NASA Astrophysics Data System (ADS)
Reyer, D.; Philipp, S. L.
2014-09-01
Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.
Study of sample drilling techniques for Mars sample return missions
NASA Technical Reports Server (NTRS)
Mitchell, D. C.; Harris, P. T.
1980-01-01
To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed.
ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return
NASA Technical Reports Server (NTRS)
Chu, Philip; Spring, Justin; Zacny, Kris
2014-01-01
The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.
Ultrasonically assisted drilling of rocks
NASA Astrophysics Data System (ADS)
Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.
2018-05-01
Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.
Percussive Force Magnitude in Permafrost
NASA Technical Reports Server (NTRS)
Eustes, A. W., III; Bridgford, E.; Tischler, A.; Wilcox, B. H.
2000-01-01
An in-depth look at percussive drilling shows that the transmission efficiency is very important; however, data for percussive drilling in hard rock or permafrost is rarely available or the existing data are very old. Transmission efficiency can be used as a measurement of the transmission of the energy in the piston to the drill steel or bit and from the bit to the rock. Having a plane and centralized impact of the piston on the drill steel can optimize the transmission efficiency from the piston to the drill steel. A transmission efficiency of near 100% between piston and drill steel is possible. The transmission efficiency between bit and rock is dependent upon the interaction within the entire system. The main factors influencing this transmission efficiency are the contact area between cutting structure and surrounding rock (energy loss due to friction heat), damping characteristics of the surrounding rock (energy dampening), and cuttings transport. Some of these parameters are not controllable. To solve the existing void regarding available drilling data, an experiment for gathering energy data in permafrost for percussive drilling was designed. Fifteen artificial permafrost samples were prepared. The samples differed in the grain size distribution to observe a possible influence of the grain size distribution on the drilling performance. The samples were then manually penetrated (with a sledge-hammer) with two different spikes.
A Parametric Study for the Design of an Optimized Ultrasonic Percussive Planetary Drill Tool.
Li, Xuan; Harkness, Patrick; Worrall, Kevin; Timoney, Ryan; Lucas, Margaret
2017-03-01
Traditional rotary drilling for planetary rock sampling, in situ analysis, and sample return are challenging because the axial force and holding torque requirements are not necessarily compatible with lightweight spacecraft architectures in low-gravity environments. This paper seeks to optimize an ultrasonic percussive drill tool to achieve rock penetration with lower reacted force requirements, with a strategic view toward building an ultrasonic planetary core drill (UPCD) device. The UPCD is a descendant of the ultrasonic/sonic driller/corer technique. In these concepts, a transducer and horn (typically resonant at around 20 kHz) are used to excite a toroidal free mass that oscillates chaotically between the horn tip and drill base at lower frequencies (generally between 10 Hz and 1 kHz). This creates a series of stress pulses that is transferred through the drill bit to the rock surface, and while the stress at the drill-bit tip/rock interface exceeds the compressive strength of the rock, it causes fractures that result in fragmentation of the rock. This facilitates augering and downward progress. In order to ensure that the drill-bit tip delivers the greatest effective impulse (the time integral of the drill-bit tip/rock pressure curve exceeding the strength of the rock), parameters such as the spring rates and the mass of the free mass, the drill bit and transducer have been varied and compared in both computer simulation and practical experiment. The most interesting findings and those of particular relevance to deep drilling indicate that increasing the mass of the drill bit has a limited (or even positive) influence on the rate of effective impulse delivered.
Confidence Hills Drill Powder in Scoop
2014-11-04
This image from NASA Curiosity rover shows a sample of powdered rock extracted by the rover drill from the Confidence Hills target -- the first rock drilled after Curiosity reached the base of Mount Sharp in September 2014.
Laser Hits on Martian Drill Tailings
2013-02-13
A day after NASA Mars rover Curiosity drilled the first sample-collection hole into a rock on Mars, the rover Chemistry and Camera ChemCam instrument shot laser pulses into the fresh rock powder that the drilling generated.
Design and testing of coring bits on drilling lunar rock simulant
NASA Astrophysics Data System (ADS)
Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo; Ma, Chao; Zhang, Hui; Qin, Hongwei; Deng, Zongquan
2017-02-01
Coring bits are widely utilized in the sampling of celestial bodies, and their drilling behaviors directly affect the sampling results and drilling security. This paper introduces a lunar regolith coring bit (LRCB), which is a key component of sampling tools for lunar rock breaking during the lunar soil sampling process. We establish the interaction model between the drill bit and rock at a small cutting depth, and the two main influential parameters (forward and outward rake angles) of LRCB on drilling loads are determined. We perform the parameter screening task of LRCB with the aim to minimize the weight on bit (WOB). We verify the drilling load performances of LRCB after optimization, and the higher penetrations per revolution (PPR) are, the larger drilling loads we gained. Besides, we perform lunar soil drilling simulations to estimate the efficiency on chip conveying and sample coring of LRCB. The results of the simulation and test are basically consistent on coring efficiency, and the chip removal efficiency of LRCB is slightly lower than HIT-H bit from simulation. This work proposes a method for the design of coring bits in subsequent extraterrestrial explorations.
Testing New Techniques for Mars Rover Rock-Drilling
2017-10-23
In the summer and fall of 2017, the team operating NASA's Curiosity Mars rover conducted tests in the "Mars Yard" at NASA's Jet Propulsion Laboratory, Pasadena, California, to develop techniques that Curiosity might be able to use to resume drilling into rocks on Mars. JPL robotics engineer Vladimir Arutyunov, in this June 29, 2017, photo, checks the test rover's drill bit at its contact point with a rock. Note that the stabilizer post visible to the right of the bit is not in contact with the rock, unlike the positioning used and photographed by Curiosity when drilling into rocks on Mars in 2013 to 2016. In late 2016, after Curiosity's drill had collected sample material from 15 Martian rocks, the drill's feed mechanism ceased working reliably. That motorized mechanism moved the bit forward or back with relation to the stabilizer posts on either side of the bit. In normal drilling by Curiosity, the stabilizers were positioned on the target rock first, and then the feed mechanism extended the rotation-percussion bit into the rock. In the alternative technique seen here, called "feed-extended drilling," the test rover's stabilizers are not used to touch the rock. The bit is advanced into the rock by motion of the robotic arm rather than the drill's feed mechanism. https://photojournal.jpl.nasa.gov/catalog/PIA22061
New Rock-Drilling Method in 'Mars Yard' Test
2017-10-23
This photo taken in the "Mars Yard" at NASA's Jet Propulsion Laboratory, Pasadena, California, on Aug. 1, 2017, shows a step in development of possible alternative techniques that NASA's Curiosity Mars rover might be able to use to resume drilling into rocks on Mars. In late 2016, after Curiosity's drill had collected sample material from 15 Martian rocks in four years, the drill's feed mechanism ceased working reliably. That motorized mechanism moved the bit forward or back with relation to stabilizer posts on either side of the bit. In normal drilling by Curiosity, the stabilizers were positioned on the target rock first, and then the feed mechanism extended the rotation-percussion bit into the rock. In the alternative technique seen here, called "feed-extended drilling," the test rover's stabilizers are not used to touch the rock. The bit is advanced into the rock by motion of the robotic arm rather than the drill's feed mechanism. https://photojournal.jpl.nasa.gov/catalog/PIA22062
Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.
2018-01-01
Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.
Cumberland Target Drilled by Curiosity
2013-05-20
NASA Mars rover Curiosity drilled into this rock target, Cumberland, during the 279th Martian day, or sol, of the rover work on Mars May 19, 2013 and collected a powdered sample of material from the rock interior.
NASA Technical Reports Server (NTRS)
Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt
2012-01-01
This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the bit is a thick-walled maraging steel collection tube allowing the powdered sample to be augured up the hole into the sample chamber. For robustness, the wall thickness of the DBA was maximized while still ensuring effective sample collection. There are four recesses in the bit tube that are used to retain the fresh bits in their bit box. The rotating bit is supported by a back-to-back duplex bearing pair within a housing that is connected to the outer DBA housing by two titanium diaphragms. The only bearings on the drill in the sample flow are protected by a spring-energized seal, and an integrated shield that diverts the ingested powdered sample from the moving interface. The DBA diaphragms provide radial constraint of the rotating bit and form the sample chambers. Between the diaphragms there is a sample exit tube from which the sample is transferred to the CHIMRA. To ensure that the entire collected sample is retained, no matter the orientation of the drill with respect to gravity during sampling, the pass-through from the forward to the aft chamber resides opposite to the exit tube.
NASA Astrophysics Data System (ADS)
Rossi, Edoardo; Kant, Michael A.; von Rohr, Philipp Rudolf; Saar, Martin O.
2017-04-01
The exploitation of deep geothermal resources for energy production relies on finding cost effective solutions to increase the drilling performance in hard rocks. Conventional rotary drilling techniques, based on mechanical rock exportation, result in high rates of drilling tool wearing, causing significant costs. Additionally, rotary drilling results in low drilling speeds in the typically hard crystalline basement rocks targeted for enhanced geothermal energy utilization technologies. Furthermore, even lower overall drilling rates result, when considering tripping times required to exchange worn drill tools. Therefore, alternative drilling techniques, such as hammering, thermal drilling, plasma drilling, and jetting processes are widely investigated in order to provide cost-effective alternatives to conventional drilling methods. A promising approach, that combines conventional rotary and thermal drilling techniques, is investigated in the present work. Here, the rock material is thermally weakened before being exported by conventional cutters. Heat is locally provided by a flame, which moves over the rock surface, heat-treating the material. Besides reducing the rock strength, an in-depth smoothening effect of the mechanical rock properties is observed due to the thermal treatment. This results in reduced rates of drill bit wearing and higher rates of penetration, which in turn decreases drilling costs significantly, particularly for deep-drilling projects. Due to the high heating rates, rock-hardening, commonly observed at moderate temperatures, can be avoided. The flame action can be modelled as a localized, high heat transfer coefficient flame treatment, which results in orders of magnitude higher heating rates than conventional oven treatments. Therefore, we analyse rock strength variations after different maximum temperatures, flame-based heating rates, and rock confinement pressures. The results show that flame treatments lead to a monotonous decrease of rock strength with temperature. This is different from oven treatments, where an initial increase of strength is typically observed, followed by a steep decrease upon further (slow) oven-heating. Thus, the weakening of sandstone and granite samples due to flame treatments indicates the feasibility of a combined mechanical-thermal drilling system. These results suggest that the new combined method enables improved rates of penetration in hard rocks while reducing the rate of drill tool wear. We also present possible implementations of this combined drilling system in the field. From field test results, advantages and limitations of the proposed new technology are presented, with an emphasis on accessing geothermal energy resources in crystalline basement rocks.
NASA Astrophysics Data System (ADS)
Ito, T.; Funato, A.; Tamagawa, T.; Tezuka, K.; Yabe, Y.; Abe, S.; Ishida, A.; Ogasawara, H.
2017-12-01
When rock is cored at depth by drilling, anisotropic expansion occurs with the relief of anisotropic rock stresses, resulting in a sinusoidal variation of core diameter with a period of 180 deg. in the core roll angle. The circumferential variation of core diameter is given theoretically as a function of rock stresses. These new findings can lead various ideas to estimate the rock stress from circumferential variation of core diameter measured after the core retrieving. In the simplest case when a single core sample is only available, the difference between the maximum and minimum components of rock stress in a plane perpendicular to the drilled hole can be estimated from the maximum and minimum core diameters (see the detail in, Funato and Ito, IJRMMS, 2017). The advantages of this method include, (i) much easier measurement operation than those in other in-situ or in-lab estimation methods, and (ii) applicability in high stress environment where stress measurements need pressure for packers or pumping system for the hydro-fracturing methods higher than their tolerance levels. We have successfully tested the method at deep seismogenic zones in South African gold mines, and we are going to apply it to boreholes collared at 3 km depth and intersecting a M5.5 rupture plane several hundred meters below the mine workings in the ICDP project of "Drilling into Seismogenic zones of M2.0 - M5.5 earthquakes in deep South African gold mines" (DSeis) (e.g., http://www.icdp-online.org/projects/world/africa/orkney-s-africa/details/). If several core samples with different orientation are available, all of three principal components of 3D rock stress can be estimated. To realize this, we should have several boreholes drilled in different directions in a rock mass where the stress field is considered to be uniform. It is commonly carried out to dill boreholes in different directions from a mine gallery. Even in a deep borehole drilled vertically from the ground surface, the downhole tool of rotary sidewall coring allows us to take core samples with different orientations at depths of interest from the sidewall of the vertically-drilled borehole. The theoretical relationship between the core expansion and rock stress has been verified through the examination of core samples prepared in laboratory experiments and retrieved field cores.
Contamination Tracer Testing With Seabed Rock Drills: IODP Expedition 357
NASA Astrophysics Data System (ADS)
Orcutt, B.; Bergenthal, M.; Freudenthal, T.; Smith, D. J.; Lilley, M. D.; Schneiders, L.; Fruh-Green, G. L.
2016-12-01
IODP Expedition 357 utilized seabed rock drills for the first time in the history of the ocean drilling program, with the aim of collecting intact core of shallow mantle sequences from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This new drilling approach required the development of a new system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.
Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant
2009-01-01
From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.
Powder-Collection System for Ultrasonic/Sonic Drill/Corer
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Chang, Zensheu; Blake, David; Bryson, Charles
2005-01-01
A system for collecting samples of powdered rock has been devised for use in conjunction with an ultrasonic/sonic drill/corer (USDC) -- a lightweight, lowpower apparatus designed to cut into, and acquire samples of, rock or other hard material for scientific analysis. The USDC includes a drill bit, corer, or other tool bit, in which ultrasonic and sonic vibrations are excited by an electronically driven piezoelectric actuator. The USDC advances into the rock or other material of interest by means of a hammering action and a resulting chiseling action at the tip of the tool bit. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, a negligible amount of axial force is needed to make the USDC advance into the material. Also unlike a conventional twist drill, the USDC operates without need for torsional restraint, lubricant, or a sharp bit. The USDC generates powder as a byproduct of the drilling or coring process. The purpose served by the present samplecollection system is to remove the powder from the tool-bit/rock interface and deliver the powder to one or more designated location(s) for analysis or storage
Rock bit requires no flushing medium to maintain drilling speed
NASA Technical Reports Server (NTRS)
1965-01-01
Steel drill bit having terraces of teeth intersected by spiral grooves with teeth permits the boring of small holes through rock with low power. The cuttings are stored in a chamber behind the cutting head. Could be used as sampling device.
Curiosity Self-Portrait at Okoruso Drill Hole
2016-06-13
This self-portrait of NASA's Curiosity Mars rover shows the vehicle at a drilled sample site called "Okoruso," on the "Naukluft Plateau" of lower Mount Sharp. The scene combines multiple images taken with the rover's Mars Hand Lens Imager (MAHLI) on May 11, 2016, during the 1,338th Martian day, or sol, of the rover's work on Mars. In front of the rover is the hole, surrounded by grayish drill cuttings, created by using Curiosity's drill to collect sample rock powder at Okoruo, plus a patch of powder dumped onto the ground after delivery of a portion to the rover's internal Chemistry and Mineralogy (CheMin) laboratory instrument. The rover team compared the rock powder from drilling at Okoruso to material from the nearby "Lubango" drilling site, which is visible behind the rover, just to the left of the mast. The Lubango site was selected within a pale zone, or "halo," beside a fracture in the area's sandstone bedrock. Okoruso is in less-altered bedrock farther from any fractures. Note that the Okoruso drill cuttings appear darker than the Lubango drill cuttings. The Lubango sample was found to be enriched in silica and sulfates, relative to Okoruso. To the left of the rover, in this scene, several broken rocks reveal grayish interiors. Here, Curiosity was driven over the rocks in a fracture-associated halo, so that freshly exposed surfaces could be examined with MAHLI, Mast Camera (Mastcam) and Chemistry and Camera (ChemCam) instruments. An upper portion of Mount Sharp is prominent on the horizon. http://photojournal.jpl.nasa.gov/catalog/PIA20602
Curiosity First 16 Rock or Soil Sampling Sites on Mars
2016-10-03
This graphic maps locations of the sites where NASA's Curiosity Mars rover collected its first 18 rock or soil samples for analysis by laboratory instruments inside the vehicle. It also presents images of the drilled holes where 14 rock-powder samples were acquired. Curiosity scooped two soil samples at each of the other two sites: Rocknest and Gobabeb. The diameter of each drill hole is about 0.6 inch (1.6 centimeters), slightly smaller than a U.S. dime. The images used here are raw color, as recorded by the rover's Mars Hand Lens Imager (MAHLI) camera. Notice the differences in color of the material at different drilling sites. For the map, north is toward upper left corner. The scale bar represents 2 kilometers (1.2 miles). The base map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The latest sample site included is "Quela,"where Curiosity drilled into bedrock of the Murray formation on Sept. 18, 2016, during the 1,464th Martian day, or sol, of the mission. Curiosity landed in August 2012 on the plain (named Aeolis Palus) near Mount Sharp (or Aeolis Mons). More drilling samples collected by MSL are available at http://photojournal.jpl.nasa.gov/catalog/PIA20845
First Drilled Sample on Mars Since 2016
2018-05-23
NASA's Curiosity rover successfully drilled a hole 2 inches (5.1 centimeters) deep in a target called "Duluth" on May 20, 2018. The hole is about .6 inches (1.6 centimeters) across. It was the first rock sample captured by the drill since October 2016. A mechanical issue took the drill offline in December 2016. Engineers at NASA's Jet Propulsion Laboratory in Pasadena, California, had to innovate a new way for the rover to drill in order to restore this ability. The new technique, called Feed Extended Drilling (FED) keeps the drill's bit extended out past two stabilizer posts that were originally used to steady the drill against Martian rocks. It lets Curiosity drill using the force of its robotic arm, a little more like a human would while drilling into a wall at home. This image was taken by Curiosity's Mast Camera (Mastcam) on Sol 2057. It has been white balanced and contrast-enhanced. https://photojournal.jpl.nasa.gov/catalog/PIA22325
NASA Astrophysics Data System (ADS)
Buick, R.
2010-12-01
The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale of the Hamersley Group near Yilgalong Creek. This location had been previously drilled by a mining company in the 1980’s and the core provided the highest biomarker yields of any Archean rocks thus far sampled. As it has been suggested that these biomarkers are non-indigenous contaminants, one possibility is that they were introduced into the drill-core at some time between drilling and sampling, so this hole tests that hypothesis. If biomarker concentrations and ratios differ significantly between the two adjacent holes with differing exposures to post-drilling contaminants, then clearly contamination has affected one or other of the cores. The third hole sampled an off-shore equivalent, through banded irons and kerogenous shales of the ~2.65 Ga Marra Mamba and Jeerinah Formations of the Hamersley Group near Cowcumba Creek. Another opportunity for contamination may arise during post-depositional but pre-drilling hydrocarbon migration, when biomarkers can potentially be introduced into previously barren rocks by younger oils, so this hole tests that possibility. As it was drilled through the same stratigraphic interval and structural domain as the second hole but in a different environment, biomarker ratios should be similar if contaminated but different if indigenous.
Gravity-Independent Mobility and Drilling on Natural Rock using Microspines
NASA Technical Reports Server (NTRS)
Parness, Aaron; Frost, Matthew; Thatte, Nitish; King, Jonathan P.
2012-01-01
To grip rocks on the surfaces of asteroids and comets, and to grip the cliff faces and lava tubes of Mars, a 250 mm diameter omni-directional anchor is presented that utilizes a hierarchical array of claws with suspension flexures, called microspines, to create fast, strong attachment. Prototypes have been demonstrated on vesicular basalt and a'a lava rock supporting forces in all directions away from the rock. Each anchor can support >160 N tangent, >150 N at 45?, and >180 N normal to the surface of the rock. A two-actuator selectively- compliant ankle interfaces these anchors to the Lemur IIB robot for climbing trials. A rotary percussive drill was also integrated into the anchor, demonstrating self-contained rock coring regardless of gravitational orientation. As a harder- than-zero-g proof of concept, 20mm diameter boreholes were drilled 83 mm deep in vesicular basalt samples, retaining a 12 mm diameter rock core in 3-6 pieces while in an inverted configuration, literally drilling into the ceiling.
Curiosity Conducting Mini-Drill Test at Mojave
2015-01-14
This view NASA Curiosity Mars Rover shows the rover drill in position for a mini-drill test to assess whether a rock target called Mojave is appropriate for full-depth drilling to collect a sample. It was taken on Jan. 13, 2015.
2013-02-20
This frame from an animation of NASA Curiosity rover shows the complicated suite of operations involved in conducting the rover first rock sample drilling on Mars and transferring the sample to the rover scoop for inspection.
Curiosity First 14 Rock or Soil Sampling Sites on Mars
2016-06-13
This graphic maps locations of the first 14 sites where NASA's Curiosity Mars rover collected rock or soil samples for analysis by laboratory instruments inside the vehicle. It also presents images of the drilled holes where 12 rock-powder samples were acquired. At the other two sites -- Rocknest and Gobabeb -- Curiosity scooped soil samples. The diameter of each drill hole is about 0.6 inch (1.6 centimeters), slightly smaller than a U.S. dime. The images used here are raw color, as recorded by the rover's Mars Hand Lens Imager (MAHLI) camera. Notice the differences in color of the material at different drilling sites. The latest sample site included is "Oudam," where Curiosity drilled into mudstone of the "Murray formation" on June 4, during the 1,361th Martian day, or sol, of the mission. Curiosity landed in August 2012 on the plain (named Aeolis Palus) near Mount Sharp (or Aeolis Mons). Dates when the first 11 drilled-rock samples were collected are: "John Klein" on Feb. 8, 2013 (Sol 182); "Cumberland" on May 19, 2013 (Sol 279); "Windjana" on May 5, 2014 (Sol 621); "Confidence Hills" on Sept. 24, 2014 (Sol 759); "Mojave" on Jan. 29, 2015 (Sol 882); "Telegraph Peak" on Feb. 24, 2015 (Sol 908); "Buckskin" on July 30, 2015 (Sol 1060); "Big Sky" on Sept. 29, 2015 (Sol 1119); "Greenhorn" on Oct. 18, 2015 (Sol 1137); "Lubango" on April 23, 2016 (Sol 1320); and "Okoruso" on May 5, 2016 (Sol 1332). http://photojournal.jpl.nasa.gov/catalog/PIA20748
Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth; Woskov, Paul; Einstein, Herbert
2014-12-30
Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system wasmore » designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650°C, even exceeding 3000°C, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.« less
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
NASA Astrophysics Data System (ADS)
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
NASA Astrophysics Data System (ADS)
Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.
2006-12-01
Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching of the wall rock during faulting.
Reaching 1 m deep on Mars: the Icebreaker drill.
Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J
2013-12-01
The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.
Chemical analyses and K-Ar ages of samples from 13 drill holes, Medicine Lake volcano, California
Donnelly-Nolan, Julie M.
2006-01-01
Chemical analyses and K-Ar ages are presented for rocks sampled from drill holes at Medicine Lake volcano, northern California. A location map and a cross-section are included, as are separate tables for drill hole information, major and trace element data, and for K-Ar dates.
Demonstrations of Gravity-Independent Mobility and Drilling on Natural Rock using Microspines
NASA Technical Reports Server (NTRS)
Parness, Aaron; Frost, Matthew; King, Jonathan P.; Thatte, Nitish
2012-01-01
The video presents microspine-based anchors be ing developed for gripping rocks on the surfaces of comets and asteroids, or for use on cliff faces and lava tubes on Mars. Two types of anchor prototypes are shown on supporting forces in all directions away from the rock; >160 N tangent, >150 N at 45?, and >180 N normal to the surface of the rock. A compliant robotic ankle with two active degrees of freedom interfaces these anchors to the Lemur IIB robot for future climbing trials. Finally, a rotary percussive drill is shown coring into rock regardless of gravitational orientation. As a harder- than-zero-g proof of concept, inverted drilling was performed creating 20mm diameter boreholes 83 mm deep in vesicular basalt samples while retaining 12 mm diameter rock cores in 3-6 pieces.
Drilling and Caching Architecture for the Mars2020 Mission
NASA Astrophysics Data System (ADS)
Zacny, K.
2013-12-01
We present a Sample Acquisition and Caching (SAC) architecture for the Mars2020 mission and detail how the architecture meets the sampling requirements described in the Mars2020 Science Definition Team (SDT) report. The architecture uses 'One Bit per Core' approach. Having dedicated bit for each rock core allows a reduction in the number of core transfer steps and actuators and this reduces overall mission risk. It also alleviates the bit life problem, eliminates cross contamination, and aids in hermetic sealing. An added advantage is faster drilling time, lower power, lower energy, and lower Weight on Bit (which reduces Arm preload requirements). To enable replacing of core samples, the drill bits are based on the BigTooth bit design. The BigTooth bit cuts a core diameter slightly smaller than the imaginary hole inscribed by the inner surfaces of the bits. Hence the rock core could be much easier ejected along the gravity vector. The architecture also has three additional types of bits that allow analysis of rocks. Rock Abrasion and Brushing Bit (RABBit) allows brushing and grinding of rocks in the same was as Rock Abrasion Tool does on MER. PreView bit allows viewing and analysis of rock core surfaces. Powder and Regolith Acquisition Bit (PRABit) captures regolith and rock powder either for in situ analysis or sample return. PRABit also allows sieving capabilities. The architecture can be viewed here: http://www.youtube.com/watch?v=_-hOO4-zDtE
NASA Astrophysics Data System (ADS)
Fruh-Green, G. L.; Orcutt, B.; Green, S.; Cotterill, C.
2016-12-01
We present an overview of IODP Expedition 357, which successfully used two seabed rock drills to core 17 shallow holes at 9 sites across Atlantis Massif (Mid-Atlantic Ridge 30°N). A major goal of this expedition is to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration. The cores show highly heterogeneous rock type, bulk rock chemistry and alteration that reflect multiple phases of magmatism and fluid-rock interaction within the detachment fault zone. In cores along an E-W transect of the southern wall, recovered mantle peridotites are locally intruded by gabbroic and doleritic dikes and veins. The proportion of mafic rocks are volumetrically less than the amount of mafic rocks recovered previously in the central dome at IODP Site U1309, suggesting a lower degree of melt infiltration into mantle peridotite at the ridge-transform intersection. New technologies were developed and successfully applied for the first time: (1) an in-situ sensor package and water sampling system on each seabed drill measured real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential, temperature, and conductivity during drilling and took water samples after drilling; (2) a borehole plug system to seal the boreholes was successfully deployed at two sites to allow access for future sampling; and (3) delivery of chemical tracers into the drilling fluids for contamination testing. We will provide an overview of the drilling strategy and preliminary results of Expedition 357, and highlight the role of serpentinization in sustaining microbial communities in a region of active serpentinization and low temperature hydrothermal alteration.
Candidate Drilling Target on Mars Doesnt Pass Exam
2014-08-22
This image from the front Hazcam on NASA Curiosity Mars rover shows the rover drill in place during a test of whether the rock beneath it, Bonanza King, would be an acceptable target for drilling to collect a sample.
Microgravity Drill and Anchor System
NASA Technical Reports Server (NTRS)
Parness, Aaron; Frost, Matthew A.; King, Jonathan P.
2013-01-01
This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of microspine toes that independently find holes and ledges on a rock to create an anchor. Once the system is anchored, a linear translation mechanism moves the drill axially into the surface while maintaining the proper WOB. The linear translation mechanism is composed of a ball screw and stepper motor that can translate a carriage with high precision and applied load. The carriage slides along rails using self-aligning linear bearings that correct any axial misalignment caused by bending and torsion. The carriage then compresses a series of springs that simultaneously transmit the load to the drill along the bit axis and act as a suspension that compensates for the vibration caused by percussive drilling. The drill is a compacted, modified version of an off-the-shelf rotary percussive drill, which uses a custom carbide-tipped coring bit. By using rotary percussive drilling, the drill time is greatly reduced. The percussive action fractures the rock debris, which is removed during rotation. The final result is a 0.75-in. (.1.9- cm) diameter hole and a preserved 0.5- in. (.1.3-cm) diameter rock core. This work extends microspine technology, making it applicable to astronaut missions to asteroids and a host of robotic sampling concepts. At the time of this reporting, it is the first instrument to be demonstrated using microspine anchors, and is the first self-contained drill/anchor system to be demonstrated that is capable of drilling in inverted configurations and would be capable of drilling in microgravity.
Cybersonics: Tapping into Technology
NASA Technical Reports Server (NTRS)
2001-01-01
With the assistance of Small Business Innovation Research (SBIR) funding from NASA's Jet Propulsion Laboratory, Cybersonics, Inc., developed an ultrasonic drill with applications ranging from the medical industry to space exploration. The drill, which has the ability to take a core sample of the hardest granite or perform the most delicate diagnostic medical procedure, is a lightweight, ultrasonic device made to fit in the palm of the hand. Piezoelectric actuators, which have only two moving parts and no gears or motors, drive the components of the device, enabling it to operate in a wide range of temperatures. The most remarkable aspect of the drill is its ability to penetrate even the hardest rock with minimal force application. The ultrasonic device requires 20 to 30 times less force than standard rotating drills, allowing it to be safely guided by hand during operation. Also, the drill is operable at a level as low as three watts of power, where conventional drills require more than three times this level. Potential future applications for the ultrasonic drill include rock and soil sampling, medical procedures that involve core sampling or probing, landmine detection, building and construction, and space exploration. Cybersonics, Inc. developed an ultrasonic drill with applications ranging from the medical industry to space exploration.
Results from Testing of Two Rotary Percussive Drilling Systems
NASA Technical Reports Server (NTRS)
Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi
2010-01-01
The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael S. Bruno
This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptualmore » drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.« less
A sampling study on rock properties affecting drilling rate index (DRI)
NASA Astrophysics Data System (ADS)
Yenice, Hayati; Özdoğan, Mehmet V.; Özfırat, M. Kemal
2018-05-01
Drilling rate index (DRI) developed in Norway is a very useful index in determining the drillability of rocks and even in performance prediction of hard rock TBMs and it requires special laboratory test equipment. Drillability is one of the most important subjects in rock excavation. However, determining drillability index from physical and mechanical properties of rocks is very important for practicing engineers such as underground excavation, drilling operations in open pit mining, underground mining and natural stone production. That is why many researchers have studied concerned with drillability to find the correlations between drilling rate index (DRI) and penetration rate, influence of geological properties on drillability prediction in tunneling, correlations between rock properties and drillability. In this study, the relationships between drilling rate index (DRI) and some physico-mechanical properties (Density, Shore hardness, uniaxial compressive strength (UCS, σc), Indirect tensile strength (ITS, σt)) of three different rock groups including magmatic, sedimentary and metamorphic were evaluated using both simple and multiple regression analysis. This study reveals the effects of rock properties on DRI according to different types of rocks. In simple regression, quite high correlations were found between DRI and uniaxial compressive strength (UCS) and also between DRI and indirect tensile strength (ITS) values. Multiple regression analyses revealed even higher correlations when compared to simple regression. Especially, UCS, ITS, Shore hardness (SH) and the interactions between them were found to be very effective on DRI values.
Potential Cement Phases in Sedimentary Rocks Drilled by Curiosity at Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Morris, R. V.; Bish, D. L.; Chipera, S. J.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Cavanagh, P.; Farmer, J. D.;
2015-01-01
The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.
An Ultrasonic Sampler and Sensor Platform for In-Situ Astrobiological Exploration
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoaz E.; Bao, X.; Chang, Z.; Sherrit, S.
2003-01-01
The search for existing or past life in the Universe is one of the most important objectives of NASA's mission. In support of this objective, ultrasonic based mechanisms are currently being developed at JPL to allow probing and sampling rocks as well as perform as a sensor platform for in-situ astrobiological analysis. The technology is based on the novel Ultrasonic/Sonic Driller/Corer (USDC), which requires low axial force, thereby overcoming one of the major limitations of planetary sampling in low gravity using conventional drills. The USDC was demonstrated to: 1) drill ice and various rocks including granite, diorite, basalt and limestone, 2) not require bit sharpening, and 3) operate at high and low temperatures. The capabilities that are being investigated including probing the ground to select sampling sites, collecting various forms of samples, and hosting sensors for measuring chemical/physical properties. A series of modifications of the USDC basic configuration were implemented leading an ultrasonic abrasion tool (URAT), Ultrasonic Gopher for deep Drilling, and the lab-on-a-drill.
NASA Astrophysics Data System (ADS)
Reyer, D.; Philipp, S. L.
2012-04-01
Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical phenomena in sedimentary basins such as the North German Basin. To be able to model reservoir stimulation in layered stratifications and to better adapt the drilling strategy to the rock mechanical conditions it is important to have knowledge about the effects of heterogeneous rock properties on fracture propagation and fault zone infrastructure for typical sedimentary reservoir rocks in the North German Basin. Therefore we aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses. The field studies in Rotliegend sandstones (Lower Permian), the sandstones of the Middle Bunter (Lower Triassic) and the sandstones of the Upper Keuper (Upper Triassic) focus on 1) host rock fracture systems and 2) fault zone infrastructure. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems separately for host rocks and fault damage zones. The results show that in rocks with distinctive layering (sandstones and shales) natural fractures are often restricted to individual layers, that is, they are stratabound. The probability of fracture arrest seems to depend on the stiffness contrast between the two layers and on the thickness of the softer layer. The field studies are complemented by systematic sampling to obtain mechanical property variations caused by the layering. For the samples we measure the parameters Young's modulus, compressive and tensile strengths, elastic strain energy, density and porosity. The results show that the mechanical properties vary considerably and many samples are clearly anisotropic. That is, samples taken perpendicular to layering commonly have higher strengths but lower stiffnesses than those taken parallel to layering. We combine the results of laboratory analyses and field measurements to specify the mechanical heterogeneities of the sedimentary reservoir rocks of the North German Basin and of the mechanical units of fault zones therein. To estimate the in situ rock properties at different depths it is further important to understand how rocks from outcrops differ from rocks at depth (for example due to alteration and removal of the overburden load). To answer these questions we analyse samples from drill cores from depths relevant for the use as geothermal reservoirs which are stratigraphically and lithologically equivalent to those taken in outcrop analogues. The results from drill-core sample analyses are then compared with the results from the outcrop samples. Another approach is to analyse how rock mechanical properties correlate with petrographic properties (e.g., mineral content, cementation, fabric, porosity) to use this knowledge to extrapolate the data to depth. Altogether these results will be very useful to make better assumptions on natural reservoir permeabilities and to better adapt the drilling and reservoir stimulation strategy to the rock mechanical conditions.
NASA Technical Reports Server (NTRS)
Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.;
2013-01-01
Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.
Some Data from Detection of Organics in a Rock on Mars
2014-12-16
Data graphed here are examples from the Sample Analysis at Mars SAM laboratory detection of Martian organics in a sample of powder that the drill on NASA Curiosity Mars rover collected from a rock target called Cumberland.
2013-03-12
Paul Mahaffy (right), principal investigator for Curiosity's Sample Analysis at Mars (SAM) investigation at NASA's Goddard Space Flight Center in Maryland, demonstrates how the SAM instrument drilled and captured rock samples on the surface of Mars at a news conference, Tuesday, March 12, 2013 at NASA Headquarters in Washington. The analysis of the rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)
Curiosity Rock or Soil Sampling Sites on Mars, Through November 2016
2016-12-13
nal Caption Released with Image: This graphic maps locations of the sites where NASA's Curiosity Mars rover collected its first 19 rock or soil samples for analysis by laboratory instruments inside the vehicle. It also presents images of the drilled holes where 15 rock-powder samples were acquired. Curiosity scooped two soil samples at each of the other two sites: Rocknest and Gobabeb. The diameter of each drill hole is about 0.6 inch (1.6 centimeters), slightly smaller than a U.S. dime. The images used here are raw color, as recorded by the rover's Mars Hand Lens Imager (MAHLI) camera. Notice the differences in color of the material at different drilling sites. For the map, north is toward the upper left corner. The scale bar represents 2 kilometers (1.2 miles). The base map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The latest sample site included is "Sebina,"where Curiosity drilled into bedrock of the Murray formation on Oct. 20, 2016, during the 1,495th Martian day, or sol, of the mission. Curiosity landed in August 2012 on the plain (named Aeolis Palus) near Mount Sharp (or Aeolis Mons). The drilling dates for the first 13 rock samples collected are, by location: "John Klein" on Feb. 8, 2013 (Sol 182); "Cumberland" on May 19, 2013 (Sol 279); "Windjana" on May 5, 2014 (Sol 621); "Confidence Hills" on Sept. 24, 2014 (Sol 759); "Mojave" on Jan. 29, 2015 (Sol 882); "Telegraph Peak" on Feb. 24, 2015 (Sol 908); "Buckskin" on July 30, 2015 (Sol 1060); "Big Sky" on Sept. 29, 2015 (Sol 1119); "Greenhorn" on Oct. 18, 2015 (Sol 1137); "Lubango" on April 23, 2016 (Sol 1320); "Okoruso" on May 5, 2016 (Sol 1332); "Oudam" on June 4, 2016 (Sol 1361); "Quela" on Sept. 18, 2016 (Sol 1464). http://photojournal.jpl.nasa.gov/catalog/PIA21254
Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments
NASA Astrophysics Data System (ADS)
Hahn, Simon; Duda, Mandy; Stoeckhert, Ferdinand; Wittig, Volker; Bracke, Rolf
2017-04-01
Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments S. Hahn, M. Duda, F. Stoeckhert, V. Wittig, R. Bracke International Geothermal Centre Bochum High pressure water jet drilling technologies are widely used in the drilling industry. Especially in geothermal and hard rock applications, horizontal (radial) jet drilling is, however, confronted with several limitations like lateral length, hole size and steerability. In order to serve as a serious alternative to conventional stimulation techniques these high pressure jetting techniques are experimentally investigated to gain fundamental knowledge about the fluid-structure interaction, to enhance the rock failing process and to identify the governing drilling parameters. The experimental program is divided into three levels. In a first step jetting experiments are performed under free surface conditions while logging fluid pressures, flow speeds and extracted rock volume. All process parameters are quantified with a self-developed jet-ability index and compared to the rock properties (density, porosity, permeability, etc.). In a second step experiments will be performed under pressure-controlled conditions. A test bench is currently under construction offering the possibility to assign an in-situ stress field to the specimen while penetrating the rock sample with a high pressure water jet or a radial jet drilling device. The experimental results from levels 1 and 2 allow to identify the governing rock failure mechanisms and to correlate them with physical rock properties and limited reservoir conditions. Results of the initial tests do show a clear dependency of achievable penetration depth on the interaction of jetting and rock parameters and an individual threshold of the nozzle outlet velocity can be noticed in order to successfully penetrate different formation types. At level 3 jetting experiments will be performed at simulated reservoir conditions corresponding to 5.000 m depth (e.g. up to 1.250 bar and 180 °C) on large samples with a diameter of 25 cm and a length of up to 3m using GZB's in-situ borehole and geofluid simulator 'iBOGS'. Experiments will be documented by active and passive ultrasound measurements and high speed imaging. Acknowledgement Jetting research and work at GZB has received funding in part from the European Union's Horizon 2020 research and innovation program under grant agreement No 654662 and also from federal government GER and state of NRW.
Mars Rover Step Toward Possible Resumption of Drilling
2017-10-23
NASA's Curiosity Mars rover conducted a test on Oct. 17, 2017, as part of the rover team's development of a new way to use the rover's drill. This image from Curiosity's front Hazard Avoidance Camera (Hazcam) shows the drill's bit touching the ground during an assessment of measurements by a sensor on the rover's robotic arm. Curiosity used its drill to acquire sample material from Martian rocks 15 times from 2013 to 2016. In December 2016, the drill's feed mechanism stopped working reliably. During the test shown in this image, the rover touched the drill bit to the ground for the first time in 10 months. The image has been adjusted to brighten shaded areas so that the bit is more evident. The date was the 1,848th Martian day, or sol, of Curiosity's work on Mars In drill use prior to December 2016, two contact posts -- the stabilizers on either side of the bit -- were placed on the target rock while the bit was in a withdrawn position. Then the motorized feed mechanism within the drill extended the bit forward, and the bit's rotation and percussion actions penetrated the rock. A promising alternative now under development and testing -- called feed-extended drilling -- uses motion of the robotic arm to directly advance the extended bit into a rock. In this image, the bit is touching the ground but the stabilizers are not. In the Sol 1848 activity, Curiosity pressed the drill bit downward, and then applied smaller sideways forces while taking measurements with a force/torque sensor on the arm. The objective was to gain understanding about how readings from the sensor can be used during drilling to adjust for any sideways pressure that might risk the bit becoming stuck in a rock. While rover-team engineers are working on an alternative drilling method, the mission continues to examine sites on Mount Sharp, Mars, with other tools. https://photojournal.jpl.nasa.gov/catalog/PIA22063
Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index
NASA Astrophysics Data System (ADS)
Munoz, H.; Taheri, A.; Chanda, E. K.
2016-08-01
To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.
The Final Phase of Drilling of the Hawaii Scientific Drilling Project
NASA Astrophysics Data System (ADS)
Stolper, E.; Depaolo, D.; Thomas, D.; Garcia, M.; Haskins, E.; Baker, M.
2008-12-01
The principal goal of the Hawaii Scientific Drilling Project (HSDP) was to core continuously deep into the flank of a Hawaiian volcano and to investigate the petrology, geochemisty, geochronology, magnetics, etc. of the recovered samples. Drilling in Hilo, on the island of Hawaii proceeded in three phases. A 1.06 km pilot hole was core-drilled in 1993; a second hole was core-drilled to 3,098 meters below sea level (mbsl) in 1999, then deepened in 2004-2007 to 3,509 mbsl. Although the final phase of drilling was at times technically challenging, core recovery was close to 100%. All rocks from the final phase of drilling were emplaced below sea level and are from the Mauna Kea volcano. On-site core logging identified 45 separate units (the 1999 phase of drilling yielded 345 units). Five lithologies were identified: pillows (~60%); pillow breccias (~10%); massive lavas (~12%); hyaloclastites (~17%); intrusives (~1%; these are mostly multiple thin (down to cm scale) fingers of magma with identical lithologies occurring over narrow depth intervals). The rocks are primarily tholeiitic, ranging from aphyric to highly olivine-phyric lavas (up to ~25% olivine phenocrysts), with considerable fresh glass and olivine; clays and zeolites are present throughout the core. Forty whole-rock samples were collected as a reference suite and sent to multiple investigators for study. Additionally, glass was collected at roughly 3 m intervals for electron microprobe analysis. Although continuous and consistent with the shallower rocks from the previous phase of coring, there are several noteworthy features of the deepest core: (1) Glasses from shallower portions of the core exhibited bimodal silica contents, a low SiO2 group (~48-50 wt.%) and a high SiO2 group (~50.5- 52 wt.%). Glasses from the last phase of drilling are essentially all in the high-silica group and are somewhat more evolved than the high-silica glasses from the shallower portion of the core (5.1-7.6 vs. 5.1-10.4 wt.% MgO). (2) The expected sequence of lithologies with depth in the core is subaerial lava flows, hyaloclastites (formed by debris flows carrying glass and lithic fragments from the shoreline down the submarine flanks of the volcano), and finally pillow lavas. This sequence was generally observed in the earlier phases of drilling, and it appeared that the deepest rocks from the 1999 phase of drilling were essentially all formed from pillow lavas (i.e., there were no more hyaloclastites). However, thick hyaloclastites reflecting long distance transport from the ancient shoreline reappear in the bottom ~100 m of the drill hole. Although it may be coincidence, pillow breccias occur in the shallower parts of the core from the final phase of drilling, but not in the deeper parts in which the hyaloclastites reappear. (3) Intrusive rocks make up a lower fraction (~1%) of samples from the final phase of coring than in the deeper parts of the section from the 1999 phase of drilling (3.8%). It had been suggested that intrusives might become more common the deeper the drilling, but this is not the case at depths down to 3.5 km. (4) There are three units classified as "massive" including one relatively thick (~40 m), featureless (no internal boundaries, no evidence of mixing or internal differentiation), moderately olivine-phyric basalt.
Icebreaker-3 Drill Integration and Testing at Two Mars-Analog Sites
NASA Technical Reports Server (NTRS)
Glass, B.; Bergman, D.; Yaggi, B.; Dave, A.; Zacny, K.
2016-01-01
A decade of evolutionary development of integrated automated drilling and sample handling at analog sites and in test chambers has made it possible to go 1 meter through hard rocks and ice layers on Mars. The latest Icebreaker-3 drill has been field tested in 2014 at the Haughton Crater Marsanalog site in the Arctic and in 2015 with a Mars lander mockup in Rio Tinto, Spain, (with sample transfer arm and with a prototype life-detection instrument). Tests in Rio Tinto in 2015 successfully demonstrated that the drill sample (cuttings) was handed-off from the drill to the sample transfer arm and thence to the on-deck instrument inlet where it was taken in and analyzed ("dirt-to-data").
NASA Astrophysics Data System (ADS)
Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe
2014-05-01
Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the cores were scanned for compositional variations using an XRF core scanner at the BGR lab and scan images of the slabbed surfaces were performed. The average core recovery rate was very high at nearly 100%. Altogether, we gained 533 m of excellent core material including sandstones, siltstones and claystones, carbonates, sulfates and chlorides. This provides valuable insight into the stratigraphic column of the Thuringian Syncline.
Laboratory Equipment for Investigation of Coring Under Mars-like Conditions
NASA Astrophysics Data System (ADS)
Zacny, K.; Cooper, G.
2004-12-01
To develop a suitable drill bit and set of operating conditions for Mars sample coring applications, it is essential to make tests under conditions that match those of the mission. The goal of the laboratory test program was to determine the drilling performance of diamond-impregnated bits under simulated Martian conditions, particularly those of low pressure and low temperature in a carbon dioxide atmosphere. For this purpose, drilling tests were performed in a vacuum chamber kept at a pressure of 5 torr. Prior to drilling, a rock, soil or a clay sample was cooled down to minus 80 degrees Celsius (Zacny et al, 2004). Thus, all Martian conditions, except the low gravity were simulated in the controlled environment. Input drilling parameters of interest included the weight on bit and rotational speed. These two independent variables were controlled from a PC station. The dependent variables included the bit reaction torque, the depth of the bit inside the drilled hole and the temperatures at various positions inside the drilled sample, in the center of the core as it was being cut and at the bit itself. These were acquired every second by a data acquisition system. Additional information such as the rate of penetration and the drill power were calculated after the test was completed. The weight of the rock and the bit prior to and after the test were measured to aid in evaluating the bit performance. In addition, the water saturation of the rock was measured prior to the test. Finally, the bit was viewed under the Scanning Electron Microscope and the Stereo Optical Microscope. The extent of the bit wear and its salient features were captured photographically. The results revealed that drilling or coring under Martian conditions in a water saturated rock is different in many respects from drilling on Earth. This is mainly because the Martian atmospheric pressure is in the vicinity of the pressure at the triple point of water. Thus ice, heated by contact with the rotating bit, sublimed and released water vapor. The volumetric expansion of ice turning into a vapor was over 150 000 times. This continuously generated volume of gas effectively cleared the freeze-dried rock cuttings from the bottom of the hole. In addition, the subliming ice provided a powerful cooling effect that kept the bit cold and preserved the core in its original state. Keeping the rock core below freezing also reduced drastically the chances of cross contamination. To keep the bit cool in near vacuum conditions where convective cooling is poor, some intermittent stops would have to be made. Under virtually the same drilling conditions, coring under Martian low temperature and pressure conditions consumed only half the power while doubling the rate of penetration as compared to drilling under Earth atmospheric conditions. However, the rate of bit wear was much higher under Martian conditions (Zacny and Cooper, 2004) References Zacny, K. A., M. C. Quayle, and G. A. Cooper (2004), Laboratory drilling under Martian conditions yields unexpected results, J. Geophys. Res., 109, E07S16, doi:10.1029/2003JE002203. Zacny, K. A., and G. A. Cooper (2004), Investigation of diamond-impregnated drill bit wear while drilling under Earth and Mars conditions, J. Geophys. Res., 109, E07S10, doi:10.1029/2003JE002204. Acknowledgments The research supported by the NASA Astrobiology, Science and Technology Instrument Development (ASTID) program.
Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Domm, Lukas; Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Badescu, Mircea
2012-01-01
The search for present or past life in the Universe is one of the most important objectives of NASA's exploration missions. Drills for subsurface sampling of rocks, ice and permafrost are an essential tool for astrobiology studies on other planets. Increasingly, it is recognized that drilling via a combination of rotation and hammering offers an efficient and effective rapid penetration mechanism. The rotation provides an intrinsic method for removal of cuttings from the borehole while the impact and shear forces aids in the fracturing of the penetrated medium. Conventional drills that use a single actuator are based on a complex mechanism with many parts and their use in future mission involves greater risk of failure and/or may require lubrication that can introduce contamination. In this paper, a compact drill is reported that uses a single piezoelectric actuator to produce hammering and rotation of the bit. A horn with asymmetric grooves was design to impart a longitudinal (hammering) and transverse force (rotation) to a keyed free mass. The drill requires low axial pre-load since the hammering-impacts fracture the rock under the bit kerf and rotate the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations 'fluidize' the powdered cuttings inside the flutes reducing the friction with the auger surface. This action reduces the consumed power and heating of the drilled medium helping to preserve the pristine content of the acquired samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This can reduce the development/fabrication cost and complexity. In this paper, the drill mechanism will be described and the test results will be reported and discussed.
Location of John Klein Drill Site
2013-03-12
This false-color map shows the area within Gale Crater on Mars, where NASA Curiosity rover landed on Aug. 5, 2012 PDT Aug. 6, 2012 EDT and the location where Curiosity collected its first drilled sample at the John Klein rock.
NASA Astrophysics Data System (ADS)
Eggertsson, Guðjón H.; Lavallée, Yan; Kendrick, Jackie E.
2017-04-01
Krafla volcano, located in North-East Iceland, holds an active magmatic hydrothermal system. Since 1978, this system has been exploited for geothermal energy. Today it is exploited by Landsvirkjun National Power of Iceland and the system is generating 60 MWg from 18 wells, tapping into fluids at 200-300°C. In order to meet further demands of environmentally sustainable energy, Landsvirkjun aims to drill deeper and source fluids in the super-heated, super high-enthalpy system which resides deeper (at 400-600°C). In relation to this, the first well of the Icelandic Deep Drilling Project (IDDP) was drilled in Krafla in 2009. Drilling stopped at a depth of 2.1 km, when the drill string penetrated a rhyolitic magma body, which could not be bypassed despite attempts to side-track the well. This pioneering effort demonstrated that the area close to magma had great energy potential. Here we seek a constraint on the mechanical properties of reservoir rocks overlying the magmatic systems to gain knowledge on these systems to improve energy extraction. During two field surveys in 2015 and 2016, and through information gathered from drilling of geothermal wells, five main rock types were identified and sampled [and their porosities (i.e., storage capacities) where determined with a helium-pycnometer]: basalts (5-60% porosity), hyaloclastites (<35-45% porosity), obsidians (0.25-5% porosity), ignimbrites (13-18% porosity), and intrusive felsites and microgabbros (9-16% porosity). Samples are primarily from surface exposures, but selected samples were taken from cores drilled within the Krafla caldera, outside of the geothermal reservoir. Uniaxial and triaxial compressive strength tests have been carried out, as well as indirect tensile strength tests using the Brazilian disc method, to measure the rock strengths. The results show that the rock strength is inversely proportional to the porosity and strongly affected by the abundance of microcracks; some of the rocks are unusually weak considering their porosities, especially at low effective pressure as constrained at Krafla. The results also show that the porous lithologies may undergo significant compaction at relatively low loads (i.e., depth). Integration of the observed mechanical behaviour and associated permeability into future fluid flow simulations will aim to increase our understanding and exploitation of geothermal reservoirs.
PDC-bit performance under simulated borehole conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, E.E.; Azar, J.J.
1993-09-01
Laboratory drilling tests were used to investigate the effects of pressure on polycrystalline-diamond-compact (PDC) drill-bit performance. Catoosa shale core samples were drilled with PDC and roller-cone bits at up to 1,750-psi confining pressure. All tests were conducted in a controlled environment with a full-scale laboratory drilling system. Test results indicate, that under similar operating conditions, increases in confining pressure reduce PDC-bit performance as much as or more than conventional-rock-bit performance. Specific energy calculations indicate that a combination of rock strength, chip hold-down, and bit balling may have reduced performance. Quantifying the degree to which pressure reduces PDC-bit performance will helpmore » researchers interpret test results and improve bit designs and will help drilling engineers run PDC bits more effectively in the field.« less
NASA Astrophysics Data System (ADS)
Hamada, Y.; Kitamura, M.; Yamada, Y.; Sanada, Y.; Moe, K.; Hirose, T.
2016-12-01
In-situ rock properties in/around seismogenic zone in an accretionary prism are key parameters to understand the development mechanisms of an accretionary prism, spatio-temporal variation of stress state, and so on. For the purpose of acquiring continuous-depth-profile of in-situ formation strength in an accretionary prism, here we propose the new method to evaluate the in-situ rock strength using drilling performance property. Drilling parameters are inevitably obtained by any drilling operation even in the non-coring intervals or at challenging environment where core recovery may be poor. The relationship between the rock properties and drilling parameters has been proposed by previous researches [e.g. Teale 1964]. We introduced the relationship theory of Teale [1964], and developed a converting method to estimate in-situ rock strength without depending on uncertain parameters such as weight on bit (WOB). Specifically, we first calculated equivalent specific toughness (EST) which represents gradient of the relationship between Torque energy and volume of penetration at arbitrary interval (in this study, five meters). Then the EST values were converted into strength using the drilling parameters-rock strengths correlation obtained by Karasawa et al. [2002]. This method was applied to eight drilling holes in the Site C0002 of IODP NanTroSEIZE in order to evaluate in-situ rock strength in shallow to deep accretionary prism. In the shallower part (0 - 300 mbsf), the calculated strength shows sharp increase up to 20 MPa. Then the strength has approximate constant value to 1500 mbsf without significant change even at unconformity around 1000 mbsf (boundary between forearc basin and accretionary prism). Below that depth, value of the strength gradually increases with depth up to 60 MPa at 3000 mbsf with variation between 10 and 80 MPa. Because the calculated strength is across approximately the same lithology, the increase trend can responds to the rock strength. This strength-depth curve correspond reasonably well with the strength data of core and cutting samples collected from hole C0002N and C0002P [Kitamura et al., 2016 AGU]. These results show the validity of the method evaluating in-situ strength from the drilling parameters.
Key Locations Studied at 'Pahrump Hills' on Mars
2017-06-09
NASA's Curiosity Mars rover examined a mudstone outcrop area called "Pahrump Hills" on lower Mount Sharp, in 2014 and 2015. This view shows locations of some targets the rover studied there. The blue dots indicate where drilled samples of powdered rock were collected for analysis. The rover drilled a sample of rock powder at "Confidence Hills" in September 2014 and analyzed it with internal laboratory instruments. Then the mission conducted a walkabout survey up the slope, along the route indicated in yellow, stopping for close inspection at the red-dot locations. Observations from the walkabout were used to choose where to take additional drilled samples for analysis during a second pass up the slope. The "Mojave 2" sample was collected in January 2015 and the "Telegraph Peak" one in February 2015. This view of the outcrop and other portions of Mount Sharp beyond is a mosaic of images taken by the rover's Mast Camera (Mastcam) in September 2014. https://photojournal.jpl.nasa.gov/catalog/PIA21709
Nash, J. Thomas; Frishman, David
1983-01-01
Analytical results for 61 elements in 370 samples from the Ranger Mine area are reported. Most of the rocks come from drill core in the Ranger No. 1 and Ranger No. 3 deposits, but 20 samples are from unmineralized drill core more than 1 km from ore. Statistical tests show that the elements Mg, Fe, F, Be, Co, Li, Ni, Pb, Sc, Th, Ti, V, CI, As, Br, Au, Ce, Dy, La Sc, Eu, Tb, Yb, and Tb have positive association with uranium, and Si, Ca, Na, K, Sr, Ba, Ce, and Cs have negative association. For most lithologic subsets Mg, Fe, Li, Cr, Ni, Pb, V, Y, Sm, Sc, Eu, and Yb are significantly enriched in ore-bearing rocks, whereas Ca, Na, K, Sr, Ba, Mn, Ce, and Cs are significantly depleted. These results are consistent with petrographic observations on altered rocks. Lithogeochemistry can aid exploration, but for these rocks requires methods that are expensive and not amenable to routine use.
NASA Technical Reports Server (NTRS)
Sharpton, Virgil L.; Marin, Luis E.; Carney, John D.; Lee, Scott; Ryder, Graham; Schuraytz, Benjamin C.; Sikora, Paul; Spudis, Paul D.
1996-01-01
Abundant evidence now shows that the buried Chicxulub structure in northern Yucatan, Mexico, is indeed the intensely sought-after source of the ejecta found world-wide at the Cretaceous-Tertiary (K/T) boundary. In addition to large-scale concentric patterns in gravity and magnetic data over the structure, recent analyses of drill-core samples reveal a lithological assemblage similar to that observed at other terrestrial craters. This assemblage comprises suevite breccias, ejecta deposit breccias (Bunte Breccia equivalents), fine-grained impact melt rocks, and melt-matrix breccias. All these impact-produced lithologies contain diagnostic evidence of shock metamorphism, including planar deformation features in quartz, feldspar, and zircons; diaplectic glasses of quartz and feldspar; and fused mineral melts and whole-rock melts. In addition, elevated concentrations of Ir, Re, and Os, in meteoritic relative proportions, have been detected in some melt-rock samples from the center of the structure. Isotopic analyses, magnetization of melt-rock samples, and local stratigraphic constraints identify this crater as the source of K/T boundary deposits.
NASA Technical Reports Server (NTRS)
Onstott, T. C.; Moser, D. P.; Fredrickson, J. K.; Pfiffner, S. M.; Phelps, T. J.; White, D. C.; Peacock, A.; Balkwill, D.; Hoover, R. B.; Krumholz, L.;
2002-01-01
The concentration and distribution of microbial biomass within deep subsurface rock strata is not well known To date, most analyses are from water samples and a few cores. Hand samples, block samples and cores from an actively mined Carbon Leader ore zone at 3.2 kilometers depth were collected for microbial analyses. The Carbon Leader was comprised of quartz, S-bearing aromatic hydrocarbons, Fe(III) oxyhydroxides, sulfides, uraninite, Au and minor amounts of sulfate. The porosity of the ore was 1% and the maximum pore throat diameter was less than 0.1 microns; whereas, the porosity of the adjacent quartzite was .02 to .9% with a maximum pore throat diameter of 0.9 microns. Rhodamine dye, fluorescent microspheres, microbial enrichments, autoradiography, phospholipid fatty acid (PLEA) and 16S rDNA analyses were performed on these rock samples and the mining water. The date indicate that the levels of solute contamination less than 0.01% for pared rock samples. Despite this low level of contamination, PLEA, microbial enrichment, DNA and tracer analyses and calculations indicate that most of the viable microorganisms in the Carbon Leader represent gram negative aerobic heterotrophs and ammonia oxidizers that are phylogenetically identical or closely related to service water microorganisms. These microbial contaminants probably infiltrated the low permeability rock through mining-induced microfractures. Geochemical data also detected drilling water in a fault zone approx. 1 meter behind the rock face encountered during coring. The mining induced macrofractures that are common at these great depths act as pathways for the drilling water borne microorganisms into the lower temperature zone that extends several meters into rock strata from the rock face. Combined PLEA and T- RFLP analyses of the service water and Carbon Leader samples indicate that the concentration of indigenous microorganisms was less than 10(exp 2) cells/gram. Such a low concentrations result from the submicron pore throat diameters. PLFA. SO4-35 autoradiography and tracer analyses indicate that the bounding quartzite contains thermophilic sulfate reducing bacteria at 10(exp 3) cells/gram that are not attributable to drilling water contamination. The microorganisms may be surviving on sulfate generated by oxidation of sulfide by radiolytic reactions resulting from the high U concentration in the ore zone. The presence of up to 8,000 ppm of Fe(III) oxyhydroxides in the host rock will also act to recycle sulfide generated by the sulfate reducing bacteria into sulfate. The activity of these sulfate-reducing bacteria may be enhanced by mining induced fracturing which can propagate up to 40 meters into virgin rock where the temperatures are ca. 50 C, and decrepitate of sulfate rich fluid inclusions. In ultra deep mines, judicious application of tracers and multiple microbial characterization techniques can distinguish microbial contamination caused by the near field fracturing and drilling water migration from the indigenous microbial communities in rock strata. The importance of far field fracturing on indigenous microbial communities, however, remains unknown.
Hole at Buckskin Drilled Days Before Landing Anniversary
2015-08-05
NASA's Curiosity Mars Rover drilled this hole to collect sample material from a rock target called "Buckskin" on July 30, 2015, during the 1060th Martian day, or sol, of the rover's work on Mars. The diameter is slightly smaller than a U.S. dime. Curiosity landed on Mars on Aug. 6, 2012, Universal Time (evening of Aug. 5, PDT). The rover took this image with the Mars Hand Lens Imager (MAHLI) camera, which is mounted on the same robotic arm as the sample-collecting drill. Rock powder from the collected sample was subsequently delivered to a laboratory inside the rover for analysis. The rover's drill did not experience any sign during this sample collection of an intermittent short-circuiting issue that was detected earlier in 2015. The Buckskin target is in an area near "Marias Pass" on lower Mount Sharp where Curiosity had detected unusually high levels of silica and hydrogen. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19804
Application of air hammer drilling technology in igneous rocks of Junggar basin
NASA Astrophysics Data System (ADS)
Zhao, Hongshan; Feng, Guangtong; Yu, Haiye
2018-03-01
There were many technical problems such as serious well deviation, low penetration rate and long drilling cycle in igneous rocks because of its hardness, strong abrasive and poor drillability, which severely influenced the exploration and development process of Junggar basin. Through analyzing the difficulties of gas drilling with roller bits in Well HS 2, conducting the mechanics experiments about igneous rock, and deeply describing the rock-breaking mechanism of air hammer drilling and its adaptability in igneous rocks, air hammer drilling can realize deviation control and fast drilling in igneous rocks of piedmont zone and avoid the wear and fatigue fracture of drilling strings due to its characteristics of low WOB, low RPM and high frequency impact. Through firstly used in igneous rocks of Well HS 201, compared with gas drilling with cone bit, the average penetration rate and one-trip footage of air hammer drilling respectively increased by more than 2.45 times and 6.42 times while the well deviation was always controlled less than 2 degrees. Two records for Block HS were set up such as the fastest penetration rate of 14.29m/h in Φ444.5mm well hole and the highest one-trip footage of 470.62m in Φ311.2mm well hole. So air hammer drilling was an effective way to realize optimal and fast drilling in the igneous rock formation of Junggar basin.
Loose Rock Leads to Incomplete Drilling
2014-09-11
The Bonanza King rock on Mars, pictured here, was tapped by the drill belonging to NASA Mars rover Curiosity. The tapping resulted in sand piling up on the rock after drilling, showing the rock was not firmly in place.
K-Ar chronology of the Luohe iron district, Anhui Province, China
McKee, E.H.
1988-01-01
Twelve samples of rock from the four mapped units or cycles and one of the major intrusive bodies were collected and evaluated for K-Ar age determination. These include specimens from outcrop and from drill core. Biotite from two outcrop and two core samples and hornblende from one outcrop sample were separated from the sample and dated; a sixth sample was dated using crushed, sieved, and acid-treated whole rock. The ages and analytical data to support them are compatible with the observed relationships in the field or from the drill holes. The percent of K2O in all samples is typical of fresh unaltered mineral phases and the percent of radiogenetic 40Ar relative to total 40Ar is high (88.8 to 63.8%) yielding relatively low analytical errors. -from Authors
NASA Astrophysics Data System (ADS)
Sutter, Brad; Brown, Adrian J.; Stoker, Carol R.
2008-10-01
Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.
Sutter, Brad; Brown, Adrian J; Stoker, Carol R
2008-10-01
Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.
NASA Astrophysics Data System (ADS)
Meier, D. B.; Waber, H. N.; Gimmi, T.; Eichinger, F.; Diamond, L. W.
2015-12-01
Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12-20 cm long, 5 cm diameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium-iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2-6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, in which iodide enrichment was up to 180 mg/kgwater, compared to 0.5 mg/kgwater in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties.
Meier, D B; Waber, H N; Gimmi, T; Eichinger, F; Diamond, L W
2015-12-01
Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12-20 cm long, 5 cm diameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium-iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2-6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, in which iodide enrichment was up to 180 mg/kg water, compared to 0.5 mg/kg water in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Geoconservation and scientific rock sampling: Call for geoethical education strategies
NASA Astrophysics Data System (ADS)
Druguet, Elena; Passchier, Cees W.; Pennacchioni, Giorgio; Carreras, Jordi
2013-04-01
Some geological outcrops have a special scientific or educational value, represent a geological type locality and/or have a considerable aesthetical/photographic value. Such important outcrops require appropriate management to safeguard them from potentially damaging and destructive activities. Damage done to such rock exposures can include drill sampling by geologist undertaken in the name of scientific advancement. In order to illustrate the serious damage scientific sampling can do, we give some examples of outcrops from Western Europe, North America and South Africa, important to structural geology and petrology, where sampling was undertaken by means of drilling methods without any protective measures. After the rock coring, the aesthetic and photographic value of these delicate outcrops has decreased considerably. Unfortunately, regulation and protection mechanisms and codes of conduct can be ineffective. The many resources of geological information available to the geoscientist community (e.g. via Internet, such as outcrops stored in websites like "Outcropedia") promote access to sites of geological interest, but can also have a negative effect on their conservation. Geoethical education on rock sampling is therefore critical for conservation of the geological heritage. Geoethical principles and educational actions are aimed to be promoted at different levels to improve geological sciences development and to enhance conservation of important geological sites. Ethical protocols and codes of conduct should include geoconservation issues, being explicit about responsible sampling. Guided and inspired by the UK Geologists's Association "Code of Conduct for Rock Coring" (MacFadyen, 2010), we present a tentative outline requesting responsible behaviour: » Drill sampling is particularly threatening because it has a negative visual impact, whilst it is often unnecessary. Before sampling, geologists should think about the question "is drill sampling necessary for the study being carried on?" » Do not take samples from the centre of a geological type locality or a site of especial scientific, didactic interest or aesthetical/photographic value. If an outcrop is spectacular enough to be photographed, then you should not core or sample the rock face that has been recorded. The same applies to outstanding outcrops stored in websites. » Sample other parts of the same or a neighbouring outcrop where there is less impact. Core samples must be discrete in location; take cores from the least exposed, least spectacular part of an outcrop and try to plug the holes using the outer end of the core, if possible. » Before sampling ask experts and authorities (e.g. Natural Reserve or National Park managers if the area is protected) for advise and permission. References: MacFadyen, C.C.J., 2010. The vandalizing effects of irresponsible core sampling: a call for a new code of conduct: Geology Today 26, 146-151. Outcropedia: http://www.outcropedia.org/
Reappraisal of hydrocarbon biomarkers in Archean rocks
French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.
2015-01-01
Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387
Curiosity Successfully Drills "Duluth"
2018-05-23
A close-up image of a 2-inch-deep hole produced using a new drilling technique for NASA's Curiosity rover. The hole is about 0.6 inches (1.6 centimeters) in diameter. This image was taken by Curiosity's Mast Camera (Mastcam) on Sol 2057. It has been white balanced and contrast-enhanced. Curiosity drilled this hole in a target called "Duluth" on May 20, 2018. It was the first rock sample captured by the drill since October 2016. A mechanical issue took the drill offline in December 2016. https://photojournal.jpl.nasa.gov/catalog/PIA22326
Real Time Mud Gas Logging During Drilling of DFDP-2B
NASA Astrophysics Data System (ADS)
Mathewson, L. A.; Toy, V.; Menzies, C. D.; Zimmer, M.; Erzinger, J.; Niedermann, S.; Cox, S.
2015-12-01
The Deep Fault Drilling Project (DFDP) aims to improve our understanding of the Alpine Fault Zone, a tectonically active mature fault system in New Zealand known to rupture in large events, by deep scientific drilling. The borehole DFDP-2B approached the Alpine Fault at depth, reaching a final depth of 892 m (820 m true vertical depth). Online gas analysis (OLGA) while drilling tracked changes in the composition of gases extracted from the circulating drill mud. The composition of fluids from fault zones can provide information about their origins, flow rates and -paths, fluid-rock interactions along these paths, and the permeability structure of the faulted rock mass. Apart from an atmospheric input, the gases in drilling mud derive from the pore space of rock, crushed at the drill bit, and from permeable layers intersected by the borehole. The rapid formation of mud wall cake seals the borehole from further fluid inflow, hence formation-derived gases enter mostly at the depth of the drill bit. OLGA analyses N2, O2, Ar, CO2, CH4, He, and H2 on a mass spectrometer, hydrocarbons CH4, C2H6, C3H8, i-C4H10, and n-C4H10 on a gas chromatograph, and Rn using a lucas-cell detector. Gas was sampled for offline analyses on noble gas and stable isotopes to complement the OLGA dataset. The principle formation-derived gases found in drilling mud during drilling of DFDP-2 were CO2 and CH4, with smaller component of H2 and He2. High radon activity is interpreted to reflect intervals of active fluid flow through highly fractured and faulted rock. 3He/4He values in many samples were extremely air-contaminated, i.e. there was almost no excess of non-atmospheric He. The 3He/4He values measured at 236 m and 610 m, which are the only analyses with uncertainties <100%, are very similar to those measured in hot springs along the Alpine Fault, e.g. Fox River (0.64 Ra), Copland (0.42 Ra), Lower Wanganui (0.81 Ra). We will compare these data to those gathered using OLGA and discuss the implications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-15
Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, makingmore » them an effective way to access the U.S. energy resources currently locked under hard rock formations.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions... apparatus for collecting the dust that results from drilling in rock in coal mines, and is independent of the drilling equipment. (f) Combination unit means a rock-drilling device with an integral dust...
Code of Federal Regulations, 2014 CFR
2014-07-01
... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions... apparatus for collecting the dust that results from drilling in rock in coal mines, and is independent of the drilling equipment. (f) Combination unit means a rock-drilling device with an integral dust...
Code of Federal Regulations, 2012 CFR
2012-07-01
... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions... apparatus for collecting the dust that results from drilling in rock in coal mines, and is independent of the drilling equipment. (f) Combination unit means a rock-drilling device with an integral dust...
Code of Federal Regulations, 2011 CFR
2011-07-01
... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions... apparatus for collecting the dust that results from drilling in rock in coal mines, and is independent of the drilling equipment. (f) Combination unit means a rock-drilling device with an integral dust...
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions... apparatus for collecting the dust that results from drilling in rock in coal mines, and is independent of the drilling equipment. (f) Combination unit means a rock-drilling device with an integral dust...
Hard-rock jetting. Part 2. Rock type decides jetting economics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pols, A.C.
1977-02-07
In Part 2, Koninklijke Shell Exploratie en Produktie Laboratorium presents the results of jet-drilling laminated formations. Shell concludes that (1) hard, laminated rock cannot be jet-drilled satisfactorily without additional mechanical cutting aids, (2) the increase in penetration rate with bit-pressure drop is much lower for impermeable rock than it is for permeable rock, (3) drilling mud can have either a positive or a negative effect on penetration rate in comparison with water, depending on the material drilled, and (4) hard, isotropic, sedimentary, impermeable rock can be drilled using jets at higher rates than with conventional means. However, jetting becomes profitablemore » only in the case of expensive rigs.« less
Magnetic behaviors of cataclasites within Wenchuan earthquake fault zone in heating experiments
NASA Astrophysics Data System (ADS)
Zhang, L.; Li, H.; Sun, Z.; Chou, Y. M.; Cao, Y., Jr.; Huan, W.; Ye, X.; He, X.
2017-12-01
Previous rock magnetism of fault rocks were used to trace the frictional heating temperature, however, few studies are focus on different temperatures effect of rock magnetic properties. To investigate rock magnetic response to different temperature, we conducted heating experiments on cataclasites from the Wenchuan earthquake Fault Scientific Drilling borehole 2 (WFSD-2) cores. Samples of cataclasites were obtained using an electric drill with a 1 cm-diameter drill pipe from 580.65 m-depth. Experiments were performed by a Thermal-optical measurement system under argon atmosphere and elevated temperatures. Both microstructural observations and powder X-ray diffraction analyses show that feldspar and quartz start to melt at 1100 ° and 1300 ° respectively. Magnetic susceptibility values of samples after heating are higher than that before heating. Samples after heating at 700 and 1750 ° have the highest values of magnetic susceptibility. Rock magnetic measurements show that the main ferromagnetic minerals within samples heated below 1100 ° (400, 700, 900 and 1100 °) are magnetite, which is new-formed by transformation of paramagnetic minerals. The χferri results show that the quantity of magnetite is bigger at sample heated by 700° experiment than by 400, 900 and 1100° experiments. Based on the FORC diagrams, we consider that magnetite grains are getting finer from 400 to 900°, and growing coarser when heated from 900 to 1100 °. SEM-EDX results indicate that the pure iron are formed in higher temperature (1300, 1500 and 1750 °), which present as framboids with size <10 μm. Rock magnetic measurements imply pure iron is the main ferromagnetic materials in these heated samples. The amount and size of iron framboids increase with increasing temperature. Therefore, we conclude that the paramagnetic minerals are decomposed into fine magnetite, then to coarse-grained magnetite, finally to pure iron at super high temperature. New-formed magnetite contributes to the higher magnetic susceptibility values of samples when heated at 400, 700, 900 and 1100°, while the neoformed pure iron is responsible to the higher magnetic susceptibility values of samples when heated at 1300, 1500 and 1750°.
Aerated drilling cutting transport analysis in geothermal well
NASA Astrophysics Data System (ADS)
Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar
2017-12-01
Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.
Drilling and blasting parameters in sublevel caving in Sheregesh mine
NASA Astrophysics Data System (ADS)
Eremenko, AA; Filippov, VN; Konurin, AI; Khmelinin, AP; Baryshnikov, DV; Khristolyubov, EA
2018-03-01
The factors that influence geomechanical state of rock mass in Sheregesh Mine are determined. The authors discuss a variant of geotechnology with fan drilling. The drill-hole patterns and drilling-and-blasting parameters are presented. The revealed causes of low-quality fragmentation of rocks include the presence of closed and open fractures at different distances from drill-hole mouths, both in case of rings and fans, as well as the blocking of drill-holes with rocks.
Infrared Spectroscopy for Rapid Characterization of Drill Core and Cutting Mineralogy
NASA Astrophysics Data System (ADS)
Calvin, W. M.; Kratt, C.; Kruse, F. A.
2009-12-01
Water geochemistry can vary with depth and location within a geothermal reservoir, owing to natural factors such as changing rock type, gas content, fluid source and temperature. The interaction of these variable fluids with the host rock will cause well known changes in alteration mineral assemblages that are commonly factored into the exploration of hydrothermal systems for economic metals, but are less utilized with regard to mapping borehole geology for geothermal energy production. Chemistry of geothermal fluids and rock alteration products can impact production factors such as pipeline corrosion and scaling and early studies explored the use of both silica and chlorites as geothermometers. Infrared spectroscopy is particularly good at identifying a wide variety of alteration minerals, especially in discrimination among clay minerals, with no sample preparation. The technique has been extensively used in the remote identification of materials, but is not commonly used on drill core or chips. We have performed several promising pilot studies that suggest the power of the technique to sample continuously and provide mineral logs akin to geophysical ones. We have surveyed a variety of samples, including drill chip boards, boxed core, and drill cuttings from envelopes, sample bottles and chip trays. This work has demonstrated that core and drill chips can be rapidly surveyed, acquiring spectra every few to tens of cm of section, or the vertical resolution of the chip tray (typically 10 feet). Depending on the sample type we can acquire spectral data over thousands of feet depth at high vertical resolution in a fraction of the time that is needed for traditional analytical methods such as XRD or TEM with better accuracy than traditional geologic drill or chip logging that uses visual inspection alone. We have successfully identified layered silicates such as illite, kaolinite, montmorillonite chlorite and prehnite, zeolites, opal, calcite, jarosite and iron oxides and hydroxides in geothermal drill samples. We are currently developing automated analysis techniques to convert this detailed spectral logging data into high-vertical-resolution mineral depth profiles that can be linked to lithology, stratigraphy, fracture zones and potential for geothermal production. Also in development are metrics that would link mapped mineralogy to known geothermometers such as Na-K, Mg depletion, discrimination among illite, montmorillonite, and beidellite, and kaolinite crystallinity. Identification of amorphous and crystalline silica components (chalcedony, crystobalite and quartz) can also constrain silica geothermometry. The degree of alteration and some mineral types have been shown to be a proxy for host rock permeability, natural circulation, and the potential for reservoir sealing. Analysis of alteration intensity is also under way. We will present a synthesis of results to date.
NASA Astrophysics Data System (ADS)
Watanabe, Tohru; Shimizu, Yuhta; Noguchi, Satoshi; Nakada, Setsuya
2008-07-01
Permeability measurement was made on five rock samples from USDP-4 cores. Rock samples were collected from the conduit zone and its country rock. One sample (C14-1-1) is considered as a part of the feeder dyke for the 1991-1995 eruption. The transient pulse method was employed under confining pressure up to 50 MPa. Compressional wave velocity was measured along with permeability. The measured permeability ranges from 10 - 19 to 10 - 17 m 2 at the atmospheric pressure, and is as low as that reported for tight rocks such as granite. The permeability decreases with increasing confining pressure, while the compressional wave velocity increases. Assuming that pores are parallel elliptical tubes, the pressure dependence of permeability requires aspect ratio of 10 - 4 -10 - 2 at the atmospheric pressure. The pore aperture is estimated to be less than 1 μm. The estimated aspect ratio and pore aperture suggest that connectivity of pores is maintained by narrow cracks. The existence of cracks is supported by the pressure dependence of compressional wave velocity. Narrow cracks (< 1 μm) are observed in dyke samples, and they must have been created after solidification. Dyke samples do not provide us information of pore structures during degassing, since exsolved gas has mostly escaped and pores governing the gas permeable flow should have been lost. Both dyke and country rock samples provide us information of materials around ascending magma. Although the measured small-scale permeability cannot be directly applied to geological-scale processes, it gives constrains on studies of large-scale permeability.
NASA Astrophysics Data System (ADS)
Wegner, Wencke; Koeberl, Christian
2016-12-01
The 3.6 Ma El'gygytgyn structure, located in northeastern Russia on the Chukotka Peninsula, is an 18 km diameter complex impact structure. The bedrock is formed by mostly high-silica volcanic rocks of the 87 Ma old Okhotsk-Chukotka Volcanic Belt (OCVB). Volcanic target rocks and impact glasses collected on the surface, as well as drill core samples of bedrock and impact breccias have been investigated by thermal ionization mass spectrometry (TIMS) to obtain new insights into the relationships between these lithologies in terms of Nd and Sr isotope systematics. Major and trace element data for impact glasses are added to compare with the composition of target rocks and drill core samples. Sr isotope data are useful tracers of alteration processes and Nd isotopes reveal characteristics of the magmatic sources of the target rocks, impact breccias, and impact glasses. There are three types of target rocks mapped on the surface: mafic volcanics, dacitic tuff and lava of the Koekvun' Formation, and dacitic to rhyolitic ignimbrite of the Pykarvaam Formation. The latter represents the main contributor to the impact rocks. The drill core is divided into a suevite and a bedrock section by the Sr isotope data, for which different postimpact alteration regimes have been detected. Impact glasses from the present-day surface did not suffer postimpact hydrothermal alteration and their data indicate a coherent alteration trend in terms of Sr isotopes with the target rocks from the surface. Surprisingly, the target rocks do not show isotopic coherence with the Central Chukotka segment of the OCVB or with the Berlozhya magmatic assemblage (BMA), a late Jurassic felsic volcanic suite that crops out in the eastern part of the central Chukotka segment of the OCVB. However, concordance for these rocks exists with the Okhotsk segment of the OCVB. This finding argues for variable source magmas having contributed to the build-up of the OCVB.
NASA Astrophysics Data System (ADS)
Zemke, Kornelia; Liebscher, Axel
2014-05-01
Petrophysical properties like porosity and permeability are key parameters for a safe long-term storage of CO2 but also for the injection operation itself. These parameters may change during and/or after the CO2 injection due to geochemical reactions in the reservoir system that are triggered by the injected CO2. Here we present petrophysical data of first ever drilled cores from a newly drilled well at the active CO2 storage site - the Ketzin pilot site in the Federal State of Brandenburg, Germany. By comparison with pre-injection baseline data from core samples recovered prior to injection, the new samples provide the unique opportunity to evaluate the impact of CO2 on pore size related properties of reservoir and cap rocks at a real injection site under in-situ reservoir conditions. After injection of 61 000 tons CO2, an additional well was drilled and new rock cores were recovered. In total 100 core samples from the reservoir and the overlaying caprock were investigated by NMR relaxation. Permeability of 20 core samples was estimated by nitrogen and porosity by helium pycnometry. The determined data are comparable between pre-injection and post-injection core samples. The lower part of the reservoir sandstone is unaffected by the injected CO2. The upper part of the reservoir sandstone shows consistently slightly lower NMR porosity and permeability values in the post-injection samples when compared to the pre-injection data. This upper sandstone part is above the fluid level and CO2 present as a free gas phase and a possible residual gas saturation of the cores distorted the NMR results. The potash-containing drilling fluid can also influence these results: NMR investigation of twin samples from inner and outer parts of the cores show a reduced fraction of larger pores for the outer core samples together with lower porosities and T2 times. The drill mud penetration depth can be controlled by the added fluorescent tracer. Due to the heterogeneous character of the Stuttgart Formation it is difficult to estimate definite CO2 induced changes from petrophysical measurements. The observed changes are only minor. Several batch experiments on Ketzin samples drilled prior injection confirm the results from investigation of the in-situ rock cores. Core samples of the pre-injection wells were exposed to CO2 and brine in autoclaves over various time periods. Samples were characterized prior to and after the experiments by NMR and Mercury Injection Porosimetry (MIP). The results are consistent with the logging data and show only minor change. Unfortunately, also in these experiments observed mineralogical and petrophysical changes were within the natural heterogeneity of the Ketzin reservoir and precluded unequivocal conclusions. However, given the only minor differences between post-injection well and pre-injection well, it is reasonable to assume that the potential dissolution-precipitation processes appear to have no severe consequences on reservoir and cap rock integrity or on the injection behaviour. This is also in line with the continuously recorded injection operation parameter. These do not point to any changes in reservoir injectivity.|
Andreeva, I S; Pechurkina, N I; Morozova, O V; Riabchikova, E I; Belikov, S I; Puchkova, L I; Emel'ianova, E K; Torok, T; Repin, V E
2007-01-01
Microbiological analysis of samples of sedimentary rocks from various eras of the geological history of the Baikal rift has enabled us to isolate a large number of microorganisms that can be classified into new, previously undescribed species. The present work deals with the identification and study of the morphological, biochemical, and physiological properties of one such strain, Che 82, isolated from sample C-29 of 3.4-3.5 Ma-old sedimentary rocks taken at a drilling depth of 146.74 m. As a result of our investigations, strain Che 82 is described as a new bacterial species, Roseomonas baikalica sp. nov., belonging to the genus Roseomonas within the family Methylobacteriaceae, class Alphaproteobacteria.
Petrology and geochemistry of lithic fragments separated from the Apollo 15 deep-drill core
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Nielsen, R. L.; Drake, M. J.
1977-01-01
Petrological and geochemical analysis of lithic fragments separated from the Apollo 15 deep-drill core showed these fragments to fall into the essentially the same range of rock types as observed in surface soil samples and large rock samples. Three particles are singled out as being of special interest. One sample is a mare basalt containing extremely evolved phases. The particle may represent small-scale imperfect crystal/liquid separation in a lava flow. A green glass particle is not the ultramafic emerald green glass described from the Apollo 15 site, but rather an ANT-like light green color, and has a quite different chemical composition from the ultramafic variety. One mare basalt displays a positive Eu anomaly and is enriched in plagioclase relative to olivine plus pyroxene.
Rock sampling. [method for controlling particle size distribution
NASA Technical Reports Server (NTRS)
Blum, P. (Inventor)
1971-01-01
A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.
30 CFR 72.630 - Drill dust control at underground areas of underground mines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling... the purpose of this section. (c) Water control. Water used to control dust from drilling rock shall be...
30 CFR 72.630 - Drill dust control at underground areas of underground mines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling... the purpose of this section. (c) Water control. Water used to control dust from drilling rock shall be...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-05-31
Research was expanded to the drilling of crystalline rock. Advance rates of 40 inches per minute have been achieved at 16,000 psi, 10 gpm flow rate in a 30,000 psi compressive strength rock using the water alone as the drilling mechanism. The quality of the hole achieved as the jet drilled a variety of rock was found to vary and a hydromechanical drilling bit, combining high pressure water jets with roller cones, has been developed. A field drilling unit has been tested and modified to allow the drilling of holes to 3/sup 1///sub 2/ inch diameter using the hydromechanical drill.more » Preliminary work on the development of a cavitation test for rock is also included.« less
Single Piezo-Actuator Rotary-Hammering Drill
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph
2011-01-01
This innovation comprises a compact drill that uses low-axial preload, via vibrations, that fractures the rock under the bit kerf, and rotates the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations fluidize the powered cuttings inside the flutes around the bit, reducing the friction with the auger surface. These combined actions reduce the consumed power and the heating of the drilled medium, helping to preserve the pristine content of the produced samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This reduces the development/fabrication cost and complexity. The piezoelectric actuator impacts the surface and generates shear forces, fragmenting the drilled medium directly under the bit kerf by exceeding the tensile and/or shear strength of the struck surface. The percussive impact action of the actuator leads to penetration of the medium by producing a zone of finely crushed rock directly underneath the struck location. This fracturing process is highly enhanced by the shear forces from the rotation and twisting action. To remove the formed cuttings, the bit is constructed with an auger on its internal or external surface. One of the problems with pure hammering is that, as the teeth become embedded in the sample, the drilling efficiency drops unless the teeth are moved away from the specific footprint location. By rotating the teeth, they are moved to areas that were not fragmented, and thus the rock fracturing is enhanced via shear forces. The shear motion creates ripping or chiseling action to produce larger fragments to increase the drilling efficiency, and to reduce the required power. The actuator of the drill consists of a piezoelectric stack that vibrates the horn. The stack is compressed by a bolt between the backing and the horn in order to prevent it from being subjected to tensile stress that will cause it to fail. The backing is intended to transfer the generated mechanical vibrations towards the horn. In order to cause rotation, the horn is configured asymmetrically with helical segments and, upon impacting the bit, it introduces longitudinal along the axis of the actuator and tangential force causing twisting action that rotates the bit. The longitudinal component of the vibrations of the stack introduces percussion impulses between the bit and the rock to fracture it when the ultimate strain is exceeded under the bit.
Preparatory Test for First Rock Drilling by Mars Rover Curiosity
2013-02-04
The bit in the rotary-percussion drill of NASA Mars rover Curiosity left its mark in a target patch of rock called John Klein during a test on Feb. 2, 2013, in preparation for the first drilling of a rock by the rover.
Rock melting technology and geothermal drilling
NASA Technical Reports Server (NTRS)
Rowley, J. C.
1974-01-01
National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.
Gettings, M.E.
2005-01-01
Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the measured data. Comparisons of the model and data from drillholes show good but not perfect agreement. ?? 2005 Author(s). This work is licensed under a Creative Commons License.
Coring Sample Acquisition Tool
NASA Technical Reports Server (NTRS)
Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.
2012-01-01
A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.
NASA Technical Reports Server (NTRS)
Eigenbrode, J. L.; Bower, H.; Archer, P. Jr.
2014-01-01
Martian carbon was detected in the Sheepbed mudtsone at Yellowknife Bay, Gale Crater, Mars by the Sample Analysis at Mars (SAM) instrument onboard Curiosity, the rover of the Mars Science Laboratory missio]. The carbon was detected as CO2 thermally evolved from drilled and sieved rock powder that was delivered to SAM as a <150-micron-particle- size fraction. Most of the CO2 observed in the Cumberland (CB) drill hole evolved between 150deg and 350deg C. In the John Klein (JK) drill hole, the CO2 evolved up to 500deg C. Hypotheses for the source of the the CO2 include the breakdown of carbonate minerals reacting with HCl released from oxychlorine compounds, combustion of organic matter by O2 thermally evolved from the same oxychlorine minerals, and the decarboxylation of organic molecules indigenous to the martian rock sample. Here we explore the potential for the decarboxylation hypothesis.
NASA Astrophysics Data System (ADS)
Janssen, C.; Wirth, R.; Kienast, M.; Yabe, Y.; Sulem, J.; Dresen, G. H.
2015-12-01
Chemical and mechanical effects of fluids influence the fault mechanical behavior. We analyzed fresh fault rocks from several scientific drilling projects to study the effects of fluids on fault strength. For example, in drill core samples on a rupture plane of an Mw 2.2 earthquake in a deep gold mine in South Africa the main shock occurred on a preexisting plane of weakness that was formed by fluid-rock interaction (magnesiohornblende was intensively altered to chlinochlore). The plane acted as conduit for hydrothermal fluids at some time in the past. The chemical influence of fluids on mineralogical alteration and geomechanical processes in fault core samples from SAFOD (San Andreas Fault Observatory at Depth) is visible in pronounced dissolution-precipitation processes (stylolites, solution seams) as well as in the formation of new phases. Detrital quartz and feldspar grains are partially dissolved and replaced by authigenic illite-smectite (I-S) mixed-layer clay minerals. Transmission Electron Microscopy (TEM) imaging of these grains reveals that the alteration processes and healing were initiated within pores and small intra-grain fissures. Newly formed phyllosilicates growing into open pore spaces likely reduced the fluid permeability. The mechanical influence of fluids is indicated by TEM observations, which document open pores that formed in-situ in the gouge material during or after deformation. Pores were possibly filled with formation water and/or hydrothermal fluids suggesting elevated fluid pressure preventing pore collapse. Fluid-driven healing of fractures in samples from SAFOD and the DGLab Gulf of Corinth project is visible in cementation. Cathodoluminescence microscopy (CL) reveals different generations of calcite veins. Differences in CL-colors suggest repeated infiltration of fluids with different chemical composition from varying sources (formation and meteoric water).
NASA Astrophysics Data System (ADS)
Aalizad, Seyed Ali; Rashidinejad, Farshad
2012-12-01
Penetration rate in rocks is one of the most important parameters of determination of drilling economics. Total drilling costs can be determined by predicting the penetration rate and utilized for mine planning. The factors which affect penetration rate are exceedingly numerous and certainly are not completely understood. For the prediction of penetration rate in rotary-percussive drilling, four types of rocks in Sangan mine have been chosen. Sangan is situated in Khorasan-Razavi province in Northeastern Iran. The selected parameters affect penetration rate is divided in three categories: rock properties, drilling condition and drilling pattern. The rock properties are: density, rock quality designation (RQD), uni-axial compressive strength, Brazilian tensile strength, porosity, Mohs hardness, Young modulus, P-wave velocity. Drilling condition parameters are: percussion, rotation, feed (thrust load) and flushing pressure; and parameters for drilling pattern are: blasthole diameter and length. Rock properties were determined in the laboratory, and drilling condition and drilling pattern were determined in the field. For create a correlation between penetration rate and rock properties, drilling condition and drilling pattern, artificial neural networks (ANN) were used. For this purpose, 102 blastholes were observed and drilling condition, drilling pattern and time of drilling in each blasthole were recorded. To obtain a correlation between this data and prediction of penetration rate, MATLAB software was used. To train the pattern of ANN, 77 data has been used and 25 of them found for testing the pattern. Performance of ANN models was assessed through the root mean square error (RMSE) and correlation coefficient (R2). For optimized model (14-14-10-1) RMSE and R2 is 0.1865 and 86%, respectively, and its sensitivity analysis showed that there is a strong correlation between penetration rate and RQD, rotation and blasthole diameter. High correlation coefficient and low root mean square error of these models showed that the ANN is a suitable tool for penetration rate prediction.
Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft
NASA Astrophysics Data System (ADS)
Paulsen, G.
2015-12-01
The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.
San Andreas fault zone drilling project: scientific objectives and technological challenges
Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,
1994-01-01
We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.
San Andreas fault zone drilling project: scientific objectives and technological challenges
Hickman, S.H.; Younker, L.W.; Zoback, M.D.
1995-01-01
We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.
NASA Astrophysics Data System (ADS)
Kern, H.; Mengel, K.; Strauss, K. W.; Ivankina, T. I.; Nikitin, A. N.; Kukkonen, I. T.
2009-07-01
The Outokumpu scientific deep drill hole intersects a 2500 m deep Precambrian crustal section comprising a 1300 m thick biotite-gneiss series (mica schists) at top, followed by a 200 m thick meta-ophiolite sequence, underlain again by biotite gneisses (mica schists) (500 m thick) with intercalations of amphibolite and meta-pegmatoids (pegmatitic granite). From 2000 m downward the dominating rock types are meta-pegmatoids (pegmatitic granite). Average isotropic intrinsic P- and S-wave velocities and densities of rocks were calculated on the basis of the volume fraction of the constituent minerals and their single crystal properties for 29 core samples covering the depth range 198-2491 m. The modal composition of the rocks is obtained from bulk rock (XRF) and mineral chemistry (microprobe), using least squares fitting. Laboratory seismic measurements on 13 selected samples representing the main lithologies revealed strong anisotropy of P- and S-wave velocities and shear wave splitting. Seismic anisotropy is strongly related to foliation and is, in particular, an important property of the biotite gneisses, which dominate the upper and lower gneiss series. At in situ conditions, velocity anisotropy is largely caused by oriented microcracks, which are not completely closed at the pressures corresponding to the relatively shallow depth drilled by the borehole, in addition to crystallographic preferred orientation (CPO) of the phyllosilicates. The contribution of CPO to bulk anisotropy is confirmed by 3D velocity calculations based on neutron diffraction texture measurements. For vertical incidence of the wave train, the in situ velocities derived from the lab measurements are significantly lower than the measured and calculated intrinsic velocities. The experimental results give evidence that the strong reflective nature of the ophiolite-derived rock assemblages is largely affected by oriented microcracks and preferred crystallographic orientation of major minerals, in addition to the lithologic control.
Arsenic behavior in newly drilled wells.
Kim, Myoung-Jin; Nriagu, Jerome; Haack, Sheridan
2003-07-01
In the present paper, inorganic arsenic species and chemical parameters in groundwater were determined to investigate the factors related to the distribution of arsenic species and their dissolution from rock into groundwater. For the study, groundwater and core samples were taken at different depths of two newly drilled wells in Huron and Lapeer Counties, Michigan. Results show that total arsenic concentrations in the core samples varied, ranging from 0.8 to 70.7 mg/kg. Iron concentration in rock was about 1800 times higher than that of arsenic, and there was no correlation between arsenic and iron occurrences in the rock samples. Arsenic concentrations in groundwater ranged from <1 to 171 microg/l. The arsenic concentration in groundwater depended on the amount of arsenic in aquifer rocks, and as well decreased with increasing depth. Over 90% of arsenic existed in the form of As(III), implying that the groundwater systems were in the reduced condition. The results such as high ferrous ion, low redox potential and low dissolved oxygen supported the observed arsenic species distribution. There was no noticeable difference in the total arsenic concentration and arsenic species ratio between unfiltered and filtered (0.45 microm) waters, indicating that the particulate form of arsenic was negligible in the groundwater samples. There were correlations between water sampling depth and chemical parameters, and between arsenic concentration and chemical parameters, however, the trends were not always consistent in both wells.
NASA Astrophysics Data System (ADS)
Kraus, E. A.; Stamps, B. W.; Rempfert, K. R.; Ellison, E. T.; Nothaft, D. B.; Boyd, E. S.; Templeton, A. S.; Spear, J. R.
2017-12-01
Subsurface microbial life is poorly understood but potentially very important to the search for life on other planets as well as increasing our understanding of Earth's geobiological processes. Fluids and rocks of actively serpentinizing subsurface environments are a recent target of biological study due to their apparent ubiquity across the solar system. Areas of serpentinization can contain high concentrations of molecular hydrogen, H2, that can serve as the dominant fuel source for subsurface microbiota. Working with the Oman Drilling Project, DNA and RNA were extracted from fluids of seven alkaline wells and two rock cores from drill sites GT3 and BT1 within the Samail ophiolite. DNA and cDNA (produced via reverse transcription from the recovered RNA) were sequenced using universal primers to identify microbial life across all three domains. Alkaline subsurface fluids support a microbial community that changes with pH and host-rock type. In peridotite with pH values of >11, wells NSHQ 14 and WAB 71 have high relative abundances of Meiothermus, Methanobacterium, the family Nitrospiraceae, and multiple types of the class Dehalococcoidia. While also hosted in peridotite but at pH 8.5, wells WAB 104 and 105 have a distinct, more diverse microbial community. This increased variance in community make-up is seen in wells that sit near/at the contact of gabbro and peridotite formations as well. Core results indicate both sampled rock types host a very low biomass environment subject to multiple sources of contamination during the drilling process. Suggestions for contaminant reduction, such as having core handlers wear nitrile gloves and flame-sterilizing the outer surfaces of core rounds for biological sampling, would have minimal impact to overall ODP coreflow and maximize the ability to better understand in situ microbiota in this low-biomass serpentinizing subsurface environment. While DNA extraction was successful with gram amounts of crushed rock, much can be done to improve yields and reduce contamination sources for Phase II drilling.
The research of breaking rock with liquid-solid two-phase jet flow
NASA Astrophysics Data System (ADS)
Cheng, X. Z.; Ren, F. S.; Fang, T. C.
2018-03-01
Abstracts. Particle impact drilling is an efficient way of breaking rock, which is mainly used in deep drilling and ultra-deep drilling. The differential equation was established based on the theory of Hertz and Newton’s second law, through the analysis of particle impact rock, the depth of particles into the rock was obtained. The mathematical model was established based on the effect of water impact crack. The research results show when water jet speed is more than 40 m/s, rock stability coefficient is more than 1.0, the rock fracture appear. Through the experimental research of particle impact drilling facilities, analysis of cuttings and the crack size which was analyzed through Scanning electron microscope consistent with the theoretical calculation, the validity of the model was verified.
Rotary Percussive Auto-Gopher for Deep Drilling and Sampling
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart
2009-01-01
The term "rotary percussive auto-gopher" denotes a proposed addition to a family of apparatuses, based on ultrasonic/ sonic drill corers (USDCs), that have been described in numerous previous NASA Tech Briefs articles. These apparatuses have been designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. In the case of the rotary percussive autogopher, the emphasis would be on developing an apparatus capable of penetrating to, and acquiring samples at, depths that could otherwise be reached only by use of much longer, heavier, conventional drilling-and-sampling apparatuses. To recapitulate from the prior articles about USDCs: A USDC can be characterized as a lightweight, low-power jackhammer in which a piezoelectrically driven actuator generates ultrasonic vibrations and is coupled to a tool bit through a free mass. The bouncing of the free mass between the actuator horn and the drill bit converts the actuator ultrasonic vibrations into sonic hammering of the drill bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary rotary drilling, ordinary hammering, or ordinary steady pushing. The predecessor of the rotary percussive auto-gopher is an apparatus, now denoted an ultrasonic/sonic gopher and previously denoted an ultrasonic gopher, described in "Ultrasonic/ Sonic Mechanism for Drilling and Coring" (NPO-30291), NASA Tech Briefs Vol. 27, No. 9 (September 2003), page 65. The ultrasonic/sonic gopher is intended for use mainly in acquiring cores. The name of the apparatus reflects the fact that, like a gopher, it periodically stops advancing at the end of the hole to bring excavated material (in this case, a core sample) to the surface, then re-enters the hole to resume the advance of the end of the hole. By use of a cable suspended from a reel on the surface, the gopher is lifted from the hole to remove a core sample, then lowered into the hole to resume the advance and acquire the next core sample.
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.; Velasco-Villarreal, M.; Perez-Cruz, L. L.
2013-05-01
Paleomagnetic studies have long been successfully carried out in drilling projects, to characterize the borehole columns and to investigate the subsurface structure and stratigraphy. Magnetic susceptibility logging and magnetostratigraphic studies provide data for lateral correlation, formation evaluation, azimuthal core orientation, physical properties, etc., and are part of the tools available in the ocean and continental drilling programs. The inclusion of continuous core recovery in scientific drilling projects have greatly expanded the range of potential applications of paleomagnetic and rock magnetic studies, by allowing laboratory measurements on core samples. For this presentation, we concentrate on drilling studies of impact structures and their usefulness for documenting the structure, stratigraphy and physical properties at depth. There are about 170-180 impact craters documented in the terrestrial record, which is a small number compared to what is observed in the Moon, Mars, Venus and other bodies of the solar system. Of the terrestrial impact craters, only a few have been studied by drilling. Some craters have been drilled as part of industry exploration surveys and/or academic projects, including notably the Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake and El gygytgyn craters. Drilling of terrestrial craters has proved important in documenting the shallow stratigraphy and structure, providing insight on the cratering and impact dynamics. Questions include several that can only be addressed by retrieving core samples and laboratory analyses. Paleomagnetic, rock magnetic and fabric studies have been conducted in the various craters, which are here summarized with emphasis on the Chicxulub crater and Yucatan carbonate platform. Chicxulub is buried under a kilometer of younger sediments, making drilling an essential tool. Oil exploration included several boreholes, and additionally we have drilled 11 boreholes with continuous core recovery. Contributions and limitations of paleomagnetism for investigating the impact age, crater stratigraphy, cratering, ejecta emplacement, impact dynamics, hydrothermal system and post-impact processes are discussed.
He, Jiang-Fu; Liang, Yun-Pei; Li, Li-Jia; Luo, Yong-Jiang
2018-01-01
Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations.
He, Jiang-fu; Li, Li-jia; Luo, Yong-jiang
2018-01-01
Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations. PMID:29768421
Curiosity Drill After Drilling at Telegraph Peak
2015-03-06
This view from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover shows the rover's drill just after finishing a drilling operation at a target rock called "Telegraph Peak" on Feb. 24, 2015, the 908th Martian day, or sol, of the rover's work on Mars. Three sols later, a fault-protection action by the rover halted a process of transferring sample powder that was collected during this drilling. The image is in raw color, as recorded directly by the camera, and has not been white-balanced. The fault-protection event, triggered by an irregularity in electrical current, led to engineering tests in subsequent days to diagnose the underlying cause. http://photojournal.jpl.nasa.gov/catalog/PIA19145
Mineralogy of Drill Cuttings Beowawe, Dixie Valley and Roosevelt Hot Springs
Simmons, Stuart
2017-01-25
Mineralogical, lithological, and geospatial data of drill cuttings from exploration production wells in Beowawe, Dixie Valley and Roosvelt Hot Springs. These data support whole rock analyses for major, minor and critical elements to assess critical metals in produced fluids from Nevada and Utah geothermal fields. The samples were analyzed by x-ray diffraction (legacy data) and then checked by thin section analysis.
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi
2012-01-01
NASA exploration missions are increasingly including sampling tasks but with the growth in engineering experience (particularly, Phoenix Scout and MSL) it is now very much recognized that planetary drilling poses many challenges. The difficulties grow significantly with the hardness of sampled material, the depth of drilling and the harshness of the environmental conditions. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a number of piezoelectric actuated drills and corers were developed by the Advanced Technologies Group of JPL. The basic configuration that was conceived in 1998 is known as the Ultrasonic/Sonic Driller/Corer (USDC), and it operates as a percussive mechanism. This drill requires as low preload as 10N (important for operation at low gravity) allowing to operate with as low-mass device as 400g, use an average power as low as 2- 3W and drill rocks as hard as basalt. A key feature of this drilling mechanism is the use of a free-mass to convert the ultrasonic vibrations generated by piezoelectric stack to sonic impacts on the bit. Using the versatile capabilities f the USDC led to the development of many configurations and device sizes. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to remove cuttings. To reach meters deep in ice a wireline drill was developed called the Ultrasonic/Sonic Gopher and it was demonstrated in 2005 to penetrate about 2-m deep at Antarctica. Jointly with Honeybee Robotics, this mechanism is currently being modified to incorporate rotation and inchworm operation forming Auto-Gopher to reach meters deep in rocks. To take advantage of the ability of piezoelectric actuators to operate over a wide temperatures range, piezoelectric actuated drills were developed and demonstrated to operate at as cold as -200oC and as hot as 500oC. In this paper, the developed mechanisms will be reviewed and discussed including the configurations, capabilities, and challenges.
NASA Astrophysics Data System (ADS)
Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.
2017-12-01
Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.
Wood, David B.
2007-11-01
Between 1951 and 1992, 828 underground tests were conducted on the Nevada National Security Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada National Security Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples can not be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.
Drilling informatics: data-driven challenges of scientific drilling
NASA Astrophysics Data System (ADS)
Yamada, Yasuhiro; Kyaw, Moe; Saito, Sanny
2017-04-01
The primary aim of scientific drilling is to precisely understand the dynamic nature of the Earth. This is the reason why we investigate the subsurface materials (rock and fluid including microbial community) existing under particular environmental conditions. This requires sample collection and analytical data production from the samples, and in-situ data measurement at boreholes. Current available data comes from cores, cuttings, mud logging, geophysical logging, and exploration geophysics, but these datasets are difficult to be integrated because of their different kinds and scales. Now we are producing more useful datasets to fill the gap between the exiting data and extracting more information from such datasets and finally integrating the information. In particular, drilling parameters are very useful datasets as geomechanical properties. We believe such approach, 'drilling informatics', would be the most appropriate to obtain the comprehensive and dynamic picture of our scientific target, such as the seismogenic fault zone and the Moho discontinuity surface. This presentation introduces our initiative and current achievements of drilling informatics.
ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.
2001-07-01
Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flowmore » up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing including: (a) Danian chalk, (b) Cordoba Cream limestone, (c) Indiana limestone, (d) Ekofisk chalk, (e) Oil Creek sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. During the second quarter experiments were begun on these rock types. A series of reconnaissance experiments have been carried out on all but the Ekofisk (for which there is a preliminary data set already inhouse). A series of triaxial tests have been conducted on the Danian chalk, the Cordoba Cream limestone, the Indiana limestone, and sand samples to make a preliminary determination of the deformational mechanisms present in these samples.« less
30 CFR 72.630 - Drill dust control at underground areas of underground mines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling...) Ventilation control. To adequately control dust from drilling rock, the air current shall be so directed that...
30 CFR 72.630 - Drill dust control at underground areas of underground mines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling...) Ventilation control. To adequately control dust from drilling rock, the air current shall be so directed that...
13. Photocopied August 1978. ROCK DRILLING MACHINES, NOVEMBER 23, 1898. ...
13. Photocopied August 1978. ROCK DRILLING MACHINES, NOVEMBER 23, 1898. THE HOLES DRILLED BY THESE MACHINES WERE PACKED WITH GUNPOWDER FOR BLASTING. (19) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
Curiosity Mars Rover Drilling Into Its Second Rock
2013-06-05
This frame from an animation from NASA Mars rover Curiosity shows the rover drilling into rock target Cumberland. The drilling was performed during the 279th Martian day, or sol, of the Curiosity work on Mars May 19, 2013.
Sample Acqusition Drilling System for the the Resource Prospector Mission
NASA Astrophysics Data System (ADS)
Zacny, K.; Paulsen, G.; Quinn, J.; Smith, J.; Kleinhenz, J.
2015-12-01
The goal of the Lunar Resource Prospector Mission (RPM) is to capture and identify volatiles species within the top meter of the lunar regolith. The RPM drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RPM drill is based on the Mars Icebreaker drill developed for capturing samples of ice and ice cemented ground on Mars. The drill weighs approximately 10 kg and is rated at ~300 Watt. It is a rotary-percussive, fully autonomous system designed to capture cuttings for analysis. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing station, 4. Z-stage, 5. Deployment stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in ~10 cm intervals. The first generation drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama in 2012. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The third generation drill was tested in NASA GRC's vacuum chamber, VF13, at 10-5 torr and approximately 200 K. It demonstrated successful capture and transfer of icy samples to a crucible. The drill has been modified and integrated onto the NASA JSC RPM rover. It has been undergoing testing in a lab and in the field during the Summer of 2015.
Physical properties of sidewall cores from Decatur, Illinois
Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.
2017-10-18
To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galbraith, R.M.
1978-05-01
The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characcterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the accoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galbraith, R.M.
1978-05-01
The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the acoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less
Designing a monitoring network for contaminated ground water in fractured chalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nativ, R.; Adar, E.M.; Becker, A.
1999-01-01
One of the challenges of monitoring network design in a fractured rock setting is the heterogeneity of the rocks. This paper summarizes the activities and problems associated with the monitoring of contaminated groundwater in porous, low-permeability fractured chalk in the Negev Desert, Israel. Preferential flow documented in the study area required siting the monitoring boreholes in the predominant fracture systems. Lineaments traced from aerial photographs were examined in the field to sort out the large-extension, through-going, multilayer fracture systems crossing the study area. At each proposed drilling site, these fractures were exposed below the sediment cover using trenches. Slanted boreholesmore » were drilled at a distance from the fracture systems so that each borehole would intersect the targeted fracture plane below the water table. Based on their short recovery period and contaminated ground water, these newly drilled, fracture-oriented boreholes appeared to be better connected to preferential flowpaths crossing the industrial site than the old boreholes existing on site. Other considerations concerning the drilling and logging of monitoring boreholes in a fractured media were: (1) coring provides better documentation of the vertical fracture distribution, but dry augering is less costly and enables immediate ground water sampling and the sampling of vadose rock for contaminant analysis; (2) caliper and TV camera logs appear to provide only partial information regarding the vertical fracture distribution; and (3) the information gained by deepening the monitoring boreholes and testing fractures crossing their uncased walls has to be carefully weighed against the risk of potential cross-contamination through the monitoring boreholes, which is enhanced in fractured media.« less
Modeling pellet impact drilling process
NASA Astrophysics Data System (ADS)
Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.
2016-03-01
The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.
Study of the Martian Subsurface with a Fiber Optics Spectrometer: the Ma_Miss Experiment
NASA Astrophysics Data System (ADS)
Coradini, A.; de Sanctis, M. C.; Ammannito, E.; Boccaccini, A.; Battistelli, E.; Capanni, A.
2009-04-01
In this presentation is described the investigation that we intend to do with a small imaging spectrometer that will be inserted in the drill of the Exomars- Pasteur rover. This spectrometer is named Ma_miss (Mars Multispectral Imager for Subsurface Studies ). The Ma_Miss experiment is located in the drill ,that will be able to make a hole in the Mars soil and rock up to 2 m. Ma_Miss includes the optical head of the spectrometer, a lamp to illuminate the borehole walls, and the optical fiber that brings the signal to the spectrometer. The multispectral images are acquired by means of a sapphire window placed on the lateral wall of the drill tool, as close as possible to the drill head. The images are gathered by means of an optical fibre system and analyzed using the spectrometer. The Ma_Miss gathered light containing the scientific information is transferred to the array detector and electronics of the instrument by means of an optical rotary joint implemented in the roto-translation group of the drill, as shown in the next pictures In the figure is schematically represented the Ma_Miss- Dibs architecture. This experiment will be extremely valuable since it will allow, for the first time, to have an idea of the mineralogical composition of the Martian subsurface and to study freshly cut rocks. The study of surface and subsurface mineralogy of Martian soil and rocks is the key for understanding the chemico-physical processes that led to the formation and evolution of the Red Planet. The history of the water and other volatiles, as well as the signatures of weathering processes are important to understand present and past environmental conditions associated with the possibility of life. Surface samples are highly influenced by exogenous processes (weathering, erosion, sedimentation, impact) that alter their original properties. So, the analyses of uncontaminated samples by means of instrumented drills and in situ analytic stations are the key for unambiguous interpretation of the original environment that leading to the formation of rocks. Analysis of subsurface layers is the only approach that warranties measurements on samples close to their original composition. The upper few meters of the surface materials on Mars play a crucial role in its history, providing important constraints geologic, hydrologic, and climatic to the history of the planet. Drilling into the near-surface crust will provide an opportunity to assess variations in composition, texture, stratification, unconformities, etc. that will help define its lithology and structure, and provide important clues regarding its origin and subsequent evolution. The subsurface material can give information on the evolution of surface sediments (erosion, transport, deposition), on the relation between sediments and bedrock, on the relation between environmental conditions and surface processes permitting to "investigate planetary processes that influence habitability." Investigation of mineralogical composition of near-surface geological materials is needed to fully characterize the geology of the regions that will be visited by the Rover at all appropriate spatial scales, and to interpret the processes that have formed and modified rocks and regolith. Subsurface access, sampling material below the oxidized layer, can be the key to "assess the biological potential of the target environment (past or present)". To date, we have direct observations relative only to the Martian surface. Little is known about the characteristics of the first subsurface layers. The possibility to sample subsurface materials to be delivered to other instruments, and to record the context of the sampled soil doing in situ borehole mineralogical analysis, is fundamental to search for traces of past or present life on Mars. The spectrometer observes a single point target, having 0.1 mm diameter, on the borehole wall surface. Depending on the surface features we are interested in, the observation window can scan the borehole's surface by means of drill tip rotation or translation. When the drill is translated, a "Column Image" is acquired. This translation step can be equal to the observation spot (0.1 mm). The "Ring Image" can be obtained by rotation of the drill tip; a rotation step of about 0.5Ë (corresponding to 720 acquisitions in the ring) is sufficient to assure the full coverage of the ring.
Bargar, Keith E.; ,
1993-01-01
The SUNEDCO 58-28 geothermal exploration drill hole was completed in 1981 to a depth of 2, 457 m near Breitenbush Hot Springs in the Western Cascade Mountains of northern Oregon. One hundred thirteen liquid-rich fluid inclusions (mostly secondary) were analyzed from drill cuttings samples of hydrothermal quartz, calcite, and anhydrite, as well as primary quartz phenocrysts. Except for one hydrothermal quartz specimen, minimum homogenization temperature (Th) measurements of fluid inclusions plot very close to the present measured temperatures for the drill hole. Fluid-inclusion data from near the bottom of the drill hole suggest that these rocks were altered by water of significantly greater salinity than Breitenbush Hot Springs water.
2018-05-17
This video clip shows a test of a new percussive drilling technique at NASA's Jet Propulsion Laboratory in Pasadena, California. On May 19, NASA's Curiosity rover is scheduled to test percussive drilling on Mars for the first time since December 2016. The video clip was shot on March 28, 2018. It has been sped up by 50 times. Curiosity's drill was designed to pulverize rocks samples into powder, which can then be deposited into two chemistry laboratories carried inside of the rover. Curiosity's science team is eager to the rover using percussive drilling again; it will approach a clay-enriched area later this year that could shed new light on the history of water in Gale Crater. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22324
NASA Astrophysics Data System (ADS)
Goodge, J. W.; Severinghaus, J. P.
2014-12-01
The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.
Video Clip of a Rover Rock-Drilling Demonstration at JPL
2013-02-20
This frame from a video clip shows moments during a demonstration of drilling into a rock at NASA JPL, Pasadena, Calif., with a test double of the Mars rover Curiosity. The drill combines hammering and rotation motions of the bit.
An Overview on Measurement-While-Drilling Technique and its Scope in Excavation Industry
NASA Astrophysics Data System (ADS)
Rai, P.; Schunesson, H.; Lindqvist, P.-A.; Kumar, U.
2015-04-01
Measurement-while-drilling (MWD) aims at collecting accurate, speedy and high resolution information from the production blast hole drills with a target of characterization of highly variable rock masses encountered in sub-surface excavations. The essence of the technique rests on combining the physical drill variables in a manner to yield a fairly accurate description of the sub-surface rock mass much ahead of following downstream operations. In this light, the current paper presents an overview of the MWD by explaining the technique and its set-up, the existing drill-rock mass relationships and numerous on-going researches highlighting the real-time applications. Although the paper acknowledges the importance of concepts of specific energy, rock quality index and a couple of other indices and techniques for rock mass characterization, it must be distinctly borne in mind that the technique of MWD is highly site-specific, which entails derivation of site-specific calibration with utmost care.
Research into robotic automation of drilling equipment by the Institute of Mining, UB RAS
NASA Astrophysics Data System (ADS)
Regotunov, AS; Sukhov, RI
2018-03-01
The article discusses the issues connected with the development of instrumentation for the express-determination of strength characteristics of rocks during blasthole drilling in open pit mines. The trial results of the instrumentation are reported in terms of the drilling rate–energy content interrelation determined in the analyses of experimental drilling block data and by the digital model of rock distribution in depth versus drilling complexity index.
Integrated NMR Core and Log Investigations With Respect to ODP LEG 204
NASA Astrophysics Data System (ADS)
Arnold, J.; Pechnig, R.; Clauser, C.; Anferova, S.; Blümich, B.
2005-12-01
NMR techniques are widely used in the oil industry and are one of the most suitable methods to evaluate in-situ formation porosity and permeability. Recently, efforts are directed towards adapting NMR methods also to the Ocean Drilling Program (ODP) and the upcoming Integrated Ocean Drilling Program (IODP). We apply a newly developed light-weight, mobile NMR core scanner as a non-destructive instrument to determine routinely rock porosity and to estimate the pore size distribution. The NMR core scanner is used for transverse relaxation measurements on water-saturated core sections using a CPMG sequence with a short echo time. A regularized Laplace-transform analysis yields the distribution of transverse relaxation times T2. In homogeneous magnetic fields, T2 is proportional to the pore diameter of rocks. Hence, the T2 signal maps the pore-size distribution of the studied rock samples. For fully saturated samples the integral of the distribution curve and the CPMG echo amplitude extrapolated to zero echo time are proportional to porosity. Preliminary results show that the NMR core scanner is a suitable tool to determine rock porosity and to estimate pore size distribution of limestones and sandstones. Presently our investigations focus on Leg 204, where NMR Logging-While-Drilling (LWD) was performed for the first time in ODP. Leg 204 was drilled into Hydrate Ridge on the Cascadia accretionary margin, offshore Oregon. All drilling and logging operations were highly successful, providing excellent core, wireline, and LWD data from adjacent boreholes. Cores recovered during Leg 204 consist mainly of clay and claystone. As the NMR core scanner operates at frequencies higher than that of the well-logging sensor it has a shorter dead time. This advantage makes the NMR core scanner sensitive to signals with T2 values down to 0.1 ms as compared to 3 ms in NMR logging. Hence, we can study even rocks with small pores, such as the mudcores recovered during Leg 204. We present a comparison of data from core scanning and NMR logging. Future integration of conventional wireline data and electrical borehole wall images (RAB/FMS) will provide a detailed characterization of the sediments in terms of lithology, petrophysics and, fluid flow properties.
Drilling into molten rock at Kilauea Iki
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colp, J.L.; Okamura, R.T.
1978-01-01
The scientific feasibility of extracting energy directly from buried circulating magma resources is being assessed. One of the tasks of the project is the study of geophysical measuring systems to locate and define buried molten rock bodies. To verify the results of a molten rock sensing experiment performed at Kilauea Iki lava lake, it is necessary to drill a series of holes through the solid upper crust and through the molten zone at that location. Thirteen holes have been drilled in Kilauea Iki. The results achieved during the drilling of the last two holes indicated that the molten zone inmore » Kilauea Iki is not a simple, relatively homogeneous fluid body as expected. The encountering of an unexpected, unknown rigid obstruction 2.5 ft below the crust/melt interface has led to the conceptual development of a drilling system intended to have the capability to drill through a hot, rigid obstruction while the drill stem is immersed in molten rock. The concept will be field tested at Kilauea Iki in the summer of 1978.« less
Magnetic insights on seismogenic processes from scientific drilling of fault
NASA Astrophysics Data System (ADS)
Ferre, E. C.; Chou, Y. M.; Aubourg, C. T.; Li, H.; Doan, M. L.; Townend, J.; Sutherland, R.; Toy, V.
2017-12-01
Modern investigations through scientific drilling of recently seismogenic faults have provided remarkable insights on the physics of rupture processes. Following devastating earthquakes, several drilling programs focused since 1995 on the Nojima, Chelungpu, San Andreas, Wenchuan, Nankai Trough, Japan Trench and New Zealand Alpine faults. While these efforts were all crowned with success largely due to the multidisciplinarity of investigations, valuable insights were gained from rock magnetism and paleomagnetism and deserve to be highlighted. Continuous logging of magnetic properties allows detection of mineralogical and chemical changes in the host rock and fault zone particularly in slip zones, whether these are caused by frictional melting, elevation of temperature, ultracataclasis, or post-seismic fluid rock interaction. Further magnetic experiments on discrete samples including magnetic susceptibility, natural remanent magnetization, hysteresis properties, isothermal remanent magnetization acquisition and first order reversal curves, provide additional constrains on the nature, concentration and grain size of magnetic carriers. These experiments typically also inform on magnetization processes by thermal, chemical, or electrical mechanisms. Magnetic fabrics are generally not investigated on fault rocks from drill cores primarily in an effort to conserve the recovered core. However, recent methodological developments now would allow chemically non-destructive anisotropy of magnetic susceptibility (AMS) measurements to be performed on small 3.5 mm cubes. The mini-AMS method could provide crucial information on the kinematics of frictional melts produced during recent or ancient earthquakes and therefore would constrain the corresponding focal mechanisms. Finally, demagnetization experiments of the natural remanent magnetization (NRM) are one of the most powerful items in the magnetic toolkit because they provide chronological constrains on magnetization processes. Hence paleomagnetic experiments on fault rocks offer a unique opportunity to distinguish between recently active and ancient slip zones.
PDC Bit Testing at Sandia Reveals Influence of Chatter in Hard-Rock Drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAYMOND,DAVID W.
1999-10-14
Polycrystalline diamond compact (PDC) bits have yet to be routinely applied to drilling the hard-rock formations characteristic of geothermal reservoirs. Most geothermal production wells are currently drilled with tungsten-carbide-insert roller-cone bits. PDC bits have significantly improved penetration rates and bit life beyond roller-cone bits in the oil and gas industry where soft to medium-hard rock types are encountered. If PDC bits could be used to double current penetration rates in hard rock geothermal well-drilling costs could be reduced by 15 percent or more. PDC bits exhibit reasonable life in hard-rock wear testing using the relatively rigid setups typical of laboratorymore » testing. Unfortunately, field experience indicates otherwise. The prevailing mode of failure encountered by PDC bits returning from hard-rock formations in the field is catastrophic, presumably due to impact loading. These failures usually occur in advance of any appreciable wear that might dictate cutter replacement. Self-induced bit vibration, or ''chatter'', is one of the mechanisms that may be responsible for impact damage to PDC cutters in hard-rock drilling. Chatter is more severe in hard-rock formations since they induce significant dynamic loading on the cutter elements. Chatter is a phenomenon whereby the drillstring becomes dynamically unstable and excessive sustained vibrations occur. Unlike forced vibration, the force (i.e., weight on bit) that drives self-induced vibration is coupled with the response it produces. Many of the chatter principles derived in the machine tool industry are applicable to drilling. It is a simple matter to make changes to a machine tool to study the chatter phenomenon. This is not the case with drilling. Chatter occurs in field drilling due to the flexibility of the drillstring. Hence, laboratory setups must be made compliant to observe chatter.« less
A Study of Specific Fracture Energy at Percussion Drilling
NASA Astrophysics Data System (ADS)
A, Shadrina; T, Kabanova; V, Krets; L, Saruev
2014-08-01
The paper presents experimental studies of rock failure provided by percussion drilling. Quantification and qualitative analysis were carried out to estimate critical values of rock failure depending on the hammer pre-impact velocity, types of drill bits and cylindrical hammer parameters (weight, length, diameter), and turn angle of a drill bit. Obtained data in this work were compared with obtained results by other researchers. The particle-size distribution in granite-cutting sludge was analyzed in this paper. Statistical approach (Spearmen's rank-order correlation, multiple regression analysis with dummy variables, Kruskal-Wallis nonparametric test) was used to analyze the drilling process. Experimental data will be useful for specialists engaged in simulation and illustration of rock failure.
NASA Astrophysics Data System (ADS)
Mueller, S.; Koepke, J.; Garbe-Schoenberg, C. D.; Müller, T.; Mock, D.; Strauss, H.; Schuth, S.; Ildefonse, B.
2017-12-01
In the absence of a complete profile through fast-spreading oceanic crust in modern oceans, we established a reference profile through the whole paleocrust of the Sumail Ophiolite (Oman), which is regarded as the best analogue for fast-spreading oceanic crust on land. For establishing a coherent data set, we sampled the Wadi Gideah in the Wadi-Tayin massif from the mantle section up to the pillow basalts and performed different analytical and structural investigations on the same suite of samples (pool sample concept). The whole sample set contains about 400 samples focusing on both primary magmatic rocks and hydrothermal fault zones to characterize initial formation processes and cooling of the crust. The Wadi Gideah hosts the sites GT1A (lower crust) and GT2A (foliated / layered gabbro transition) where 400 m long cores have been drilled in the frame of the ICDP Oman Drilling Project (OmanDP). Thus, the Wadi Gideah crustal transect is well-suited for providing a reference frame for these two drill cores. Major and trace element data on minerals and rocks reveal in-situ crystallization in the deep crust, thus strongly supporting a hybrid accretion model that is characterized by sheeted sill intrusion in the lower part of the plutonic crust and gabbro glacier features in the upper section. This hybrid model is also supported by results on crystallographic preferred orientations (CPO) of the minerals within the gabbros, which call for distinct formation mechanisms in the upper and lower gabbro sections. A requirement for our hybrid model is significant hydrothermal cooling in the lower crust for the consumption of the latent heat of crystallization. This was facilitated by channelled hydrothermal flow zones, preserved today in faulted zones of extensively altered gabbro cutting both layered and foliated gabbros. These gabbros show higher Sr87/Sr86 ratios if compared to the background gabbro, the presence of late stage minerals (amphibole, oxides, orthopyroxene, apatite) and evidence for hydrous partial melting, as consequence of fluid / rock interaction at very high temperatures. Obviously, these fault zones remained active for channelled fluid flow during the entire cooling stage of the oceanic crust down to low-temperature mineral assemblages.
IceBreaker: Mars Drill and Sample Delivery System
NASA Astrophysics Data System (ADS)
Mellerowicz, B. L.; Paulsen, G. L.; Zacny, K.; McKay, C.; Glass, B. J.; Dave, A.; Davila, A. F.; Marinova, M.
2012-12-01
We report on the development and testing of a one meter class prototype Mars drill and cuttings sample delivery system. The IceBreaker drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sam-pling station for moving the augered ice shavings or soil cuttings into a sample cup. The drill is deployed from a 3 Degree of Freedom (DOF) robotic arm. The drill demonstrated drilling in ice-cemented ground, ice, and rocks at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This cor-responds to an average energy of 100 Whr. The drill has been extensively tested in the Mars chamber to a depth of 1 meter, as well as in the Antarctic and the Arctic Mars analog sites. We also tested three sample delivery systems: 1) 4 DOF arm with a custom soil scoop at the end; 2) Pneumatic based, and 3) Drill based enabled by the 3 (DOF) drill deployment boom. In all approaches there is an air-gap between the sterilized drill (which penetrates subsurface) and the sample transfer hardware (which is not going to be sterilized). The air gap satisfies the planetary protection requirements. The scoop acquires cuttings sample once they are augered to the surface, and drops them into an in-strument inlet port. The system has been tested in the Mars chamber and in the Arctic. The pneumatic sample delivery system uses compressed gas to move the sample captured inside a small chamber inte-grated with the auger, directly into the instrument. The system was tested in the Mars chamber. In the third approach the drill auger captures the sample on its flutes, the 3 DOF boom positions the tip of the auger above the instrument, and then the auger discharges the sample into an instrument. This approach was tested in the labolatory (at STP). The above drilling and sample delivery tests have shown that drilling and sample transfer on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in dis-crete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.
Hole at Telegraph Peak Drilled by Mars Rover Curiosity
2015-02-25
This hole, with a diameter slightly smaller than a U.S. dime, was drilled by NASA Curiosity Mars rover into a rock target called Telegraph Peak. The rock is located within the basal layer of Mount Sharp. The hole was drilled on Feb. 24, 2015.
DOT National Transportation Integrated Search
2003-07-01
Drilled shaft foundations embedded in weak rock formations (e.g., Denver blue claystone and sandstone) support a significant portion of bridges in Colorado. Since the 1960s, empirical methods and rules of thumb have been used to design drilled shafts...
NASA Technical Reports Server (NTRS)
Cavanagh, P. D.; Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Morris, R. V.; Ming, D. W.; Rampe, E. B.; Achilles, C. N.; Chipera, S. J.; Treiman, A. H.;
2015-01-01
The Mars Science Laboratory (MSL) rover Curiosity recently completed its fourth drill sampling of sediments on Mars. The Confidence Hills (CH) sample was drilled from a rock located in the Pahrump Hills region at the base of Mt. Sharp in Gale Crater. The CheMin X-ray diffractometer completed five nights of analysis on the sample, more than previously executed for a drill sample, and the data have been analyzed using Rietveld refinement and full-pattern fitting to determine quantitative mineralogy. Confidence Hills mineralogy has several important characteristics: 1) abundant hematite and lesser magnetite; 2) a 10 angstrom phyllosilicate; 3) multiple feldspars including plagioclase and alkali feldspar; 4) mafic silicates including forsterite, orthopyroxene, and two types of clinopyroxene (Ca-rich and Ca-poor), consistent with a basaltic source; and 5) minor contributions from sulfur-bearing species including jarosite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis; Alan Black; Homer Robertson
2006-03-01
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, M.D.; Waddell, S.J.; Vick, G.S.
1986-12-31
Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). Thesemore » formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression.« less
A Proposed Borehole Scientific Laboratory in Quay County, New Mexico, USA
NASA Astrophysics Data System (ADS)
Nielson, Dennis; Eckels, Marc; Mast, Peter; Zellman, Mark; Creed, Robert
2017-04-01
Our team has received funding from the US Department of Energy to initiate a Deep Borehole Field Test that will develop a subsurface test site to evaluate the drilling and scientific aspects of deep borehole disposal of nuclear waste in crystalline rock. Phase 1 of the project will focus on Public Outreach and land acquisition whereas Phase 2 will generate a drilling and testing plan and secure regulatory approvals. Phase 3 will complete the Drilling and Testing Plan and Phase 4 will include the drilling and testing. Phase 5 will be devoted to borehole science and experiments with emplacement technology. Although we are specifically considering issues associated with the disposal of waste, this project is a proof of concept, and no waste will be emplaced at our site. In brief, the concept envisions an 8-1/2 inch open-hole completion at a depth of 5000 m in crystalline rock. There will be an extensive program of sample collection (including core) and analysis as well as geophysical logging and borehole testing. Critical issues will be low permeability in the crystalline rock as well as the ability to manage borehole quality. Our team has proposed a site in Quay County, New Mexico that has an 850 meter thick Paleozoic section overlying homogeneous Precambrian granite. A subsequent phase of the project may drill a second hole with a 17-1/2 inch completion located about 200 m from the first. Our long-term plan is that this site will be managed as a deep scientific observatory that also provides a facility for scientific experiments and testing of borehole infrastructure and drilling equipment.
Test holes drilled in support of ground-water investigations, Project Gnome, Eddy County, New Mexico
Cooper, J.B.
1962-01-01
Project Gnome is a proposed underground nuclear shot to be detonated within a massive salt bed in Eddy County, N. Mex. Potable and neat potable ground water is present in rocks above the salt and is being studied in relation to this nuclear event. This report presents details of two test holes which were drilled to determine ground-water conditions in the near vicinity of the shot point. A well-defined aquifer is present at the site of USGS test hole 1, about 1,000 feet south of the access shaft to the underground shot point. Water with 75 feet of artesian pressure head is contained in the Culebra dolomite member of the Rustler formation. The dolomite aquifer is 32 feet thick and its top lies at a depth of 517 feet below land surface. The aquifer yielded 100 gpm (gallons per minute) with a drawdown of 40 feet during a pumping period of 24 hours. Water was not found in rocks above or below the Culebra dolomite. At the site of USGS test hole 2, about 2 miles southwest of the access shaft no distinctive aquifer exists. About one-half gpm was yielded to the well from the rocks between the Culebra dolomite and the top of the salt. Water could not be detected in the Culebra dolomite or overlying rocks. The report contains drawdown and recovery curves of yield tests, drilling-time charts, and electric logs. The data are given in tables; they include summaries of hole construction, sample description logs, water measurements, drilling-time logs, and water analyses.
Distribution of gold, tellurium, silver, and mercury in part of the Cripple Creek district, Colorado
Gott, Garland Bayard; McCarthy, J.H.; Van Sickle, G.H.; McHugh, J.B.
1967-01-01
Geochemical exploration studies were undertaken in the Cripple Creek district to test the possibility that large low-grade gold deposits might be found. Surface rock samples taken throughout the district indicate that the volcanic rocks between the productive veins contain an average of about 0.6 ppm (part per million) gold. In an area above 3,800 feet long and 500 feet wide near the Cresson mine in the south-central part of the district, scattered surface samples show that the rocks contain an average of 2.5 ppm gold, equivalent to $2.50 per ton. Inasmuch as veins that contain more than 2.5 ppm may also exist in the area, systematic sampling by trenching and drilling is warranted.
1994-09-01
materials. Also, available data from drilling rates in the mining and tunneling industries (Howarth and Rowlands 1987, Somerton 1959) indicate a...selected uniform natural rock materials and several man -made rock simulants were used to obtain drilling parameter records for materials of known...Dredging Seminar, Atlantic City, NJ, May 1993. Western Dredging Association (WEDA) and Texas A&M University. Somerton , W. H. (1959). "A laboratory study of
Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling
NASA Astrophysics Data System (ADS)
Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.
2016-09-01
The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.
ChemCam investigation of the John Klein and Cumberland drill holes and tailings, Gale crater, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, R. S.; Wiens, R. C.; Vaniman, D. T.
The ChemCam instrument on the Mars Science Laboratory rover analyzed the rock surface, drill hole walls, tailings, and unprocessed and sieved dump piles to investigate chemical variations with depth in the first two martian drill holes and possible fractionation or segregation effects of the drilling and sample processing. Furthermore, the drill sites are both in Sheepbed Mudstone, the lowest exposed member of the Yellowknife Bay formation. Yellowknife Bay is composed of detrital basaltic materials in addition to clay minerals and an amorphous component. The drill tailings are a mixture of basaltic sediments and diagenetic material like calcium sulfate veins, whilemore » the shots on the drill site surface and walls of the drill holes are closer to those pure end members. The sediment dumped from the sample acquisition, processing, and handling subsystem is of similar composition to the tailings; however, due to the specifics of the drilling process the tailings and dump piles come from different depths within the hole. This then allows the ChemCam instrument to analyze samples representing the bulk composition from different depths. On the pre-drill surfaces, the Cumberland site has a greater amount of CaO and evidence for calcium sulfate veins, than the John Klein site. But, John Klein has a greater amount of calcium sulfate veins below the surface, as seen in mapping, drill hole wall analysis, and observations in the drill tailings and dump pile. In addition, the Cumberland site does not have any evidence of variations in bulk composition with depth down the drill hole, while the John Klein site has evidence for a greater amount of CaO (calcium sulfates) in the top portion of the hole compared to the middle section of the hole, where the drill sample was collected.« less
ChemCam investigation of the John Klein and Cumberland drill holes and tailings, Gale crater, Mars
Jackson, R. S.; Wiens, R. C.; Vaniman, D. T.; ...
2016-05-13
The ChemCam instrument on the Mars Science Laboratory rover analyzed the rock surface, drill hole walls, tailings, and unprocessed and sieved dump piles to investigate chemical variations with depth in the first two martian drill holes and possible fractionation or segregation effects of the drilling and sample processing. Furthermore, the drill sites are both in Sheepbed Mudstone, the lowest exposed member of the Yellowknife Bay formation. Yellowknife Bay is composed of detrital basaltic materials in addition to clay minerals and an amorphous component. The drill tailings are a mixture of basaltic sediments and diagenetic material like calcium sulfate veins, whilemore » the shots on the drill site surface and walls of the drill holes are closer to those pure end members. The sediment dumped from the sample acquisition, processing, and handling subsystem is of similar composition to the tailings; however, due to the specifics of the drilling process the tailings and dump piles come from different depths within the hole. This then allows the ChemCam instrument to analyze samples representing the bulk composition from different depths. On the pre-drill surfaces, the Cumberland site has a greater amount of CaO and evidence for calcium sulfate veins, than the John Klein site. But, John Klein has a greater amount of calcium sulfate veins below the surface, as seen in mapping, drill hole wall analysis, and observations in the drill tailings and dump pile. In addition, the Cumberland site does not have any evidence of variations in bulk composition with depth down the drill hole, while the John Klein site has evidence for a greater amount of CaO (calcium sulfates) in the top portion of the hole compared to the middle section of the hole, where the drill sample was collected.« less
Auto-Gopher: A Wire-Line Rotary-Hammer Ultrasonic Drill
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Sherrit, Stewart; Bao, Xiaogi; Bar-Cohen, Yoseph; Chen, Beck
2011-01-01
Developing technologies that would enable NASA to sample rock, soil, and ice by coring, drilling or abrading at a significant depth is of great importance for a large number of in-situ exploration missions as well as for earth applications. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for records of past and present life on the planet, as well as, the search for water and other resources. A deep corer, called Auto-Gopher, is currently being developed as a joint effort of the JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher is a wire-line rotary-hammer drill that combines rock breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) that has been developed as an adaptable tool for many of drilling and coring applications. The USDC uses an intermediate free-flying mass to transform the high frequency vibrations of the horn tip into a sonic hammering of a drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher. The lessons learned from testing the ice gopher were implemented into the design of the Auto-Gopher by inducing a rotary motion onto the fluted coring bit. A wire-line version of such a system would allow penetration of significant depth without a large increase in mass. A laboratory version of the corer was developed in the NDEAA lab to determine the design and drive parameters of the integrated system. The design configuration lab version of the design and fabrication and preliminary testing results are presented in this paper
The behavior of enclosed-type connection of drill pipes during percussive drilling
NASA Astrophysics Data System (ADS)
Shadrina, A.; Saruev, L.
2015-11-01
Percussion drilling is the efficient method to drill small holes (≥ 70 mm) in medium- hard and harder rocks. The existing types of drill strings for geological explorations are not intended for strain wave energy transfer. The description of the improved design of the drill string having enclosed-type nipple connections is given in this paper presents. This nipple connection is designed to be used in drilling small exploration wells with formation sampling. Experimental findings prove the effectiveness of the enclosed nipple connection in relation to the load distribution in operation. The paper presents research results of the connection behavior under quasistatic loading (compression-tension). Loop diagrams are constructed and analyzed in force-displacement coordinates. Research results are obtained for shear stresses occurred in the nipple connection. A mechanism of shear stress distribution is described for the wave strain propagation over the connecting element. It is shown that in the course of operation the drill pipe tightening reduces the shear stress three times.
Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janssen, C.; Wirth, R.; Wenk, H. -R.
The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has beenmore » observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.« less
HPC simulations of grain-scale spallation to improve thermal spallation drilling
NASA Astrophysics Data System (ADS)
Walsh, S. D.; Lomov, I.; Wideman, T. W.; Potter, J.
2012-12-01
Thermal spallation drilling and related hard-rock hole opening techniques are transformative technologies with the potential to dramatically reduce the costs associated with EGS well drilling and improve the productivity of new and existing wells. In contrast to conventional drilling methods that employ mechanical means to penetrate rock, thermal spallation methods fragment rock into small pieces ("spalls") without contact via the rapid transmission of heat to the rock surface. State-of-the-art constitutive models of thermal spallation employ Weibull statistical failure theory to represent the relationship between rock heterogeneity and its propensity to produce spalls when heat is applied to the rock surface. These models have been successfully used to predict such factors as penetration rate, spall-size distribution and borehole radius from drilling jet velocity and applied heat flux. A properly calibrated Weibull model would permit design optimization of thermal spallation drilling under geothermal field conditions. However, although useful for predicting system response in a given context, Weibull models are by their nature empirically derived. In the past, the parameters used in these models were carefully determined from laboratory tests, and thus model applicability was limited by experimental scope. This becomes problematic, for example, if simulating spall production at depths relevant for geothermal energy production, or modeling thermal spallation drilling in new rock types. Nevertheless, with sufficient computational resources, Weibull models could be validated in the absence of experimental data by explicit small-scale simulations that fully resolve rock grains. This presentation will discuss how high-fidelity simulations can be used to inform Weibull models of thermal spallation, and what these simulations reveal about the processes driving spallation at the grain-scale - in particular, the role that inter-grain boundaries and micro-pores play in the onset and extent of spallation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations
NASA Astrophysics Data System (ADS)
Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.
2017-06-01
Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical algorithm, and the validation and application results are outlined in this work.
NASA Astrophysics Data System (ADS)
Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel
2017-09-01
When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.
A Mars Sample Return Sample Handling System
NASA Technical Reports Server (NTRS)
Wilson, David; Stroker, Carol
2013-01-01
We present a sample handling system, a subsystem of the proposed Dragon landed Mars Sample Return (MSR) mission [1], that can return to Earth orbit a significant mass of frozen Mars samples potentially consisting of: rock cores, subsurface drilled rock and ice cuttings, pebble sized rocks, and soil scoops. The sample collection, storage, retrieval and packaging assumptions and concepts in this study are applicable for the NASA's MPPG MSR mission architecture options [2]. Our study assumes a predecessor rover mission collects samples for return to Earth to address questions on: past life, climate change, water history, age dating, understanding Mars interior evolution [3], and, human safety and in-situ resource utilization. Hence the rover will have "integrated priorities for rock sampling" [3] that cover collection of subaqueous or hydrothermal sediments, low-temperature fluidaltered rocks, unaltered igneous rocks, regolith and atmosphere samples. Samples could include: drilled rock cores, alluvial and fluvial deposits, subsurface ice and soils, clays, sulfates, salts including perchlorates, aeolian deposits, and concretions. Thus samples will have a broad range of bulk densities, and require for Earth based analysis where practical: in-situ characterization, management of degradation such as perchlorate deliquescence and volatile release, and contamination management. We propose to adopt a sample container with a set of cups each with a sample from a specific location. We considered two sample cups sizes: (1) a small cup sized for samples matching those submitted to in-situ characterization instruments, and, (2) a larger cup for 100 mm rock cores [4] and pebble sized rocks, thus providing diverse samples and optimizing the MSR sample mass payload fraction for a given payload volume. We minimize sample degradation by keeping them frozen in the MSR payload sample canister using Peltier chip cooling. The cups are sealed by interference fitted heat activated memory alloy caps [5] if the heating does not affect the sample, or by crimping caps similar to bottle capping. We prefer cap sealing surfaces be external to the cup rim to prevent sample dust inside the cups interfering with sealing, or, contamination of the sample by Teflon seal elements (if adopted). Finally the sample collection rover, or a Fetch rover, selects cups with best choice samples and loads them into a sample tray, before delivering it to the Earth Return Vehicle (ERV) in the MSR Dragon capsule as described in [1] (Fig 1). This ensures best use of the MSR payload mass allowance. A 3 meter long jointed robot arm is extended from the Dragon capsule's crew hatch, retrieves the sample tray and inserts it into the sample canister payload located on the ERV stage. The robot arm has capacity to obtain grab samples in the event of a rover failure. The sample canister has a robot arm capture casting to enable capture by crewed or robot spacecraft when it returns to Earth orbit
Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill
NASA Technical Reports Server (NTRS)
Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor)
2014-01-01
A Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill includes a horn actuator having high power piezoelectric materials and a flexure pre-stress to increase the actuators effectiveness. The drill is a low mass, low power, compact coring drill measuring 20-cm high by 7-cm diameter and having a total weight of 2 kg including drive electronics. Using an average power of 50-Watts, the drill basalt is expected to cut basalt at a rate of 0.2 cm/min down to depth of 10-cm and create cuttings and an intact core. The drill is expected to operate under different environments including Martian ambient (6 Torr and down to -50 degree C), and liquid nitrogen temperatures (77 K) and low pressure (<<1 Torr) to simulate lunar polar and Europa conditions. Materials expected to be sampled include Kaolinite, Saddleback Basalt, Limestone, Volcanic Breccia, Siltstone, ice, permafrost and layered rocks with different hardness.
Grimes, D.J.; Ficklin, W.H.; Meier, A.L.; McHugh, J.B.
1995-01-01
Ground-water, alluvium, and bedrock samples were collected from drill holes near the Chimney Creek, Preble, Summer Camp, and Rabbit Creek disseminated gold deposits in northern Nevada. Results of chemical analyses of drill-hole water samples show the presence of hydromorphic dispersion anomalies of Au, As, Sb, and W in the local ground-water systems associated with these deposits. In addition, analysis of sequential dissolution and extraction solutions of drill cuttings of alluvium and bedrock indicate geochemical anomalies of gold and ore-related metals in the overburden at depths corresponding to the location of the present-day water table. This relationship suggests that water-rock reactions around these buried deposits are active. -from Authors
Method for Cleanly and Precisely Breaking Off a Rock Core Using a Radial Compressive Force
NASA Technical Reports Server (NTRS)
Richardson, Megan; Lin, Justin
2011-01-01
The Mars Sample Return mission has the goal to drill, break off, and retain rock core samples. After some results gained from rock core mechanics testing, the realization that scoring teeth would cleanly break off the core after only a few millimeters of penetration, and noting that rocks are weak in tension, the idea was developed to use symmetric wedging teeth in compression to weaken and then break the core at the contact plane. This concept was developed as a response to the break-off and retention requirements. The wedges wrap around the estimated average diameter of the core to get as many contact locations as possible, and are then pushed inward, radially, through the core towards one another. This starts a crack and begins to apply opposing forces inside the core to propagate the crack across the plane of contact. The advantage is in the simplicity. Only two teeth are needed to break five varieties of Mars-like rock cores with limited penetration and reasonable forces. Its major advantage is that it does not require any length of rock to be attached to the parent in order to break the core at the desired location. Test data shows that some rocks break off on their own into segments or break off into discs. This idea would grab and retain a disc, push some discs upward and others out, or grab a segment, break it at the contact plane, and retain the portion inside of the device. It also does this with few moving parts in a simple, space-efficient design. This discovery could be implemented into a coring drill bit to precisely break off and retain any size rock core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2004-10-01
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2004-10-01
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less
Development and Testing of The Lunar Resource Prospector Drill
NASA Astrophysics Data System (ADS)
Zacny, K.; Paulsen, G.; Kleinhenz, J.; Smith, J. T.; Quinn, J.
2017-12-01
The goal of the Lunar Resource Prospector (RP) mission is to capture and identify volatiles species within the top one meter layer of the lunar surface. The RP drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RP drill is based on the TRL4 Mars Icebreaker drill and TRL5 LITA drill developed for capturing samples of ice and ice cemented ground on Mars, and represents over a decade of technology development effort. The TRL6 RP drill weighs approximately 15 kg and is rated at just over 500 Watt. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing Station, 4. Feed Stage, and 5. Deployment Stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in 10 cm depth intervals. The first generation, TRL4 Icebreaker drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation, TRL5 LITA drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama, Antarctica, the Arctic, and Greenland. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The modified LITA drill was tested in NASA GRC's lunar vacuum chamber at <10^-5 torr and <200 K. It demonstrated successful capture and transfer of volatile rich frozen samples to a crucible for analysis. The modified LITA drill has also been successfully vibration tested at NASA KSC. The drill was integrated with RP rover at NASA JSC and successfully tested in a lab and in the field, as well as on a large vibration table and steep slope. The latest TRL6 RP drill is currently undergoing testing at NASA GRC lunar chamber facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.1... with rock drilling in coal mines to procure their certification as permissible for use in coal mines...
Code of Federal Regulations, 2011 CFR
2011-07-01
... PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.1... with rock drilling in coal mines to procure their certification as permissible for use in coal mines...
Code of Federal Regulations, 2013 CFR
2013-07-01
... PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.1... with rock drilling in coal mines to procure their certification as permissible for use in coal mines...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.1... with rock drilling in coal mines to procure their certification as permissible for use in coal mines...
Code of Federal Regulations, 2014 CFR
2014-07-01
... PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.1... with rock drilling in coal mines to procure their certification as permissible for use in coal mines...
Preserving Geological Samples and Metadata from Polar Regions
NASA Astrophysics Data System (ADS)
Grunow, A.; Sjunneskog, C. M.
2011-12-01
The Office of Polar Programs at the National Science Foundation (NSF-OPP) has long recognized the value of preserving earth science collections due to the inherent logistical challenges and financial costs of collecting geological samples from Polar Regions. NSF-OPP established two national facilities to make Antarctic geological samples and drill cores openly and freely available for research. The Antarctic Marine Geology Research Facility (AMGRF) at Florida State University was established in 1963 and archives Antarctic marine sediment cores, dredge samples and smear slides along with ship logs. The United States Polar Rock Repository (USPRR) at Ohio State University was established in 2003 and archives polar rock samples, marine dredges, unconsolidated materials and terrestrial cores, along with associated materials such as field notes, maps, raw analytical data, paleomagnetic cores, thin sections, microfossil mounts, microslides and residues. The existence of the AMGRF and USPRR helps to minimize redundant sample collecting, lessen the environmental impact of doing polar field work, facilitates field logistics planning and complies with the data sharing requirement of the Antarctic Treaty. USPRR acquires collections through donations from institutions and scientists and then makes these samples available as no-cost loans for research, education and museum exhibits. The AMGRF acquires sediment cores from US based and international collaboration drilling projects in Antarctica. Destructive research techniques are allowed on the loaned samples and loan requests are accepted from any accredited scientific institution in the world. Currently, the USPRR has more than 22,000 cataloged rock samples available to scientists from around the world. All cataloged samples are relabeled with a USPRR number, weighed, photographed and measured for magnetic susceptibility. Many aspects of the sample metadata are included in the database, e.g. geographical location, sample description, collector, rock age, formation, section location, multimedia images as well structural data, field observations, logistics, surface features, etc. The metadata are entered into a commercial, museum based database called EMu. The AMGRF houses more than 25,000m of deep-sea cores and drill cores as well as nearly 3,000 meters of rotary cored geological material from Antarctica. Detailed information on the sediment cores including location, sediment composition are available in cruise reports posted on the AMGRF web-site. Researchers may access the sample collections through the online websites (http://www-bprc.mps.ohio-state.edu/emuwebusprr and http://www.arf.fsu.edu). Searches may be done using multiple search terms or by use of the mapping feature. The on-line databases provide an essential resource for proposal preparation, pilot studies and other sample based research that should make fieldwork more efficient.
NASA Technical Reports Server (NTRS)
2004-01-01
This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.
Preliminary Research on Possibilities of Drilling Process Robotization
NASA Astrophysics Data System (ADS)
Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw
2017-12-01
Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.
Bedrock Geology of the DFDP-2 Drill-Site
NASA Astrophysics Data System (ADS)
Toy, V.; Sutherland, R.; Townend, J.
2015-12-01
Bedrock was encountered in DFDP-2B at drilled depths (MD) of 238.50-893.18 m (vertical depths of 238.40-818.00 m). Continuous sampling of cuttings revealed the bedrock is composed predominantly of ductilely sheared mylonite-series lithologies exhumed from the roots of the Alpine Fault zone. The protolith is interpreted to be amphibolite facies metasediments classified as part of the Aspiring Subdivision of the Torlesse Supergroup. Onsite description of whole cuttings and thin sections made within a few hours of sample recovery allowed identification of progressive structural changes. Fabrics were schistose in the upper part of the hole, but at greater depths we observed increasing indications that the rocks had been subjected to simple shear deformation. These macro-and micro-structural features are consistent with those that typify the Alpine Fault mylonite sequence previously described, and were used as input to drilling decisions. The structural features found to be the most useful indicators of ductile simple shear strain accommodated by the recovered rocks were the occurrence of shear bands; changes in mean quartz grain size; changes in maximum mica grain size; and redistribution of or changes in microstructural setting of accessory phases (e.g. graphite). The quartz:mica ratio based on mass was also determined but the extent to which this reflects true lithologic variations is unclear, as washing and winnowing of the samples (both by circulating drill fluids and during the sample collection process) probably modified bulk mineralogy in different particle size domains. Nevertheless, the quartz:mica dataset suggests a dramatic change in mineralogy at 730 m MD (vertical depth of 695 m). This coincides with a pronounced step in the temperature gradient, possibly related to large changes in hydrogeology.
Real Time Seismic Prediction while Drilling
NASA Astrophysics Data System (ADS)
Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.
2009-12-01
Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling operation. First experiments indicate that parts of the ISIS system can be used for smaller diameters e.g. in vertical drilling. In unconsolidated rocks S-waves are strongly attenuated. For the Sonic Softground Probing (SSP) system P-waves are used. A vibration-seismic correlation positioning system was developed. One transmitter and several receiver are placed within the cutting wheel. During drilling, a specially coded transmitter signal is sent directly from the cutterhead via the face support medium in the direction of tunneling. With this geometry, boulders can be detected 50 m ahead of the working face. Fracture zones and other discontinuities can be localized, and the physical properties of the upcoming rocks can be partly determined nearly in real time, while using sound velocity and attenuation as indicators. All evaluation is based on real time 3D velocity models which are determined during the drilling operation. Different technologies allow a seismic prediction while drilling in various rock types and geologies. Seismic prediction during vertical drilling will significantly profit from the lesson learned from state of the art tunneling systems.
Melt in the impact breccias from the Eyreville drill cores, Chesapeake Bay impact structure, USA
NASA Astrophysics Data System (ADS)
Bartosova, Katerina; Hecht, Lutz; Koeberl, Christian; Libowitzky, Eugen; Reimold, Wolf Uwe
2011-03-01
The center of the 35.3 Ma Chesapeake Bay impact structure (85 km diameter) was drilled during 2005/2006 in an ICDP-0USGS drilling project. The Eyreville drill cores include polymict impact breccias and associated rocks (1397-01551 m depth). Tens of melt particles from these impactites were studied by optical and electron microscopy, electron microprobe, and microRaman spectroscopy, and classified into six groups: m1—clear or brownish melt, m2—brownish melt altered to phyllosilicates, m3—colorless silica melt, m4—melt with pyroxene and plagioclase crystallites, m5—dark brown melt, and m6—melt with globular texture. These melt types have partly overlapping major element abundances, and large compositional variations due to the presence of schlieren, poorly mixed melt phases, partly digested clasts, and variable crystallization and alteration. The different melt types also vary in their abundance with depth in the drill core. Based on the chemical data, mixing calculations were performed to determine possible precursors of these melt particles. The calculations suggest that most melt types formed mainly from the thick sedimentary section of the target sequence (mainly the Potomac Formation), but an additional crystalline basement (schist/gneiss) precursor is likely for the most abundant melt types m2 and m5. Sedimentary rocks with compositions similar to those of the melt particles are present among the Eyreville core samples. Therefore, sedimentary target rocks were the main precursor of the Eyreville melt particles. However, the composition of the melt particles is not only the result of the precursor composition but also the result of changes during melting and solidification, as well as postimpact alteration, which must also be considered. The variability of the melt particle compositions reflects the variety of target rocks and indicates that there was no uniform melt source. Original heterogeneities, resulting from melting of different target rocks, may be preserved in impactites of some large impact structures that formed in volatile-rich targets, because no large melt body exists, in which homogenization would have taken place.
Wood, David B.
2018-03-14
Rock samples have been collected, analyzed, and interpreted from drilling and mining operations at the Nevada National Security Site for over one-half of a century. Records containing geologic and hydrologic analyses and interpretations have been compiled into a series of databases. Rock samples have been photographed and thin sections scanned. Records and images are preserved and available for public viewing and downloading at the U.S. Geological Survey ScienceBase, Mercury Core Library and Data Center Web site at https://www.sciencebase.gov/mercury/ and documented in U.S. Geological Survey Data Series 297. Example applications of these data and images are provided in this report.
Realtime sensing while drilling using the USDC and integrated sensors
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Sherrit, S.; Bao, X.; Chang, Z.
2003-01-01
The search for existing or past life in the universe is one of the most important objectives of NASA's mission. In support of this objective, an ultrasonic based mechanism is being developed to allow probing and sampling of rocks and soil.
Evaluating Core Quality for a Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Weiss, D. K.; Budney, C.; Shiraishi, L.; Klein, K.
2012-01-01
Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).
NASA Technical Reports Server (NTRS)
Peterson, Thomas M.
2001-01-01
The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.
NASA Astrophysics Data System (ADS)
Matsuda, T.; Omura, K.; Ikeda, R.
2003-12-01
National Research Institute for Earth Science and Disaster Prevention (NIED) has been conducting _gFault zone drilling_h. Fault zone drilling is especially important in understanding the structure, composition, and physical properties of an active fault. In the Chubu district of central Japan, large active faults such as the Atotsugawa (with 1858 Hietsu earthquake) and the Atera (with 1586 Tensho earthquake) faults exist. After the occurrence of the 1995 Kobe earthquake, it has been widely recognized that direct measurements in fault zones by drilling. This time, we describe about the Atera fault and the Nojima fault. Because, these two faults are similar in geological situation (mostly composed of granitic rocks), so it is easy to do comparative study of drilling investigation. The features of the Atera fault, which have been dislocated by the 1586 Tensho earthquake, are as follows. Total length is about 70 km. That general trend is NW45 degree with a left-lateral strike slip. Slip rate is estimated as 3-5 m / 1000 years. Seismicity is very low at present and lithologies around the fault are basically granitic rocks and rhyolite. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes (Hatajiri, Fukuoka, Ueno and Kawaue) are located on a line crossing in a direction perpendicular to the Atera fault. In the Kawaue well, mostly fractured and alternating granitic rock continued from the surface to the bottom at 630 m. X-ray fluorescence analysis (XRF) is conducted to estimate the amount of major chemical elements using the glass bead method for core samples. The amounts of H20+ are about from 0.5 to 2.5 weight percent. This fractured zone is also characterized by the logging data such as low resistivity, low P-wave velocity, low density and high neutron porosity. The 1995 Kobe (Hyogo-ken Nanbu) earthquake occurred along the NE-SW-trending Rokko-Awaji fault system, and the Nojima fault appeared on the surface on Awaji Island when this rupture occurred. It is more than 10 km long with 1-2 m offset along the Nojima fault. About one year after the earthquake, NIED drilled a borehole (the Hirabayashi NIED borehole) and penetrated the Nojima fault. The Hirabayashi NIED borehole was drilled to a depth of 1838 m and recovered the drill core. The main types of rock intersected by the borehole are granodiorite and cataclastic fault rocks. Three fracture zones were recognized in cores at approximate depth of 1140 m, 1300 m and 1800 m. There is remarkable foliated blue-gray gouge at a depth of 1140 m. We investigate chemical compositions by XRF analysis in the fracture zone. The amounts of H20+ are about from 1.0 to 15.0 weight percent. We investigate mineral assemblage in both drilling cores by X-ray powder diffraction analysis. From the results, we can_ft recognize so difference between the two faults. But the amount of H2O+ is very different. In the Hirabayashi NIED core at a depth of 1140 m, there is about ten times as much as the average of the Kawaue core. This is probably due to the greater degree of wall-rock fracturing in the fracture zone. We suggest that this characteristic is associated with the fault activity at the time of the 1995 Kobe earthquake and the nature of fluid-rock interactions in the fracture zone.
Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain
Steven Knudsen
2012-01-01
Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.
Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting
NASA Astrophysics Data System (ADS)
Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.
2012-04-01
Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning fluid-rock interaction processes in geothermal reservoirs, and their effects on rock properties, that will aid improved understanding of the evolution of high-temperature geothermal systems, provide constraints to parameterization of reservoir models and assist future well planning and design through prediction of rock properties in the context of drilling strategies.
Drilling Candidate Site Bonanza King on Mars
2014-08-15
This Aug. 12, 2012, image from the Mastcam on NASA Curiosity Mars rover shows an outcrop that includes the Bonanza King rock under consideration as a drilling target. Raised ridges on the flat rocks are visible at right.
Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina
Reid, Jeffrey C.; Milici, Robert C.
2008-01-01
This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data (%Ro) indicate levels of thermal maturity suitable for generation of hydrocarbons. The genetic potential of the source rocks in these Triassic basins is moderate to high and many source rock sections have at least some potential for hydrocarbon generation. Some data for the Cumnock Formation indicate a considerably higher source rock potential than the basin average, with S1 + S2 data in the mid-20 mg HC/g sample range, and some hydrocarbons have been generated. This implies that the genetic potential for all of these strata may have been higher prior to the igneous activity. However, the intergranular porosity and permeability of the Triassic strata are low, which makes fractured reservoirs more attractive as drilling targets. In some places, gravity and magnetic surveys that are used to locate buried intrusive rock may identify local thermal sources that have facilitated gas generation. Alternatively, awareness of the distribution of large intrusive igneous bodies at depth may direct exploration into other areas, where thermal maturation is less than the limits of hydrocarbon destruction. Areas prospective for natural gas also contain large surficial clay resources and any gas discovered could be used as fuel for local industries that produce clay products (principally brick), as well as fuel for other local industries.
Confidence Hills -- The First Mount Sharp Drilling Site
2014-11-04
This image shows the first holes drilled by NASA Mars rover Curiosity at Mount Sharp. The loose material near the drill holes is drill tailings and an accumulation of dust that slid down the rock during drilling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis; Homer Robertson; Alan Black
2006-06-22
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).« less
Geological and geochemical studies in the Wadi Bidah District, Kingdom of Saudi Arabia
Smith, C.W.; Waters, B.C.; Naqvi, M.; Worl, R.G.; Helaby, A.M.; Flanigan, V.J.; Sadek, H.S.; Samater, R.M.
1983-01-01
Geological and geochemical followup studies of airborne electromagnetic anomalies in the Wadi Bidah district, southwestern Saudi Arabia, did not reveal metals of economic grade. Investigation of an anomaly enclosing the Rabathan ancient mine disclosed tightly folded and sheared Proterozoic tuffaceous rocks interlayered mostly with chert, dolomite, carbonaceous rocks, and volcanic wacke including cherty iron-manganese formations slightly anomalous in copper and zinc. Three drill holes placed to test anomalies within these formations yielded negative results. Studies of a long, narrow anomaly north of the Rabathan area indicated a similar geological environment. This northern area also contains limited zones that are highly anomalous in copper and zinc and extensive zones that are slightly anomalous in those metals. Drilling was not undertaken in this area. The Bilajimah airborne electromagnetic anomaly west of Wadi Bidah coincides with a broad synclinorium of layered felsic turfs and gossans. Geochemical studies indicated slightly anomalous copper, zinc, and silver values in gossans within the anomaly area. Two drill holes intersected carbonaceous rock that contained approximately 15 percent pyrrhotite and traces of sphalerite and chalcopyrite. Two geophysically anomalous areas west of Wadi Bidah surround ancient mines at Mahawiyah and Khayal al Masna'ah. Results of geochemical sampling at these workings were positive. An airborne electromagnetic anomaly located in the Assifar area in the southwestern corner of the Wadi Bidah district is underlain principally by metasedimentary rocks that include large linear zones of cherty iron-manganese formation and a few gossans .containing secondary base metal minerals. Detailed mapping and sampling of the Mulhal ancient mine, located west of Wadi Bidah, revealed two types of polymetallic gossans : (1) stratiform deposits interlayered with ignimbrites and mafic volcanic rocks and (2) barite-bearing gossanous material in shear zones that grade into hydrothermally altered shear zones and extend beyond the mine area. The gossans and gossanous shear zones contain anomalous amounts of gold, silver, lead, copper, zinc, barium, and selenium. Two gossans west of Wadi Bidah were mapped and sampled in detail; both gossans are interlayered, with siliceous volcanic rocks. Although the gossan at Jabal Mohr covers a large area, it contains low amounts of precious and base metals. The gossan at Mulhal No. 2 contains moderate to high amounts of gold, silver, copper, lead, and zinc.
Examining the relation between rock mass cuttability index and rock drilling properties
NASA Astrophysics Data System (ADS)
Yetkin, Mustafa E.; Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Kahraman, Bayram
2016-12-01
Drilling rate is a substantial index value in drilling and excavation operations at mining. It is not only a help in determining physical and mechanical features of rocks, but also delivers strong estimations about instantaneous cutting rates. By this way, work durations to be finished on time, proper machine/equipment selection and efficient excavation works can be achieved. In this study, physical and mechanical properties of surrounding rocks and ore zones are determined by investigations carried out on specimens taken from an underground ore mine. Later, relationships among rock mass classifications, drillability rates, cuttability, and abrasivity have been investigated using multi regression analysis. As a result, equations having high regression rates have been found out among instantaneous cutting rates and geomechanical properties of rocks. Moreover, excavation machine selection for the study area has been made at the best possible interval.
Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.
2009-01-01
In the summer of 2007, the U.S. Geological Survey (USGS) began an exploration geochemical research study over the Pebble porphyry copper-gold-molybdenum deposit. This report presents the analytical data collected in 2008. The Pebble deposit is world class in size, and is almost entirely concealed by tundra, glacial deposits, and post-Cretaceous volcanic rocks. The Pebble deposit was chosen for this study because it is concealed by surficial cover rocks, is relatively undisturbed (except for exploration company drill holes), is a large mineral system, and is fairly well-constrained at depth by the drill hole geology and geochemistry. The goals of this study are to 1) determine whether the concealed deposit can be detected with surface samples, 2) better understand the processes of metal migration from the deposit to the surface, and 3) test and develop methods for assessing mineral resources in similar concealed terrains. The analytical data are presented as an integrated Microsoft Access 2003 database and as separate Excel files.
Lunar regolith dynamics based on analysis of the cosmogenic radionuclides Na-22, Al-26, and Mn-53
NASA Technical Reports Server (NTRS)
Fruchter, J. S.; Rancitelli, L. A.; Laul, J. C.; Perkins, R. W.
1977-01-01
Depth profiles of Na-22 and Al-26 in the upper portions of five lunar cores are analyzed. From the analyses, it is concluded that the natural gardening processes on the lunar surface result in mixing of the regolith to a depth of 2-3 cm over a time period which is short compared with the half-life of Al-26 (0.73 m.y.). It is also concluded that the rotary drill processes which were used to obtain the deep drill samples generally resulted in loss and/or mixing of the upper portions of the cores. In contrast, the near-surface regions of the drive tube cores appear to have a well-preserved stratigraphy. Analysis of Mn-53 in samples of six lunar rocks helps substantiate the accuracy of age date estimates by other means, and provides definite information that the total lunar surface exposure of two of these rocks has occurred during a single surface event which continued to their collection.
Preparation on Earth for Drilling on Mars
2013-02-20
The development of the Mars rover Curiosity capabilities for drilling into a rock on Mars required years of development work. Seen here are some of the rocks used in bit development testing and lifespan testing at JPL in 2007.
The formation of peak rings in large impact craters.
Morgan, Joanna V; Gulick, Sean P S; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S; Coolen, Marco J L; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E; Zylberman, William
2016-11-18
Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Zhukov, I. A.; Dvornikov, L. T.; Nikitenko, S. M.
2016-04-01
The article presents the results of the experimental research of the high strength rock destruction by a bladeless tool. Rational circuit designs of disposing of indenters in the impact part of the drill bits and a diamond tool are justified. New constructive solutions of reinforcing bladeless drill bits, which allow drilling blast-holes of the various cross-section, are shown.
Josset, Jean-Luc; Westall, Frances; Hofmann, Beda A; Spray, John; Cockell, Charles; Kempe, Stephan; Griffiths, Andrew D; De Sanctis, Maria Cristina; Colangeli, Luigi; Koschny, Detlef; Föllmi, Karl; Verrecchia, Eric; Diamond, Larryn; Josset, Marie; Javaux, Emmanuelle J; Esposito, Francesca; Gunn, Matthew; Souchon-Leitner, Audrey L; Bontognali, Tomaso R R; Korablev, Oleg; Erkman, Suren; Paar, Gerhard; Ulamec, Stephan; Foucher, Frédéric; Martin, Philippe; Verhaeghe, Antoine; Tanevski, Mitko; Vago, Jorge L
The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.
NASA Astrophysics Data System (ADS)
Saito, S.; Lin, W.
2014-12-01
Core-log integration has been applied for rock mechanics studies in scientific ocean drilling since 2007 in plate subduction margins such as Nankai Trough, Costa Rica margin, and Japan Trench. State of stress in subduction wedge is essential for controlling dynamics of plate boundary fault. One of the common methods to estimate stress state is analysis of borehole breakouts (drilling induced borehole wall compressive failures) recorded in borehole image logs to determine the maximum horizontal principal stress orientation. Borehole breakouts can also yield possible range of stress magnitude based on a rock compressive strength criterion. In this study, we constrained the stress magnitudes based on two different rock failure criteria, the Mohr-Coulomb (MC) criteria and the modified Wiebols-Cook (mWC) criteria. As the MC criterion is the same as that under unconfined compression state, only one rock parameter, unconfined compressive strength (UCS) is needed to constrain stress magnitudes. The mWC criterion needs the UCS, Poisson's ratio and internal frictional coefficient determined by triaxial compression experiments to take the intermediate principal stress effects on rock strength into consideration. We conducted various strength experiments on samples taken during IODP Expeditions 334/344 (Costa Rica Seismogenesis Project) to evaluate reliable method to estimate stress magnitudes. Our results show that the effects of the intermediate principal stress on the rock compressive failure occurred on a borehole wall is not negligible.
Permeability of intact and fractured rocks in Krafla geothermal reservoir, Iceland
NASA Astrophysics Data System (ADS)
Eggertsson, Gudjon; Lavallée, Yan; Markusson, Sigurdur
2016-04-01
The magmatic-hydrothermal system at Krafla Volcano, North-East Iceland, has been the source of an important geothermal fluids, exploited by Landsvirkjun National Power since 1977 to generate electricity (~60 MW). In the last decade, the energy was extracted from fluids of moderate temperature (200-300°C), but in order to satisfy the demand for sustainable, environmentally-safe energy, Landsvirkjun is aiming to source fluids in the super high-enthalpy hydrothermal system (400°-600°C and <220 bar). In relation to this, IDDP-1 was drilled in 2009. Drilling was terminated at a depth of 2100m when the drill string penetrated rhyolite magma. The rock around this rhyolite magma body shows great potential for production, as its temperatures are very high and it is located at shallow depth. Here, we present the results of mechanical and permeability tests carried out on the main lithologies forming the geothermal reservoir rock. During a field survey in fall 2015, and through information gathered from previous drilling exercises, five main rock types were identified and sampled to carry out this study: that is, basalts (10% to 60% porosity), hyaloclastites (35% to 45% porosity), obsidians (0,25% to 5% porosity), ignimbrites (13% to 18% porosity), and intrusive felsites and microgabbros (10% to 16% porosity). The only rock type not found in outcrops on the surface is the felsite and microgabbros which are thought to be directly above the rhyolite magma (~80m thick). The reason they can be found on the surface is that during the Mývatns-fires, an explosion creating the Víti crater and scattered these rocks around the area. For all these lithologies, the porosity was determined using helium pycnometry. On-going permeability measurements are made using a classic hydrostatic cell. To simulate the stress conditions extant in the hydrothermal field, we performed permeability measurements at a range of confining pressure (1 to 100 MPa), using a pore pressure differential of 0.5 - 1.5 MPa (at an average pore pressure of 1.25 MPa). We present the results of permeability-porosity relationships for each rock as a function of confining pressure and discuss the permeability of the fluid reservoir as a function of effective pressure (i.e., = confining pressure - pore pressure) to constrain fluid flow during different pressurisation events. Complementary Brazilian tests were also performed to induce a fracture in the samples and the permeability of these fractured rocks will be measured to describe the role of macrofractures in controlling fluid flow. Permeability measurements at high temperature (up to ~500 C) will be performed on selected rocks. The aim of these experiments will be to discover the relative role of the various lithologies on the permeability of the reservoir, which will inform us how to improve the geothermal productivity of the proposed deep well through thermo-mechanical stimulations.
Petrography and geochemistry of precambrian rocks from GT-2 and EE-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughlin, A.W.; Eddy, A.
1977-08-01
During the drilling of GT-2 and EE-1, 27 cores totaling about 35 m were collected from the Precambrian section. Samples of each different lithology in each core were taken for petrographic and whole-rock major- and trace-element analyses. Whole-rock analyses are now completed on 37 samples. From these data four major Precambrian units were identified at the Fenton Hill site. Geophysical logs and cuttings were used to extrapolate between cores. The most abundant rock type is an extremely variable gneissic unit comprising about 75% of the rock penetrated. This rock is strongly foliated and may range compositionally from syenogranitic to tonaliticmore » over a few centimeters. The bulk of the unit falls within the monzogranite field. Interlayered with the gneiss is a ferrohastingsite-biotite schist which compositionally resembles a basaltic andesite. A fault contact between the schist and gneiss was observed in one core. Intrusive into this metamorphic complex are two igneous rocks. A leucocratic monzogranite occurs as at least two 15-m-thick dikes, and a biotite-granodiorite body was intercepted by 338 m of drill hole. Both rocks are unfoliated and equigranular. The biotite granodiorite is very homogeneous and is characterized by high modal contents of biotite and sphene and by high K/sub 2/O, TiO/sub 2/, and P/sub 2/O/sub 5/ contents. Although all of the cores examined show fractures, most of these are tightly sealed or healed. Calcite is the most abundant fracture filling mineral, but epidote, quartz, chlorite, clays or sulfides have also been observed. The degree of alteration of the essential minerals normally increases as these fractures are approached. The homogeneity of the biotite granodiorite at the bottom of GT-2 and the high degree of fracture filling ensure an ideal setting for the Hot Dry Rock Experiment.« less
Percussive Augmenter of Rotary Drills (PARoD)
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Donnelly, Chris; Aldrich, Jack
2012-01-01
Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10N) which is important for operation at low gravity. This device can be made as light as 400g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. Further, a large PARoD breadboard with 50.8 mm diameter bit was developed and its tests are currently underway. This paper presents the design, analysis and preliminary test results of the percussive augmenter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.
1981-02-01
A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium andmore » 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.« less
Hamada, Yohei; Kitamura, Manami; Yamada, Yasuhiro; Sanada, Yoshinori; Sugihara, Takamitsu; Saito, Saneatsu; Moe, Kyaw; Hirose, Takehiro
2018-02-14
A new method for evaluating the in situ rock strength beneath the seafloor is proposed and applied to the Nankai Trough accretionary prism. The depth-continuous in situ rock strength is a critical parameter for numerous studies in earth science, particularly for seismology and tectonics at plate convergence zones; yet, measurements are limited owing to a lack of drilled cores. Here, we propose a new indicator of strength, the equivalent strength (EST), which is determined only by drilling performance parameters such as drill string rotational torque, bit depth, and string rotational speed. A continuous depth profile of EST was drawn from 0 to 3000 m below the seafloor (mbsf) across the forearc basin and accretionary prism in the Nankai Trough. The EST did not show a significant increase around the forearc basin-accretionary prism boundary, but it did show a clear increase within the prism, ca. below 1500 mbsf. This result may indicate that even the shallow accretionary prism has been strengthened by horizontal compression derived from plate subduction. The EST is a potential parameter to continuously evaluate the in situ rock strength during drilling, and its accuracy of the absolute value can be improved by combining with laboratory drilling experiments.
30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata in...
30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata in...
30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata in...
30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata in...
30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata in...
Crater Morphology in the Phoenix Landing Ellipse: Insights Into Net Erosion and Ice Table Depth
NASA Technical Reports Server (NTRS)
Noe Dobrea, E. Z.; Stoker, C. R.; McKay, C. P.; Davila, A. F.; Krco, M.
2015-01-01
Icebreaker [1] is a Discovery class mission being developed for future flight opportunities. Under this mission concept, the Icebreaker payload is carried on a stationary lander, and lands in the same landing ellipse as Phoenix. Samples are acquired from the subsurface using a drilling system that penetrates into materials which may include loose or cemented soil, icy soil, pure ice, rocks, or mixtures of these. To avoid the complexity of mating additional strings, the drill is single-string, limiting it to a total length of 1 m.
Szabo, B. J.; Kyser, T.K.
1990-01-01
Stable-isotope compositions of fracture- and cavity-filling calcite from the unsaturated zone of three drill cores at Yucca Mountain Tertiary volcanic complex indicate that the water from which the minerals precipitated was probably meteoric in origin. A decrease in 18O in the calcite with depth is interpreted as being due to the increase in temperature in drill holes corresponding to an estimated average geothermal gradient of 34?? per kilometer. A few of the calcite samples and all of the opal samples yielded uranium-series ages older than 400 000 yr, although most of the calcite samples yielded ages between 26 000 and 310 000 yr. The stable-isotope and uranium-series dates from precipitated calcite and opal of this reconnaissance study suggest a complex history of fluid movement through the volcanic pile, and episodes of fracture filling predominantly from meteoric water during at least the past 400 000 yr. -Authors
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Kitajima, H.; Sutherland, R.; Townend, J.; Toy, V. G.; Saffer, D. M.
2014-03-01
We report on laboratory measurements of permeability and elastic wavespeed for a suite of samples obtained by drilling across the active Alpine Fault on the South Island of New Zealand, as part of the first phase of the Deep Fault Drilling Project (DFDP-1). We find that clay-rich cataclasite and principal slip zone (PSZ) samples exhibit low permeabilities (⩽10-18 m), and that the permeability of hanging-wall cataclasites increases (from c. 10-18 m to 10-15 m) with distance from the fault. Additionally, the PSZ exhibits a markedly lower P-wave velocity and Young's modulus relative to the wall rocks. Our laboratory data are in good agreement with in situ wireline logging measurements and are consistent with the identification of an alteration zone surrounding the PSZ defined by observations of core samples. The properties of this zone and the low permeability of the PSZ likely govern transient hydrologic processes during earthquake slip, including thermal pressurization and dilatancy strengthening.
Modified Standard Penetration Test–based Drilled Shaft Design Method for Weak Rocks (Phase 2 Study)
DOT National Transportation Integrated Search
2017-12-15
In this project, Illinois-specific design procedures were developed for drilled shafts founded in weak shale or rock. In particular, a modified standard penetration test was developed and verified to characterize the in situ condition of weak shales ...
NASA Astrophysics Data System (ADS)
Dona, Obie Mario; Ibrahim, Eddy; Susilo, Budhi Kuswan
2017-11-01
The research objective is to describe potential, to analyze the quality and quantity of limestone, and to know the limit distribution of rocks based on the value of resistivity, the pattern of distribution of rocks by drilling, the influence mineral growing on rock against resistivity values, the model deposition of limestone based on the value resistivity of rock and drilling, and the comparison between the interpretation resistivity values based on petrographic studies by drilling. Geologic Formations study area consists of assays consisting of altered sandstone, phyllite, slate, siltstone, grewake, and inset limestone. Local quartz sandstone, schist, genealogy, which is Member of Mersip Stylists Formation, consists of limestone that formed in shallow seas. Stylists Formation consists of slate, shale, siltstone and sandstone. This research methodology is quantitative using experimental observation by survey. This type of research methodology by its nature is descriptive analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...
Drill hole logging with infrared spectroscopy
Calvin, W.M.; Solum, J.G.
2005-01-01
Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.
The first X-ray diffraction measurements on Mars.
Bish, David; Blake, David; Vaniman, David; Sarrazin, Philippe; Bristow, Thomas; Achilles, Cherie; Dera, Przemyslaw; Chipera, Steve; Crisp, Joy; Downs, R T; Farmer, Jack; Gailhanou, Marc; Ming, Doug; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Rampe, Elizabeth; Treiman, Allan; Yen, Albert
2014-11-01
The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component.
Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone
Sterling, S.N.; Parker, B.L.; Cherry, J.A.; Williams, J.H.; Lane, J.W.; Haeni, F.P.
2005-01-01
Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 ??g/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions. Copyright ?? 2005 National Ground Water Association.
Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.P. McGrail; E. C. Sullivan; F. A. Spane
2009-12-01
The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir zones and 3 flow-interior/caprock intervals were performed during drilling and immediately following reaching the final borehole drilling depth (i.e., 4,110 ft). In addition, six of the 12 basalt interflow zones were selected for detailed hydrochemical characterization. Results from the detailed hydrologic test characterization program provided the primary information on basalt interflow zone transmissivity/injectivity, and caprock permeability characteristics.« less
Similar on the Inside (post-grinding)
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity show the hole drilled into the rock called 'Pilbara,' which is located in the small crater dubbed 'Fram.' Spirit drilled into this rock with its rock abrasion tool. The rock appears to be dotted with the same 'blueberries,' or spherules, found at 'Eagle Crater.' After analyzing the hole with the rover's scientific instruments, scientists concluded that Pilbara has a similar chemical make-up, and thus watery past, to rocks studied at Eagle Crater. This image was taken with the panoramic camera's 480-, 530- and 600-nanometer filters.Permeability Measurements of Rock Samples from Conduit Drilling at Unzen Volcano, Japan
NASA Astrophysics Data System (ADS)
Watanabe, T.; Shimizu, Y.; Noguchi, S.; Nakada, S.
2006-12-01
The last eruption of Unzen Volcano (1990-1995) was effusive to form lava domes, though magmas at depths are estimated to have contained volatile materials enough to cause explosive eruptions [e.g., Sato et al., 1995]. Most of volatile materials should have escaped from ascending magmas. The escape of gas is controlled by permeability of magmas and country rocks. Unzen Scientific Drilling Project sampled both the latest conduit and its country rock (USDP-4). In order to understand degassing processes, we have measured the permeability of these rock samples. Four cube samples with edges of 25 mm were cut from USDP-4 cores C1, C12 (country rock), C13 and C14 (conduit). Sample C1 is considered as Old Unzen Lava, and Sample C12 volcanic breccia. The transient pulse method was employed to measure the permeability. It applies a step of the fluid pressure difference across a specimen, and measures the decay rate of the fluid pressure difference. This method can be applied to samples with very low permeability, since it determines the permeability without measuring the fluid flux. Nitrogen gas was used as a pore fluid. Our permeametry system is built in a pressure vessel, and the confining pressure and the pore fluid pressure can be controlled independently. The temperature of the measurement system is kept constant within 0.1 degree. The temperature control and the background leak rate limit the measurable permeability to be higher than 10^{-20} m2. Measurements were first conducted under the atmospheric pressure. The permeability in a rock sample varies with the direction by a factor less than 5. Sample C1 has the lowest permeability (10^{-19} m2), and Sample C12 the highest value (10^{-17 m2). The permeability of C13 and C14 is of the order of 10^{- 18} m2. Though only a trace of vesicles can be seen in conduit samples, the interconnection is still maintained. The pressure dependence of the permeability is now investigated up to 50 MPa. The permeability of C13 and C14 (conduit samples) decreases by around one order of magnitude as the confining pressure increases from the atmospheric pressure to 50 MPa. The pressure dependence sensitively reflects the geometry of pores that control the interconnection of pores. Implications for degassing processes will be discussed on the basis of measured permeability and SEM images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TerraTek, A Schlumberger Company
2008-12-31
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.« less
NASA Astrophysics Data System (ADS)
Gilbert, Lisa A.; Salisbury, Matthew H.
2011-09-01
Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.
Method and apparatus for water jet drilling of rock
Summers, David A.; Mazurkiewicz, Marian; Bushnell, Dwight J.; Blaine, James
1978-01-01
Rock drilling method and apparatus utilizing high pressure water jets for drilling holes of relatively small diameter at speeds significantly greater than that attainable with existing drilling tools. Greatly increased drilling rates are attained due to jet nozzle geometry and speed of rotation. The jet nozzle design has two orifices, one pointing axially ahead in the direction of travel and the second inclined at an angle of approximately 30.degree. from the axis. The two orifices have diameters in the ratio of approximately 1:2. Liquid jet velocities in excess of 1,000 ft/sec are used, and the nozzle is rotated at speeds up to 1,000 rpm and higher.
Ikeda, R.; Kajiwara, T.; Omura, K.; Hickman, S.
2008-01-01
The objective of the Unzen Scientific Drilling Project (USDP) is not only to reveal the structure and eruption history of the Unzen volcano but also to clarify the ascent and degassing mechanisms of the magma conduit. Conduit drilling (USDP-4) was conducted in 2004, which targeted the magma conduit for the 1990-95 eruption. The total drilled length of USDP-4 was 1995.75??m. Geophysical well logging, including resistivity, gamma-ray, spontaneous potential, sonic-wave velocity, density, neutron porosity, and Fullbore Formation MicroImager (FMI), was conducted at each drilling stage. Variations in the physical properties of the rocks were revealed by the well-log data, which correlated with not only large-scale formation boundaries but also small-scale changes in lithology. Such variations were evident in the lava dike, pyroclastic rocks, and breccias over depth intervals ranging from 1 to 40??m. These data support previous models for structure of the lava conduit, in that they indicate the existence of alternating layers of high-resistivity and high P-wave velocity rocks corresponding to the lava dikes, in proximity to narrower zones exhibiting high porosity, low resistivity, and low P-wave velocity. These narrow, low-porosity zones are presumably higher in permeability than the adjacent rocks and may form preferential conduits for degassing during magma ascent. ?? 2008 Elsevier B.V.
NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, K.D.; Honeygan, S.; Moroz, T.H.
2008-12-01
The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less
NASA Astrophysics Data System (ADS)
Bianchi, Irene; Qorbani, Ehsan; Bokelmann, Götz
2016-04-01
As one of the rare observational tools for studying deformation and stress within the Earth, seismic anisotropy has been one of the focuses of geophysical studies over the last decade. In order to unravel the anisotropic properties of the crust, the teleseismic receiver functions (RF) methodology has started to be widely applied recently. Such effects of anisotropy on RF were illustrated in theoretical studies, showing the strong backazimuthal dependence of RF on the 3D characteristics of the media sampled by the waves. The use of teleseismic RF has the advantage of not being affected by a heterogeneous depth distribution of local earthquakes, since teleseismic rays sample the entire crust beneath the stations. The application of this technique however, needs to be critically assessed using a suitable field test. To test the technique, we need a crustal block where the underground structure is reasonably well-known, e.g., where there is extensive knowledge from local seismic experiments and drilling. A field experiment has thus been carried out around the KTB (Kontinental Tiefbohrung) site in the Oberpfalz area in Southeastern Germany, in order to compare with previous results from deep drilling, and high-frequency seismic experiments around the drill site. The investigated region has been studied extensively by local geophysical experiments, and geological studies. The deep borehole was placed into gneiss rocks of the Zone Erbendorf-Vohenstrauss. The drilling activity lasted from 1987 to 1994, and descended down to a depth of 9101 meters, sampling an alternating sequence of paragneiss and amphibolite, with metamorphism of upper amphibolite facies conditions, and ductile deformation produced a strong foliation of the rocks. The application of the RFs reveals strong seismic anisotropy in the upper crust related to the so-called Erbendorf body. The SKS shear-wave splitting method has been applied as well, revealing coherent results for the whole region with exception of the southernmost station, for which the seismic waves show larger delays. We use the RF observations to test the effect of crustal anisotropy on the SKS records, which sample entire crust and upper mantle.
NASA Astrophysics Data System (ADS)
Liu, Wenpeng; Rostami, Jamal; Elsworth, Derek; Ray, Asok
2018-03-01
Roof bolts are the dominant method of ground support in mining and tunneling applications, and the concept of using drilling parameters from the bolter for ground characterization has been studied for a few decades. This refers to the use of drilling data to identify geological features in the ground including joints and voids, as well as rock classification. Rock mass properties, including distribution of joints/voids and strengths of rock layers, are critical factors for proper design of ground support to avoid instability. The goal of this research was to improve the capability and sensitivity of joint detection programs based on the updated pattern recognition algorithms in sensing joints with smaller than 3.175 mm (0.125 in.) aperture while reducing the number of false alarms, and discriminating rock layers with different strengths. A set of concrete blocks with different strengths were used to simulate various rock layers, where the gap between the blocks would represent the joints in laboratory tests. Data obtained from drilling through these blocks were analyzed to improve the reliability and precision of joint detection systems. While drilling parameters can be used to detect the gaps, due to low accuracy of the results, new composite indices have been introduced and used in the analysis to improve the detection rates. This paper briefly discusses ongoing research on joint detection by using drilling parameters collected from a roof bolter in a controlled environment. The performances of the new algorithms for joint detection are also examined by comparing their ability to identify existing joints and reducing false alarms.
Dusel-Bacon, Cynthia; Slack, John F.; Koenig, Alan E.; Foley, Nora K.; Oscarson, Robert L.; Gans, Kathleen D.
2011-01-01
This Open-File Report presents geochemical data for outcrop and drill-core samples from volcanogenic massive sulfide deposits and associated metaigneous and metasedimentary rocks in the Wood River area of the Bonnifield mining district, northern Alaska Range, east-central Alaska. The data consist of major- and trace-element whole-rock geochemical analyses, and major- and trace-element analyses of sulfide minerals determined by electron microprobe and laser ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS) techniques. The PDF consists of text, appendix explaining the analytical methods used for the analyses presented in the data tables, a sample location map, and seven data tables. The seven tables are also available as spreadsheets in several file formats. Descriptions and discussions of the Bonnifield deposits are given in Dusel-Bacon and others (2004, 2005, 2006, 2007, 2010).
NASA Technical Reports Server (NTRS)
Saha, C. P.; Bryson, C. E.; Sarrazin, P.; Blake, D. F.
2005-01-01
Many Mars in situ instruments require fine-grained high-fidelity samples of rocks or soil. Included are instruments for the determination of mineralogy as well as organic and isotopic chemistry. Powder can be obtained as a primary objective of a sample collection system (e.g., by collecting powder as a surface is abraded by a rotary abrasion tool (RAT)), or as a secondary objective (e.g, by collecting drill powder as a core is drilled). In the latter case, a properly designed system could be used to monitor drilling in real time as well as to deliver powder to analytical instruments which would perform complementary analyses to those later performed on the intact core. In addition, once a core or other sample is collected, a system that could transfer intelligently collected subsamples of power from the intact core to a suite of analytical instruments would be highly desirable. We have conceptualized, developed and tested a breadboard Powder Delivery System (PoDS) intended to satisfy the collection, processing and distribution requirements of powder samples for Mars in-situ mineralogic, organic and isotopic measurement instruments.
Drilling, sampling, and sample-handling system for China's asteroid exploration mission
NASA Astrophysics Data System (ADS)
Zhang, Tao; Zhang, Wenming; Wang, Kang; Gao, Sheng; Hou, Liang; Ji, Jianghui; Ding, Xilun
2017-08-01
Asteroid exploration has a significant importance in promoting our understanding of the solar system and the origin of life on Earth. A unique opportunity to study near-Earth asteroid 99942 Apophis will occur in 2029 because it will be at its perigee. In the current work, a drilling, sampling, and sample-handling system (DSSHS) is proposed to penetrate the asteroid regolith, collect regolith samples at different depths, and distribute the samples to different scientific instruments for in situ analysis. In this system, a rotary-drilling method is employed for the penetration, and an inner sampling tube is utilized to collect and discharge the regolith samples. The sampling tube can deliver samples up to a maximum volume of 84 mm3 at a maximum penetration depth of 300 mm to 17 different ovens. To activate the release of volatile substances, the samples will be heated up to a temperature of 600 °C by the ovens, and these substances will be analyzed by scientific instruments such as a mass spectrometer, an isotopic analyzer, and micro-cameras, among other instruments. The DSSHS is capable of penetrating rocks with a hardness value of six, and it can be used for China's asteroid exploration mission in the foreseeable future.
The use of mini-samples in palaeomagnetism
NASA Astrophysics Data System (ADS)
Böhnel, Harald; Michalk, Daniel; Nowaczyk, Norbert; Naranjo, Gildardo Gonzalez
2009-10-01
Rock cores of ~25 mm diameter are widely used in palaeomagnetism. Occasionally smaller diameters have been used as well which represents distinct advantages in terms of throughput, weight of equipment and core collections. How their orientation precision compares to 25 mm cores, however, has not been evaluated in detail before. Here we compare the site mean directions and their statistical parameters for 12 lava flows sampled with 25 mm cores (standard samples, typically 8 cores per site) and with 12 mm drill cores (mini-samples, typically 14 cores per site). The site-mean directions for both sample sizes appear to be indistinguishable in most cases. For the mini-samples, site dispersion parameters k on average are slightly lower than for the standard samples reflecting their larger orienting and measurement errors. Applying the Wilcoxon signed-rank test the probability that k or α95 have the same distribution for both sizes is acceptable only at the 17.4 or 66.3 per cent level, respectively. The larger mini-core numbers per site appears to outweigh the lower k values yielding also slightly smaller confidence limits α95. Further, both k and α95 are less variable for mini-samples than for standard size samples. This is interpreted also to result from the larger number of mini-samples per site, which better averages out the detrimental effect of undetected abnormal remanence directions. Sampling of volcanic rocks with mini-samples therefore does not present a disadvantage in terms of the overall obtainable uncertainty of site mean directions. Apart from this, mini-samples do present clear advantages during the field work, as about twice the number of drill cores can be recovered compared to 25 mm cores, and the sampled rock unit is then more widely covered, which reduces the contribution of natural random errors produced, for example, by fractures, cooling joints, and palaeofield inhomogeneities. Mini-samples may be processed faster in the laboratory, which is of particular advantage when carrying out palaeointensity experiments.
NASA Astrophysics Data System (ADS)
Ali, S.; Hemming, S. R.; Torgersen, T.; Fleisher, M. Q.; Cox, S. E.; Stute, M.
2009-12-01
The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes responsible for faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD drill cores show multiple zones of alteration and deformation due to fluid-rock interaction in the fault rocks(Schleicher et al. 2008). In context of fluid studies in the SAFZ, noble gas and potassium measurements were performed on solid samples of sedimentary rocks obtained from drill cores across the fault (3050-4000m-MD). We used a combination of 40Ar/39Ar and K-Ar methods on crushed samples of mudrock with variable amounts of visible slickensides to constrain the degree of resetting of the K-Ar system across the San Andreas Fault zone. 40Ar/39Ar was analyzed from small fragments (sand sized grains) while K-Ar was measured in crushed bulk rock samples (100-250 mg for Ar, and 5-10 mg for K analyses). The apparent 40Ar/39Ar ages based on single step laser fusion of small fragments corresponding to the detrital component in the coarse fraction, show varying ages ranging from the provenance age to <13Ma. Although more data are needed to make detailed comparisons, the apparent K-Ar ages of bulk samples in the fault zone are biased toward authigenic materials contained in the fine fraction, similar to the 40Ar/39Ar ages reported for mineralogical separates from very fine size fractions of samples obtained from 3065.98m-MD and 3294.89m-MD (Schleicher et al., submitted to Geology). The small samples measured for 40Ar/39Ar show scatter in the apparent ages, generally bracketing the bulk ages. However they are picked from sieved portions of the samples, and it is likely that there may be a loss of the younger (finer) material. Detrital provenance ages appear to be 50-60Ma in the Pacific Plate, and 100Ma in the North American Plate. 40Ar/39Ar ages within the SAFZ, as defined by geophysical logs (3200-3400m MD), are dominated by apparent detrital ages of ˜100Ma. More work is needed to test whether this is a real provenance age, or if there could be some systematic process that could lead to age bias towards older values. We observe nearly complete resetting of K-Ar ages, indicating that the K content is dominated by newly formed authigenic minerals as a result of fluid rock interaction in the SAFZ. Because the authigenic minerals are subject to successive dissolution-precipitation events over a range of time (3 to 0 Ma) and because the detrital component may not be fully reset, the K-Ar apparent ages (<300,000 years) in the SAFZ provide a maximum age on the resetting event. Similar trends of relatively young ages across the SAFZ compared to the surrounding country rock in the Pacific and North American Plates are also observed in the apparent fluid ‘ages’, corresponding to the fluid event responsible for the fluid-rock interaction in the fault (Ali et al. this session).
Astrobiology Drilling Program of the NASA Astrobiology Institute
NASA Astrophysics Data System (ADS)
Runnegar, B.
2004-12-01
Access to unweathered and uncontaminated samples of the least altered, oldest, sedimentary rocks is essential for understanding the early history of life on Earth and the environments in which it may have existed. For this reason, the NASA Astrobiology Institute (NAI) has embarked on two international programs, a series of Field Workshops aimed at making the most important surface samples available to investigators, and the Astrobiology Drilling Program (ADP), which serves to provide access to fresh subsurface samples when the scientific objectives require them. The Astrobiology Drilling Program commenced in Western Australia in 2003 with the initiation of its first project, the Archean Biosphere Drilling Project (ABDP). Funding for the ABDP came mainly from the Japanese Government through Kagoshima University and from NASA through the NAI Team at Pennsylvania State University, but significant technical and logistic support was provided by the Geological of Western Australia and, to a lesser extent, by the University of Western Australia. Six diamond drill cores totalling 1.4 km were obtained from astrobiologically important successions in the 3.3-3.5 Ga-old Pilbara Craton of northern Western Australia. Drilling in 2004 also occurred in Western Australia. The Deep Time Drilling Project (DTDP), a spin-off from the NAI's Mission to Early Earth Focus Group, completed one long hole, aimed mainly at fossil biomolecules (biomarkers) and other geochemical indicators of early life. The DTDP and the ABDP also jointly drilled two other important holes 2004, one through the oldest known erosion surface (and possible soil profile). The other intersected well-preserved middle Archean sediments. These efforts parallel other drilling initiatives within the wider astrobiological community that are taking place in Western Australia, South Africa, Spain, and arctic Canada. The ADP is managed by the NAI through a Steering Committee appointed by the NAI Director. Samples of cores obtained through ADP projects are available to the whole community, following a one year embargo, upon application to project PIs and the ADP Steering Committee.
Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros
NASA Astrophysics Data System (ADS)
Grimes, Craig B.; Ushikubo, Takayuki; John, Barbara E.; Valley, John W.
2011-01-01
Lower ocean crust is primarily gabbroic, although 1-2% felsic igneous rocks that are referred to collectively as plagiogranites occur locally. Recent experimental evidence suggests that plagiogranite magmas can form by hydrous partial melting of gabbro triggered by seawater-derived fluids, and thus they may indicate early, high-temperature hydrothermal fluid circulation. To explore seawater-rock interaction prior to and during the genesis of plagiogranite and other late-stage magmas, oxygen-isotope ratios preserved in igneous zircon have been measured by ion microprobe. A total of 197 zircons from 43 plagiogranite, evolved gabbro, and hydrothermally altered fault rock samples have been analyzed. Samples originate primarily from drill core acquired during Ocean Drilling Program and Integrated Ocean Drilling Program operations near the Mid-Atlantic and Southwest Indian Ridges. With the exception of rare, distinctively luminescent rims, all zircons from ocean crust record remarkably uniform δ18O with an average value of 5.2 ± 0.5‰ (2SD). The average δ18O(Zrc) would be in magmatic equilibrium with unaltered MORB [δ18O(WR) ~ 5.6-5.7‰], and is consistent with the previously determined value for equilibrium with the mantle. The narrow range of measured δ18O values is predicted for zircon crystallization from variable parent melt compositions and temperatures in a closed system, and provides no indication of any interactions between altered rocks or seawater and the evolved parent melts. If plagiogranite forms by hydrous partial melting, the uniform mantle-like δ18O(Zrc) requires melting and zircon crystallization prior to significant amounts of water-rock interactions that alter the protolith δ18O. Zircons from ocean crust have been proposed as a tectonic analog for >3.9 Ga detrital zircons from the earliest (Hadean) Earth by multiple workers. However, zircons from ocean crust are readily distinguished geochemically from zircons formed in continental crustal environments. Many of the >3.9 Ga zircons have mildly elevated δ18O (6.0-7.5‰), but such values have not been identified in any zircons from the large sample suite examined here. The difference in δ18O, in combination with newly acquired lithium concentrations and published trace element data, clearly shows that the >3.9 Ga detrital zircons did not originate by processes analogous to those in modern mid-ocean ridge settings.
Redox control of gas compositions in Philippine volcanic-hydrothermal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giggenbach, W.F.
1993-10-01
Gas samples from five volcanic-hydrothermal systems in the Philippines were analyzed for CO{sub 2}, H{sub 2}S, NH{sub 3}, H{sub 2}, He, Ne, Ar, N{sub 2}, CH{sub 4} and CO. Even in systems with sulfate minerals as common components of alteration assemblages, indicating highly immature, oxidizing conditions at depth, the redox potential governing the concentrations of the reactive gases CO{sub 2}, H{sub 2}S, H{sub 2}, CH{sub 4} and CO approaches closely that expected for attainment of equilibrium with rock in more mature, reduced systems. The finding suggests that overall fluid compositions reflect more closely redox conditions established at the advancing frontmore » of interaction with primary rock rather than those of equilibrium with the set of secondary minerals left behind. With the exception of CO and NH{sub 3}, the close agreement in the compositions of gas samples, taken from pools and deep wells indicates that the secondary processes have only a slight effect on the vapors during their rise from drilled depths (1.8 km) to the surface and that samples from natural features may be taken to be representative of redox conditions at drilled depths.« less
A drill-soil system modelization for future Mars exploration
NASA Astrophysics Data System (ADS)
Finzi, A. E.; Lavagna, M.; Rocchitelli, G.
2004-01-01
This paper presents a first approach to the problem of modeling a drilling process to be carried on in the space environment by a dedicated payload. Systems devoted to work in space present very strict requirements in many different fields such as thermal response, electric power demand, reliability and so on. Thus, models devoted to the operational behaviour simulation represent a fundamental help in the design phase and give a great improvement in the final product quality. As the required power is the crucial constraint within drilling devices, the tool-soil interaction modelization and simulation are finalized to the computation of the power demand as a function of both the drill and the soil parameters. An accurate study of the tool and the soil separately has been firstly carried on and, secondly their interaction has been analyzed. The Dee-Dri system, designed by Tecnospazio and to be part of the lander components in the NASA's Mars Sample Return Mission, has been taken as the tool reference. The Deep-Drill system is a complex rotary tool devoted to the soil perforation and sample collection; it has to operate in a Martian zone made of rocks similar to the terrestrial basalt, then the modelization is restricted to the interaction analysis between the tool and materials belonging to the rock set. The tool geometric modelization has been faced by a finite element approach with a Langrangian formulation: for the static analysis a refined model is assumed considering both the actual geometry of the head and the rod screws; a simplified model has been used to deal with the dynamic analysis. The soil representation is based on the Mohr-Coulomb crack criterion and an Eulerian approach has been selected to model it. However, software limitations in dealing with the tool-soil interface definition required assuming a Langrangian formulation for the soil too. The interaction between the soil and the tool has been modeled by extending the two-dimensional Nishimatsu's theory for rock cutting for rotating perforation tools. A fine analysis on f.e.m. element choice for each part of the tool is presented together with static analysis results. The dynamic analysis results are limited to the first impact phenomenon between the rock and the tool head. The validity of both the theoretical and numerical models is confirmed by the good agreement between simulation results and data coming from the experiments done within the Tecnospazio facilities.
NASA Astrophysics Data System (ADS)
Brachfeld, S. A.; Pinzon, J.; Darley, J. S.; Sagnotti, L.; Kuhn, G.; Florindo, F.; Wilson, G. S.; Ohneiser, C.; Monien, D.; Joseph, L. H.
2013-12-01
The first drilling season of the Antarctic Drilling Program (ANDRILL) recovered a 13.57 million year Miocene through Pleistocene record of paleoclimate change (core AND-1B) within the Ross Sea. The magnetic mineral assemblage records the varying contributions of biological productivity, changing sediment sources, the emergence of volcanic centers, and post-depositional diagenesis. Characterization of bedrock samples from the McMurdo Volcanic Group (MVG) and Transantarctic Mountain (TAM) lithologic units allows us to construct fingerprints for the major source rocks bordering the Ross Sea, and identify their signatures within the AND-1B sediment. Key parameters that can be traced from source rock to sediment for the MVG-derived sediment include a 100-200 C order-disorder transition, titanomaghemite grains with homogenous textures but with substantial Al and Mg content, Fe-spinels with substantial Al, Cr, Mg, and Ti content, and titanomagnetite host grains with 1-3 swarms of ilmenite lamellae (both with variable amounts of oxidation). Distinctive signatures in TAM lithologies include low S-ratios in Koettlitz Group gneisses and Fe-sulfides with magnetite intergrowths in Byrd Glacier basement samples. The Cambrian Granite Harbor Intrusive Complex is characterized by coarse, homogeneous Mn-bearing ilmenite and nearly pure magnetite. The Jurassic dolerites and basalts of the Ferrar Group contain pseudo single domain to stable single domain-sized Fe-oxides with low-Ti content and homogeneous textures. Cu-Fe sulfides are also present in the Ferrar Group. Diamictites in the Pliocene-Pleistocene section of the AND-1B drill core contains Fe-oxide assemblages with MVG-type rock magnetic and textural characteristics, while the Miocene diamictites contain TAM-type signatures. These observations can be explained by increased ice flow from the west during the Miocene and/or the absence of MVG volcanic centers, which had not yet reached a significant size. During the Pliocene and Pleistocene, ice flow was from the south, entraining sediment from MVG volcanic centers south of the drill site. This work demonstrates the utility of using the combination of rock magnetic and electron microscopy signatures of Fe-oxides and Fe-sulfides to serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.
Geophysical investigations in deep horizontal holes drilled ahead of tunnelling
Carroll, R.D.; Cunningham, M.J.
1980-01-01
Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.
Applications of NTNU/SINTEF Drillability Indices in Hard Rock Tunneling
NASA Astrophysics Data System (ADS)
Zare, S.; Bruland, A.
2013-01-01
Drillability indices, i.e., the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), Cutter Life Index™ (CLI), and Vickers Hardness Number Rock (VHNR), are indirect measures of rock drillability. These indices are recognized as providing practical characterization of rock properties used in the Norwegian University of Science and Technology (NTNU) time and cost prediction models available for hard rock tunneling and surface excavation. The tests form the foundation of various hard rock equipment capacity and performance prediction methods. In this paper, application of the tests for tunnel boring machine (TBM) and drill and blast (D&B) tunneling is investigated and the impact of the indices on excavation time and costs is presented.
Ground-water resources investigation in the Amran Valley, Yeman Arab Republic
Tibbitts, G. Chase; Aubel, James
1980-01-01
A program of hydrologic studies and exploratory drilling was conducted intermittently between 1974 and 1978 to evaluate the water-bearing properties of the unconsolidated alluvial sediments and associated rocks in the semi-arid Amran Valley basin, an 800-square-kilometer area in north-central Yemen Arab Republic. Inventory data from 395 wells were compiled, observation well and rain-gage networks were established and 16 standard complete chemical analyses were made for samples from selected wells. The water resources of the area were overexploited. The chemical quality of the water is generally good. Four aquifer tests were run to determine transmissivity and storage characteristics. The pumping tests show that groundwater occurs under semi-confined leaky-aquifer conditions in the valley fill. Wells drilled in the alluvial fill of the south-central part of the valley have the highest yields. Wells penetrating the limestone and volcanic rocks generally have little or no yield except in fracture zones. Basalt flows occur interbedded with the wadi alluvium at several depths. Cropping out rocks in the Amran Valley range in age from late Jurassic to Holocene. (USGS)
High Temperature Piezoelectric Drill
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun
2009-01-01
The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.
Ultrasonic/Sonic Drill for High Temperature Application
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Bar-Cohen, Yoseph; Scott, James; Sherrit, Stewart; Widholm, Scott; Badescu, Mircea; Shrout, Tom; Jones, Beth
2010-01-01
Venus is one of the many significant scientific targets for NASA. New rock sampling tools with the ability to be operated at high temperatures of the order of 460 deg C are required for surface in-situ sampling/analysis missions. Piezoelectric materials such as LiNbO? crystals and Bismuth Titanate are potentially operational at the temperature range found on the surface of Venus. A study of the feasibility of producing piezoelectric drills for a temperature up to 500 deg C was conducted. The study includes investigation of the high temperature properties of piezoelectric crystals and ceramics with different formulas and doping. Several prototypes of Ultrasonic/Sonic Drill/Corers (USDC) driven by transducers using the high temperate piezoelectric ceramics and single LiNbO? crystal were fabricated. The transducers were analyzed by scanning the impedance at room temperature and 500 deg C under both low and high voltages. The drilling performances were tested at temperature up to 500 deg C. Preliminary results were previously reported [Bao et al, 2009]. In this paper, the progress is presented and the future works for performance improvements are discussed.
New Clues on the Source of the Central Magnetic Anomaly at Haughton Impact Structure, Canada
NASA Astrophysics Data System (ADS)
Quesnel, Y.; Rochette, P.; Gattacceca, J.; Osinski, G. R.
2013-12-01
The 23 km-diameter Haughton impact structure, located on Devon Island, Nunavut, Canada, is one of the best-preserved medium-size complex impact structures on Earth. The impact occurred ~39 Ma ago into a target formation composed of an ~2-km thick sequence of Lower Paleozoic sedimentary rocks of the Arctic Platform overlying Precambrian metamorphic basement of the Canadian Shield (Osinski et al., 2005). Clast-rich carbonate impact melt rocks fill the crater and impact-generated hydrothermal activity took place, but since then no significant geological event has affected the area. A 900 nT-amplitude magnetic anomaly with a wavelength of about 3 km is observed at the center of the crater (Pohl et al., 1988). Using high-resolution ground magnetic survey and magnetic property measurements on rock samples from inside and outside the structure, Quesnel et al. (2013) concluded that the source for this anomaly may correspond to uplifted and hydrothermally-aletered basement rocks. Hydrothermal activity can increase rock magnetization intensity by crystallization of magnetic minerals, such as magnetite and/or pyrrhotite. Here, we present the results of a new ground magnetic survey and electrical resistivity soundings conducted around the maximum of the magnetic anomaly. Drilling, with depths ranging from 5 m to 13 m was also conducted at three locations in the same area to ground truth the interpretation of geophysical data. The maximum of the magnetic anomaly is characterized by a ~50 m2 area of strong vertical magnetic gradient and low electrical resistivity, while the surroundings show weak gradient and large resistivity. Two drill holes into this localized area show about 6 m of sandy material with some more magnetic layers at about 5 m depth overlying a greenish impact melt breccia with very abundant and large clasts. Recovery in the first 9 meters is very poor, but down hole magnetic gradient measurement confirms the near 6 meter magnetic layer. A third hole was drilled outside the local area with strong magnetic gradients and shows, starting at 2 m depth a porous gray clast-rich impact melt rock that is very similar to the impact melt rock extensively cropping out in the crater. Therefore, the three drill holes confirm that the geophysical contrast at the crater center corresponds to a geological contrast and suggest a link with hydrothermal activity. The results of laboratory measurements (magnetic properties in particular) made on the drill cores will also be presented. References : Osinski, G. R. et al. 2005. MPS, 40:1759-1776 ; Pohl, J. et al. 1988. Meteoritics, 23:235-238 ; Quesnel, Y. et al. 2013. EPSL, 367:116-122.
Percussive Augmenter of Rotary Drills (PARoD)
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Hasenoehrl, Jennifer; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Ostlund, Patrick; Aldrich, Jack
2013-01-01
Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10 N) which is important for operation at low gravity. This device can be made as light as 400 g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. The test results of this configuration were published in a previous publication. Further, a larger PARoD breadboard with a 50.8 mm (2.0 in) diameter bit was developed and tested. This paper presents the design, analysis and test results of the large diameter bit percussive augmenter.
Petrography of shock features in the 1953 Manson 2-A drill core
NASA Technical Reports Server (NTRS)
Short, N. M.; Gold, D. P.
1993-01-01
Drilling of Nx core in late 1953 into an anomalous zone of disturbed rocks northwest of Manson, Iowa disclosed presence of extensive breccias including crystalline rocks brought to the surface from depths of 4 km or more. Hole 2-A penetrated breccias dominated by leucocratic igneous and metamorphic lithologies, later interpreted to be part of a general ringed peak complex within a 35 km wide impact structure produced about 65 Ma ago. Proof of this origin was given in 1966 by NMS through recognition of shock metamorphic features in 2-A materials during a cursory examination of samples provided by R.A. Hoppin, University of Iowa. A detailed study of this material now underway has revealed that most breccia clasts in 2-A show abundant and varied evidence of shock damage, including extensive planar deformation features (PDF) in quartz, K-feldspar, plagioclase, and a pyroxene and varying degrees of isotropization and incipient melting in feldspars.
The copper-cobalt deposits of the Quartzburg district, Grant County, Oregon
Vhay, John Stewart
1960-01-01
The copper- and cobalt-bearing veins of part of the Quartzburg district are in fracture zones trending about N. 70 degrees E. in folded Permian (?) metavolcanic rocks on the southwest side of a quartz diorite stock. Along many of the veins fine-grained tourmaline and quartz have replaced the country rock. The primary ore minerals are chalcopyrite, glaucodot, safflorite, and cobaltite. The copper- and cobalt-rich parts of the deposits appear to be in separate ore shoots. Gold content is generally higher in the cobalt-bearing parts of the veins than in the copper-rich parts. The Standard mine has developed part of one vein zone. Several other vein zones that crop out may contain as much copper as the Standard vein zone. Further bulldozing and diamond drilling on the surface, and more geologic mapping, sampling, and diamond drilling underground are suggested as means to explore for more ore deposits.
Stanley, Richard G.; Lillis, Paul G.; Pawlewicz, Mark J.; Haeussler, Peter J.
2014-01-01
We used Rock-Eval pyrolysis and vitrinite reflectance to examine the petroleum source potential of rock samples from the Sheep Creek 1 well in the Susitna basin of south-central Alaska. The results show that Miocene nonmarine coal, carbonaceous shale, and mudstone are potential sources of hydrocarbons and are thermally immature with respect to the oil window. In the samples that we studied, coals are more organic-rich and more oil-prone than carbonaceous shales and silty mudstones, which appear to be potential sources of natural gas. Lithologically similar rocks may be present in the deeper parts of the subsurface Susitna basin located west of the Sheep Creek 1 well, where they may have been buried deeply enough to generate oil and (or) gas. The Susitna basin is sparsely drilled and mostly unexplored, and no commercial production of hydrocarbons has been obtained. However, the existence of potential source rocks of oil and gas, as shown by our Rock-Eval results, suggests that undiscovered petroleum accumulations may be present in the Susitna basin.
Valin, Zenon C.; Collett, Timothy S.
1992-01-01
Gas hydrates, which are crystalline substances of water molecules that encase gas molecules, have the potential for being a significant source of natural gas. World-wide estimates for the amount of gas contained in hydrates range from 1.1 x 105 to 2.7 x 108 trillion cubic feet. Gas hydrates exist in many Arctic regions, including the North Slope of Alaska. The two primary objectives of the U.S. Geological Survey Gas Hydrate Research Project are (1) to map the distribution of in-situ gas hydrates on the North Slope of Alaska, and (2) to evaluate the geologic parameters that control the distribution of these gas hydrates. To aid in this study, British Petroleum Exploration, ARCO Alaska, Exxon Company USA, and the Continental Oil Company allowed the U.S. Geological Survey to collect geochemical samples from drilling North Slope production wells. Molecular analysis of gaseous drill cutting and free-flowing gas samples from 10 production wells drilled in the Prudhoe Bay, Kuparuk River, and Milne Point oil fields indicates that methane is the primary hydrocarbon gas in the gas hydrate-bearing stratigraphic units. Isotopic data for several of these rock units indicate that the methane within the inferred gas hydrate occurences originated from both microbial and thermogenic processes.
Permeability of rock samples from Cajon Pass, California
Morrow, C.; Byerlee, J.
1988-01-01
Room temperature, steady-state flow measurements of permeability were conducted on 15 unfractured core samples collected at depths between 270 and 2100 m in the Cajon Pass drillhole. Confining and pore pressures were set to the lithostat and hydrostat for each depth. The first 500 m encountered in the drill hole is composed of sandstones with typically high permeabilities of around 10-17m2. The crystalline rocks between 500 and 2100 m show a systematic decrease in permeability with depth from 10-19 to less than 10-21m2. These values are particularly low relative to the applied effective stresses of only 10-30 MPa, and may be a result of the extensive crack healing that was observed in most samples. -Authors
Salton Sea Scientific Drilling Program
Sass, J.H.
1988-01-01
The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activites enabled the U.S Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. This program, orginally conceived by Wilfred A. Elders, professor of geology at the University of California at Riverside, was coordinated under an inter-agency accord among the Geological Survey, the U.S Department of Energy, and the National Science Foundation.
A study of electro-osmosis as applied to drilling engineering
NASA Astrophysics Data System (ADS)
Hariharan, Peringandoor Raman
In the present research project. the application of the process of electro-osmosis has been extended to a variety of rocks during the drilling operation. Electro-osmosis has been utilized extensively to examine its influence in reducing (i) bit balling, (ii) coefficient of friction between rock and metal and (iii) bit/tool wear. An attempt has been made to extend the envelope of confidence in which electro-osmosis was found to be operating satisfactorily. For all the above cases the current requirements during electro-osmosis were identified and were recorded. A novel test method providing repeatable results has been developed to study the problem of bit balling in the laboratory through the design of a special metallic bob simulating the drill bit. A numerical parameter described as the Degree-of-Balling (DOB) defined by the amount of cuttings stuck per unit volume of rock cut for the same duration of time is being proposed as a means to quantitatively describe the balling process in the laboratory. Five different types of shales (Pierre I & II, Catoosa, Mancos and Wellington) were compared and evaluated for balling characteristics and to determine the best conditions for reducing bit balling with electro-osmosis in a variety of drilling fluids including fresh water, polymer solutions and field type drilling fluids. Through the design, fabrication and performing of experiments conducted with a model Bottom Hole Assembly (BHA). the feasibility of maintaining the drill bit separately at a negative potential and causing the current to flow through the rock back into the string through a near bit stabilizer has been demonstrated. Experiments conducted with this self contained arrangement for the application of electro-osmosis have demonstrated a substantial decrease in balling and increase in the rate of penetration (ROP) while drilling with both a roller cone and PDC microbit (1-1/4" dia.) in Pierre I and Wellington shales. It is believed that the results obtained from the model BHA will aid in scaling up to a full-scale prototype BHA for possible application in the field. Experiments conducted with electro-osmosis in a simulated drill string under loaded conditions have clearly demonstrated that the coefficient of friction (mu) can be reduced at the interface of a rotating cylinder (simulating the drill-pipe) and a rock (usually a type of shale), through electro-osmosis. Studies examined the influence of many variables such as drilling fluid, rock type, and current on mu. The need for the correct estimation of mu is for reliable correlation between values obtained in the laboratory with those observed in the field. The knowledge of the coefficient of friction (mu) is an important requirement for drill string design and well trajectory planning. The use of electro-osmosis in reducing bit/tool wear through experiments in various rocks utilizing a specially designed steel bob simulating the drill bit has clearly indicated a decreased average tool wear, varying from 35% in Pierre I shale up to 57% in sandstone when used with the tool maintained at a cathodic DC potential. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabain, R.T.
1994-05-16
A rock strength analysis program, through intensive log analysis, can quantify rock hardness in terms of confined compressive strength to identify intervals suited for drilling with polycrystalline diamond compact (PDC) bits. Additionally, knowing the confined compressive strength helps determine the optimum PDC bit for the intervals. Computing rock strength as confined compressive strength can more accurately characterize a rock's actual hardness downhole than other methods. the information can be used to improve bit selections and to help adjust drilling parameters to reduce drilling costs. Empirical data compiled from numerous field strength analyses have provided a guide to selecting PDC drillmore » bits. A computer analysis program has been developed to aid in PDC bit selection. The program more accurately defines rock hardness in terms of confined strength, which approximates the in situ rock hardness downhole. Unconfined compressive strength is rock hardness at atmospheric pressure. The program uses sonic and gamma ray logs as well as numerous input data from mud logs. Within the range of lithologies for which the program is valid, rock hardness can be determine with improved accuracy. The program's output is typically graphed in a log format displaying raw data traces from well logs, computer-interpreted lithology, the calculated values of confined compressive strength, and various optional rock mechanic outputs.« less
Big Sky and Greenhorn Drill Holes and CheMin X-ray Diffraction
2015-12-17
The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Big Sky" and "Greenhorn" target locations, shown at left. X-ray diffraction analysis of the Greenhorn sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed an abundance of silica in the form of noncrystalline opal. The broad hump in the background of the X-ray diffraction pattern for Greenhorn, compared to Big Sky, is diagnostic of opal. The image of Big Sky at upper left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera the day the hole was drilled, Sept. 29, 2015, during the mission's 1,119th Martian day, or sol. The Greenhorn hole was drilled, and the MAHLI image at lower left was taken, on Oct. 18, 2015 (Sol 1137). http://photojournal.jpl.nasa.gov/catalog/PIA20272
Checking Contact Points for Curiosity Drill
2013-06-05
This image demonstrates how engineers place the drill carried by NASA Mars rover Curiosity onto rock targets. They first set down the drill two stabilizing prongs near the target, as shown by the dashed line.
McLean, Hugh James
1977-01-01
Core chips and drill cuttings from eight of the nine wells drilled along the Bering Sea lowlands of the Alaska Peninsula were subjected to lithologic and paleontologic analyses. Results suggest that at least locally, sedimentary rocks of Tertiary age contain oil and gas source and reservoir rocks capable of generating and accumulating liquid and gas hydrocarbons. Paleogene strata rich in organic carbon are immature. However, strata in offshore basins to the north and south may have been subjected to a more productive thermal environment. Total organic carbon content of fine grained Neogene strata appears to be significantly lower than in Paleogene rocks, possibly reflecting nonmarine or brackish water environments of deposition. Neogene sandstone beds locally yield high values of porosity and permeability to depths of about 8,000 feet (2,439 m). Below this depth, reservoir potential rapidly declines. The General Petroleum, Great Basins No. 1 well drilled along the shore of Bristol Bay reached granitic rocks. Other wells drilled closer to the axis of the present volcanic arc indicate that both Tertiary and Mesozoic sedimentary rocks have been intruded by dikes and sills of andesite and basalt. Although the Alaska Peninsula has been the locus of igneous activity throughout much of Mesozoic and Tertiary time, thermal maturity indicators such as vitrinite reflectance and coal rank suggest, that on a regional scale, sedimentary rocks have not been subjected to abnormally high geothermal gradients.
GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, S C; Lomov, I; Roberts, J J
2012-01-19
Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discussmore » results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.« less
Mudstone Mineralogy from Curiosity CheMin, 2013 to 2016
2016-12-13
This series of pie charts shows similarities and differences in the mineral compositions of mudstones at 10 sites where NASA's Curiosity Mars rover collected rock-powder samples and analyzed them with the rover's Chemistry and Mineralogy (CheMin) instrument. The charts are arrayed in chronological order, with an indication of relative elevation as the rover first sampled two sites on the floor of Gale Crater in 2013 and later began climbing the crater's central mound, Mount Sharp. The pie chart farthest to the right and uphill shows composition at the "Sebina" target, sampled in October 2016. Five non-mudstone rock targets that the rover drilled and analyzed within this time frame are not included. The mineralogical variations in these mudstones may be due to differences in any or all of these factors: the source materials deposited by water that entered lakes, the processes of sedimentation and rock forming, and how the rocks were later altered. One trend that stands out is that the mineral jarosite -- shown in purple -- was more prominent in the "Pahrump Hills" area of lower Mount Sharp than at sites examined either earlier or later. Jarosite is an indicator of acidic water. Mudstone layers uphill from Pahrump Hills have barely detectable amounts of jarosite, indicating a shift away from acidic conditions in these overlying -- thus younger -- layers. Clay minerals, shown as green, declined in abundance at sites midway through this series, then came back as the rover climbed higher. Each drilled-and-analyzed target is identified with a two-letter abbreviation: JK for "John Klein," CB for "Cumberland." CH for "Confidence Hills," MJ for "Mojave," TP for "Telegraph Peak," BK for "Buckskin," OD for "Oudam," MB for "Marimba," QL for "Quela," and SB for Sebina. http://photojournal.jpl.nasa.gov/catalog/PIA21146
NASA Astrophysics Data System (ADS)
Zhang, X.; Zou, C.
2017-12-01
The Cretaceous strata have been recognized as an important target of oil or gas exploration in the Songliao Basin, northeast China. The second borehole (SK-2) of the Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin (CCSD-SK) is the first one to drill through the Cretaceous continental strata in the frame of ICDP. It was designed not only to solve multiple scientific problems (including the Cretaceous paleoenvironment and paleoclimate, as well as deep resources exploration of the Songliao Basin), but also to expect to achieve new breakthroughs in oil and gas exploration. Based on the project, various geophysical log data (including gamma, sonic, resistivity, density etc.) and core samples have been collected from Borehole SK-2. We do research on organic-rich source rocks estimation using various geophysical log data. Firstly, we comprehensively analyzed organic-rich source rocks' geophysical log response characteristics. Then, source rock's identification methods were constructed to identify organic-rich source rocks with geophysical logs. The main identification methods include cross-plot, multiple overlap and Decision Tree method. Finally, the technique and the CARBOLOG method were applied to evaluate total organic carbon (TOC) content from geophysical logs which provide continuous vertical profile estimations (Passey, 1990; Carpentier et al., 1991). The results show that source rocks are widely distributed in Borehole SK-2, over a large depth strata (985 5700m), including Nenjiang, Qingshankou, Denglouku, Yingcheng, Shahezi Formations. The organic-rich source rocks with higher TOC content occur in the Qingshankou (1647 1650m), Denglouku (2534 2887m) and Shahezi (3367 5697m) Formations. The highest TOC content in these formations can reach 10.31%, 6.58%, 12.79% respectively. The bed thickness of organic-rich source rocks in the these formations are totally up to 7.88m, 74.34m, 276.60m respectively. These organic-rich rocks in the Qingshankou, Denglouku and Shahezi Formations can be considered as excellent source rocks in the Songliao Basin, which are beneficial for oil or gas accumulation. This work was supported by the CCSD-SK of China Geological Survey (No. 12120113017600) and the National Natural Science Foundation Project (grant No.41274185).
Durrani, N.A.; Warwick, Peter D.
1991-01-01
Field work drilling, and other related studies carried out from 1985 to 1988 to assess the quantity and quality of the coal resources of southern Sindh. Sixty-eight holes drilled in the Lakhra/Jherruck, Thatta, and Indus East coal fields indicate that presently known and mined coal fields in southern Sindh are not isolated coal occurrences. Rather, much of southern Sindh, including the Thar Desert, is underlain by strata that contain coal beds.More than 400 core and mine samples were collected for proximate and ultimate analysis and determination of major, minor and trace elements; also, lithologie logs were prepared from description of rock cuttings and core. Original coal resources of 1,080 million tones have been estimated for 7 out of 9 coal zones in parts of the Lakhra area, where coal-bed thicknesses range from a few centimeters to 5 m. In the Sonda/Jherruk area, 3,700 million tones of coal have been identified, the thickest coal bed intercepted being 6.3 meters. The apparent rank of the coal in these fields ranges from lignite A to sub-bituminous C. Averaged analytical results on an as received basis indicate the coal beds contain 28.4 % moisture, 18,3 % ash, 4.7 % sulfur, 25,2 % fixed carbon, 27.9 % volatile matter, and 33.1% oxygen. Average calorific value for Lakhra coal samples is about 3,660 Kcal/kg, whereas that of Sonda/Jherruk samples is about 3,870 Kcal/kg. Geophysical logs were obtained for the drill holes, and cores and rock cuttings are available from the GSP for further study and reference.The second phase of the project began in 1987 with surface exploration in the Salt Range coal field of Punjab Province, the Sor Range and Khost-Sharig-Harnai coal fields of Baluchistan, and the Makarwal and Cherat coal fields of NWFP. These are briefly discussed here.
NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, K.D.; Honeygan, S.; Moroz, T
2007-06-01
The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore,more » the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less
Buckskin Drill Hole and CheMin X-ray Diffraction
2015-12-17
The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Buckskin" target location, shown at left. X-ray diffraction analysis of the Buckskin sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed the presence of a silica-containing mineral named tridymite. This is the first detection of tridymite on Mars. Peaks in the X-ray diffraction pattern are from minerals in the sample, and every mineral has a diagnostic set of peaks that allows identification. The image of Buckskin at left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera on July 30, 2015, and is also available at PIA19804. http://photojournal.jpl.nasa.gov/catalog/PIA20271
Hydrogeology, chemical and microbial activity measurement through deep permafrost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stotler, R.L.; Frape, S.K.; Freifeld, B.M.
2010-04-01
Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial watermore » samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.« less
Hydrogeology, Chemical and Microbial Activity Measurement Through Deep Permafrost
Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.
2011-01-01
Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with ??18O values ???5??? lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH4 was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH4 is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.
DOT National Transportation Integrated Search
2016-05-01
Over the past 20 years, drilled shafts have demonstrated increasing popularity over driven : precast piles. Drilled shafts can accommodate a wider range of sizes, and noise and vibration : during construction are significantly reduced. On the other h...
NASA Technical Reports Server (NTRS)
Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.
2003-01-01
A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (< 5N) and thus offers significant advantages for operation from lightweight platforms and in low gravity environments. The USDC is lightweight (<0.5kg), and can be driven at low power (<5W) using duty cycling. It consists of an actuator with a piezoelectric stack, ultrasonic horn, free-mass, and drill bit. The stack is driven with a 20 kHz AC voltage at resonance. The strain generated by the piezoelectric is amplified by the horn by a factor of up to 10 times the displacement amplitude. The tip impacts the free-mass and drives it into the drill bit in a hammering action. The free-mass rebounds to interact with the horn tip leading to a cyclic rebound at frequencies in the range of 60-1000 Hz. It does not require lubricants, drilling fluid or bit sharpening and it has the potential to operate at high and low temperatures using a suitable choice of piezoelectric material. To assess whether the powder from an ultrasonic drill would be adequate for analyses by an XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL ultrasonic drill were analyzed and the results were compared to carefully prepared powders obtained using a laboratory bench scale Retsch mill.
An interactive drilling simulator for teaching and research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, G.A.; Cooper, A.G.; Bihn, G.
1995-12-31
An interactive program has been constructed that allows a student or engineer to simulate the drilling of an oil well, and to optimize the drilling process by comparing different drilling plans. The program operates in a very user-friendly way, with emphasis on menu and button-driven commands. The simulator may be run either as a training program, with exercises that illustrate various features of the drilling process, as a game, in which a student is set a challenge to drill a well with minimum cost or time under constraints set by an instructor, or as a simulator of a real situationmore » to investigate the merit of different drilling strategies. It has three main parts, a Lithology Editor, a Settings Editor and the simulation program itself. The Lithology Editor allows the student, instructor or engineer to build a real or imaginary sequence of rock layers, each characterized by its mineralogy, drilling and log responses. The Settings Editor allows the definition of all the operational parameters, ranging from the drilling and wear rates of particular bits in specified rocks to the costs of different procedures. The simulator itself contains an algorithm that determines rate of penetration and rate of wear of the bit as drilling continues. It also determines whether the well kicks or fractures, and assigns various other {open_quotes}accident{close_quotes} conditions. During operation, a depth vs. time curve is displayed, together with a {open_quotes}mud log{close_quotes} showing the rock layers penetrated. If desired, the well may be {open_quotes}logged{close_quotes} casings may be set and pore and fracture pressure gradients may be displayed. During drilling, the total time and cost are shown, together with cost per foot in total and for the current bit run.« less
NASA Astrophysics Data System (ADS)
Gohl, K.; Freudenthal, T.; Hillenbrand, C.-D.; Klages, J.; Larter, R.; Bickert, T.; Bohaty, S.; Ehrmann, W.; Esper, O.; Frederichs, T.; Gebhardt, C.; Küssner, K.; Kuhn, G.; Pälike, H.; Ronge, T.; Simões Pereira, P.; Smith, J.; Uenzelmann-Neben, G.; van de Flierdt, C.
2017-11-01
A multibarrel seabed drill rig was used for the first time to drill unconsolidated sediments and consolidated sedimentary rocks from an Antarctic shelf with core recoveries between 7% and 76%. We deployed the MARUM-MeBo70 drill device at nine drill sites in the Amundsen Sea Embayment. Three sites were located on the inner shelf of Pine Island Bay from which soft sediments, presumably deposited at high sedimentation rates in isolated small basins, were recovered from drill depths of up to 36 m below seafloor. Six sites were located on the middle shelf of the eastern and western embayment. Drilling at five of these sites recovered consolidated sediments and sedimentary rocks from dipping strata spanning ages from Cretaceous to Miocene. This report describes the initial coring results, the challenges posed by drifting icebergs and sea ice, and technical issues related to deployment of the MeBo70. We also present recommendations for similar future drilling campaigns on polar continental shelves.
NASA Astrophysics Data System (ADS)
Lin, W.; Yang, X.; Tadai, O.; Zeng, X.; Yeh, E. C.; Yu, C.; Hatakeda, K.; Xu, H.; Xu, Z.
2016-12-01
As a result of the earthquake rupture propagation, stress on the earthquake fault and in the hanging wall and in the footwall coseismically drops. Based on the thermo-elasticity theory, the temperature of rocks may change associated with coseismic stress change at the same time as their elastic deformation. This coseismic temperature change is one of the physics of earthquake rupture propagation, however has not been noted and expressly addressed before. To understand this temperature issue, we conducted laboratory experiments to quantitatively investigate temperatures response of rocks to rapid stress change of various typical rocks. Consequently, we developed a hydrostatic compression experimental equipment for rock samples with a high resolution temperature measuring system. This enable us to rapidly load and/or unload the confining pressure. As experimental rock samples, we collected 15 representative rocks from various scientific drilling projects and outcrops of earthquake faults, and quarries in the world. The rock types include sandstone, siltstone, limestone, granite, basalt, tuff etc. Based on the classical thermo-elastic theory, a conventional relationship between the temperature change (dT) of rock samples and the confining pressure change (dP) in the hydrostatic compression system under adiabatic condition can be expressed as a linear function. Therefore, we can measure the adiabatic pressure derivative of temperature (dT/dP) directly by monitoring changes of rock sample temperature and confining pressure during the rapidly loading and unloading processes. As preliminary results of the experiments, the data of 15 rock samples showed that i) the adiabatic pressure derivative of temperature (dT/dP) of most rocks are about 1.5 6.2 mK/MPa; ii) the dT/dP of sedimentary rocks is larger than igneous and metamorphic rocks; iii) a good linear correlation between dT/dP and the rock's bulk modulus was recognized.
Cumberland Selected as Curiosity Second Drilling Target
2013-05-09
This map shows the location of Cumberland, the second rock-drilling target for NASA Mars rover Curiosity, in relation to the rover first drilling target, John Klein, within the southwestern lobe of a shallow depression called Yellowknife Bay.
Experimental system for drilling simulated lunar rock in ultrahigh vacuum
NASA Technical Reports Server (NTRS)
Roepke, W. W.
1975-01-01
An experimental apparatus designed for studying drillability of hard volcanic rock in a simulated lunar vacuum of 5 x 10 to the minus 10th power torr is described. The engineering techniques used to provide suitable drilling torque inside the ultrahigh vacuum chamber while excluding all hydrocarbon are detailed. Totally unlubricated bearings and gears were used to better approximate the true lunar surface conditions within the ultrahigh vacuum system. The drilling system has a starting torque of 30 in-lb with an unloaded running torque of 4 in-lb. Nominal torque increase during drilling is 4.5 in-lb or a total drilling torque of 8.5 in-lb with a 100-lb load on the drill bit at 210 rpm. The research shows conclusively that it is possible to design operational equipment for moderate loads operating under UHV conditions without the use of sealed bearings or any need of lubricants whatsoever.
Healey, D.L.
1971-01-01
Gravity observations were made on the ground surface and at a depth of 5,854 feet in drill hole UA-1. Two attempts to measure the free-air gradient utilizing the headframe over the drill hole were unsuccessful owing to mechanical vibrations in the structure. Because of the uncertainty in the measured free-air gradients these values were discarded and the average value (0.09406 mgal/ft) was used in the calculations. The calculated in situ bulk density is 2.36 g/cc. The weighted average bulk density determined from 47 core samples taken in the adjacent UAE-1 drill hole is also 2.36 g/cc. An analysis of selected portions of density logs provides an in situ bulk density of 2.37 g/cc.
Temperature profiles from Salt Valley, Utah
NASA Astrophysics Data System (ADS)
Sass, J. H.; Lachenbruch, A. H.; Smith, E. P.
Temperature profiles were obtained in the nine drilled wells as part of a thermal study of the Salt Valley anticline, Paradox Basin, Utha. Thermal conductivities were also measured on 10 samples judged to be representative of the rocks encountered in the deepest hole. The temperature profiles and thermal conductivities are presented, together with preliminary interpretive remarks and suggestions for additional work.
Lee, G.K.; Antweiler, J.C.; Love, J.D.; Benedict, J.F.
1982-01-01
A brief geologic reconnaissance and geochemical survey of molybdenum mineralization near Schiestler Peak, Sublette County, Wyo., indicates that molybdenite occurs in this area as disseminations and blebs in granitic or quartz monzonitic rocks intruded by felsic dikes of similar composition. Samples of stream sediments, panned concentrates from stream sediments, soils, rocks, and water were collected in the geochemical survey. Analytical results show that in reconnaissance, panned concentrates are the best of the sample types used in this study to detect molybdenum mineralization. More detailed analysis of the distribution of the molybdenum is best achieved through the collection of rock samples. Hydrothermal alteration is generally not conspicuous in the study area; however, rock samples that contain molybdenite are usually slightly enriched in silver, copper, lead, and in several instances, gold. Conversely, there appear to be negative associations between molybdenum and zinc and between molybdenum and several of the rare-earth elements. Mo concentrations in the rock samples with no visible molybdenite range from undetectable at a sensitivity of 5 parts per million (ppm) to 700 ppm. Mo content in rock samples containing visible molybdenite ranges from 10 ppm to greater than 2,000 ppm. Stream-sediment values range from undetected to 15 ppm; panned concentrates from undetected to 15 ppm; soils from undetected to 20 ppm. Analyses of the water samples indicate Mo concentrations from 0.8 parts per billion (ppb) to 4.8 ppb. As currently understood, this deposit is not extensive or continuous, but drilling to provide information on the vertical extent of mineralization may alter this opinion.
Roofbolters with compressed-air rotators
NASA Astrophysics Data System (ADS)
Lantsevich, MA; Repin Klishin, AA, VI; Kokoulin, DI
2018-03-01
The specifications of the most popular roofbolters of domestic and foreign manufacture currently in operation in coal mines are discussed. Compressed-air roofbolters SAP and SAP2 designed at the Institute of Mining are capable of drilling in hard rocks. The authors describe the compressed-air rotator of SAP2 roofbolter with alternate motion rotors. From the comparative analysis of characteristics of SAP and SAP 2 roofbolters, the combination of high-frequency axial and rotary impacts on a drilling tool in SAP2 ensure efficient drilling in rocks with the strength up to 160 MPa.
Maia Mapper: high definition XRF imaging in the lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.
Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less
Maia Mapper: high definition XRF imaging in the lab
Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.; ...
2018-03-13
Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less
Maia Mapper: high definition XRF imaging in the lab
NASA Astrophysics Data System (ADS)
Ryan, C. G.; Kirkham, R.; Moorhead, G. F.; Parry, D.; Jensen, M.; Faulks, A.; Hogan, S.; Dunn, P. A.; Dodanwela, R.; Fisher, L. A.; Pearce, M.; Siddons, D. P.; Kuczewski, A.; Lundström, U.; Trolliet, A.; Gao, N.
2018-03-01
Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keV into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.
Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun
2005-06-01
Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of approximately 0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 x 10(3) to 2.4 x 10(4) cells/g and 3.5 x 10(8) to 4.2 x 10(9) cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids.
Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun
2005-01-01
Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of ∼0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 × 103 to 2.4 × 104 cells/g and 3.5 × 108 to 4.2 × 109 cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids. PMID:15933024
Curiosity Rover Self Portrait at John Klein Drilling Site
2013-02-07
The rover is positioned at a patch of flat outcrop called John Klein, which was selected as the site for the first rock-drilling activities by NASA Curiosity. This self-portrait was acquired to document the drilling site.
Microbiology of the lower ocean crust - Preliminary results from IODP Expedition 360, Atlantis Bank
NASA Astrophysics Data System (ADS)
Sylvan, J. B.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Expedition 360 Scientists, I.
2016-12-01
International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. We present here preliminary analysis of microbial communities sampled from Hole U1473A, drilled to 789.7 m below seafloor during Expedition 360. Sub-sampling of core sections was conducted in a newly designed plexiglass enclosure with positive air pressure and HEPA filtered air, providing a clean environment for microbiology sampling aboard the JOIDES Resolution. Adenosine triphosphoate, an indicator of microbial biomass, was quantified above detection in 23 of 66 samples analyzed. We measured exoenzyme activity for alkaline phosphatase (AP), leucine aminopeptidase and arginine aminopeptidase in 16 samples and found AP to be very low but above background for 14 of the samples, with highest activities measured between 10 and 70 m below seafloor (mbsf) and peaks again at 158 and 307 mbsf, while both peptidase enzymes were above detection for only one sample at 715 mbsf. Isolates of fungi obtained from core samples as well as analyses of lipid and DNA biomarkers, and Raman spectra for a few of our rock core samples provide initial insights into microbial communities in the lower oceanic crust. Finally, a new tracer of seawater and drilling mud contamination, perfluoromethyl decaline (PFMD), was tested for the first time and its performance compared with the commonly used tracer perfluoromethylcyclohexane (PMCH). PFMD was run during coring operations for ten samples and was routinely detected in the drilling fluids, usually detected on the outside of uncleaned cores, and rarely above detection on the cleaned outside of cores. It was below detection on the inside of cores, indicating penetration of drill fluids to the interior of whole round drill cores, where we collected our samples, is unlikely.
von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy
2008-01-01
The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.
NASA Astrophysics Data System (ADS)
Hahne, Barbara; Thomas, Rüdiger
2014-05-01
In Germany, successful deep geothermal projects are mainly situated in Southern Germany in the Molassebecken, furthermore in the Upper Rhine Graben and, to a minor extend, in the North German Basin. Mostly they are hydrothermal projects with the aim of heat production. In a few cases, they are also constructed for the generation of electricity. In the North German Basin temperature gradients are moderate. Therefore, deep drilling of several thousand meters is necessary to reach temperatures high enough for electricity production. However, the porosity of the sedimentary rocks is not sufficient for hydrothermal projects, so that natural fracture zones have to be used or the rocks must be hydraulically stimulated. In order to make deep geothermal projects in Lower Saxony (Northern Germany) economically more attractive, the interdisciplinary research program "Geothermal Energy and High-Performance Drilling" (gebo) was initiated in 2009. It comprises four focus areas: Geosystem, Drilling Technology, Materials and Technical System and aims at improving exploration of the geothermal reservoir, reducing costs of drilling and optimizing exploitation. Here we want to give an overview of results of the focus area "Geosystem" which investigates geological, geophysical, geochemical and modeling aspects of the geothermal reservoir. Geological and rock mechanical investigations in quarrys and core samples give a comprehensive overview on rock properties and fracture zone characteristics in sandstones and carbonates. We also show that it is possible to transfer results of rock property measurements from quarry samples to core samples or to in situ conditions by use of empirical relations. Geophysical prospecting methods were tested near the surface in a North German Graben system. We aim at transferring the results to the prospection of deep situated fracture zones. The comparison of P- and S-wave measurements shows that we can get hints on a possible fluid content of the fracture zone. The assumed elastic rock properties can be evaluated by FD modeling. Geoelectric and electromagnetic investigations of the fracture zone were carried out to investigate their potential to give hints on minerals, brines or hydrothermal fluids within the fracture zone. Measurements of the Spectral Induced Polarization show that anisotropy of phase angles may not be neglected, because otherwise data may be misinterpreted and structural models become unnecessarily complicated. A crucial aspect for the performance of a Geothermal plant is the mineral contents of the formation water. Scalings and corrosion can severely disturb the operation and the properties of the reservoir. Therefore, North German formation waters were analysed and categorized and a thermodynamic database was developed. It allows hydrogeochemical modeling of geothermally used waters and of hydrogeochemically and technically induced processes under North German conditions. Hydromechanical modeling showed that differences of elastic rock properties between neighboring layers does not strongly influence propagation paths of fractures, whereas they significantly influence fracture aperture. On the other hand, differences of mechanical rock properties significantly influence propagation paths of fractures. Existing fractures are also affected by the induced fracture - after stimulation, they propagate further in the direction of maximum shear stress. Furthermore, rock deformation during the production phase depends strongly on the contrast of hydraulic conductivity between highly permeable fracture core and low permeable rock matrix. The projects within gebo-Geosystem are well interconnected. Both the focus area "Geosystem" as well as the whole collaborative research program "gebo" offer different approaches that lead to an improvement of geothermal exploration and exploitation as well as a better understanding of the processes within geothermal reservoirs. Acknowledgement: The gebo project is funded by the "Niedersächsisches Ministerium für Wissenschaft und Kultur" and the industry partner Baker Hughes, Celle, Germany.
Amara Konaté, Ahmed; Pan, Heping; Ma, Huolin; Qin, Zhen; Guo, Bo; Yevenyo Ziggah, Yao; Kounga, Claude Ernest Moussounda; Khan, Nasir; Tounkara, Fodé
2017-10-01
The main purpose of the Wenchuan Earthquake Fault Scientific drilling project (WFSD) was to produce an in-depth borehole into the Yingxiu-Beichuan (YBF) and Anxian-Guanxian faults in order to gain a much better understanding of the physical and chemical properties as well as the mechanical faulting involved. Five boreholes, namely WFSD-1, WFSD-2, WFSD-3P, WFSD-3 and WFSD-4, were drilled during the project entirety. This study, therefore, presents first-hand WFSD-4 data on the lithology (original rocks) and fault rocks that have been obtained from the WFSD project. In an attempt to determine the physical properties and the clay minerals of the lithology and fault rocks, this study analyzed the spectral gamma ray logs (Total gamma ray, Potassium, Thorium and Uranium) recorded in WFSD-4 borehole on the Northern segment of the YBF. The obtained results are presented as cross-plots and statistical multi log analysis. Both lithology and fault rocks show a variability of spectral gamma ray (SGR) logs responses and clay minerals. This study has shown the capabilities of the SGR logs for well-logging of earthquake faults and proves that SGR logs together with others logs in combination with drill hole core description is a useful method of lithology and fault rocks characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Konurin, AI; Khmelinin, AP; Denisova, EV
2018-03-01
The currently available drill navigation systems, with their benefits and shortcomings are reviewed. A mathematical model is built to describe the inertial navigation system movement in horizontal and inclined drilling. A prototype model of the inertial navigation system for rotary percussion drills has been designed.
Where tunneling equipment is heading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, R.K.
1984-02-01
A variety of equipment is being used for roadheading and tunneling in the mining industry. This includes hydraulic/rotary precussive drills for use in conventional drill and blast, drum-type continuous miners, roadheaders, mini-and midi-full facers for small size openings, soft rock shielded tunnel boring machines, and hard rock tunnel boring machines. The availability, performance, and specifications for tunneling equipment are discussed.
Laboratory Investigations for the Role of Flushing Media in Diamond Drilling of Marble
NASA Astrophysics Data System (ADS)
Bhatnagar, A.; Khandelwal, Manoj; Rao, K. U. M.
2011-05-01
Marble is used as a natural stone for decorative purposes from ages. Marble is a crystalline rock, composed predominantly of calcite, dolomite or serpentine. The presence of impurities imparts decorative pattern and colors. The diamond-based operations are extensively used in the mining and processing of marble. Marble is mined out in the form of blocks of cuboids shape and has to undergo extensive processing to make it suitable for the end users. The processing operation includes slabbing, sizing, polishing, etc. Diamond drilling is also commonly used for the exploration of different mineral deposits throughout the world. In this paper an attempt has been made to enhance the performance of diamond drilling on marble rocks by adding polyethylene-oxide (PEO) in the flushing water. The effect of PEO added with the drilling water was studied by varying different machine parameters and flushing media concentration in the laboratory. The responses were rate of penetration and torque at bit-rock interface. Different physico-mechanical properties of marble were also determined. It was found that flushing water added with PEO can substantially enhance the penetration rates and reduce the torque developed at the bit-rock interface as compared to plain flushing water.
The Mars Science Laboratory Organic Check Material
NASA Astrophysics Data System (ADS)
Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.
2012-09-01
Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).
Preparatory Drilling Test on Martian Target Windjana
2014-04-30
NASA Curiosity Mars rover completed a shallow mini drill test April 29, 2014, in preparation for full-depth drilling at a rock target called Windjana. The hole results from the test is 0.63 inch across and about 0.8 inch deep.
Curiosity Drill in Place for Load Testing Before Drilling
2013-01-28
The percussion drill in the turret of tools at the end of the robotic arm of NASA Mars rover Curiosity has been positioned in contact with the rock surface in this image from the rover front Hazard-Avoidance Camera Hazcam.
Abnormally high formation pressures, Potwar Plateau, Pakistan
Law, B.E.; Shah, S.H.A.; Malik, M.A.
1998-01-01
Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.
A Universal Rig for Supporting Large Hammer Drills: Reduced Injury Risk and Improved Productivity
Rempel, David; Barr, Alan
2015-01-01
Drilling holes into concrete with heavy hammer and rock drills is one of the most physically demanding tasks performed in commercial construction and poses risks for musculoskeletal disorders, noise induced hearing loss, hand arm vibration syndrome and silicosis. The aim of this study was to (1) use a participatory process to develop a rig to support pneumatic rock drills or large electric hammer drills in order to reduce the health risks and (2) evaluate the usability of the rig. Seven prototype rigs for supporting large hammer drills were developed and modified with feedback from commercial contractors and construction workers. The final design was evaluated by laborers and electricians (N=29) who performed their usual concrete drilling with the usual method and the new rig. Subjective regional fatigue was significantly less in the neck, shoulders, hands and arms, and lower back) when using the universal rig compared to the usual manual method. Usability ratings for the rig were significantly better than the usual method on stability, control, drilling, accuracy, and vibration. Drilling time was reduced by approximately 50% with the rig. Commercial construction contractors, laborers and electricians who use large hammer drills for drilling many holes should consider using such a rig to prevent musculoskeletal disorders, fatigue, and silicosis. PMID:26005290
The Polar Rock Repository: Rescuing Polar Collections for New Research
NASA Astrophysics Data System (ADS)
Grunow, A.
2016-12-01
Geological field expeditions in polar regions are logistically difficult, financially expensive and can have a significant environmental impact on pristine regions. The scarcity of outcrop in Antarctica (98% ice-covered) makes previously collected rock samples very valuable to the science community. NSF recognized the need for preserving rock, dredge, and terrestrial core samples from polar areas and created the Polar Rock Repository (PRR). The PRR collection allows for full and open access to both samples and metadata via the PRR website. In addition to the physical samples and their basic metadata, the PRR archives supporting materials from the collector, field notebooks, images of the samples, field maps, air photos, thin sections and any associated bibliography/DOI's. Many of these supporting materials are unique. More than 40,000 samples are available from the PRR for scientific analysis to researchers around the globe. Most of the samples cataloged at the PRR were collected more than 30 years ago, some more than 100 years ago. The rock samples and metadata are made available online through an advanced search engine for the PRR website. This allows scientists to "drill down" into search results using categories and look-up object fields similar to websites like Amazon. Results can be viewed in a table, downloaded as a spreadsheet, or plotted on an interactive map that supports display of satellite imagery and bathymetry layers. Samples can be requested by placing them in the `shopping cart'. These old sample collections have been repeatedly used by scientists from around the world. One data request involved locating coal deposits in Antarctica for a global compilation and another for looking at the redox state of batholithic rocks from the Antarctic Peninsula using magnetic susceptibilities of PRR rocks. Sample usage has also included non-traditional geologic studies, such as a search for monopoles in Cenozoic volcanic samples, and remote sensing/spectral imaging of Transantarctic Mountains rocks. Rescuing these collections from universities that no longer want to store the rocks or from researchers who no longer need the samples has resulted in many new publications, new proposals and enormous cost and environmental savings to the U.S. Antarctic science program.
Ocean Drilling Program Contributions to the Understanding of the Deep Subsurface Biosphere
NASA Astrophysics Data System (ADS)
Fisk, M. R.
2003-12-01
Tantalizing evidence for microbes in oceanic basalts has been reported for a few decades, but it was from rocks cored on Ocean Drilling Program (ODP) Leg 148 in 1993 that the first clear-cut evidence of microbial invasion of ocean basalts was obtained. (Work on ODP legs, starting with Leg 112 in 1986, had already revealed the presence of significant microbial biomass in sediments.) In 1997 ODP created the Deep Biosphere Program Planning Group to promote the investigation of the microbiology of the ocean crust. In 1999 ODP built a microbiology lab on the JOIDES Resolution, and used the lab that year (Legs 185 and 187) to test the amount of microbial contamination introduced into rocks during drilling and to establish cultures from cored basalts. These experiments have been repeated on several legs since then. The development of CORKs has permitted long-term sampling of subseafloor fluids, and microorganisms have been recovered from CORKed holes. Thus, ODP made it possible for the scientific community to address major questions about the biology of the igneous crust, such as, (1) What microbes are present? (2) How abundant are they? (3) How are they distributed? DNA from basalts and subseafloor fluids reveal what types of organisms are present. Cell abundance and biomass have been estimated based on cell counts and on organic content of basalts. Surveys of basalts in DSDP/ODP repositories indicate that microorganisms are ubiquitous in the igneous crust. Microorganisms are found in rocks that are close to 100° C. They are found as deep as 1500 m below the sea floor, and in rocks as young as a few years and as old as 170 million years. Because of the vast size of the habitat, microorganism, even if present in small numbers, could be a significant fraction of the Earth's biomass. In a short time ODP contributed to advances in our understanding of the oceanic subsurface biosphere. Answers to other significant questions such as: (1) How do the microorganisms live?, (2) What impact do subsurface microorganisms have on the surface biosphere? (3) And, what roles do the subsurface biosphere play in element cycling? will be answered by future drilling. The International Ocean Drilling Program (IODP) is in the enviable position of providing support to address these key questions about the Earth's subsurface biosphere.
Test and Delivery of the Chemin Mineralogical Instrument for Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Blake, D. F.; Vaniman, D.; Anderson, R.; Bish, D.; Chipera, S.; Chemtob, S.; Crisp, J.; DesMarais, D. J.; Downs, R.; Feldman, S.;
2010-01-01
The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14
DOT National Transportation Integrated Search
2016-06-01
The research focused on evaluation of Florida limestones unconfined compressive strength, qu, through : drilling parameters crowd, torque, penetration rate, rotational speed, and bit diameter in both the : laboratory and field for assessin...
Close-Up After Preparatory Test of Drilling on Mars
2013-02-07
After an activity called the mini drill test by NASA Mars rover Curiosity, the rover MAHLI camera recorded this view of the results. The test generated a ring of powdered rock for inspection in advance of the rover first full drilling.
Whole-rock analyses of core samples from the 1988 drilling of Kilauea Iki lava lake, Hawaii
Helz, Rosalind Tuthill; Taggart, Joseph E.
2010-01-01
This report presents and evaluates 64 major-element analyses of previously unanalyzed Kilauea Iki drill core, plus three samples from the 1959 and 1960 eruptions of Kilauea, obtained by X-ray fluorescence (XRF) analysis during the period 1992 to 1995. All earlier major-element analyses of Kilauea Iki core, obtained by classical (gravimetric) analysis, were reported and evaluated in Helz and others (1994). In order to assess how well the newer data compare with this earlier suite of analyses, a subset of 24 samples, which had been analyzed by classical analysis, was reanalyzed using the XRF technique; those results are presented and evaluated in this report also. The XRF analyses have not been published previously. This report also provides an overview of how the chemical variations observed in these new data fit in with the chemical zonation patterns and petrologic processes inferred in earlier studies of Kilauea Iki.
Development of a Piezoelectric Rotary Hammer Drill
NASA Technical Reports Server (NTRS)
Domm, Lukas N.
2011-01-01
The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.
NASA Astrophysics Data System (ADS)
Arvidson, R. E.; Squyres, S. W.; Baumgartner, E. T.; Schenker, P. S.; Niebur, C. S.; Larsen, K. W.; SeelosIV, F. P.; Snider, N. O.; Jolliff, B. L.
2002-08-01
The Field Integration Design and Operations (FIDO) prototype Mars rover was deployed and operated remotely for 2 weeks in May 2000 in the Black Rock Summit area of Nevada. The blind science operation trials were designed to evaluate the extent to which FIDO-class rovers can be used to conduct traverse science and collect samples. FIDO-based instruments included stereo cameras for navigation and imaging, an infrared point spectrometer, a color microscopic imager for characterization of rocks and soils, and a rock drill for core acquisition. Body-mounted ``belly'' cameras aided drill deployment, and front and rear hazard cameras enabled terrain hazard avoidance. Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, a high spatial resolution IKONOS orbital image, and a suite of descent images were used to provide regional- and local-scale terrain and rock type information, from which hypotheses were developed for testing during operations. The rover visited three sites, traversed 30 m, and acquired 1.3 gigabytes of data. The relatively small traverse distance resulted from a geologically rich site in which materials identified on a regional scale from remote-sensing data could be identified on a local scale using rover-based data. Results demonstrate the synergy of mapping terrain from orbit and during descent using imaging and spectroscopy, followed by a rover mission to test inferences and to make discoveries that can be accomplished only with surface mobility systems.
NASA Astrophysics Data System (ADS)
Mortensen, A. K.; Mibei, G. K.
2017-12-01
Drilling in Menengai has experienced various challenges related to drilling operations and the resource itself i.e. quality discharge fluids vis a vis gas content. The main reason for these challenges is related to the nature of rocks encountered at depths. Intrusives encountered within Menengai geothermal field have been group into three based on their geological characteristics i.e. S1, S2 and S3.Detailed geology and mineralogical characterization have not been done on these intrusive types. However, based on physical appearances, S1 is considered as a diorite dike, S2 is syenite while S3 is molten rock material. This paper summarizes the experiences in drilling into semi molten or molten intrusive (S3).
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
Report on drilling activities in the Thar Desert, Sindh Province, Pakistan
Thomas, Roger E.; Fassett, James E.; Warwick, Peter D.; Wardlaw, Bruce R.; Shah, Abas A.; Khan, Shafique Ahmed; Tagar, Mohammad A.; Memon, Abdul R.; Lashari, Ghulam S.; Khan, Zameer M.; Khan, Muhammad D.; Chandio, Altaf H.; Anwar, Mohammad; Nizamani, Mohammad A.; Ahmad, Mujeeb; Ur-Raman, Mehtab-
1994-01-01
Coal test drilling in the Thar Desert of southeast Pakistan was conducted as part of the Coal Exploration and Assessment Program (COALREAP) involving the United States Agency for International Development (USAID), the Geological Survey of Pakistan (GSP), and the U.S. Geological Survey. Drilling was performed in the Thar Desert, or Great Indian Desert, approximately 175 km northeast of Karachi. Twenty five exploration holes were drilled between January 1992 and May 1994. Drill core was described by geologists of the Pakistan Geological Survey and coal samples were analyzed in both the United States and Pakistan. U.S. Geological Survey geologists offered technical assistance, trained GSP personnel, and managed the drilling program according to an agreement with USAID under the Energy Planning and Development Project.Drilling was performed by the Geological Survey of Pakistan. During drilling, the first 50 m was rotary drilled and cuttings collected every 2 m for examination. Average depth for all coal beds is 214 m with a total average thickness of 10 m of coal per drill hole. Core was described, boxed, and stored at the Geological Survey of Pakistan core library at Sonda, near Hyderabad. Approximately 6,412 m of Paleocene to Eocene rock was drilled of which 3,990 m was cored and 1,113 m was rotary drilled.There was 1,309 m of core loss. Geophysical logging of each drill hole permitted detailed thicknesses of coal to be determined. Analysis of the coal indicated a rank of lignite B with an as-received heating value over 5,000 Btu.This report presents data collected at the drill sites and should be used inconjunction with the published interpretive report (Fassett and Durrani, 1994) and the USGS Open-File Report 94-167, which contains analysis of the coal samples. Tables provide quick reference to numeric data and results. Detailed index maps and specific data, for each drill hole are included. This report covers drill holes TP-5 to TP-31. Drill holes TP-16, 17, 21, 26, 27, and 29 were planned but not drilled due to time restraints and (or) a determination that those drill sites were not needed to effectively delineate the coal deposit. The basic data for drill holes TP-1 through TP-4 are included in SanFilipo and others, 1994 however, some data for these drill holes are included for consistency.
NASA Astrophysics Data System (ADS)
Zoback, M. D.; Hickman, S.; Ellsworth, W.
2005-12-01
In this talk we provide an overview of on-site drilling, sampling and downhole measurement activities associated with the first two Phases of the San Andreas Fault Observatory at Depth. SAFOD is located at the transition between the creeping and locked sections of the fault, 9 km NW of Parkfield, CA. A 2.1 km deep vertical pilot hole was drilled at the site in 2002. The SAFOD main borehole was drilled vertically to a depth of 1.5 km and then deviated at an average angle of 55° to vertical, passing beneath the surface trace of the San Andreas fault, 1.8 km to the NW at a depth of 3.2 km. Repeating microearthquakes on the San Andreas define the main active fault trace at depth, as well as a secondary active fault about 250 m to the SW (i.e., closer to SAFOD). The hole was rotary drilled, comprehensive cuttings were obtained and a real-time analysis of gases in the drilling mud was carried out. Spot cores were obtained at three depths (at casing set points) in the shallow granite and deeper sedimentary rocks penetrated by the hole, augmented by over fifty side-wall cores. Continuous coring of the San Andreas Fault Zone will be carried out in Phase 3 of the project in the summer of 2007. In addition to sampling mud gas, discrete fluid and gas samples were obtained at several depths for geochemical analysis. Real-time geophysical measurements were made while drilling through most of the San Andreas Fault Zone. A suite of "open hole" geophysical measurements were also made over essentially the entire depth of the hole. Construction of the multi-component SAFOD observatory is well underway, with a seismometer and tiltmeter operating at 1 km depth in the pilot hole and a fiber-optic laser strainmeter cemented behind casing in the main hole. A seismometer deployed at depth in the hole between Phases 1 and 2 detected one of the target earthquakes. A number of surface-to-borehole seismic experiments have been carried out to characterize seismic velocities and structures at depth, including deployment of an 80-level, 240-component seismic array in SAFOD in the spring of 2005. With knowledge of P- and S-wave velocities obtained from the geophysical measurements in conjunction with downhole recordings of the SAFOD target earthquake, it appears that the seismically active main trace of the fault is on the order of 400 m SW of the surface trace, in proximity to several candidate zones of particularly anomalous geophysical properties. Observations of casing deformation to be made over the next several years, as well as monitoring of the microearthquakes using seismometers directly within the fault zone, will pinpoint the exact location of this and other active fault traces prior to continuous coring in Phase 3. As will be elaborated in detail by the presentations of the SAFOD science team at this meeting, the activities carried out as part of Phases 1 and 2 of SAFOD lay the ground work for years of exciting research in earthquake physics, fault-rock geology, rock mechanics and the role of fluids and gases in faulting and earthquake generation.
Martian Terrain Near Curiosity Precipice Target
2016-12-06
This view from the Navigation Camera (Navcam) on the mast of NASA's Curiosity Mars rover shows rocky ground within view while the rover was working at an intended drilling site called "Precipice" on lower Mount Sharp. The right-eye camera of the stereo Navcam took this image on Dec. 2, 2016, during the 1,537th Martian day, or sol, of Curiosity's work on Mars. On the previous sol, an attempt to collect a rock-powder sample with the rover's drill ended before drilling began. This led to several days of diagnostic work while the rover remained in place, during which it continued to use cameras and a spectrometer on its mast, plus environmental monitoring instruments. In this view, hardware visible at lower right includes the sundial-theme calibration target for Curiosity's Mast Camera. http://photojournal.jpl.nasa.gov/catalog/PIA21140
NASA Astrophysics Data System (ADS)
Yan, Q.; Shi, X.
2015-12-01
The drilling sites of IODP 334 and 344 lie in the being subducted part of Cocos Ridge, offshore Costa Rica. Some seamount clusters distributed in the northwest side of the sites. Most scientists accepted that the Cocos ridge is intimately related to the activity of Galapagos plume (e.g., Hoernle et al., 2000, 2004, 2008). In this study we have selected some basaltic samples from U1381A, U1381C and U1414A (IODP 334 and 344) (Harris et al., 2015a, b) to carry out petrogenetic study. Major element compositions show that these basaltic rocks belong to sub-alkaline rocks, which is consistent with previous study on basalts from northern side of Cocos ridge. The characteristics of trace element composition are similar to that of EMORB, and the compositional differences in trace elements among samples reflect the influence of fractional crystallization. Sr-Nd-Pb isotopic compositions of these basaltic rocks show that there exist mantle heterogeneity beneath the Cocos ridge, and they may be the product of mixing between DMM/GSC and EMII. The new data show more enriched source feature than those from Galapagos hotspot (and its tracks) in previous study (Hoernle et al., 2000,2004), and slightly more enriched than those Miocene to Pliocene arc volcanics from Central America (Gazel et al., 2009). Partial melting model show that the parental basalts for these basaltic rocks may be produced by 13 to 28% partial melting of garnet pyroxenite. ReferencesGazel et al., 2009. G-cubed.10, Q02S11, doi:10.1029/2008GC002246.//Harris, R.N., Sakaguchi, A., Petronotis, K., and the Expedition 344 Scientists. 2015a. Input Site U1381. Proceedings of the Integrated Ocean Drilling Program, Volume 344//Harris, R.N., Sakaguchi, A., Petronotis, K., and the Expedition 344 Scientists. 2015b. Input Site U1414.Proceedings of the Integrated Ocean Drilling Program, Volume 344//Hoernle et al., 2000. Geology, 28(5),435-438//Hoernle et al., 2004. Geology, 32,697-700//Hoernle et al., 2008. Nature, 451,1094-1098 (This study was supported by National Natural Science Foundation of China (NSFC nos. 41296030 and 41322036, and IODP-China.)
Using DSDP/ODP/IODP core photographs and digital images in the classroom
NASA Astrophysics Data System (ADS)
Pereira, Hélder; Berenguer, Jean-Luc
2017-04-01
Since the late 1960's, several scientific ocean drilling programmes have been uncovering the history of the Earth hidden beneath the seafloor. The adventure began in 1968 with the Deep Sea Drilling Project (DSDP) and its special drill ship, the Glomar Challenger. The next stage was the Ocean Drilling Program (ODP) launched in 1985 with a new drill ship, the JOIDES Resolution. The exploration of the ocean seafloor continued, between 2003 and 2013, through the Integrated Ocean Drilling Program (IODP). During that time, in addition to the JOIDES Resolution, operated by the US, the scientists had at their service the Chikyu, operated by Japan, and Mission-Specific-Platforms, funded and implemented by the European Consortium for Ocean Research Drilling. Currently, scientific ocean drilling continues through the collaboration of scientists from 25 nations within the International Ocean Discovery Program (IODP). Over the last 50 years, the scientific ocean drilling expeditions conducted by these programmes have drilled and cored more than 3500 holes. The numerous sediment and rock samples recovered from the ocean floor have provided important insight on the active biological, chemical, and geological processes that have shaped the Earth over millions of years. During an expedition, once the 9.5-meter long cores arrive from the seafloor, the technicians label and cut them into 1.5-meter sections. Next, the shipboard scientists perform several analysis using non-destructive methods. Afterward, the technicians split the cores into two halves, the "working half", which scientists sample and use aboard the drilling platform, and the "archive half", which is kept in untouched condition after being visually described and photographed with a digital imaging system. The shipboard photographer also takes several close-up pictures of the archive-half core sections. This work presents some examples of how teachers can use DSDP/ODP/IODP core photographs and digital images, available through the Janus and LIMS online databases, to develop inquiry-based learning activities for secondary level students.
Hydromechanical drilling device
Summers, David A.
1978-01-01
A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.
Applications of UThPb isotope systematics to the problems of radioactive waste disposal
Stuckless, J.S.
1986-01-01
Concentrations of U, Th and Pb, and the isotopic composition of Pb for whole-rock samples of granitoids show: (1) that open-system behavior is nearly universal in the surface and near-surface environment; and (2) that elemental mobility is possible to depths of several hundred meters. Several identified or at least postulated factors that control U and/or Pb mobility include: (1) the mineralogical sites for U and its daughter products; (2) access of groundwater to these sites; (3) the volume of circulating water; and (4) the chemistry of the groundwater. Studies of granitic samples from peralkaline complexes in the Arabian Shield have shown that most samples lost less than 20% of their U during recent exposure to the near-surface environment. Most of the U in these samples appears to be firmly bound in zircons. In contrast, most surface and shallow drill-core samples of the granite of Lankin Dome (Granite Mountains, Wyoming) have lost ??? 70% of their U. Most of the U in these samples is weakly bound in biotite and epidote-family minerals. The granite recovered during the Illinois Deep Drill Hole Project (Stephenson County, Illinois) is mineralogically similar to the granite of Lankin Dome, but this granite lost radiogenic Pb rather than U, probably as a result of exposure to groundwater that had a markedly different chemistry from that in the Granite Mountains. Studies of the Sherman Granite (Wyoming) and the Go??temar Granite (southeastern Sweden) have shown that U and/or Pb mobility is greatest in and near fractured rock. The greater mobility is interpreted to be the result of both a larger water/rock ratio in the fractured rock and exposure to water over an increased surface area (and consequently a greater number of uranium sites). Several types of geochemical and mineralogic data can be used to identify rock-water interaction in granites; however, if rock samples have favorable radiogenic to common Pb ratios, both the amount and approximate timing of U or Pb mobility can be obtained through the use of isotopic studies. Such information can be extremely important in the search for favorable hosts for containment of radioactive waste. Rocks such as the Go??temar Granite have undergone considerable rock-water interaction, most of which occurred ??? 400 Myr. ago and little in recent times. Thus a search for zones that have experienced only a little interaction with water may provide a misleading prediction as to the ability of such zones to shield radioactive wastes from the modern biosphere. From an isotopic point of view, an ideal candidate for evaluation as a host rock for radioactive wastes would have the following characteristics: (1) a high ratio (> 2) of radiogenic to common Pb in order to optimize precision of the results; (2) a simple two-stage geologic history so that results could be interpreted without multiple working hypotheses; and (3) an originally high percentage (> 50%) of labile U so that the results would be highly sensitive to even small amount of rock-water interaction. These characteristics should produce rocks with marked radioactive disequilibrium in surface samples. The disequilibrium should grade to radioactive equilibrium with increasing depth until zones in which water has not circulated are found. Extensive regions of such zones must exist because UThPb systematics of most analyzed granitoids demonstrate closed-system behavior for almost all of their history except for their recent history in the near-surface environment. ?? 1986.
San Andreas drilling sites selected
NASA Astrophysics Data System (ADS)
Ellsworth, Bill; Zoback, Mark
A new initiative for drilling and coring directly into the San Andreas fault at depths up to 10 km is being proposed by an international team of scientists led by Mark Zoback, Stanford University; Steve Hickman and Bill Ellsworth, U.S. Geological Survey; and Lee Younker, Lawrence Livermore Laboratory. In addition to exhuming samples of fault rock and fluids from seismogenic depths, the hole will be used to make a wide range of geophysical measurements within the fault zone and to monitor the fault zone over time. Four areas along the San Andreas have been selected as candidates for deep drilling: the Mojave segment of the San Andreas between Leona Valley and Big Pine, the Carrizo Plain, the San Francisco Peninsula between Los Altos and Daly City, and the Northern Gabilan Range between the Cienga winery and Melendy Ranch. These sites were chosen from an initial list compiled at the International Fault Zone Drilling Workshop held in Asilomar, Calif., in December 1992 and at meetings held this winter and spring in Menlo Park, Calif.
Distribution of siderophile and other trace elements in melt rock at the Chicxulub impact structure
NASA Technical Reports Server (NTRS)
Schuraytz, B. C.; Lindstrom, D. J.; Martinez, R. R.; Sharpton, V. L.; Marin, L. E.
1994-01-01
Recent isotopic and mineralogical studies have demonstrated a temporal and chemical link between the Chicxulub multiring impact basin and ejecta at the Cretaceous-Tertiary boundary. A fundamental problem yet to be resolved, however, is identification of the projectile responsible for this cataclysmic event. Drill core samples of impact melt rock from the Chichxulub structure contain Ir and Os abundances and Re-Os isotopic ratios indicating the presence of up to approx. 3 percent meteoritic material. We have used a technique involving microdrilling and high sensitivity instrumental neutron activation analysis (INAA) in conjunction with electron microprobe analysis to characterize further the distribution of siderophile and other trace elements among phases within the C1-N10 melt rock.
CITICO CREEK WILDERNESS STUDY AREA, TENNESSEE.
Slack, John F.; Behum, Paul T.
1984-01-01
A mineral-resource survey of the Citico Creek Wilderness Study Area, in easternmost Tennessee, indicated that the area offers little promise for the occurrence of metallic mineral resources. Geochemical sampling found traces of gold, copper, cobalt, barium, arsenic, lead, zinc, and thorium in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to indicate the presence of metallic mineral deposits. The only apparent resources are nonmetallic commodities including rock suitable for construction materials, and small amounts of sand and gravel; however, these commodities are found in abundance outside the study area. The potential for oil and natural gas at great depths could not be evaluated by this study. Deep drilling would test the potential for hydrocarbon resources underlying the metamorphic rocks.
NASA Astrophysics Data System (ADS)
Wenning, Quinn; Almquist, Bjarne; Ask, Maria; Schmitt, Douglas R.; Zappone, Alba
2015-04-01
The Caledonian orogeny, preserved in Scandinavia and Greenland, began with the closure of the Iapetus Ocean and culminated in the collision of Baltica and Laurentia cratons during the middle Paleozoic. The COSC scientific drilling project aims at understanding the crustal structure and composition of the Scandinavian Caledonides. The first well of the dual phase drilling program, completed in Summer of 2014, drilled through ~2.5 km of the Seve Nappe Complex near the town of Åre, Sweden. Newly acquired drill core and borehole logs provide fresh core material for physical rock property measurements and in-situ stress determination. This contribution presents preliminary data on compressional and shear wave ultrasonic velocities (Vp, Vs) determined from laboratory measurements on drill cores, together with in-situ stress orientation analysis using image logs from the first borehole of the Collisional Orogeny in the Scandinavian Caledonides project (COSC-1). An hydrostatically oil pressurized apparatus is used to test the ultrasonic Vp and Vs on three orthogonally cut samples of amphibolite, calcium bearing and felsic gneiss, meta-gabbro, and mylonitic schist from drill core. We measure directional anisotropy variability for each lithology using one sample cut perpendicular to the foliation and two additional plugs cut parallel to the foliation with one parallel to the lineation and the other perpendicular. Measurements are performed using the pulse transmission technique on samples subjected to hydrostatic pressure from 1-350 MPa at dry conditions. We present preliminary results relating Vp and Vs anisotropy to geologic units and degree of deformation. Additionally, we use acoustic borehole televiewer logs to estimate the horizontal stress orientation making use of well developed techniques for observed borehole breakouts (compressive failure) and drilling induced fractures (tensile failure). Preliminary observations show that very few drilling-induced tensile fractures are produced, and that borehole breakouts are episodic and suggests a NE-SW minimum horizontal stress direction
Organic cleanliness of the Mars Science Laboratory sample transfer chain.
Blakkolb, B; Logan, C; Jandura, L; Okon, A; Anderson, M; Katz, I; Aveni, G; Brown, K; Chung, S; Ferraro, N; Limonadi, D; Melko, J; Mennella, J; Yavrouian, A
2014-07-01
One of the primary science goals of the Mars Science Laboratory (MSL) Rover, Curiosity, is the detection of organics in Mars rock and regolith. To achieve this, the Curiosity rover includes a robotic sampling system that acquires rock and regolith samples and delivers it to the Sample Analysis at Mars (SAM) instrument on board the rover. In order to provide confidence that any significant organics detection result was Martian and not terrestrial in origin, a requirement was levied on the flight system (i.e., all sources minus the SAM instrument) to impart no more than 36 parts per billion (ppb by weight) of total reduced carbon terrestrial contamination to any sample transferred to the SAM instrument. This very clean level was achieved by a combination of a rigorous contamination control program on the project, and then using the first collected samples for a "dilution cleaning" campaign of the sample chain prior to delivering a sample to the SAM instrument. Direct cleanliness assays of the sample-contacting and other Flight System surfaces during pre-launch processing were used as inputs to determine the number of dilution cleaning samples needed once on Mars, to enable delivery of suitably clean samples to the SAM experiment. Taking into account contaminant redistribution during launch thorough landing of the MSL on Mars, the amount of residue present on the sampling hardware prior to the time of first dilution cleaning sample acquisition was estimated to be 60 ng/cm(2) on exposed outer surfaces of the sampling hardware and 20 ng/cm(2) on internal sample contacting surfaces; residues consisting mainly of aliphatic hydrocarbons and esters. After three dilution cleaning samples, estimated in-sample contamination level for the first regolith sample delivered to the SAM instrument at the Gale Crater "Rocknest" site was bounded at ≤10 ppb total organic carbon. A Project decision to forego ejecting the dilution cleaning sample and instead transfer the first drill-acquired sample at the "John Klein" site to SAM resulted in an estimated level of terrestrial contamination of ≤430 ppb. The estimated terrestrial contamination for portions from the second drill-acquired sample, at Cumberland, was ≤69 ppb; the estimate for a future, third, drilled sample is ≤38 ppb. These levels are comparable in magnitude to the SAM instrument blanks at the nanomole level (as chlorohydrocarbon).
NASA Astrophysics Data System (ADS)
Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.
2009-12-01
Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.
Continuation of down-hole geophysical testing for rock sockets : [technical summary].
DOT National Transportation Integrated Search
2013-11-01
The rock socket is critical to a drilled shaft : foundation because it lies within a rock stratum : and accounts for much of the capacity of the : foundational unit. Consistency of the rocks : structure and composition must be identifed : because ...
NASA Astrophysics Data System (ADS)
Scarpato, D. J.
2016-02-01
Slope construction in shale can present some interesting challenges for geotechnical design engineers and contractors alike. There are challenges that can be expected and designed for; however, all too frequently, such challenges manifest themselves as "surprises" in the field. Common constructibility challenges can include drill hole deviation during drilling for controlled blasting; and, excavation slope instability arising from inconsistent perimeter control drilling. Drill hole deviation results from the cumulative effects from both drilling mechanics and rock mass conditions. Once a hole has initiated the deviation trajectory, it is difficult to rectify drill steel position. Although such challenges are not necessarily unique to shale, they are often exacerbated by weak, weathered and transversely isotropic nature of bedrock conditions. All too often, the working assumption is that shale is "soft" and easily excavatable; however, this blanket assumption can prove to be costly. This paper is intended to provide design professionals and contractors with the practical considerations needed to avoid the "surprises" associated with drill hole deviation, and minimize the potential for costly claims.
In-Situ Operations and Planning for the Mars Science Laboratory Robotic Arm: The First 200 Sols
NASA Technical Reports Server (NTRS)
Robinson, M.; Collins, C.; Leger, P.; Carsten, J.; Tompkins, V.; Hartman, F.; Yen, J.
2013-01-01
The Robotic Arm (RA) has operated for more than 200 Martian solar days (or sols) since the Mars Science Laboratory rover touched down in Gale Crater on August 5, 2012. During the first seven months on Mars the robotic arm has performed multiple contact science sols including the positioning of the Alpha Particle X-Ray Spectrometer (APXS) and/or Mars Hand Lens Imager (MAHLI) with respect to rocks or loose regolith targets. The RA has supported sample acquisition using both the scoop and drill, sample processing with CHIMRA (Collection and Handling for In- Situ Martian Rock Analysis), and delivery of sample portions to the observation tray, and the SAM (Sample Analysis at Mars) and CHEMIN (Chemistry and Mineralogy) science instruments. This paper describes the planning and execution of robotic arm activities during surface operations, and reviews robotic arm performance results from Mars to date.
NASA Astrophysics Data System (ADS)
Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.
2017-12-01
Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.
NASA Astrophysics Data System (ADS)
Wakizaka, Yasuhiko
2013-10-01
The recent development of high-quality boring, which uses foam surfactants, has made it possible to examine the detailed geological constitution and structure of landslide bodies. However, geological information related to landslides has not been obtained appropriately even from undisturbed high-quality drilled cores. Moreover, it has been difficult to distinguish between rocks crushed by landslide movement and the fault breccia in accretionary complexes. We examined the detailed geology of high-quality drilled cores of landslide bodies on the Shimanto Belt and the Chichibu Belt. The fault breccia near the landslide bodies was found to exhibit planar fabrics while the crushed breccias in the landslide bodies showed a random fabric. We discovered that classifying the degree of crushing and inspecting the planar fabrics of rocks are effective in the geological determination of landslide bodies.
NASA Astrophysics Data System (ADS)
Hickok, K.; Nguyen, T.; Orcutt, B.; Fruh-Green, G. L.; Wanamaker, E.; Lang, S. Q.
2016-12-01
The high concentrations of hydrogen created during serpentinization can promote the formation of abiotic organic carbon molecules such as methane, formate, short chain hydrocarbons and, in laboratory experiments, larger molecules containing up to 32 carbon atoms. Subsurface archaeal and bacterial communities can use these reduced compounds for metabolic energy. International Ocean Discovery Project Expedition 357 drilled into the Atlantis Massif with the goals of investigating carbon cycling and the presence of life in a zone of active serpentinization. The expedition recovered multiple rock lithologies including gabbros, basalts, carbonate sands, and serpentinites. A subset of these samples are being analyzed to determine if non-volatile organic molecules are produced abiotically in serpentinizing environments and to identify `hot spots' of microbial life in the subsurface. Rock samples of contrasting representative lithologies are being analyzed for the presence of n-alkanes and fatty acids. Preliminary results have so far indicated the presence of alkanes in some samples. The isotopic (13C, 2H) characteristics of these compounds are being compared to a suite of oils, greases, and drilling fluids used during sample collection to distinguish in situ abiotic and biotic signatures from contaminant compounds. Other initial results have shown the efficacy of various sample-handling procedures designed to reduce surface contamination. This study will contribute to the overall understanding of the role serpentinization plays in the global carbon cycle and its implications for pre-biotic chemistry.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drilling test. 33.34 Section 33.34 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drilling test. 33.34 Section 33.34 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements...
Development and testing of a Mudjet-augmented PDC bit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Alan; Chahine, Georges; Raymond, David Wayne
2006-01-01
This report describes a project to develop technology to integrate passively pulsating, cavitating nozzles within Polycrystalline Diamond Compact (PDC) bits for use with conventional rig pressures to improve the rock-cutting process in geothermal formations. The hydraulic horsepower on a conventional drill rig is significantly greater than that delivered to the rock through bit rotation. This project seeks to leverage this hydraulic resource to extend PDC bits to geothermal drilling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.E.; Elders, W.A.
1981-01-01
Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.
NASA Astrophysics Data System (ADS)
Thompson, N.; Watters, R. J.; Schiffman, P.
2004-12-01
Selected portions of the 3-km HSDP II core were tested to provide unconfined rock strength data from hyaloclastite alteration zones and pillow lavas. Though the drilling project was not originally intended for strength purpose, it is believed the core can provide unique rock strength insights into the flank stability of the Hawaiian Islands. The testing showed that very weak rock exists in the hyaloclastite abundant zones in the lower 2-km of the core with strength dependent on the degree of consolidation and type of alteration. Walton and Schiffman identified three zones of alteration, an upper incipient alteration zone (1080-1335m), a smectitic zone (1405-1573m) and a lower palagonitic zone from about 1573 m to the base of the core. These three zones were sampled and tested together with pillow lava horizons for comparison. Traditional cylindrical core was not available as a consequence of the entire core having been split lengthwise for archival purposes. Hence, point load strength testing was utilized which provides the unconfined compressive strength on irregular shaped samples. The lowest unconfined strengths were recorded from incipient alteration zones with a mean value of 9.5 MPa. Smectitic alteration zones yielded mean values of 16.4 MPa, with the highest measured alteration strengths from the palagonite zones with a mean value of 32.1 MPa. As anticipated, the highest strengths were from essentially unaltered lavas with a mean value of 173 MPa. Strength variations of between one to two orders of magnitude were identified in comparing the submarine hyaloclastite with the intercalated submarine lavas. The weakest zones within the hyaloclastites may provide horizons for assisting flank collapse by serving as potential thrust zones and landslide surfaces.
Geohydrology of rocks penetrated by test well USW H-4, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, M.S. Jr.; Eshom, E.P.; Thordarson, W.
This report presents the results of hydraulic testing of rocks penetrated by USW H-4, one of several test wells drilled in the southwestern part of the Nevada Test Site, in cooperation with the US Department of Energy, for investigations related to the isolation of high-level radioactive wastes in volcanic tuffs of Tertiary age. All rocks penetrated by the test well to its total depth of 1219 meters were volcanic. Static water level was at a depth of 519 meters below land surface. Hydraulic-head measurements made at successively lower depths during drilling in this test hole indicate no noticeable head change.more » A radioactive-tracer, borehole-flow survey indicated that the two most productive zones in this borehole occurred in the upper part of the Bullfrog Member, depth interval from 721 to 731.5 meters, and in the underlying upper part of the Tram Member, depth interval from 864 to 920 meters, both in the Crater Flat Tuff. Hydraulic coefficients calculated from pumping-test data indicate that transmissivity ranged from 200 to 790 meters squared per day. The hydraulic conductivity ranged from 0.29 to 1.1 meters per day. Chemical analysis of water pumped from the saturated part of the borehole (composite sample) indicates that the water is typical of water produced from tuffaceous rocks in southern Nevada. The water is predominantly a sodium bicarbonate type with small concentrations of calcium, magnesium, and sulfate. The apparent age of this composite water sample was determined by a carbon-14 date to be 17,200 years before present. 24 refs., 10 figs., 8 tabs.« less
Wollitz, Leonard E.; Thordarson, William; Whitfield, Merrick S.; Weir, James E.
1982-01-01
Six exploratory wells were drilled into the cap rock underlying Salt Valley, Utah, for geologic, geophysical, and hydrologic data to augment information obtained from three previous test wells. Drilling of three other test holes was abandoned due to caving and loss of drilling tools, Before reaching the zone of saturation; the upper 100 meters of cap rock is unsaturated. Within the saturated part of the cap rock, hydraulic heads generally decrease with depth and to the northwest in this part of the valley.Hydraulic conductivity of the cap rock, as determined from pumping tests, ranged from 9.3 X 10-5 to 2.06 X 10-1 meters per day; as a result, groundwater flow rates in the cap rock are low. Water ranges from a calcium bicarbonate sulfate type on the western edge of the valley to a calcium magnesium sodium bicarbonate, sulfate, chloride type near the center of the valley. Carbon-14 specific activity for cap-rock water yielded an uncorrected age of about 17,000 to 26,000 years before present near the western edge of the valley and about 41,000 years before present near the center of the valley.
Geohydrologic data from test hole USW UZ-7, Yucca Mountain area, Nye County, Nevada
Kume, Jack; Hammermeister, D.P.
1990-01-01
This report contains a description of the methods used in drilling and coring of the test-hole USW UZ-7, a description of the methods used in collecting, handling, and testing of test-hole samples; Lithologic information from the test hole; and water-content, water-potential, bulk-density, grain-density, porosity, and tritium data for the test hole. Test-hole USW UZ-7 was drilled and cored to a total depth of 62.94 m. The drilling was done using air as a drilling fluid to minimize disturbance to the water content of cores, drill-bit cuttings, and borehole wall-rock. Beginning at the land surface, the unsaturated-zone rock that was penetrated consisted of alluvium; welded and partially to nonwelded ash-flow tuff; bedded and reworked ash-fall tuff; nonwelded ash-flow tuff; and welded ash-flow tuff. Values of gravimetric water content and water potential of alluvium were intermediate between the extreme values in welded and nonwelded units of tuff. Gravimetric water content was largest in bedded and nonwelded ash-fall tuffs and was smallest in welded ash-flow tuff. Values of water potential were more negative in densely welded ash-flow tuffs and were less negative in bedded and nonwelded ash-fall tuffs. Bulk density was largest in densely welded ash-flow tuffs and smallest in nonwelded and bedded ash-fall tuffs. Grain density was uniform but was slightly larger in nonwelded and bedded ash-fall tuffs than in welded ash-flow tuffs. Porosity trends were opposite to bulk-density trends. Tritium content in alluvium was smallest near the alluvium-bedrock contact, markedly increased in the middle of the deposit, and decreased in the near-surface zone of the deposit. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Miller, David P.; Bonaccorsi, Rosalba; Davis, Kiel
2008-10-01
Mars Astrobiology Research and Technology Experiment (MARTE) investigators used an automated drill and sample processing hardware to detect and categorize life-forms found in subsurface rock at Río Tinto, Spain. For the science to be successful, it was necessary for the biomass from other sources -- whether from previously processed samples (cross contamination) or the terrestrial environment (forward contamination) -- to be insignificant. The hardware and practices used in MARTE were designed around this problem. Here, we describe some of the design issues that were faced and classify them into problems that are unique to terrestrial tests versus problems that would also exist for a system that was flown to Mars. Assessment of the biomass at various stages in the sample handling process revealed mixed results; the instrument design seemed to minimize cross contamination, but contamination from the surrounding environment sometimes made its way onto the surface of samples. Techniques used during the MARTE Río Tinto project, such as facing the sample, appear to remove this environmental contamination without introducing significant cross contamination from previous samples.
Miller, David P; Bonaccorsi, Rosalba; Davis, Kiel
2008-10-01
Mars Astrobiology Research and Technology Experiment (MARTE) investigators used an automated drill and sample processing hardware to detect and categorize life-forms found in subsurface rock at Río Tinto, Spain. For the science to be successful, it was necessary for the biomass from other sources--whether from previously processed samples (cross contamination) or the terrestrial environment (forward contamination)-to be insignificant. The hardware and practices used in MARTE were designed around this problem. Here, we describe some of the design issues that were faced and classify them into problems that are unique to terrestrial tests versus problems that would also exist for a system that was flown to Mars. Assessment of the biomass at various stages in the sample handling process revealed mixed results; the instrument design seemed to minimize cross contamination, but contamination from the surrounding environment sometimes made its way onto the surface of samples. Techniques used during the MARTE Río Tinto project, such as facing the sample, appear to remove this environmental contamination without introducing significant cross contamination from previous samples.
Premo, Wayne R.; Morton, Douglas M.; Kistler, Ronald W.
2014-01-01
Nine U-Pb zircon ages were determined on plutonic rocks sampled from surface outcrops and rock chips of drill core from boreholes within the greater Los Angeles Basin region. In addition, lead-strontium-neodymium (Pb-Sr-Nd) whole-rock isotopic data were obtained for eight of these samples. These results help to characterize the crystalline basement rocks hidden in the subsurface and provide information that bears on the tectonic history of the myriad of fault systems that have dissected the Los Angeles region over the past 15 m.y. Seven of the nine samples have U-Pb ages ranging from 115 to 103 Ma and whole-rock Pb-Sr-Nd isotopic characteristics that indicate the crystalline basement underneath the greater Los Angeles Basin region is mostly part of the Peninsular Ranges batholith. Furthermore, these data are interpreted as evidence for (1) the juxtaposition of mid-Cretaceous, northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges in the San Fernando Valley, probably along the Verdugo fault; (2) the juxtaposition of older northwestern Peninsular Ranges batholith rocks against younger northeastern Peninsular Ranges batholith rocks in the northern Puente Hills, implying transposition of northeastern Peninsular Ranges batholith rocks to the west along unrecognized faults beneath the Chino Basin; and (3) juxtaposition of northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges along the San Jose fault in the northern San Jose Hills at Ganesha Park. These mainly left-lateral strike-slip faults of the eastern part of the greater Los Angeles Basin region could be the result of block rotation within the adjacent orthogonal, right-lateral, Elsinore-Whittier fault zone to the west and the subparallel San Jacinto fault zone to the east. The San Andreas fault system is the larger, subparallel, driving force further to the east.
Determinants of dust exposure in tunnel construction work.
Bakke, Berit; Stewart, Patricia; Eduard, Wijnand
2002-11-01
In tunnel construction work, dust is generated from rock drilling, rock bolting, grinding, scaling, and transport operations. Other important dust-generating activities are blasting rock and spraying wet concrete on tunnel walls for strength and finishing work. The aim of this study was to identify determinants of dust exposure in tunnel construction work and to propose control measures. Personal exposures to total dust, respirable dust, and alpha-quartz were measured among 209 construction workers who were divided into 8 job groups performing similar tasks: drill and blast workers, shaft drilling workers, tunnel boring machine workers, shotcreting operators, support workers, concrete workers, outdoor concrete workers, and electricians. Information on determinants was obtained from interviewing the workers, observation by the industrial hygienist responsible for the sampling, and the job site superintendent. Multivariate regression models were used to identify determinants associated with the dust exposures within the job groups. The geometric mean exposure to total dust, respirable dust, and alpha-quartz for all tunnel workers was 3.5 mg/m(3) (GSD = 2.6), 1.2 mg/m(3) (GSD = 2.4), and 0.035 mg/m(3) (GSD = 5.0), respectively. A total of 15 percent of the total dust measurements, 5 percent of the respirable dust, and 21 percent of the alpha-quartz exceeded the Norwegian OELs of 10 mg/m(3), 5 mg/m(3), and 0.1 mg/m(3), respectively. Job groups with highest geometric mean total dust exposure were shotcreting operators (6.8 mg/m(3)), tunnel boring machine workers (6.2 mg/m(3)), and shaft drilling workers (6.1 mg/m(3)). The lowest exposed groups to total dust were outdoor concrete workers (1.0 mg/m(3)), electricians (1.4 mg/m(3)), and support workers (1.9 mg/m(3)). Important determinants of exposure were job group, job site, certain tasks (e.g., drilling and scaling), the presence of a cab, and breakthrough of the tunnel. The use of ventilated, closed cabs appeared to be the single most important control measure for lowering exposures.
30 CFR 33.37 - Test procedure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test procedure. 33.37 Section 33.37 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.37 Test procedure. (a) Roof drilling: Drilling shall be done in friable strata, similar to the...
30 CFR 33.37 - Test procedure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test procedure. 33.37 Section 33.37 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.37 Test procedure. (a) Roof drilling: Drilling shall be done in friable strata, similar to the...
30 CFR 33.37 - Test procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test procedure. 33.37 Section 33.37 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.37 Test procedure. (a) Roof drilling: Drilling shall be done in friable strata, similar to the...
Lateral capacity of rock sockets in limestone under cyclic and repeated loading : technical summary.
DOT National Transportation Integrated Search
2010-08-01
Drilled shafts are a type of deep foundation that is capable of supporting very large vertical and lateral loads. Drilled shafts are constructed by drilling a hole from the ground surface to the target depth or formation and filling the hole with rei...
DOT National Transportation Integrated Search
2010-11-01
The design method for using a single row, spaced drilled shafts, socketed into a firm rock strata, to stabilize : an unstable slope has been developed in this research. The soil arching due to the presence of spaced : drilled shafts in a slope was ob...
Twelve Months in Two Minutes Curiositys First Year on Mars
2013-08-01
A series of 548 images shows the view from a fisheye camera on the front of NASA's Mars rover Curiosity from the day the rover landed in August 2012 through July 2013. The camera is the rover's front Hazard-Avoidance Camera. The scenes include Curiosity collecting its first scoops of Martian soil and collecting a drilled sample form inside a Martian rock.
BOX-DEATH HOLLOW ROADLESS AREA, UTAH.
Weir, Gordon W.; Lane, Michael
1984-01-01
Geologic mapping, geochemical sampling, and a search for prospects and mineralized rock in the Box-Death Hollow Roadless Area, Utah indicate that there is little promise for the occurrence of mineral or energy resources in the area. Additional exploratory drilling by industry seems warranted if wells elsewhere in the region find oil or gas in strata as yet untested in the Box-Death Hollow Roadless Area.
Sample Acquisition and Caching architecture for the Mars Sample Return mission
NASA Astrophysics Data System (ADS)
Zacny, K.; Chu, P.; Cohen, J.; Paulsen, G.; Craft, J.; Szwarc, T.
This paper presents a Mars Sample Return (MSR) Sample Acquisition and Caching (SAC) study developed for the three rover platforms: MER, MER+, and MSL. The study took into account 26 SAC requirements provided by the NASA Mars Exploration Program Office. For this SAC architecture, the reduction of mission risk was chosen by us as having greater priority than mass or volume. For this reason, we selected a “ One Bit per Core” approach. The enabling technology for this architecture is Honeybee Robotics' “ eccentric tubes” core breakoff approach. The breakoff approach allows the drill bits to be relatively small in diameter and in turn lightweight. Hence, the bits could be returned to Earth with the cores inside them with only a modest increase to the total returned mass, but a significant decrease in complexity. Having dedicated bits allows a reduction in the number of core transfer steps and actuators. It also alleviates the bit life problem, eliminates cross contamination, and aids in hermetic sealing. An added advantage is faster drilling time, lower power, lower energy, and lower Weight on Bit (which reduces Arm preload requirements). Drill bits are based on the BigTooth bit concept, which allows re-use of the same bit multiple times, if necessary. The proposed SAC consists of a 1) Rotary-Percussive Core Drill, 2) Bit Storage Carousel, 3) Cache, 4) Robotic Arm, and 5) Rock Abrasion and Brushing Bit (RABBit), which is deployed using the Drill. The system also includes PreView bits (for viewing of cores prior to caching) and Powder bits for acquisition of regolith or cuttings. The SAC total system mass is less than 22 kg for MER and MER+ size rovers and less than 32 kg for the MSL-size rover.
NASA Astrophysics Data System (ADS)
Morishita, T.; Kelemen, P. B.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.; Takazawa, E.; Teagle, D. A. H.
2017-12-01
Hole BT1B (23°21.861' N, 58°10.957' E) was drilled by the Oman Drilling Project (OmDP) on the north side of Wadi Mansah in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole BT1B was cored from 6 to 23 March 2017, to a depth of 300.05 m. The outer surfaces of the cores were imaged and described onsite before being curated, boxed and shipped to the IODP drill ship Chikyu. Hole BT1B sampled carbonated peridotite (listvenite), 2 carbonate-veined serpentinite bands at 80-100 and 180-185 m depth, a few cm of ultracataclasite and 70 cm of fault gouge at 197 m depth, followed by 103 m metamorphic sole. Onboard Chikyu, BT1B underwent X-ray computed tomography (CT) and multi-sensor logging, imaging and spectroscopy, macroscopic and thin section observations, physical properties measurements, and XRF, XRD and ICP-MS analyses. 1st authors of abstracts reporting initial results are Beinlich (matrix characteristics), de Obeso (modeling mass transfer), Godard (XRF and ICP-MS whole rock data), Greenberger (infrared spectroscopy), Johnson (XRF core scanner), Kelemen (overall petrology), Manning (veins), and Michibayashi (X-ray CT). Listvenite is composed of carbonate + quartz + Fe-oxyhydroxides, + minor relict spinel ± chromian mica (fuchsite). The mineralogy suggests formation at < 150°C. The bulk rock density is similar to that of gabbro but the P-wave velocity is generally higher. Rock textures suggest viscous deformation, while additional brittle deformation is recorded by older veins and younger breccias and faults. The metamorphic sole consists of fine-grained to microcrystalline metasediments and metabasalts. Metasediments have qtz + plag and mica + amphibole layers, with minor epidote, and become less abundant and poorer in K downhole. Metabasalts are massive, epidote-rich with less qtz and mica. Actinolite and possible pumpellyite needles in quartz suggest low T/P. Sediment and basalt compositions resemble alkali basalt.
NASA Astrophysics Data System (ADS)
Bilenker, L.; Weis, D.; Scoates, J. S.
2017-12-01
We present stable Fe and radiogenic isotope and complementary trace element data for samples from Atlantis Massif. This oceanic core complex is located at 30°N where the Atlantis Transform Fault intersects the Mid-Atlantic Ridge (MAR) and is associated with the Lost City Hydrothermal Field (LCHF). It is a unique place to investigate the abiotic and biotic geochemical processes that play a role in the alteration of both crustal and mantle seafloor rocks. The samples analyzed represent a shallow (<15 m) survey of five drill sites (IODP Expedition 357) within Atlantis Massif, varying in distance from the LCHF and MAR. Analyses were performed on a sample set spanning a wide range in degree of alteration and lithology. Bulk measurements involved dissolving whole rock powders, whereas in situ analyses were performed on digested microdrilled samples or by laser ablation. Bulk rock Fe isotope values (n = 34) are correlated with loss-on-ignition (LOI) by sample lithology and location relative to LCHF. Using LOI as a proxy for degree of alteration, this observation indicates that the Fe isotope systematics of seafloor crustal and mantle rocks preserve indicators of fluid flow and source. The Hf and Nd isotope compositions for various lithologies form all analyzed sites are homogeneous, indicating minimal alteration of these isotopic systems. Bulk Sr values provide insight into elemental exchange between seawater and the surface of Atlantis Massif and bulk Pb isotopes allow for fingerprinting of the source of basalt breccias through comparison with published Pb isotope values of MAR basalts. The new results cluster around the Pb, Hf, Nd isotopic composition of mid-ocean ridge basalt from 30.68°N and do not match samples north or south of that location. In situ Fe isotope data within three altered samples reflect varying degrees of hydrothermal and seawater interaction, where the Fe isotope ratios within each sample are likely correlated with extent of exchange or redox. Laser trace element and Pb isotope data in progress will allow us to investigate this further. This study contributes to our understanding of element mobility and mass transfer during chemical reactions within the seafloor, provides insight into the source of the lithological units and fluid flow, and allows for quantification of alteration processes.
Geometry and material choices govern hard-rock drilling performance of PDC drag cutters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Jack LeRoy
2005-06-01
Sandia National Laboratories has partnered with industry on a multifaceted, baseline experimental study that supports the development of improved drag cutters for advanced drill bits. Different nonstandard cutter lots were produced and subjected to laboratory tests that evaluated the influence of selected design and processing parameters on cutter loads, wear, and durability pertinent to the penetration of hard rock with mechanical properties representative of formations encountered in geothermal or deep oil/gas drilling environments. The focus was on cutters incorporating ultrahard PDC (polycrystalline diamond compact) overlays (i.e., diamond tables) on tungsten-carbide substrates. Parameter variations included changes in cutter geometry, material composition,more » and processing conditions. Geometric variables were the diamond-table thickness, the cutting-edge profile, and the PDC/substrate interface configuration. Material and processing variables for the diamond table were, respectively, the diamond particle size and the sintering pressure applied during cutter fabrication. Complementary drop-impact, granite-log abrasion, linear cutting-force, and rotary-drilling tests examined the response of cutters from each lot. Substantial changes in behavior were observed from lot to lot, allowing the identification of features contributing major (factor of 10+) improvements in cutting performance for hard-rock applications. Recent field demonstrations highlight the advantages of employing enhanced cutter technology during challenging drilling operations.« less
Ellis, William L.; Swolfs, Henri S.
1983-01-01
Observations made during drilling and subsequent testing of the USW G-1 drill hole, Yucca Mountain, Nevada, provide qualitative insights into the in- situ geomechanical characteristics of the layered tuff units penetrated by the hole. Substantial drilling-fluid losses, and the occurrence of drilling-induced fracturing, are understandable in terms of the low, minimum horizontal stress magnitudes interpreted from six hydraulic-fracturing stress measurements conducted between hole depths of 640 and 1,300 meters. Although not confirmed directly by the hydraulic-fracturing data, other observations suggest that the minimum stress magnitudes in the more densely welded and brittle tuff layers may be even smaller than in the less welded and more ductile rocks. Stress-induced borehole ellipticity observed along most of the length of USW G-1 indicates that the horizontal stress components are not equal, and that the concentration of these stresses around the hole is sufficient to locally exceed the yield strength of the rock. The low, minimum horizontal stress magnitudes, perhaps variable with lithology, and the indications from borehole ellipticity of a high in-situ stress/strength ratio, indicate the need for further studies to characterize the structural and geomechanical properties of the rocks at depth in Yucca Mountain.
Characterization of rotary-percussion drilling as a seismic-while-drilling source
NASA Astrophysics Data System (ADS)
Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.
2018-04-01
This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.
Automated classification of Acid Rock Drainage potential from Corescan drill core imagery
NASA Astrophysics Data System (ADS)
Cracknell, M. J.; Jackson, L.; Parbhakar-Fox, A.; Savinova, K.
2017-12-01
Classification of the acid forming potential of waste rock is important for managing environmental hazards associated with mining operations. Current methods for the classification of acid rock drainage (ARD) potential usually involve labour intensive and subjective assessment of drill core and/or hand specimens. Manual methods are subject to operator bias, human error and the amount of material that can be assessed within a given time frame is limited. The automated classification of ARD potential documented here is based on the ARD Index developed by Parbhakar-Fox et al. (2011). This ARD Index involves the combination of five indicators: A - sulphide content; B - sulphide alteration; C - sulphide morphology; D - primary neutraliser content; and E - sulphide mineral association. Several components of the ARD Index require accurate identification of sulphide minerals. This is achieved by classifying Corescan Red-Green-Blue true colour images into the presence or absence of sulphide minerals using supervised classification. Subsequently, sulphide classification images are processed and combined with Corescan SWIR-based mineral classifications to obtain information on sulphide content, indices representing sulphide textures (disseminated versus massive and degree of veining), and spatially associated minerals. This information is combined to calculate ARD Index indicator values that feed into the classification of ARD potential. Automated ARD potential classifications of drill core samples associated with a porphyry Cu-Au deposit are compared to manually derived classifications and those obtained by standard static geochemical testing and X-ray diffractometry analyses. Results indicate a high degree of similarity between automated and manual ARD potential classifications. Major differences between approaches are observed in sulphide and neutraliser mineral percentages, likely due to the subjective nature of manual estimates of mineral content. The automated approach presented here for the classification of ARD potential offers rapid, repeatable and accurate outcomes comparable to manually derived classifications. Methods for automated ARD classifications from digital drill core data represent a step-change for geoenvironmental management practices in the mining industry.
The Isotope Geochemistry of Abyssal Peridotites and Related Rocks
1993-06-01
object of several cruises, including a combined geophysics and petrology cruise (R/V Robert Conrad 27-09: Dick, et al., 1991) and an ocean drilling ...al. (1991) Proceed- ings of the Ocean Drilling Program, Scientific Results Vol. 118. Snow, J., Hart, S.R. and Dick, H.J.B. (1991) "Os isotopic...the geology, petrology , and geochemistry of mantle rocks, as well as their physical and acoustic properties. The first indications that the oceanic
Miller, W. Roger; Strausz, S.A.
1980-01-01
A map showing freshwater heads for the Ordovician Red River Formation, Bighorn Dolomite, and equivalent rocks has been prepared as part of a study to determine the water-resources potential of the Mississippian Madison Limestone and associated rocks in the Northern Great Plains of Montana, North and South Dakota, and Wyoming. Most of the data used to prepare the map are from drill-stem tests of exploration and development wells drilled by the petroleum industry from 1964 to 1978. A short explanation describes the seven categories of reliability used to evaluate the drill-stem-test data and identifies several factors that might explain the apparent anomalous highs and lows on the potentiometric surface. The map is at a scale of 1:1,000 ,000 and the potentiometric contour interval is 100 feet. (USGS)
Deep drilling in the Chesapeake Bay impact structure - An overview
Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.
2009-01-01
The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a granite megablock (275 m); and sediment blocks and boulders, polymict, sediment-clast-dominated sedimentary breccias, and a thin upper section of stratified sediments (652 m). The cored postimpact sediments provide insight into the effects of a large continental-margin impact on subsequent coastal-plain sedimentation. This volume contains the first results of multidisciplinary studies of the Eyreville cores and related topics. The volume is divided into these sections: geologic column; borehole geophysical studies; regional geophysical studies; crystalline rocks, impactites, and impact models; sedimentary breccias; postimpact sediments; hydrologic and geothermal studies; and microbiologic studies. ?? 2009 The Geological Society of America.
Non-Newtonian fluid flow in 2D fracture networks
NASA Astrophysics Data System (ADS)
Zou, L.; Håkansson, U.; Cvetkovic, V.
2017-12-01
Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.
30 CFR 250.1601 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... means a well drilled through cap rock into the core at a salt dome for the purpose of producing brine. Cap rock means the rock formation, a body of limestone, anhydride, and/or gypsum, overlying a salt dome. Sulphur deposit means a formation of rock that contains elemental sulphur. Sulphur production...
30 CFR 250.1601 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... means a well drilled through cap rock into the core at a salt dome for the purpose of producing brine. Cap rock means the rock formation, a body of limestone, anhydride, and/or gypsum, overlying a salt dome. Sulphur deposit means a formation of rock that contains elemental sulphur. Sulphur production...
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Marone, C.; Saffer, D. M.
2010-12-01
The debate concerning the apparent low strength of tectonic faults, including the San Andreas Fault (SAF), continues to focus on: 1) low intrinsic friction resulting from mineralogy and/or fabric, and 2) decreased effective normal stress due to elevated pore pressure. Here we inform this debate with laboratory measurements of the frictional behavior and permeability of cuttings and core returned from the SAF at a vertical depth of 2.7 km. We conducted experiments on cuttings and core recovered during SAFOD Phase III drilling. All samples in this study are adjacent to and within the active fault zone penetrated at 10814.5 ft (3296m) measured depth in the SAFOD borehole. We sheared gouge samples composed of drilling cuttings in a double-direct shear configuration subject to true-triaxial loading under constant effective normal stress, confining pressure, and pore pressure. Intact wafers of material were sheared in a single-direct shear configuration under similar conditions of effective stress, confining pressure, and pore pressure. We also report on permeability measurements on intact wafers of wall rock and fault gouge prior to shearing. Initial results from experiments on cuttings show: 1) a weak fault (µ=~0.21) compared to the surrounding wall rock (µ=~0.35), 2) velocity strengthening behavior, (a-b > 0), consistent with aseismic slip, and 3) near zero healing rates in material from the active fault. XRD analysis on cuttings indicates the main mineralogical difference between fault rock and wall rock, is the presence of significant amounts of smectite within the fault rock. Taken together, the measured frictional behavior and clay mineral content suggest that the clay composition exhibits a basic control on fault behavior. Our results document the first direct evidence of weak material from an active fault at seismogenic depths. In addition, our results could explain why the SAF in central California fails aseismically and hosts only small earthquakes.
Johnson, Kathleen M.; McIntyre, David H.
1984-01-01
The Custer graben is a 13 by 32 km northeast-trending volcano-tectonic graben in the Challis volcanic field of central Idaho. Andesites, rhyolites, and associated pyroclastic rocks host vein and disseminated gold-silver deposits that are localized along discrete northeast- and northwest-trending fracture zones. Ore minerals in vein deposits are electrum, native gold and silver, chalcopyrite, and various sulfosalts in a gangue of pyrite and fine-grained quartz. At the Sunbeam Mine, near the center of the graben, vein and disseminated gold-silver mineralization occurred in hydrothermally altered rhyolite and pyroclastic rocks. The host rock has been pervasively silicified, and the feldspars altered to clay minerals. Analyses of surface and drill-core samples show that altered rocks are variably enriched in gold, silver, molybdenum, arsenic, zirconium, and selenium. Intense silicification is shown by SiO//2 values at high as 93%.
NASA Astrophysics Data System (ADS)
Paulsen, T. S.; Demosthenous, C.; Wilson, T. J.; Millan, C.
2009-12-01
The ANDRILL MIS (McMurdo Ice Shelf) Drilling Project obtained over 1200 meters of Neogene sedimentary and volcanic rocks in 2006/2007. Systematic fracture logging of the AND-1B core identified 1,475 natural fractures, i.e. pre-existing fractures in the rock intersected by coring. The most abundant natural fractures are normal faults and calcite veins; reverse faults, brecciated zones, and sedimentary intrusions are also present. In order to better understand Neogene deformation patterns within the southern Terror Rift, we have been conducting strain analyses on mechanically twinned calcite within healed fractures in the drill core. Twinning strains using all of the data from each sample studied to date range from 2% to 10%. The cleaned data (20% of the largest magnitude deviations removed) typically show ≤30% negative expected values, consistent with a single deformation episode or multiple ~coaxial deformation episodes. The majority of the samples record horizontal extension, similar to strain patterns expected in a normal fault regime and/or vertical sedimentary compaction in a continental rift system. The morphology, width, and intensity of twins in the samples suggest that twinning typically occurred at temperatures <170° C. Twinning intensities suggest differential stress magnitudes that caused the twinning ranged from 216 to 295 MPa.
Vasile, M; Bruggeman, M; Van Meensel, S; Bos, S; Laenen, B
2017-08-01
Deep geothermal energy is a local energy resource that is based on the heat generated by the Earth. As the heat is continuously regenerated, geothermal exploitation can be considered as a renewable and, depending on the techniques used, a sustainable energy production system. In September 2015, the Flemish Institute for Technological Research (VITO) started drilling an exploration well targeting a hot water reservoir at a depth of about 3km on the Balmatt site near Mol. Geothermal hot water contains naturally occurring gases, chemicals and radionuclides at variable concentrations. The actual concentrations and potentially related hazards strongly depend on local geological and hydrogeological conditions. This paper summarizes the radiological characterization of several rock samples obtained from different depths during the drilling, the formation water, the salt and the sediment fraction. The results of our analyses show low values for the activity concentration for uranium and thorium in the formation water and in the precipitate/sediment fraction. Also, the activity concentrations of 210 Pb and 210 Po are low in these samples and the activity concentration of 226 Ra is dominant. From the analysis of the rock samples, it was found that the layer above the reservoir has a higher uranium and thorium concentration than the layer of the reservoir, which on the other hand contains more radium than the layer above it. Copyright © 2016 Elsevier Ltd. All rights reserved.
6. Photograph of a photograph in possession of Rock Island ...
6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. FIRST FLOOR, EAST WING, SHOWING BELT-DRIVEN EQUIPMENT (LATHES, DRILLS, SCREW MACHINES) USED IN MACHINING COMPONENTS FOR ARTILLERY GUN CARRIAGES. DATED MAY 12, 1904. - Rock Island Arsenal, Building No. 108, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL
Publications - SR 59 | Alaska Division of Geological & Geophysical Surveys
Peninsula; Alaska, State of; Antimony; Arsenic; Arsenopyrite; Barite; Base Metals; Big Delta; Bismuth Materials; Copper; Core Drilling; Council; Crushed Gravel; Crushed Rock; Delta Junction; Diamond Drilling
NASA Astrophysics Data System (ADS)
Shahin, Mohamed
2014-05-01
The oil and gas industry has attempted for many years to find new ways to analyze and determine the type of rocks drilled on a real time basis. Mud analysis logging is a direct method of detecting oil and gas in formations drilled, it depends on the "feel" of the bit to decide formation type, as well as, geochemical analysis which was introduced 30 years ago, starting with a pulsed-neutron generator (PNG) based wireline tool upon which LWD technology was based. In this paper, we are studying the feasibility of introducing a new technology for real-time geochemical analysis. Laser-induced breakdown spectroscopy (LIBS) is a type of atomic emission spectroscopy, It is a cutting-edge technology that is used for many applications such as determination of alloy composition, origin of manufacture (by monitoring trace components), and molecular analysis (unknown identification). LIBS can analyze any material regardless of its state (solid, liquid or gas), based upon that fact, we can analyze rocks, formation fluids' types and contacts between them. In cooperation with the National Institute of Laser Enhanced Science, Cairo University in Egypt, we've done tests on sandstone, limestone and coal samples acquired from different places using Nd: YAG Laser with in addition to other components that are explained in details through this paper to understand the ability of Laser to analyze rock samples and provide their elemental composition using LIBS technique. We've got promising results from the sample analysis via LIBS and discussed the possibility of deploying this technology in oilfields suggesting many applications and giving a base for achieving a quantitative elemental analysis method in view of its shortcomings and solutions.
Mineral and Lithology Mapping of Drill Core Pulps Using Visible and Infrared Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, G. R., E-mail: G.Taylor@unsw.edu.au
2000-12-15
A novel approach for using field spectrometry for determining both the mineralogy and the lithology of drill core pulps (powders) is developed and evaluated. The methodology is developed using material from a single drillhole through a mineralized sequence of rocks from central New South Wales. Mineral library spectra are used in linear unmixing routines to determine the mineral abundances in drill core pulps that represent between 1 m and 3 m of core. Comparison with X-Ray Diffraction (XRD) analyses shows that for most major constituents, spectrometry provides an estimate of quantitative mineralogy that is as reliable as that provided bymore » XRD. Confusion between the absorption features of calcite and those of chlorite causes the calcite contents determined by spectrometry to be unreliable. Convex geometry is used to recognize the spectra of those samples that are extreme and are representative of unique lithologies. Linear unmixing is used to determine the abundance of these lithologies in each drillhole sample and these abundances are used to interpret the geology of the drillhole. The interpreted geology agrees well with conventional drillhole logs of the visible geology and photographs of the split core. The methods developed provide a quick and cost-effective way of determining the lithology and alteration mineralogy of drill core pulps.« less
NASA Astrophysics Data System (ADS)
Godard, M.; Bennett, E.; Carter, E.; Kourim, F.; Lafay, R.; Noël, J.; Kelemen, P. B.; Michibayashi, K.; Harris, M.
2017-12-01
The transition from the base of the Oman ophiolite to the underlying metamorphic sole was drilled at Hole BT1B (Sumail Massif) during Phase 1 of Oman Drilling Project (Winter 2016-2017). 74 samples were collected from the 300m of recovered cores for whole rock geochemical and XRD analyses. 55 listvenites, ophicarbonates and serpentinites, and 19 schists and greenstones were analyzed for major and minor elements (XRF) and for CO2 and S concentrations (CHNS) aboard DV Chikyu (ChikyuOman, Summer 2017). Analyses for trace elements (ICP-MS) at the University of Montpellier are in progress. The composition of listvenites, ophicalcites and serpentinites recovered at Hole BT1B record extensive interactions between CO2-rich fluids and the serpentinized peridotites. These reactions involved addition of SiO2 and formation of carbonates at the expense of the serpentinized peridotite protolith. All samples recovered from the mantle section are enriched in fluid mobile and incompatible trace elements compared to the mean composition of the Oman mantle. These enrichments are up to 103 times the Oman mantle for Rb and Ba. They mimic the pattern of the samples from the metamorphic sole. This suggests that the composition of the listvenites in these elements is controlled by that of contaminating fluids that may have originated in the same lithologies as those drilled at the base of Hole BT1B. Listvenites, ophicalcites and serpentinites also show notable downhole chemical variations, with listvenites showing marked variations in Al2O3 and TiO2. Occurrence of lherzolites and cpx-harzburgites has been reported at the base of the Oman dominantly harzburgitic mantle section. The observed variations in the listvenites (Al2O3 and TiO2) could be related to the composition of their protolith, the deepest having more fertile compositions. Alternatively, the observed downhole changes in the composition of listvenites may relate to the progressive equilibration of the reacting ultramafic-rocks and/or listvenite with the fluids originating in the subducting metamorphic sole; these variations could be related to heterogeneous reaction kinetics (temperature, reactive surfaces, chemical gradients) and/or to transport (e.g. local variations in permeability) within the listvenite units.
Improving the groundwater-well siting approach in consolidated rock in Nampula Province, Mozambique
NASA Astrophysics Data System (ADS)
Chirindja, F. J.; Dahlin, T.; Juizo, D.
2017-08-01
Vertical electrical sounding was used for assessing the suitability of the drill sites in crystalline areas within a water supply project in Nampula Province in Mozambique. Many boreholes have insufficient yield (<600 L/h). Electrical resistivity tomography (ERT) was carried out over seven boreholes with sufficient yield, and five boreholes with insufficient yield, in Rapale District, in an attempt to understand the reason for the failed boreholes. Two significant hydrogeological units were identified: the altered zone (19-220 ohm-m) with disintegrated rock fragments characterized by intermediate porosity and permeability, and the fractured zone (>420 ohm-m) with low porosity and high permeability. In addition to this, there is unfractured nonpermeable intact rock with resistivity of thousands of ohm-m. The unsuccessful boreholes were drilled over a highly resistive zone corresponding to fresh crystalline rock and a narrow altered layer with lower resistivity. Successful boreholes were drilled in places where the upper layers with lower resistivity correspond to a well-developed altered layer or a well-fractured basement. There are a few exceptions with boreholes drilled in seemingly favourable locations but they were nevertheless unsuccessful boreholes for unknown reasons. Furthermore, there were boreholes drilled into very resistive zones that produced successful water wells, which may be due to narrow permeable fracture zones that are not resolved by ERT. Community involvement is proposed, in choosing between alternative borehole locations based on information acquired with a scientifically based approach, including conceptual geological models and ERT. This approach could probably lower the borehole failure rate.
The Case for Scientific Drilling of Precambrian Sedimentary Sequences: A Mission to Early Earth
NASA Astrophysics Data System (ADS)
Buick, R.; Anbar, A. D.; Mojzsis, S. J.; Kaufman, A. J.; Kieft, T. L.; Lyons, T. W.; Humayun, M.
2001-12-01
Research into the emergence and early evolution of life, particularly in relation to environmental conditions, has intensified in the past decade. The field is energized by controversy (e.g., over the history of atmospheric composition, ocean redox, climate and biochemical pathways) and by the application of new biogeochemical tools (e.g., ion probe in situ stable isotope studies; improved geochronological techniques; non-mass-dependent stable isotope effects; stable metal isotope systematics; advances in organic geochemistry/biomarkers). The past decade has also seen improved understanding of old tools (notably, S isotopes), and new perspectives on evolution and on microbial interaction with the environment borne of the genomics revolution. Recent papers demonstrate the potential for innovative research when such developments are integrated, as well as the limitations of present knowledge. The chief limiting factor is not lack of scientists or advanced techniques, but availability of fresh samples from suitable successions. Where classic Precambrian stratigraphy exists, suitable rocks are rarely exposed due to interaction with the oxidizing atmosphere, occurrence of flat-lying strata or sedimentary cover. Available drill-cores are concentrated around ore bodies, and hence are inherently altered or not environmentally representative. Stratigraphic drilling using clean diamond drilling techniques, targeted in accord with scientific priorities, could provide samples of unmatched quality across the most interesting stratigraphic intervals. Diamond drilling is a proven, inexpensive technology for accessing subsurface material. The time is ripe to use this technology to secure the materials needed for further advances. The Mission to Early Earth (MtEE) Focus Group of the NASA Astrobiology Institute is developing a case for the acquisition, curation and distribution of suitable samples, with a special focus on diamond drilling. A communal activity is envisioned, modeled after the Ocean Drilling Program but focussing on the Precambrian record. This poster will present information on MtEE, and plans for a pilot project developed as part of the Summer '01 MtEE excursion to W. Australia.
NASA Astrophysics Data System (ADS)
Louis, Laurent; David, Christian; Špaček, Petr; Wong, Teng-Fong; Fortin, Jérôme; Song, Sheng Rong
2012-01-01
The study of seismic anisotropy has become a powerful tool to decipher rock physics attributes in reservoirs or in complex tectonic settings. We compare direct 3-D measurements of P-wave velocity in 132 different directions on spherical rock samples to the prediction of the approximate model proposed by Louis et al. based on a tensorial approach. The data set includes measurements on dry spheres under confining pressure ranging from 5 to 200 MPa for three sandstones retrieved at a depth of 850, 1365 and 1394 metres in TCDP hole A (Taiwan Chelungpu Fault Drilling Project). As long as the P-wave velocity anisotropy is weak, we show that the predictions of the approximate model are in good agreement with the measurements. As the tensorial method is designed to work with cylindrical samples cored in three orthogonal directions, a significant gain both in the number of measurements involved and in sample preparation is achieved compared to measurements on spheres. We analysed the pressure dependence of the velocity field and show that as the confining pressure is raised the velocity increases, the anisotropy decreases but remains significant even at high pressure, and the shape of the ellipsoid representing the velocity (or elastic) fabric evolves from elongated to planar. These observations can be accounted for by considering the existence of both isotropic and anisotropic crack distributions and their evolution with applied pressure.
30 CFR 72.630 - Drill dust control at underground areas of underground mines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill dust control at underground areas of underground mines. 72.630 Section 72.630 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall...
30 CFR 33.35 - Methods of drilling; dust-collector unit.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...
30 CFR 33.35 - Methods of drilling; dust-collector unit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...
30 CFR 33.35 - Methods of drilling; dust-collector unit.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...
30 CFR 33.35 - Methods of drilling; dust-collector unit.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...
30 CFR 33.35 - Methods of drilling; dust-collector unit.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...
NASA Astrophysics Data System (ADS)
Zeigler, K. E.; Petronis, M. S.; Smith, J. J.; Ludvigson, G. A.; Doveton, J.
2012-12-01
A better understanding of the Ogallala Formation is critical in terms of refining groundwater flow models and management policies for communities relying on aquifers in heterolithic sequences around the globe. The High Plains aquifer remains under increasing stress with the growth of both urban and agricultural areas and therefore, developing the best groundwater management policies will depend on the most accurate characterization of the aquifer, the aquifer materials and their stratigraphic and geochronologic framework. Although mammalian faunal assemblages and volcanic ash bed tephrochronology provide a basic geochronologic framework for the Ogallala Formation, better precision in terms of correlation is needed in order to understand formative processes and depositional histories for the primary water-bearing units in the High Plains aquifer and confining strata. The High Plains-Ogallala Drilling Program (HPODP) was developed to advance understanding of sedimentary facies, stratigraphic framework, and chronostratigraphy of the Ogallala Formation and overlying units that comprise the central High Plains aquifer. The drilling program began in the early summer of 2011 in Haskell Co., western Kansas. By early fall 2011; the drill crew was at 92 m with about 32 m to go until they expect to hit bedrock. The final 32 meters of core was extracted during the summer 2012. Here we report the preliminary magnetostratigraphic and rock magnetic data from the first section of core. We scanned the entire 92 meters of core using an ASC Core Analysis System with a Bartington Instruments MS2C magnetic susceptibility coil allowing for bulk susceptibility measurements to be obtained along the length of the core. In addition, we collected 40 sub samples for paleomagnetic and rock magnetic. Bulk susceptibility data reveal depth dependent changes in rock magnetic properties that we interpret to reflect either climatic driven variations impacting the depositional system or a change in provenance of the sediments. Bulk susceptibility of the sediments decreases by an order of magnitude from the surface to the base of the measured core suggesting a change in detrital magnetic influx. Curie point estimates indicate that the dominant magnetic mineral in all samples is cubic, titanomagnetite phase of variable composition; whether a systemic change with depth exist is as of yet to be revealed. Preliminary paleomagnetic data are encouraging with many sub samples yielding a single component magnetization that decays near univectorally to the origin during both alternating field and thermal demagnetization.
Position of Curiosity for Drilling at Cumberland
2013-06-05
This image produced from software used for planning drives of NASA Mars rover Curiosity depicts the location and size of the rover when it was driven into position for drilling into rock target Cumberland.
Towards a distributed infrastructure for research drilling in Europe
NASA Astrophysics Data System (ADS)
Mevel, C.; Gatliff, R.; Ludden, J.; Camoin, G.; Horsfield, B.; Kopf, A.
2012-04-01
The EC-funded project "Deep Sea and Sub-Seafloor Frontier" (DS3F) aims at developing seafloor and sub seafloor sampling strategies for enhanced understanding of deep-sea and sub seafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. DS3F has identified access to sub seafloor sampling and instrumentation as a key element of this approach. There is a strong expertise in Europe concerning direct access to the sub seafloor. Within the international program IODP (Integrated Ocean Drilling Program), ECORD (European Consortium for Ocean Research Drilling) has successfully developed the concept of mission specific platforms (MSPs), contracted on a project basis to drill in ice covered and shallow water areas. The ECORD Science Operator, lead by the British Geological Survey (BGS) has build a internationally recognized expertise in scientific ocean drilling, from coring in challenging environment, through down hole measurements and laboratory analysis to core curation and data management. MARUM, at the Bremen University in Germany, is one of the three IODP core repositories. Europe is also at the forefront of scientific seabed drills, with the MeBo developed by MARUM as well as the BGS seabed rocks drills. Europe also plays a important role in continental scientific drilling and the European component of ICDP (International Continental Scientific Drilling Program) is strengthening, with the recent addition of France and foreseen addition of UK. Oceanic and continental drilling have very similar scientific objectives. Moreover, they share not only common technologies, but also common data handling systems. To develop an integrated approach to technology development and usage, a move towards a a distributed infrastructure for research drilling in Europe has been initiated by these different groups. Built on existing research & operational groups across Europe, it will facilitate the sharing of technological and scientific expertise for the benefit of the science community. It will link with other relevant infrastructure initiatives such as EMSO (European Marine Seafloor Observatories). It will raise the profile of scientific drilling in Europe and hopefully lead to better funding opportunities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.
1981-02-01
This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre,more » and drill site geologic maps and cross-sections from most of the holes.« less
Rock Dusting Leaves 'Mickey Mouse' Mark
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken by the navigation camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Humphrey' and the circular areas on the rock that were wiped off by the rover. The rover used a brush on its rock abrasion tool to clean these spots before examining them with its miniature thermal emission spectrometer. Later, the rover drilled into the rock with its rock abrasion tool, exposing fresh rock underneath.
NASA Astrophysics Data System (ADS)
Huffman, K. A.; Saffer, D. M.; Dugan, B.
2016-07-01
We present a method to simultaneously constrain both far-field horizontal stress magnitudes ( S hmin and S Hmax) and in situ rock unconfined compressive strength (UCS), using geophysical logging data from two boreholes located 70 m apart that access the uppermost accretionary prism of the Nankai subduction zone . The boreholes sample the same sediments and are affected by the same tectonic stress field, but were drilled with different annular pressures, thus providing a unique opportunity to refine estimates of both in situ stress magnitudes and rock strength. We develop a forward model to predict the angular width of compressional wellbore failures (borehole breakouts), and identify combinations of S Hmax and UCS that best match breakout widths observed in resistivity images from the two boreholes. The method requires knowledge of S hmin, which is defined by leak-off tests conducted during drilling. Our results define a normal to strike-slip stress regime from 900 to 1386 m below seafloor, consistent with observations from seismic and core data. Our analysis also suggests that in situ values of UCS are generally slightly lower that commonly assumed on the basis of published empirical relations between UCS and P-wave velocity.
Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores
Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.
1990-01-01
Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition during transient boiling or rock-water exchange (fracturing) events. ?? 1990.
NASA Curiosity rover hits organic pay dirt on Mars
NASA Astrophysics Data System (ADS)
Voosen, Paul
2018-06-01
Since NASA's Curiosity rover landed on Mars in 2012, it has sifted samples of soil and ground-up rock for signs of organic molecules—the complex carbon chains that on Earth form the building blocks of life. Past detections have been so faint that they could be just contamination. Now, samples taken from two different drill sites on an ancient lakebed have yielded complex organic macromolecules that look strikingly similar to kerogen, the goopy fossilized building blocks of oil and gas on Earth. At a few dozen parts per million, the detected levels are 100 times higher than previous finds, but scientists still cannot say whether they have origins in biology or geology. The discovery positions scientists to begin searching for direct evidence of past life on Mars and bolsters the case for returning rock samples from the planet, an effort that begins with the Mars 2020 rover.
Cosca, Michael; Stunitz, Holger; Bourgiex, Anne-Lise; Lee, John P.
2011-01-01
The effects of deformation on radiogenic argon (40Ar*) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ~15 mm in length and 6.25 mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10 kb and a temperature of 600 degrees C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas.
Burton, W.C.; Ratcliffe, N.M.
1985-01-01
In the summer of 1983, two holes were drilled through the border fault of the Newark basin near Oldwick, New Jersey, in the Gladstone 7.5minute quadrangle. Figure 1A shows the location of the drill site in relation to regional geology and the major faults. The fault drilled in this study connects to the south with the Flemington fault, which trends southwestward across the Newark basin, as shown. To the north, the fault can be traced along the valley that extends towards Mendham, N. J., beyond the limits of exposed Mesozoic rocks, to connect with the Ramapo fault near Morristown N. J. (fig. 1A; Ratcliffe, 1980). For this reason, we use the name "Flemington" for the border fault in the region of the drill site. A detailed map (fig. 1B) shows the local geology along the border fault from Pottersville, N. J. southward to the axis of the Oldwick syncline.
Exploration geothermal gradient drilling, Platanares, Honduras, Central America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.
1988-01-01
This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coringmore » operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.« less
NASA Astrophysics Data System (ADS)
Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry
2015-04-01
Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.
Chaudhary, Dhanjee Kumar; Bhattacherjee, Ashis; Patra, Aditya Kumar; Chau, Nearkasen
2015-12-01
This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration (m/s(2))], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient β = -0.052, standard error SE = 0.023), manufacturer (β = 1.093, SE = 0.227), rock hardness (β = 0.045, SE = 0.018), uniaxial compressive strength (β = 0.027, SE = 0.009), and density (β = -1.135, SE = 0.235). Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system.
Chaudhary, Dhanjee Kumar; Bhattacherjee, Ashis; Patra, Aditya Kumar; Chau, Nearkasen
2015-01-01
Background This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. Methods The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration (m/s2)], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. Results More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient β = −0.052, standard error SE = 0.023), manufacturer (β = 1.093, SE = 0.227), rock hardness (β = 0.045, SE = 0.018), uniaxial compressive strength (β = 0.027, SE = 0.009), and density (β = –1.135, SE = 0.235). Conclusion Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system. PMID:26929838
Fire effects on rock images and similar cultural resources [Chapter 5
Roger E. Kelly; Daniel F. McCarthy
2012-01-01
Throughout human global history, people have purposely altered natural rock surfaces by drilling, drawing, painting, incising, pecking, abrading and chiseling images into stone. Some rock types that present suitable media surfaces for these activities are fine-grained sandstones and granites, basalts, volcanic tuff, dolomites, and limestones. Commonly called rock...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrave, J.A.; Goff, F.; Shevenell, L.
1989-02-01
This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.
NASA Astrophysics Data System (ADS)
Eichelberger, J. C.; Carrigan, C. R.; Sun, Y.; Lavallée, Y.
2017-12-01
We report on a preliminary evaluation, from basic principles of heat and mass transfer, on the unexpectedly abrupt transition from cuttings of solid rock to fragments of crystal poor glass during drilling into magma bodies. Our analysis is based on conditions determined and inferred for the 2009 IDDP-1 well in Krafla Caldera, which entered apparently liquidus rhyolite magma at about 900oC at a depth of 2104 m. Simple conduction would predict some 30 m of crystallization and partial crystallization since the latest time the magma could have been intruded, approximately 30 years prior to discovery by drilling. Option 1: The expected crystallization of magma has occurred but interstitial melt remains. The pressure difference between lithostatic load of about 50 MPa on the mush and 20 MPa hydrostatic pressure in the well causes pore melt to flow from the permeable mush into the borehole, where it becomes the source of the quenched melt chips. To be viable, this mechanism must work over the time frame of a day. Option 2: The expected crystallization is occurring, but high Rayleigh number thermal convection in the magma chamber continuously displaces crystallizing roof magma by liquidus magma from the interior of the body. To be viable, this mechanism must result in overturning magma in the chamber on a time scale that is much shorter than that of crystallization. Option 3: Flow-induced crystal migration away from zones of high shear created during drilling into magma may preferentially produce low-crystal-content melt at the boundary of the borehole, which is then sampled.
28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS ...
28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS STAND FOR DETERMINING CORE'S FIELD ORIENTATION; INSECTICIDE DISPENSER MODIFIED TO LUBRICATE CORE DRILLING PROCESS. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA
Post-impact alteration of the Manson impact structure
NASA Technical Reports Server (NTRS)
Crossey, L. J.; Mccarville, P.
1993-01-01
Core materials from the Manson impact site (Manson, Iowa) are examined in order to evaluate post-impact alteration processes. Diagenetic interpretation of post-impact events is based on petrologic, mineralogic, and geochemical investigation of core materials including the following: target strata, disturbed and disrupted strata, ejecta, breccias, microbreccias, and impact melt. The diagenetic study utilizes research cores obtained by the continental scientific drilling project (CSDP) at the Manson structure, as well as core and cuttings of related materials. Samples include impactites (breccias, microbreccias, and melt material), crater fill material (sedimentary clast breccias), disturbed and disrupted target rocks, and reference target material (Amoco Eisheid No. 1 materials). The study of multiple cores will permit development of a regional picture of post-impact thermal history. The specific objectives are as follows: (1) provide a detailed description of authigenic and alteration mineralogy from diverse lithologies encountered in research drill cores at the Manson impact structure, and (2) identify and relate significant post-impact mineral alteration to post-impact thermal regime (extent and duration). Results will provide mineralogical and geochemical constraints on models for post-impact processes including the following: infilling of the crater depression; cooling and hydrothermal alteration of melt rocks; and subsequent long-term, low-temperature alteration of target rocks, breccias, and melt rocks. Preliminary petrologic and x-ray diffraction examination of fracture linings and void fillings from research core M1 indicate the presence of quartz, chlorite, mixed-layer clays, gypsum/anhydrite, calcite, and minor pyrite.
NASA Astrophysics Data System (ADS)
Yamazaki, S.; Okazaki, K.; Niwa, H.; Arai, T.; Murayama, H.; Kurahashi, T.; Ito, Y.
2017-12-01
Time-dependent tunnel deformation is one of remaining geological problems for mountain tunneling. As a case study of time-dependent tunnel deformation, we investigated petrographical, mineral and chemical compositions of boring core samples and seismic exploration along a tunnel that constructed into Neogene volcanic rock sequence of andesite to dacite pyroclastic rocks and massive lavas with mafic enclaves. The tunnel has two zones of floor heaving that deformed time-dependently about 2 month after the tunnel excavation. The core samples around the deformed zones are characterized secondary mineral assemblages of smectite, cristobalite, tridymite, sulfides (pyrite and marcasite) and partially or completely reacted carbonates (calcite and siderite), which were formed by hydrothermal alteration under neutral to acidic condition below about 100 °C. The core samples also showed localized deterioration, such as crack formation and expansion, which occurred from few days to months after the drilling. The deterioration could be explained as a result of the cyclic physical and chemical weathering process with the oxidation of sulfide minerals, dissolution of carbonate mineral cementation and volumetric expantion of smectite. This weathering process is considered as a key factor for time-dependent tunnel deformation in the hydrothermally altered volcanic rocks. The zones of time-dependent deformation along a tunnel route can be predicted by the variations of whole-rock chemical compositions such as Na, Ca, Sr, Ba and S.
Oil-shale data, cores, and samples collected by the U.S. geological survey through 1989
Dyni, John R.; Gay, Frances; Michalski, Thomas C.; ,
1990-01-01
The U.S. Geological Survey has acquired a large collection of geotechnical data, drill cores, and crushed samples of oil shale from the Eocene Green River Formation in Colorado, Wyoming, and Utah. The data include about 250,000 shale-oil analyses from about 600 core holes. Most of the data is from Colorado where the thickest and highest-grade oil shales of the Green River Formation are found in the Piceance Creek basin. Other data on file but not yet in the computer database include hundreds of lithologic core descriptions, geophysical well logs, and mineralogical and geochemical analyses. The shale-oil analyses are being prepared for release on floppy disks for use on microcomputers. About 173,000 lineal feet of drill core of oil shale and associated rocks, as well as 100,000 crushed samples of oil shale, are stored at the Core Research Center, U.S. Geological Survey, Lakewood, Colo. These materials are available to the public for research.
NASA Astrophysics Data System (ADS)
Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.
2017-12-01
Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China Geological Survey Projects (NO. 12120113017600).
Geochemical monitoring of drilling fluids; A powerful tool to forecast and detect formation waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuataz, F.D.; Brach, M.; Criaud, A.
1990-06-01
This paper describes a method based on the difference between the chemical compositions of formation and drilling fluids for analyzing drilling mud to forecast fluid-producing zones. The method was successfully applied in three boreholes in crystalline rocks in France. Subsequent geophysical logs and hydraulic tests confirmed the occurrence of flowing fractures.
Contrasted glass-whole rock compositions and phenocryst re-distribution, IPOD Sites 417 and 418
NASA Astrophysics Data System (ADS)
Staudigel, H.; Bryan, W. B.
1982-01-01
Major element composition ranges of closely associated basalt glass-whole rock pairs from individual small cooling units approach the total known range of basalt glass and whole rock compositions at IPOD sites 417 and 418. The whole rock samples fall into two groups: one is depleted in MgO and distinctly enriched in plagioclase but has lost some olivine and/or pyroxene relative to its corresponding glass; and the other is enriched in MgO and in phenocrysts of olivine and pyroxene as well as plagioclase compared to its corresponding glass. By analogy with observed phenocryst distributions in lava pillows, tubes, and dikes, and with some theoretical studies, we infer that bulk rock compositions are strongly affected by phenocryst redistribution due to gravity settling, flotation, and dynamic sorting after eruption, although specific models are not well constrained by the one-dimensional geometry of drill core. Compositional trends or groupings in whole rock data resulting from such late-stage processes should not be confused with more fundamental compositional effects produced in deep chambers or during partial melting.
NASA Astrophysics Data System (ADS)
Jiang, Guangzheng; Tang, Xiaoyin; Rao, Song; Gao, Peng; Zhang, Linyou; Zhao, Ping; Hu, Shengbiao
2016-03-01
Very few of heat flow data have come from the crystalline basement in the North China Craton but rather from boreholes in the sedimentary cover of oil-gas basins. Explorations for hot dry rock (HDR) geothermal resources and porphyry gold deposits in eastern China offer now valuable opportunities to study the terrestrial heat flow in the crystalline basement. In this study, we obtained continuous temperature logs from two boreholes (the LZ borehole with a depth of 3471 m and the DR borehole with a depth of 2179 m) located in the south-east margin of the North China Craton. The boreholes have experienced long shut-in times (442 days and 261 days for the LZ borehole and DR borehole, respectively); thus, it can be expected that the temperature conditions have re-equilibrated after drilling and drill-mud circulation. Rock thermal conductivity and radiogenic heat production were measured for 68 crystalline rock samples from these two boreholes. The measured heat-flow density was determined to be 71.8 ± 2.3 mW m-2 (for the LZ borehole) and 91.5 ± 1.2 mW m-2 (for the DR borehole). The heat flow for the LZ borehole is close to the value of 75 mW m-2 determined in the Chinese Continental Scientific Drilling main hole (CCSD MH), both being in the Sulu-Dabie orogenic belt and thus able to verify each other. The value for the DR borehole is higher than the above two values, which supports former high heat-flow values determined in the Bohai Bay Basin.
THE NEAR SURFACE GEOLOGY AT ENIWETOK AND BIKINI ATOLLS.
ROCK, *NUCLEAR EXPLOSIONS, BIKINI ATOLL, CRATERING, SURFACE PROPERTIES, PARTICLE SIZE, GEOPHYSICAL PROSPECTING, LIMESTONE, GEOLOGICAL SURVEYS, SAND, GRAVEL, CORAL REEFS, DRILLING, ROCK, MARSHALL ISLANDS , SANDSTONE, FRICTION, COMPRESSIVE PROPERTIES, SOILS.
Design of rock socketed drilled shafts
DOT National Transportation Integrated Search
1998-09-01
Three field load tests of drilled shafts socketed in Burlington limestone were conducted using the Osterberg load cell. The objective of these tests was to compare the shaft capacities obtained from the field load tests with capacities predicted usin...
Cumberland Target for Drilling by Curiosity Mars Rover
2013-05-09
Cumberland has been selected as the second target for drilling by NASA Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments.
Drilled Hole and ChemCam Marks at Cumberland
2013-06-05
The Chemistry and Camera ChemCam instrument on NASA Mars rover Curiosity was used to check the composition of gray tailings from the hole in rock target Cumberland that the rover drilled on May 19, 2013.
NASA Astrophysics Data System (ADS)
Thompson, Nick; Watters, Robert J.; Schiffman, Peter
2008-04-01
Hawaiian Island flank failures are recognized as the largest landslide events on Earth, reaching volumes of several thousand cubic kilometers and lengths of over 200 km and occurring on an average of once every 100 000 years. The 3.1 km deep Hawaii Scientific Drilling Project (HSDP) enabled an investigation of the rock mass strength variations on the island of Hawaii [Schiffman, P., Watters, R.J., Thompson, N., Walton, A.W., 2006. Hyaloclastites and the slope stability of Hawaiian volcanoes: insights from the Hawaiian Scientific Drilling Project's 3-km drill core. Journal of Volcanology and Geothermal Research, 151 (1-3): 217-228]. This study builds on that of Schiffman et al. [Schiffman, P., Watters, R.J., Thompson, N., Walton, A.W., 2006. Hyaloclastites and the slope stability of Hawaiian volcanoes: Insights from the Hawaiian Scientific Drilling Project's 3-km drill core. Journal of Volcanology and Geothermal Research, 151 (1-3): 217-228] by considering more in-depth rock mass classification and strength testing methods of the HSDP core. Geotechnical core logging techniques combined with laboratory strength testing methods show that rock strength differences exist within the edifice. Comparing the rock strength parameters obtained from the various volcano lithologies identified weak zones, suggesting the possible location of future slip surfaces for large flank failures. Relatively weak rock layers were recognized within poorly consolidated hyaloclastite zones, with increases in strength based on degree of alteration. Subaerial and submarine basalt flows are found to be significantly stronger. With the aid of digital elevation models, cross-sections have been developed of key flank areas on the island of Hawaii. Limit equilibrium slope stability analyses are performed on each cross-section using various failure criteria for the rock mass strength calculations. Based on the stability analyses the majority of the slopes analyzed are considered stable. In cases where instability (i.e. failure) is predicted, decreased rock mass quality (strength) of the altered and highly poorly consolidated lithologies is found to have a significant influence. These lithologies are present throughout the Hawaiian Islands, representing potential failure surfaces for large flank collapses. Failure criterion input parameters are considered in sensitivity analyses as are the influences of certain external stability factors such as sea level variation and seismic loading.
NASA Astrophysics Data System (ADS)
Fendrich, Kim; Rampe, Elizabeth; Vaniman, David; Bish, David; Blake, David; Treiman, Allan; Ming, Doug; Morris, Richard; Bristow, Tom; Cavanagh, Patrick; Downs, Robert; Morrison, Shaunna; Chipera, Steve; Achilles, Cherie; Farmer, Jack; Sarrazin, Philippe; Crisp, Joy; Morookian, John Michael; Yen, Albert; Gellert, Ralf
2015-04-01
The Mars Science Laboratory rover Curiosity employs a suite of instruments to investigate past or present habitability of Mars, as observed at Gale crater and particularly in the lower strata of the crater's central mound, informally named Mount Sharp. The X-ray diffractometer on board, CheMin, is used to assess the quantitative mineralogy of scooped soil samples and drilled rock powders. Methods of modeling diffraction peak positions and intensities to evaluate the abundances of minerals include Rietveld refinement and FULLPAT (full-pattern fitting). Each of the samples analyzed by CheMin contains X-ray amorphous material. The amorphous component chemistry is resolved by subtracting the chemistry of the crystalline composition, as determined by X-ray diffraction data, from the bulk sample chemistry, as determined by the Alpha Particle X-ray Spectrometer (APXS). Diffraction results have been obtained on five samples thus far to include Rocknest, John Klein, Cumberland, Windjana and Confidence Hills. Soil samples collected at Rocknest, an aeolian bedform in Gale crater, were the first to be analyzed in situ by CheMin. The Rocknest mineral assemblage is basaltic (plagioclase, Fe-forsterite, augite, pigeonite) and contains amorphous material that is compositionally similar to palagonitic volcanic soils found on Earth, with the addition of sulfur and chlorine. The four drill analyses are characteristic of deposition in a variety of fluvio-lacustrine environments and exhibit evidence of low-temperature diagenesis. Both John Klein and Cumberland are part of the Sheepbed mudstone at Yellowknife Bay, where the first drilled samples were acquired as well as the first evidence of a habitable environment on Mars. Drilled three meters apart from each other, the two samples reveal basaltic minerals similar to those at Rocknest, as well as phyllosilicates, Fe-oxides/hydroxides, Ca-sulfates, Fe-sulfides, and amorphous materials. The nature and hydration of interlayer cations within the phyllosilicates differs between the two samples, which implies localized diagenesis. The Windjana sandstone at the Kimberley location differs from the Sheepbed mudstone in that it contains more pyroxene and magnetite and abundant K-feldspar, as well as phyllosilicates and amorphous material. These phases may represent potassium-rich basaltic provenance or aqueous alteration by potassium-bearing fluids. While the Confidence Hills sample is still in the preliminary stages of evaluation, major crystalline phases observed in this fine-grained sedimentary rock include plagioclase, pyroxene, K-feldspar and phyllosilicates; hematite, rare in all previous samples, is notably abundant and jarosite is present. The findings suggest localized mobilization of iron-bearing fluids and acidic conditions. The more oxidized assemblage of Confidence Hills marks the transition into the lower strata of Mount Sharp.
Mechanical specific energy versus depth of cut in rock cutting and drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yaneng; Zhang, Wu; Gamwo, Isaac
The relationship between Mechanical Specific Energy (MSE) and the Rate of Penetration (ROP), or equivalently the depth of cut per revolution, provides an important measure for strategizing a drilling operation. This study explores how MSE evolves with depth of cut, and presents a concerted effort that encompasses analytical, computational and experimental approaches. A simple model for the relationship between MSE and cutting depth is first derived with consideration of the wear progression of a circular cutter. This is an extension of Detournay and Defourny's phenomenological cutting model. Wear is modeled as a flat contact area at the bottom of amore » cutter referred to as a wear flat, and that wear flat in the past is often considered to be fixed during cutting. But during a drilling operation by a full bit that consists of multiple circular cutters, the wear flat length may increase because of various wear mechanisms involved. The wear progression of cutters generally results in reduced efficiency with either increased MSE or decreased ROP. Also, an accurate estimate of removed rock volume is found important for the evaluation of MSE. The derived model is compared with experiment results from a single circular cutter, for cutting soft rock under ambient pressure with actual depth measured through a micrometer, and for cutting high strength rock under high pressure with actual cutting area measured by a confocal microscope. Lastly, the model is employed to interpret the evolution of MSE with depth of cut for a full drilling bit under confining pressure. The general form of equation of the developed model is found to describe well the experiment data and can be applied to interpret the drilling data for a full bit.« less
Mechanical specific energy versus depth of cut in rock cutting and drilling
Zhou, Yaneng; Zhang, Wu; Gamwo, Isaac; ...
2017-12-07
The relationship between Mechanical Specific Energy (MSE) and the Rate of Penetration (ROP), or equivalently the depth of cut per revolution, provides an important measure for strategizing a drilling operation. This study explores how MSE evolves with depth of cut, and presents a concerted effort that encompasses analytical, computational and experimental approaches. A simple model for the relationship between MSE and cutting depth is first derived with consideration of the wear progression of a circular cutter. This is an extension of Detournay and Defourny's phenomenological cutting model. Wear is modeled as a flat contact area at the bottom of amore » cutter referred to as a wear flat, and that wear flat in the past is often considered to be fixed during cutting. But during a drilling operation by a full bit that consists of multiple circular cutters, the wear flat length may increase because of various wear mechanisms involved. The wear progression of cutters generally results in reduced efficiency with either increased MSE or decreased ROP. Also, an accurate estimate of removed rock volume is found important for the evaluation of MSE. The derived model is compared with experiment results from a single circular cutter, for cutting soft rock under ambient pressure with actual depth measured through a micrometer, and for cutting high strength rock under high pressure with actual cutting area measured by a confocal microscope. Lastly, the model is employed to interpret the evolution of MSE with depth of cut for a full drilling bit under confining pressure. The general form of equation of the developed model is found to describe well the experiment data and can be applied to interpret the drilling data for a full bit.« less
Collins, Donley S.; Skipp, Gary L.
1995-01-01
The geology and tectonic setting of the New Madrid region in southeastern Missouri has received considerable attention because of the area's high seismic activity. The largest recorded earthquakes in this area occurred in the winter of 1811-1812. These earthquakes has estimated magnitudes as large as 8.0 on the Richter scale (Johnsonton and Kanter, 1990) and affected an area of about 1 million square miles (Fuller, 1912). Today, an area of continuously high seismic activity defines the New Madrid seismic zone, which extends from northeastern Arkansas into southeastern Missouri and northwestern Tennessee. Seismicity is locally concentrated along two subsurface archers--the Blytheville and Pascola (Hildenbrand and others, 1977; Crone and others, 1985; Hildenbrand, 1985; McKeown, 1988). The Padcola arch is not pertinent to this study and, therefore will not be discusses further. The Blytheville arch is located in and is subparallel to the axis of the northeast-southwest-trending Reelfoot structural basin, which formed during early Paleozoic rifting (Ervin and McGinnis, 1975; fig. 1). The Reelfoot basin is filled with Cambrian and Ordovician sedimentary rocks (Grohskopf, 1955; Howe, 1984; Houseknevht, 1989; Collins and others, 1992) that are uncomfortably overlain by Cretacaous and Tertiary sedimentary rocks and underlain by crystalline rocks of the eastern granite-rhyolite province (see Bickford and others, 1986). The presence of some Late Proterozoic sedimentary rocks in the Reelfoot basin currently cannot be ruled out. The Dow Chemical #1 B.L. Garrigan drill hole (hereafter, Garrigan) penetrated Paleozoic rocks on the Blytheville arch. The Garrigan is locted in the Reelfoot basin in the NW1/4, NW1/4 sec. 28, T. 15 N., R. 10 E., Mississippi County, Arkansas (fig. 1) and was completed to a total depth of 12,038 ft from a ground elevation of 239 ft on April 11, 1982 (Swolfs, 1991). The Garrigan is the only reported drill hole that penetrates the subsurface Blytheville arch and is an important source of core from the Reelfoot basin (Collins and others, 1992). Therefore, this drill hole is important for understanding structure and Paleozoic stratigraphy in a basin where stratigraphic and structural data are sparse. Rocks in the Garrigan were originally logged and described by J.R. Howe (personal communication to D.S. Collins, 1990) and published as a composite stratigraphic section along with the rock description for the Dow Chemical #1 Wilson drill hole (Howe, 1984). F.A. McKeown later relogged the rocks in the Garrigan and presented a generalized log in McKeown and others (1990). Swolfs (1991) presented another version of the Garrigan drill-hole geologic section (fig. 2). Aided by new biostratigraphic information, Taylor and others (1991) corrected major errors in the characterization and correlation of rocks in the Garrigan (fig. 2). Collins (1991) described the insoluble residues from the cuttings of the Garrigan, but could not correlate them with the insoluble resides from rocks of the carbonate platform west of the basin. However Taylor and others (1991), Collins and others (1992), and Collins and Bohm (1993) did correlate fossils from the Garrigan to other drill holes in the Reelfoot basin and adjacent areas. Using these correlated data, Collins and Bohm (1993) provided information on the structural relief across a part of the Reelfoot basin. Collins and others (1992) also interpreted the depositional setting for the Paleozoic rocks of the Garrigan. This report presents a detailed lithologic log of the Paleozoic rocks penetrated by the Garrigan that differs from the lithologic logs of previous workers (Howe, 1984; McKeown and others, 1990; see also Dart, 1992, p. 18-19). The lithologic descriptions of the Garrigan are derived from observations of well cuttings and core. Cored intervals used were 11,426-11,402 ft, 10,229-10,200 ft, and 8,002-7,979 ft. These intervals were the only intervals cored during the Garrigan drill project. Detailed analyses of the core will be described in a subsequent report.
NASA Astrophysics Data System (ADS)
Yogodzinski, Gene M.; Bizimis, Michael; Hickey-Vargas, Rosemary; McCarthy, Anders; Hocking, Benjamin D.; Savov, Ivan P.; Ishizuka, Osamu; Arculus, Richard
2018-05-01
Whole-rock isotope ratio (Hf, Nd, Pb, Sr) and trace element data for basement rocks at ocean drilling Sites U1438, 1201 and 447 immediately west of the KPR (Kyushu-Palau Ridge) are compared to those of FAB (forearc basalts) previously interpreted to be the initial products of IBM subduction volcanism. West-of-KPR basement basalts (drill sites U1438, 1201, 447) and FAB occupy the same Hf-Nd and Pb-Pb isotopic space and share distinctive source characteristics with εHf mostly > 16.5 and up to εHf = 19.8, which is more radiogenic than most Indian mid-ocean ridge basalts (MORB). Lead isotopic ratios are depleted, with 206Pb/204Pb = 17.8-18.8 accompanying relatively high 208Pb/204Pb, indicating an Indian-MORB source unlike that of West Philippine Basin plume basalts. Some Sr isotopes show affects of seawater alteration, but samples with 87Sr/86Sr < 0.7034 and εNd > 8.0 appear to preserve magmatic compositions and also indicate a common source for west-of-KPR basement and FAB. Trace element ratios resistant to seawater alteration (La/Yb, Lu/Hf, Zr/Nb, Sm/Nd) in west-of-KPR basement are generally more depleted than normal MORB and so also appear similar to FAB. At Site U1438, only andesite sills intruding sedimentary rocks overlying the basement have subduction-influenced geochemical characteristics (εNd ∼ 6.6, εHf ∼ 13.8, La/Yb > 2.5, Nd/Hf ∼ 9). The key characteristic that unites drill site basement rocks west of KPR and FAB is the nature of their source, which is more depleted in lithophile trace elements than average MORB but with Hf, Nd, and Pb isotope ratios that are common in MORB. The lithophile element-depleted nature of FAB has been linked to initiation of IBM subduction in the Eocene, but Sm-Nd model ages and errorchron relationships in Site U1438 basement indicate that the depleted character of the rocks is a regional characteristic that was produced well prior to the time of subduction initiation and persists today in the source of modern IBM arc volcanic rocks with Sm/Nd > 0.34 and εNd ∼ 9.0.
Ultrasonic/Sonic Mechanisms for Drilling and Coring
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrit, Stewart; Dolgin, Benjamin; Askin, Steve; Peterson, Thomas M.; Bell, Bill; Kroh, Jason; Pal, Dharmendra; Krahe, Ron; Du, Shu
2003-01-01
Two apparatuses now under development are intended to perform a variety of deep-drilling, coring, and sensing functions for subsurface exploration of rock and soil. These are modified versions of the apparatuses described in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. In comparison with the drilling equipment traditionally used in such exploration, these apparatuses weigh less and consume less power. Moreover, unlike traditional drills and corers, these apparatuses function without need for large externally applied axial forces.
NASA Astrophysics Data System (ADS)
Samuel, Y. M.; Saad, R.; Muztaza, N. M.; Saidin, M. M.; Muhammad, S. B.
2018-04-01
Magnetic and geotechnical methods were used for shallow subsurface soil characterization at Sungai Batu, Kedah, (Malaysia). Ground magnetic data were collected along a survey line of length 160 m long at 2 m constant station spacing, while soil drilling using hand auger was conducted at 21 m on the survey line using 0.2 m sampling interval drilled to a depth of 5 m. Result from the processed magnetic profile data shows distribution of magnetic residuals in the range of -4.55 to 1.61 nT, with magnetic low (-4.55 nT to -0.058 nT) and were identified at distances 4 m, 10 to 16 m, 20 to 26 m, 58 m, 82 m, 104 to 106 m, 118 m, and 124 to 140 m. The magnetic lows are attributes of sediments. The result from the soil drilling shows sticky samples with variable sizes, greyish to brownish / reddish in colour, and some of the samples show the presence of shiny and black spots. The characteristics of the samples suggest the soil as a by-product of completely weathered rock; weak with high water content and classified as Grade V soil. The study concludes; integration of geophysical and geotechnical methods aided in characterizing the subsurface soil at Sungai Batu. The result was correlated with previous studies and confirms the importance of integrated approach in minimising ambiguity in interpretation.
Leak-off mechanism and pressure prediction for shallow sediments in deepwater drilling
NASA Astrophysics Data System (ADS)
Tan, Qiang; Deng, Jingen; Sun, Jin; Liu, Wei; Yu, Baohua
2018-02-01
Deepwater sediments are prone to loss circulation in drilling due to a low overburden gradient. How to predict the magnitude of leak-off pressure more accurately is an important issue in the protection of drilling safety and the reduction of drilling cost in deep water. Starting from the mechanical properties of a shallow formation and based on the basic theory of rock-soil mechanics, the stress distribution around a borehole was analyzed. It was found that the rock or soil on a borehole is in the plastic yield state before the effective tensile stress is generated, and the effective tangential and vertical stresses increase as the drilling fluid density increases; thus, tensile failure will not occur on the borehole wall. Based on the results of stress calculation, two mechanisms and leak-off pressure prediction models for shallow sediments in deepwater drilling were put forward, and the calculated values of these models were compared with the measured value of shallow leak-off pressure in actual drilling. The results show that the MHPS (minimum horizontal principle stress) model and the FIF (fracturing in formation) model can predict the lower and upper limits of leak-off pressure. The PLC (permeable lost circulation) model can comprehensively analyze the factors influencing permeable leakage and provide a theoretical basis for leak-off prevention and plugging in deepwater drilling.
NASA Astrophysics Data System (ADS)
Niezabitowska, Dominika; Szaniawski, Rafał
2017-04-01
The research has been performed on Wenlockian shales of Pelplin formation from the Pomerania region located in Northern Poland. These organic-rich marine shales were deposited on the western shelf of the Baltica paleo-continent and currently they constitute the cover of East European Platform. The studied shales lie almost completely flat without signs of tectonic deformations. Rock magnetic studies were carried out with the aim of recognizing ferro- and paramagnetic minerals in shales and thus fully understanding the origin of the magnetic anisotropy. The typical dark shales and spherical calcareous concretions from two boreholes were sampled. Based on deflection of shales beds bordered with a concretions, we deduce that such concretions were formed in the early stage of diagenesis, before the final compaction and lithification of surrounding shales. We obtained similar rockmagnetic results for both of rock types. The results of thermal variation of magnetic susceptibility and hysteresis loops show that the magnetic susceptibility is mainly controlled by paramagnetic minerals, due to domination of phyllosilicate minerals, with a smaller impact of ferromagnetic phase. The results of the hysteresis studies documented the domination of low coercivity ferromagnetic minerals, that is magnetite and pyrrhotite. The deposition alignment of flocculated phyllosilicates and further compaction determine distinct bedding parallel foliation of the AMS (Anisotropy of Magnetic Susceptibility) in the both drill cores. In one of the drill core the maximal AMS axes are almost randomly distributed in the bedding plane and show only a weak tendency for grouping. In the second drill core the magnetic lineation is better defined. In the case of concretions the bedding parallel magnetic foliation is also evident but it is much weaker than in shales. In turn, the magnetic lineation in the both drill cores is well developed and the maximal AMS axes are well grouped. In both of the cores the orientation of lineation from concretions complies with site mean lineation from shale rocks. To summarize, the results imply that the phyllosilicate minerals from shales are typically well aligned in the bedding plane by compaction processes. In the case of calcareous concretions the foliation is less developed due to their earlier cementation of flocculated phyllosicates in the calcareous matrix, which occurred before the end of sediments compaction. A good grouping of the maximal AMS axes within the early cemented concretions suggest that the magnetic lineation is rather sedimentary than tectonic in origin. We suggest that the magnetic lineation is probably related to the orientation of flocculated phyllosilicates due to transportation. This work has been funded by the Polish National Centre for Research and Development within the Blue Gas project (No BG2/SHALEMECH/14). Samples were provided by the PGNiG SA.
Manson impact structure, Iowa: First geochemical results for drill core M-1
NASA Technical Reports Server (NTRS)
Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe
1993-01-01
The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.
Manson impact structure, Iowa: First geochemical results for drill core M-1
NASA Astrophysics Data System (ADS)
Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe
1993-03-01
The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.
Paleolatitude Records of the Western Pacific as Determined From DSDP/ODP Basaltic Cores
NASA Astrophysics Data System (ADS)
Liu, Q.; Zhao, X.; Yan, M.; Riisager, P.; Lo, C.
2008-12-01
We report here the new paleomagnetic, rock magnetic, and Ar-Ar geochronologic results of our recent completed project, which aims to determine the Cretaceous paleomagnetic paleolatitude record and the architecture of the volcanic basins in the western Pacific Ocean. The new results, in concert with our paleomagnetic research on ODP rocks recovered from the Ontong Java Plateau (OJP), suggest that various plateaus and basins in the western Pacific had similar plate-tectonic setting (paleolatitude) and ages with that of OJP at time of emplacement (~120 Ma). Basalts sampled from Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) sites of the greater OJP as well as from obducted sections in the Solomon Islands of Malaita and Santa Isabel are strikingly uniform in petrologic and geochemical characteristics. Many of these cores, especially those from DSDP sites, have not been well-studied paleomagnetically and hence underutilized for tectonic study. We carefully re-sampled and systematic demagnetized and analyzed 925 basaltic cores from 15 sites drilled by10 DSDP/ODP Legs in the western and central Pacific, which represents a unique possibility for averaging out secular variation to obtain a well-defined paleolatitude estimate. The most important findings from this study include: (1). most basins formed during the Cretaceous long normal magnetic period with similar Ar-Ar ages as the OJP; (2) East Mariana, Pigafetta, the upper flow unit in the Nauru basin and Mid-Pacific Guyots all yielded similar paleolatitudes as those for OJP, suggesting the volcanic eruptions of flows in these basins are likely related to the emplacement of the OJP; and (3) the lower flow unit in the Nauru basin yields a paleolatitude that is ~10° further south and the age is more than 10 m.y. older than these of the OJP.
Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology. Full Project Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert
This DOE Nuclear STTR project DE-SC001238 investigated the use of MMW directed energy to form rock melt and steel plugs in deep wellbores to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This current project builds upon a prior DOE project, DE-EE0005504, which developed the basic low power, low 28 GHz frequency waveguide setup, process and instruments. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future higher power field prototype testing. This technology also has potential for deep well drillingmore » for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled, called 'mono-bore drilling'. This allows for higher levels of safety and protection of the environment during deep drilling operations while providing vast cost savings. The larger purpose of this project was to find answers to key questions in developing MMW technology for its many subsurface applications.« less
Experimental and numerical study of drill bit drop tests on Kuru granite
NASA Astrophysics Data System (ADS)
Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko
2017-01-01
This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Carr, Jerry E.; Halasz, Stephen J.; Peters, Henry B.
1980-01-01
Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome Additional investigations are needed to determine if a selected dome is hydrologically stable. Needed investigations include: (1) A more complete comparative analysis of the regional and local geohydrologic system; (2) a site-specific drilling and sampling program to analyze the cap rock-aquifer boundary, sediment distribution, hydraulic-parameter variations, hydraulic-head relationships, and hydrochemical patterns; and (3) mass-transport computer modeling of ground-water flow at the domes.
NASA Astrophysics Data System (ADS)
Yang, Jianhua; Lu, Wenbo; Hu, Yingguo; Chen, Ming; Yan, Peng
2015-09-01
Presence of an excavation damage zone (EDZ) around a tunnel perimeter is of significant concern with regard to safety, stability, costs and overall performance of the tunnel. For deep-buried tunnel excavation by drill and blast, it is generally accepted that a combination of effects of stress redistribution and blasting is mainly responsible for development of the EDZ. However, few open literatures can be found to use numerical methods to investigate the behavior of rock damage induced by the combined effects, and it is still far from full understanding how, when and to what degree the blasting affects the behavior of the EDZ during excavation. By implementing a statistical damage evolution law based on stress criterion into the commercial software LS-DYNA through its user-subroutines, this paper presents a 3D numerical simulation of the rock damage evolution of a deep-buried tunnel excavation, with a special emphasis on the combined effects of the stress redistribution of surrounding rock masses and the blasting-induced damage. Influence of repeated blast loadings on the damage extension for practical millisecond delay blasting is investigated in the present analysis. Accompanying explosive detonation and secession of rock fragments from their initial locations, in situ stress in the immediate vicinity of the excavation face is suddenly released. The transient characteristics of the in situ stress release and induced dynamic responses in the surrounding rock masses are also highlighted. From the simulation results, some instructive conclusions are drawn with respect to the rock damage mechanism and evolution during deep-buried tunnel excavation by drill and blast.
Issues and Concerns in Robotic Drilling
NASA Technical Reports Server (NTRS)
Glass, Brian
2003-01-01
Exploration of the Martian subsurface will be essential in the search for life and water, given the desiccated and highly oxidized conditions on the surface. Discovery of these, at least in non-fossil form, is unlikely without drilling or other physical access to the subsurface. Hence subsurface access will be critical for both future in-situ science and Mars sample return. Drilling applications present many new challenges for diagnosis and control technology. Traditionally, diagnosis has concentrated on determining the internal state of a system, and detecting failures of system components. In the case of drilling applications, an additional challenge is to diagnose the interactions between the drill and its environment. This is necessary because particular observations of the drilling operation may be consistent with a number of possible problems, including faults in the equipment, but also changes in the material being drilled (for example, from rock to ice). The diagnosis of a particular observation may also depend on knowledge of geological formations previously encountered during drilling, and different remedial actions may be required for each diagnosis. Current 2009 Mars mission scenarios call for no more than 33 sols to be spent drilling. Yet they also call for a baseline of two 2m-deep holes in each of three target areas, for a total of six drilling operations. Using current levels of automation, it is estimated that 15-16 sols would be required to drill each hole. As a result of this, either the drilling part of the mission plan will need to be severely downscoped to no more than two holes total, or on-board automation and robotics must be increased in order to reduce the number of sols required per hole by removing ground control from the drilling control loop. This lecture will discuss salient issues and concerns of robotic drilling automation compares with other applications, and implementation constraints.
Outokumpu Deep Drill Hole: Window to the Precambrian bedrock
NASA Astrophysics Data System (ADS)
Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo
2017-04-01
Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a strong reflector. This fracture, as well as other fractures penetrated by the drill hole, contains saline water and gases, mainly methane, nitrogen, hydrogen and helium. Salinity of water in the deeper part (>1000 m) of the drill hole has continuously increased since the drilling. Gas-rich water slowly seeps upward and bubble out at the water table. In total, five different water types have been discerned along the drill hole by geochemical and isotopic methods and residence times up to 58 Ma indicated by the accumulation of noble gases. Microbiological studies in the Outokumpu Deep Drill Hole show that not only do different fracture zones act as places for shift in groundwater chemistry but also in the microbial communities. After a decade of research, Outokumpu drill hole site is geologically well known and thus provides a good environment to test new tools developed for exploration, microbiological or hydrogeological purposes, for example. Geological Survey of Finland is open for new research collaboration projects related to the drill site.
Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples
Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry
2015-01-01
With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method – non-destructive 3D X-ray micro-Computed Tomography (μCT) – to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations – in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner. PMID:26549935
Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.
Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry
2015-03-01
With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.
MSL Animation EDL and Sky Crane
2011-11-07
Animation of Mars Science Laboratory (MSL), also known as the Curiosity rover, from cruise stage to EDL (entry, descent and landing), roving around the planet, zapping rocks with its laser and drilling into rocks.
Clastic rocks associated with the Midcontinent rift system in Iowa
Anderson, Raymond R.; McKay, Robert M.
1997-01-01
The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.
The installation of a sub sea floor observatory using the sea floor drill rig MeBo
NASA Astrophysics Data System (ADS)
Wefer, G.; Freudenthal, T.; Kopf, A.
2012-04-01
Sea floor drill rigs that can be deployed from standard research vessels are bridging the gap between dedicated drill ships that are used for deep drillings in the range of several hundred meters below sea floor and conventional sampling tools like gravity corers, piston corer or dredges that only scratch the surface of the sea floor. A major advantage of such robotic drill rigs is that the drilling action is conducted from a stable platform at the sea bed independent of any ship movements due to waves, wind or currents. At the MARUM Center for Marine Environmental Sciences at the University of Bremen we developed the sea bed drill rig MeBo that can be deployed from standard research vessels. The drill rig is deployed on the sea floor and controlled from the vessel. Drilling tools for coring the sea floor down to 70 m can be stored on two magazines on the rig. A steel-armoured umbilical is used for lowering the rig to the sea bed in water depths up to 2000 m in the present system configuration. It was successfully operated on ten expeditions since 2005 and drilled more than 1000 m in different types of geology including hemipelagic mud, glacial till as well as sedimentary and crystalline rocks. MeBo boreholes be equipped with sensors and used for long term monitoring are planned. Depending on the scientific demands, a MeBoCORK monitoring system will allow in situ measurements of eg. temperature and pressure. The "MeBoCORK" will be equipped with data loggers and data transmission interface for reading out the collected data from the vessel. By additional payload installation on the MeBoCORK with an ROV it will be possible to increase the energy capacity as well as to conduct fluid sampling in the bore hole for geochemical analyses. It is planned to install a prototype of this additional payload with the MARUM ROV QUEST4000M during the following R/V SONNE cruise in July 2012.
Laboratory investigations into fracture propagation characteristics of rock material
NASA Astrophysics Data System (ADS)
Prasad, B. N. V. Siva; Murthy, V. M. S. R.
2018-04-01
After Industrial Revolution, demand of materials for building up structures have increased enormously. Unfortunately, failures of such structures resulted in loss of life and property. Rock is anisotropic and discontinuous in nature with inherent flaws or so-called discontinuities in it. Rock is apparently used for construction in mining, civil, tunnelling, hydropower, geothermal and nuclear sectors [1]. Therefore, the strength of the structure built up considering rockmass as the construction material needs proper technical evaluation during designing stage itself to prevent and predict the scenarios of catastrophic failures due to these inherent fractures [2]. In this study, samples collected from nine different drilling sites have been investigated in laboratory for understanding the fracture propagation characteristics in rock. Rock material properties, ultrasonic velocities through pulse transmission technique and Mode I Fracture Toughness Testing of different variants of Dolomites and Graywackes are determined in laboratory and the resistance of the rock material to catastrophic crack extension or propagation has been determined. Based on the Fracture Toughness values and the rock properties, critical Energy Release Rates have been estimated. However further studies in this direction is to be carried out to understand the fracture propagation characteristics in three-dimensional space.
Apxs Chemical Composition of the Kimberley Sandstone in Gale Crater
NASA Astrophysics Data System (ADS)
Gellert, R.; Boyd, N.; Campbell, J. L.; VanBommel, S.; Thompson, L. M.; Schmidt, M. E.; Berger, J. A.; Clark, B. C.; Grotzinger, J. P.; Yen, A. S.; Fisk, M. R.
2014-12-01
Kimberley was chosen as a major waypoint of the MSL rover Curiosity on its way to Mount Sharp. APXS data before drilling showed interestingly high K, Fe and Zn. This warranted drilling of the fine-grained sandstone for detailed investigations with SAM and Chemin. With significantly lower Na, Al and higher K, Mg and Fe, the composition of the drill target Windjana is very distinct from the previous ones in the mudstones at Yellowknife Bay. Up to 2000 ppm Br and 4000 ppm Zn post-brush were among the highest measured values in Gale Crater. The excavated fines, stemming from about 6cm, showed lower Br, but even higher Zn. Preliminary Chemin results indicate K-feldspar and magnetite being major mineral phases in Windjana, which is consistent with the pre drill APXS result and derived CIPW norms. Inside the accessible work volume of the arm at the drill site ChemCam exposed a greyish, shinier patch of rock underneath the dust, dubbed Stephen. ChemCam sees a high Mn signal in most of the spots. An APXS integration revealed high MnO as well (~4%), in addition to high Mg, Cl,K,Ni,Zn,Br,Cu,Ge and for the first time an APXS detectable amount of ~300 ppm Co. The surface might reflect a thin surface layer and may underestimate the higher Z elemental concentration since the APXS analysis assumes an infinite sample. Important elemental correlations are likely not impacted. A four spot daytime raster of Stephen before leaving the drill site showed a good correlation of Mn with Zn, Cu and Ni. All spots have 3-3.5% Cl, the highest values measured on Mars so far. While the stratigraphic setting of the Stephen sample is discussed elsewhere, the similarity with Mn deep-sea nodules is striking, e.g. the APXS calibration sample GBW07296. Whatever process formed Stephen, the process of Mn scavenging high Z trace metals from solutions seems to have happened similarly at this site on Mars.
NASA Astrophysics Data System (ADS)
Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B. M.
2011-02-01
4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5 ± 1.3 × 10-8 cm2 s-1 at 21°C, compared to previously published diffusion coefficients of 1.2 × 10-18 cm2 s-1 (21°C) to 3.0 × 10-15 cm2 s-1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (˜3%) and tortuosity (˜6-13) produces effective diffusion coefficients of 1 × 10-8 cm2 s-1 (21°C) and 1 × 10-7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 ± 0.4% (SD, n = 4) and mudstones 3.1 ± 0.8% (SD, n = 4).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jill S. Buckley; Norman r. Morrow
2002-06-01
This first semiannual report covers efforts to select the materials that will be used in this project. Discussions of crude oils, rocks, smooth mineral surfaces, and drilling mud additives are included in this report.
Subsurface stratigraphy and oil fields in the Salem Limestone and associated rocks in Indiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, S.J.; Becker, L.E.
An area of 11 counties in southwestern Indiana was studied because (1) the subsurface geology of the Salem Limestone and associated rocks in the area contained numerous correlation discrepancies; (2) it was the locus of recent oil exploration and oil discoveries in these rocks; (3) the last subsurface study of this rock section was made in 1957; and (4) since that time, subsurface data from newly drilled petroleum-test wells have increased a hundredfold. Because of their abundance, geophysical logs were used extensively for correlation. Drill cuttings, where available, were also used in studying the rock units. The upper boundary ofmore » the Salem was based on geophysical-log correlations as supported by available drill cuttings. The lower boundary of the Salem was based on drill cuttings. Commercial oil is produced from porous calcarenite zones in the St. Louis and Salem Limestones and from coarsely crystalline limestone in the Harrodsburg Limestone. The lower part of the St. Louis Limestone yields oil from a porous carbonate rock that resembles Salem calcarenite and that we have formally named the Sission Member in the St. Louis. The Salem calcarenite facies ranges in thickness from a low of 10 percent of the total Salem in the southern part of the study area to a high of 80 percent in the northern part. Oil is produced from porous zones in the calcarenite. Oil production from the St. Louis, Salem, and Harrodsburg Limestones in Indiana amounted to 8,880,078 barrels as of December 31, 1978. Production in 1977 was 1,534,320 barrels, and production in 1978 was 1,157,450 barrels. About 80 percent of the 1977 and 1978 production came from Union-Bowman Consolidated and Sisson Fields in Gibson, Knox, and Pike counties and the Owensville North Consolidated and Mt. Carmel Consolidated Fields in Gibson County. 15 figures, 3 tables.« less
NASA Astrophysics Data System (ADS)
Høien, Are Håvard; Nilsen, Bjørn
2014-05-01
The Løren road tunnel is a part of a major project at Ring road 3 in Oslo, Norway. The rock part of the tunnel is 915 m long and has two tubes with three lanes and breakdown lanes. Strict water ingress restriction was specified and continuous rock mass grouting was, therefore, carried out for the entire tunnel, which was excavated in folded Cambro-Silurian shales intruded by numerous dykes. This paper describes the rock mass grouting that was carried out for the Løren tunnel. Particular emphasis is placed on discussing grout consumption and the challenges that were encountered when passing under a distinct rock depression. Measurement while drilling (MWD) technology was used for this project, and, in this paper, the relationships between the drill parameter interpretation (DPI) factors water and fracturing are examined in relation to grout volumes. A lowering of the groundwater table was experienced during excavation under the rock depression, but the groundwater was nearly re-established after completion of the main construction work. A planned 80-m watertight concrete lining was not required to be built due to the excellent results from grouting in the rock depression area. A relationship was found between leakages mapped in the tunnel and the DPI water factor, indicating that water is actually present where the DPI water factor shows water in the rock. It is concluded that, for the Løren tunnel, careful planning and high-quality execution of the rock mass grouting made the measured water ingress meet the restrictions. For future projects, the DPI water factor may be used to give a better understanding of the material in which the rock mass grouting is performed and may also be used to reduce the time spent and volumes used when grouting.
The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta
NASA Astrophysics Data System (ADS)
Ivarsson, Magnus; Lindgren, Paula
2010-07-01
On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.
Large scale magmatic event, magnetic anomalies and ore exploration in northern Norway
NASA Astrophysics Data System (ADS)
Pastore, Z.; Church, N. S.; ter Maat, G. W.; Michels, A.; McEnroe, S. A.; Fichler, C.; Larsen, R. B.
2016-12-01
More than 17000 km3of igneous melts intruded into the deep crust at ca. 560-580 Ma and formed the Seiland Igneous Province (SIP), the largest complex of mafic and ultramafic intrusions in northern Fennoscandia. The original emplacement of the SIP is matter of current discussion. The SIP is now located within the Kalak Nappe Complex (KNC), a part of the Middle Allochthon of the North Norwegian Caledonides. The province is believed to represent a cross section of the deep plumbing system of a large igneous province and it is known for its layered intrusions sharing geological features with large ore-forming exploration provinces. In this study we investigate one of the four major ultramafic complexes of the province, the Reinfjord Complex. This was emplaced during three magmatic events in a time span of 4 Ma, and consists in a cylindrically zoned complex with a slightly younger dunite core (Central Series) surrounded by wehrlite and lherzolite dominated series (Upper and Lower Layered Series). Sulphides are present throughout the complex, and an electromagnetic survey identified a Ni-Cu-and a PGE reef deposit within the dunite, 100 meters below the surface. This discovery increased the ore potential of the complex and subsequently 4 deep drill cores were made. High-resolution magnetic helicopter survey was later followed up with ground magnetic and gravity surveys. Extensive sampling of surface rocks and drill cores were made to measure the rock-magnetic and physical properties of the samples and to explore the subsurface structure of the complex. Here, we developed a magnetic model for the Reinfjord complex integrating petrophysical data from both oriented surface samples and from the deep drill cores, with the new ground magnetic, and helicopter data (SkyTEM survey). A 3D model of the geometry of the ultramafic intrusion is presented and a refinement of the geological interpretation of the Reinfjord ultramafic intrusion.
Surface drilling technologies for Mars
NASA Technical Reports Server (NTRS)
Blacic, J. D.; Rowley, J. C.; Cort, G. E.
1986-01-01
Rock drilling and coring conceptual designs for the surface activities associated with a manned Mars mission are proposed. Straightforward extensions of equipment and procedures used on Earth are envisioned for the sample coring and shallow high explosive shot holes needed for tunneling and seismic surveying. A novel rocket exhaust jet piercing method is proposed for very rapid drilling of shot holes required for explosive excavation of emergency radiation shelters. Summaries of estimated equipment masses and power requirements are provided, and the indicated rotary coring rigs are scaled from terrestrial equipment and use compressed CO2 from the Martian atmosphere for core bit cooling and cuttings removal. A mass of 120 kg and power of 3 kW(e) are estimated for a 10 m depth capability. A 100 m depth capacity core rig requires about 1150 kg and 32 km(e). The rocket exhaust jet equipment devised for shallow (3m) explosive emplacement shot holes requires no surface power beyond an electrical ignition system, and might have a 15 kg mass.
Results of exploration at the Old Leyden coal mine, Jefferson County, Colorado
Gude, A.J.; McKeown, F.A.
1953-01-01
Six diamond core holes totaling 2, 201 feet were drilled by the. U, S. Bureau of Mines under contract to the U. S. Atomic Energy Commission at the Old Leyden coal mine, Jefferson County, Colo. The holes were spotted on the basis of geologic mapping by the U. S. Geological survey and were drilled to explore the lateral and downward extent of a uranium-bearing coal and the associated carnotite deposits in the adjacent sandstone° The data obtained from the diamond-core holes helped to explain the geology and structural control of the deposit. The uranium is most abundant in a coal bed that in places has been brecciated by shearing. and then altered to a hard, dense, and silicified rock. The uraniferous coal is in the nearly vertical beds of the Laramie formation of Upper Cretaceous age. Small lenticular bodies of uraniferous material, 50 feet long, 25 to 30 feet wide, and 2 to 4 feet thick, occur at intervals in the coal and silicified coal over a strike length of about 800 feet. These bodies contain 0.10 to 0.50 percent uranium. Data obtained from the drilling indicate a discontinuous radioactive zone between these higher-grade bodies; assays of samples from the cores range from 0.001 to 0.10 percent uranium. All drill holes were probed by Survey and A. E. C. logging equipment and showed anomalies where the core assayed more than 0.005 percent uranium. Material of ore grade--0.10 percent uranium--was found in one core; the rock in the other five holes was of lower grade. The presence of the radioactive zone in all holes suggests, however, that uranium is distributed irregularly in a southerly plunging deposit which is exposed in the adit, on the outcrop, and in other diamond-drill holes that were put down by the lessee.
1975-05-01
point (Macdonald and Abbott, 1970). A borehole was drilled at the summit of Kilauea Volcano during the summer of 1973 (Keller, 1974). This study...under the Waianae Cal- jj dera is believed to be made up of rocks similar to the rocks found undsr the Kilauea Volcano . Low permeability probably...Colorado: Thesis 1478, Colo. School of Mines, Golden, Colo. Keller, G. V., 1974, Drilling at the summit of Kilauea Volcano : Prepared for National
Loaded Transducer Fpr Downhole Drilling Component
Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe
2005-07-05
A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.
Loaded transducer for downhole drilling components
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron
2006-02-21
A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."
Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamrick, Todd
2011-01-01
Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to computemore » the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.« less
NASA Astrophysics Data System (ADS)
Dekkers, M. J.; Heslop, D.; Herrero-Bervera, E.; Acton, G.; Krasa, D.
2014-12-01
Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6.44.1' N, 91.56.1' W) on the Cocos Plate occurs in 15.2 Ma oceanic crust generated by superfast seafloor spreading. Presently, it is the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Here we interpret down-hole trends in several rock-magnetic parameters with fuzzy c-means cluster analysis, a multivariate statistical technique. The parameters include the magnetization ratio, the coercivity ratio, the coercive force, the low-field susceptibility, and the Curie temperature. By their combined, multivariate, analysis the effects of magmatic and hydrothermal processes can be evaluated. The optimal number of clusters - a key point in the analysis because there is no a priori information on this - was determined through a combination of approaches: by calculation of several cluster validity indices, by testing for coherent cluster distributions on non-linear-map plots, and importantly by testing for stability of the cluster solution from all possible starting points. Here, we consider a solution robust if the cluster allocation is independent of the starting configuration. The five-cluster solution appeared to be robust. Three clusters are distinguished in the extrusive segment of the Hole that express increasing hydrothermal alteration of the lavas. The sheeted dike and gabbro portions are characterized by two clusters, both with higher coercivities than in lava samples. Extensive alteration, however, can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. All clusters display rock magnetic characteristics in line with a stable NRM. This implies that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Determination of the absolute paleointensity with thermal techniques is not straightforward because of the propensity of oxyexsolution during laboratory heating and/or the presence of intergrowths. The upper part of the extrusive sequence, the granoblastic portion of the dikes, and moderately altered gabbros may contain a comparatively uncontaminated thermoremanent magnetization.
30 CFR 250.1601 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Definitions. 250.1601 Section 250.1601 Mineral... means a well drilled through cap rock into the core at a salt dome for the purpose of producing brine. Cap rock means the rock formation, a body of limestone, anhydride, and/or gypsum, overlying a salt...
30 CFR 250.1601 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Definitions. 250.1601 Section 250.1601 Mineral... means a well drilled through cap rock into the core at a salt dome for the purpose of producing brine. Cap rock means the rock formation, a body of limestone, anhydride, and/or gypsum, overlying a salt...
Miniature Neutron-Alpha Activation Spectrometer
NASA Astrophysics Data System (ADS)
Rhodes, E.; Goldsten, J.
2001-01-01
We are developing a miniature neutron-alpha activation spectrometer for in situ analysis of samples including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform, that would meet the severe mass, power, and environmental constraints of missions to the outer planets. In the neutron-activation mode, a gamma-ray spectrometer will first perform a penetrating scan of soil, ice, and loose material underfoot (depths to 10 cm or more) to identify appropriate samples. Chosen samples will be analyzed in bulk in neutron-activation mode, and then the sample surfaces will be analyzed in alpha-activation mode using Rutherford backscatter and x-ray spectrometers. The instrument will provide sample composition over a wide range of elements, including rock-forming elements (such as Na, Mg, Si, Fe, and Ca), rare earths (Sm and Eu for example), radioactive elements (K, Th, and U), and light elements present in water, ices, and biological materials (mainly H, C, O, and N). The instrument is expected to have a mass of about l kg and to require less than 1 W power. Additional information is contained in the original extended abstract.
Remote sensing capacity of Raman spectroscopy in identification of mineral and organic constituents
NASA Astrophysics Data System (ADS)
Chen, Bin; Stoker, Carol; Cabrol, Nathalie; McKay, Christopher P.
2007-09-01
We present design, integration and test results for a field Raman spectrometer science payload, integrated into the Mars Analog Research and Technology (MARTE) drilling platform. During the drilling operation, the subsurface Raman spectroscopy inspection system has obtained signatures of organic and mineral compositions. We also performed ground truth studies using both this field unit and a laboratory micro Raman spectrometer equipped with multiple laser excitation wavelengths on series of field samples including Mojave rocks, Laguna Verde salty sediment and Rio Tinto topsoil. We have evaluated laser excitation conditions and optical probe designs for further improvement. We have demonstrated promising potential for Raman spectroscopy as a non-destructive in situ, high throughput, subsurface detection technique, as well as a desirable active remote sensing tool for future planetary and space missions.
Summary: High Temperature Downhole Motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.
2017-10-01
Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at themore » surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.« less
NASA Astrophysics Data System (ADS)
Dekkers, Mark J.; Heslop, David; Herrero-Bervera, Emilio; Acton, Gary; Krasa, David
2014-08-01
We analyze magnetic properties from Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6°44.1' N, 91°56.1' W) on the Cocos Plate in ˜15.2 Ma oceanic crust generated by superfast seafloor spreading, the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Fuzzy c-means cluster analysis and nonlinear mapping are utilized to study down-hole trends in the ratio of the saturation remanent magnetization and the saturation magnetization, the coercive force, the ratio of the remanent coercive force and coercive force, the low-field magnetic susceptibility, and the Curie temperature, to evaluate the effects of magmatic and hydrothermal processes on magnetic properties. A statistically robust five cluster solution separates the data predominantly into three clusters that express increasing hydrothermal alteration of the lavas, which differ from two distinct clusters mainly representing the dikes and gabbros. Extensive alteration can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. Thus, the analysis complements interpretation based on electrofacies analysis. All clusters display rock magnetic characteristics compatible with an ability to retain a stable natural remanent magnetization suggesting that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Paleointensity determination is difficult because of the propensity of oxyexsolution during laboratory heating and/or the presence of intergrowths. The upper part of the extrusive sequence, the granoblastic dikes, and moderately altered gabbros may contain a comparatively uncontaminated thermoremanent magnetization.
Christiansen, William D.; Hofstra, Albert H.; Zohar, Pamela B.; Tousignant, Gilles
2011-01-01
The Devonian Popovich Formation is the major host for Carlin-type gold deposits in the northern Carlin trend of Nevada. The Popovich is composed of gray to black, thin-bedded, calcareous to dolomitic mudstone and limestone deposited near the carbonate platform margin. Carlin-type gold deposits are Eocene, disseminated, auriferous pyrite deposits characterized by acid leaching, sulfidation, and silicification that are typically hosted in Paleozoic calcareous sedimentary rocks exposed in windows through siliceous sedimentary rocks of the Roberts Mountains allochthon. The Carlin trend currently is the largest gold producer in the United States. The Screamer ore zone is a tabular body on the periphery of the huge Betze-Post gold deposit. Screamer is a good place to study both the original lithogeochemistry of the Popovich Formation and the effects of subsequent alteration and mineralization because it is below the level of supergene oxidation, mostly outside the contact metamorphic aureole of the Jurassic Goldstrike stock, has small, high-grade ore zones along fractures and Jurassic dikes, and has intervening areas with lower grade mineralization and barren rock. In 1997, prior to mining at Screamer, drill core intervals from barren and mineralized Popovich Formation were selected for geochemical and stable isotope analysis. The 332, five-foot core samples analyzed are from five holes separated by as much as 2000 feet (600 meters). The samples extend from the base of the Wispy unit up through the Planar and Soft sediment deformation units into the lower part of the upper Mud unit of the Popovich Formation.
NASA Astrophysics Data System (ADS)
Jeppson, T.; Tobin, H. J.
2014-12-01
The 11 March 2011 Tohoku-Oki earthquake (Mw=9.0) produced large displacements of ~50 meters near the Japan Trench. In order to understand earthquake propagation and slip stabilization in this environment, quantitative values of the real elastic properties of fault zones and their surrounding wall rock material is crucial. Because elastic and mechanical properties of faults and wallrocks are controlling factors in fault strength, earthquake generation and propagation, and slip stabilization, an understanding of these properties and their depth dependence is essential to understanding and accurately modeling earthquake rupture. In particular, quantitatively measured S-wave speeds, needed for estimation of elastic properties, are scarce in the literature. We report laboratory ultrasonic velocity measurements performed at elevated pressures, as well as the calculated dynamic elastic moduli, for samples of the rock surrounding the Tohoku earthquake principal fault zone recovered by drilling during IODP Expedition 343, Japan Trench Fast Drilling Project (JFAST). We performed measurements on five samples of gray mudstone from the hanging wall and one sample of underthrust brown mudstone from the footwall. We find P- and S-wave velocities of 2.0 to 2.4 km/s and 0.7 to 1.0 km/s, respectively, at 5 MPa effective pressure. At the same effective pressure, the hanging wall samples have shear moduli ranging from 1.4 to 2.2 GPa and the footwall sample has a shear modulus of 1.0 GPa. While these values are perhaps not surprising for shallow, clay-rich subduction zone sediments, they are substantially lower than the 30 GPa commonly assumed for rigidity in earthquake rupture and propagation models [e.g., Ide et al., 1993; Liu and Rice, 2005; Loveless and Meade, 2011]. In order to better understand the elastic properties of shallow subduction zone sediments, our measurements from the Japan Trench are compared to similar shallow drill core samples from the Nankai Trough, Costa Rica, Cascadia, and Barbados ridge subduction zones. We find that shallow subduction zone sediments in general have similarly low rigidity. These data provide important ground-truth values that can be used to parameterize fault slip models addressing the problem of shallow, tsunamigenic propagation of megathrust earthquakes.
Critical Elements in Reservoir Rocks of Produced Fluids Nevada and Utah August 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Stuart
Critical and trace element data for drill cuttings from Beowawe, Dixie Valley, and Roosevelt Hot Springs-Blundell geothermal production fields, for drill cuttings from Uinta basin producing oil-gas wells, and from outcrops in the Sevier Thermal Anomaly-Utah.
In situ studies of velocity in fractured crystalline rocks.
Moos, D.; Zoback, M.D.
1983-01-01
A study of the effects of macroscopic fractures on P and S wave velocities has been conducted in four wells drilled in granitic rock to depths between 0.6 and 1.2km. The effect of macroscopic fractures is to decrease both Vp and Vs and increase Vp/Vs. In wells with a relatively low density of macroscopic fractures, the in situ velocity is similar to that of saturated core samples under confining pressure in the laboratory, and there is a clear correlation between zones with macroscopic fractures and anomalously low velocities. In wells with numerous macroscopic fractures, the in situ velocity is lower than that of intact samples under pressure, and there is a correlation between the rate at which in situ velocity increases with depth and the rate at which the velocity of laboratory samples increases with pressure. Differences in in situ P wave velocity between wells cannot be explained solely by differences in the degree of macroscopic fracturing, thus emphasizing the importance of composition and microcracks on velocity.-from Authors
NASA Astrophysics Data System (ADS)
Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad; Azali, Sadegh Tarigh
2017-11-01
Thorough and realistic performance predictions are among the main requisites for estimating excavation costs and time of the tunneling projects. Also, NTNU/SINTEF rock drillability indices, including the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), and Cutter Life Index™ (CLI), are among the most effective indices for determining rock drillability. In this study, brittleness value (S20), Sievers' J-Value (SJ), abrasion value (AV), and Abrasion Value Cutter Steel (AVS) tests are conducted to determine these indices for a wide range of Iranian hard igneous rocks. In addition, relationships between such drillability parameters with petrographic features and index properties of the tested rocks are investigated. The results from multiple regression analysis revealed that the multiple regression models prepared using petrographic features provide a better estimation of drillability compared to those prepared using index properties. Also, it was found that the semiautomatic petrography and multiple regression analyses provide a suitable complement to determine drillability properties of igneous rocks. Based on the results of this study, AV has higher correlations with studied mineralogical indices than AVS. The results imply that, in general, rock surface hardness of hard igneous rocks is very high, and the acidic igneous rocks have a lower strength and density and higher S20 than those of basic rocks. Moreover, DRI is higher, while BWI is lower in acidic igneous rocks, suggesting that drill and blast tunneling is more convenient in these rocks than basic rocks.
Johnson, Jeffrey R.; Bell, James F.; Bender, Steve; ...
2016-07-01
Relative reflectace point spectra (400–840 nm) were acquired by the Chemistry and Camera (ChemCam) instrument on the Mars Science Laboratory (MSL) rover Curiosity in passive mode (no laser) of drill tailings and broken rock fragments near the rover as it entered the lower reaches of Mt. Sharp and of landforms at distances of 2–8 km. Freshly disturbed surfaces are less subject to the spectral masking effects of dust, and revealed spectral features consistent with the presence of iron oxides and ferric sulfates. Here, we present the first detection on Mars of a ~433 nm absorption band consistent with small abundancesmore » of ferric sulfates, corroborated by jarosite detections by the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument in the Mojave, Telegraph Peak, and Confidence Hills drilled samples. The disturbed materials near the Bonanza King region also exhibited strong 433 nm bands and negative near-infrared spectral slopes consistent with jarosite. ChemCam passive spectra of the Confidence Hills and Mojave drill tailings showed features suggestive of the crystalline hematite identified by CheMin analyses. The Windjana drill sample tailings exhibited flat, low relative reflectance spectra, explained by the occurrence of magnetite detected by CheMin. Passive spectra of Bonanza King were similar, suggesting the presence of spectrally dark and neutral minerals such as magnetite. Long-distance spectra of the “Hematite Ridge” feature (3–5 km from the rover) exhibited features consistent with crystalline hematite. The Bagnold dune field north of the Hematite Ridge area exhibited low relative reflectance and near-infrared features indicative of basaltic materials (olivine, pyroxene). Light-toned layers south of Hematite Ridge lacked distinct spectral features in the 400–840 nm region, and may represent portions of nearby clay minerals and sulfates mapped with orbital near-infrared observations. The presence of ferric sulfates such as jarosite in the drill tailings suggests a relatively acidic environment, likely associated with flow of iron-bearing fluids, associated oxidation, and/or hydrothermal leaching of sedimentary rocks. Combined with other remote sensing data sets, mineralogical constraints from ChemCam passive spectra will continue to play an important role in interpreting the mineralogy and composition of materials encountered as Curiosity traverses further south within the basal layers of the Mt. Sharp complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jeffrey R.; Bell, James F.; Bender, Steve
Relative reflectace point spectra (400–840 nm) were acquired by the Chemistry and Camera (ChemCam) instrument on the Mars Science Laboratory (MSL) rover Curiosity in passive mode (no laser) of drill tailings and broken rock fragments near the rover as it entered the lower reaches of Mt. Sharp and of landforms at distances of 2–8 km. Freshly disturbed surfaces are less subject to the spectral masking effects of dust, and revealed spectral features consistent with the presence of iron oxides and ferric sulfates. Here, we present the first detection on Mars of a ~433 nm absorption band consistent with small abundancesmore » of ferric sulfates, corroborated by jarosite detections by the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument in the Mojave, Telegraph Peak, and Confidence Hills drilled samples. The disturbed materials near the Bonanza King region also exhibited strong 433 nm bands and negative near-infrared spectral slopes consistent with jarosite. ChemCam passive spectra of the Confidence Hills and Mojave drill tailings showed features suggestive of the crystalline hematite identified by CheMin analyses. The Windjana drill sample tailings exhibited flat, low relative reflectance spectra, explained by the occurrence of magnetite detected by CheMin. Passive spectra of Bonanza King were similar, suggesting the presence of spectrally dark and neutral minerals such as magnetite. Long-distance spectra of the “Hematite Ridge” feature (3–5 km from the rover) exhibited features consistent with crystalline hematite. The Bagnold dune field north of the Hematite Ridge area exhibited low relative reflectance and near-infrared features indicative of basaltic materials (olivine, pyroxene). Light-toned layers south of Hematite Ridge lacked distinct spectral features in the 400–840 nm region, and may represent portions of nearby clay minerals and sulfates mapped with orbital near-infrared observations. The presence of ferric sulfates such as jarosite in the drill tailings suggests a relatively acidic environment, likely associated with flow of iron-bearing fluids, associated oxidation, and/or hydrothermal leaching of sedimentary rocks. Combined with other remote sensing data sets, mineralogical constraints from ChemCam passive spectra will continue to play an important role in interpreting the mineralogy and composition of materials encountered as Curiosity traverses further south within the basal layers of the Mt. Sharp complex.« less
Seismic refraction survey of the ANS preferred site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.K.; Hopkins, R.A.; Doll, W.E.
1992-02-01
Between September 19, 1991 and October 8, 1991 personnel from Martin Marietta Energy Systems, Inc. (Energy Systems), Automated Sciences Group, Inc., and Marrich, Inc. performed a seismic refraction survey at the Advanced Neutron Source (ANS) preferred site. The purpose of this survey was to provide estimates of top-of-rock topography, based on seismic velocities, and to delineate variations in rock and soil velocities. Forty-four seismic refraction spreads were shot to determine top-of-rock depths at 42 locations. Nine of the seismic spreads were shot with long offsets to provide 216 top-of-rock depths for 4 seismic refraction profiles. The refraction spread locations weremore » based on the grid for the ANS Phase I drilling program. Interpretation of the seismic refraction data supports the assumption that the top-of-rock surface generally follows the local topography. The shallow top-of-rock interface interpreted from the seismic refraction data is also supported by limited drill information at the site. Some zones of anomalous data are present that could be the result of locally variable weathering, a localized variation in shale content, or depth to top-of-rock greater than the site norm.« less
Molecular Analysis of Endolithic Microbial Communities in Volcanic Glasses
NASA Astrophysics Data System (ADS)
di Meo, C. A.; Giovannoni, S.; Fisk, M.
2002-12-01
Terrestrial and marine volcanic glasses become mineralogically and chemically altered, and in many cases this alteration has been attributed to microbial activity. We have used molecular techniques to study the resident microbial communities from three different volcanic environments that may be responsible for this crustal alteration. Total microbial DNA was extracted from rhyolite glass of the 7 million year old Rattlesnake Tuff in eastern Oregon. The DNA was amplified using the polymerase chain reaction (PCR) with bacterial primers targeting the 16S rRNA gene. This 16S rDNA was cloned and screened with restriction fragment length polymorphism (RFLP). Out of 89 total clones screened, 46 belonged to 13 different clone families containing two or more members, while 43 clones were unique. Sequences of eight clones representing the most dominant clone families in the library were 92 to 97% similar to soil bacterial species. In a separate study, young pillow basalts (<20 yrs old) from six different sites along the ridge axis at 9°N, East Pacific Rise were examined for microbial life. Total DNA was extracted from the basalt glass and screened for the presence of both bacteria and archaea using the PCR. Repeated attempts with different primer sets yielded no bacterial genes, whereas archaeal genes were quite abundant. A genetic fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP), was used to compare the archaeal community compositions among the six different basalts. Filtered deep-sea water samples (~15 L) were examined in parallel to identify any overlap between rock- and seawater-associated archaea. The six rock community profiles were quite similar to each other, and the background water communities were also similar, respectively. Both the rock and water communities shared the same dominant peak. To identify the T-RFLP peaks corresponding to the individual members of the rock and seawater communities, clone libraries of the archaeal 16S rDNA for one basalt sample (Dive 3718) and its corresponding background water sample were constructed. The most abundant archaeal genes were closely related to uncultured Group I marine Crenarchaeota that have been previously identified from similar deep-sea habitats. These archaeal genes collectively correspond to the dominant T-RFLP peak present in both the rock and water samples. In a third study, we investigated the microbial community residing in a Hawaiian Scientific Drilling Program core collected near Hilo, Hawaii. Total microbial DNA was extracted from a depth of 1351 m in the drill core (ambient temperature in the drill hole ~16°C), where petrographic evidence suggested the presence of microbial alteration. Archaeal 16S rRNA genes were amplified, cloned, and twelve clones representing the most abundant groups were sequenced. Eleven out of the twelve clones were 97 to 99% similar to Group I marine Crenarchaeota, while the remaining clone was 95% similar to Euryarchaeota, based on BLAST searches of the GenBank database. Our community-level approach to studying microbes living in volcanic glasses has provided a greater understanding of the microbial communities that potentially alter these materials.
Taming of a Wild Research Well in Yellowstone National Park during November 1992
Fournier, Robert O.; Moore, Michael M.
2008-01-01
Much of our current understanding of Yellowstone's geothermal areas comes from research drilling by the USGS during 1967 and 1968. Thirteen wells were drilled in thermal areas around the park. Scientists collected waters and rocks, measured temperatures and pressures and performed other tests to characterize the shallow subsurface at Yellowstone. Most wells were plugged and abandoned, but a few were left open for future scientific tests and sampling. One of those wells, the Y8, was located at Biscuit Basin, 2 miles north of Old Faithful. In November 1992, a valve at the ground surface failed, leading to a blowout, an uncontrolled eruption of steam and hot water. The USGS and Yellowstone National Park worked with a drilling contractor to control the flow and plug the well. The lead scientist, Robert Fournier, used video taken by the drilling contractor, Tonto Services, to create this fascinating 28-minute-long film. It is followed by a short news story by CNN, also from November 1992. Fifteen years later, we felt that the video was of sufficient scientific and historical interest that it was worth publishing as a USGS Open-file report, where it can be accessed into the future. Enjoy!
NASA Astrophysics Data System (ADS)
Guarino, Vincenza; Azzone, Rogério Guitarrari; Brotzu, Pietro; de Barros Gomes, Celso; Melluso, Leone; Morbidelli, Lucio; Ruberti, Excelso; Tassinari, Colombo Celso Gaeta; Brilli, Mauro
2012-01-01
The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks (87Sr/86Sr = 0.70661-0.70754 and 143Nd/144Nd = 0.51169-0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.
Experimental and numerical study of drill bit drop tests on Kuru granite.
Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko
2017-01-28
This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).
Experimental and numerical study of drill bit drop tests on Kuru granite
Kane, Alexandre; Hokka, Mikko
2017-01-01
This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit–rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist–Johnson–Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956511
NASA Astrophysics Data System (ADS)
Huffman, K. A.; Saffer, D. M.
2014-12-01
Knowing the magnitude of tectonic stress and rock strength at seismically active margins is important towards understanding fault strength and failure mechanics, yet both are difficult to measure in situ. Recent work at subduction margins, including Integrated Ocean Drilling Program (IODP) Nankai Trough Subduction Zone Experiment (NanTroSEIZE) drillsites, uses the width of compressional wellbore breakouts (BO), which depends on far field stress conditions, rock strength, and borehole annular pressure (APRS), to estimate the magnitude of horizontal principal stresses (SHmax and Shmin); estimates are problematic due to uncertainty in rock strength (unconfined compressive strength/UCS- for which direct measurements are scarce) and rheology that govern stress distribution at the wellbore. We conduct a novel case study at IODP Site C0002, where a hole was drilled twice with different boundary conditions, providing an opportunity to define in situ stress and strength from field data. Site C0002 is the main deep riser borehole for NanTroSEIZE, located near the seaward edge of the Kumano Basin above the seismogenic plate boundary, ~30 km from the trench. Several boreholes were drilled at the site. During IODP Expedition 314 in 2007, Hole C0002A was drilled with a suite of logging while drilling (LWD) tools to 1401 mbsf in a riserless mode. Hole C0002F, ~70 m away, was drilled to 862 mbsf in riserless mode during Exp. 326 in 2010 and deepened to 2005 mbsf in a riser mode during Expedition 338 in 2012-2013. Increased APRS achieved by riser drilling stabilizes the borehole and suppresses BO, consistent with resistivity imaging data from Exp. 314 that document well-developed, continuous BO throughout the borehole, and data from Expedition 338 indicating few BO. We use a semi-Newtonian approach to solve for stress and UCS consistent with the observed BO width and measured APRS in the two holes over the interval from 862-2005 mbsf. Effective SHmax ranges from ~10-30 MPa and indicate a strike-slip or thrust regime. Our results indicate UCS is higher than predicted by empirical relations and a small suite of laboratory tests by as much as 20 MPa. This apparent discrepancy may indicate that the failure criterion, or assumed distribution of stresses around the wellbore in analyses of far field stress, may not be appropriate in this setting.
NASA Astrophysics Data System (ADS)
Bezminabadi, Sina Norouzi; Ramezanzadeh, Ahmad; Esmaeil Jalali, Seyed-Mohammad; Tokhmechi, Behzad; Roustaei, Abbas
2017-03-01
Rate of penetration (ROP) is one of the key indicators of drilling operation performance. The estimation of ROP in drilling engineering is very important in terms of more accurate assessment of drilling time which affects operation costs. Hence, estimation of a ROP model using operational and environmental parameters is crucial. For this purpose, firstly physical and mechanical properties of rock were derived from well logs. Correlation between the pair data were determined to find influential parameters on ROP. A new ROP model has been developed in one of the Azadegan oil field wells in southwest of Iran. The model has been simulated using Multiple Nonlinear Regression (MNR) and Artificial Neural Network (ANN). By adding the rock properties, the estimation of the models were precisely improved. The results of simulation using MNR and ANN methods showed correlation coefficients of 0.62 and 0.87, respectively. It was concluded that the performance of ANN model in ROP prediction is fairly better than MNR method.
Active microbial biofilms in deep poor porous continental subsurface rocks.
Escudero, Cristina; Vera, Mario; Oggerin, Monike; Amils, Ricardo
2018-01-24
Deep continental subsurface is defined as oligotrophic environments where microorganisms present a very low metabolic rate. To date, due to the energetic cost of production and maintenance of biofilms, their existence has not been considered in poor porous subsurface rocks. We applied fluorescence in situ hybridization techniques and confocal laser scanning microscopy in samples from a continental deep drilling project to analyze the prokaryotic diversity and distribution and the possible existence of biofilms. Our results show the existence of natural microbial biofilms at all checked depths of the Iberian Pyrite Belt (IPB) subsurface and the co-occurrence of bacteria and archaea in this environment. This observation suggests that multi-species biofilms may be a common and widespread lifestyle in subsurface environments.
NASA Astrophysics Data System (ADS)
Kukowski, Nina; Totsche, Kai Uwe; Abratis, Michael; Habisreuther, Annett; Ward, Timothy; Influins Drilling-Team
2014-05-01
To shed light on the coupled dynamics of near surface and deep fluids in a sedimentary basin on various scales, ranging from the pore scale to the extent of an entire basin, is of paramount importance to understand the functioning of sedimentary basins fluid systems and therefore e.g. drinking water supply. It is also the fundamental goal of INFLUINS (INtegrated FLuid dynamics IN Sedimentary basins), a research initiative of several groups from Friedrich-Schiller University of Jena and their partners. This research association is focusing on the nearby Thuringian basin, a well confined, small intra-continental sedimentary basin in Germany, as a natural geo laboratory. In a multidisciplinary approach, embracing different fields of geophysics like seismic reflection profiling or airborne geomagnetics, structural geology, sedimentology, hydrogeology, hydrochemistry and hydrology, remote sensing, microbiology and mineralogy, among others, and including both, field-based, laboratory-based and computer-based research, an integral INFLUINS topic is the potential interaction of aquifers within the basin and at its rims. The Thuringian basin, which is composed of sedimentary rocks from the latest Paleozoic and mainly Triassic, is particularly suited to undertake such research as it is of relative small size, about 50 to 100 km, easily accessible, and quite well known from previous studies, and therefore also a perfect candidate for deep drilling. After the acquisition of 76 km seismic reflection data in spring 2011, to get as much relevant data as possible from a deep drilling at the cross point between two seismic profiles with a limited financial budget, an optimated core sampling and measuring strategy including partial coring, borehole geophysics and pump tests as well as a drill hole design, which enables for later continuation of drilling down to the basement, had been developed. Drilling Triassic rocks from Keuper to lower Buntsandstein was successfully realised down to a final depth of 1179 m from late June to mid-September 2013. Here, we give an introduction into the layout of INFLUINS deep drilling together with a summary of preliminary results, e.g. on the nature of the boundaries between Muschelkalk and Buntsandstein, and between upper and middle Buntsandstein, a complete core recovery of upper Buntsandstein saliniferous formations as well as unexpectedly low porosity and permeability of potential aquifers.
Subsurface Formation Evaluation on Mars: Application of Methods from the Oil Patch
NASA Astrophysics Data System (ADS)
Passey, Q. R.
2006-12-01
The ability to drill 10- to 100-meter deep wellbores on Mars would allow for evaluation of shallow subsurface formations enabling the extension of current interpretations of the geologic history of this planet; moreover, subsurface access is likely to provide direct evidence to determine if water or permafrost is present. Methodologies for evaluating sedimentary rocks using drill holes and in situ sample and data acquisition are well developed here on Earth. Existing well log instruments can measure K, Th, and U from natural spectral gamma-ray emission, compressional and shear acoustic velocities, electrical resistivity and dielectric properties, bulk density (Cs-137 or Co-60 source), photoelectric absorption of gamma-rays (sensitive to the atomic number), hydrogen index from epithermal and thermal neutron scattering and capture, free hydrogen in water molecules from nuclear magnetic resonance, formation capture cross section, temperature, pressure, and elemental abundances (C, O, Si, Ca, H, Cl, Fe, S, and Gd) using 14 MeV pulsed neutron activation more elements possible with supercooled Ge detectors. Additionally, high-resolution wellbore images are possible using a variety of optical, electrical, and acoustic imaging tools. In the oil industry, these downhole measurements are integrated to describe potential hydrocarbon reservoir properties: lithology, mineralogy, porosity, depositional environment, sedimentary and structural dip, sedimentary features, fluid type (oil, gas, or water), and fluid amount (i.e., saturation). In many cases it is possible to determine the organic-carbon content of hydrocarbon source rocks from logs (if the total organic carbon content is 1 wt% or greater), and more accurate instruments likely could be developed. Since Martian boreholes will likely be drilled without using opaque drilling fluids (as generally used in terrestrial drilling), additional instruments can be used such as high resolution direct downhole imaging and other surface contact measurements (such as IR spectroscopy and x-ray fluorescence). However, such wellbores would require modification of some instruments since conventional drilling fluids often provide the coupling of the instrument sensors to the formation (e.g., sonic velocity and galvanic resistivity measurements). The ability to drill wellbores on Mars opens up new opportunities for exploration but also introduces additional technical challenges. Currently it is not known if all existing terrestrial logging instruments can be miniaturized sufficiently for a shallow Mars wellbore, but the existing well logging techniques and instruments provide a solid framework on which to build a Martian subsurface evaluation program.
Hicks, Joshua; Adrian, Betty
2009-01-01
The Core Research Center (CRC) of the U.S. Geological Survey (USGS), located at the Denver Federal Center in Lakewood, Colo., currently houses rock core from more than 8,500 boreholes representing about 1.7 million feet of rock core from 35 States and cuttings from 54,000 boreholes representing 238 million feet of drilling in 28 States. Although most of the boreholes are located in the Rocky Mountain region, the geologic and geographic diversity of samples have helped the CRC become one of the largest and most heavily used public core repositories in the United States. Many of the boreholes represented in the collection were drilled for energy and mineral exploration, and many of the cores and cuttings were donated to the CRC by private companies in these industries. Some cores and cuttings were collected by the USGS along with other government agencies. Approximately one-half of the cores are slabbed and photographed. More than 18,000 thin sections and a large volume of analytical data from the cores and cuttings are also accessible. A growing collection of digital images of the cores are also becoming available on the CRC Web site Internet http://geology.cr.usgs.gov/crc/.
NASA Astrophysics Data System (ADS)
Huffman, Katelyn A.
Understanding the orientation and magnitude of tectonic stress in active tectonic margins like subduction zones is important for understanding fault mechanics. In the Nankai Trough subduction zone, faults in the accretionary prism are thought to have historically slipped during or immediately following deep plate boundary earthquakes, often generating devastating tsunamis. I focus on quantifying stress at two locations of interest in the Nankai Trough accretionary prism, offshore Southwest Japan. I employ a method to constrain stress magnitude that combines observations of compressional borehole failure from logging-while-drilling resistivity-at-the-bit generated images (RAB) with estimates of rock strength and the relationship between tectonic stress and stress at the wall of a borehole. I use the method to constrain stress at Ocean Drilling Program (ODP) Site 808 and Integrated Ocean Drilling Program (IODP) Site C0002. At Site 808, I consider a range of parameters (assumed rock strength, friction coefficient, breakout width, and fluid pressure) in the method to constrain stress to explore uncertainty in stress magnitudes and discuss stress results in terms of the seismic cycle. I find a combination of increased fluid pressure and decreased friction along the frontal thrust or other weak faults could produce thrust-style failure, without the entire prism being at critical state failure, as other kinematic models of accretionary prism behavior during earthquakes imply. Rock strength is typically inferred using a failure criterion and unconfined compressive strength from empirical relations with P-wave velocity. I minimize uncertainty in rock strength by measuring rock strength in triaxial tests on Nankai core. I find strength of Nankai core is significantly less than empirical relations predict. I create a new empirical fit to our experiments and explore implications of this on stress magnitude estimates. I find using the new empirical fit can decrease stress predicted in the method by as much as 4 MPa at Site C0002. I constrain stress at Site C0002 using geophysical logging data from two adjacent boreholes drilled into the same sedimentary sequence with different drilling conditions in a forward model that predicts breakout width over a range of horizontal stresses (where SHmax is constrained by the ratio of stresses that would produce active faulting and Shmin is constrained from leak-off-tests) and rock strength. I then compare predicted breakout widths to observations of breakout widths from RAB images to determine the combination of stresses in the model that best match real world observations. This is the first published method to constrain both stress and strength simultaneously. Finally, I explore uncertainty in rock behavior during compressional breakout formation using a finite element model (FEM) that predicts Biot poroelastic changes in fluid pressure in rock adjacent to the borehole upon its excavation and explore the effect this has on rock failure. I test a range of permeability and rock stiffness. I find that when rock stiffness and permeability are in the range of what exists at Nankai, pore fluid pressure increase +/- 45° from Shmin and can lead to weakening of wall rock and a wider compressional failure zone than what would exist at equilibrium conditions. In a case example at, we find this can lead to an overestimate of tectonic stress using compressional failures of ~2 MPa in the area of the borehole where fluid pressure increases. In areas around the borehole where pore fluid decreases (+/- 45° from SHmax), the wall rock can strengthen which suppresses tensile failure. The implications of this research is that there are many potential pitfalls in the method to constrain stress using borehole breakouts in Nankai Trough mudstone, mostly due to uncertainty in parameters such as strength and underlying assumptions regarding constitutive rock behavior. More laboratory measurement and/or models of rock properties and rock constitutive behavior is needed to ensure the method is accurately providing constraints on stress magnitude. (Abstract shortened by ProQuest.).
Gascoyne, M.; Miller, N.H.; Neymark, L.A.
2002-01-01
Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of 'bomb' 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th/234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95??0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10??0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean = 0.94??0.07). These data indicate that 234U has been removed from the rock samples in the last ???350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock, More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U sorption, precipitation and re-solution are believed to be occurring and would account for these anomalous results but have not been included in the model. Despite the difficulties, the U-series data suggest that fractured rock, specifically the Sundance and Drill Hole Wash faults, are not preferred flow paths for groundwater flowing through the Topopah Spring tuff and, by implication, rapid-flow, within 50 a, from the surface to the level of the ESF is improbable. ?? 2002 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Micheuz, Peter; Quandt, Dennis; Kurz, Walter
2017-04-01
International Ocean Discovery Program (IODP) expeditions 352 and 351 drilled through oceanic crust of the Philippine Sea plate. The two study areas are located near the outer Izu-Bonin-Mariana (IBM) fore arc and in the Amami Sankaku Basin. The primary objective was to improve our understanding of supra-subduction zones (SSZ) and the process of subduction initiation. The recovered drill cores during IODP expedition 352 represent approximately 50 Ma old fore arc basalts (FAB) and boninites revealing an entire volcanic sequence of a SSZ. Expedition 351 drilled FAB like oceanic crust similar in age to the FABs of expedition 352. In this study we present data on vein microstructures, geochemical data and isotopic signatures of vein precipitates to give new insights into fluid flow and precipitation processes and deformation within the Izu-Bonin fore arc. Veins formed predominantly as a consequence of hydrofracturing resulting in the occurrence of branched vein systems and brecciated samples. Along these hydrofractures the amount of altered host rock fragments varies and locally alters the host rock completely to zeolites and carbonates. Subordinately extensional veins released after the formation of the host rocks. Cross-cutting relationships of different vein types point to multiple fracturing events subsequently filled with minerals originating from a fluid with isotopic seawater signature. Based on vein precipitates, their morphology and their growth patterns four vein types have been defined. Major vein components are (Mg-) calcite and various zeolites determined by Raman spectra and electron microprobe analyses. Zeolites result from alteration of volcanic glass during interaction with a seawaterlike fluid. Type I veins which are characterized by micritic infill represent neptunian dykes. They predominantly occur in the upper levels of drill cores being the result of an initial volume change subsequently to crystallization of the host rocks. Type II veins are characterized by blocky carbonates and idiomorphic to blocky zeolites. Blocky carbonates locally exhibit zonation patterns. Type III and type IV veins are both assumed to be extensional veins. Type III is characterized by syntaxial growth and elongate blocky carbonate minerals. They predominantly occur as asymmetric syntaxial veins, locally exhibiting more than one crack-seal event. Type IV veins are defined as antitaxial fibrous carbonates. Type II veins commonly show deformation microstructures like twinning (type I/II twins), slightly curved twins, and subgrain boundaries indicative of incipient plastic deformation. Based on these observations differential stresses around 50 MPa were needed to deform vein minerals, presumably related to IBM fore arc extension due to the retreat of the subducted Pacific plate. We acknowledge financial support by the Austrian Research Fund (P27982-N29) to W. Kurz
NASA Astrophysics Data System (ADS)
Elbra, Tiiu; Karlqvist, Ronnie; Lassila, Ilkka; Høgström, Edward; Pesonen, Lauri J.
2011-01-01
Petrophysical, in particular seismic velocity, measurements of the Outokumpu deep drill core (depth 2.5 km) have been carried out to characterize the geophysical nature of the Paleoproterozoic crustal section of eastern Finland and to find lithological and geophysical interpretations to the distinct crustal reflectors as observed in seismic surveys. The results show that different lithological units can be identified based on the petrophysical data. The density of the samples remained nearly constant throughout the drilled section. Only diopside-tremolite skarns and black schists exhibit higher densities. The samples are dominated by the paramagnetic behaviour with occasional ferromagnetic signature caused by serpentinitic rocks. Large variations in seismic velocities, both at ambient pressure and under in situ crustal conditions are observed. The porosity of the samples, which is extremely low, is either intrinsic by nature or caused by decompaction related to fracturing during the core retrieval. It is noteworthy that these microfractures have dramatically lowered the VP and VS values. From the measured velocities and density data we have calculated the seismic impedances, Young's modulus and Poisson's ratios for the lithological units of the Outokumpu section and from these data the reflection coefficients for the major lithological boundaries, evident in the surveyed section, were determined. The data show that the strong and distinct reflections visible in wide-angle seismic surveys are caused by interfaces between diopside-tremolite skarn and either serpentinites, mica schist or black schist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Radtke
The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating whichmore » minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.« less
Transducer for downhole drilling components
Hall, David R; Fox, Joe R
2006-05-30
A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.
Planning for the Paleomagnetic Investigations of Returned Samples from Mars
NASA Astrophysics Data System (ADS)
Weiss, B. P.; Beaty, D. W.; McSween, H. Y., Jr.; Czaja, A. D.; Goreva, Y.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Pratt, L. M.; Sephton, M. A.; Steele, A.; Hays, L. E.; Meyer, M. A.
2016-12-01
The red planet is a magnetic planet. Mars' iron-rich surface is strongly magnetized, likely dating back to the Noachian period when the surface may have been habitable. Paleomagnetic measurements of returned samples could transform our understanding of the Martian dynamo and its connection to climatic and planetary thermal evolution. Because the original orientations of Martian meteorites are unknown, all Mars paleomagnetic studies to date have only been able to measure the paleointensity of the Martian field. Paleomagnetic studies from returned Martian bedrock samples would provide unprecedented geologic context and the first paleodirectional information on Martian fields. The Mars 2020 rover mission seeks to accomplish the first leg by preparing for the potential return of 31 1 cm-diameter cores of Martian rocks. The Returned Sample Science Board (RSSB) has been tasked to advise the Mars 2020 mission in how to best select and preserve samples optimized for paleomagnetic measurements. A recent community-based study (Weiss et al., 2014) produced a ranked list of key paleomagnetism science objectives, which included: 1) Determine the intensity of the Martian dynamo 2) Characterize the dynamo reversal frequency with magnetostratigraphy 3) Constrain the effects of heating and aqueous alteration on the samples 4) Constrain the history of Martian tectonics Guided by these objectives, the RSSB has proposed four key sample quality criteria to the Mars 2020 mission: (a) no exposure to fields >200 mT, (b) no exposure to temperatures >100 °C, (c) no exposure to pressures >0.1 GPa, and (d) acquisition of samples that are absolutely oriented with respect to bedrock with a half-cone uncertainty of <5°. Our measurements of a Mars 2020 prototype drill have found that criteria (a-c) should be met by the drilling process. Furthermore, the core plate strike and dip will be measured to better than 5° for intact drill cores; we are working with the mission to establish ways to determine the core's angular orientation with respect to rotation around the drill hole axis. The next stage of our work is to establish whether and how these sample criteria would be maintained throughout the potential downstream missions that would return the samples to Earth.
Litho- and chemostratigraphy of the Flatreef PGE deposit, northern Bushveld Complex
NASA Astrophysics Data System (ADS)
Grobler, D. F.; Brits, J. A. N.; Maier, W. D.; Crossingham, A.
2018-05-01
The Flatreef is a world-class platinum-group element (PGE) deposit recently discovered down-dip from existing mining and exploration operations on the northern limb of the Bushveld Complex. Current indicated resources stand at 42 Moz PGE (346 Mt with 3.8 g/t Pt+Pd+Rh+Au, 0.32% Ni and 0.16% Cu) which, in the case of Pt, is equivalent to 10 years global annual production, making it one of the largest PGE deposits on earth. The grade and thickness of the Flatreef mineralised interval is highly unusual, with some drill core intersections containing up to 4.5 g/t Pt+Pd+Rh+Au over 90 m in drill core. Here, we document the down-dip and along-strike litho- and chemostratigraphy of the Flatreef and its footwall and hanging wall rocks, based on a diamond drill core database totalling > 720 km. At the base of the sequence intersected in the drill cores are up to 700-m-thick sills of ultramafic rocks (dunite, harzburgite, pyroxenite) emplaced into pelitic, dolomitic, and locally quartzitic and evaporitic rocks belonging to the Duitschland Formation of the Transvaal Supergroup. Next is an approximately 100-200-m sequence of low-grade-sulphide-mineralised, layered mafic-ultramafic rocks containing abundant sedimentary xenoliths and, in places, several chromite seams or stringers. This is overlain by a 100-m-thick sequence of well-mineralised mafic-ultramafic rocks (the Flatreef sensu strictu), overlain by a laterally persistent mottled compositional analogies at the base of > 1 km of homogenous Main Zone gabbronorite. Based on stratigraphic, lithological and compositional alanalogies to the layered rocks in the eastern and western Bushveld Complex, we correlate the Flatreef and its chromite bearing footwall rocks with the Upper Critical Zone, notably the interval between the UG2 chromitite and the Bastard Reef as found elsewhere in the Bushveld Complex. This includes recognition of a Merensky Reef correlative. The ultramafic rocks below the main chromitite seam (UG2 correlative) in the Flatreef footwall are correlated with the Lower Critical and Lower zones. However, compared to the western and eastern Bushveld limbs, the studied sequence is strongly enriched in sulphide and PGE, many of the rocks show elevated CaO, K2O, Rb and Zr contents, and lateral continuity of layers between drill cores is less pronounced than elsewhere in the Bushveld, whereas ultramafic units are locally considerably thickened. These compositional and lithological traits are interpreted to result from a range of processes which include contamination with calcsilicate and hornfels, intrusion of granitic magmas, and the influence of multiple structural events such as pre- to syn-emplacement regional-scale open folding and growth faults. Evidence for the existence of potholes also exists. In the shallow, up-dip portions of the project area, the entire magmatic sequence below the Main Zone becomes increasingly contaminated to the extent that individual units are somewhat more difficult to correlate between drill cores. This package represents the Platreef as exposed in outcrop and shallow bore holes across much of the northern limb of the Bushveld Complex. The new data presented here thus indicate that the Platreef is a relatively more contaminated up-dip extension of parts of the Critical and Lower zones.
High power laser-mechanical drilling bit and methods of use
Grubb, Daryl L.; Kolachalam, Sharath K.; Faircloth, Brian O.; Rinzler, Charles C.; Allen, Erik C.; Underwood, Lance D.; Zediker, Mark S.
2017-02-07
An apparatus with a high power laser-mechanical bit for use with a laser drilling system and a method for advancing a borehole. The laser-mechanical bit has a beam path and mechanical removal devices that provide for the removal of laser-affected rock to advance a borehole.
International Ocean Discovery Program U.S. Implementing Organization
coordinates seagoing expeditions to study the history of the Earth recorded in sediments and rocks beneath the Internship :: Minorities in Scientific Ocean Drilling Fellowship Education Deep Earth Academy logo :: joidesresolution.org :: For students :: For teachers :: For scientists :: View drill sites in Google Earth Export
Ocean Drilling Simulation Activity.
ERIC Educational Resources Information Center
Telese, James A.; Jordan, Kathy
The Ocean Drilling Project brings together scientists and governments from 20 countries to explore the earth's structure and history as it is revealed beneath the oceans' basins. Scientific expeditions examine rock and sediment cores obtained from the ocean floor to learn about the earth's basic processes. The series of activities in this…
A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, R.E.; McKay, D.M.; Moses, V.
1995-12-31
A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.
NASA Astrophysics Data System (ADS)
Cevizci, Halim
2014-10-01
In this study, the plaster stemming application for blasting at a basalt quarry is studied. Drill cuttings are generally used in open pits and quarries as the most common stemming material since these are most readily available at blast sites. However, dry drill cuttings eject very easily from blastholes without offering much resistance to blast energy. The plaster stemming method has been found to be better than the drill cuttings stemming method due to increased confinement inside the hole and better utilization of blast explosive energy in the rock. The main advantage of the new stemming method is the reduction in the cost of blasting. At a basalt quarry, blasting costs per unit volume of rock were reduced to 15% by increasing burden and spacing distances. In addition, better fragmentation was obtained by using the plaster stemming method. Blast trials showed that plaster stemming produced finer material. In the same blast tests, +30 cm size fragments were reduced to 47.3% of the total, compared to 32.6% in the conventional method of drill cuttings stemming. With this method of stemming, vibration and air shock values increased slightly due to more blast energy being available for rock breakage but generally these increased values were small and stayed under the permitted limit for blast damage criteria unless measuring distance is too close.
NASA Astrophysics Data System (ADS)
Devi, Elok A.; Rachman, Faisal; Satyana, Awang H.; Fahrudin; Setyawan, Reddy
2018-02-01
The Eocene Lower Ngimbang carbonaceous shales are geochemically proven hydrocarbon source rocks in the East Java Basin. Sedimentary facies of source rock is important for the source evaluation that can be examined by using biomarkers and carbon-13 isotopes data. Furthermore, paleogeography of the source sedimentation can be reconstructed. The case study was conducted on rock samples of Lower Ngimbang from two exploration wells drilled in Cepu area, East Java Basin, Kujung-1 and Ngimbang-1 wells. The biomarker data include GC and GC-MS data of normal alkanes, isoprenoids, triterpanes, and steranes. Carbon-13 isotope data include saturate and aromatic fractions. Various crossplots of biomarker and carbon-13 isotope data of the Lower Ngimbang source samples from the two wells show that the source facies of Lower Ngimbang shales changed from transitional/deltaic setting at Kujung-1 well location to marginal marine setting at Ngimbang-1 well location. This reveals that the Eocene paleogeography of the Cepu area was composed of land area in the north and marine setting to the south. Biomarkers and carbon-13 isotopes are powerful data for reconstructing paleogeography and paleofacies. In the absence of fossils in some sedimentary facies, these geochemical data are good alternatives.
Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp
NASA Technical Reports Server (NTRS)
McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.;
2015-01-01
The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.
NASA Astrophysics Data System (ADS)
Jannasch, H. W.; Wheat, G. C.; Hulme, S.; Becker, K.; Fisher, A. T.; Davis, E. E.
2008-12-01
Holes 1301A and 1301B were drilled, cased, and instrumented with long-term, subseafloor observatories (CORKs) on the eastern flank of the Juan de Fuca Ridge in Summer 2004. These holes penetrate 265 m of sediment and the uppermost 108 to 318 m of 3.5 Ma basaltic basement, in an area of vigorous, warm (64C) hydrothermal circulation. The new boreholes were located 1 km south and 2.4 km southwest of instrumented Holes 1026B and 1027C, respectively, that were emplaced eight years earlier. This network of four instrumented boreholes was established as part of a long-term, cross-hole experiment that will elucidate hydrologic properties and the nature and dynamics of microbial ecosystems within the upper oceanic crust, in a well defined geochemical and physical context. Downhole instrumented OsmoSampler packages in Holes 1301A and 1026B were replaced by submersible in summer 2008, as part of a program of observatory servicing in preparation for the next drilling expedition and the initiation of cross-hole experiments in this area. The borehole instrument package from Hole 1301A sampled borehole fluids within the upper 107.5 m of basaltic crust during a four-year period of drilling disturbance, self-sustaining flow of cold bottom water into basement, and subsequent recovery to near-predrilling chemical and thermal conditions. Because the borehole was incompletely sealed at the time of initial installation, bottom seawater flowed down into the borehole during the first three years following emplacement, driven by the higher density of cold bottom water relative to warm formation fluid. Borehole thermal records during the first 1.5 years show that temperatures in basement were below 10 C, and fluid samples from the borehole have a chemical composition similar to bottom seawater. Temperatures fluctuated for the next 1.5 years between 10 and 30 C, and the fluid composition began to shift towards that seen in regional basement fluids sampled at nearby Baby Bare outcrop and from Hole 1026B. In early September 2007 the natural formation overpressure overcame the excess pressure of cold bottom water and began to vent a mixture of recently-recharged bottom water and warm formation fluid. The present day composition of fluid venting from Hole 1301A is very similar to that sampled from Baby Bare outcrop. The progression from bottom seawater to formation fluid chemistry is not conservative relative to temperature, most likely because of water-rock and microbial reactions within basaltic basement.
NASA Astrophysics Data System (ADS)
Stewart, H. A.; Stevenson, A.; Wilson, M.; Pheasant, I.
2014-12-01
The British Geological Survey (BGS) have developed a number of coring and drilling systems for use in science projects in the UK and internationally. These include 3m and 6m vibrocoring systems; a 5m combined rockdrill and vibrocorer system; an oriented drill designed specifically to recover samples for use in palaeomagnetic studies; and a 55m rockdrill (RockDrill2). Recently, BGS have developed an autonomous, battery-operated vibrocoring system compatible with both the 3m and 6m vibrocorers, which can be used in water depths up to 6000m. Use of a battery system negates the use of an umbilical power cable to operate the vibrocorer, which instead can be deployed using the vessels A-frame and winch. The autonomous battery system comprises six 48V 19Ah batteries connected in series to give a 288V power source, a microprocessor and real-time clock. Data from the sensors are recorded with a time-stamp, giving diagnostic information that can be downloaded once the system is returned to the deck. The vibrocorer is operated via a pre-set program which is set up before deployment.The new system not only allows vibrocoring in greater water depths, but can also be used on smaller vessels where deck space is limited as a separate winch and umbilical is not required. The autonomous system was used for the first time in June 2014 on-board the RV Belgica to acquire samples from 20 sites in the Dangeard and Explorer canyon heads, off the southwest of England in 430m water depth.Another development is the BGS 55m rockdrill (RockDrill2), a remotely operated sampling system capable of coring up to 55m below sea floor in water depths up to 4000m. The rockdrill can be operated via its own launch and recovery system and can be outfitted with additional sensors such as gas flow meters, which have been designed by the BGS for assessing volume of gas hydrate, and down-hole logging tools. The 55m rockdrill has recently been used to sample hydrate-entrained sediments in the Sea of Japan. The maximum coring depth achieved was 32m below sea floor and the system can operate for more than 50 hours on a single deployment. The BGS system will be used in conjunction with the Bremen University (MARUM) MeBo sea-floor rockdrill on future International Ocean Discovery Program (IODP) expeditions.
NASA Astrophysics Data System (ADS)
De Angelis, Simone; De Sanctis, Maria Cristina; Ammannito, Eleonora; Carli, Cristian; Di Iorio, Tatiana; Altieri, Francesca
2015-11-01
The Ma_Miss instrument (Mars Multispectral Imager for Subsurface Studies, Coradini et al. (2001)) is a Visible and Near Infrared miniaturized spectrometer that will observe the Martian subsurface in the 0.4-2.2 μm spectral range. The instrument will be entirely hosted within the Drill of the ExoMars-2018 Pasteur Rover: it will allow analyzing the borehole wall excavated by the Drill, at different depths, down to 2 m. The aim will be to investigate and characterize the mineralogy and stratigraphy of the shallow Martian subsurface. A series of spectroscopic measurements have been performed in order to characterize the spectral performances of the laboratory model of the instrument (breadboard). A set of six samples have been analyzed. Each sample (four volcanic rocks, a micritic limestone and a calcite) has been reduced in particulate form, ground, sieved and divided into nine different grain sizes in the range d<0.02÷0.8 mm. Spectroscopic measurements have been performed on all samples using two distinct experimental setup: (a) the Ma_Miss breadboard, and (b) the Spectro-Goniometer setup, both in use in the laboratory at INAF - IAPS. In a previous paper spectral parameters such as the continuum slope and the reflectance level of the spectra have been discussed (De Angelis et al., 2014). In this work we focus our discussion on absorption band parameters (position, depth, area, band slope and asymmetry). We analyzed/investigated the absorption features at 1 μm for the volcanic samples and at 1.4, 1.9 and 2.2 μm for the two carbonate samples. Band parameters have been retrieved from spectra measured with both experimental setup and then compared. The comparison shows that band parameters are mutually consistent: band centers (for carbonate samples) are similar within few percent, and band depth and area values (for carbonates) show consistent trends vs. grain size (decreasing towards coarser grains) for most of samples.
Benchmark Design and Installation: A synthesis of Existing Information.
1987-07-01
casings (15 ft deep) drilled to rock and filled with concrete. Disks - 1 . Set on vertically stable structures (e.g., dam monoliths). 2 . Set in rock ...Structural movement survey 1 . Rock outcrops (first choice) -- chiseled square on high point. 2 . Massive concrete structure (second choice) - cut square on...bolt marker (type 2 ). 58,. % %--"% %I 1 ± 4 -I,.- Table Cl. Recomnded benchmarks. Type of condition or terrain Type of markert Bedrock, rock outcrops
Real-Time Fluid and Gas Monitoring During Drilling of the SAFOD Main Hole in Parkfield, CA.
NASA Astrophysics Data System (ADS)
Wiersberg, T.; Erzinger, J.
2005-12-01
Little is known about the role and origin of fluids and gases associated with the San Andreas Fault zone (SAF). To gain information on fluids and gases at depth, we performed real-time mud gas monitoring during drilling of the SAFOD (San Andreas Fault Observatory at Depth) Pilot Hole (PH) and Main Hole (MH). Gas extracted from returning drill mud was piped into a nearby laboratory trailer and analyzed on-line. Permanent gases were detected using a portable mass spectrometer, hydrocarbons with a gas chromatograph, and the 222Rn-activity with a Lucas-Cell detector. When significant amounts of non-atmospheric gases were detected, off-line gas samples were collected from the gas line for further isotope studies. The SAFOD PH and MH were drilled in only a few meter distance, but in contrast to the straight PH, which penetrates through 768 m of sediments into granites down to 2168 m target depth (TD), the nearby MH is deviated towards the SAF and returns into sedimentary strata below 1930 m. The MH drilled sedimentary rocks down to 3987 m TD, approximately 45 m northeast of the surface trace of the SAF. From surface to 1930 m, the depth distribution of gas is similar for SAFOD PH and MH. Shear zones, identified by geophysical logging, are often characterized by elevated concentrations of CH4, CO2, H2, Rn, and He. The same gases were found in the MH below 1930 m, but their concentrations were, with the exception of He, significantly higher: CH4, CO2, and H2 sometimes reach several volume percent. Generally, the gas composition is partly controlled by the lithology. Variation in the methane concentration in several depth intervals reflects the changes in lithology from low gas abundance in clays and silts to more gas rich shales, which are the source rocks for hydrocarbons. Highly porous and permeable sandstone yield the highest concentrations of hydrocarbons (up to 15 vol% methane), and may be regarded as reservoir rocks. We interpret high radon activities in mud gas as indicator for circulating fluids entering the borehole via fractures. These fluids are also rich in hydrocarbons, carbon dioxide, and hydrogen, but only low concentrated in helium. Such intervals could be identified in several depth intervals (2675-2750 m, 2825-2900 m, and 3550-3650 m depth, and below 3700 m). The hydrocarbons in the surrounding rocks show a similar composition as those associated with fault zones. In addition to the low helium concentration, these results demonstrate fluid migration from the nearby with only little evidence for gas migration from a deeper source. A striking observation is the high amount of hydrogen found in these intervals. We can exclude a significant contribution of artificial hydrogen (drilling artifact) and mantle hydrogen. From soil gas studies, it is known that fault zones sometimes show enhanced concentration of hydrogen. As a possible source of hydrogen, the interaction of water with freshly ground rock, caused by fault zone movement, is discussed. Isotopic studies on hydrogen in combination with laboratory experiments are ongoing to test hydrogen synthesis by rock-water interaction. First isotopic studies on δ13C of methane indicate mixing of microbial methane with only small amounts of methane generated by thermal degradation of organic matter in the shallower depth (down to ~2500 m). Below this depth, the concentration of heavy hydrocarbons increases. CH4/(C2H6+C3H8) significantly drops from >100 to values <30 towards the bottom of the MH, and, methane becomes isotopically heavier, which is more typical for thermogenic hydrocarbons.
Completion Report for Well ER-EC-5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Nevada
2004-10-01
Well ER-EC-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 342.6 meters below ground surface. The borehole diameter was then decreased to 31.1 centimeters for drilling to amore » total depth of 762.0 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 309.9 meters, 40 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 18 sidewall samples taken at various depths below 349.6 meters, supplemented by geophysical log data and results from detailed chemical and mineralogical analyses of rock samples. The well penetrated Tertiary-age tuffs of the Thirsty Canyon Group, caldera moat-filling sedimentary deposits, lava of the Beatty Wash Formation, and landslide breccia and tuffs of the Timber Mountain Group. The well reached total depth in welded ashflow tuff of the Ammonia Tanks Tuff after penetrating 440.1 meters of this unit, which is also the main water-producing unit in the well. The geologic interpretation of data from this well constrains the western margin of the Ammonia Tanks caldera to the west of the well location.« less
Recent Multidisciplinary Research Initiatives and IODP Drilling in the South China Sea
NASA Astrophysics Data System (ADS)
Lin, J.; Li, C. F.; Wang, P.; Kulhanek, D. K.
2016-12-01
The South China Sea (SCS) is the largest low-latitude marginal sea in the world. Its formation and evolution are linked to the complex continental-oceanic tectonic interaction of the Eurasian, Pacific, and Indo-Australian plates. Despite its relatively small size and short history, the SCS has undergone nearly a complete Wilson cycle from continental break-up to seafloor spreading to subduction, serving as a natural laboratory for studying the linkages between tectonic, volcanic, and oceanic processes. The last several years have witnessed significant progress in investigation of the SCS through comprehensive research programs using multidisciplinary approaches and enhanced international collaboration. The International Ocean Discovery Program (IODP) Expedition 349 drilled and cored five sites in the SCS in 2014. The expedition successfully obtained the first basaltic rock samples of the SCS relict spreading center, discovered large and frequent deep-sea turbidity events, and sampled multiple seamount volcaniclastic layers. In addition, high-resolution near-seafloor magnetic surveys were conducted in the SCS with survey lines passing near some of the IODP drilling sites. Together the IODP drilling and deep-tow magnetic survey results confirmed, for the first time, that the entire SCS basin might have stopped seafloor spreading at similar ages in early Miocene, providing important constraints on marginal sea geodynamic models. In 2007, IODP Expeditions 367 and 368 will drill the northern margin of the SCS to investigate the mechanisms of rifting to spreading processes. Meanwhile, major progress in studying the SCS processes has also been made through comprehensive multidisciplinary programs, for example, the eight-year-long "South China Sea Deep" initiative, which also supports and encourages strong international collaboration. This presentation will highlight the recent multidisciplinary research initiatives in investigation of the SCS and the important role of international collaboration.
NASA Astrophysics Data System (ADS)
Cheraghian, Goshtasp; Khalili Nezhad, Seyyed Shahram; Kamari, Mosayyeb; Hemmati, Mahmood; Masihi, Mohsen; Bazgir, Saeed
2014-07-01
Nanotechnology has been used in many applications and new possibilities are discovered constantly. Recently, a renewed interest has risen in the application of nanotechnology for the upstream petroleum industry, such as exploration, drilling, production and distribution. In particular, adding nanoparticles to fluids may significantly benefit enhanced oil recovery and improve well drilling, such as changing the properties of the fluid, wettability alternation of rocks, advanced drag reduction, strengthening sand consolidation, reducing the interfacial tension and increasing the mobility of the capillary-trapped oil. In this study, we focus on the roles of clay and silica nanoparticles in adsorption process on reservoir rocks. Polymer-flooding schemes for recovering residual oil have been in general less satisfactory due to loss of chemicals by adsorption on reservoir rocks, precipitation, and resultant changes in rheological properties. Adsorption and rheological property changes are mainly determined by the chemical structure of the polymers, surface properties of the rock, composition of the oil and reservoir fluids, the nature of the polymers added and solution conditions such as salinity, pH and temperature. Because this method relies on the adsorption of a polymer layer onto the rock surface, a deeper understanding of the relevant polymer-rock interactions is of primary importance to develop reliable chemical selection rules for field applications. In this paper, the role of nanoparticles in the adsorption of water-soluble polymers onto solid surfaces of carbonate and sandstone is studied. The results obtained by means of static adsorption tests show that the adsorption is dominated by the nanoclay and nanosilica between the polymer molecules and the solid surface. These results also show that lithology, brine concentration and polymer viscosity are critical parameters influencing the adsorption behavior at a rock interface. On the other hand, in this study, the focus is on viscosity, temperature and salinity of solutions of polyacrylamide polymers with different nanoparticle degrees and molecular weight. The adsorption of nanopolymer solution is always higher in carbonated stones than in sandstones, and polymer solutions containing silica nanoparticles have less adsorption based on weight percent than similar samples containing clay. Based on the area of contact for stone, this behavior is the same regarding adsorption.
Exploring the KT source crater: Progress and future prospects
NASA Astrophysics Data System (ADS)
Sharpton, Virgil L.
It has been 15 years since an iridium-enriched clay layer at the Cretaceous-Tertiary (KT) boundary was discovered, providing the first hard evidence linking the most recent mass extinction event to a comet or asteroid strike [Alvarez et al., 1980]. Now it is widely accepted that the site of this collision is on the Yucatan platform, centered near Progreso, Mexico. The 200-300-km-wide crater lies buried beneath 300-1000 m of limestone laid down in the intervening 65 million years, and few clues of its presence remain at the surface, save an arcuate arrangement of water-filled sinkholes centered approximately on the structure (Figure 1). Yet prominent circular anomalies in gravity and magnetic anomaly maps gained the interest of Petroleos Mexicanos (Pemex), and in the early 1950s they began an exploration campaign that included deep drilling to recover samples of the subsurface rocks. The buried feature became known as the Chicxulub structure. Pemex drilling continued throughout the early 1970s and by that time, three wells near the center had recovered silicate rocks with igneous textures, initially mistaken for volcanic rocks. Other wells, located between 130 km and 210 km from ground zero recovered breccia deposits hundreds of meters thick that showed evidence of catastropic or explosive conditions. By 1980, Antonio Camargo, a geophysicist at Pemex, felt the evidence pointed to impact, although a volcanic origin for the Chicxulub structure could not be ruled out.