical conductor for transmitting a RF signal that is confined between the electrically conductive well pipe and the electrical conductor to the modulated reflectance apparatus, and for receiving reflected data on the well from the modulated reflectance apparatus.
Intraoperative reduction of the scapular body--a technical trick.
Bartonícek, Jan; Fric, Vladimír; Tucek, Michal
2009-04-01
When internal fixation of the scapular neck and body fractures is performed, a problem may occur with reduction and retention of position of the lateral border of the scapula during surgery. For this purpose, the authors have developed their own technique of stabilization using a K-wire in a novel way. The technique is indicated in a 2-part shear unstable fracture of the lateral border. It cannot be used in fractures with an intercalated segment. A 2.5-mm drill bit is used to drill a 1.5-cm deep hole into the "medullary cavity" of each of the 2 fragments of the lateral border. A K-wire, 1.5 mm in diameter and 2.5-cm long, is inserted into the distal fragment. The protruding end of the K-wire is inserted into the hole in the proximal fragment. This intramedullary peg helps to maintain reduction and keeps both fragments stable. Subsequently, the lateral border is stabilized with a 3.5-mm reconstruction plate. This technique is quite simple and allows for a temporary stabilization of fragments without compromising the subsequent fixation by plate screws.
NASA Astrophysics Data System (ADS)
Jha, Praveen Kumar; Mahto, Vikas; Saxena, Vinod Kumar
2018-05-01
A new type of oil-in-water (O/W) Pickering emulsion systems, which were prepared by polymers such as xanthan gum, carboxymethyl cellulose (CMC), and sodium lignosulfonate have been investigated for their properties as multifunctional emulsion muds with respect to rheological control and filtration control properties. Diesel oil was used as dispersed phase and KCl-brine as continuous phase in the developed emulsions. Initially, rheological parameters like apparent viscosity, plastic viscosity, gel strength, and filtration control properties were measured using recommended practices. Emulsion stability was analyzed using steady state shear stress-shear rate and oscillatory (dynamic) rheological measurement techniques. The emulsions were found to exhibit shear-thinning (pseudoplastic) behavior. Experiments conducted for oscillatory rheological measurements have shown that emulsions are stable as per the stability criteria G' (elastic modulus) > G'' (loss modulus) and both are independent of changing ω (Frequency). These fluids have shown stable properties upto 70°C which shows that they can be used as drilling muds for drilling oil and gas wells.
Zetsche, Eva-Maria; Baussant, Thierry; Meysman, Filip J. R.; van Oevelen, Dick
2016-01-01
Lophelia pertusa is the dominant reef-building organism of cold-water coral reefs, and is known to produce significant amounts of mucus, which could involve an important metabolic cost. Mucus is involved in particle removal and feeding processes, yet the triggers and dynamics of mucus production are currently still poorly described because the existing tools to study these processes are not appropriate. Using a novel microscopic technique—digital holographic microscopy (DHM)–we studied the mucus release of L. pertusa under various experimental conditions. DHM technology permits μm-scale observations and allows the visualization of transparent mucoid substances in real time without staining. Fragments of L. pertusa were first maintained in flow-through chambers without stressors and imaged with DHM, then exposed to various stressors (suspended particles, particulate food and air exposure) and re-imaged. Under non-stressed conditions no release of mucus was observed, whilst mucus strings and sheaths were produced in response to suspended particles (activated charcoal and drill cuttings sediment) i.e. in a stressed condition. Mucus strings and so-called ‘string balls’ were also observed in response to exposure to particulate food (brine shrimp Artemia salina). Upon air-exposure, mucus production was clearly visible once the fragments were returned to the flow chamber. Distinct optical properties such as optical path length difference (OPD) were measured with DHM in response to the various stimuli suggesting that different mucus types are produced by L. pertusa. Mucus produced to reject particles is similar in refractive index to the surrounding seawater, suggesting that the energy content of this mucus is low. In contrast, mucus produced in response to either food particle addition or air exposure had a higher refractive index, suggesting a higher metabolic investment in the production of these mucoid substances. This paper shows for the first time the potential of DHM technology for the detection, characterization and quantification of mucus production through OPD measurements in L. pertusa. PMID:26840074
Vibration Suppression Strategies for Large Tension-Aligned Array Structures
2013-11-19
show vibration suppression. Practical issues related to actuator bandwidth were also addressed. 40 Dr. Ranjan Mukherjee (517) 355-1834 FINAL...third strategies, Lyapunov stability theory was used to show vibration suppression. Practical issues related to actuator bandwidth were also addressed...1 Publications Journal Papers : • Alsahlani, A. and Mukherjee, R., “Vibration Control of a String Using a Scabbard-Like Actuator”, Journal of Sound and
Kraus, Natascha; Haas, Norbert P; Scheibel, Markus; Gerhardt, Christian
2013-10-01
The arthroscopically assisted Double-TightRope technique has recently been reported to yield good to excellent clinical results in the treatment of acute, high-grade acromioclavicular dislocation. However, the orientation of the transclavicular-transcoracoidal drill holes remains a matter of debate. A V-shaped drill hole orientation leads to better clinical and radiologic results and provides a higher vertical and horizontal stability compared to parallel drill hole placement. This was a cohort study; level of evidence, 2b. Two groups of patients with acute high-grade acromioclavicular joint instability (Rockwood type V) were included in this prospective, non-randomized cohort study. 15 patients (1 female/14 male) with a mean age of 37.7 (18-66) years were treated with a Double-TightRope technique using a V-shaped orientation of the drill holes (group 1). 13 patients (1 female/12 male) with a mean age of 40.9 (21-59) years were treated with a Double-TightRope technique with a parallel drill hole placement (group 2). After 2 years, the final evaluation consisted of a complete physical examination of both shoulders, evaluation of the Subjective Shoulder Value (SSV), Constant Score (CS), Taft Score (TF) and Acromioclavicular Joint Instability Score (ACJI) as well as a radiologic examination including bilateral anteroposterior stress views and bilateral Alexander views. After a mean follow-up of 2 years, all patients were free of shoulder pain at rest and during daily activities. Range of motion did not differ significantly between both groups (p > 0.05). Patients in group 1 reached on average 92.4 points in the CS, 96.2 % in the SSV, 10.5 points in the TF and 75.9 points in the ACJI. Patients in group 2 scored 90.5 points in the CS, 93.9 % in the SSV, 10.5 points in the TF and 84.5 points in the ACJI (p > 0.05). Radiographically, the coracoclavicular distance was found to be 13.9 mm (group 1) and 13.4 mm (group 2) on the affected side and 9.3 mm (group 1) and 9.4 mm (group 2) on the contralateral side. The distance of neither the affected side nor the contralateral side differed significantly between both groups (p > 0.05). In group 1, eight patients (53 %) and in group 2 four patients (31 %) revealed signs of dynamic posterior instability (p > 0.05). Clavicular drill hole enlargement was found to be equally distributed in group 1, whereas group 2 displayed a cone-shaped form. The Double-TightRope technique yields good to excellent clinical results in both V-shaped and parallel drill hole placement. Partial recurrent vertical and horizontal instability represents a problem in both techniques. So far, no significant differences regarding clinical or radiologic results have been found. Long-term results are needed to reveal possible advantages in terms of clinical and radiologic acromioclavicular stability.
Optimizing pediatric interdental fixation by use of a paramedian palatal fixation site.
McNichols, Colton H; Hatef, Daniel A; Cole, Patrick D; Hollier, Larry H
2012-03-01
Condylar fractures are the most common injury seen in pediatric mandibular trauma. These injuries often cannot be adequately stabilized by conservative techniques such as splinting. The pediatric condyle fracture often requires a period of intermaxillary fixation. Because of the characteristics of the developing dentition, circumdental wiring is often not possible. Surgeons commonly achieve interdental stabilization by the connection of a circum-mandibular wire and a second wire placed through a drill hole in the piriform aperture. This method can be problematic in the young patient whose palatal suture is still patent. In this brief technical note, the use of a paramedian drill hole through the palate posterior to the maxillary incisors is described. It is believed that this method is superior to other techniques because it avoids injury to the deciduous tooth buds and allows for the maxillary wire to be seated in more structurally sound tissues.
Ruppel, C.; Boswell, R.; Jones, E.
2008-01-01
The Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) is a consortium of production and service companies and some government agencies formed to address the challenges that gas hydrates pose for deepwater exploration and production. In partnership with the U.S. Department of Energy and with scientific assistance from the U.S. Geological Survey and academic partners, the JIP has focused on studies to assess hazards associated with drilling the fine-grained, hydrate-bearing sediments that dominate much of the shallow subseafloor in the deepwater (>500 m) Gulf of Mexico. In preparation for an initial drilling, logging, and coring program, the JIP sponsored a multi-year research effort that included: (a) the development of borehole stability models for hydrate-bearing sediments; (b) exhaustive laboratory measurements of the physical properties of hydrate-bearing sediments; (c) refinement of new techniques for processing industry-standard 3-D seismic data to constrain gas hydrate saturations; and (d) construction of instrumentation to measure the physical properties of sediment cores that had never been removed from in situ hydrostatic pressure conditions. Following review of potential drilling sites, the JIP launched a 35-day expedition in Spring 2005 to acquire well logs and sediment cores at sites in Atwater Valley lease blocks 13/14 and Keathley Canyon lease block 151 in the northern Gulf of Mexico minibasin province. The Keathley Canyon site has a bottom simulating reflection at ???392 m below the seafloor, while the Atwater Valley location is characterized by seafloor mounds with an underlying upwarped seismic reflection consistent with upward fluid migration and possible shoaling of the base of the gas hydrate stability (BGHS). No gas hydrate was recovered at the drill sites, but logging data, and to some extent cores, suggest the occurrence of gas hydrate in inferred coarser-grained beds and fractures, particularly between 220 and 330 m below the seafloor at the Keathley Canyon site. This paper provides an overview of the results of the initial phases of the JIP work and introduces the 15 papers that make up this special volume on the scientific results related to the 2005 logging and drilling expedition.
New Era of Scientific Ocean Drilling
NASA Astrophysics Data System (ADS)
Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.
2014-12-01
The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is equipped with state-of-the-art instruments to analyze all science samples. X-ray CT creates non-destructive 3D images of core samples providing high resolution structural detail. The microbiology laboratory offers clean and contamination-free work environments required for microbiological samples.
Application of Soil Nailing Technique for Protection and Preservation Historical Buildings
NASA Astrophysics Data System (ADS)
Kulczykowski, Marek; Przewłócki, Jarosław; Konarzewska, Bogusława
2017-10-01
Soil nailing is one of the recent in situ techniques used for soil improvement and in stabilizing slopes. The process of soil nailing consists of reinforcing the natural ground with relatively small steel bars or metal rods, grouted in the pre-drilled holes. This method has a wide range of applications for stabilizing deep excavations and steep slopes. Soil nailing has recently become a very common method of slope stabilisation especially where situated beneath or adjacent to historical buildings. Stabilisation by nails drilled into existing masonry structures such as failing retaining walls abutments, provide long term stability without demolition and rebuilding costs. Two cases of soil nailing technology aimed at stabilising slopes beneath old buildings in Poland are presented in this paper. The first concerns application of this technology to repair a retaining wall supporting the base of the dam at the historic hydroelectric power plant in Rutki. The second regards a concept of improving the slope of the Castle Hill in Sandomierz. An analysis of the slope stability for the latter case, using stabilisation technique with the piling system and soil nailing was performed. Some advantages of soil nailing especially for protection of historical buildings, are also underlined. And, the main results of an economic comparison analysis are additionally presented.
Arctic Submarine Slope Stability
NASA Astrophysics Data System (ADS)
Winkelmann, D.; Geissler, W.
2010-12-01
Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are the consequence. Its geometrical configuration and timing is different from submarine slides on other glaciated continental margins. Thus, it raises the question whether slope stability within the Arctic Ocean is governed by processes specific to this environment. The extraordinary thick slabs (up to 1600 m) that were moved translationally during sliding rise the question on the nature of the weak layers associated with this process. Especially theories involving higher pore pressure are being challenged by this observation, because either extreme pore pressures or alternative explanations (e.g. mineralogical and/or textural) can be considered. To assess the actual submarine slope stability and failure potential in the Arctic Ocean, we propose to drill and recover weak layer material of the HYM from the adjacent intact strata by deep drilling under the framework of Integrated Ocean Drilling Program. This is the only method to recover weak layer material from the HYM, because the strata are too thick. We further propose to drill into the adjacent deforming slope to identify material properties of the layers acting as detachment and monitor the deformation.
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or...
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or...
Probabilistic analysis algorithm for UA slope software program.
DOT National Transportation Integrated Search
2013-12-01
A reliability-based computational algorithm for using a single row and equally spaced drilled shafts to : stabilize an unstable slope has been developed in this research. The Monte-Carlo simulation (MCS) : technique was used in the previously develop...
Abdul Habib, Nor Saiful Hafiz; Yunus, Robiah; Rashid, Umer; Taufiq-Yap, Yun H; Abidin, Zurina Zainal; Syam, Azhari Muhammad; Irawan, Sonny
2014-01-01
The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives.
One-loop Pfaffians and large-field inflation in string theory
NASA Astrophysics Data System (ADS)
Ruehle, Fabian; Wieck, Clemens
2017-06-01
We study the consistency of large-field inflation in low-energy effective field theories of string theory. In particular, we focus on the stability of Kähler moduli in the particularly interesting case where the non-perturbative superpotential of the Kähler sector explicitly depends on the inflaton field. This situation arises generically due to one-loop corrections to the instanton action. The field dependence of the modulus potential feeds back into the inflationary dynamics, potentially impairing slow roll. We distinguish between world-sheet instantons from Euclidean D-branes, which typically yield polynomial one-loop Pfaffians, and gaugino condensates, which can yield exponential or periodic corrections. In all scenarios successful slow-roll inflation imposes bounds on the magnitude of the one-loop correction, corresponding to constraints on possible compactifications. While we put a certain emphasis on Type IIB constructions with mobile D7-branes, our results seem to apply more generally.
TASI/PiTP/ISS Lectures on Moduli and Microphysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverstein, E
2004-05-10
I review basic forces on moduli that lead to their stabilization, for example in the supercritical and KKLT models of de Sitter space in string theory, as well as an AdS{sub 4} x S{sup 3} x S{sup 3} model I include which is not published elsewhere. These forces come from the classical dilaton tadpole in generic dimensionality, internal curvature, fluxes, and branes and orientifolds as well as non-perturbative effects. The resulting (A)dS solutions of string theory make detailed predictions for microphysical entropy, whose leading behavior we exhibit on the Coulomb branch of the system. Finally, I briefly review recent developmentsmore » concerning the role of velocity-dependent effects in the dynamics of moduli. These lecture notes are based on material presented at various stages in the 1999 TASI, 2002 PiTP, 2003 TASI, and 2003 ISS schools.« less
Axions as quintessence in string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Sudhakar; Sumitomo, Yoske; Trivedi, Sandip P.
2011-04-15
We construct a model of quintessence in string theory based on the idea of axion monodromy as discussed by McAllister, Silverstein and Westphal [L. McAllister, E. Silverstein, and A. Westphal, Phys. Rev. D 82, 046003 (2010)]. In the model, the quintessence field is an axion whose shift symmetry is broken by the presence of 5-branes which are placed in highly warped throats. This gives rise to a potential for the axion field which is slowly varying, even after incorporating the effects of moduli stabilization and supersymmetry breaking. We find that the resulting time dependence in the equation of state ofmore » dark energy is potentially detectable, depending on the initial conditions. The model has many very light extra particles which live in the highly warped throats, but these are hard to detect. A signal in the rotation of the CMB polarization can also possibly arise.« less
Fibre inflation and α-attractors
NASA Astrophysics Data System (ADS)
Kallosh, Renata; Linde, Andrei; Roest, Diederik; Westphal, Alexander; Yamada, Yusuke
2018-02-01
Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α = 2 and α = 1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an \\overline{D3} uplift term with a nilpotent superfield. Specific moduli dependent \\overline{D3} induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.
NASA Technical Reports Server (NTRS)
Hughes, T.
1974-01-01
Experimental aerodynamic investigations were conducted on a string-mounted 0.030 scale representation of the 140A/B space shuttle orbiter in the 7.75- by 11-foot low speed wind tunnel. The primary test objectives were to establish basic longitudinal and lateral directional stability and control characteristics for the basic configuration plus control surface hinge moments. Aerodynamic force and moment data were measured in the body axis system by an internally mounted, six-component strain gage balance. Additional configurations investigated were sealed rudder hingeline gaps, sealed elevon gaps and compartmentized speedbrakes.
Chacón, R; Martínez García-Hoz, A
1999-06-01
We study a parametrically damped two-well Duffing oscillator, subjected to a periodic string of symmetric pulses. The order-chaos threshold when altering solely the width of the pulses is investigated theoretically through Melnikov analysis. We show analytically and numerically that most of the results appear independent of the particular wave form of the pulses provided that the transmitted impulse is the same. By using this property, the stability boundaries of the stationary solutions are determined to first approximation by means of an elliptic harmonic balance method. Finally, the bifurcation behavior at the stability boundaries is determined numerically.
Collett, T.S.; Ladd, J.
2000-01-01
Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.
Toward de Sitter space from ten dimensions
NASA Astrophysics Data System (ADS)
Moritz, Jakob; Retolaza, Ander; Westphal, Alexander
2018-02-01
Using a 10D lift of nonperturbative volume stabilization in type IIB string theory, we study the limitations for obtaining de Sitter vacua. Based on this we find that the simplest Kachru, Kallosh, Linde, and Trivedi vacua with a single Kähler modulus stabilized by a gaugino condensate cannot be uplifted to de Sitter. Rather, the uplift flattens out due to stronger backreaction on the volume modulus than has previously been anticipated, resulting in vacua which are metastable and supersymmetry breaking, but that are always anti-de Sitter (AdS). However, we also show that setups such as racetrack stabilization can avoid this issue. In these models it is possible to obtain supersymmetric AdS vacua with a cosmological constant that can be tuned to zero while retaining finite moduli stabilization. In this regime, it seems that de Sitter uplifts are possible with negligible backreaction on the internal volume. We exhibit this behavior also from the 10D perspective.
Nonlinear dynamics of autonomous vehicles with limits on acceleration
NASA Astrophysics Data System (ADS)
Davis, L. C.
2014-07-01
The stability of autonomous vehicle platoons with limits on acceleration and deceleration is determined. If the leading-vehicle acceleration remains within the limits, all vehicles in the platoon remain within the limits when the relative-velocity feedback coefficient is equal to the headway time constant [k=1/h]. Furthermore, if the sensitivity α>1/h, no collisions occur. String stability for small perturbations is assumed and the initial condition is taken as the equilibrium state. Other values of k and α that give stability with no collisions are found from simulations. For vehicles with non-negligible mechanical response, simulations indicate that the acceleration-feedback-control gain might have to be dynamically adjusted to obtain optimal performance as the response time changes with engine speed. Stability is demonstrated for some perturbations that cause initial acceleration or deceleration greater than the limits, yet do not cause collisions.
Asymmetric thin-shell wormholes
NASA Astrophysics Data System (ADS)
Forghani, S. Danial; Mazharimousavi, S. Habib; Halilsoy, Mustafa
2018-06-01
Spacetime wormholes in isotropic spacetimes are represented traditionally by embedding diagrams which were symmetric paraboloids. This mirror symmetry, however, can be broken by considering different sources on different sides of the throat. This gives rise to an asymmetric thin-shell wormhole, whose stability is studied here in the framework of the linear stability analysis. Having constructed a general formulation, using a variable equation of state and related junction conditions, the results are tested for some examples of diverse geometries such as the cosmic string, Schwarzschild, Reissner-Nordström and Minkowski spacetimes. Based on our chosen spacetimes as examples, our finding suggests that symmetry is an important factor to make a wormhole more stable. Furthermore, the parameter γ , which corresponds to the radius dependency of the pressure on the wormholes's throat, can affect the stability in a great extent.
What's new in well logging and formation evaluation
Prensky, S.
2011-01-01
A number of significant new developments is emerging in well logging and formation evaluation. Some of the new developments include an ultrasonic wireline imager, an electromagnetic free-point indicator, wired and fiber-optic coiled tubing systems, and extreme-temperature logging-while-drilling (LWD) tools. The continued consolidation of logging and petrophysical service providers in 2010 means that these innovations are increasingly being provided by a few large companies. Weatherford International has launched a slimhole cross-dipole tool as part of the company's line of compact logging tools. The 26-ft-long Compact Cross-Dipole Sonic (CXD) tool can be run as part of a quad-combo compact logging string. Halliburton has introduced a version of its circumferential acoustic scanning tool (CAST) that runs on monoconductor cable (CAST-M) to provide high-resolution images in open hole and in cased hole for casing and cement evaluation.
An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael
2005-11-29
A coaxial cable electrical connector more specifically an internal coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transfonner. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive care of the coaxial cable. A plurality of bulbous pliant tabs on the coaxial cable connector mechanically engage the inside diameter of the coaxial cable thus grounding the transformer to the coaxial cable. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string.
Hiss, William L.; Marshall, Jane G.
1975-01-01
The Ray-1 well was to be the third production well completed in the city of Gallup Yah-ta-hey well field located about 7 miles (11 km) north of the city. The first string of casing collapsed during completion, however, and the well was abandoned before it could be tested. The lithology of the Upper Cretaceous Dalton Sandstone and Dilco Coal Members of the Crevasse Canyon Formation and the Gallup Sandstone was interpreted from geophysical logs and examination of the drill cuttings. These units appear to be similar to correlative strata encountered in the first two wells. A yield of approximately 700 gallons per minute (44 l/s), similar to the other wells in the Yah-ta-hey well field, is anticipated from the same aquifers when the Ray-1 replacement well is completed.
Degradation of titanium drillpipe from corrosion and wear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferg, T.E.; Aldrich, C.S.; Craig, B.D.
1993-06-01
Drilling deeper than 35,000 ft is limited by the extreme hook loads of steel drillpipe and temperature constraints of aluminum drillpipe. Titanium Alloys Ti-6Al-4V and Beta C have been proposed for use in drillpipe for wells deeper than 35,000 ft because of their high strength/weight ratios, superior high-temperature corrosion resistance, and thermal stability. Their suitability in drilling environments, however, has not been evaluated. To determine the corrosion and wear characteristics of two types of titanium-alloy drillpipe under dogleg conditions, a test cell was constructed to test titanium drillpipe joints in contact with API Spec. 5CT Grade P-110 casing in differentmore » drilling muds. Titanium-alloy pipe and Grade P-110 casing wear rates were measured, and tests showed that both titanium-alloy pipes exhibited much greater wear than did steel drillpipe in water-based mud under the same conditions. Test data showed that the total wear rate of Alloys Ti-6Al-4V and Beta C in a drilling environment is a combination of mechanical wear and corrosion.« less
Arno, Sally; Bell, Christopher P; Alaia, Michael J; Singh, Brian C; Jazrawi, Laith M; Walker, Peter S; Bansal, Ankit; Garofolo, Garret; Sherman, Orrin H
2016-07-01
Considerable debate remains over which anterior cruciate ligament (ACL) reconstruction technique can best restore knee stability. Traditionally, femoral tunnel drilling has been done through a previously drilled tibial tunnel; however, potential nonanatomic tunnel placement can produce a vertical graft, which although it would restore sagittal stability, it would not control rotational stability. To address this, some suggest that the femoral tunnel be created independently of the tibial tunnel through the use of an anteromedial (AM) portal, but whether this results in a more anatomic footprint or in stability comparable to that of the intact contralateral knee still remains controversial. (1) Does the AM technique achieve footprints closer to anatomic than the transtibial (TT) technique? (2) Does the AM technique result in stability equivalent to that of the intact contralateral knee? (3) Are there differences in patient-reported outcomes between the two techniques? Twenty male patients who underwent a bone-patellar tendon-bone autograft were recruited for this study, 10 in the TT group and 10 in the AM group. Patients in each group were randomly selected from four surgeons at our institution with both groups demonstrating similar demographics. The type of procedure chosen for each patient was based on the preferred technique of the surgeon. Some surgeons exclusively used the TT technique, whereas other surgeons specifically used the AM technique. Surgeons had no input on which patients were chosen to participate in this study. Mean postoperative time was 13 ± 2.8 and 15 ± 3.2 months for the TT and AM groups, respectively. Patients were identified retrospectively as having either the TT or AM Technique from our institutional database. At followup, clinical outcome scores were gathered as well as the footprint placement and knee stability assessed. To assess the footprint placement and knee stability, three-dimensional surface models of the femur, tibia, and ACL were created from MRI scans. The femoral and tibial footprints of the ACL reconstruction as compared with the intact contralateral ACL were determined. In addition, the AP displacement and rotational displacement of the femur were determined. Lastly, as a secondary measurement of stability, KT-1000 measurements were obtained at the followup visit. An a priori sample size calculation indicated that with 2n = 20 patients, we could detect a difference of 1 mm with 80% power at p < 0.05. A Welch two-sample t-test (p < 0.05) was performed to determine differences in the footprint measurements, AP displacement, rotational displacement, and KT-1000 measurements between the TT and AM groups. We further used the confidence interval approach with 90% confidence intervals on the pairwise mean group differences using a Games-Howell post hoc test to assess equivalence between the TT and AM groups for the previously mentioned measures. The AM and TT techniques were the same in terms of footprint except in the distal-proximal location of the femur. The TT for the femoral footprint (DP%D) was 9% ± 6%, whereas the AM was -1% ± 13% (p = 0.04). The TT technique resulted in a more proximal footprint and therefore a more vertical graft compared with intact ACL. The AP displacement and rotation between groups were the same and clinical outcomes did not demonstrate a difference. Although the AM portal drilling may place the femoral footprint in a more anatomic position, clinical stability and outcomes may be similar as long as attempts are made at creating an anatomic position of the graft. Level III, therapeutic study.
String scattering amplitudes and deformed cubic string field theory
NASA Astrophysics Data System (ADS)
Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi
2018-01-01
We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.
Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge
NASA Astrophysics Data System (ADS)
Lee, Taejin
2017-12-01
We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.
E(lementary)-strings in six-dimensional heterotic F-theory
NASA Astrophysics Data System (ADS)
Choi, Kang-Sin; Rey, Soo-Jong
2017-09-01
Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small instantons generate most of known six-dimensional superconformal theories, their affinizations and little string theories. Taking account of global structure of compact internal geometry, we also show that special combinations of E-strings play an important role in constructing six-dimensional theories of D- and E-types. We check global consistency conditions from anomaly cancellation conditions, both from five-branes and strings, and show that they are given in terms of elementary E-string combinations.
NASA Astrophysics Data System (ADS)
Wu, H.; Kido, Y. N.; Kinoshita, M.; Saito, S.
2013-12-01
Wellbore instability is a major challenge for the engineer evaluating borehole and formation conditions. Instability is especially important to understand in areas with high stress variations, significant structure anisotropy, or pre-existing fracture systems. Borehole (in)stability is influenced by rock strength, structural properties, and near-field principal stresses. During drilling, the borehole conditions also impact borehole integrity. Factors that we can measure in the borehole during with logging while drilling (LWD) to understand these conditions include mud weight, mud loss, ROP (Rate of Penetration), RPM (Rotation Per Minute), WOB (Weight on Bit), and TORQ (Power swivel torque value). We conducted borehole instability analysis for Site C0002 of the Nankai Trough transect based on riser and riserless drilling during IODP Expedition 338. The borehole shape, determined from LWD resistivity images, indicates that most of drilling occurred in stable environments, however, in a few instances the bottom hole assembly became stuck. We used our stress profile model to evaluate the mud weight required to drill a stable borehole for the estimated rock strength and physical properties. Based on our analysis, we interpret that borehole instability during IODP Expedition 338 may have been caused by weak bedding plane and fluid overpressure state. Future work with this model will investigate the roles of these conditions.
Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge
NASA Astrophysics Data System (ADS)
Lee, Taejin
2018-01-01
We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.
Hot string soup: Thermodynamics of strings near the Hagedorn transition
NASA Astrophysics Data System (ADS)
Lowe, David A.; Thorlacius, Lárus
1995-01-01
Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The averge total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the theory contains open strings the long string phase is suppressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Ziomek-Moroz; J.A. Hawk; R. Thodla
2012-05-06
The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -},more » HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the notch in the solution at 20 C. Accumulation of the corrosion products is visible along the crack. The EDX chemical analysis near the crack tip found iron, sulfur and oxygen in the passive layer. The surface of the sample after the fatigue test in the sour environment at 85{sup o}, Fig. 2, C looks different from that fatigued surface at 20 C. The crack propagates across the passive film that covers the surface fairly uniformly. Some spallation of the passive film is observed near the notch. The EDX chemical analysis of the passive film near the crack tip identified mainly iron, carbon and oxygen. It appears that temperature plays a very important role in formation of the passive film. This may be associated with different solubility of H{sub 2}S in the solution, which will be further studied.« less
Synthesis and Application of Pyrrolidone-containing Shale Inhibitors
NASA Astrophysics Data System (ADS)
Liu, Yonggui; Hou, Jie; Zhang, Yang; Yan, Jing; Song, Tao; Xu, Yongjun
2018-03-01
New generation polyamine inhibitors are amino-terminated polyethers with excellent inhibiting capabilities; they play a key role in borehole stabilization and reservoir protection. However, polyamine inhibitors are limited by their poor thermal stability, which can be attributed to the presence of ether bonds in their molecular structures. We propose a three-step synthesis approach fora novel pyrrolidone-containing polyamine inhibitor (DYNP) by introducing N-vinyl-2-pyrrolidone (NVP) on divinyloxyethane. This polyamine inhibitor exhibits an optimized molecular structure and has enhanced heat resistance. Characterizations by infrared (IR) spectroscopy and evaluation tests demonstrate several advantages of DYNP inhibitors, including excellent inhibiting capability (superior to similar materials such as polyamines), improved heat resistance (reasonable stability at temperatures up to 240°C), and good compatibility with both fresh water and salt water drilling fluids. These can be attributed to the presence of considerable amounts of amino groups in the repeating unit of DYNP molecules. The DYNP inhibitor was applied in over 20 boreholes in tight oil blocks in Daqing Oilfield to relieve hydration of formations with high shale contents. For instance, drilling in the 2033.5m horizontal section of Dragon 2 borehole was smooth, with a borehole diameter expansion ratio below 10%.
NASA Astrophysics Data System (ADS)
Riedel, M.; Wallmann, K.; Berndt, C.; Pape, T.; Freudenthal, T.; Bergenthal, M.; Bünz, S.; Bohrmann, G.
2018-04-01
During expedition MARIA S. MERIAN MSM57/2 to the Svalbard margin offshore Prins Karls Forland, the seafloor drill rig MARUM-MeBo70 was used to assess the landward termination of the gas hydrate system in water depths between 340 and 446 m. The study region shows abundant seafloor gas vents, clustered at a water depth of ˜400 m. The sedimentary environment within the upper 100 m below seafloor (mbsf) is dominated by ice-berg scours and glacial unconformities. Sediments cored included glacial diamictons and sheet-sands interbedded with mud. Seismic data show a bottom simulating reflector terminating ˜30 km seaward in ˜760 m water depth before it reaches the theoretical limit of the gas hydrate stability zone (GHSZ) at the drilling transect. We present results of the first in situ temperature measurements conducted with MeBo70 down to 28 mbsf. The data yield temperature gradients between ˜38°C km-1 at the deepest site (446 m) and ˜41°C km-1 at a shallower drill site (390 m). These data constrain combined with in situ pore-fluid data, sediment porosities, and thermal conductivities the dynamic evolution of the GHSZ during the past 70 years for which bottom water temperature records exist. Gas hydrate is not stable in the sediments at sites shallower than 390 m water depth at the time of acquisition (August 2016). Only at the drill site in 446 m water depth, favorable gas hydrate stability conditions are met (maximum vertical extent of ˜60 mbsf); however, coring did not encounter any gas hydrates.
NASA Astrophysics Data System (ADS)
Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.
2013-12-01
In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.
Optimization of geothermal well trajectory in order to minimize borehole failure
NASA Astrophysics Data System (ADS)
Dahrabou, A.; Valley, B.; Ladner, F.; Guinot, F.; Meier, P.
2017-12-01
In projects based on Enhanced Geothermal System (EGS) principle, deep boreholes are drilled to low permeability rock masses. As part of the completion operations, the permeability of existing fractures in the rock mass is enhanced by injecting large volumes of water. These stimulation treatments aim at achieving enough water circulation for heat extraction at commercial rates which makes the stimulation operations critical to the project success. The accurate placement of the stimulation treatments requires well completion with effective zonal isolation, and wellbore stability is a prerequisite to all zonal isolation techniques, be it packer sealing or cement placement. In this project, a workflow allowing a fast decision-making process for selecting an optimal well trajectory for EGS projects is developed. In fact, the well is first drilled vertically then based on logging data which are costly (100 KCHF/day), the direction in which the strongly deviated borehole section will be drilled needs to be determined in order to optimize borehole stability and to intersect the highest number of fractures that are oriented favorably for stimulation. The workflow applies to crystalline rock and includes an uncertainty and risk assessment framework. An initial sensitivity study was performed to identify the most influential parameters on borehole stability. The main challenge in these analyses is that the strength and stress profiles are unknown independently. Calibration of a geomechanical model on the observed borehole failure has been performed using data from the Basel Geothermal well BS-1. In a first approximation, a purely elastic-static analytical solution in combination with a purely cohesive failure criterion were used as it provides the most consistent prediction across failure indicators. A systematic analysis of the uncertainty on all parameters was performed to assess the reliability of the optimal trajectory selection. To each drilling scenario, failure probability and the associated risks, are computed stochastically. In addition, model uncertainty is assessed by confronting various failure modelling approaches to the available failure data from the Basel Project. Together, these results form the basis of an integrated workflow optimizing geothermal (EGS) well trajectory.
Griffiths, Jane L; Kirby, Neil R; Waterson, James A
2014-01-01
Delineation of the advantages and problems related to the use of forward-site operating room-, Intensive Care Unit (ICU)-, radiography-, and mass casualty-enabled disaster vehicles for site evacuation, patient stabilization, and triage. The vehicles discussed have six ventilated ICU spaces, two ORs, on-site radiography, 21 intermediate acuity spaces with stretchers, and 54 seated minor acuity spaces. Each space has piped oxygen with an independent vehicle-loaded supply. The vehicles are operated by the Dubai Corporate Ambulance Services. Their support hospital is the main trauma center for the Emirate of Dubai and provides the vehicles' surgical, intensivist, anesthesia, and nursing staff. The disaster vehicles have been deployed 264 times in the last 5 years (these figures do not include deployments for drills). Introducing this new service required extensive initial planning and ongoing analysis of the performance of the disaster vehicles that offer ambulance services and receiving hospitals a large array of possibilities in terms of triage, stabilization of priority I and II patients, and management of priority III patients. In both drills and in disasters, the vehicles were valuable in forward triage and stabilization and in the transport of large numbers of priority III patients. This has avoided the depletion of emergency transport available for priority I and II patients. The successful utilization of disaster vehicles requires seamless cooperation between the hospital staffing the vehicles and the ambulance service deploying them. They are particularly effective during preplanned deployments to high-risk situations. These vehicles also potentially provide self-sufficient refuges for forward teams in hostile environments.
Ultralight axion in supersymmetry and strings and cosmology at small scales
NASA Astrophysics Data System (ADS)
Halverson, James; Long, Cody; Nath, Pran
2017-09-01
Dynamical mechanisms to generate an ultralight axion of mass ˜10-21- 10-22 eV in supergravity and strings are discussed. An ultralight particle of this mass provides a candidate for dark matter that may play a role for cosmology at scales of 10 kpc or less. An effective operator approach for the axion mass provides a general framework for models of ultralight axions, and in one case recovers the scale 10-21- 10-22 eV as the electroweak scale times the square of the hierarchy with an O (1 ) Wilson coefficient. We discuss several classes of models realizing this framework where an ultralight axion of the necessary size can be generated. In one class of supersymmetric models an ultralight axion is generated by instanton-like effects. In the second class higher-dimensional operators involving couplings of Higgs, standard model singlets, and axion fields naturally lead to an ultralight axion. Further, for the class of models considered the hierarchy between the ultralight scale and the weak scale is maintained. We also discuss the generation of an ultralight scale within string-based models. In the single-modulus Kachru-Kallosh-Linde-Trivedi moduli stabilization scheme an ultralight axion would require an ultralow weak scale. However, within the large volume scenario, the desired hierarchy between the axion scale and the weak scale is achieved. A general analysis of couplings of Higgs fields to instantons within the string framework is discussed and it is shown that the condition necessary for achieving such couplings is the existence of vector-like zero modes of the instanton. Some of the phenomenological aspects of these models are also discussed.
46 CFR 174.075 - Compartments assumed flooded: general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments assumed flooded: general. 174.075 Section 174.075 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...
46 CFR 174.075 - Compartments assumed flooded: general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Compartments assumed flooded: general. 174.075 Section 174.075 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...
DOT National Transportation Integrated Search
2011-01-01
High water tables in Florida make it difficult to excavate to a sufficient depth for many construction projects without water intrusion causing a collapse of earthen walls. In the case of drilled shafts, stabilization is achieved mechanically by usin...
Krafft, Tim; Winter, Werner; Wichmann, Manfred; Karl, Matthias
2012-07-01
Alveolar bone quality is considered to be an important prognostic factor in dental implant stability. Although numerous methods have been described, no technique allows for reliable diagnostics. The purpose of this study was to determine if strain measurements on the shaft of a contra angle handpiece during implant bed preparation could be used for the determination of bone quality. Experiments in polyurethane foam and human cadaver bone were conducted to investigate whether strain measurements could be correlated with other diagnostic parameters, such as the surgeon's tactile sensation during drilling, implant insertion torque, implant stability, elastic modulus of bone and bone quality as assessed radiographically. Tests were also performed to determine if strain measurements could be used to distinguish various types of bone. As axial feed and contact pressure during the drilling process could not be standardized under simulated clinical conditions, substantial deviations in the time needed to complete the drilling occurred. Under controlled circumstances using polyurethane foam, this problem could be addressed by a normalization procedure, but great variations occurred in human cadaver bone. As bone quality could not be reliably determined, especially when a cortical layer was present, strain measurements on a contra angle handpiece appears to be inappropriate for this purpose. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Filippov, Lev; Thomas, Fabien; Filippova, Inna; Yvon, Jacques; Morillon-Jeanmaire, Anne
2009-11-15
Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).
Yi, Jianru; Ge, Mengke; Li, Meile; Li, Chunjie; Li, Yu; Li, Xiaobing; Zhao, Zhihe
2017-06-01
Both the self-drilling and self-tapping miniscrews have been commonly used as anchorage reinforcement devices in orthodontic treatment. The aim of this study was to compare the success rates of self-drilling and self-tapping miniscrews in orthodontic practice. Literature searches were performed by electronic search in database including PubMed, Embase, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure and SIGLE, and manual search of relevant journals and reference lists of included studies. Randomized controlled trials, clinical controlled trials and cohort studies comparing the success rates of self-drilling and self-tapping miniscrews as orthodontic anchorage. The data of success rates and root contact rates were extracted by two investigators independently. After evaluating the risk of bias, the odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Subgroup analysis was performed on the basis of study design, follow-ups, participant ages and immediate/delayed loading. Sensitivity analysis was performed to test the stability of the results in meta-analysis. Six studies assessed as high quality were included in the meta-analysis. The meta-analysis results showed no difference between the two types of screws in the success rates. The root contact rates of the two screws were similar, while self-drilling miniscrews displayed higher risk of failure when contacting with a tooth root. Currently available clinical evidence suggests that the success rates of self-tapping and self-drilling miniscrews are similar. Determination of the position and direction of placement should be more precise when self-drilling miniscrews are used in sites with narrow root proximity. None. None. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com
Cosmic strings and superconducting cosmic strings
NASA Technical Reports Server (NTRS)
Copeland, Edmund
1988-01-01
The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.
NASA Astrophysics Data System (ADS)
Derendinger, J.-P.; Scrucca, C. A.; Uranga, A.
2007-11-01
This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 15 to the 19 of January 2007. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous conferences have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next will again take place at CERN, in January 2008. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, the notes of which are published in the present proceedings, and seven working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. String theory is a compelling candidate for a theory of all interactions. A basic challenge in this field is therefore to explore the connection of string theory models and the laws of physics in different realms, like high-energy particle physics, early cosmology, or physics of strongly coupled gauge theories. Concerning the exploration of string theory compactifications leading to realistic models of particle physics, one of the main obstacles in this direction is the proper understanding of supersymmetry breaking. The lecture notes by Nathan Seiberg review the realization of spontaneous breaking of supersymmetry in field theory, including recent developments via the use of meta-stable long-lived vacua. It is possible that such an understanding proves crucial in the realization of supersymmetry breaking in string theory. A second long-standing obstacle, which is being tackled with recent techniques, is moduli stabilization, namely the removal of unwanted massless scalar fields from string models. The present status of this problem, and its prospects of solution via the introduction of general sets of fluxes in the compactification space, were covered in the lectures by Brian Wecht. Application of these ideas to connect string theory to particle physics will require a good understanding of the experimental situation at the forthcoming collider LHC at CERN, and the detection tools for signals of new physics, as reviewed in the lectures by Joe Lykken (not covered in the present issue). Along a different line, the role of moduli fields in string theory is expected to provide a natural explanation of models of inflation, and thus of the origin of the cosmological evolution of our universe. The lecture notes by Cliff Burgess provide a review of big bang cosmology, inflation, and its possible explanation in terms of string theory constructions, including some of the most recent results in the field (these notes also appear in the proceedings of two other schools held in the same period). A surprising recent application of string theory is the description, via the ideas of holography and duality between string theories and gauge theories, of physical properties of quantum chromodynamics at high temperature. Indeed experimental data on the physical properties of the quark gluon plasma, produced in heavy ion collision at the RHIC experiment in Brookhaven (and soon at the LHC at CERN) can be recovered, at a semi-quantitative level, from computations in a string theory dual of the system. These applications are reviewed in the lectures by David Mateos. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructures that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. A special acknowledgement also goes to Denis Frank, for his very valuable help in preparing the conference web pages. Group photo
From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.
Pepe, M; Wiese, U-J
2009-05-15
We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.
Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.
2009-04-07
A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.
Informing New String Programmes: Lessons Learned from an Australian Experience
ERIC Educational Resources Information Center
Murphy, Fintan; Rickard, Nikki; Gill, Anneliese; Grimmett, Helen
2011-01-01
Although there are many examples of notable string programmes there has been relatively little comparative analysis of these programmes. This paper examines three benchmark string programmes (The University of Illinois String Project, The Tower Hamlets String Teaching Project and Colourstrings) alongside Music4All, an innovative string programme…
[ital N]-string vertices in string field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordes, J.; Abdurrahman, A.; Anton, F.
1994-03-15
We give the general form of the vertex corresponding to the interaction of an arbitrary number of strings. The technique employed relies on the comma'' representation of string field theory where string fields and interactions are represented as matrices and operations between them such as multiplication and trace. The general formulation presented here shows that the interaction vertex of [ital N] strings, for any arbitrary [ital N], is given as a function of particular combinations of matrices corresponding to the change of representation between the full string and the half string degrees of freedom.
NASA Astrophysics Data System (ADS)
Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo
2012-04-01
Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in Cambridge: personal recollections C. Montonen; Part VI. The Superstring: 35. Introduction to Part VI; 36. Supersymmetry in string theory F. Gliozzi; 37. Gravity from strings: personal reminiscences of early developments T. Yoneya; 38. From the Nambu-Goto to the σ-model action L. Brink; 39. Locally supersymmetric action for superstring P. Di Vecchia; 40. Personal recollections E. Cremmer; 41. The scientific contributions of Joël Scherk J. H. Schwarz; Part VII. Preparing the String Renaissance: 42. Introduction to Part VII; 43. From strings to superstrings: a personal perspective M. B. Green; 44. Quarks, strings and beyond A. M. Polyakov; 45. The rise of the superstring theory A. Cappelli and F. Colomo; Appendices; Index.
The Bear Went Over the Mountain: Soviet Combat Tactics in Afghanistan,
1996-08-01
spin out of control and out of Moscow’s orbit. The Soviet Politburo moved to stabilize the situation. On 27 December 1979, Moscow struck with a Coup de ...like a good idea , however, this was the dread stroevoy smotr [ceremonial inspection] which was an unwelcome part of peace-time, garrison sol- diering...and displays would be aligned with pieces of string. The process could take three days. Although inspections are good ideas , these massive formal
NASA Technical Reports Server (NTRS)
Hall, A. Daniel (Inventor); Davies, Francis J. (Inventor)
2007-01-01
Method and system are disclosed for determining individual string resistance in a network of strings when the current through a parallel connected string is unknown and when the voltage across a series connected string is unknown. The method/system of the invention involves connecting one or more frequency-varying impedance components with known electrical characteristics to each string and applying a frequency-varying input signal to the network of strings. The frequency-varying impedance components may be one or more capacitors, inductors, or both, and are selected so that each string is uniquely identifiable in the output signal resulting from the frequency-varying input signal. Numerical methods, such as non-linear regression, may then be used to resolve the resistance associated with each string.
Are insertion torque and early osseointegration proportional? A histologic evaluation.
Campos, Felipe E B; Jimbo, Ryo; Bonfante, Estevam A; Barbosa, Darceny Z; Oliveira, Maiolino T F; Janal, Malvin N; Coelho, Paulo G
2015-11-01
The objective of this histologic study was to determine the effect of three drilling protocols (oversized, intermediate, and undersized) on biologic responses to a single implant type at early healing periods (2 weeks in vivo) in a beagle dog model. Ten beagle dogs were acquired and subjected to surgeries in the tibia 2 weeks before euthanasia. During surgery, each dog received three Unitite implants, 4 mm in diameter by 10 mm in length, in bone sites drilled to 3.5, 3.75, and 4.0 mm in final diameter. The insertion torque was recorded during surgery, and bone-to-implant contact (BIC), and bone area fraction occupied (BAFO) measured from the histology. Each outcome measure was compared between treatment conditions with the Wilcoxon signed-rank test. Bonferroni-corrected statistical significance was set to 95%. Insertion torque increased as an inverse function of drilling diameter, as indicated by significant differences in torque levels between each pair of conditions (P = 0.005). BIC and BAFO levels were highest and statistically similar in the recommended and undersized conditions and significantly reduced in the oversized condition (P < 0.01). Reduced drilling dimensions resulted in increased insertion torque (primary stability). While BIC and BAFO were maximized when drilling the recommended diameter hole, only the oversized hole resulted in evidence of statistically reduced integration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
String mediated phase transitions
NASA Technical Reports Server (NTRS)
Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.
1988-01-01
It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.
Black string in dRGT massive gravity
NASA Astrophysics Data System (ADS)
Tannukij, Lunchakorn; Wongjun, Pitayuth; Ghosh, Suchant G.
2017-12-01
We present a cylindrically symmetric solution, both charged and uncharged, which is known as a black string solution to the nonlinear ghost-free massive gravity found by de Rham, Gabadadze, and Tolley (dRGT). This "dRGT black string" can be thought of as a generalization of the black string solution found by Lemos. Moreover, the dRGT black string solution includes other classes of black string solution such as the monopole-black string ones since the graviton mass contributes to the global monopole term as well as the cosmological-constant term. To investigate the solution, we compute mass, temperature, and entropy of the dRGT black string. We found that the existence of the graviton mass drastically affects the thermodynamics of the black string. Furthermore, the Hawking-Page phase transition is found to be possible for the dRGT black string as well as the charged dRGT black string. The dRGT black string solution is thermodynamically stable for r>r_c with negative thermodynamical potential and positive heat capacity while it is unstable for r
NASA Technical Reports Server (NTRS)
Menard, J.; Sangillo, J.; Savain, A.; McNamara, K. M.
2004-01-01
The presence of water-ice in the Martian subsurface is a subject of much debate and excited speculation. Recent results from the gammaray spectrometer (GRS) on board NASA's Mars Odyssey spacecraft indicate the presence of large amounts of hydrogen in regions of predicted ice stability. The combination of chemistry, low gravitational field (3.71 m/s(exp 2)) and a surface pressure of about 6.36 mbar at the mean radius, place limits on the stability of H2O on the surface, however, results from the GRS indicate that the hydrogen rich phase may be present at a depth as shallow as one meter in some locations on Mars. The potential for water on Mars leads directly to the speculation that life may once have existed there, since liquid water is the unifying factor for environments known to support life on Earth. Lubricant-free drilling has been considered as a means of obtaining water-rich subsurface samples on Mars, and two recent white papers sponsored by the Mars Program have attempted to identify the problems associated with this goal. The two major issues identified were: the engineering challenges of drilling into a water-soil mixture where phase changes may occur; and the potential to compromise the integrity of in-situ scientific analysis due to contamination, volatilization, and mineralogical or chemical changes as a result of processing. This study is a first attempt to simulate lubricantfree drilling into JSC Mars-1 simulant containing up to 50% water by weight. The goal is to address the following: 1) Does sample processing cause reactions or changes in mineralogy which will compromise the interpretation of scientific measurements conducted on the surface? 2) Does the presence of water-ice in the sample complicate (1)? 3) Do lubricant-free drilling and processing leave trace contaminants which may compromise our understanding of sample composition? 4) How does the torque/power required for drilling change as a function of water content and does this lead to unexpected thermal effects?
Efficient Aho-Corasick String Matching on Emerging Multicore Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumeo, Antonino; Villa, Oreste; Secchi, Simone
String matching algorithms are critical to several scientific fields. Beside text processing and databases, emerging applications such as DNA protein sequence analysis, data mining, information security software, antivirus, ma- chine learning, all exploit string matching algorithms [3]. All these applica- tions usually process large quantity of textual data, require high performance and/or predictable execution times. Among all the string matching algorithms, one of the most studied, especially for text processing and security applica- tions, is the Aho-Corasick algorithm. 1 2 Book title goes here Aho-Corasick is an exact, multi-pattern string matching algorithm which performs the search in a time linearlymore » proportional to the length of the input text independently from pattern set size. However, depending on the imple- mentation, when the number of patterns increase, the memory occupation may raise drastically. In turn, this can lead to significant variability in the performance, due to the memory access times and the caching effects. This is a significant concern for many mission critical applications and modern high performance architectures. For example, security applications such as Network Intrusion Detection Systems (NIDS), must be able to scan network traffic against very large dictionaries in real time. Modern Ethernet links reach up to 10 Gbps, and malicious threats are already well over 1 million, and expo- nentially growing [28]. When performing the search, a NIDS should not slow down the network, or let network packets pass unchecked. Nevertheless, on the current state-of-the-art cache based processors, there may be a large per- formance variability when dealing with big dictionaries and inputs that have different frequencies of matching patterns. In particular, when few patterns are matched and they are all in the cache, the procedure is fast. Instead, when they are not in the cache, often because many patterns are matched and the caches are continuously thrashed, they should be retrieved from the system memory and the procedure is slowed down by the increased latency. Efficient implementations of string matching algorithms have been the fo- cus of several works, targeting Field Programmable Gate Arrays [4, 25, 15, 5], highly multi-threaded solutions like the Cray XMT [34], multicore proces- sors [19] or heterogeneous processors like the Cell Broadband Engine [35, 22]. Recently, several researchers have also started to investigate the use Graphic Processing Units (GPUs) for string matching algorithms in security applica- tions [20, 10, 32, 33]. Most of these approaches mainly focus on reaching high peak performance, or try to optimize the memory occupation, rather than looking at performance stability. However, hardware solutions supports only small dictionary sizes due to lack of memory and are difficult to customize, while platforms such as the Cell/B.E. are very complex to program.« less
Exploration in petroleum development in Oman: Getting a kick into the creaming curve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, G.J.
1993-09-01
Petroleum Development Oman (PDO) currently explores an 80,000 mi[sup 2] concession area. Major discoveries were made in the early 1960s in north Oman and in south Oman in the 1970s. However, in the middle to late 1980s, discovery sizes decreased, consistent with classical creaming curves, particularly as exploration concentrated on areas around the hydrocarbon fairways. With a flattening creaming curve, the outlook did not look rosy. PDO faced the question, [open quotes]Does this curve represent the future or could new ideas, a change in approach, or application of newer technologies give an upward kick to the creaming curve [close quotes]more » A major strategy review took place in which the potential of all plays was reviewed. Prospects were place into frontier, conventional, and exploratory appraisal types. String time was allocated over a five-year period on a basis of play testing for frontier plays and a steady realization of conventional and exploratory appraisal drilling as partial fulfillment of the annual exploration reserves replenishment target. Initial results are promising, and specific challenges including new plays, one unique to Oman, have been defined beyond the aims of the original strategy. Resolution of these challenges will lead to delineation of new hydrocarbon resources in Oman. At the same time, technological advances such as slim-hole drilling and extensive three-dimensional seismic, in concert with work-station interpretation, are being used, in order to minimize costs and increase the success ratio.« less
Archaeal β diversity patterns under the seafloor along geochemical gradients
NASA Astrophysics Data System (ADS)
Koyano, Hitoshi; Tsubouchi, Taishi; Kishino, Hirohisa; Akutsu, Tatsuya
2014-09-01
Recently, deep drilling into the seafloor has revealed that there are vast sedimentary ecosystems of diverse microorganisms, particularly archaea, in subsurface areas. We investigated the β diversity patterns of archaeal communities in sediment layers under the seafloor and their determinants. This study was accomplished by analyzing large environmental samples of 16S ribosomal RNA gene sequences and various geochemical data collected from a sediment core of 365.3 m, obtained by drilling into the seafloor off the east coast of the Shimokita Peninsula. To extract the maximum amount of information from these environmental samples, we first developed a method for measuring β diversity using sequence data by applying probability theory on a set of strings developed by two of the authors in a previous publication. We introduced an index of β diversity between sequence populations from which the sequence data were sampled. We then constructed an estimator of the β diversity index based on the sequence data and demonstrated that it converges to the β diversity index between sequence populations with probability of 1 as the number of sampled sequences increases. Next, we applied this new method to quantify β diversities between archaeal sequence populations under the seafloor and constructed a quantitative model of the estimated β diversity patterns. Nearly 90% of the variation in the archaeal β diversity was explained by a model that included as variables the differences in the abundances of chlorine, iodine, and carbon between the sediment layers.
Temperature characterisation of the CLOUD chamber at CERN
NASA Astrophysics Data System (ADS)
Dias, A. M.; Almeida, J.; Kirkby, J.; Mathot, S.; Onnela, A.; Vogel, A.; Ehrhart, S.
2014-12-01
Temperature stability, uniformity and absolute scale inside the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN are important for experiments on aerosol particle nucleation and ice/liquid cloud formation. In order to measure the air temperature, a comprehensive set of arrays ("strings") of platinum resistance thermometers, thermocouples and optical sensors have been installed inside the 26 m3 chamber. The thermal sensors must meet several challenging design requirements: ultra-clean materials, 0.01 K measurement sensitivity, high absolute precision (<0.1 K), 200 K - 373 K range, ability to operate in high electric fields (20 kV/m), and fast response in air (~1 s) in order to measure rapid changes of temperature during ice/liquid cloud formation in the chamber by adiabatic pressure reductions. This presentation will focus on the design of the thermometer strings and the thermal performance of the chamber during the CLOUD8 and CLOUD9 campaigns, 2013-2014, together with the planned upgrades of the CLOUD thermal system.
Bead-on-string structure printed by electrohydrodynamic jet under alternating current electric field
NASA Astrophysics Data System (ADS)
Liu, Juan; Lin, Yihuang; Jiang, Jiaxin; Liu, Haiyan; Zhao, Yang; Zheng, Gaofeng
2016-09-01
Electrohydrodynamic printing (EHDP) under alternating current (AC) electric field provides a novel way for the precise micro-/nano-droplet printing. The AC electric field induces the free charge to reciprocate along the EHDP jet and changes the electric field force on the jet periodically. The stability of jet can be enhanced by increasing the voltage frequency, and the regular bead-on-string structure is direct-written along the trajectory of collector. The deposition frequency of bead structure increases with the increasing of voltage frequency, due to the short period of AC electric field. As the voltage frequency is increased from 10 to 60 Hz, the diameter of bead structure decreases from 200 to 110 µm. As the duty ration increased from 10 to 60 %, the diameter of bead structure increased from 100 to 140 µm. This work would accelerate the development and the application of micro-/nano-printing technology in the fields of flexible electronic and micro-/nano-system.
Shape control of slack space reflectors using modulated solar pressure.
Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R
2015-07-08
The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes.
Analysis of SPR salt cavern remedial leach program 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Paula D.; Gutierrez, Karen A.; Lord, David L.
The storage caverns of the US Strategic Petroleum Reserve (SPR) exhibit creep behavior resulting in reduction of storage capacity over time. Maintenance of oil storage capacity requires periodic controlled leaching named remedial leach. The 30 MMB sale in summer 2011 provided space available to facilitate leaching operations. The objective of this report is to present the results and analyses of remedial leach activity at the SPR following the 2011 sale until mid-January 2013. This report focuses on caverns BH101, BH104, WH105 and WH106. Three of the four hanging strings were damaged resulting in deviations from normal leach patterns; however, themore » deviations did not affect the immediate geomechanical stability of the caverns. Significant leaching occurred in the toes of the caverns likely decreasing the number of available drawdowns until P/D ratio criteria are met. SANSMIC shows good agreement with sonar data and reasonably predicted the location and size of the enhanced leaching region resulting from string breakage.« less
ERIC Educational Resources Information Center
Hoover, Todd F.
2010-01-01
The "Magic" String is a discrepant event that includes a canister with what appears to be the end of two strings protruding from opposite sides of it. Due to the way the strings are attached inside the canister, it appears as if the strings can magically switch the way they are connected. When one string end is pulled, the observer's expectation…
Automatic generation and analysis of solar cell IV curves
Kraft, Steven M.; Jones, Jason C.
2014-06-03
A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.
Linear perturbations of black holes: stability, quasi-normal modes and tails
NASA Astrophysics Data System (ADS)
Zhidenko, Alexander
2009-03-01
Black holes have their proper oscillations, which are called the quasi-normal modes. The proper oscillations of astrophysical black holes can be observed in the nearest future with the help of gravitational wave detectors. Quasi-normal modes are also very important in the context of testing of the stability of black objects, the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence and in higher dimensional theories, such as the brane-world scenarios and string theory. This dissertation reviews a number of works, which provide a thorough study of the quasi-normal spectrum of a wide class of black holes in four and higher dimensions for fields of various spin and gravitational perturbations. We have studied numerically the dependance of the quasi-normal modes on a number of factors, such as the presence of the cosmological constant, the Gauss-Bonnet parameter or the aether in the space-time, the dependance of the spectrum on parameters of the black hole and fields under consideration. By the analysis of the quasi-normal spectrum, we have studied the stability of higher dimensional Reissner-Nordstrom-de Sitter black holes, Kaluza-Klein black holes with squashed horizons, Gauss-Bonnet black holes and black strings. Special attention is paid to the evolution of massive fields in the background of various black holes. We have considered their quasi-normal ringing and the late-time tails. In addition, we present two new numerical techniques: a generalisation of the Nollert improvement of the Frobenius method for higher dimensional problems and a qualitatively new method, which allows to calculate quasi-normal frequencies for black holes, which metrics are not known analytically.
46 CFR 174.055 - Calculation of wind heeling moment (Hm).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Calculation of wind heeling moment (Hm). 174.055 Section 174.055 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...
NASA Astrophysics Data System (ADS)
Amirov, Elnur
2016-04-01
Wellbore instability while drilling, trip in or trip out can be cause of nonproductive time (NPT). Mainly this is the drilling surprises often encountered while drilling, trip in or trip out which were not predicted in advance, monitored, interpreted or recognized properly, which can give rise to wellbore instability problems. These surprises include also formation tops, overpressure zones occurring at different depths than predicted and the presence of unexpected faults or other fractured/fissile/compartmentalization zones. In general while drilling the wells, downhole PWD data cannot be very useful for understanding wellbore stability. Much of what we can use is indirect measurements such as torque and drag observations, rpm, vibrations, cavings, annular pressure measurements and etc. In order to understand what is going on in the subsurface and therefore mitigate the wellbore instability problems, we need more information from LWD (logging while drilling) tools. In order to monitor and get direct observations of the state of the borehole we need to determine where, how and in which direction the wellbore is failing and enlargement is taking place. LWD calipers and wellbore Azimuthal Lithodensity Images can provide such information for breakout analysis while drilling, trip in and trip out activity. The modes of wellbore instability can be generated in different ways and through different mechanisms. Therefore these zones of breakout can be potentially identified by the ALD imaging and LWD caliper tools. Instability can be governed by a combination of factors such as: the strength of the rock, the subsurface stress field, maximum and minimum horizontal stresses, pre-existing planes of weakness, the angle of the wellbore which intersects with these planes of weakness and chemical reaction of the rock (minerals) with the drilling fluid. Compressional failure (breakout) of an isotropic rock can occur when the compressive stresses around the borehole exceed the compressive strength of the rock. This can create the enlargement of the borehole with two failure zones opposite to each other with circumference at 180 degrees (for instance top side vs bottom side of the borehole or right side vs left side of the borehole). The image tracks for Rhob (density), Pe (photoelectric absorption) and Caliper can show the data such as edges of the track from the top, right, bottom and left sides of the hole (the center of the track is the bottom side of the borehole). Generally the color gradation (different spectrums) can be used in order to show the orientation change in the measurement around the wellbore. The azimuthal density, Pe, and Caliper data can be pointed and visualized as a log curves which can represent the average of all available data (an average of the top, right, bottom and left sides (or quadrants) or as 8 (RT) or 16 (RM) individual bins and as an ALD Image log. In addition, the Caliper data can give us information about the diameter and geometry of the borehole while drilling, trip in and trip out activities (for more detailed breakout analysis and interpretations). This paper (abstract) will present the results of a breakout analysis conducted from the wells which were drilled in the Caspian Sea of the Azerbaijan Republic in order to evaluate the available ALD images, caliper information and eventually incorporation of all available data into the wellbore stability monitoring service (breakout analysis).
Utilizing the International GeoSample Number Concept during ICDP Expedition COSC
NASA Astrophysics Data System (ADS)
Conze, Ronald; Lorenz, Henning; Ulbricht, Damian; Gorgas, Thomas; Elger, Kirsten
2016-04-01
The concept of the International GeoSample Number (IGSN) was introduced to uniquely identify and register geo-related sample material, and make it retrievable via electronic media (e.g., SESAR - http://www.geosamples.org/igsnabout). The general aim of the IGSN concept is to improve accessing stored sample material worldwide, enable the exact identification, its origin and provenance, and also the exact and complete citation of acquired samples throughout the literature. The ICDP expedition COSC (Collisional Orogeny in the Scandinavian Caledonides, http://cosc.icdp-online.org) prompted for the first time in ICDP's history to assign and register IGSNs during an ongoing drilling campaign. ICDP drilling expeditions are using commonly the Drilling Information System DIS (http://doi.org/10.2204/iodp.sd.4.07.2007) for the inventory of recovered sample material. During COSC IGSNs were assigned to every drill hole, core run, core section, and sample taken from core material. The original IGSN specification has been extended to achieve the required uniqueness of IGSNs with our offline-procedure. The ICDP name space indicator and the Expedition ID (5054) are forming an extended prefix (ICDP5054). For every type of sample material, an encoded sequence of characters follows. This sequence is derived from the DIS naming convention which is unique from the beginning. Thereby every ICDP expedition has an unlimited name space for IGSN assignments. This direct derivation of IGSNs from the DIS database context ensures the distinct parent-child hierarchy of the IGSNs among each other. In the case of COSC this method of inventory-keeping of all drill cores was done routinely using the ExpeditionDIS during field work and subsequent sampling party. After completing the field campaign, all sample material was transferred to the "Nationales Bohrkernlager" in Berlin-Spandau, Germany. Corresponding data was subsequently imported into the CurationDIS used at the aforementioned core storage facility. This CurationDIS assigns IGSNs on samples newly taken in the repository in the identical fashion as done in the field. Thereby, the parent-child linkage of the IGSNs is ensured consistently throughout the entire sampling process. The only difference between ExpeditionDIS and CurationDIS sample curation is using the name space ICDP and BGRB respectively as part of the corresponding ID string. To prepare the IGSN registry, a set of metadata is generated for every assigned IGSN using the DIS, which is then exported from the DIS into one common xml-file. The xml-file is based on the SESAR schema and a proposal of IGSN e.V. (http://schema.igsn.org). This systematics has been recently extended for drilling data to achieve additional information for future retrieval options. The two allocation agents GFZ Potsdam und PANGAEA are currently involved in the registry of IGSNs in the case of COSC drill campaigns. An example for the IGSN registration of the COSC-1 drill hole A (5054_1_A) is "ICDP5054EEW1001" and can be resolved using the URL http://hdl.handle.net/10273/ICDP5054EEW1001. Opening the landing page for the complete COSC core material for this particular hole showcases graphically a hierarchical tree entitled "Sample Family". An example of an IGSN citation associated with a COSC sample set is featured on an EGU-2016 poster presentation by Ulrich Harms, Johannes Hierold et al. (EGU2016-8646).
Charged string loops in Reissner-Nordström black hole background
NASA Astrophysics Data System (ADS)
Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk
2018-03-01
We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.
NASA Astrophysics Data System (ADS)
Kawazoe, Yoshihiko; Takeda, Yukihiro; Nakagawa, Masamichi
While some tennis racket strings have more grip than others do, this does not guarantee that they will impart more spin to a tennis ball. Experiments with hand-held rackets are required to determine the longstanding question of how players can discern that different strings behave differently when laboratory tests indicate that they should play the same. In a previous study, we clarified the top-spin mechanism of a tennis racket by using high-speed video analysis on a tennis court for the first time. Furthermore, we improved it by using lubricated notched nylon strings. These experiments revealed that the more the main strings stretch and bend laterally, the more spin is imparted to the ball. This is due to the restoring force being parallel to the string face when the main strings spring back and the ball is released from the strings. Notched strings reduce the spin rate, but this can be effectively counteracted by employing lubricants. Furthermore, we found that imparting more spin reduces shock vibrations on the wrist during impact. The present study revealed that a ball has a 40% lower spin rate when hit with a racket with notched strings than with one with unnotched strings in the case of nylon (it had to be determined whether new strings or lubricated used strings give more spin). The experiments also showed that 30% more spin is imparted to a ball when the string intersections are lubricated by oil than when notched used nylon strings are used. Furthermore, we found that used natural gut notched strings reduced the spin rate by 70% compared to when new natural gut unnotched strings are used. We also investigated different top-spin behaviors obtained when professional and amateur tennis players hit a ball.
Syntactic transfer in artificial grammar learning.
Beesley, T; Wills, A J; Le Pelley, M E
2010-02-01
In an artificial grammar learning (AGL) experiment, participants were trained with instances of one grammatical structure before completing a test phase in which they were required to discriminate grammatical from randomly created strings. Importantly, the underlying structure used to generate test strings was different from that used to generate the training strings. Despite the fact that grammatical training strings were more similar to nongrammatical test strings than they were to grammatical test strings, this manipulation resulted in a positive transfer effect, as compared with controls trained with nongrammatical strings. It is suggested that training with grammatical strings leads to an appreciation of set variance that aids the detection of grammatical test strings in AGL tasks. The analysis presented demonstrates that it is useful to conceptualize test performance in AGL as a form of unsupervised category learning.
NASA Astrophysics Data System (ADS)
Davis, L. C.
2013-09-01
A model that includes the mechanical response of a vehicle to a demanded change in acceleration is analyzed to determine the string stability of a platoon of autonomous vehicles. The response is characterized by a first-order time constant τ and an explicit delay td. The minimum value of the acceleration feedback control gain is found from calculations of the velocity of vehicles following a lead vehicle that decelerates sharply from high speed to low speed. Larger values of ξ (in the stable range) give larger values of deceleration for vehicles in the platoon. Optimal operation is attained close to the minimum value of ξ for stability. Small oscillations are found after the main peak in deceleration for ξ in the stable region but near the transition to instability. A theory for predicting the frequency and amplitude of the oscillations is presented.
The ACES mission: scientific objectives and present status
NASA Astrophysics Data System (ADS)
Cacciapuoti, L.; Dimarcq, N.; Salomon, C.
2017-11-01
"Atomic Clock Ensemble in Space" (ACES) is a mission in fundamental physics that will operate a new generation of atomic clocks in the microgravity environment of the International Space Station (ISS). The ACES clock signal will combine the medium term frequency stability of a space hydrogen maser (SHM) and the long term stability and accuracy of a frequency standard based on cold cesium atoms (PHARAO). Fractional frequency stability and accuracy of few parts in 1016 will be achieved. The on-board time base distributed on Earth via a microwave link (MWL) will be used to test fundamental laws of physics (Einstein's theories of Special and General Relativity, Standard Model Extension, string theories…) and to develop applications in time and frequency metrology, universal time scales, global positioning and navigation, geodesy and gravimetry. After a general overview on the mission concept and its scientific objectives, the present status of ACES instruments and sub-systems will be discussed.
An Ada/SQL (Structured Query Language) Application Scanner.
1988-03-01
Digital ...8217 (" DIGITS "), 46 new STRING’ ("DO"), new STRING’ ("ELSE"), new STRING’ ("ELSIF"), new STRING’ ("END"), new STRING’ ("ENTRY"), new STRING’ ("EXCEPTION...INTEGERPRINT; generic type NUM is digits <>; package FLOATPRINT is package txtprts.ada 18 prcdr PR (FL inFL %YE LINE n LINTYPE UNCLASSIFIED procedure
Pitch glide effect induced by a nonlinear string-barrier interaction
NASA Astrophysics Data System (ADS)
Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa
2015-10-01
Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.
Constraint Reasoning Over Strings
NASA Technical Reports Server (NTRS)
Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin
2003-01-01
This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.
Modern physics - Guest editorial
NASA Astrophysics Data System (ADS)
Howes, Ruth
2000-02-01
What an exciting time to be a physicist! You only have to attend the plenaries at an AAPT meeting to realize just how many mysteries there still are. Will string theory actually prove to be a Theory of Everything? Can we use physics to understand, predict, and perhaps eventually mitigate damaging hurricanes? Is the warming trend of the Earth due to man-made changes in the atmosphere? Have we found the nuclear "island of stability" with elements 114, 116, and 118? For that matter, why is ice slippery?
NASA Technical Reports Server (NTRS)
Bosworth, John T.
2009-01-01
Adaptive control should be integrated with a baseline controller and only used when necessary (5 responses). Implementation as an emergency system. Immediately re-stabilize and return to controlled flight. Forced perturbation (excitation) for fine-tuning system a) Check margins; b) Develop requirements for amplitude of excitation. Adaptive system can improve performance by eating into margin constraints imposed on the non-adaptive system. Nonlinear effects due to multi-string voting.
Kemp, Jonathan A
2017-01-01
The physics of wound and unwound strings on the electric guitar are presented here, and the pitch intervals produced by the movements of a Fender Stratocaster tremolo unit are explained. Predicted changes in pitch sensitivity of different strings are given, and experimentally verified, for changes in saddle height, the distance of string free to move behind the nut and ratio of diameters/masses of the core and windings of wound strings. Also, it is shown that changes to the gauge of strings (assuming the string tension is sufficient for linear behaviour and in absence of changes to other construction details) don't alter the pitch intervals produced by a given angle of tremolo arm use assuming the instrument is set up with the same sounding pitches and starting bridge angle. It is demonstrated that it not possible to equalise the relative sensitivity of unwound steel stings on a Fender Stratocaster type tremolo unit through string construction techniques. The ratio of core to winding mass in the string, on the other hand, was found to be a very powerful design parameter for choosing the sensitivity of the string to tremolo arm use and standard pitch bends. For instance, the pitch intervals produced by operation of tremolo arm for wound strings may be made to approximately match that for one of the unwound strings if they share very similar core gauges (assuming the winding masses are chosen to give approximately the same tension at their sounding pitches). Such a design, only available currently by custom order, also delivers the optimum equalisation in sensitivity of strings for standard string bends (due to these also being produced by altering the length of the string to generate changes in tension and therefore pitch).
Towngas Lantau link beach approach, Hong Kong and China Gas Co. Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callnon, D.P.; Bertolucci, L.
1997-07-01
Horizontal directional drilling (HDD) laid dual, 12-in. OD, natural gas pipelines beneath a critical sea wall on Lantau island, Hong Kong New Territories. This was part of a 30-mile gas pipeline crossing under the South China Sea associated with the Towngas Lantau construction project for Hong Kong`s new Chep Lap Kok International Airport. During a twenty-one day project, Cherrington Corp. drilled and forward-reamed two, 20-in., 1,294-ft. holes to pull back the twin pipelines. The project was completed during typhoon weather, strong currents and logistical problems associated with operation in a remote uninhabited area. The successful installation of the twin gasmore » lines was the result of proper hole design, high-quality surveying techniques and innovative directional drilling methods. Each hole exited approximately 90-ft. from the pre-installed product pipe in the sea floor trench. A 20-in. reamer with bull-nose and rear stabilizer was used to open both holes from 9 to 20-inches.« less
Entanglement branes in a two-dimensional string theory
Donnelly, William; Wong, Gabriel
2017-09-20
What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less
NASA Astrophysics Data System (ADS)
Derendinger, J.-P.; Orlando, D.; Uranga, A.
2008-11-01
This special issue is devoted to the proceedings of the conference 'RTN Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, on the 21 25 January 2008. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous ones have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next one will again take place at CERN, in February 2009. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years is the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti-de Sitter spacetimes with gauge theories. The duality relates the weak coupling regime of one system to the strongly coupled regime of the other, and is therefore very non-trivial to test beyond the supersymmetry-protected BPS sector. One of the key ideas to quantitatively match several quantities on both sides is the use of integrability, both in the gauge theory and the string side. The lecture notes by Nick Dorey provide a pedagogical introduction to the fascinating topic of integrability in AdS/CFT. On the string theory side, progress has been limited by the difficulties of quantizing the worldsheet theory in the presence of RR backgrounds. There is increasing hope that these difficulties can be overcome, using the pure spinor formulation of string theory. The lectures by Yaron Oz overview the present status of this proposal. The gauge/gravity correspondence is already leading to important insights into questions of quantum gravity, like the entropy of black holes and its interpretation in terms of microstates. These questions can be addressed in string theory, for certain classes of supersymmetric black holes. The lectures by Vijay Balasubramanian, Jan de Boer, Sheer El-Showk and Ilies Messamah review recent progress in this direction. Throughout the years, formal developments in string theory have systematically led to improved understanding on how it may relate to nature. In this respect, the lectures by Henning Samtleben describe how the formal developments on gauged supergravities can be used to describe compactification vacua in string theory, and their implications for moduli stabilization and supersymmetry breaking. Indeed, softly broken supersymmetry is one of the leading proposals to describe particle physics at the TeV energy range, as described in the lectures by Gian Giudice (not covered in this issue). This connection with TeV scale physics is most appropriate and timely, given that this energy range will shortly become experimentally accessible in the LHC at CERN. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructure that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. Special thanks also go to Denis Frank, for his very valuable help in preparing the conference web pages. Group photo
Simple, Affordable and Sustainable Borehole Observatories for Complex Monitoring Objectives
NASA Astrophysics Data System (ADS)
Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Wefer, G.
2014-12-01
Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: The development and installation of shallow borehole observatories. Three different systems have been developed for the MeBo seafloor drill, which is operated by MARUM, Univ. Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: The CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hostab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to two weeks while sending the long-term data sets to shore. In 2012, 2 MeBoPLUGs, 1 MeBoCORK-A and 1 MeBoCORK-B were installed with MeBo in the Nankai Trough, Japan, and data were successfully downloaded from the CORKs.
The Subglacial Access and Fast Ice Research Experiment - SAFIRE - on Store Glacier, West Greenland
NASA Astrophysics Data System (ADS)
Christoffersen, P.; Hubbard, B. P.; Doyle, S. H.; Young, T. J.; Hofstede, C. M.; Bougamont, M. H.; Todd, J.; Toberg, N.; Nicholls, K. W.; Box, J.; Walter, J. I.; Hubbard, A.
2015-12-01
Marine-terminating outlet glaciers drain 90 percent of the Greenland Ice Sheet and are responsible for about half of the ice sheet's net annual mass loss, which currently raises global sea level by 1 mm per year. The basal controls on these fast-flowing glaciers are, however, poorly understood, with the implication that numerical ice sheet models needed to predict future dynamic ice loss from Greenland relies on uncertain and often untested basal parameterizations. The Subglacial Access and Fast Ice Research Experiment - SAFIRE - is addressing this paucity of observational constraints by drilling to the bed of Store Glacier, a fast-flowing outlet glacier terminating in Uummannaq Fjord, West Greenland. In 2014, we gained access to the bed in four boreholes drilled to depths of 603-616 m near the center of the glacier, 30 km inland from the calving terminus where ice flows at a rate of 700 m/year. A seismic survey showed the glacier bed to consist of water-saturated, soft sediment. The water level in all four boreholes nevertheless dropped rapidly to 80 m below the ice surface when the drill connected with a basal water system, indicating effective drainage over a sedimentary bed. We were able to install wired sensor strings at the bed (water pressure, temperature, electrical conductivity and turbidity) and within the glacier (temperature and tilt) in three boreholes. The sensors operated for up to 80+ days before cables stretched and ultimately snapped due to high internal strain. The data collected during this sensor deployment show ice as cold as -21 degrees Celcius; yet, temperature of water in the basal water system was persistently above the local freezing point. With diurnal variations detected in several sensor records, we hypothesise that surface water lubricates the ice flow while also warming basal ice. The fast basal motion of Store Glacier not only occurs by basal sliding, but from high rates of concentrated strain in the bottom third of the glacier. Deployment of an autonomous phase-sensitive radar near the drill site complements the data collected by sensors installed in boreholes, as internal reflectors measured at hourly timescale show very high, and highly variable internal strain within the glacier. In 2016, we plan to install new sensors while also sampling cores from the bed.
NASA Technical Reports Server (NTRS)
Turok, Neil
1988-01-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation.
p-adic string theories provide lattice Discretization to the ordinary string worldsheet.
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
Self-organization in a system of binary strings with spatial interactions
NASA Astrophysics Data System (ADS)
Banzhaf, W.; Dittrich, P.; Eller, B.
1999-01-01
We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.
p-adic String Theories Provide Lattice Discretization to the Ordinary String Worldsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p{yields}1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
Progress report for a research program in theoretical high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.; Fried, H.M.; Jevicki, A.
This year's research has dealt with: superstrings in the early universe; the invisible axion emissions from SN1987A; quartic interaction in Witten's superstring field theory; W-boson associated multiplicity and the dual parton model; cosmic strings and galaxy formation; cosmic strings and baryogenesis; quark flavor mixing; p -- /bar p/ scattering at TeV energies; random surfaces; ordered exponentials and differential equations; initial value and back-reaction problems in quantum field theory; string field theory and Weyl invariance; the renormalization group and string field theory; the evolution of scalar fields in an inflationary universe, with and without the effects of gravitational perturbations; cosmic stringmore » catalysis of skyrmion decay; inflation and cosmic strings from dynamical symmetry breaking; the physic of flavor mixing; string-inspired cosmology; strings at high-energy densities and complex temperatures; the problem of non-locality in string theory; string statistical mechanics; large-scale structures with cosmic strings and neutrinos; the delta expansion for stochastic quantization; high-energy neutrino flux from ordinary cosmic strings; a physical picture of loop bremsstrahlung; cylindrically-symmetric solutions of four-dimensional sigma models; large-scale structure with hot dark matter and cosmic strings; the unitarization of the odderon; string thermodynamics and conservation laws; the dependence of inflationary-universe models on initial conditions; the delta expansion and local gauge invariance; particle physics and galaxy formation; chaotic inflation with metric and matter perturbations; grand-unified theories, galaxy formation, and large-scale structure; neutrino clustering in cosmic-string-induced wakes; and infrared approximations to nonlinear differential equations. 17 refs.« less
String Formatting Considered Harmful for Novice Programmers
ERIC Educational Resources Information Center
Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.
2010-01-01
In Java, "System.out.printf" and "String.format" consume a specialised kind of string commonly known as a format string. In our study of first-year students at the Ateneo de Manila University, we discovered that format strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found…
Charting the landscape of supercritical string theory.
Hellerman, Simeon; Swanson, Ian
2007-10-26
Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.
String solutions in spherically-symmetric f(R) gravity vacuum
NASA Astrophysics Data System (ADS)
Dil, Emre
Dynamical evolution of the cosmic string in a spherically symmetric f(R) gravity vacuum is studied for a closed and straight string. We first set the background spacetime metric for a constant curvature scalar R = R0, and obtain the Killing fields for it. Using the standard gauge coordinates and constraints for both closed and straight strings, we present the equation of motions and find the solutions of them. We then analyze the dynamics of the string by studying the behavior of the string radius and periastron radius, with respect to both proper time and azimuthal angle, for various values of f(R) functions. Consequently, we conclude that the value of f(R) dramatically affects the closed string collapse time and the straight string angular deviation.
Diffusion of massive particles around an Abelian-Higgs string
NASA Astrophysics Data System (ADS)
Saha, Abhisek; Sanyal, Soma
2018-03-01
We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.
Remarks on entanglement entropy in string theory
NASA Astrophysics Data System (ADS)
Balasubramanian, Vijay; Parrikar, Onkar
2018-03-01
Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.
Gas Hydrate Research Site Selection and Operational Research Plans
NASA Astrophysics Data System (ADS)
Collett, T. S.; Boswell, R. M.
2009-12-01
In recent years it has become generally accepted that gas hydrates represent a potential important future energy resource, a significant drilling and production hazard, a potential contributor to global climate change, and a controlling factor in seafloor stability and landslides. Research drilling and coring programs carried out by the Ocean Drilling Program (ODP), the Integrated Ocean Drilling Program (IODP), government agencies, and several consortia have contributed greatly to our understanding of the geologic controls on the occurrence of gas hydrates in marine and permafrost environments. For the most part, each of these field projects were built on the lessons learned from the projects that have gone before them. One of the most important factors contributing to the success of some of the more notable gas hydrate field projects has been the close alignment of project goals with the processes used to select the drill sites and to develop the project’s operational research plans. For example, IODP Expedition 311 used a transect approach to successfully constrain the overall occurrence of gas hydrate within the range of geologic environments within a marine accretionary complex. Earlier gas hydrate research drilling, including IODP Leg 164, were designed primarily to assess the occurrence and nature of marine gas hydrate systems, and relied largely on the presence of anomalous seismic features, including bottom-simulating reflectors and “blanking zones”. While these projects were extremely successful, expeditions today are being increasingly mounted with the primary goal of prospecting for potential gas hydrate production targets, and site selection processes designed to specifically seek out anomalously high-concentrations of gas hydrate are needed. This approach was best demonstrated in a recently completed energy resource focused project, the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II), which featured the collection of a comprehensive set of logging-while-drilling (LWD) data through expected gas-hydrate-bearing sand reservoirs in seven wells at three sites in the Gulf of Mexico. The discovery of thick hydrate-bearing sands at two of the sites drilled in the Gulf Mexico validated the integrated geological and geophysical approach used in the pre-drill site selection process to identify gas hydrate reservoirs that may be conducive to energy production. The results of the GOM JIP Leg II LWD expedition are also being used to support the selection of sites for a future drilling, logging, and coring program. Operationally, recent drilling programs, such as ODP Leg 204, IODP Expedition 311, the Japanese Toaki-oki to Kumano-nada drilling leg, the Indian NGHP Expedition 01, and the South Korean Gas Hydrate Research and Development Organization Expedition 01 have demonstrated the great benefit of a multi-leg drilling approach, including the initial acquisition of LWD data that was used to then select sites for the drilling of complex core and wireline logging test holes. It is obvious that a fully integrated site selection approach and a “goal based” operational plan, possibly including numerous drill sites and drilling legs, are required considerations for any future gas hydrate research project.
Residual dentin thickness in mandibular premolars prepared with gates glidden and ParaPost drills.
Pilo, R; Tamse, A
2000-06-01
The main factor that determines the prognosis of restored pulpless teeth is preservation of sound dentin. This study evaluated the residual dentinal thickness (RDT) of mandibular premolars after preparation of post space with Gates Glidden and ParaPost drills. Twelve extracted single canal mandibular premolars were embedded in clear polyester resin to the cementoenamel junction (CEJ) in a muffle device. Three horizontal sections were made 1, 3, and 5 mm apical to the CEJ. Mesiodistal (MD) and faciolingual (FL) axes were carefully marked and the RDT was measured for each slice. Each tooth slice was reassembled in the muffle device with orientation pins, then secured with stabilizing pins. This procedure was repeated after enlarging the root canal to K-40 file and preparing the coronal root canal space with Gates Glidden drills and ParaPost drills Nos. 3, 4, and 5. Residual dentinal thickness in a MD direction was 3.77 +/- 0.51 mm in the unprepared upper slice and 2.23 +/- 0.31 mm in the No. 5 ParaPost drill prepared lower slice, for a difference of 41%. The corresponding values for the FL direction were 4.35 +/- 0.51 mm and 4.08 +/- 0.46 mm, respectively (6%). The average dentinal thickness 5 mm below the CEJ in the mesial and distal directions after post space preparation approached the accepted minimal 1 mm. A conservative approach to post space preparation was advocated.
Subsurface fluid pressures from drill-stem tests, Uinta Basin, Utah
Nelson, P.H.
2002-01-01
High fluid pressures are known to be associated with oil and gas fields in the Uinta Basin, Utah. Shut-in pressure measurements from drill-stem tests show how pressure varies with depth and by area within the basin. The data base used in this report incorporates over 2,000 pressure measurements from drill-stem tests in wells completed prior to 1985. However, the number of useful pressure measurements is considerably less, because many drill-stem tests fail to stabilize at the actual formation pressure if the permeability is low. By extracting the maximum pressure measurements recorded in a collection of wells within an area, the trend of formation pressure within that area can be approximated. Areal compilations of pressures from drill-stem tests show that overpressured rock formations occur throughout much of the northern and eastern areas of the Uinta Basin. In particular, significant overpressuring (0.5 < pressure gradient < 0.8 psi/ft) is found throughout much of the Altamont-Bluebell field at depths ranging from 10,000 to 13,000 ft, equivalent to 5,000 to 8,000 ft below sea level. Limited data indicate that the pressure gradient declines at depths greater than 13,000 ft. An underpressured zone appears to exist in the Altamont-Bluebell field at depths shallower than 5,000 ft. Throughout the eastern Uinta Basin, moderately overpressured zones (0.46 < pressure gradient < 0.5 psi/ft) are common, with local evidence of significantly overpressured zones, but pressure gradients greater than 0.6 psi/ft are rare.
Sankey, Eric W; Butler, Eric; Sampson, John H
2017-10-01
To evaluate accuracy of a computed tomography (CT)-guided frameless stereotactic drilling and catheter system. A prospective, single-arm study was performed using human cadaver heads to evaluate placement accuracy of a novel, flexible intracranial catheter and stabilizing bone anchor system and drill kit. There were 20 catheter placements included in the analysis. The primary endpoint was accuracy of catheter tip location on intraoperative CT. Secondary endpoints included target registration error and entry and target point error before and after drilling. Measurements are reported as mean ± SD (median, range). Target registration error was 0.46 mm ± 0.26 (0.50 mm, -1.00 to 1.00 mm). Two (10%) target point trajectories were negatively impacted by drilling. Intracranial catheter depth was 59.8 mm ± 9.4 (60.5 mm, 38.0-80.0 mm). Drilling angle was 22° ± 9 (21°, 7°-45°). Deviation between planned and actual entry point on CT was 1.04 mm ± 0.38 (1.00 mm, 0.40-2.00 mm). Deviation between planned and actual target point on CT was 1.60 mm ± 0.98 (1.40 mm, 0.40-4.00 mm). No correlation was observed between intracranial catheter depth and target point deviation (accuracy) (Pearson coefficient 0.018) or between technician experience and accuracy (Pearson coefficient 0.020). There was no significant difference in accuracy with trajectories performed for different cadaver heads (P = 0.362). Highly accurate catheter placement is achievable using this novel flexible catheter and bone anchor system placed via frameless stereotaxy, with an average deviation between planned and actual target point of 1.60 mm ± 0.98 (1.40 mm, 0.40-4.00 mm). Copyright © 2017 Elsevier Inc. All rights reserved.
Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska North Slope
Lee, M.W.; Agena, W.F.; Collett, T.S.; Inks, T.L.
2011-01-01
In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. ?? 2009.
Reducing injection loss in drill strings
Drumheller, Douglas S.
2004-09-14
A system and method for transferring wave energy into or out of a periodic structure having a characteristic wave impedance profile at a prime frequency, the characteristic wave impedance profile comprising a real portion and an imaginary portion, comprising: locating one or more energy transfer elements each having a wave impedance at the prime frequency approximately equal to the real portion of the characteristic wave impedance at one or more points on the periodic structure with the imaginary portion approximately equaling zero; and employing the one or more energy transfer elements to transfer wave energy into or out of the periodic structure. The energy transfer may be repeaters. Quarter-wave transformers can be provided at one or more points on the periodic structure with the imaginary portion approximately equaling zero to transmit waves across one or more discontinuities. A terminator can be employed for cancellation of waves. The invention substantially eliminates reflections of the wave energy at the prime frequency by joints between sections of the periodic structure.
Cosmic string catalysis of skyrmion decay
NASA Technical Reports Server (NTRS)
Gregory, Ruth; Davis, Anne-Christine; Brandenberger, Robert
1988-01-01
The Callan-Witten picture is developed for monopole catalyzed skyrmion decay in order to analyze the corresponding cosmic string scenario. It is discovered that cosmic strings (both ordinary and superconducting) can catalyze proton decay, but that this catalysis only occurs on the scale of the core of the string. In order to do this we have to develop a vortex model for the superconducting string. An argument is also given for the difference in the enhancement factors for monopoles and strings.
Hydraulics Graphics Package. Users Manual
1985-11-01
ENTER: VARIABLE/SEPARATOR/VALUE OR STRING GLBL, TETON DAM FAILURE ENTER: VARIABLE/SEPARATOR/VALUE OR STRING SLOC ,DISCHARGE HISTOGRAM ENTER: VARIABLE...ENTER: VARIABLE/SEPARATOR/VALUE OR STRING YLBL,FLOW IN 1000 CFS ENTER: VARIABLE/SEPARATORVA LUE OR STRING GLBL, TETON DAM FAILURE ENTER: VARIABLE...SEPARATOR/VALUE OR STRING SECNO, 0 ENTER: VARIABLE/SEPARATOR/VALUE OR STRING GO 1ee0. F go L 0 U I Goo. 200. TETON DAM FAILUPE N\\ rLOIJ Alr 4wi. fiNT. I .I
Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel
2012-05-01
Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In particular, report of poor letter/digit-string processing but preserved symbol-string processing was viewed as evidence of poor visual-to-phonology code mapping, in line with the phonological theory of developmental dyslexia. We assessed here the visual-to-phonological-code mapping disorder hypothesis. In Experiment 1, letter-string, digit-string and colour-string processing was assessed to disentangle a phonological versus visual familiarity account of the letter/digit versus symbol dissociation. Against a visual-to-phonological-code mapping disorder but in support of a familiarity account, results showed poor letter/digit-string processing but preserved colour-string processing in dyslexic children. In Experiment 2, two tasks of letter-string report were used, one of which was performed simultaneously to a high-taxing phonological task. Results show that dyslexic children are similarly impaired in letter-string report whether a concurrent phonological task is simultaneously performed or not. Taken together, these results provide strong evidence against a phonological account of poor letter-string processing in developmental dyslexia. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lin, Chien-Hung
2017-05-01
We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.
Photovoltaic power generation system with photovoltaic cells as bypass diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna
A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cellmore » is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelly, William; Wong, Gabriel
What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less
Device for balancing parallel strings
Mashikian, Matthew S.
1985-01-01
A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.
Reducing Risk in Horizontal Directional Drilling (HDD) in Soft Sedimentary Environments
NASA Astrophysics Data System (ADS)
Yarbrough, L. D.; Skonberg, E.
2017-12-01
This is a focus on the applied outcome of geologic reports and the scale of near surface geologic process which affect the success of horizontal directional drilling (HDD) operations. Often there is too little data to fully characterize the subsurface along the drilled hole. Adding uncertainty is the exploration borehole is typically vertical while the drill path orientation of the HDD is not. The stratigraphic principle of original horizontality is heavily relied upon when interpreting the geology of the drill path and for good reason because of the depositional processes involved. However, the scale of secondary sedimentary processes, specifically zones of induration and their potential effects on the HDD can be at a scale or frequency that is not properly sampled during the geotechnical investigation. This lack of direct evidence could lead geologists and designers not to include these low-frequency phenomena in their risk analysis. For HDD planning and design, the industry routinely generalizes the earth materials to be encountered as soft or hard. This use of inexact, colloquial phrasing paints a picture of the a nearly homogeneous drilling site. Even though a majority of the site can be characterized as a low-strength or high-strength material, the diagenesis of sediments can include zones with wide-ranging strengths that can negatively impact the rate of penetration, the ability to steer and bore hole stability. In this generalization, soft is a majority of low strength or unconsolidated material (sands, silts, and clays). This does not preclude concretions and other indurated lenticular features that are widespread in the Gulf Coast states. This investigation reviews several formations commonly encountered during medium to large diameter (>10 inches) HDD operations. The Bashi formation with surface exposures in Mississippi and Alabama; the Wilcox Group in southern Mississippi and central Louisiana; the Cook Mountain Formation; the Hatchetigbee formation and Catahoula Formation of Louisiana and Mississippi were reviewed and potential HDD drilling and pull back complications are discussed.
Site selection for DOE/JIP gas hydrate drilling in the northern Gulf of Mexico
Hutchinson, Deborah; Shelander, Dianna; Dai, J.; McConnell, D.; Shedd, William; Frye, Matthew; Ruppel, Carolyn D.; Boswell, R.; Jones, Emrys; Collett, Timothy S.; Rose, Kelly K.; Dugan, Brandon; Wood, Warren T.
2008-01-01
n the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses
Aspects of some dualities in string theory
NASA Astrophysics Data System (ADS)
Kim, Bom Soo
AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma CFT.
2017-01-01
The physics of wound and unwound strings on the electric guitar are presented here, and the pitch intervals produced by the movements of a Fender Stratocaster tremolo unit are explained. Predicted changes in pitch sensitivity of different strings are given, and experimentally verified, for changes in saddle height, the distance of string free to move behind the nut and ratio of diameters/masses of the core and windings of wound strings. Also, it is shown that changes to the gauge of strings (assuming the string tension is sufficient for linear behaviour and in absence of changes to other construction details) don’t alter the pitch intervals produced by a given angle of tremolo arm use assuming the instrument is set up with the same sounding pitches and starting bridge angle. It is demonstrated that it not possible to equalise the relative sensitivity of unwound steel stings on a Fender Stratocaster type tremolo unit through string construction techniques. The ratio of core to winding mass in the string, on the other hand, was found to be a very powerful design parameter for choosing the sensitivity of the string to tremolo arm use and standard pitch bends. For instance, the pitch intervals produced by operation of tremolo arm for wound strings may be made to approximately match that for one of the unwound strings if they share very similar core gauges (assuming the winding masses are chosen to give approximately the same tension at their sounding pitches). Such a design, only available currently by custom order, also delivers the optimum equalisation in sensitivity of strings for standard string bends (due to these also being produced by altering the length of the string to generate changes in tension and therefore pitch). PMID:28934268
Formation of Electron Strings in Narrow Band Polar Semiconductors
NASA Astrophysics Data System (ADS)
Kusmartsev, F. V.
2000-01-01
We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.
Optimal management of batteries in electric systems
Atcitty, Stanley; Butler, Paul C.; Corey, Garth P.; Symons, Philip C.
2002-01-01
An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.
The waiting time problem in a model hominin population.
Sanford, John; Brewer, Wesley; Smith, Franzine; Baumgardner, John
2015-09-17
Functional information is normally communicated using specific, context-dependent strings of symbolic characters. This is true within the human realm (texts and computer programs), and also within the biological realm (nucleic acids and proteins). In biology, strings of nucleotides encode much of the information within living cells. How do such information-bearing nucleotide strings arise and become established? This paper uses comprehensive numerical simulation to understand what types of nucleotide strings can realistically be established via the mutation/selection process, given a reasonable timeframe. The program Mendel's Accountant realistically simulates the mutation/selection process, and was modified so that a starting string of nucleotides could be specified, and a corresponding target string of nucleotides could be specified. We simulated a classic pre-human hominin population of at least 10,000 individuals, with a generation time of 20 years, and with very strong selection (50% selective elimination). Random point mutations were generated within the starting string. Whenever an instance of the target string arose, all individuals carrying the target string were assigned a specified reproductive advantage. When natural selection had successfully amplified an instance of the target string to the point of fixation, the experiment was halted, and the waiting time statistics were tabulated. Using this methodology we tested the effect of mutation rate, string length, fitness benefit, and population size on waiting time to fixation. Biologically realistic numerical simulations revealed that a population of this type required inordinately long waiting times to establish even the shortest nucleotide strings. To establish a string of two nucleotides required on average 84 million years. To establish a string of five nucleotides required on average 2 billion years. We found that waiting times were reduced by higher mutation rates, stronger fitness benefits, and larger population sizes. However, even using the most generous feasible parameters settings, the waiting time required to establish any specific nucleotide string within this type of population was consistently prohibitive. We show that the waiting time problem is a significant constraint on the macroevolution of the classic hominin population. Routine establishment of specific beneficial strings of two or more nucleotides becomes very problematic.
The IMS Software Integration Platform
1993-04-12
products to incorporate all data shared by the IMS applications. Some entities (time-series, images, a algorithm -specific parameters) must be managed...dbwhoanii, dbcancel Transaction Management: dbcommit, dbrollback Key Counter Assignment: dbgetcounter String Handling: cstr ~to~pad, pad-to- cstr Error...increment *value; String Maniputation: int cstr topad (array, string, arraylength) char *array, *string; int arrayjlength; int pad tocstr (string
Cosmic superstrings: Observable remnants of brane inflation
NASA Astrophysics Data System (ADS)
Wyman, Mark Charles
Brane inflation provides a natural dynamical model for the physics which underlie the inflationary paradigm. Besides their inflationary predictions, brane models imply another observable consequence: cosmic strings. In this dissertation I outline the background of how cosmic strings arise in brane inflationary models and how the properties of the strings and the models are mutually tied (Chapter 2). I then use cosmological observations to put limits on the properties of any actually-existing cosmic string network (Chapter 3). Next, I study the question of how cosmic superstrings, as the cosmic strings arising from string theory are known, could be distinct from classical gauge- theory cosmic strings. In particular, I propose an analytical model for the cosmological evolution of a network of binding cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the background for the numerical study of a gauge theory model for the dynamics of cosmic superstring binding (Chapter 6).
String theory--the physics of string-bending and other electric guitar techniques.
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.
PhD Thesis: String theory in the early universe
NASA Astrophysics Data System (ADS)
Gwyn, Rhiannon
2009-11-01
The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciuca, Razvan; Hernández, Oscar F., E-mail: razvan.ciuca@mail.mcgill.ca, E-mail: oscarh@physics.mcgill.ca
There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension G μ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this frameworkmore » with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of G μ=5 ×10{sup −9} and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that G μ≤2.3×10{sup −9}.« less
String Theory - The Physics of String-Bending and Other Electric Guitar Techniques
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880