Sample records for drilling ccsd project

  1. The ICDP Information Network and the Chinese Continental Scientific Drilling CCSD

    NASA Astrophysics Data System (ADS)

    Conze, R.; Su, D.

    2002-12-01

    ICDP is an international program investigating the 'System Earth' in multidisciplinary co-operation. Funded drilling projects are characterized by detailed fieldwork at world-class geological sites on the continents and by the global scope of research objectives. During project work, partnering researchers from all over the world work together at remote drill sites and in laboratories at their institutions. Researchers apply a range of highly diverse scientific methodologies, thereby acquiring huge data sets. Multinational co-operation and increasing amounts of scientific data require completely new concepts and practices for scientific work, and place heavy demands on information and communications management. This is achieved by means of the ICDP Information Network. Scientists working on ICDP related data need a central long-term data archive with powerful tools for navigation, data modeling and analysis. The Chinese Continental Scientific Drilling CCSD is a national key scientific and engineering project of the PR China supported by ICDP. The current drill site of CCSD is located in Donghai, Jiangsu Province, the eastern part of the Dabie-Sulu UHP metamorphic belt, which possesses global geological significance. From the spud on June 25, 2001 to April 6, 2002, the 2000m pilot hole was finished with a total core recovery of 88.7% and an average inclination angle of 3-4 degrees. The pilot hole has been transformed to the main hole by hole opening. Deepening and coring of the CCSD-1 main hole is currently in progress. Most of the basic scientific documentation and measurements are done in a large field laboratory directly beside the drill rig, which was set up using the standard of the former German Continental Scientific Drilling (KTB). It includes a powerful infrastructure for computing and electronic communication as well as a comprehensive twofold data and information management: 1. The CCSD-DMIS is a special Data Management Information System for the chinese project management, which is used for internal controlling and decision making. 2. The CCSD-DIS is the specifically designed on-site Drilling Information System, which is used for documentation and archiving of all kinds of scientific and technical information. Both are used in a local Intranet within the field lab, but they also provide certain information via secured Internet services. The CCSD-DIS feeds day-by-day the current reports and new recordings to the CCSD Web portal within the ICDP Information Network (http://www.icdp-online.org/html/sites/donghai/news/news.html). This portal provides chinese and english news and information for the public as well as scientific and technical stuff which is only available for the international CCSD Science Team. Using the example of the CCSD project, a poster and an on-line presentation will show the main components and value-added services of the ICDP Information Network like: ú the common portal for and dissemination of project information by the ICDP Clearinghouse, ú capture of scientific drilling data using individual On-Site Drilling Information Systems (DIS), ú virtual global field laboratories based on eXtended DIS, ú integrated evaluation and analysis of data supported by the ICDP Data Webhouse.

  2. The Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin, NE China: Organic-rich source rock evaluation with geophysical logs from Borehole SK-2

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zou, C.

    2017-12-01

    The Cretaceous strata have been recognized as an important target of oil or gas exploration in the Songliao Basin, northeast China. The second borehole (SK-2) of the Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin (CCSD-SK) is the first one to drill through the Cretaceous continental strata in the frame of ICDP. It was designed not only to solve multiple scientific problems (including the Cretaceous paleoenvironment and paleoclimate, as well as deep resources exploration of the Songliao Basin), but also to expect to achieve new breakthroughs in oil and gas exploration. Based on the project, various geophysical log data (including gamma, sonic, resistivity, density etc.) and core samples have been collected from Borehole SK-2. We do research on organic-rich source rocks estimation using various geophysical log data. Firstly, we comprehensively analyzed organic-rich source rocks' geophysical log response characteristics. Then, source rock's identification methods were constructed to identify organic-rich source rocks with geophysical logs. The main identification methods include cross-plot, multiple overlap and Decision Tree method. Finally, the technique and the CARBOLOG method were applied to evaluate total organic carbon (TOC) content from geophysical logs which provide continuous vertical profile estimations (Passey, 1990; Carpentier et al., 1991). The results show that source rocks are widely distributed in Borehole SK-2, over a large depth strata (985 5700m), including Nenjiang, Qingshankou, Denglouku, Yingcheng, Shahezi Formations. The organic-rich source rocks with higher TOC content occur in the Qingshankou (1647 1650m), Denglouku (2534 2887m) and Shahezi (3367 5697m) Formations. The highest TOC content in these formations can reach 10.31%, 6.58%, 12.79% respectively. The bed thickness of organic-rich source rocks in the these formations are totally up to 7.88m, 74.34m, 276.60m respectively. These organic-rich rocks in the Qingshankou, Denglouku and Shahezi Formations can be considered as excellent source rocks in the Songliao Basin, which are beneficial for oil or gas accumulation. This work was supported by the CCSD-SK of China Geological Survey (No. 12120113017600) and the National Natural Science Foundation Project (grant No.41274185).

  3. Determination of In-situ Rock Thermal Properties from Geophysical Log Data of SK-2 East Borehole, Continental Scientific Drilling Project of Songliao Basin, NE China

    NASA Astrophysics Data System (ADS)

    Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.

    2017-12-01

    Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China Geological Survey Projects (NO. 12120113017600).

  4. Bacteria Community in the Terrestrial Deep Subsurface Microbiology Research of the Chinese Continent Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Xia, Y.; Dong, H.; Dong, X.; Yang, K.; Dong, Z.; Huang, L.

    2005-12-01

    Microbial communities in the deep drill cores from the Chinese Continent Scientific Drilling were analyzed with culture-independent and dependent techniques. Genomic DNA was extracted from two metamorphic rocks: S1 from 430 and S13 from 1033 meters below the ground surface. The 16S rRNA gene was amplified by polymerase chain reaction (PCR) followed by cloning and sequencing. The total cell number was counted using the 4',6-diamidino-2-phenylindole (DAPI) staining and biomass of two specific bacteria were quantified using real-time PCR. Enrichment was set up for a rock from 3911 meters below the surface in medium for authotrophic methanogens (i.e., CO2 + H2). The total cell number in S13 was 1.0 × 104 cells per gram of rock. 16S rRNA gene analysis indicated that low G + C Gram positive sequences were dominant (50 percent of all 54 clone sequenced) followed by the alpha-, beta, and gamma-Proteobacteria. Within the low G + C Gram positive bacteria, most clone sequences were similar to species of Bacillus from various natural environments (deserts, rivers etc.). Within the Proteobacteria, our clone sequences were similar to species of Acinetobacter, Acidovorax, and Aeromonas. The RT-RCP results showed that biomass of two particular clone sequences (CCSD1305, similar to Aeromonas caviae and CCSD1307, similar to Acidovorax facilis) was 95 and 1258 cells/g, respectively. A bacterial isolate was obtained from the 3911-m rock in methanogenic medium. It was Gram negative with no flagella, immobile, and facultative anaerobic, and grows optimally at 65oC. Phylogenetic analysis indicated that it was closely related to the genus of Bacillus. Physiological tests further revealed that it was a strain of Bacillus caldotenax.

  5. Application of geochemical logging for palaeoenvironmental research in the Late Cretaceous Qingshankou Formation from the Chinese Continental Scientific Drilling Project-SK-2e, Songliao Basin, NE China

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Zou, Changchun; Pan, Li; Niu, Yixiong

    2017-08-01

    The Chinese Continental Scientific Drilling Project of the Cretaceous Songliao Basin (CCSD-SK) provides an excellent opportunity to understand the response of terrestrial environments to greenhouse climate change in the Cretaceous. We conducted a palaeoenvironmental study of the Late Cretaceous Qingshankou Formation (K2qn) based on geochemical log data from the SK-2 east borehole. According to the characteristic of Ti mainly from terrigenous minerals, the content of authigenic elements was calculated. Correlation space was proposed to study the variation of the correlation between two log curves along the depth. Palaeoenvironmental proxies were selected from log data to study the evolution of the climate and lake, productivity of the paleolake, and organic matter deposition. The results demonstrate that the productivity of the paleolake was driven by chemical weathering in K2qn, in which the first section of the Qingshankou Formation (K2qn1) has higher productivity than the second and third sections of the Qingshankou Formation (K2qn2+3). The high content of pyrite in several thin layers reveals lake water of high sulfate concentration. This may have been caused by acid rain related to large volcanic activity. In K2qn2+3, several periods of high productivity without the formation of source rocks and high organic matter content were identified. This may show that organic matter deposition was limited by low accommodation space or oxidation environment. Therefore, the preservation condition is suggested as the main controlling factor of organic matter deposition in K2qn.

  6. An efficient and near linear scaling pair natural orbital based local coupled cluster method.

    PubMed

    Riplinger, Christoph; Neese, Frank

    2013-01-21

    In previous publications, it was shown that an efficient local coupled cluster method with single- and double excitations can be based on the concept of pair natural orbitals (PNOs) [F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009)]. The resulting local pair natural orbital-coupled-cluster single double (LPNO-CCSD) method has since been proven to be highly reliable and efficient. For large molecules, the number of amplitudes to be determined is reduced by a factor of 10(5)-10(6) relative to a canonical CCSD calculation on the same system with the same basis set. In the original method, the PNOs were expanded in the set of canonical virtual orbitals and single excitations were not truncated. This led to a number of fifth order scaling steps that eventually rendered the method computationally expensive for large molecules (e.g., >100 atoms). In the present work, these limitations are overcome by a complete redesign of the LPNO-CCSD method. The new method is based on the combination of the concepts of PNOs and projected atomic orbitals (PAOs). Thus, each PNO is expanded in a set of PAOs that in turn belong to a given electron pair specific domain. In this way, it is possible to fully exploit locality while maintaining the extremely high compactness of the original LPNO-CCSD wavefunction. No terms are dropped from the CCSD equations and domains are chosen conservatively. The correlation energy loss due to the domains remains below <0.05%, which implies typically 15-20 but occasionally up to 30 atoms per domain on average. The new method has been given the acronym DLPNO-CCSD ("domain based LPNO-CCSD"). The method is nearly linear scaling with respect to system size. The original LPNO-CCSD method had three adjustable truncation thresholds that were chosen conservatively and do not need to be changed for actual applications. In the present treatment, no additional truncation parameters have been introduced. Any additional truncation is performed on the basis of the three original thresholds. There are no real-space cutoffs. Single excitations are truncated using singles-specific natural orbitals. Pairs are prescreened according to a multipole expansion of a pair correlation energy estimate based on local orbital specific virtual orbitals (LOSVs). Like its LPNO-CCSD predecessor, the method is completely of black box character and does not require any user adjustments. It is shown here that DLPNO-CCSD is as accurate as LPNO-CCSD while leading to computational savings exceeding one order of magnitude for larger systems. The largest calculations reported here featured >8800 basis functions and >450 atoms. In all larger test calculations done so far, the LPNO-CCSD step took less time than the preceding Hartree-Fock calculation, provided no approximations have been introduced in the latter. Thus, based on the present development reliable CCSD calculations on large molecules with unprecedented efficiency and accuracy are realized.

  7. A noniterative asymmetric triple excitation correction for the density-fitted coupled-cluster singles and doubles method: Preliminary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkaya, Uğur, E-mail: ugrbzky@gmail.com

    2016-04-14

    An efficient implementation of the asymmetric triples correction for the coupled-cluster singles and doubles [ΛCCSD(T)] method [S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 108, 5243 (1998); T. D. Crawford and J. F. Stanton, Int. J. Quantum Chem. 70, 601 (1998)] with the density-fitting [DF-ΛCCSD(T)] approach is presented. The computational time for the DF-ΛCCSD(T) method is compared with that of ΛCCSD(T). Our results demonstrate that the DF-ΛCCSD(T) method provide substantially lower computational costs than ΛCCSD(T). Further application results show that the ΛCCSD(T) and DF-ΛCCSD(T) methods are very beneficial for the study of single bond breaking problems as wellmore » as noncovalent interactions and transition states. We conclude that ΛCCSD(T) and DF-ΛCCSD(T) are very promising for the study of challenging chemical systems, where the coupled-cluster singles and doubles with perturbative triples method fails.« less

  8. Examination of the relationship between project management critical success factors and project success of oil and gas drilling projects

    NASA Astrophysics Data System (ADS)

    Alagba, Tonye J.

    Oil and gas drilling projects are the primary means by which oil companies recover large volumes of commercially available hydrocarbons from deep reservoirs. These types of projects are complex in nature, involving management of multiple stakeholder interfaces, multidisciplinary personnel, complex contractor relationships, and turbulent environmental and market conditions, necessitating the application of proven project management best practices and critical success factors (CSFs) to achieve success. Although there is some practitioner oriented literature on project management CSFs for drilling projects, none of these is based on empirical evidence, from research. In addition, the literature has reported alarming rates of oil and gas drilling project failure, which is attributable not to technical factors, but to failure of project management. The aim of this quantitative correlational study therefore, was to discover an empirically verified list of project management CSFs, which consistent application leads to successful implementation of oil and gas drilling projects. The study collected survey data online, from a random sample of 127 oil and gas drilling personnel who were members of LinkedIn's online community "Drilling Supervisors, Managers, and Engineers". The results of the study indicated that 10 project management factors are individually related to project success of oil and gas drilling projects. These 10 CSFs are namely; Project mission, Top management support, Project schedule/plan, Client consultation, Personnel, Technical tasks, Client acceptance, Monitoring and feedback, Communication, and Troubleshooting. In addition, the study found that the relationships between the 10 CSFs and drilling project success is unaffected by participant and project demographics---role of project personnel, and project location. The significance of these findings are both practical, and theoretical. Practically, application of an empirically verified CSFs list to oil and gas drilling projects could help oil companies improve the performance of future drilling projects. Theoretically, the study's findings may help to bridge a gap in the project management CSFs literature, and add to the general project management body of knowledge.

  9. The ethane + oxygen(,2) reaction mechanism: High-level ab initio characterizations

    NASA Astrophysics Data System (ADS)

    Rienstra-Kiracofe, Jonathan C.

    The C2H˙5+O2 reaction, central to ethane oxidation and thus of fundamental importance to hydrocarbon combustion chemistry, has been examined in detail via highly sophisticated electronic structure methods. The geometries, energies, and harmonic vibrational frequencies of the reactants, transition states, intermediates, and products for the reaction of the ethyl radical (X~ 2A ') with O2 (X S-g3 , a 1Δg) have been investigated using the CCSD and CCSD(T) ab initio methods with basis sets ranging in quality from double-zeta plus polarization (DZP) to triple-zeta plus double polarization with f functions (TZ2Pf). Five mechanisms (M1-M5) involving the ground-state from the ethyl radical by O2 to give ethylene + HO˙2 with an overall 0 K activation energy, Ea(0 K) = +15.1 kcal mol-1 with CCSD(T)/TZ2Pf//CCSD(T)/TZ2P. (M2) Ethylperoxy β- hydrogen transfer with O-O bond rupture to yield oxirane + .OH Ea(0 K) = +5.3 kcal mol-1 with CCSD(T)/TZ2Pf//CCSD(T)/TZ2P. (M3) Ethylperoxy α- hydrogen transfer with O-O bond rupture to yield acetaldehyde + .OH Ea(0 K) = +11.5 kcal mol-1 with CCSD(T)/TZ2P//CCSD(T)/DZP. (M4) Ethylperoxy β- hydrogen transfer with C-O bond rupture to yield ethylene + HO˙2 ; Ea(0 K) = +5.3 kcal mol-1 with CCSD(T)/TZ2Pf//CCSD(T)/TZ2P, the C-O bond rupture barrier lying 1.2 kcal mol-1 above the O-O bond rupture barrier of M2 at the CCSD(T)/TZ2P//CCSD(T)/DZP level. (M5) Concerted elimination of HO˙2 from the ethylperoxy radical to give ethylene + HO˙2 ; Ea(0 K) = -0.9 kcal mol -1 with CCSD(T)/TZPf//CCSD(T)/TZ2P. We show that M5 is energetically preferred and is also the only mechanism consistent with experimental observations of a negative temperature coefficient. The reverse reaction (C2H 4 + HO˙2 --> .C2H4OOH) has a zero-point corrected barrier of 14.4 kcal mol-1 with CCSD(T)/TZ2P//CCSD(T)/DZP.

  10. Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit.

    PubMed

    Lemke, Kono H

    2017-06-21

    This study presents results for the binding energy and geometry of the H 2 S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of D e , E ZPE , D o , and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of D e are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance r SS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H 2 S dimer geometry and binding energy. As regards the structure of (H 2 S) 2 , MPn, CCSD, and CCSD(T) level values of r SS , obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy D e are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies D e with E ZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields D o = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.

  11. Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit

    NASA Astrophysics Data System (ADS)

    Lemke, Kono H.

    2017-06-01

    This study presents results for the binding energy and geometry of the H2S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of De, EZPE, Do, and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of De are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance rSS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H2S dimer geometry and binding energy. As regards the structure of (H2S)2, MPn, CCSD, and CCSD(T) level values of rSS, obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy De are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies De with EZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields Do = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.

  12. A local framework for calculating coupled cluster singles and doubles excitation energies (LoFEx-CCSD)

    DOE PAGES

    Baudin, Pablo; Bykov, Dmytro; Liakh, Dmitry I.; ...

    2017-02-22

    Here, the recently developed Local Framework for calculating Excitation energies (LoFEx) is extended to the coupled cluster singles and doubles (CCSD) model. In the new scheme, a standard CCSD excitation energy calculation is carried out within a reduced excitation orbital space (XOS), which is composed of localised molecular orbitals and natural transition orbitals determined from time-dependent Hartree–Fock theory. The presented algorithm uses a series of reduced second-order approximate coupled cluster singles and doubles (CC2) calculations to optimise the XOS in a black-box manner. This ensures that the requested CCSD excitation energies have been determined to a predefined accuracy compared tomore » a conventional CCSD calculation. We present numerical LoFEx-CCSD results for a set of medium-sized organic molecules, which illustrate the black-box nature of the approach and the computational savings obtained for transitions that are local compared to the size of the molecule. In fact, for such local transitions, the LoFEx-CCSD scheme can be applied to molecular systems where a conventional CCSD implementation is intractable.« less

  13. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbank, Brian D.; Smith, Nicole

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2more » drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag, seismic, and gravity data sets are in good agreement, illustrating two or more major range-bounding faults and buried northwest trending faults. The intersections of these fault systems provide the primary targets for drilling.« less

  14. The 6-31B(d) basis set and the BMC-QCISD and BMC-CCSD multicoefficient correlation methods.

    PubMed

    Lynch, Benjamin J; Zhao, Yan; Truhlar, Donald G

    2005-03-03

    Three new multicoefficient correlation methods (MCCMs) called BMC-QCISD, BMC-CCSD, and BMC-CCSD-C are optimized against 274 data that include atomization energies, electron affinities, ionization potentials, and reaction barrier heights. A new basis set called 6-31B(d) is developed and used as part of the new methods. BMC-QCISD has mean unsigned errors in calculating atomization energies per bond and barrier heights of 0.49 and 0.80 kcal/mol, respectively. BMC-CCSD has mean unsigned errors of 0.42 and 0.71 kcal/mol for the same two quantities. BMC-CCSD-C is an equally effective variant of BMC-CCSD that employs Cartesian rather than spherical harmonic basis sets. The mean unsigned error of BMC-CCSD or BMC-CCSD-C for atomization energies, barrier heights, ionization potentials, and electron affinities is 22% lower than G3SX(MP2) at an order of magnitude less cost for gradients for molecules with 9-13 atoms, and it scales better (N6 vs N,7 where N is the number of atoms) when the size of the molecule is increased.

  15. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)].

    PubMed

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-07

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T 0 ) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T 0 ) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T 0 ) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T 0 ) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T 0 ) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T 0 ) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T 0 ), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  16. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-01

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  17. Puckering transitions in cyclohexane: Revisited

    NASA Astrophysics Data System (ADS)

    Kang, Young Kee; Park, Hae Sook

    2018-06-01

    The interconversion pathways along the puckering transitions in cyclohexane were explored on the two-dimensional projection of the Cremer-Pople sphere using DFT methods and the CCSD(T), MP2, and dispersion-corrected DFT methods with various basis sets were assessed for the relative energies of local minima and transition states for the representative puckering transition pathways. The ωB97X-D/cc-pVTZ and ωB97X-D/def2-QZVP levels of theory well reproduced the relative energies with RMSD = 0.13 kcal/mol against the CCSD(T)/CBS-limit energies. The calculated activation parameters for chair to twist-boat interconversion of cyclohexane at the ωB97X-D/cc-pVTZ//(PCM) M06-2X/6-31+G(d) level of theory were consistent with the observed values.

  18. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques.

    PubMed

    Schmitz, Gunnar; Hättig, Christof

    2016-12-21

    We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.

  19. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  20. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  1. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  2. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  3. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  4. Geologic report on the Sand Wash Drilling Project, Moffat and Routt Counties, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, T.E.; Wayland, T.E.

    1981-09-01

    The Sand Wash Basin Drilling Project comprises twenty-seven (27) drill holes located in Moffat and Routt Counties, northwest Colorado, having an aggregate depth of 26,107.5 feet (7957.6 m). The holes penetrate the Browns Park Formation of Miocene age, which is a tuffaceous continental sandstone deposited in fluvial, eolian, and lacustrine environments. Partly based on project drilling results, uranium potential resource estimates for this formation in the $50/lb U/sub 3/O/sub 8/ forward-cost category have been increased by 34,476 tons U/sub 3/O/sub 8/ (35,036 metric tons). Three areas between Maybell and Craig, Colorado, considered favorable for uranium occurrences were verified as favorablemore » by project drilling, and a fourth favorable area northwest of Maybell has been expanded. In addition, project drilling results indicate two new favorable areas, one north and northwest and one south of Steamboat Springs, Colorado. Anomalous radioactivity was detected in drill holes in all six study areas of the project. The most important factor in concentrating significant amounts of uranium in the target formation appears to be the availability of gaseous or liquid hydrocarbons and/or hydrogen sulfide gas as reductants. Where subjacent formations supply these reductants to the Browns Park Formation, project drilling encountered 0.05 percent to 0.01 percent uranium concentrations. Potential, though unproven, sources of these reductants are believed to underlie parts of all six project study areas.« less

  5. A CCSD (T) investigation of carbonyl oxide and dioxirane. Equilibrium geometries, dipole moments, infrared spectra, heats of formation and isomerization energies

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Gauss, Jürgen; Kraka, Elfi; Stanton, John F.; Bartlett, Rodney J.

    1993-07-01

    A CCSD and CCSD (T) investigation of carbonyl oxide ( 1) and its cyclic isomer dioxirane ( 2) has been carried out employing DZ + P and TZ + 2P basis sets. Calculated geometries, charge distributions, and dipole moments suggest that 1 possesses more zwitterionic character (CCSD (T) dipole moment 4 D) than has been predicted. 1 can be distinguished from 2 by its infrared spectrum as indicated by CCSD (T) frequencies, intensities, and isotopic shifts. The heats of formation Δ H0f (298) for 1 and 2 are 30.2 and 6.0 kcal/mol, respectively; the CCSD (T) barrier to isomerization from 1 to 2 is 19.2 kcal/mol. Decomposition of 1 and 2 can lead to CO, CO 2, H 2O, H 2 but not to free CH 2, O 2 or O. Both isomers should be powerful epoxidation agents in the presence of alkenes, but they should differ in their ability to form cyclopropanes with alkenes.

  6. Drill drive mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressel, M.O.

    1979-10-30

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfacesmore » of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the different gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft. 11 claims.« less

  7. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  8. Make-up wells drilling cost in financial model for a geothermal project

    NASA Astrophysics Data System (ADS)

    Oktaviani Purwaningsih, Fitri; Husnie, Ruly; Afuar, Waldy; Abdurrahman, Gugun

    2017-12-01

    After commissioning of a power plant, geothermal reservoir will encounter pressure decline, which will affect wells productivity. Therefore, further drilling is carried out to enhance steam production. Make-up wells are production wells drilled inside an already confirmed reservoir to maintain steam production in a certain level. Based on Sanyal (2004), geothermal power cost consists of three components, those are capital cost, O&M cost and make-up drilling cost. The make-up drilling cost component is a major part of power cost which will give big influence in a whole economical value of the project. The objective of this paper it to analyse the make-up wells drilling cost component in financial model of a geothermal power project. The research will calculate make-up wells requirements, drilling costs as a function of time and how they influence the financial model and affect the power cost. The best scenario in determining make-up wells strategy in relation with the project financial model would be the result of this research.

  9. Drilling Automation Tests At A Lunar/Mars Analog Site

    NASA Technical Reports Server (NTRS)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.

    2006-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  10. Computational Prediction of Kinetic Rate Constants

    DTIC Science & Technology

    2006-06-09

    24 Reactant: P(CH3)F2O (Difluor) Energetics: RHF DZP Frozen Core CCSD: -655.069925 Hartree CCSD(T): -655.090871 Hartree ZPE : 30.59 kcal...655.069925 Hartree CCSD(T): -655.090871 Hartree ZPE : 30.59 kcal/mol Geometry: RHF CCSD(T) Geom. Opt. PC Bond (Å): 1.79575 OP Bond (Å): 1.47117 FP Bond (Å... ZPE : 18.67 kcal/mol Intensity (km/mol)Frequency (cm -1)Symmetry 11.03833324.0968A1 11.03833324.0968A1 0.00003133.6602A1 2.38681429.9058A1

  11. Computational studies of metal-metal and metal-ligand interactions

    NASA Technical Reports Server (NTRS)

    Barnes, Leslie A.

    1992-01-01

    The geometric structure of Cr(CO)6 is optimized at the modified coupled-pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. A detailed comparison of the properties of free CO is therefore given, at both the MCPF and CCSD/CCSD(T) levels of treatment, using a variety of basis sets. With very large one-particle basis sets, the SSCD(T) method gives excellent results for the bond distance, dipole moment and harmonic frequency of free CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used here and in a previous study. Calculations using larger basis sets reduced the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. The remaining discrepancy between the experimental and theoretical total binding energy of Cr(CO)6 is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive se (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.

  12. The structure and energetics of Cr(CO)6 and Cr(CO)5

    NASA Technical Reports Server (NTRS)

    Barnes, Leslie A.; Liu, Bowen; Lindh, Roland

    1992-01-01

    The geometric structure of Cr(CO)6 is optimized at the modified coupled pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD, and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD, and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used. Calculations using larger basis sets reduce the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. In the largest basis set, the total CO binding energy of Cr(CO)6 is estimated to be 140 kcal/mol at the CCSD(T) level of theory, or about 86 percent of the experimental value. The remaining discrepancy between the experimental and theoretical value is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive set (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.

  13. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvetsky, Nitai, E-mail: gershom@weizmann.ac.il; Martin, Jan M. L., E-mail: gershom@weizmann.ac.il; Peterson, Kirk A., E-mail: kipeters@wsu.edu

    2016-06-07

    In the context of high-accuracy computational thermochemistry, the valence coupled cluster with all singles and doubles (CCSD) correlation component of molecular atomization energies presents the most severe basis set convergence problem, followed by the (T) component. In the present paper, we make a detailed comparison, for an expanded version of the W4-11 thermochemistry benchmark, between, on the one hand, orbital-based CCSD/AV{5,6}Z + d and CCSD/ACV{5,6}Z extrapolation, and on the other hand CCSD-F12b calculations with cc-pVQZ-F12 and cc-pV5Z-F12 basis sets. This latter basis set, now available for H–He, B–Ne, and Al–Ar, is shown to be very close to the basis setmore » limit. Apparent differences (which can reach 0.35 kcal/mol for systems like CCl{sub 4}) between orbital-based and CCSD-F12b basis set limits disappear if basis sets with additional radial flexibility, such as ACV{5,6}Z, are used for the orbital calculation. Counterpoise calculations reveal that, while total atomization energies with V5Z-F12 basis sets are nearly free of BSSE, orbital calculations have significant BSSE even with AV(6 + d)Z basis sets, leading to non-negligible differences between raw and counterpoise-corrected extrapolated limits. This latter problem is greatly reduced by switching to ACV{5,6}Z core-valence basis sets, or simply adding an additional zeta to just the valence orbitals. Previous reports that all-electron approaches like HEAT (high-accuracy extrapolated ab-initio thermochemistry) lead to different CCSD(T) limits than “valence limit + CV correction” approaches like Feller-Peterson-Dixon and Weizmann-4 (W4) theory can be rationalized in terms of the greater radial flexibility of core-valence basis sets. For (T) corrections, conventional CCSD(T)/AV{Q,5}Z + d calculations are found to be superior to scaled or extrapolated CCSD(T)-F12b calculations of similar cost. For a W4-F12 protocol, we recommend obtaining the Hartree-Fock and valence CCSD components from CCSD-F12b/cc-pV{Q,5}Z-F12 calculations, but the (T) component from conventional CCSD(T)/aug’-cc-pV{Q,5}Z + d calculations using Schwenke’s extrapolation; post-CCSD(T), core-valence, and relativistic corrections are to be obtained as in the original W4 theory. W4-F12 is found to agree slightly better than W4 with ATcT (active thermochemical tables) data, at a substantial saving in computation time and especially I/O overhead. A W4-F12 calculation on benzene is presented as a proof of concept.« less

  14. Accurate prediction of bond dissociation energies of large n-alkanes using ONIOM-CCSD(T)/CBS methods

    NASA Astrophysics Data System (ADS)

    Wu, Junjun; Ning, Hongbo; Ma, Liuhao; Ren, Wei

    2018-05-01

    Accurate determination of the bond dissociation energies (BDEs) of large alkanes is desirable but practically impossible due to the expensive cost of high-level ab initio methods. We developed a two-layer ONIOM-CCSD(T)/CBS method which treats the high layer with CCSD(T) method and the low layer with DFT method, respectively. The accuracy of this method was validated by comparing the calculated BDEs of n-hexane with that obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. On this basis, the C-C BDEs of C6-C20 n-alkanes were calculated systematically using the ONIOM [CCSD(T)/CBS(D-T):M06-2x/6-311++G(d,p)] method, showing a good agreement with the data available in the literature.

  15. Low cost estimation of the contribution of post-CCSD excitations to the total atomization energy using density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Sánchez, H. R.; Pis Diez, R.

    2016-04-01

    Based on the Aλ diagnostic for multireference effects recently proposed [U.R. Fogueri, S. Kozuch, A. Karton, J.M. Martin, Theor. Chem. Acc. 132 (2013) 1], a simple method for improving total atomization energies and reaction energies calculated at the CCSD level of theory is proposed. The method requires a CCSD calculation and two additional density functional theory calculations for the molecule. Two sets containing 139 and 51 molecules are used as training and validation sets, respectively, for total atomization energies. An appreciable decrease in the mean absolute error from 7-10 kcal mol-1 for CCSD to about 2 kcal mol-1 for the present method is observed. The present method provides atomization energies and reaction energies that compare favorably with relatively recent scaled CCSD methods.

  16. Ab initio calculations, structure, NBO and NCI analyses of Xsbnd H⋯π interactions

    NASA Astrophysics Data System (ADS)

    Wu, Qiyang; Su, He; Wang, Hongyan; Wang, Hui

    2018-02-01

    The performance of ab initio methods (MP2, DFT/B3LYP, random-phase approximation (RPA), CCSD(T) and QCISD(T)) in predicting interaction energy of Xsbnd H⋯π (Xsbnd H = HCCH, HCl, HF; π = C2H2, C2H4, C6H6) hydrogen complexes are assessed systematically. The CCSD(T)/CBS benchmarks of interaction energy are reported. It is found that RPA agrees well with CCSD(T)/CBS benchmarks and experimental results. CCSD(T) and QCISD(T) perform the best only when compared with CCSD(T)/CBS benchmarks, MP2 performs well only for experimental data. B3LYP provides the worst accuracy. Additionally, the equilibrium structure, interaction type of Xsbnd H⋯π hydrogen complexes are investigated by the natural bond orbital (NBO) and the non-covalent interaction index (NCI).

  17. Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics

    NASA Astrophysics Data System (ADS)

    Ünal, Aslı; Bozkaya, Uǧur

    2018-03-01

    An extensive study of structures and energetics for anionic pentamer and hexamer clusters is performed employing high level ab initio quantum chemical methods, such as the density-fitted orbital-optimized linearized coupled-cluster doubles (DF-OLCCD), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] methods. In this study, sixteen anionic pentamer clusters and eighteen anionic hexamer clusters are reported. Relative, binding, and vertical detachment energies (VDE) are presented at the complete basis set limit (CBS), extrapolating energies of aug4-cc-pVTZ and aug4-cc-pVQZ custom basis sets. The largest VDE values obtained at the CCSD(T)/CBS level are 9.9 and 11.2 kcal mol-1 for pentamers and hexamers, respectively, which are in very good agreement with the experimental values of 9.5 and 11.1 kcal mol-1. Our binding energy results, at the CCSD(T)/CBS level, indicate strong bindings in anionic clusters due to hydrogen bond interactions. The average binding energy per water molecules is -5.0 and -5.3 kcal mol-1 for pentamers and hexamers, respectively. Furthermore, our results demonstrate that the DF-OLCCD method approaches to the CCSD(T) quality for anionic clusters. The inexpensive analytic gradients of DF-OLCCD compared to CCSD or CCSD(T) make it very attractive for high-accuracy studies.

  18. Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics.

    PubMed

    Ünal, Aslı; Bozkaya, Uğur

    2018-03-28

    An extensive study of structures and energetics for anionic pentamer and hexamer clusters is performed employing high level ab initio quantum chemical methods, such as the density-fitted orbital-optimized linearized coupled-cluster doubles (DF-OLCCD), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] methods. In this study, sixteen anionic pentamer clusters and eighteen anionic hexamer clusters are reported. Relative, binding, and vertical detachment energies (VDE) are presented at the complete basis set limit (CBS), extrapolating energies of aug4-cc-pVTZ and aug4-cc-pVQZ custom basis sets. The largest VDE values obtained at the CCSD(T)/CBS level are 9.9 and 11.2 kcal mol -1 for pentamers and hexamers, respectively, which are in very good agreement with the experimental values of 9.5 and 11.1 kcal mol -1 . Our binding energy results, at the CCSD(T)/CBS level, indicate strong bindings in anionic clusters due to hydrogen bond interactions. The average binding energy per water molecules is -5.0 and -5.3 kcal mol -1 for pentamers and hexamers, respectively. Furthermore, our results demonstrate that the DF-OLCCD method approaches to the CCSD(T) quality for anionic clusters. The inexpensive analytic gradients of DF-OLCCD compared to CCSD or CCSD(T) make it very attractive for high-accuracy studies.

  19. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory.

    PubMed

    Saitow, Masaaki; Becker, Ute; Riplinger, Christoph; Valeev, Edward F; Neese, Frank

    2017-04-28

    The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N 6 ) with system size N, has limited its practical application to small systems consisting of not more than approximately 20-30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is necessary, which offers large computational savings. We show that, with the default PNO truncation parameters, approximately 99.9% of the total CCSD correlation energy is recovered for open-shell species, which is comparable to the performance of the method for closed-shells. UHF-DLPNO-CCSD shows a linear scaling behavior for closed-shell systems, while linear to quadratic scaling is obtained for open-shell systems. The largest systems we have considered contain more than 500 atoms and feature more than 10 000 basis functions with a triple-ζ quality basis set.

  20. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory

    NASA Astrophysics Data System (ADS)

    Saitow, Masaaki; Becker, Ute; Riplinger, Christoph; Valeev, Edward F.; Neese, Frank

    2017-04-01

    The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N6) with system size N, has limited its practical application to small systems consisting of not more than approximately 20-30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is necessary, which offers large computational savings. We show that, with the default PNO truncation parameters, approximately 99.9% of the total CCSD correlation energy is recovered for open-shell species, which is comparable to the performance of the method for closed-shells. UHF-DLPNO-CCSD shows a linear scaling behavior for closed-shell systems, while linear to quadratic scaling is obtained for open-shell systems. The largest systems we have considered contain more than 500 atoms and feature more than 10 000 basis functions with a triple-ζ quality basis set.

  1. Mechanical Alteration And Contamination Issues In Automated Subsurface Sample Acquisition And Handling

    NASA Astrophysics Data System (ADS)

    Glass, B. J.; Cannon, H.; Bonaccorsi, R.; Zacny, K.

    2006-12-01

    The Drilling Automation for Mars Exploration (DAME) project's purpose is to develop and field-test drilling automation and robotics technologies for projected use in missions in the 2011-15 period. DAME includes control of the drilling hardware, and state estimation of both the hardware and the lithography being drilled and the state of the hole. A sister drill was constructed for the Mars Analog Río Tinto Experiment (MARTE) project and demonstrated automated core handling and string changeout in 2005 drilling tests at Rio Tinto, Spain. DAME focused instead on the problem of drill control while actively drilling while not getting stuck. Together, the DAME and MARTE projects demonstrate a fully automated robotic drilling capability, including hands-off drilling, adjustment to different strata and downhole conditions, recovery from drilling faults (binding, choking, etc.), drill string changeouts, core acquisition and removal, and sample handling and conveyance to in-situ instruments. The 2006 top-level goal of DAME drilling in-situ tests was to verify and demonstrate a capability for hands-off automated drilling, at an Arctic Mars-analog site. There were three sets of 2006 test goals, all of which were exceeded during the July 2006 field season. The first was to demonstrate the recognition, while drilling, of at least three of the six known major fault modes for the DAME planetary-prototype drill, and to employ the correct recovery or safing procedure in response. The second set of 2006 goals was to operate for three or more hours autonomously, hands-off. And the third 2006 goal was to exceed 3m depth into the frozen breccia and permafrost with the DAME drill (it had not gone further than 2.2m previously). Five of six faults were detected and corrected, there were 43 hours of hands-off drilling (including a 4 hour sequence with no human presence nearby), and 3.2m was the total depth. And ground truth drilling used small commercial drilling equipment in parallel in order to obtain cores and ice profiles at the drilling site. In the course of DAME drilling automation testing, the drilling-induced temperature gradients and their effects on encountered subsurface permafrost and ice layers were observed while drilling in frozen impact breccia at Haughton Crater. In repeated tests of robotic core removal processing and handling in the MARTE project, including field tests, cross-contamination issues arose between successive cores and samples, and procedures and metrics were developed for minimizing the cross-contamination. The MARTE core processing cross-contamination aspects were tested by analyzing a set of pristine samples (those stratigraphically known) vs. cuttings (loose clays) or artifacts from the robotic drilling (indurated clay layers). MARTE ground truth drilling, in parallel with the automated tests, provided control information on the discontinuity/continuity of the stratigraphic record (i.e., texture, color and structure of loose and consolidated materials).

  2. A view on coupled cluster perturbation theory using a bivariational Lagrangian formulation.

    PubMed

    Kristensen, Kasper; Eriksen, Janus J; Matthews, Devin A; Olsen, Jeppe; Jørgensen, Poul

    2016-02-14

    We consider two distinct coupled cluster (CC) perturbation series that both expand the difference between the energies of the CCSD (CC with single and double excitations) and CCSDT (CC with single, double, and triple excitations) models in orders of the Møller-Plesset fluctuation potential. We initially introduce the E-CCSD(T-n) series, in which the CCSD amplitude equations are satisfied at the expansion point, and compare it to the recently developed CCSD(T-n) series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which not only the CCSD amplitude, but also the CCSD multiplier equations are satisfied at the expansion point. The computational scaling is similar for the two series, and both are term-wise size extensive with a formal convergence towards the CCSDT target energy. However, the two series are different, and the CCSD(T-n) series is found to exhibit a more rapid convergence up through the series, which we trace back to the fact that more information at the expansion point is utilized than for the E-CCSD(T-n) series. The present analysis can be generalized to any perturbation expansion representing the difference between a parent CC model and a higher-level target CC model. In general, we demonstrate that, whenever the parent parameters depend upon the perturbation operator, a perturbation expansion of the CC energy (where only parent amplitudes are used) differs from a perturbation expansion of the CC Lagrangian (where both parent amplitudes and parent multipliers are used). For the latter case, the bivariational Lagrangian formulation becomes more than a convenient mathematical tool, since it facilitates a different and faster convergent perturbation series than the simpler energy-based expansion.

  3. Engineering report on drilling in the San Rafael Swell area, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, L.I.

    1980-05-01

    The San Rafael Swell drilling project was conducted by Bendix Field Engineering Corporation in support of the US Department of Energy National Uranium Resource Evaluation (NURE) program. This project consisted of 27 drill holes ranging in depth from 120.0 ft (36.5 m) to 3,700.0 ft (1,127.7 m). A total of 41,716 ft (12,715 m) was drilled, of which 3,099.8 ft (944.8 m) were cored. Geophysical logging was supplied by Century Geophysical Corporation and Bendix Field Engineering Corporation. The objective of the project was to test the uranium potential of the Triassic and Jurassic sandstone units and to investigate areas wheremore » industry was unlikely to drill in the near future. Drilling commenced September 24, 1978, and was finished on December 17, 1979.« less

  4. Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple

    NASA Astrophysics Data System (ADS)

    Pavošević, Fabijan; Neese, Frank; Valeev, Edward F.

    2014-08-01

    We present a production implementation of reduced-scaling explicitly correlated (F12) coupled-cluster singles and doubles (CCSD) method based on pair-natural orbitals (PNOs). A key feature is the reformulation of the explicitly correlated terms using geminal-spanning orbitals that greatly reduce the truncation errors of the F12 contribution. For the standard S66 benchmark of weak intermolecular interactions, the cc-pVDZ-F12 PNO CCSD F12 interaction energies reproduce the complete basis set CCSD limit with mean absolute error <0.1 kcal/mol, and at a greatly reduced cost compared to the conventional CCSD F12.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, Janus J., E-mail: janusje@chem.au.dk; Jørgensen, Poul; Matthews, Devin A.

    The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T–n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test setmore » of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T–n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T–n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.« less

  6. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkaya, Uğur, E-mail: ugur.bozkaya@hacettepe.edu.tr; Department of Chemistry, Atatürk University, Erzurum 25240; Sherrill, C. David

    2016-05-07

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the “gradient terms”: computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbitalmore » (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C{sub 10}H{sub 22}), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.« less

  7. Review-Esso Resources Canada Ltd. , Norman Wells expansion project drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, D.G.

    Esso Resources Canada Limited has embarked on a project to increase production from its Norman Wells Oil field located 145 km south of the Arctic Circle, from 475 m/sup 3//D to 4000 m/sup 3//D of crude oil. This paper provides details on the development drilling portion of the project which is comprised of 150 wells to be drilled in 3 years utilizing 2 drilling rigs from July 1982 through September 1985. The majority of the wells will be directionally drilled from multiwell land pads and artificial islands to shallow reservoir targets underlying the Mackenzie River, a major river intersecting themore » field boundaries. Experience from the initial 27 wells completed is provided.« less

  8. Gas Hydrate Research Site Selection and Operational Research Plans

    NASA Astrophysics Data System (ADS)

    Collett, T. S.; Boswell, R. M.

    2009-12-01

    In recent years it has become generally accepted that gas hydrates represent a potential important future energy resource, a significant drilling and production hazard, a potential contributor to global climate change, and a controlling factor in seafloor stability and landslides. Research drilling and coring programs carried out by the Ocean Drilling Program (ODP), the Integrated Ocean Drilling Program (IODP), government agencies, and several consortia have contributed greatly to our understanding of the geologic controls on the occurrence of gas hydrates in marine and permafrost environments. For the most part, each of these field projects were built on the lessons learned from the projects that have gone before them. One of the most important factors contributing to the success of some of the more notable gas hydrate field projects has been the close alignment of project goals with the processes used to select the drill sites and to develop the project’s operational research plans. For example, IODP Expedition 311 used a transect approach to successfully constrain the overall occurrence of gas hydrate within the range of geologic environments within a marine accretionary complex. Earlier gas hydrate research drilling, including IODP Leg 164, were designed primarily to assess the occurrence and nature of marine gas hydrate systems, and relied largely on the presence of anomalous seismic features, including bottom-simulating reflectors and “blanking zones”. While these projects were extremely successful, expeditions today are being increasingly mounted with the primary goal of prospecting for potential gas hydrate production targets, and site selection processes designed to specifically seek out anomalously high-concentrations of gas hydrate are needed. This approach was best demonstrated in a recently completed energy resource focused project, the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II), which featured the collection of a comprehensive set of logging-while-drilling (LWD) data through expected gas-hydrate-bearing sand reservoirs in seven wells at three sites in the Gulf of Mexico. The discovery of thick hydrate-bearing sands at two of the sites drilled in the Gulf Mexico validated the integrated geological and geophysical approach used in the pre-drill site selection process to identify gas hydrate reservoirs that may be conducive to energy production. The results of the GOM JIP Leg II LWD expedition are also being used to support the selection of sites for a future drilling, logging, and coring program. Operationally, recent drilling programs, such as ODP Leg 204, IODP Expedition 311, the Japanese Toaki-oki to Kumano-nada drilling leg, the Indian NGHP Expedition 01, and the South Korean Gas Hydrate Research and Development Organization Expedition 01 have demonstrated the great benefit of a multi-leg drilling approach, including the initial acquisition of LWD data that was used to then select sites for the drilling of complex core and wireline logging test holes. It is obvious that a fully integrated site selection approach and a “goal based” operational plan, possibly including numerous drill sites and drilling legs, are required considerations for any future gas hydrate research project.

  9. Paleomagnetic and Magnetostratigraphic Studies in Drilling Projects of Impact Craters - Recent Studies, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Velasco-Villarreal, M.; Perez-Cruz, L. L.

    2013-05-01

    Paleomagnetic studies have long been successfully carried out in drilling projects, to characterize the borehole columns and to investigate the subsurface structure and stratigraphy. Magnetic susceptibility logging and magnetostratigraphic studies provide data for lateral correlation, formation evaluation, azimuthal core orientation, physical properties, etc., and are part of the tools available in the ocean and continental drilling programs. The inclusion of continuous core recovery in scientific drilling projects have greatly expanded the range of potential applications of paleomagnetic and rock magnetic studies, by allowing laboratory measurements on core samples. For this presentation, we concentrate on drilling studies of impact structures and their usefulness for documenting the structure, stratigraphy and physical properties at depth. There are about 170-180 impact craters documented in the terrestrial record, which is a small number compared to what is observed in the Moon, Mars, Venus and other bodies of the solar system. Of the terrestrial impact craters, only a few have been studied by drilling. Some craters have been drilled as part of industry exploration surveys and/or academic projects, including notably the Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake and El gygytgyn craters. Drilling of terrestrial craters has proved important in documenting the shallow stratigraphy and structure, providing insight on the cratering and impact dynamics. Questions include several that can only be addressed by retrieving core samples and laboratory analyses. Paleomagnetic, rock magnetic and fabric studies have been conducted in the various craters, which are here summarized with emphasis on the Chicxulub crater and Yucatan carbonate platform. Chicxulub is buried under a kilometer of younger sediments, making drilling an essential tool. Oil exploration included several boreholes, and additionally we have drilled 11 boreholes with continuous core recovery. Contributions and limitations of paleomagnetism for investigating the impact age, crater stratigraphy, cratering, ejecta emplacement, impact dynamics, hydrothermal system and post-impact processes are discussed.

  10. Uncovering a Salt Giant. Deep-Sea Record of Mediterranean Messinian Events (DREAM) multi-phase drilling project

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Aoisi, Vanni; Lofi, Johanna; Hübscher, Christian; deLange, Gert; Flecker, Rachel; Garcia-Castellanos, Daniel; Gorini, Christian; Gvirtzman, Zohar; Krijgsman, Wout; Lugli, Stefano; Makowsky, Yizhaq; Manzi, Vinicio; McGenity, Terry; Panieri, Giuliana; Rabineau, Marina; Roveri, Marco; Sierro, Francisco Javier; Waldmann, Nicolas

    2014-05-01

    In May 2013, the DREAM MagellanPlus Workshop was held in Brisighella (Italy). The initiative builds from recent activities by various research groups to identify potential sites to perform deep-sea scientific drilling in the Mediterranean Sea across the deep Messinian Salinity Crisis (MSC) sedimentary record. In this workshop three generations of scientists were gathered: those who participated in formulation of the deep desiccated model, through DSDP Leg 13 drilling in 1973; those who are actively involved in present-day MSC research; and the next generation (PhD students and young post-docs). The purpose of the workshop was to identify locations for multiple-site drilling (including riser-drilling) in the Mediterranean Sea that would contribute to solve the several open questions still existing about the causes, processes, timing and consequences at local and planetary scale of an outstanding case of natural environmental change in the recent Earth history: the Messinian Salinity Crisis in the Mediterranean Sea. The product of the workshop is the identification of the structure of an experimental design of site characterization, riser-less and riser drilling, sampling, measurements, and down-hole analyses that will be the core for at least one compelling and feasible multiple phase drilling proposal. Particular focus has been given to reviewing seismic site survey data available from different research groups at pan-Mediterranean basin scale, to the assessment of additional site survey activity including 3D seismics, and to ways of establishing firm links with oil and gas industry. The scientific community behind the DREAM initiative is willing to proceed with the submission to IODP of a Multi-phase Drilling Project including several drilling proposals addressing specific drilling objectives, all linked to the driving objectives of the MSC drilling and understanding . A series of critical drilling targets were identified to address the still open questions related to the MSC event. Several proposal ideas also emerged to support the Multi-phase drilling project concept: Salt tectonics and fluids, Deep stratigraphic and crustal drilling in the Gulf of Lion (deriving from the GOLD drilling project), Deep stratigraphic and crustal drilling in the Ionian Sea, Deep Biosphere, Sapropels, and the Red Sea. A second MagellanPlus workshop held in January 2014 in Paris (France), has proceeded a step further towards the drafting of the Multi-phase Drilling Project and a set of pre-proposals for submission to IODP.

  11. High Temperature 300°C Directional Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°Cmore » capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100 hours.« less

  12. Microhole Test Data

    DOE Data Explorer

    Su, Jiann

    2016-05-23

    Drilling results from the microhole project at the Sandia High Operating Temperature test facility. The project is seeking to help reduce the cost of exploration and monitoring of geothermal wells and formations by drilling smaller holes. The tests were part of a control algorithm development to optimize the weight-on-bit (WOB) used during drilling with a percussive hammer.

  13. Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals

    NASA Astrophysics Data System (ADS)

    Liu, Junzi; Shen, Yue; Asthana, Ayush; Cheng, Lan

    2018-01-01

    A novel implementation of the two-component spin-orbit (SO) coupled-cluster singles and doubles (CCSD) method and the CCSD augmented with the perturbative inclusion of triple excitations [CCSD(T)] method using mean-field SO integrals is reported. The new formulation of SO-CCSD(T) features an atomic-orbital-based algorithm for the particle-particle ladder term in the CCSD equation, which not only removes the computational bottleneck associated with the large molecular-orbital integral file but also accelerates the evaluation of the particle-particle ladder term by around a factor of 4 by taking advantage of the spin-free nature of the instantaneous electron-electron Coulomb interaction. Benchmark calculations of the SO splittings for the thallium atom and a set of diatomic 2Π radicals as well as of the bond lengths and harmonic frequencies for a set of closed-shell diatomic molecules are presented. The basis-set and core-correlation effects in the calculations of these properties have been carefully analyzed.

  14. Different equation-of-motion coupled cluster methods with different reference functions: The formyl radical

    NASA Astrophysics Data System (ADS)

    Kuś, Tomasz; Bartlett, Rodney J.

    2008-09-01

    The doublet and quartet excited states of the formyl radical have been studied by the equation-of-motion (EOM) coupled cluster (CC) method. The Sz spin-conserving singles and doubles (EOM-EE-CCSD) and singles, doubles, and triples (EOM-EE-CCSDT) approaches, as well as the spin-flipped singles and doubles (EOM-SF-CCSD) method have been applied, subject to unrestricted Hartree-Fock (HF), restricted open-shell HF, and quasirestricted HF references. The structural parameters, vertical and adiabatic excitation energies, and harmonic vibrational frequencies have been calculated. The issue of the reference function choice for the spin-flipped (SF) method and its impact on the results has been discussed using the experimental data and theoretical results available. The results show that if the appropriate reference function is chosen so that target states differ from the reference by only single excitations, then EOM-EE-CCSD and EOM-SF-CCSD methods give a very good description of the excited states. For the states that have a non-negligible contribution of the doubly excited configurations one is able to use the SF method with such a reference function, that in most cases the performance of the EOM-SF-CCSD method is better than that of the EOM-EE-CCSD approach.

  15. Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoming; Tang, Qian; Sun, Weidong; Xu, Li; Zhai, Wei; Liang, Jinlong; Liang, Yeheng; Shen, Kun; Zhang, Zeming; Zhou, Bing; Wang, Fangyue

    2007-06-01

    We have identified abundant exsolutions in apatite aggregates from eclogitic drillhole samples of the Chinese Continental Scientific Drilling (CCSD) project. Electron microscope and laser Raman spectroscopy analyses show that the apatite is fluorapatite, whereas exsolutions that can be classified into four types: (A) platy to rhombic monazite exsolutions; (B) needle-like hematite exsolutions; (C) irregular magnetite and hematite intergrowths; and (D) needle-like strontian barite exsolutions. The widths and lengths of type A monazite exsolutions range from about 6-10 μm (mostly 6 μm) and about 50-75 μm, respectively. Type B exsolutions are parallel with the C axis of apatite, with widths ranging from 0.5 to 2 μm, with most around 1.5 μm, and lengths that vary dramatically from 6 to 50 μm. Type C exsolutions are also parallel with the C axis of apatite, with lengths of ˜30-150 μm and widths of ˜10 to 50 μm. Type D strontian barite exsolutions coexist mostly with type B hematite exsolutions, with widths of about 9 μm and lengths of about 60-70 μm. Exsolutions of types B, C and D have never been reported in apatites before. Most of the exsolutions are parallel with the C axis of apatite, implying that they were probably exsolved at roughly the same time. Dating by the chemical Th-U-total Pb isochron method (CHIME) yields an U-Pb isochron age of 202 ± 28 Ma for monazite exsolutions, suggesting that these exsolutions were formed during recrystallization and retrograde metamorphism of the exhumed ultrahigh pressure (UHP) rocks. Quartz veins hosting apatite aggregates were probably formed slightly earlier than 202 Ma. Abundant hematite exsolutions, as well as coexistence of magnetite/hematite and barite/hematite in the apatite, suggest that the oxygen fugacity of apatite aggregates is well above the sulfide-sulfur oxide buffer (SSO). Given that quartz veins host these apatite aggregates, they were probably deposited from SiO 2-rich hydrous fluids formed during retrogression of the subducted slab. Such SiO 2-rich hydrous fluids may act as an oxidizing agent, a feasible explanation for the high oxygen fugacity in convergent margin systems.

  16. Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An Out-of-the-Box Approach.

    PubMed

    Bistoni, Giovanni; Riplinger, Christoph; Minenkov, Yury; Cavallo, Luigi; Auer, Alexander A; Neese, Frank

    2017-07-11

    The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core (FC) calculations and on the main threshold governing the accuracy of DLPNO all-electron (AE) calculations. Initially, scalar relativistic orbital energies for the ground state of the atoms from Li to Rn in the periodic table are calculated. An energy criterion is used for determining the orbitals that can be excluded from the correlation treatment in FC coupled cluster calculations without significant loss of accuracy. The heterolytic dissociation energy (HDE) of a series of metal compounds (LiF, NaF, AlF 3 , CaF 2 , CuF, GaF 3 , YF 3 , AgF, InF 3 , HfF 4 , and AuF) is calculated at the canonical CCSD(T) level, and the dependence of the results on the number of correlated electrons is investigated. Although for many of the studied reactions subvalence correlation effects contribute significantly to the HDE, the use of an energy criterion permits a conservative definition of the size of the core, allowing FC calculations to be performed in a black-box fashion while retaining chemical accuracy. A comparison of the CCSD and the DLPNO-CCSD methods in describing the core-core, core-valence, and valence-valence components of the correlation energy is given. It is found that more conservative thresholds must be used for electron pairs containing at least one core electron in order to achieve high accuracy in AE DLPNO-CCSD calculations relative to FC calculations. With the new settings, the DLPNO-CCSD method reproduces canonical CCSD results in both AE and FC calculations with the same accuracy.

  17. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Bozkaya, Uǧur

    2013-09-01

    Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) [U. Bozkaya, J. Chem. Phys. 135, 224103 (2011)], 10.1063/1.3665134 are presented. The OMP3 method is applied to problematic chemical systems with challenging electronic structures. The performance of the OMP3 method is compared with those of canonical second-order Møller-Plesset perturbation theory (MP2), third-order Møller-Plesset perturbation theory (MP3), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] for investigating equilibrium geometries, vibrational frequencies, and open-shell reaction energies. For bond lengths, the performance of OMP3 is in between those of MP3 and CCSD. For harmonic vibrational frequencies, the OMP3 method significantly eliminates the singularities arising from the abnormal response contributions observed for MP3 in case of symmetry-breaking problems, and provides noticeably improved vibrational frequencies for open-shell molecules. For open-shell reaction energies, OMP3 exhibits a better performance than MP3 and CCSD as in case of barrier heights and radical stabilization energies. As discussed in previous studies, the OMP3 method is several times faster than CCSD in energy computations. Further, in analytic gradient computations for the CCSD method one needs to solve λ-amplitude equations, however for OMP3 one does not since λ _{ab}^{ij(1)} = t_{ij}^{ab(1)} and λ _{ab}^{ij(2)} = t_{ij}^{ab(2)}. Additionally, one needs to solve orbital Z-vector equations for CCSD, but for OMP3 orbital response contributions are zero owing to the stationary property of OMP3. Overall, for analytic gradient computations the OMP3 method is several times less expensive than CCSD (roughly ˜4-6 times). Considering the balance of computational cost and accuracy we conclude that the OMP3 method emerges as a very useful tool for the study of electronically challenging chemical systems.

  18. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory.

    PubMed

    Bozkaya, Uğur

    2013-09-14

    Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) [U. Bozkaya, J. Chem. Phys. 135, 224103 (2011)] are presented. The OMP3 method is applied to problematic chemical systems with challenging electronic structures. The performance of the OMP3 method is compared with those of canonical second-order Møller-Plesset perturbation theory (MP2), third-order Møller-Plesset perturbation theory (MP3), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] for investigating equilibrium geometries, vibrational frequencies, and open-shell reaction energies. For bond lengths, the performance of OMP3 is in between those of MP3 and CCSD. For harmonic vibrational frequencies, the OMP3 method significantly eliminates the singularities arising from the abnormal response contributions observed for MP3 in case of symmetry-breaking problems, and provides noticeably improved vibrational frequencies for open-shell molecules. For open-shell reaction energies, OMP3 exhibits a better performance than MP3 and CCSD as in case of barrier heights and radical stabilization energies. As discussed in previous studies, the OMP3 method is several times faster than CCSD in energy computations. Further, in analytic gradient computations for the CCSD method one needs to solve λ-amplitude equations, however for OMP3 one does not since λ(ab)(ij(1))=t(ij)(ab(1)) and λ(ab)(ij(2))=t(ij)(ab(2)). Additionally, one needs to solve orbital Z-vector equations for CCSD, but for OMP3 orbital response contributions are zero owing to the stationary property of OMP3. Overall, for analytic gradient computations the OMP3 method is several times less expensive than CCSD (roughly ~4-6 times). Considering the balance of computational cost and accuracy we conclude that the OMP3 method emerges as a very useful tool for the study of electronically challenging chemical systems.

  19. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steve McRae; Thomas Walsh; Michael Dunn

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrowmore » Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.« less

  20. Workshop to develop deep-life continental scientific drilling projects

    DOE PAGES

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; ...

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have includedmore » a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.« less

  1. Microhole Coiled Tubing Bottom Hole Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Macune

    2008-06-30

    The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. Themore » equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a different MWD system and also as the mechanical design was revised for the new pressure requirements. However, the Sondex acquisition has resulted in a more robust system, secure funding for completion of the project, and more rapid commercialization.« less

  2. Metastable Autoionizing States of Molecules and Radicals in Highly Energetic Environment

    DTIC Science & Technology

    2016-03-22

    electronic states. The specific aims are to develop and calibrate complex-scaled equation-of-motion coupled cluster (cs-EOM- CC ) and CAP (complex...absorbing potential) augmented EOM- CC methods. We have implemented and benchmarked cs-EOM-CCSD and CAP- augmented EOM-CCSD methods for excitation energies...motion coupled cluster (cs-EOM- CC ) and CAP (complex absorbing potential) augmented EOM- CC methods. We have implemented and benchmarked cs-EOM-CCSD and

  3. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  4. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    USGS Publications Warehouse

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  5. Orbital-optimized MP2.5 and its analytic gradients: Approaching CCSD(T) quality for noncovalent interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkaya, Uğur, E-mail: ugur.bozkaya@atauni.edu.tr; Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; Sherrill, C. David

    2014-11-28

    Orbital-optimized MP2.5 [or simply “optimized MP2.5,” OMP2.5, for short] and its analytic energy gradients are presented. The cost of the presented method is as much as that of coupled-cluster singles and doubles (CCSD) [O(N{sup 6}) scaling] for energy computations. However, for analytic gradient computations the OMP2.5 method is only half as expensive as CCSD because there is no need to solve λ{sub 2}-amplitude equations for OMP2.5. The performance of the OMP2.5 method is compared with that of the standard second-order Møller–Plesset perturbation theory (MP2), MP2.5, CCSD, and coupled-cluster singles and doubles with perturbative triples (CCSD(T)) methods for equilibrium geometries, hydrogenmore » transfer reactions between radicals, and noncovalent interactions. For bond lengths of both closed and open-shell molecules, the OMP2.5 method improves upon MP2.5 and CCSD by 38%–43% and 31%–28%, respectively, with Dunning's cc-pCVQZ basis set. For complete basis set (CBS) predictions of hydrogen transfer reaction energies, the OMP2.5 method exhibits a substantially better performance than MP2.5, providing a mean absolute error of 1.1 kcal mol{sup −1}, which is more than 10 times lower than that of MP2.5 (11.8 kcal mol{sup −1}), and comparing to MP2 (14.6 kcal mol{sup −1}) there is a more than 12-fold reduction in errors. For noncovalent interaction energies (at CBS limits), the OMP2.5 method maintains the very good performance of MP2.5 for closed-shell systems, and for open-shell systems it significantly outperforms MP2.5 and CCSD, and approaches CCSD(T) quality. The MP2.5 errors decrease by a factor of 5 when the optimized orbitals are used for open-shell noncovalent interactions, and comparing to CCSD there is a more than 3-fold reduction in errors. Overall, the present application results indicate that the OMP2.5 method is very promising for open-shell noncovalent interactions and other chemical systems with difficult electronic structures.« less

  6. A Ship for Scientific Drilling.

    ERIC Educational Resources Information Center

    Peterson, M. N. A.; MacTernan, F. C.

    1982-01-01

    Traces the history and development of the Deep Sea Drilling Project, focusing on the Glomar Challenger, drilling improvements, and international significance. Includes photographs, illustrations, and tables. (DC)

  7. A multi-level quantum mechanics and molecular mechanics study of SN2 reaction at nitrogen: NH2Cl + OH(-) in aqueous solution.

    PubMed

    Lv, Jing; Zhang, Jingxue; Wang, Dunyou

    2016-02-17

    We employed a multi-level quantum mechanics and molecular mechanics approach to study the reaction NH2Cl + OH(-) in aqueous solution. The multi-level quantum method (including the DFT method with both the B3LYP and M06-2X exchange-correlation functionals and the CCSD(T) method, and both methods with the aug-cc-pVDZ basis set) was used to treat the quantum reaction region in different stages of the calculation in order to obtain an accurate potential of mean force. The obtained free energy activation barriers at the DFT/MM level of theory yielded a big difference of 21.8 kcal mol(-1) with the B3LYP functional and 27.4 kcal mol(-1) with the M06-2X functional respectively. Nonetheless, the barrier heights become very close when shifted from DFT to CCSD(T): 22.4 kcal mol(-1) and 22.9 kcal mol(-1) at CCSD(T)(B3LYP)/MM and CCSD(T)(M06-2X)/MM levels of theory, respectively. The free reaction energy obtained using CCSD(T)(M06-2X)/MM shows an excellent agreement with the one calculated using the available gas-phase data. Aqueous solution plays a significant role in shaping the reaction profile. In total, the water solution contributes 13.3 kcal mol(-1) and 14.6 kcal mol(-1) to the free energy barrier heights at CCSD(T)(B3LYP)/MM and CCSD(T)(M06-2X)/MM respectively. The title reaction at nitrogen is a faster reaction than the corresponding reaction at carbon, CH3Cl + OH(-).

  8. Non-iterative triple excitations in equation-of-motion coupled-cluster theory for electron attachment with applications to bound and temporary anions.

    PubMed

    Jagau, Thomas-C

    2018-01-14

    The impact of residual electron correlation beyond the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) approximation on positions and widths of electronic resonances is investigated. To establish a method that accomplishes this task in an economical manner, several approaches proposed for the approximate treatment of triple excitations are reviewed with respect to their performance in the electron attachment (EA) variant of EOM-CC theory. The recently introduced EOM-CCSD(T)(a)* method [D. A. Matthews and J. F. Stanton, J. Chem. Phys. 145, 124102 (2016)], which includes non-iterative corrections to the reference and the target states, reliably reproduces vertical attachment energies from EOM-EA-CC calculations with single, double, and full triple excitations in contrast to schemes in which non-iterative corrections are applied only to the target states. Applications of EOM-EA-CCSD(T)(a)* augmented by a complex absorbing potential (CAP) to several temporary anions illustrate that shape resonances are well described by EOM-EA-CCSD, but that residual electron correlation often makes a non-negligible impact on their positions and widths. The positions of Feshbach resonances, on the other hand, are significantly improved when going from CAP-EOM-EA-CCSD to CAP-EOM-EA-CCSD(T)(a)*, but the correct energetic order of the relevant electronic states is still not achieved.

  9. Non-iterative triple excitations in equation-of-motion coupled-cluster theory for electron attachment with applications to bound and temporary anions

    NASA Astrophysics Data System (ADS)

    Jagau, Thomas-C.

    2018-01-01

    The impact of residual electron correlation beyond the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) approximation on positions and widths of electronic resonances is investigated. To establish a method that accomplishes this task in an economical manner, several approaches proposed for the approximate treatment of triple excitations are reviewed with respect to their performance in the electron attachment (EA) variant of EOM-CC theory. The recently introduced EOM-CCSD(T)(a)* method [D. A. Matthews and J. F. Stanton, J. Chem. Phys. 145, 124102 (2016)], which includes non-iterative corrections to the reference and the target states, reliably reproduces vertical attachment energies from EOM-EA-CC calculations with single, double, and full triple excitations in contrast to schemes in which non-iterative corrections are applied only to the target states. Applications of EOM-EA-CCSD(T)(a)* augmented by a complex absorbing potential (CAP) to several temporary anions illustrate that shape resonances are well described by EOM-EA-CCSD, but that residual electron correlation often makes a non-negligible impact on their positions and widths. The positions of Feshbach resonances, on the other hand, are significantly improved when going from CAP-EOM-EA-CCSD to CAP-EOM-EA-CCSD(T)(a)*, but the correct energetic order of the relevant electronic states is still not achieved.

  10. High-quality heat flow determination from the crystalline basement of the south-east margin of North China Craton

    NASA Astrophysics Data System (ADS)

    Jiang, Guangzheng; Tang, Xiaoyin; Rao, Song; Gao, Peng; Zhang, Linyou; Zhao, Ping; Hu, Shengbiao

    2016-03-01

    Very few of heat flow data have come from the crystalline basement in the North China Craton but rather from boreholes in the sedimentary cover of oil-gas basins. Explorations for hot dry rock (HDR) geothermal resources and porphyry gold deposits in eastern China offer now valuable opportunities to study the terrestrial heat flow in the crystalline basement. In this study, we obtained continuous temperature logs from two boreholes (the LZ borehole with a depth of 3471 m and the DR borehole with a depth of 2179 m) located in the south-east margin of the North China Craton. The boreholes have experienced long shut-in times (442 days and 261 days for the LZ borehole and DR borehole, respectively); thus, it can be expected that the temperature conditions have re-equilibrated after drilling and drill-mud circulation. Rock thermal conductivity and radiogenic heat production were measured for 68 crystalline rock samples from these two boreholes. The measured heat-flow density was determined to be 71.8 ± 2.3 mW m-2 (for the LZ borehole) and 91.5 ± 1.2 mW m-2 (for the DR borehole). The heat flow for the LZ borehole is close to the value of 75 mW m-2 determined in the Chinese Continental Scientific Drilling main hole (CCSD MH), both being in the Sulu-Dabie orogenic belt and thus able to verify each other. The value for the DR borehole is higher than the above two values, which supports former high heat-flow values determined in the Bohai Bay Basin.

  11. Revision of the experimental electron affinity of BO

    NASA Astrophysics Data System (ADS)

    Rienstra, Jonathan C.; Schaefer, Henry F., III

    1997-05-01

    The experimental electron affinity of BO has proven questionable. We obtained the electron affinity of BO using the large aug-cc-pVQZ basis with SCF, CISD, CISD+Q, CCSD, and CCSD(T) methods and predict a value of 2.57 eV, or 0.55 eV smaller than the latest experimental value. The 2∑+ to 2Π excitation energy of BO has also been obtained with the CCSD(T) method and found to be 2.82 eV.

  12. Astrobiology Drilling Program of the NASA Astrobiology Institute

    NASA Astrophysics Data System (ADS)

    Runnegar, B.

    2004-12-01

    Access to unweathered and uncontaminated samples of the least altered, oldest, sedimentary rocks is essential for understanding the early history of life on Earth and the environments in which it may have existed. For this reason, the NASA Astrobiology Institute (NAI) has embarked on two international programs, a series of Field Workshops aimed at making the most important surface samples available to investigators, and the Astrobiology Drilling Program (ADP), which serves to provide access to fresh subsurface samples when the scientific objectives require them. The Astrobiology Drilling Program commenced in Western Australia in 2003 with the initiation of its first project, the Archean Biosphere Drilling Project (ABDP). Funding for the ABDP came mainly from the Japanese Government through Kagoshima University and from NASA through the NAI Team at Pennsylvania State University, but significant technical and logistic support was provided by the Geological of Western Australia and, to a lesser extent, by the University of Western Australia. Six diamond drill cores totalling 1.4 km were obtained from astrobiologically important successions in the 3.3-3.5 Ga-old Pilbara Craton of northern Western Australia. Drilling in 2004 also occurred in Western Australia. The Deep Time Drilling Project (DTDP), a spin-off from the NAI's Mission to Early Earth Focus Group, completed one long hole, aimed mainly at fossil biomolecules (biomarkers) and other geochemical indicators of early life. The DTDP and the ABDP also jointly drilled two other important holes 2004, one through the oldest known erosion surface (and possible soil profile). The other intersected well-preserved middle Archean sediments. These efforts parallel other drilling initiatives within the wider astrobiological community that are taking place in Western Australia, South Africa, Spain, and arctic Canada. The ADP is managed by the NAI through a Steering Committee appointed by the NAI Director. Samples of cores obtained through ADP projects are available to the whole community, following a one year embargo, upon application to project PIs and the ADP Steering Committee.

  13. Joint Inversion of Geochemical Data and Geophysical Logs for Lithology Identification in CCSD Main Hole

    NASA Astrophysics Data System (ADS)

    Deng, Chengxiang; Pan, Heping; Luo, Miao

    2017-12-01

    The Chinese Continental Scientific Drilling (CCSD) main hole is located in the Sulu ultrahigh-pressure metamorphic (UHPM) belt, providing significant opportunities for studying the metamorphic strata structure, kinetics process and tectonic evolution. Lithology identification is the primary and crucial stage for above geoscientific researches. To release the burden of log analyst and improve the efficiency of lithology interpretation, many algorithms have been developed to automate the process of lithology prediction. While traditional statistical techniques, such as discriminant analysis and K-nearest neighbors classifier, are incompetent in extracting nonlinear features of metamorphic rocks from complex geophysical log data; artificial intelligence algorithms are capable of solving nonlinear problems, but most of the algorithms suffer from tuning parameters to be global optimum to establish model rather than local optimum, and also encounter challenges in making the balance between training accuracy and generalization ability. Optimization methods have been applied extensively in the inversion of reservoir parameters of sedimentary formations using well logs. However, it is difficult to obtain accurate solution from the logging response equations of optimization method because of the strong overlapping of nonstationary log signals when applied in metamorphic formations. As oxide contents of each kinds of metamorphic rocks are relatively less overlapping, this study explores an approach, set in a metamorphic formation model and using the Broyden Fletcher Goldfarb Shanno (BFGS) optimization algorithm to identify lithology from oxide data. We first incorporate 11 geophysical logs and lab-collected geochemical data of 47 core samples to construct oxide profile of CCSD main hole by using backwards stepwise multiple regression method, which eliminates irrelevant input logs step by step for higher statistical significance and accuracy. Then we establish oxide response equations in accordance with the metamorphic formation model and employ BFGS algorithm to minimize the objective function. Finally, we identify lithology according to the composition content which accounts for the largest proportion. The results show that lithology identified by the method of this paper is consistent with core description. Moreover, this method demonstrates the benefits of using oxide content as an adhesive to connect logging data with lithology, can make the metamorphic formation model more understandable and accurate, and avoid selecting complex formation model and building nonlinear logging response equations.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    William C. Maurer; William J. McDonald; Thomas E. Williams

    Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed formore » a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.« less

  15. Structure and energetics of Cr(CO)6 and Cr(CO)5

    NASA Technical Reports Server (NTRS)

    Barnes, Leslie A.; Liu, Bowen; Lindh, Roland

    1993-01-01

    The geometric structures and energetics of Cr(CO)6 and Cr(CO)5 are determined at the modified coupled-pair functional, single and double excitation coupled-cluster (CCSD), and CCSD(T) levels of theory. For Cr(CO)6, the structure and force constants for the totally symmetric representation are in good agreement with experimental data once basis set constants are taken into account. In the largest basis set at the CCSD(T) level of theory, the total binding energy of CR(CO)6 is estimated at around 140 kcal/mol, or about 86 percent of the experimental value. In contrast, the first bond energy of Cr(CO)6 is very well described at the CCSD(T) level of theory, with the best estimated value of 38 kcal/mol being within the experimental uncertainty.

  16. CCSDT calculations of molecular equilibrium geometries

    NASA Astrophysics Data System (ADS)

    Halkier, Asger; Jørgensen, Poul; Gauss, Jürgen; Helgaker, Trygve

    1997-08-01

    CCSDT equilibrium geometries of CO, CH 2, F 2, HF, H 2O and N 2 have been calculated using the correlation-consistent cc-pVXZ basis sets. Similar calculations have been performed for SCF, CCSD and CCSD(T). In general, bond lengths decrease when improving the basis set and increase when improving the N-electron treatment. CCSD(T) provides an excellent approximation to CCSDT for bond lengths as the largest difference between CCSDT and CCSD(T) is 0.06 pm. At the CCSDT/cc-pVQZ level, basis set deficiencies, neglect of higher-order excitations, and incomplete treatment of core-correlation all give rise to errors of a few tenths of a pm, but to a large extent, these errors cancel. The CCSDT/cc-pVQZ bond lengths deviate on average only by 0.11 pm from experiment.

  17. Compilation of Reprints Number 63.

    DTIC Science & Technology

    1986-03-01

    Michel Be6, Stephen H1. Johnson, and E.F. Chiburis PRELIMINARY SEISMIC REFRACTION RESULTS USING A BOREHOLE SEISMOMETER IN DEEP SEA DRILLING PROJECT HOLE...refraction data with wells drilled on land and offshore reflection profiles permits tentative identification of geologic sequences on the basis of...PERIOD CO’VEAEO PRELIMINARY SEISMIC REFRACTION RESULTS USING A Rern BOREHOLE SEISMOMETER IN DEEP SEA DRILLING ~ rn PROJECT HOLE 395A 6.PERFORMING ORG

  18. 76 FR 76689 - Cibola National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... the drill pad would measure 4 by 20 feet and be approximately 5 feet deep. An estimated 1.45 acres of... the drill pad would measure 8 by 10 feet and be approximately 6 feet deep. An estimated 42.64 acres of... the proposal will be posted on the project Web site at http://www.fs.fed.us/nepa/nepa_project_exp.php...

  19. The determination of accurate dipole polarizabilities alpha and gamma for the noble gases

    NASA Technical Reports Server (NTRS)

    Rice, Julia E.; Taylor, Peter R.; Lee, Timothy J.; Almloef, Jan

    1989-01-01

    The static dipole polarizabilities alpha and gamma for the noble gases helium through xenon were determined using large flexible one-particle basis sets in conjunction with high-level treatments of electron correlation. The electron correlation methods include single and double excitation coupled-cluster theory (CCSD), an extension of CCSD that includes a perturbational estimate of connected triple excitations, CCSD(T), and second order perturbation theory (MP2). The computed alpha and gamma values are estimated to be accurate to within a few percent. Agreement with experimental data for the static hyperpolarizability gamma is good for neon and xenon, but for argon and krypton the differences are larger than the combined theoretical and experimental uncertainties. Based on our calculations, we suggest that the experimental value of gamma for argon is too low; adjusting this value would bring the experimental value of gamma for krypton into better agreement with our computed result. The MP2 values for the polarizabilities of neon, argon, krypton and zenon are in reasonabe agreement with the CCSD and CCSD(T) values, suggesting that this less expensive method may be useful in studies of polarizabilities for larger systems.

  20. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  1. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important, either between a robotic drill and humans on Earth, or a human-tended drill and its visiting crew. The Mars Analog Rio Tinto Experiment (MARTE) is a current project that studies and simulates the remote science operations between an automated drill in Spain and a distant, distributed human science team. The Drilling Automation for Mars Exploration (DAME) project, by contrast: is developing and testing standalone automation at a lunar/martian impact crater analog site in Arctic Canada. The drill hardware in both projects is a hardened, evolved version of the Advanced Deep Drill (ADD) developed by Honeybee Robotics for the Mars Subsurface Program. The current ADD is capable of 20m, and the DAME project is developing diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The current drill automation architecture being developed by NASA and tested in 2004-06 at analog sites in the Arctic and Spain will add downhole diagnosis of different strata, bit wear detection, and dynamic replanning capabilities when unexpected failures or drilling conditions are discovered in conjunction with simulated mission operations and remote science planning. The most important determinant of future 1unar and martian drilling automation and staffing requirements will be the actual performance of automated prototype drilling hardware systems in field trials in simulated mission operations. It is difficult to accurately predict the level of automation and human interaction that will be needed for a lunar-deployed drill without first having extensive experience with the robotic control of prototype drill systems under realistic analog field conditions. Drill-specific failure modes and software design flaws will become most apparent at this stage. DAME will develop and test drill automation software and hardware under stressful operating conditions during several planned field campaigns. Initial results from summer 2004 tests show seven identifi distinct failure modes of the drill: cuttings-removal issues with low-power drilling into permafrost, and successful steps at executive control and initial automation.

  2. Partially linearized external models to active-space coupled-cluster through connected hextuple excitations.

    PubMed

    Xu, Enhua; Ten-No, Seiichiro L

    2018-06-05

    Partially linearized external models to active-space coupled-cluster through hextuple excitations, for example, CC{SDtqph} L , CCSD{tqph} L , and CCSD{tqph} hyb, are implemented and compared with the full active-space CCSDtqph. The computational scaling of CCSDtqph coincides with that for the standard coupled-cluster singles and doubles (CCSD), yet with a much large prefactor. The approximate schemes to linearize the external excitations higher than doubles are significantly cheaper than the full CCSDtqph model. These models are applied to investigate the bond dissociation energies of diatomic molecules (HF, F 2 , CuH, and CuF), and the potential energy surfaces of the bond dissociation processes of HF, CuH, H 2 O, and C 2 H 4 . Among the approximate models, CCSD{tqph} hyb provides very accurate descriptions compared with CCSDtqph for all of the tested systems. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. The keto-enol equilibrium in substituted acetaldehydes: focal-point analysis and ab initio limit

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.

    2011-10-01

    High-level ab initio electronic structure calculations up to the CCSD(T) theory level, including extrapolations to the complete basis set (CBS) limit, resulted in high precision energetics of the tautomeric equilibrium in 2-substituted acetaldehydes (XH2C-CHO). The CCSD(T)/CBS relative energies of the tautomers were estimated using CCSD(T)/aug-cc-pVTZ, MP3/aug-cc-pVQZ, and MP2/aug-cc-pV5Z calculations with MP2/aug-cc-pVTZ geometries. The relative enol (XHC = CHOH) stabilities (ΔE e,CCSD(T)/CBS) were found to be 5.98 ± 0.17, -1.67 ± 0.82, 7.64 ± 0.21, 8.39 ± 0.31, 2.82 ± 0.52, 10.27 ± 0.39, 9.12 ± 0.18, 5.47 ± 0.53, 7.50 ± 0.43, 10.12 ± 0.51, 8.49 ± 0.33, and 6.19 ± 0.18 kcal mol-1 for X = BeH, BH2, CH3, Cl, CN, F, H, NC, NH2, OCH3, OH, and SH, respectively. Inconsistencies between the results of complex/composite energy computations methods Gn/CBS (G2, G3, CBS-4M, and CBS-QB3) and high-level ab initio methods (CCSD(T)/CBS and MP2/CBS) were found. DFT/aug-cc-pVTZ results with B3LYP, PBE0 (PBE1PBE), TPSS, and BMK density functionals were close to the CCSD(T)/CBS levels (MAD = 1.04 kcal mol-1).

  4. DAME: planetary-prototype drilling automation.

    PubMed

    Glass, B; Cannon, H; Branson, M; Hanagud, S; Paulsen, G

    2008-06-01

    We describe results from the Drilling Automation for Mars Exploration (DAME) project, including those of the summer 2006 tests from an Arctic analog site. The drill hardware is a hardened, evolved version of the Advanced Deep Drill by Honeybee Robotics. DAME has developed diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The DAME drill automation tested from 2004 through 2006 included adaptively controlled drilling operations and the downhole diagnosis of drilling faults. It also included dynamic recovery capabilities when unexpected failures or drilling conditions were discovered. DAME has developed and tested drill automation software and hardware under stressful operating conditions during its Arctic field testing campaigns at a Mars analog site.

  5. DAME: Planetary-Prototype Drilling Automation

    NASA Astrophysics Data System (ADS)

    Glass, B.; Cannon, H.; Branson, M.; Hanagud, S.; Paulsen, G.

    2008-06-01

    We describe results from the Drilling Automation for Mars Exploration (DAME) project, including those of the summer 2006 tests from an Arctic analog site. The drill hardware is a hardened, evolved version of the Advanced Deep Drill by Honeybee Robotics. DAME has developed diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The DAME drill automation tested from 2004 through 2006 included adaptively controlled drilling operations and the downhole diagnosis of drilling faults. It also included dynamic recovery capabilities when unexpected failures or drilling conditions were discovered. DAME has developed and tested drill automation software and hardware under stressful operating conditions during its Arctic field testing campaigns at a Mars analog site.

  6. The Marysville, Montana Geothermal Project

    NASA Technical Reports Server (NTRS)

    Mcspadden, W. R.; Stewart, D. H.; Kuwada, J. T.

    1974-01-01

    Drilling the first geothermal well in Montana presented many challenges, not only in securing materials and planning strategies for drilling the wildcat well but also in addressing the environmental, legal, and institutional issues raised by the request for permission to explore a resource which lacked legal definition. The Marysville Geothermal Project was to investigate a dry hot rock heat anomaly. The well was drilled to a total depth of 6790 feet and many fractured water bearing zones were encountered below 1800 feet.

  7. Hydromechanical drilling device

    DOEpatents

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  8. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Radtke; David Glowka; Man Mohan Rai

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hardmore » and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.« less

  9. Communication: Acceleration of coupled cluster singles and doubles via orbital-weighted least-squares tensor hypercontraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, Robert M.; Sherrill, C. David, E-mail: sherrill@gatech.edu; Hohenstein, Edward G.

    2014-05-14

    We apply orbital-weighted least-squares tensor hypercontraction decomposition of the electron repulsion integrals to accelerate the coupled cluster singles and doubles (CCSD) method. Using accurate and flexible low-rank factorizations of the electron repulsion integral tensor, we are able to reduce the scaling of the most vexing particle-particle ladder term in CCSD from O(N{sup 6}) to O(N{sup 5}), with remarkably low error. Combined with a T{sub 1}-transformed Hamiltonian, this leads to substantial practical accelerations against an optimized density-fitted CCSD implementation.

  10. New algorithm for tensor contractions on multi-core CPUs, GPUs, and accelerators enables CCSD and EOM-CCSD calculations with over 1000 basis functions on a single compute node.

    PubMed

    Kaliman, Ilya A; Krylov, Anna I

    2017-04-30

    A new hardware-agnostic contraction algorithm for tensors of arbitrary symmetry and sparsity is presented. The algorithm is implemented as a stand-alone open-source code libxm. This code is also integrated with general tensor library libtensor and with the Q-Chem quantum-chemistry package. An overview of the algorithm, its implementation, and benchmarks are presented. Similarly to other tensor software, the algorithm exploits efficient matrix multiplication libraries and assumes that tensors are stored in a block-tensor form. The distinguishing features of the algorithm are: (i) efficient repackaging of the individual blocks into large matrices and back, which affords efficient graphics processing unit (GPU)-enabled calculations without modifications of higher-level codes; (ii) fully asynchronous data transfer between disk storage and fast memory. The algorithm enables canonical all-electron coupled-cluster and equation-of-motion coupled-cluster calculations with single and double substitutions (CCSD and EOM-CCSD) with over 1000 basis functions on a single quad-GPU machine. We show that the algorithm exhibits predicted theoretical scaling for canonical CCSD calculations, O(N 6 ), irrespective of the data size on disk. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Hawaii Scientific Drilling Project: Objectives, Successes, Surprises and Frustrations

    NASA Astrophysics Data System (ADS)

    Depaolo, D. J.; Stolper, E.; Thomas, D. M.

    2008-12-01

    The Hawaii Scientific Drilling Project (HSDP) is a long-running project undertaken with the objective of studying a mantle plume by drilling an extended sequence of lavas from a single Hawaiian volcano. The project originated with a proposal to NSF in late 1986 with the idea of drilling to the Moho under Hilo; the target depth was estimated at 12km, commensurate with the depth reached by the drilling program then being pursued by the USSR and that proposed in the U.S. for the southern Appalachians, and in line with the aspirations of the nascent DOSECC program. Subsequently, due to limitations in funding and reorganization of the drilling program into what later became the NSF Continental Dynamics Program, HSDP was re-scoped with the objective of drilling deeply enough (ca. 4.5km) to recover most of the eruptive history of a single volcano. The project first went to a pilot stage, which resulted in coring to a depth of 1.1km in late 1993. The pilot stage was relatively inexpensive (1M including science) and productive. Funding was then obtained from NSF and ICDP in 1995 (ca. 12M) with the objective of drilling to 4.5km. Drilling was originally planned for a five-year period, in two campaigns. The first campaign, in 1999, resulted in efficient coring to a depth of 3.1km over a period of 6 months; it used about 40 percent of the funds and was also highly productive. Deepening the hole below 3.1km turned out to be both difficult and expensive, although for interesting reasons. To facilitate deeper drilling the hole needed to be reamed to a larger diameter; but when this was done the well unexpectedly started to flow. We now know that there are several deep pressurized aquifers, with varying salt content, but these hydrological phenomena were totally unanticipated. A key finding, also unanticipated, is that cold seawater circulates through the volcanic pile in volumes sufficient to refrigerate the entire section below 700m depth to temperatures about 25 degrees below a normal geothermal gradient. In early 1999 when the first drilling campaign was organized, the price of oil was 10 USD (rigs and drilling crews were available and reasonably priced); in early 2003 when hole opening was being arranged, the price of oil was 30 USD, and for the coring campaigns in 2005 and 2007 it was 50 to 70 USD. For these reasons, and because trip times were longer and deeply buried pillow basalts more difficult to drill, the remainder of the project funds (and then some) were needed to deepen the hole from 3.1 to 3.5km. Nevertheless, the project obtained a nearly continuous, and virtually unweathered, core consisting of lava flows, hyaloclastite, minor intrusives and sediment from a 3260m section of the Mauna Kea volcano, covering an age range from 200 to over 600 ka. It also recovered a 250m and a 280m section of the Mauna Loa volcano. A wealth of geological, volcanological, petrological, geochemical, geomagnetic, geodynamic, hydrological, and geobiological data have come from the core and the well, and more are coming in. The unprecedented geochemical-petrological data sets are a major success, as is the fact that geochemists can work together, but the hoped-for detailed geochronology for the core has proven difficult to obtain.

  12. An Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and Clayey Sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mese, Ali; Dvorkin, Jack; Shillinglaw, John

    2000-09-11

    This project include experimental data and a set of models for relating elastic moduli/porosity/texture and static-to-dynamic moduli to strength and failure relationships for unconsolidated sands and clayey sands. The results of the project should provide the industry with a basis for wider use of oil base drilling fluids in water sensitive formations by implementing drill cutting injection into existing wells at abandoned formations and controlling fracture geometry to prevent ground water contamination.

  13. 76 FR 78938 - Carpinteria Offshore Field Redevelopment Project-Developmental Drilling Into the Carpinteria...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Carpinteria Offshore Field Redevelopment Project--Developmental Drilling Into the Carpinteria Offshore Field Oil and Gas Reserves... Lands Commission (CSLC) intend to jointly review a proposal to develop offshore oil and gas resources...

  14. Problematic p-benzyne: Orbital instabilities, biradical character, and broken symmetry

    NASA Astrophysics Data System (ADS)

    Crawford, T. Daniel; Kraka, Elfi; Stanton, John F.; Cremer, Dieter

    2001-06-01

    The equilibrium geometry, harmonic vibrational frequencies, and infrared transition intensities of p-benzyne were calculated at the MBPT(2), SDQ-MBPT(4), CCSD, and CCSD(T) levels of theory using different reference wave functions obtained from restricted and unrestricted Hartree-Fock (RHF and UHF), restricted Brueckner (RB) orbital, and Generalized Valence Bond (GVB) theory. RHF erroneously describes p-benzyne as a closed-shell singlet rather than a singlet biradical, which leads to orbital near-instabilities in connection with the mixing of orbital pairs b1u-ag (HOMO-LUMO), b2g-ag (HOMO-1-LUMO), and b1g-ag (HOMO-2-LUMO). Vibrational modes of the corresponding symmetries cause method-dependent anomalous increases (unreasonable force constants and infrared intensities) or decreases in the energy (breaking of the D2h symmetry of the molecular framework of p-benzyne). This basic failure of the RHF starting function is reduced by adding dynamic electron correlation. However RHF-MBPT(2), RHF-SDQ-MBPT(4), RHF-CCSD, RB-CCD, and RHF-CCSD(T) descriptions of p-benzyne are still unreliable as best documented by the properties of the b1u-, b2g-, and b1g-symmetrical vibrational modes. The first reliable spin-restricted description is provided when using Brueckner orbitals at the RB-CCD(T) level. GVB leads to exaggerated biradical character that is reduced at the GVB-MP2 level of theory. The best results are obtained with a UHF reference wave function, provided a sufficient account of dynamic electron correlation is included. At the UHF-CCSD level, the triplet contaminant is completely annihilated. UHF-CCSD(T) gives a reliable account of the infrared spectrum apart from a CCH bending vibrational mode, which is still in disagreement with experiment.

  15. Accounting for the exact degeneracy and quasidegeneracy in the automerization of cyclobutadiene via multireference coupled-cluster methods.

    PubMed

    Li, Xiangzhu; Paldus, Josef

    2009-09-21

    The automerization of cyclobutadiene (CBD) is employed to test the performance of the reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR CCSD) that employs a modest-size MR CISD wave function as an external source for the most important (primary) triples and quadruples in order to account for the nondynamic correlation effects in the presence of quasidegeneracy, as well as of its perturbatively corrected version accounting for the remaining (secondary) triples [RMR CCSD(T)]. The experimental results are compared with those obtained by the standard CCSD and CCSD(T) methods, by the state universal (SU) MR CCSD and its state selective or state specific (SS) version as formulated by Mukherjee et al. (SS MRCC or MkMRCC) and, wherever available, by the Brillouin-Wigner MRCC [MR BWCCSD(T)] method. Both restricted Hartree-Fock (RHF) and multiconfigurational self-consistent field (MCSCF) molecular orbitals are employed. For a smaller STO-3G basis set we also make a comparison with the exact full configuration interaction (FCI) results. Both fundamental vibrational energies-as obtained via the integral averaging method (IAM) that can handle anomalous potentials and automatically accounts for anharmonicity- and the CBD automerization barrier for the interconversion of the two rectangular structures are considered. It is shown that the RMR CCSD(T) potential has the smallest nonparallelism error relative to the FCI potential and the corresponding fundamental vibrational frequencies compare reasonably well with the experimental ones and are very close to those recently obtained by other authors. The effect of anharmonicity is assessed using the second-order perturbation theory (MP2). Finally, the invariance of the RMR CC methods with respect to orbital rotations is also examined.

  16. Explicitly correlated coupled-cluster theory using cusp conditions. II. Treatment of connected triple excitations.

    PubMed

    Köhn, Andreas

    2010-11-07

    The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Köhn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.

  17. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact age, cratering, target-impactite stratigraphy, ejecta, impact dynamics, hydrothermal alterations and post-impact processes are presented. The challenges and perspectives of drilling studies of impact craters are discussed.

  18. The structure and energetics of the HCN → HNC transition state

    NASA Astrophysics Data System (ADS)

    Lee, Timothy J.; Rendell, Alistair P.

    1991-03-01

    The optimum geometries and quadratic force constants of HCN, HNC and the transition state connecting them have been determined at the single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory. Energy differences were evaluated using the CCSD and CCSD(T) methods in conjunction with large atomic natural orbital basis sets containing g-type basis functions on the heavy atoms and f-type functions on hydrogen. The most reliable structure obtained for the transition state has bond distances of 1.194, 1.188 and 1.389 Å for rCN, rCH and rNH, respectively. Including a correction for zero-point vibrational energies, the transition state is predicted to be 44.6 ± 1.0 kcal/mol above the HCN isomer, while HNC is predicted to be 14.4 ± 1.0 kcal/mol above HCN. The latter value is in excellent agreement with the most recent experimental determination (14.8 ± 2.0 kcal/mol).

  19. Load and resistance factor design of drilled shafts in shale for lateral loading.

    DOT National Transportation Integrated Search

    2014-04-01

    A research project involving 32 drilled shaft load tests was undertaken to establish LRFD procedures for : design of drilled shafts subjected to lateral loads. Tests were performed at two Missouri Department of : Transportation (MoDOT) geotechnical r...

  20. Theoretical spectroscopic characterization at low temperatures of detectable sulfur-organic compounds: Ethyl mercaptan and dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Senent, M. L.; Puzzarini, C.; Domínguez-Gómez, R.; Carvajal, M.; Hochlaf, M.

    2014-03-01

    Highly correlated ab initio methods are used for the spectroscopic characterization of ethyl mercaptan (CH3CH232SH, ETSH) and dimethyl sulfide (CH332SCH3, DMS), considering them on the vibrational ground and excited torsional states. Since both molecules show non-rigid properties, torsional energy barriers and splittings are provided. Equilibrium geometries and the corresponding rotational constants are calculated by means of a composite scheme based on CCSD(T) calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The ground and excited states rotational constants are then determined using vibrational corrections obtained from CCSD/cc-pVTZ force-field calculations, which are also employed to determine anharmonic frequencies for all vibrational modes. CCSD(T) and CCSD force fields are employed to predict quartic and sextic centrifugal-distortion constants, respectively. Equilibrium rotational constants are also calculated using CCSD(T)-F12. The full-dimensional anharmonic analysis does not predict displacements of the lowest torsional excited states due to Fermi resonances with the remaining vibrational modes. Thus, very accurate torsional transitions are calculated by solving variationally two-dimensional Hamiltonians depending on the CH3 and SH torsional coordinates of ethyl mercaptan or on the two methyl groups torsions of dimethyl-sulfide. For this purpose, vibrationally corrected potential energy surfaces are computed at the CCSD(T)/aug-cc-pVTZ level of theory. For ethyl mercaptan, calculations show large differences between the gauche (g) and trans (t) conformer spectral features. Interactions between rotating groups are responsible for the displacements of the g-bands with respect to the t-bands that cannot therefore be described with one-dimensional models. For DMS, the CCSD(T) potential energy surface has been semi-empirically adjusted to reproduce experimental data. New assignments are suggested for the methyl torsion bands of ETSH and a reassignment is proposed for the infrared bands of DMS (0 3 → 0 4 and 1 0 → 1 1). Our accurate spectroscopic data should be useful for the analysis of the microwave and far infrared spectra of ETSH and DMS recorded, at low temperatures, either in laboratory or in the interstellar medium.

  1. Assessment of Orbital-Optimized Third-Order Møller-Plesset Perturbation Theory and Its Spin-Component and Spin-Opposite Scaled Variants for Thermochemistry and Kinetics.

    PubMed

    Soydaş, Emine; Bozkaya, Uğur

    2013-03-12

    An assessment of the OMP3 method and its spin-component and spin-scaled variants for thermochemistry and kinetics is presented. For reaction energies of closed-shell systems, the CCSD, SCS-MP3, and SCS-OMP3 methods show better performances than other considered methods, and no significant improvement is observed due to orbital optimization. For barrier heights, OMP3 and SCS-OMP3 provide the lowest mean absolute deviations. The MP3 method yields considerably higher errors, and the spin scaling approaches do not help to improve upon MP3, but worsen it. For radical stabilization energies, the CCSD, OMP3, and SCS-OMP3 methods exhibit noticeably better performances than MP3 and its variants. Our results demonstrate that if the reference wave function suffers from a spin-contamination, then the MP3 methods dramatically fail. On the other hand, the OMP3 method and its variants can tolerate the spin-contamination in the reference wave function. For overall evaluation, we conclude that OMP3 is quite helpful, especially in electronically challenged systems, such as free radicals or transition states where spin contamination dramatically deteriorates the quality of the canonical MP3 and SCS-MP3 methods. Both OMP3 and CCSD methods scale as n(6), where n is the number of basis functions. However, the OMP3 method generally converges in much fewer iterations than CCSD. In practice, OMP3 is several times faster than CCSD in energy computations. Further, the stationary properties of OMP3 make it much more favorable than CCSD in the evaluation of analytic derivatives. For OMP3, the analytic gradient computations are much less expensive than CCSD. For the frequency computation, both methods require the evaluation of the perturbed amplitudes and orbitals. However, in the OMP3 case there is still a significant computational time savings due to simplifications in the analytic Hessian expression owing to the stationary property of OMP3. Hence, the OMP3 method emerges as a very useful tool for computational quantum chemistry.

  2. The Newberry Deep Drilling Project (NDDP)

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.

    2017-12-01

    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  3. Drilling cost-cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capuano, L.E. Jr.

    This presentation by Louis E. Capuano, Jr., President, ThermaSource, Inc., discusses cost-cutting in the drilling phase of geothermal energy exploration and production. All aspects of a geothermal project including the drilling must be streamlined to make it viable and commercial. If production could be maximized from each well, there would be a reduction in drilling costs. This could be achieved in several ways, including big hole and multi-hole completion, directional drilling, better knowledge of the resource and where to penetrate, etc.

  4. Scientific drilling projects in ancient lakes: Integrating geological and biological histories

    NASA Astrophysics Data System (ADS)

    Wilke, Thomas; Wagner, Bernd; Van Bocxlaer, Bert; Albrecht, Christian; Ariztegui, Daniel; Delicado, Diana; Francke, Alexander; Harzhauser, Mathias; Hauffe, Torsten; Holtvoeth, Jens; Just, Janna; Leng, Melanie J.; Levkov, Zlatko; Penkman, Kirsty; Sadori, Laura; Skinner, Alister; Stelbrink, Björn; Vogel, Hendrik; Wesselingh, Frank; Wonik, Thomas

    2016-08-01

    Sedimentary sequences in ancient or long-lived lakes can reach several thousands of meters in thickness and often provide an unrivalled perspective of the lake's regional climatic, environmental, and biological history. Over the last few years, deep-drilling projects in ancient lakes became increasingly multi- and interdisciplinary, as, among others, seismological, sedimentological, biogeochemical, climatic, environmental, paleontological, and evolutionary information can be obtained from sediment cores. However, these multi- and interdisciplinary projects pose several challenges. The scientists involved typically approach problems from different scientific perspectives and backgrounds, and setting up the program requires clear communication and the alignment of interests. One of the most challenging tasks, besides the actual drilling operation, is to link diverse datasets with varying resolution, data quality, and age uncertainties to answer interdisciplinary questions synthetically and coherently. These problems are especially relevant when secondary data, i.e., datasets obtained independently of the drilling operation, are incorporated in analyses. Nonetheless, the inclusion of secondary information, such as isotopic data from fossils found in outcrops or genetic data from extant species, may help to achieve synthetic answers. Recent technological and methodological advances in paleolimnology are likely to increase the possibilities of integrating secondary information. Some of the new approaches have started to revolutionize scientific drilling in ancient lakes, but at the same time, they also add a new layer of complexity to the generation and analysis of sediment-core data. The enhanced opportunities presented by new scientific approaches to study the paleolimnological history of these lakes, therefore, come at the expense of higher logistic, communication, and analytical efforts. Here we review types of data that can be obtained in ancient lake drilling projects and the analytical approaches that can be applied to empirically and statistically link diverse datasets to create an integrative perspective on geological and biological data. In doing so, we highlight strengths and potential weaknesses of new methods and analyses, and provide recommendations for future interdisciplinary deep-drilling projects.

  5. Interaction between drilled shaft and mechanically stabilized earth (MSE) wall : project summary.

    DOT National Transportation Integrated Search

    2015-08-31

    Drilled shafts are being constructed within the reinforced zone of mechanically stabilized earth (MSE) walls (Figure 1). The drilled shafts may be subjected to horizontal loads and push against the front of the wall. Distress of MSE wall panels has b...

  6. Mars Analog Rio Tinto Experiment (MARTE): 2003 Drilling Campaign to Search for a Subsurface Biosphere at Rio Tinto Spain

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Dunagan, Stephen; Stevens, Todd; Amils, Ricardo; Gomez-Elvira, Javier; Fernandez, David; Hall, James; Lynch, Kennda; Cannon, Howard; Zavaleta, Jhony

    2004-01-01

    The MARTE (Mars Astrobiology Research and Technology Experiment) project, an ASTEP field experiment, is exploring for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River- or Rio Tinto- in southwestern Spain. It is also demonstrating technology needed to search for a subsurface biosphere on Mars. The project has three primary objectives: (1) search for and characterize subsurface life at Rio Tinto along with the physical and chemical properties and sustaining energy sources of its environment, (2) perform a high fidelity simulation of a robotic Mars drilling mission to search for life, and (3) demonstrate the drilling, sample handling, and instrument technologies relevant to searching for life on Mars. The simulation of the robotic drilling mission is guided by the results of the aseptic drilling campaign to search for life at Rio Tinto. This paper describes results of the first phase of the aseptic drilling campaign.

  7. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform.

    PubMed

    Nagy, Péter R; Kállay, Mihály

    2017-06-07

    An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor.

  8. Benchmark CCSD(T) and DFT study of binding energies in Be7 - 12: in search of reliable DFT functional for beryllium clusters

    NASA Astrophysics Data System (ADS)

    Labanc, Daniel; Šulka, Martin; Pitoňák, Michal; Černušák, Ivan; Urban, Miroslav; Neogrády, Pavel

    2018-05-01

    We present a computational study of the stability of small homonuclear beryllium clusters Be7 - 12 in singlet electronic states. Our predictions are based on highly correlated CCSD(T) coupled cluster calculations. Basis set convergence towards the complete basis set limit as well as the role of the 1s core electron correlation are carefully examined. Our CCSD(T) data for binding energies of Be7 - 12 clusters serve as a benchmark for performance assessment of several density functional theory (DFT) methods frequently used in beryllium cluster chemistry. We observe that, from Be10 clusters on, the deviation from CCSD(T) benchmarks is stable with respect to size, and fluctuating within 0.02 eV error bar for most examined functionals. This opens up the possibility of scaling the DFT binding energies for large Be clusters using CCSD(T) benchmark values for smaller clusters. We also tried to find analogies between the performance of DFT functionals for Be clusters and for the valence-isoelectronic Mg clusters investigated recently in Truhlar's group. We conclude that it is difficult to find DFT functionals that perform reasonably well for both beryllium and magnesium clusters. Out of 12 functionals examined, only the M06-2X functional gives reasonably accurate and balanced binding energies for both Be and Mg clusters.

  9. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform

    PubMed Central

    2017-01-01

    An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor. PMID:28576082

  10. Probing phenylalanine/adenine pi-stacking interactions in protein complexes with explicitly correlated and CCSD(T) computations.

    PubMed

    Copeland, Kari L; Anderson, Julie A; Farley, Adam R; Cox, James R; Tschumper, Gregory S

    2008-11-13

    To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.

  11. El Paso County Geothermal Project at Fort Bliss. Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lear, Jon; Bennett, Carlon; Lear, Dan

    The El Paso County Geothermal Project at Fort Bliss was an effort to determine the scale and scope of geothermal resources previously identified on Fort Bliss’ McGregor Range in southern Otero County, New Mexico. The project was funded with a $5,000,000 grant to El Paso County from the U.S. Department of Energy (DOE) as part of the American Recovery and Reinvestment Act of 2009 and a $4,812,500 match provided by private sector partners. The project was administered through the DOE Golden Field Office to awardee El Paso County. The primary subcontractor to El Paso County and project Principal Investigator -more » Ruby Mountain Inc. (RMI) of Salt Lake City, Utah - assembled the project team consisting of Evergreen Clean Energy Management (ECEM) of Provo, Utah, and the Energy & Geoscience Institute at the University of Utah (EGI) in Salt Lake City, UT to complete the final phases of the project. The project formally began in May of 2010 and consisted of two preliminary phases of data collection and evaluation which culminated in the identification of a drilling site for a Resource Confirmation Well on McGregor Range. Well RMI 56-5 was drilled May and June 2013 to a depth of 3,030 ft. below ground level. A string of slotted 7 inch casing was set in 8.75 inch hole on bottom fill at 3,017 ft. to complete the well. The well was drilled using a technique called flooded reverse circulation, which is most common in mineral exploration. This technique produced an exceptionally large and complete cuttings record. An exciting development at the conclusion of drilling was the suspected discovery of a formation that has proven to be of exceptionally high permeability in three desalinization wells six miles to the south. Following drilling and preliminary testing and analysis, the project team has determined that the McGregor Range thermal anomaly is large and can probably support development in the tens of megawatts.« less

  12. Recent Developments and Adaptations in Diamond Wireline Core Drilling Technology

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Nielson, D. L.; Howell, B. B.; Pardey, M.

    2001-05-01

    Scientific drilling using diamond wireline technology is presently undergoing a significant expansion and extension of activities that has allowed us to recover geologic samples that have heretofore been technically or financially unattainable. Under the direction and management of DOSECC, a high-capacity hybrid core drilling system was designed and fabricated for the Hawaii Scientific Drilling Project (HSDP) in 1998. This system, the DOSECC Hybrid Coring System (DHCS), has the capacity to recover H-sized core from depths of more than 6 km. In 1999, the DHCS completed the first phase of the HSDP to a depth of 3100 m at a substantially lower cost per foot than any previous scientific borehole to comparable depths and, in the process, established a new depth record for recovery of H-sized wireline core. This system has been offered for use in the Unzen Scientific Drilling Project, the Chicxulub (impact crater) Scientific Drilling Project, and the Geysers Deep Geothermal Reservoir Project. More recently, DOSECC has developed a smaller barge-mounted wireline core drilling system, the GLAD800, that is capable of recovering P-sized sediment core to depths of up to 800 m. The GLAD800 has been successfully deployed on Great Salt Lake and Bear Lake in Utah and is presently being mobilized to Lake Titicaca in South America for an extensive core recovery effort there. The coring capabilities of the GLAD800 system will be available to the global lakes drilling community for acquisition of sediment cores from many of the world's deep lakes for use in calibrating and refining global climate models. Presently under development by DOSECC is a heave-compensation system that will allow us to expand the capabilities of the moderate depth coring system to allow us to collect sediment and bottom core from the shallow marine environment. The design and capabilities of these coring systems will be presented along with a discussion of their potential applications for addressing a range of earth sciences questions.

  13. Laser Drilling Development Trial Final Report CRADA No. TSB-1538-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermann, M. R.; Hebbar, R. R.

    This project performed various laser drilling tests to demonstrate femtosecond laser drilling of fuel injector nozzles with minimal recast, minimal heat affected zone and no collateral damage. LLNL had extensive experience in ultra short-pulse laser systems and developed specialized hardware for these applications.

  14. Drill hole data for coal beds in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    Haacke, Jon E.; Scott, David C.

    2013-01-01

    This report by the U.S. Geological Survey (USGS) of the Powder River Basin (PRB) of Montana and Wyoming is part of the U.S. Coal Resources and Reserves Assessment Project. Essential to that project was the creation of a comprehensive drill hole database that was used for coal bed correlation and for coal resource and reserve assessments in the PRB. This drill hole database was assembled using data from the USGS National Coal Resources Data System, several other Federal and State agencies, and selected mining companies. Additionally, USGS personnel manually entered lithologic picks into the database from geophysical logs of coalbed methane, oil, and gas wells. Of the 29,928 drill holes processed, records of 21,393 are in the public domain and are included in this report. The database contains location information, lithology, and coal bed names for each drill hole.

  15. Dead Sea deep cores: A window into past climate and seismicity

    NASA Astrophysics Data System (ADS)

    Stein, Mordechai; Ben-Avraham, Zvi; Goldstein, Steven L.

    2011-12-01

    The area surrounding the Dead Sea was the locus of humankind's migration out of Africa and thus has been the home of peoples since the Stone Age. For this reason, understanding the climate and tectonic history of the region provides valuable insight into archaeology and studies of human history and helps to gain a better picture of future climate and tectonic scenarios. The deposits at the bottom of the Dead Sea are a geological archive of the environmental conditions (e.g., rains, floods, dust storms, droughts) during ice ages and warm ages, as well as of seismic activity in this key region. An International Continental Scientific Drilling Program (ICDP) deep drilling project was performed in the Dead Sea between November 2010 and March 2011. The project was funded by the ICDP and agencies in Israel, Germany, Japan, Norway, Switzerland, and the United States. Drilling was conducted using the new Large Lake Drilling Facility (Figure 1), a barge with a drilling rig run by DOSECC, Inc. (Drilling, Observation and Sampling of the Earth's Continental Crust), a nonprofit corporation dedicated to advancing scientific drilling worldwide. The main purpose of the project was to recover a long, continuous core to provide a high resolution record of the paleoclimate, paleoenvironment, paleoseismicity, and paleomagnetism of the Dead Sea Basin. With this, scientists are beginning to piece together a record of the climate and seismic history of the Middle East during the past several hundred thousand years in millennial to decadal to annual time resolution.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upchurch, J.L.

    In order to better meet the challenges associated with downsizing and because of the ongoing need to control costs and accelerate project development many companies are trying new and different strategies in managing projects. For the Seastar Project, Phillips adopted a total team approach. The goal of this approach was to develop a win/win attitude for all of the personnel (Phillips, Engineering Contractor and Equipment Vendors) involved in the project. By bringing all the personnel together and focusing on project success it was thought that costs could be better controlled and that the development schedule could be accelerated. The Seastarmore » Project is a two well subsea development located in Garden Banks Blocks 70 and 71 approximately 120 miles south of Cameron Louisiana. Phillips took over operatorship in 1992 and drilled Garden Banks Block 71 No. 2, which discovered 349 feet of net gas pay in April 1993. Following a successful drill stem test on GB 71 No. 2, drilling was started on an appraisal well and work began on a feasibility study to define development options.« less

  17. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, L.R.; Aguilar, R.; Mercer, J.W.

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with boreholemore » locations and times-of-drilling charts are included.« less

  18. Image registration based on subpixel localization and Cauchy-Schwarz divergence

    NASA Astrophysics Data System (ADS)

    Ge, Yongxin; Yang, Dan; Zhang, Xiaohong; Lu, Jiwen

    2010-07-01

    We define a new matching metric-corner Cauchy-Schwarz divergence (CCSD) and present a new approach based on the proposed CCSD and subpixel localization for image registration. First, we detect the corners in an image by a multiscale Harris operator and take them as initial interest points. And then, a subpixel localization technique is applied to determine the locations of the corners and eliminate the false and unstable corners. After that, CCSD is defined to obtain the initial matching corners. Finally, we use random sample consensus to robustly estimate the parameters based on the initial matching. The experimental results demonstrate that the proposed algorithm has a good performance in terms of both accuracy and efficiency.

  19. Stress induced near fault-zone breakout rotation: Two case studies in TCDP and JFAST

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Brodsky, E. E.; Moe, K.; Kinoshita, M.

    2014-12-01

    Within the past decade, two successful rapid-response drilling projects have measured breakouts within the nearfault of a recently ruptured fault. Breakout observation is the direct way to detect the far and near filed stress orientation in drilling. Here we compare those data. In 2006, ICDP performed an inland drilling project to penetrate Chelungpu fault plane in central of Taiwan, which had recently slipped in 1999 Mw 7.6 Chi-Chi earthquake. This drilling project succeeded in full coring and collecting comprehensive logging data in the borehole. The resistivity images run by Formation Micro Imager (FMI) indicated that a breakout rotation in the vicinity of the fault (1111mbf). Leak-off tests on site constrained the magnitude of minimum horizontal principal stress. Here we use these data to determine the stress variation in the fault plane in our breakout dislocation model. Based on the amount of breakout azimuth, rotation and fault geometry, the stress drop can be estimated in this model. In 2012, IODP initiated a rapid drilling project after the 2011 Mw9.0 Tohoku earthquake in Japan Trench. Due to the deep-water depth, only a real-time resistivity image recorded by Logging While Drilling (LWD) and few core samples are recovered by this expedition. However, the breakout azimuth occurred near the plate boundary (820mbsf) represents the stress disturbance after the dramatic slip comparing to TCDP case. In this research, we are attempting to discuss the possible effect factors and reconstruct the geo-mechanical models to interpret the breakout distribution observed from logging data and the stress state after these huge earthquakes.

  20. A molecular chaperone activity of CCS restores the maturation of SOD1 fALS mutants.

    PubMed

    Luchinat, Enrico; Barbieri, Letizia; Banci, Lucia

    2017-12-12

    Superoxide dismutase 1 (SOD1) is an important metalloprotein for cellular oxidative stress defence, that is mutated in familiar variants of Amyotrophic Lateral Sclerosis (fALS). Some mutations destabilize the apo protein, leading to the formation of misfolded, toxic species. The Copper Chaperone for SOD1 (CCS) transiently interacts with SOD1 and promotes its correct maturation by transferring copper and catalyzing disulfide bond formation. By in vitro and in-cell NMR, we investigated the role of the SOD-like domain of CCS (CCS-D2). We showed that CCS-D2 forms a stable complex with zinc-bound SOD1 in human cells, that has a twofold stabilizing effect: it both prevents the accumulation of unstructured mutant SOD1 and promotes zinc binding. We further showed that CCS-D2 interacts with apo-SOD1 in vitro, suggesting that in cells CCS stabilizes mutant apo-SOD1 prior to zinc binding. Such molecular chaperone function of CCS-D2 is novel and its implications in SOD-linked fALS deserve further investigation.

  1. High-velocity frictional strength across the Tohoku-Oki megathrust determined from surface drilling torque

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Inoue, T.; Ishiwata, J.

    2015-12-01

    Frictional strength at seismic slip rates is a key to evaluate fault weakening and rupture propagation during earthquakes. The Japan Trench First Drilling Project (JFAST) drilled through the shallow plate-boundary thrust, where huge displacements of ~50 m occurred during the 2011 Tohoku-Oki earthquake. To determine the downhole frictional strength at drilled site (Site C0019), we analyzed surface drilling data. The equivalent slip rate estimated from the rotation rate and inner and outer radiuses of the drill bit ranges from 0.8 to 1.3 m/s. The measured torque includes the frictional torque between the drilling string and borehole wall, the viscous torque between the drilling string and seawater/drilling fluid, and the drilling torque between the drill bit and sediments. We subtracted the former two from the measured torque using the torque data during bottom-up rotating operations at several depths. Then, the shear stress was calculated from the drilling torque taking the configuration of the drill bit into consideration. The normal stress was estimated from the weight on bit data and the projected area of the drill bit. Assuming negligible cohesion, the frictional strength was obtained by dividing shear stress by normal stress. The results show a clear contrast in high-velocity frictional strength across the plate-boundary thrust: the friction coefficient of frontal prism sediments (hemipelagic mudstones) in hanging wall is 0.1-0.2, while that in subducting sediments (hemipelagic to pelagic mudstones and chert) in footwall increases to 0.2-0.4. The friction coefficient of smectite-rich pelagic clay in the plate-boundary thrust is ~0.1, which is consistent with that obtained from high-velocity (1.3 m/s) friction experiments and temperature measurements. We conclude that surface drilling torque provides useful data to obtain a continuous downhole frictional strength.

  2. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2003-10-01

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.« less

  3. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/ormore » second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.« less

  4. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    NASA Astrophysics Data System (ADS)

    Spackman, Peter R.; Karton, Amir

    2015-05-01

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol-1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol-1.

  5. Application of Effective Fragment Potential Methos to the Redox Potential of Green Fluorescent Protein

    NASA Astrophysics Data System (ADS)

    Ghosh, Debashree; Krylov, Anna I.

    2011-06-01

    Green fluorescent proteins (GFP) can be considered as a model for flurogenic dyes and are of importance in photovoltaic materials. It exhibits bright green fluorescence when exposed to blue light and has been an extremely powerful tool as non-invasive marker in living cells and extensibly used in molecular and cell biology. The understanding of the underlying electronic structure of these proteins and its chromophore is therefore crucial to the understanding of the mechanism for its optical properties. The chromophore of the GFP is p-hydroxybenzylidene-imidazolinone (HBDI) and is embedded in the center of the β barrel of the GFP. Calculating redox potential of this chromophore is a challenging problem, especially in diverse solvents and protein environment. It is possible to carry out high-level accurate ab-initio calculation of ionization potential or electron affinity of the microsolvated chromophore or the bare chromophore. But, it is not possible to extend these calculations to bulk solvents due to the high computational cost. Effective fragment potential (EFP)[1,2] method gives us a convenient tool to understand such systems. In our work, we have benchmarked the ionization energy and electron affinity of the microsolvated GFP chromophore calculated by combined EOM-IP-CCSD/EFP and EOM-EA-CCSD/EFP with the EOM-IP-CCSD and EOM-EA-CCSD calculations of the oxidized and reduced forms. We have carried out similar EFP-EOM-IP-CCSD and EFP-EOM-EA-CCSD calculations of ionization potential and electron affinity of GFP choromophore in bulk solvent generated by ab-initio molecular dynamics simulations. [1] M. S. Gordon, L. Slipchenko, H. Li, J. H. Jensen, Annual Reports in Computational Chemistry, Volume 3, 177 (2007). [2] D. Ghosh, D. Kosenkov, V. Vanovschi, C.F. Williams, J.M. Herbert, M.S. Gordon, M.W. Schmidt, L.V. Slipchenko, and A.I. Krylov, J. Phys. Chem. A 114, 12739 (2010).

  6. On the accuracy of explicitly correlated methods to generate potential energy surfaces for scattering calculations and clustering: application to the HCl-He complex.

    PubMed

    Ajili, Yosra; Hammami, Kamel; Jaidane, Nejm Eddine; Lanza, Mathieu; Kalugina, Yulia N; Lique, François; Hochlaf, Majdi

    2013-07-07

    We closely compare the accuracy of multidimensional potential energy surfaces (PESs) generated by the recently developed explicitly correlated coupled cluster (CCSD(T)-F12) methods in connection with the cc-pVXZ-F12 (X = D, T) and aug-cc-pVTZ basis sets and those deduced using the well-established orbital-based coupled cluster techniques employing correlation consistent atomic basis sets (aug-cc-pVXZ, X = T, Q, 5) and extrapolated to the complete basis set (CBS) limit. This work is performed on the benchmark rare gas-hydrogen halide interaction (HCl-He) system. These PESs are then incorporated into quantum close-coupling scattering dynamical calculations in order to check the impact of the accuracy of the PES on the scattering calculations. For this system, we deduced inelastic collisional data including (de-)excitation collisional and pressure broadening cross sections. Our work shows that the CCSD(T)-F12/aug-cc-pVTZ PES describes correctly the repulsive wall, the van der Waals minimum and long range internuclear distances whereas cc-pVXZ-F12 (X = D,T) basis sets are not diffuse enough for that purposes. Interestingly, the collision cross sections deduced from the CCSD(T)-F12/aug-cc-pVTZ PES are in excellent agreement with those obtained with CCSD(T)/CBS methodology. The position of the resonances and the general shape of these cross sections almost coincide. Since the cost of the electronic structure computations is reduced by several orders of magnitude when using CCSD(T)-F12/aug-cc-pVTZ compared to CCSD(T)/CBS methodology, this approach can be recommended as an alternative for generation of PESs of molecular clusters and for the interpretation of accurate scattering experiments as well as for a wide production of collisional data to be included in astrophysical and atmospherical models.

  7. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    NASA Astrophysics Data System (ADS)

    Baker, P. A.; Fritz, S. C.; Silva, C. G.; Rigsby, C. A.; Absy, M. L.; Almeida, R. P.; Caputo, M.; Chiessi, C. M.; Cruz, F. W.; Dick, C. W.; Feakins, S. J.; Figueiredo, J.; Freeman, K. H.; Hoorn, C.; Jaramillo, C.; Kern, A. K.; Latrubesse, E. M.; Ledru, M. P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W. E.; Ramos, M. I. F.; Ribas, C. C.; Trnadade, R.; West, A. J.; Wahnfried, I.; Willard, D. A.

    2015-12-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  8. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    USGS Publications Warehouse

    Baker, P.A.; Fritz, S.C.; Silva, C.G.; Rigsby, C.A.; Absy, M.L.; Almeida, R.P.; Caputo, Maria C.; Chiessi, C.M.; Cruz, F.W.; Dick, C.W.; Feakins, S.J.; Figueiredo, J.; Freeman, K.H.; Hoorn, C.; Jaramillo, C.A.; Kern, A.; Latrubesse, E.M.; Ledru, M.P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W.E.; Ramos, M.I.F.; Ribas, C.C.; Trinadade, R.; West, A.J.; Wahnfried, I.; Willard, Debra A.

    2015-01-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  9. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu; Perera, Ajith

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. Inmore » this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to characterize and identify radical species is illustrated with our results from large organic radicals. Those include species relevant for organic chemistry, petroleum industry, and biochemistry, such as the cyclo-hexyl, 1-adamatyl, and Zn-porphycene anion radicals, inter alia.« less

  10. Combining the spin-separated exact two-component relativistic Hamiltonian with the equation-of-motion coupled-cluster method for the treatment of spin-orbit splittings of light and heavy elements.

    PubMed

    Cao, Zhanli; Li, Zhendong; Wang, Fan; Liu, Wenjian

    2017-02-01

    The spin-separated exact two-component (X2C) relativistic Hamiltonian [sf-X2C+so-DKHn, J. Chem. Phys., 2012, 137, 154114] is combined with the equation-of-motion coupled-cluster method with singles and doubles (EOM-CCSD) for the treatment of spin-orbit splittings of open-shell molecular systems. Scalar relativistic effects are treated to infinite order from the outset via the spin-free part of the X2C Hamiltonian (sf-X2C), whereas the spin-orbit couplings (SOC) are handled at the CC level via the first-order Douglas-Kroll-Hess (DKH) type of spin-orbit operator (so-DKH1). Since the exponential of single excitations, i.e., exp(T 1 ), introduces sufficient spin orbital relaxations, the inclusion of SOC at the CC level is essentially the same in accuracy as the inclusion of SOC from the outset in terms of the two-component spinors determined variationally by the sf-X2C+so-DKH1 Hamiltonian, but is computationally more efficient. Therefore, such an approach (denoted as sf-X2C-EOM-CCSD(SOC)) can achieve uniform accuracy for the spin-orbit splittings of both light and heavy elements. For light elements, the treatment of SOC can even be postponed until the EOM step (denoted as sf-X2C-EOM(SOC)-CCSD), so as to further reduce the computational cost. To reveal the efficacy of sf-X2C-EOM-CCSD(SOC) and sf-X2C-EOM(SOC)-CCSD, the spin-orbit splittings of the 2 Π states of monohydrides up to the sixth row of the periodic table are investigated. The results show that sf-X2C-EOM-CCSD(SOC) predicts very accurate results (within 5%) for elements up to the fifth row, whereas sf-X2C-EOM(SOC)-CCSD is useful only for light elements (up to the third row but with some exceptions). For comparison, the sf-X2C-S-TD-DFT-SOC approach [spin-adapted open-shell time-dependent density functional theory, Mol. Phys., 2013, 111, 3741] is applied to the same systems. The overall accuracy (1-10%) is satisfactory.

  11. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets

    NASA Astrophysics Data System (ADS)

    Hill, J. Grant; Peterson, Kirk A.; Knizia, Gerald; Werner, Hans-Joachim

    2009-11-01

    Accurate extrapolation to the complete basis set (CBS) limit of valence correlation energies calculated with explicitly correlated MP2-F12 and CCSD(T)-F12b methods have been investigated using a Schwenke-style approach for molecules containing both first and second row atoms. Extrapolation coefficients that are optimal for molecular systems containing first row elements differ from those optimized for second row analogs, hence values optimized for a combined set of first and second row systems are also presented. The new coefficients are shown to produce excellent results in both Schwenke-style and equivalent power-law-based two-point CBS extrapolations, with the MP2-F12/cc-pV(D,T)Z-F12 extrapolations producing an average error of just 0.17 mEh with a maximum error of 0.49 for a collection of 23 small molecules. The use of larger basis sets, i.e., cc-pV(T,Q)Z-F12 and aug-cc-pV(Q,5)Z, in extrapolations of the MP2-F12 correlation energy leads to average errors that are smaller than the degree of confidence in the reference data (˜0.1 mEh). The latter were obtained through use of very large basis sets in MP2-F12 calculations on small molecules containing both first and second row elements. CBS limits obtained from optimized coefficients for conventional MP2 are only comparable to the accuracy of the MP2-F12/cc-pV(D,T)Z-F12 extrapolation when the aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z basis sets are used. The CCSD(T)-F12b correlation energy is extrapolated as two distinct parts: CCSD-F12b and (T). While the CCSD-F12b extrapolations with smaller basis sets are statistically less accurate than those of the MP2-F12 correlation energies, this is presumably due to the slower basis set convergence of the CCSD-F12b method compared to MP2-F12. The use of larger basis sets in the CCSD-F12b extrapolations produces correlation energies with accuracies exceeding the confidence in the reference data (also obtained in large basis set F12 calculations). It is demonstrated that the use of the 3C(D) Ansatz is preferred for MP2-F12 CBS extrapolations. Optimal values of the geminal Slater exponent are presented for the diagonal, fixed amplitude Ansatz in MP2-F12 calculations, and these are also recommended for CCSD-F12b calculations.

  12. High-level ab initio predictions for the ionization energies and heats of formation of five-membered-ring molecules: thiophene, furan, pyrrole, 1,3-cyclopentadiene, and borole, C4H4X/C4H4X+ (X = S, O, NH, CH2, and BH).

    PubMed

    Lo, Po-Kam; Lau, Kai-Chung

    2011-02-10

    The ionization energies (IEs) and heats of formation (ΔH°(f0)/ΔH°(f298)) for thiophene (C(4)H(4)S), furan (C(4)H(4)O), pyrrole (C(4)H(4)NH), 1,3-cyclopentadiene (C(4)H(4)CH(2)), and borole (C(4)H(4)BH) have been calculated by the wave function-based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled-cluster level with single and double excitations plus a quasi-perturbative triple excitation [CCSD(T)]. Where appropriate, the zero-point vibrational energy correction (ZPVE), the core-valence electronic correction (CV), and the scalar relativistic effect (SR) are included in these calculations. The respective CCSD(T)/CBS predictions for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2), being 8.888, 8.897, 8.222, and 8.582 eV, are in excellent agreement with the experimental values obtained from previous photoelectron and photoion measurements. The ΔH°(f0)/ΔH°(f298) values for the aforementioned molecules and their corresponding cations have also been predicted by the CCSD(T)/CBS method, and the results are compared with the available experimental data. The comparisons between the CCSD(T)/CBS predictions and the experimental values for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2) suggest that the CCSD(T)/CBS procedure is capable of predicting reliable IE values for five-membered-ring molecules with an uncertainty of ±13 meV. In view of the excellent agreements between the CCSD(T)/CBS predictions and the experimental values for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2), the similar CCSD(T)/CBS IE and ΔH°(f0)/ΔH°(f298) predictions for C(4)H(4)BH, whose thermochemical data are not readily available due to its reactive nature, should constitute a reliable data set. The CCSD(T)/CBS IE(C(4)H(4)BH) value is 8.868 eV, and ΔH°(f0)/ΔH°(f298) values for C(4)H(4)BH and C(4)H(4)BH(+) are 269.5/258.6 and 1125.1/1114.6 kJ/mol, respectively. The highest occupied molecular orbitals (HOMO) of C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, C(4)H(4)CH(2), and C(4)H(4)BH have also been studied by the natural bond orbital (NBO) method, and the extent of π-electron delocalization in these five-membered rings are discussed in correlation with their molecular structures and orbitals.

  13. Italian river crossing; Horizontal drilling meets pipeline project criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-06-01

    The River Piave flows out of the Italian Alps, crossing the Veneto farmlands on its way to the Adriatic Sea. It is an important commerce-carrying waterway. SNAM, the Italian state gas pipeline company, wanted to install a 22-in. pipeline across the Piave just north of Venice. The method chosen for crossing the river had to meet several important criteria. InArc had used its river crossing method on seven previous SNAM projects and recommended the Piave crossing should be drilled. This paper describes the use of this horizontal drilling method for this application.

  14. Coccolith and silicoflagellate stratigraphy, northern mid-Atlantic Ridge and Reykjanes Ridge, Deep Sea Drilling Project Leg 49

    USGS Publications Warehouse

    Bukry, David

    1979-01-01

    Leg 49 of the Deep Sea Drilling Project recovered 192 cores at eight drilling sites, 407 through 414 (Figure 1). Light-microscope techniques were used to study the cocoliths, silicoflagellates, and sponge spicules of 120 samples from these cores. The cocolith zonation of the samples follows Bukry (1975a), and is summarized in Figure 2. Silicoflagellate zonation, summarized in Figure 3, is explained in the text. Siliceous sponge spicules are common in many samples and are briefly discussed and illustrated. One new silicoflagellate, Distephanus sulcatus, from the Plicene of Site 407, is described.

  15. Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid

    NASA Astrophysics Data System (ADS)

    yang, P.

    2013-12-01

    Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid Ping Yang 1,2, Min-hui Wu2, Xue-wen Zhu2, Tao Deng2, Xue-qing Sun2 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092,China 2. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China Abstract The process of filtrate loss of low-solids drilling fluid was tested by changing the polyanionic cellulose content in low-solids drilling fluid. The effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid was analyzed. The test results showed that when time of filtration is same, the volume of filtrate loss decreases linearly with increasing polyanionic cellulose content. When polyanionic cellulose content is same, the rate of filtrate loss decreases nonlinearly with increasing time and the rate of filtrate loss will reach a stable value.The volume of filtrate loss in 7 to 8 minutes can reaches half of the total volume of filtrate loss. At the same time, the rate of filtrate loss of drilling fluid decreases nonlinearly with increasing viscosity.When the apparent viscosity is between 3.5~4.15 MPa.s, decrease speed of rate of filtrate loss of drilling fluid is quick. The results are helpful for characteristics evaluation of filtrate loss of drilling fluid and control of filtrate loss. Keyword Polyanionic Cellulose,Drilling Fluid,Process of Filtrate Loss Acknowledgments This investigation was supported by the National Natural Science Foundation of China (projects No. 41002093 and 41072205); the Fundamental Research Funds for the Central Universities; the Shanghai Leading Academic Discipline Project (project No. B308), Tongji University; and the Program for Young Excellent Talents, Tongji University. The authors are extremely grateful for the financial support from these five organizations.

  16. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  17. High-Level ab initio electronic structure calculations of Water Clusters (H2O)16 and (H2O)17: a new global minimum for (H2O)16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Soohaeng; Apra, Edoardo; Zeng, Xiao Cheng

    The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at the MP2 and CCSD(T) levels of theory and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17 the CCSD(T) calculations confirm the previously found at the MP2 level of theory "interior" arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum.

  18. High-Level ab-initio Electronic Structure Calculations of Water Clusters (H2O)16 and (H2O)17 : a New Global Minimum for (H2O)16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Soohaeng; Apra, Edoardo; Zeng, X.C.

    The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at both the MP2 and CCSD(T) levels of theory, and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17, the CCSD(T) calculations confirm the previously found at the MP2 level of theory interior arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum

  19. The protonation of N2O reexamined - A case study on the reliability of various electron correlation methods for minima and transition states

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.

    1993-01-01

    The protonation of N2O and the intramolecular proton transfer in N2OH(+) are studied using various basis sets and a variety of methods, including second-order many-body perturbation theory (MP2), singles and doubles coupled cluster (CCSD), the augmented coupled cluster (CCSD/T/), and complete active space self-consistent field (CASSCF) methods. For geometries, MP2 leads to serious errors even for HNNO(+); for the transition state, only CCSD/T/ produces a reliable geometry due to serious nondynamical correlation effects. The proton affinity at 298.15 K is estimated at 137.6 kcal/mol, in close agreement with recent experimental determinations of 137.3 +/- 1 kcal/mol.

  20. Oceanic Basement Probed

    ERIC Educational Resources Information Center

    Cann, J. R.; Moore, David G.

    1978-01-01

    Summarizes findings of the deep sea drilling project at Scripps Institute of Oceanology. Results of Atlantic and Pacific Ocean drillings in terms of the composition and properties of the sea floor are discussed. (CP)

  1. Magnetic susceptibility of ultrahigh pressure eclogite: The role of retrogression

    NASA Astrophysics Data System (ADS)

    Xu, Haijun; Jin, Zhenmin; Mason, Roger; Ou, Xingong

    2009-09-01

    Retrograde metamorphism played the dominant role in changing the low-field rock magnetic properties and density of 198 specimens of variably retrograded eclogites from the main borehole of the Chinese Continental Scientific Drilling Project (CCSD) and from surface outcrops in the Donghai area in the southern part of the Sulu UHP belt, China. Bulk magnetic susceptibility ( κ) of unretrogressed UHP eclogite is controlled by whole-rock chemical composition and ranges from 397 to 2312 μSI with principal magnetic susceptibility carrying minerals paramagnetic garnet, omphacite, rutile and phengite. Partially retrograded eclogites show large variations in magnetic susceptibility between 804 and 24,277 μSI, with high mean magnetic susceptibility values of 4372 ± 4149 μSI caused by appreciable amounts of Fe-Ti oxide minerals such as magnetite, ilmenite and/or titanohematite produced by retrograde metamorphic reactions. Completely retrograded eclogites have lower susceptibilities of 1094 ± 600 μSI and amphibolite facies mineral assemblages lacking high magnetic susceptibility minerals. Jelínek's corrected anisotropy ( Pj) of eclogites ranges from 1.001 to 1.540, and shows a positive correlation with low-field magnetic susceptibility ( κ). Arithmetic mean bulk density ( ρ) shows a steady decrease from 3.54 ± 0.11 g/cm 3 (fresh eclogite) to 2.98 ± 0.06 g/cm 3 (completely retrograded eclogite). Retrograde metamorphic changes in mineral composition during exhumation appear to be the major factor causing variations in low field magnetic susceptibility and anisotropy. Retrograde processes must be taken into account when interpreting magnetic surveys and geophysical well logs in UHP metamorphic terranes, and petrophysical properties such as density and low-field magnetic susceptibility could provide a means for semi-quantifying the degree of retrogression of eclogite during exhumation.

  2. Ocean Drilling Program: Drilling Services

    Science.gov Websites

    Drilling operations team Material services team Development engineering team ODP/TAMU Science Operator Home Services department consists of three team-oriented project groups, which also work to improve the existing team. A member of this team sails with each cruise to provide expertise for the shipboard scientific

  3. Seismic Monitoring Prior to and During DFDP-2 Drilling, Alpine Fault, New Zealand: Matched-Filter Detection Testing and the Real-Time Monitoring System

    NASA Astrophysics Data System (ADS)

    Boese, C. M.; Chamberlain, C. J.; Townend, J.

    2015-12-01

    In preparation for the second stage of the Deep Fault Drilling Project (DFDP) and as part of related research projects, borehole and surface seismic stations were installed near the intended DFDP-2 drill-site in the Whataroa Valley from late 2008. The final four borehole stations were installed within 1.2 km of the drill-site in early 2013 to provide near-field observations of any seismicity that occurred during drilling and thus provide input into operational decision-making processes if required. The basis for making operational decisions in response to any detected seismicity had been established as part of a safety review conducted in early 2014 and was implemented using a "traffic light" system, a communications plan, and other operational documents. Continuous real-time earthquake monitoring took place throughout the drilling period, between September and late December 2014, and involved a team of up to 15 seismologists working in shifts near the drill-site and overseas. Prior to drilling, records from 55 local earthquakes and 14 quarry blasts were used as master templates in a matched-filter detection algorithm to test the capabilities of the seismic network for detecting seismicity near the drill site. The newly detected microseismicity was clustered near the DFDP-1 drill site at Gaunt Creek, 7.4 km southwest of DFDP-2. Relocations of these detected events provide more information about the fault geometry in this area. Although no detectable seismicity occurred within 5 km of the drill site during the drilling period, the region is capable of generating earthquakes that would have required an operational response had they occurred while drilling was underway (including a M2.9 event northwest of Gaunt Creek on 15 August 2014). The largest event to occur while drilling was underway was of M4.5 and occurred approximately 40 km east of the DFDP-2 drill site. In this presentation, we summarize the setup and operations of the seismic network and discuss key aspects of seismicity recorded prior to and during drilling operations.

  4. Marcellus Shale Drilling's Impact on the Dairy Industry in Pennsylvania: A Descriptive Report.

    PubMed

    Finkel, Madelon L; Selegean, Jane; Hays, Jake; Kondamudi, Nitin

    2013-01-01

    Unconventional natural gas drilling in Pennsylvania has accelerated over the past five years, and is unlikely to abate soon. Dairy farming is a large component of Pennsylvania's agricultural economy. This study compares milk production, number of cows, and production per cow in counties with significant unconventional drilling activity to that in neighboring counties with less unconventional drilling activity, from 1996 through 2011. Milk production and milk cows decreased in most counties since 1996, with larger decreases occurring from 2007 through 2011 (when unconventional drilling increased substantially) in five counties with the most wells drilled compared to six adjacent counties with fewer than 100 wells drilled. While this descriptive study cannot draw a causal association between well drilling and decline in cows or milk production, given the importance of Pennsylvania's dairy industry and the projected increase in unconventional natural gas drilling, further research to prevent unintended economic and public health consequences is imperative.

  5. Reporting from the Iceland Deep Drilling Project

    NASA Astrophysics Data System (ADS)

    Urban, Karl

    2017-04-01

    Geoscience-related topics are in many cases difficult to communicate to the public: Often they include dead soil which not easily tells lively stories. And it is hard to sell those topics to editors of public media. In addition the topics might also be politically supercharged if they are resource-related with a visible environmental impact. Therefore any researcher involved might be overcautious while talking to journalists. With a grant from the EGU Science Journalist Fellowship I travelled to Iceland in autumn 2016 to report about the Iceland Deep Drilling Project (IDDP). The project which started just weeks prior to my arrival aimed to drill the deepest borehole in a volcanically active region. During earlier trials the borehole collapsed or the drill string unintentionally hit magma. If successful the IDDP promises a much higher level of geothermal energy harvested. The IDDP was therefore ideally suited to be sold to public media outlets since Iceland's volcanic legacy easily tells a lively story. But the drilling's potential environmental impact makes it a political topic in Iceland - even though geothermal energy has a positive public perception. Therefore the IDDP included some pitfalls I observed several times before while reporting about geoscience research. Those could be circumvented if researchers and journalists knew better about their expectations before any interview takes place.

  6. Investigation of the CH3Cl + CN(-) reaction in water: Multilevel quantum mechanics/molecular mechanics study.

    PubMed

    Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

    2015-06-28

    The CH3Cl + CN(-) reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.

  7. Investigation of the CH3Cl + CN- reaction in water: Multilevel quantum mechanics/molecular mechanics study

    NASA Astrophysics Data System (ADS)

    Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

    2015-06-01

    The CH3Cl + CN- reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ˜11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.

  8. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.« less

  9. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Tibbitts; Arnis Judzis

    2002-04-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2002 through March 2002. Accomplishments include the following: In accordance to Task 7.0 (D. No.2 Technical Publications) TerraTek, NETL, and the Industry Contributors successfully presented a paper detailing Phase 1 testing results at the February 2002 IADC/SPE Drilling Conference, a prestigious venue for presenting DOE and private sector drilling technology advances. The full reference is as follows: (1) IADC/SPE 74540 ''World's First Benchmarking of Drilling Mud Hammer Performance atmore » Depth Conditions'' authored by Gordon A. Tibbitts, TerraTek; Roy C. Long, US Department of Energy, Brian E. Miller, BP America, Inc.; Arnis Judzis, TerraTek; and Alan D. Black, TerraTek. Gordon Tibbitts, TerraTek, will presented the well-attended paper in February of 2002. The full text of the Mud Hammer paper was included in the last quarterly report. (2) The Phase 2 project planning meeting (Task 6) was held at ExxonMobil's Houston Greenspoint offices on February 22, 2002. In attendance were representatives from TerraTek, DOE, BP, ExxonMobil, PDVSA, Novatek, and SDS Digger Tools. (3) PDVSA has joined the advisory board to this DOE mud hammer project. PDVSA's commitment of cash and in-kind contributions were reported during the last quarter. (4) Strong Industry support remains for the DOE project. Both Andergauge and Smith Tools have expressed an interest in participating in the ''optimization'' phase of the program. The potential for increased testing with additional Industry cash support was discussed at the planning meeting in February 2002.« less

  10. Calibrating the Truax Rough Rider seed drill for restoration plantings

    Treesearch

    Loren St. John; Brent Cornforth; Boyd Simonson; Dan Ogle; Derek Tilley

    2008-01-01

    The purpose of this technical note is to provide a step-by-step approach to calibrating the Truax Rough Rider range drill, a relatively new, state-of-the-art rangeland drill. To achieve the desired outcome of a seeding project, an important step following proper weed control and seedbed preparation is the calibration of the seeding equipment to ensure the recommended...

  11. Data Modeling, Development, Installation and Operation of the ACEX Offshore Drilling Information System for the Mission Specific Platform Expedition to the Lomonosov Ridge, Arctic Ocean.

    NASA Astrophysics Data System (ADS)

    Conze, R.; Krysiak, F.; Wallrabe-Adams, H.; Graham, C. C.

    2004-12-01

    During August/September 2004, the Arctic Coring Expedition (ACEX) was used to trial a new Offshore Drilling Information System (OffshoreDIS). ACEX was the first Mission Specific Platform (MSP) expedition of the Integrated Ocean Drilling Programme (IODP), funded by the European Consortium for Ocean Research Drilling (ECORD). The British Geological Survey in conjunction with the University of Bremen and the European Petrophysics Consortium were the ECORD Science Operator (ESO) for ACEX. IODP MSP expeditions have very similar data management requirements and operate in similar working environments to the lake drilling projects conducted by the International Continental Scientific Drilling Program (ICDP), for example, the GLAD800, which has very restricted space on board and operates in difficult conditions. Both organizations require data capture and management systems that are mobile, flexible and that can be deployed quickly on small- to medium-sized drilling platforms for the initial gathering of data, and that can also be deployed onshore in laboratories where the bulk of the scientific work is conducted. ESO, therefore, decided that an adapted version of the existing Drilling Information System (DIS) used by ICDP projects would satisfy its requirements. Based on the existing DIS, an OffshoreDIS has been developed for MSP expeditions. The underlying data model is compatible with IODP(JANUS), the Bremen Core Repository, WDC-MARE/PANGAEA and the LacCore in Minneapolis. According to the specific expedition platform configuration and on-board workflow requirements for the Arctic, this data model, data pumps and user interfaces were adapted for the ACEX-OffshoreDIS. On the drill ship Vidar Viking the cores were catalogued and petrophysically logged using a GeoTek Multi-Sensor Core Logger System, while further initial measurements, lithological descriptions and biostratigraphic investigations were undertaken on the Oden, which provided laboratory facilities for the expedition. Onboard samples were registered in a corresponding sample archive on both vessels. The ACEX-OffshoreDIS used a local area network covering the two ships of the three icebreaker fleet by wireless LAN between the ships and partly wired LAN on the ships. A DIS-server was installed on each ship. These were synchronized by database replication and linked to a total of 10 client systems and label printers across both ships. The ACEX-OffshoreDIS will also be used for the scientific measurement and analysis phase of the expedition during the post-field operations `shore-party' in November 2004 at the Bremen Core Repository (BCR). The data management system employed in the Arctic will be reconfigured and deployed at the BCR. In addition, an eXtended DIS (XDIS) Web interface will be available. This will allow controlled sample distribution (core curation, sub-sampling) as well as sharing of data (registration, upload and download) with other laboratories which will be undertaking additional sampling and analyses. The OffshoreDIS data management system will be of long-term benefit to both IODP and ICDP, being deployed in forthcoming MSP offshore projects, ICDP lake projects and joint IODP-ICDP projects such as the New Jersey Coastal Plain Drilling Project.

  12. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, makingmore » them an effective way to access the U.S. energy resources currently locked under hard rock formations.« less

  13. Theoretical prediction of the ionization energies of the C4H7 radicals: 1-methylallyl, 2-methylallyl, cyclopropylmethyl, and cyclobutyl radicals.

    PubMed

    Lau, Kai-Chung; Zheng, Wenxu; Wong, Ning-Bew; Li, Wai-Kee

    2007-10-21

    The ionization energies (IEs) for the 1-methylallyl, 2-methylallyl, cyclopropylmethyl, and cyclobutyl radicals have been calculated by the wave function based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled cluster level with single and double excitations plus quasiperturbative triple excitation [CCSD(T)]. The zero-point vibrational energy correction, the core-valence electronic correction, and the scalar relativistic effect correction are included in these calculations. The present CCSD(T)/CBS results are then compared with the IEs determined in the photoelectron experiment by Schultz et al. [J. Am. Chem. Soc. 106, 7336 (1984)] The predicted IE value (7.881 eV) of 2-methylallyl radical is found to compare very favorably with the experimental value of 7.90+/-0.02 eV. Two ionization transitions for cis-1-methylallyl and trans-1-methylallyl radicals have been considered here. The comparison between the predicted IE values and the previous measurements shows that the photoelectron peak observed by Schultz et al. likely corresponds to the adiabatic ionization transition for the trans-1-methylallyl radical to form trans-1-methylallyl cation. Although a precise IE value for the cyclopropylmethyl radical has not been directly determined, the experimental value deduced indirectly using other known energetic data is found to be in good accord with the present CCSD(T)/CBS prediction. We expect that the Franck-Condon factor for ionization transition of c-C4H7-->bicyclobutonium is much less favorable than that for ionization transition of c-C4H7-->planar-C4H7+, and the observed IE in the previous photoelectron experiment is likely due to the ionization transition for c-C4H7-->planar-C4H7+. Based on our CCSD(T)/CBS prediction, the ionization transition of c-C4H7-->bicyclobutonium with an IE value around 6.92 eV should be taken as the adiabatic ionization transition for the cyclobutyl radical. The present study provides support for the conclusion that the CCSD(T)/CBS approach with high-level energetic corrections can be used to provide reliable IE predictions for C4 hydrocarbon radicals with an uncertainty of +/-22 meV. The CCSD(T)/CBS predictions to the heats of formation for the aforementioned radicals and cations are also presented.

  14. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.

    PubMed

    Mackie, Iain D; DiLabio, Gino A

    2011-10-07

    The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined. © 2011 American Institute of Physics

  15. Methods for Using Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules

    DTIC Science & Technology

    2014-08-20

    including zero-point energy ( ZPE ) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can...CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of

  16. Simulation of circularly polarized luminescence spectra using coupled cluster theory

    NASA Astrophysics Data System (ADS)

    McAlexander, Harley R.; Crawford, T. Daniel

    2015-04-01

    We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL signal but a weak circular dichroism signal.

  17. Simulation of circularly polarized luminescence spectra using coupled cluster theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAlexander, Harley R.; Crawford, T. Daniel, E-mail: crawdad@vt.edu

    2015-04-21

    We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar thatmore » TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL signal but a weak circular dichroism signal.« less

  18. Conventional and Explicitly Correlated ab Initio Benchmark Study on Water Clusters: Revision of the BEGDB and WATER27 Data Sets.

    PubMed

    Manna, Debashree; Kesharwani, Manoj K; Sylvetsky, Nitai; Martin, Jan M L

    2017-07-11

    Benchmark ab initio energies for BEGDB and WATER27 data sets have been re-examined at the MP2 and CCSD(T) levels with both conventional and explicitly correlated (F12) approaches. The basis set convergence of both conventional and explicitly correlated methods has been investigated in detail, both with and without counterpoise corrections. For the MP2 and CCSD-MP2 contributions, rapid basis set convergence observed with explicitly correlated methods is compared to conventional methods. However, conventional, orbital-based calculations are preferred for the calculation of the (T) term, since it does not benefit from F12. CCSD(F12*) converges somewhat faster with the basis set than CCSD-F12b for the CCSD-MP2 term. The performance of various DFT methods is also evaluated for the BEGDB data set, and results show that Head-Gordon's ωB97X-V and ωB97M-V functionals outperform all other DFT functionals. Counterpoise-corrected DSD-PBEP86 and raw DSD-PBEPBE-NL also perform well and are close to MP2 results. In the WATER27 data set, the anionic (deprotonated) water clusters exhibit unacceptably slow basis set convergence with the regular cc-pVnZ-F12 basis sets, which have only diffuse s and p functions. To overcome this, we have constructed modified basis sets, denoted aug-cc-pVnZ-F12 or aVnZ-F12, which have been augmented with diffuse functions on the higher angular momenta. The calculated final dissociation energies of BEGDB and WATER27 data sets are available in the Supporting Information. Our best calculated dissociation energies can be reproduced through n-body expansion, provided one pushes to the basis set and electron correlation limit for the two-body term; for the three-body term, post-MP2 contributions (particularly CCSD-MP2) are important for capturing the three-body dispersion effects. Terms beyond four-body can be adequately captured at the MP2-F12 level.

  19. Assessment of Orbital-Optimized MP2.5 for Thermochemistry and Kinetics: Dramatic Failures of Standard Perturbation Theory Approaches for Aromatic Bond Dissociation Energies and Barrier Heights of Radical Reactions.

    PubMed

    Soydaş, Emine; Bozkaya, Uğur

    2015-04-14

    An assessment of orbital-optimized MP2.5 (OMP2.5) [ Bozkaya, U.; Sherrill, C. D. J. Chem. Phys. 2014, 141, 204105 ] for thermochemistry and kinetics is presented. The OMP2.5 method is applied to closed- and open-shell reaction energies, barrier heights, and aromatic bond dissociation energies. The performance of OMP2.5 is compared with that of the MP2, OMP2, MP2.5, MP3, OMP3, CCSD, and CCSD(T) methods. For most of the test sets, the OMP2.5 method performs better than MP2.5 and CCSD, and provides accurate results. For barrier heights of radical reactions and aromatic bond dissociation energies OMP2.5-MP2.5, OMP2-MP2, and OMP3-MP3 differences become obvious. Especially, for aromatic bond dissociation energies, standard perturbation theory (MP) approaches dramatically fail, providing mean absolute errors (MAEs) of 22.5 (MP2), 17.7 (MP2.5), and 12.8 (MP3) kcal mol(-1), while the MAE values of the orbital-optimized counterparts are 2.7, 2.4, and 2.4 kcal mol(-1), respectively. Hence, there are 5-8-folds reductions in errors when optimized orbitals are employed. Our results demonstrate that standard MP approaches dramatically fail when the reference wave function suffers from the spin-contamination problem. On the other hand, the OMP2.5 method can reduce spin-contamination in the unrestricted Hartree-Fock (UHF) initial guess orbitals. For overall evaluation, we conclude that the OMP2.5 method is very helpful not only for challenging open-shell systems and transition-states but also for closed-shell molecules. Hence, one may prefer OMP2.5 over MP2.5 and CCSD as an O(N(6)) method, where N is the number of basis functions, for thermochemistry and kinetics. The cost of the OMP2.5 method is comparable with that of CCSD for energy computations. However, for analytic gradient computations, the OMP2.5 method is only half as expensive as CCSD.

  20. Development and testing of a Mudjet-augmented PDC bit.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Alan; Chahine, Georges; Raymond, David Wayne

    2006-01-01

    This report describes a project to develop technology to integrate passively pulsating, cavitating nozzles within Polycrystalline Diamond Compact (PDC) bits for use with conventional rig pressures to improve the rock-cutting process in geothermal formations. The hydraulic horsepower on a conventional drill rig is significantly greater than that delivered to the rock through bit rotation. This project seeks to leverage this hydraulic resource to extend PDC bits to geothermal drilling.

  1. Counter-Rotating Tandem Motor Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively comparedmore » to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.« less

  2. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: Constraints from mineral hydrogen isotope and water content changes in eclogite gneiss transitions in the Sulu orogen

    NASA Astrophysics Data System (ADS)

    Chen, Ren-Xu; Zheng, Yong-Fei; Gong, Bing; Zhao, Zi-Fu; Gao, Tian-Shan; Chen, Bin; Wu, Yuan-Bao

    2007-05-01

    By taking advantage of having depth profiles between contrasting lithologies from core samples of the Chinese Continental Scientific Drilling (CCSD) project, a combined study was carried out to examine changes in mineral H isotope, total water and hydroxyl contents in garnet and omphacite across the contacts between ultrahigh-pressure (UHP) eclogite and gneiss in the Sulu orogen, east-central China. The samples of interest were from two continuous core segments from the CCSD main hole at depths of 734.21-737.16 and 929.67-932.86 m, respectively. The results show δD values of -116‰ to - 64‰ for garnet and -104‰ to -82‰ for omphacite, consistent with incorporation of meteoric water into protoliths of UHP metamorphic rocks by high-T alteration. Both equilibrium and disequilibrium H isotope fractionations were observed between garnet and omphacite, suggesting fluid-assisted H isotope exchange at local scales during amphibolite-facies retrogression. While bulk water analysis gave total H 2O concentrations of 522-1584 ppm for garnet and 1170-20745 ppm for omphacite, structural hydroxyl analysis yielded H 2O contents of 80-413 ppm for garnet and 228-412 ppm for omphacite. It appears that significant amounts of molecular H 2O are present in the minerals, pointing to enhanced capacity of water storage in the UHP eclogite minerals. Hydrogen isotope variations in the transition between eclogite and gneiss show correlations with variations in their water contents. Petrographically, the degree of retrograde metamorphism generally increases with decreasing distance from the eclogite-gneiss boundary. Thus, retrograde metamorphism results in mineral reactions and H isotope variation. Because hydroxyl solubility in nominally anhydrous minerals decreases with dropping pressure, significant amounts of water are expected to be released from the minerals during decompression exhumation. Decompression exsolution of structural hydroxyl from 1 m 3 volume of eclogite composed of only garnet and omphacite results in release of a quantitative estimate of 3.07-3.44 kg water that can form 140-156 kg amphibole during exhumation. Therefore, it is concluded that fluid for retrogression of the eclogites away from the eclogite-gneiss boundary was derived from the decompression exsolution of structural hydroxyl and molecular H 2O in nominally anhydrous minerals. For the eclogites adjacent to gneiss, in contrast, the retrograde metamorphism was principally caused by aqueous fluid from the gneiss which is relatively rich in water. Consequently, both the origin and availability of metamorphic fluid during exhumation of deeply subducted continental crust are deciphered by this combined study focusing on the transitions and the retrograde processes between the felsic and mafic UHP rocks.

  3. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, S.H.; Pigott, W.R.

    1997-12-30

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

  4. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, Steve H.; Pigott, William R.

    1997-01-01

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

  5. Three- and four-body nonadditivities in nucleic acid tetramers: a CCSD(T) study.

    PubMed

    Pitonák, M; Neogrády, P; Hobza, P

    2010-02-14

    Three- and four-body nonadditivities in the uracil tetramer (in DNA-like geometry) and the GC step (in crystal geometry) were investigated at various levels of the wave-function theory: HF, MP2, MP3, L-CCD, CCSD and CCSD(T). All of the calculations were performed using the 6-31G**(0.25,0.15) basis set, whereas the HF, MP2 and the MP3 nonadditivities were, for the sake of comparison, also determined with the much larger aug-cc-pVDZ basis set. The HF and MP2 levels do not provide reliable values for many-body terms, making it necessary to go beyond the MP2 level. The benchmark CCSD(T) three- and four-body nonadditivities are reasonably well reproduced at the MP3 level, and almost quantitative agreement is obtained (fortuitously) either on the L-CCD level or as an average of the MP3 and the CCSD results. Reliable values of many-body terms (especially their higher-order correlation contributions) are obtained already when the rather small 6-31G**(0.25,0.15) basis set is used. The four-body term is much smaller when compared to the three-body terms, but it is definitely not negligible, e.g. in the case of the GC step it represents about 16% of all of the three- and four-body terms. While investigating the geometry dependence of many-body terms for the GG step at the MP3/6-31G**(0.25,0.15) level, we found that it is necessary to include at least three-body terms in the determination of optimal geometry parameters.

  6. Providing theoretical data for detection of four formamidic acid isomers in astrophysical media

    NASA Astrophysics Data System (ADS)

    Vichietti, R. M.; da Silva, A. B. F.; Haiduke, R. L. A.

    2018-03-01

    We present a theoretical study, so that molecular data (geometrical parameters, vibrational frequencies, infrared intensities, electronic energies, enthalpies, and Gibbs energies) of four formamidic acid (FA) isomers (labeled here as FA1, FA2, FA3, and FA4) and formamide (HCONH2) are obtained from CCSD/cc-pVTZ, CCSD/aug-cc-pVTZ, CCSD/cc-pVQZ, and CCSD(T)/cc-pVTZ calculations. Furthermore, on the basis of insufficient or even lacking theoretical and experimental results in the literature, we employed the aforementioned theory levels to determine benchmark values of dipole moments and rotational constants for these four FA isomers in order to contribute for their detection in astrophysical environments. Besides, we provide for the first time data about forward and reverse rate constants (200-4000 K) and Arrhenius' parameters for each interconversion reaction between pairs of FA isomers as well as for the tautomeric process involving FA4 and formamide, which were calculated from a Complete Basis Set (CBS) extrapolation equation obtained at CCSD/cc-pVTZ optimized geometries. Our kinetic analysis indicated a faster interconversion between the FA structures in comparison with the FA4 ↔ HCONH2 process, suggesting that these isomers could co-exist in astrophysical media. Finally, we estimated that these isomers may be detected with relative abundances, [FAx]/[HCONH2] (x = 1, 2, 3, and 4), between ∼0.01 and ∼0.1% in astrophysical sources at chemical equilibrium conditions and temperatures around 1000 K. However, these ratios can become as high as ∼1, ∼3, and ∼5%, respectively, in hotter regions with temperatures around 2000, 3000, and 4000 K (expected, for example, in massive star-forming regions).

  7. An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies.

    PubMed

    Feller, David; Peterson, Kirk A

    2013-08-28

    The effectiveness of the recently developed, explicitly correlated coupled cluster method CCSD(T)-F12b is examined in terms of its ability to reproduce atomization energies derived from complete basis set extrapolations of standard CCSD(T). Most of the standard method findings were obtained with aug-cc-pV7Z or aug-cc-pV8Z basis sets. For a few homonuclear diatomic molecules it was possible to push the basis set to the aug-cc-pV9Z level. F12b calculations were performed with the cc-pVnZ-F12 (n = D, T, Q) basis set sequence and were also extrapolated to the basis set limit using a Schwenke-style, parameterized formula. A systematic bias was observed in the F12b method with the (VTZ-F12/VQZ-F12) basis set combination. This bias resulted in the underestimation of reference values associated with small molecules (valence correlation energies <0.5 E(h)) and an even larger overestimation of atomization energies for bigger systems. Consequently, caution should be exercised in the use of F12b for high accuracy studies. Root mean square and mean absolute deviation error metrics for this basis set combination were comparable to complete basis set values obtained with standard CCSD(T) and the aug-cc-pVDZ through aug-cc-pVQZ basis set sequence. However, the mean signed deviation was an order of magnitude larger. Problems partially due to basis set superposition error were identified with second row compounds which resulted in a weak performance for the smaller VDZ-F12/VTZ-F12 combination of basis sets.

  8. Application of the CC(P;Q) Hierarchy of Coupled-Cluster Methods to the Beryllium Dimer.

    PubMed

    Magoulas, Ilias; Bauman, Nicholas P; Shen, Jun; Piecuch, Piotr

    2018-02-08

    The performance of coupled-cluster approaches with higher-than-doubly excited clusters, including the CCSD(T), CCSD(2) T , CR-CC(2,3), CCSD(TQ), and CR-CC(2,4) corrections to CCSD, the active-space CCSDt, CCSDtq, and CCSDTq methods, and the CC(t;3), CC(t,q;3), CC(t,q;3,4), and CC(q;4) corrections to CCSDt, CCSDtq, and CCSDTq resulting from the CC(P;Q) formalism, in reproducing the CCSDT and CCSDTQ potential energy curves and vibrational term values characterizing Be 2 in its electronic ground state is assessed. The correlation-consistent aug-cc-pVnZ and aug-cc-pCVnZ (n = T and Q) basis sets are employed. Among the CCSD-based corrections, the completely renormalized CR-CC(2,3) and CR-CC(2,4) approaches perform the best. The CC(t;3), CC(t,q;3), CC(t,q;3,4), and CC(q;4) methods, especially CC(t;3) and CC(q;4), outperform other employed approaches in reproducing the CCSDT and CCSDTQ data. Composite schemes combining the all-electron CCSDT calculations extrapolated to the complete basis set limit with the frozen-core CC(q;4) and CCSDTQ computations using the aug-cc-pVTZ basis to account for connected quadruple excitations reproduce the latest experimental vibrational spectrum of Be 2 to within 4-5 cm -1 , when the vibrational spacings are examined, with typical errors being below 1-2 cm -1 . The resulting binding energies and equilibrium bond lengths agree with their experimentally derived counterparts to within ∼10 cm -1 and 0.01 Å.

  9. An IODP proposal to drill the Godzilla Megamullion as a step to Mohole

    NASA Astrophysics Data System (ADS)

    Ohara, Y.; Michibayashi, K.; Dick, H. J. B.; Snow, J. E.; Ono, S.

    2017-12-01

    The year 2017 represents the 60th anniversary of the "original" project Mohole, which was coined by Walter Munk in 1957. Although the project Mohole has not yet been realized, the hard-rock community is now striving hard to understand the upper mantle in a variety of ways. Firstly, the present-day project Mohole, M2M (Moho-to-Mantle) project, will move forward in this September, conducting multi-channel seismic profiling off Hawaii as a site survey. Oman Drilling Project has started last December, and the drilled cores are being described aboard D/V Chikyu from July, this year. Furthermore, the forearc M2M proposal to drill the Bonin Trench forearc mantle was submitted to IODP in April 2016. Being a part of these efforts, we are preparing an IODP proposal to drill the Godzilla Megamullion, the largest known oceanic core complex on the Earth, located in the Parece Vela Basin in the Philippine Sea. A significant fraction of the ocean floor is created in backarc basins, while there have been no single long core of backarc basin lower ocean crust, from which to understand the likely differences in magmatic evolution and crustal structure in this key setting. The opportunity to explore the formation of the backarc basin lower crust and upper mantle is, therefore, an important contribution to understanding the ocean basins. At the same time, a better understanding of the architecture of backarc basin lower crust and upper mantle will greatly aid in the interpretation of the results of ophiolite study, since much of our understanding of the architecture of oceanic lower crust and upper mantle comes from ophiolites, most of which are thought to have at least some arc and/or backarc component. The Godzilla Megamullion is unique in its huge size as well as its development in a backarc basin, a rare tectonic window to study backarc basin lithosphere. The Godzilla Megamullion is prepared for full drilling proposal, with complete bathymetric data, multiple bottom samplings, and multi-channel seismic profilings as well as P-wave velocity structures. We will propose substantial riserless drilling at Godzilla Megamullion that will provide an excellent opportunity to understand backarc basin lower crust and upper mantle. In this contribution, we will make use of this opportunity to share the general scheme of the proposal with the community.

  10. Garden Banks 388 subsea drilling/production template: Project management of a fast-track project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledbetter, W.R.

    1995-10-01

    Enserch Exploration`s Garden Banks 388 development is a production scheme based around a floating drilling and production facility and subsea drilling/production template. The Floating Production Facility (FPF) is a converted semisubmersible drilling rig which will drill and product through a 24-well slot template. This development is located in Block 388 of the Garden Banks area in the Gulf of Mexico approximately 200 miles southwest of New Orleans. Louisiana. This production system is being installed in an area of known oil and gas reserves and will produce to a shallow water platform 54 miles away at Ewing Bank 315. The FPFmore » will be permanently moored on the surface above the template. The subsea template has been installed in 2,190 feet of water and will produce through a 2,000 foot free-standing production riser system to the FPF. The produced fluids are partially separated on the FPF before oil and gas are pumped through the template to export gathering lines which are connected to the shallow water facility.« less

  11. Comparison of conventional and self-consolidating concrete for drilled shaft construction.

    DOT National Transportation Integrated Search

    2015-04-01

    Many entities currently use self-consolidating concrete (SCC), especially for drilled shaft construction. This project investigated the use of SCC : and various test methods to assess the suitability of SCC in underwater placement conditions. Eight m...

  12. Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.

    2017-12-01

    The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a flow test and eventual production of the well. The project is co-funded by the DEEPEGS project (EU H2020), HS Orka (the field operator), Statoil, the IDDP consortium, and the ICDP. Planning is underway to drill IDDP-3 at Hellisheidi.

  13. Investigation of the CH{sub 3}Cl + CN{sup −} reaction in water: Multilevel quantum mechanics/molecular mechanics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yulong; College of Physics and Electronics, Shandong Normal University, Jinan 250014; Zhang, Jingxue

    2015-06-28

    The CH{sub 3}Cl + CN{sup −} reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack S{sub N}2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show thatmore » the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.« less

  14. Thermal decomposition of 1,3,3-trinitroazetidine (TNAZ): A density functional theory and ab initio study

    NASA Astrophysics Data System (ADS)

    Veals, Jeffrey D.; Thompson, Donald L.

    2014-04-01

    Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO2 or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO2 elimination by N-N and C-N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO2 group elimination or by a concerted H-atom and nitroalkyl NO2 group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO2 elimination by N-N bond fission, HONO elimination involving the nitramine NO2 group, HONO elimination involving a nitroalkyl NO2 group, and finally NO2 elimination by C-N bond fission.

  15. Third-Order Incremental Dual-Basis Set Zero-Buffer Approach: An Accurate and Efficient Way To Obtain CCSD and CCSD(T) Energies.

    PubMed

    Zhang, Jun; Dolg, Michael

    2013-07-09

    An efficient way to obtain accurate CCSD and CCSD(T) energies for large systems, i.e., the third-order incremental dual-basis set zero-buffer approach (inc3-db-B0), has been developed and tested. This approach combines the powerful incremental scheme with the dual-basis set method, and along with the new proposed K-means clustering (KM) method and zero-buffer (B0) approximation, can obtain very accurate absolute and relative energies efficiently. We tested the approach for 10 systems of different chemical nature, i.e., intermolecular interactions including hydrogen bonding, dispersion interaction, and halogen bonding; an intramolecular rearrangement reaction; aliphatic and conjugated hydrocarbon chains; three compact covalent molecules; and a water cluster. The results show that the errors for relative energies are <1.94 kJ/mol (or 0.46 kcal/mol), for absolute energies of <0.0026 hartree. By parallelization, our approach can be applied to molecules of more than 30 atoms and more than 100 correlated electrons with high-quality basis set such as cc-pVDZ or cc-pVTZ, saving computational cost by a factor of more than 10-20, compared to traditional implementation. The physical reasons of the success of the inc3-db-B0 approach are also analyzed.

  16. Remote drill bit loader

    DOEpatents

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  17. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, James A.

    A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotationmore » of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.« less

  18. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, J.A.

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.« less

  19. Geotechnical Properties of Periplatform Carbonate Sediments

    DTIC Science & Technology

    1990-07-01

    and Atmospheric and geoacoustic parameters for similar sediments in Research Laboratory participated in Ocean Drilling other regions. Leg 101. During...this exercise sha’"w-water and midwater depth carbonate sediments from a few deep drill holes were studied extensively by Results and Recommendations...protected by the grains and are less Deep Sea Drilling Project Leg 86. In: Heath, G. R., affected by consolidation than they are in matrix- Bruckle, L. H

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.

    We establish a new estimate for the binding energy between two benzene molecules in the parallel-displaced (PD) conformation by systematically converging (i) the intra- and intermolecular geometry at the minimum, (ii) the expansion of the orbital basis set, and (iii) the level of electron correlation. The calculations were performed at the second-order Møller–Plesset perturbation (MP2) and the coupled cluster including singles, doubles, and a perturbative estimate of triples replacement [CCSD(T)] levels of electronic structure theory. At both levels of theory, by including results corrected for basis set superposition error (BSSE), we have estimated the complete basis set (CBS) limit bymore » employing the family of Dunning’s correlation-consistent polarized valence basis sets. The largest MP2 calculation was performed with the cc-pV6Z basis set (2772 basis functions), whereas the largest CCSD(T) calculation was with the cc-pV5Z basis set (1752 basis functions). The cluster geometries were optimized with basis sets up to quadruple-ζ quality, observing that both its intra- and intermolecular parts have practically converged with the triple-ζ quality sets. The use of converged geometries was found to play an important role for obtaining accurate estimates for the CBS limits. Our results demonstrate that the binding energies with the families of the plain (cc-pVnZ) and augmented (aug-cc-pVnZ) sets converge [within <0.01 kcal/mol for MP2 and <0.15 kcal/mol for CCSD(T)] to the same CBS limit. In addition, the average of the uncorrected and BSSE-corrected binding energies was found to converge to the same CBS limit much faster than either of the two constituents (uncorrected or BSSE-corrected binding energies). Due to the fact that the family of augmented basis sets (especially for the larger sets) causes serious linear dependency problems, the plain basis sets (for which no linear dependencies were found) are deemed as a more efficient and straightforward path for obtaining an accurate CBS limit. We considered extrapolations of the uncorrected (ΔE) and BSSE-corrected (ΔE cp) binding energies, their average value (ΔE ave), as well as the average of the latter over the plain and augmented sets (Δ~E ave) with the cardinal number of the basis set n. Our best estimate of the CCSD(T)/CBS limit for the π–π binding energy in the PD benzene dimer is D e = -2.65 ± 0.02 kcal/mol. The best CCSD(T)/cc-pV5Z calculated value is -2.62 kcal/mol, just 0.03 kcal/mol away from the CBS limit. For comparison, the MP2/CBS limit estimate is -5.00 ± 0.01 kcal/mol, demonstrating a 90% overbinding with respect to CCSD(T). Finally, the spin-component-scaled (SCS) MP2 variant was found to closely reproduce the CCSD(T) results for each basis set, while scaled opposite spin (SOS) MP2 yielded results that are too low when compared to CCSD(T).« less

  1. Drilled Shaft Foundations for Noise Barrier Walls and Slope Stabilization

    DOT National Transportation Integrated Search

    2002-12-01

    This research project is focused on two primary objectives. The first objective relates to the development of a methodology for using the SPT (Standard Penetration Test) results to design the laterally loaded drilled shafts. The second objective aims...

  2. Instrumentation for measurements of lateral Earth pressure in drilled shafts.

    DOT National Transportation Integrated Search

    1968-09-01

    This project involves the design, construction, and testing in the : laboratory and field of instrumentation capable of measuring the lateral : earth pressure along a drilled shaft. : A good deal of work" has been done concerning the development of p...

  3. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jill S. Buckley; Norman r. Morrow

    2002-06-01

    This first semiannual report covers efforts to select the materials that will be used in this project. Discussions of crude oils, rocks, smooth mineral surfaces, and drilling mud additives are included in this report.

  4. Ejector subassembly for dual wall air drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolle, J.J.

    1996-09-01

    The dry drilling system developed for the Yucca Mountain Site Characterization Project incorporates a surface vacuum system to prevent drilling air and cuttings from contaminating the borehole wall during coring operations. As the drilling depth increases, however there is a potential for borehole contamination because of the limited volume of air which can be removed by the vacuum system. A feasibility analysis has shown that an ejector subassembly mounted in the drill string above the core barrel could significantly enhance the depth capacity of the dry drilling system. The ejector subassembly would use a portion of the air supplied tomore » the core bit to maintain a vacuum on the hole bottom. The results of a design study including performance testing of laboratory scale ejector simulator are presented here.« less

  5. The Detection Method of Fire Abnormal Based on Directional Drilling in Complex Conditions of Mine

    NASA Astrophysics Data System (ADS)

    Huijun, Duan; Shijun, Hao; Jie, Feng

    2018-06-01

    In the light of more and more urgent hidden fire abnormal detection problem in complex conditions of mine, a method which is used directional drilling technology is put forward. The method can avoid the obstacles in mine, and complete the fire abnormal detection. This paper based on analyzing the trajectory control of directional drilling, measurement while drilling and the characteristic of open branch process, the project of the directional drilling is formulated combination with a complex condition mine, and the detection of fire abnormal is implemented. This method can provide technical support for fire prevention, which also can provide a new way for fire anomaly detection in the similar mine.

  6. A new drilling method-Earthworm-like vibration drilling.

    PubMed

    Wang, Peng; Ni, Hongjian; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.

  7. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives.

    PubMed

    Cammi, R

    2009-10-28

    We present a general formulation of the coupled-cluster (CC) theory for a molecular solute described within the framework of the polarizable continuum model (PCM). The PCM-CC theory is derived in its complete form, called PTDE scheme, in which the correlated electronic density is used to have a self-consistent reaction field, and in an approximate form, called PTE scheme, in which the PCM-CC equations are solved assuming the fixed Hartree-Fock solvent reaction field. Explicit forms for the PCM-CC-PTDE equations are derived at the single and double (CCSD) excitation level of the cluster operator. At the same level, explicit equations for the analytical first derivatives of the PCM basic energy functional are presented, and analytical second derivatives are also discussed. The corresponding PCM-CCSD-PTE equations are given as a special case of the full theory.

  8. Detailed study of the water trimer potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.E.; Schaefer, H.F. III

    The potential energy surface of the water trimer has been studied through the use of ab initio quantum mechanical methods. Five stationary points were located, including one minimum and two transition states. All geometries were optimized at levels up to the double-[Zeta] plus polarization plus diffuse (DZP + diff) single and double excitation coupled cluster (CCSD) level of theory. CCSD single energy points were obtained for the minimum, two transition states, and the water monomer using the triple-[Zeta] plus double polarization plus diffuse (TZ2P + diff) basis at the geometries predicted by the DZP + diff CCSD method. Reported aremore » the following: geometrical parameters, total and relative energies, harmonic vibrational frequencies and infrared intensities for the minimum, and zero point vibrational energies for the minimum, two transition states, and three separated water molecules. 27 refs., 5 figs., 10 tabs.« less

  9. Exploring conformational preferences of alanine tetrapeptide by CCSD(T), MP2, and dispersion-corrected DFT methods

    NASA Astrophysics Data System (ADS)

    Kang, Young Kee; Park, Hae Sook

    2018-06-01

    The 129 local minima of the alanine tetrapeptide with relative energy < 10 kcal/mol were identified at the ωB97X-D/6-311++G(d,p) level of theory from initial structures generated by combining nine local minima of each residue. The CCSD(T), MP2, and dispersion-corrected DFT levels of theory with various basis sets were assessed for relative energies of the 24 representative conformations. The best performance was obtained at the double-hybrid DSD-PBEP86-D3BJ/def2-QZVP level of theory with RMSD = 0.12 kcal/mol against the CCSD(T)/CBS-limit energies. The ωB97X-D/def2-QZVP and CAM-B3LYP-D3BJ/def2-QZVP levels of theory can be an alternative level of theory with marginal deviations for conformational study of peptides.

  10. Ab initio study of the molecular structure and vibrational spectrum of nitric acid and its protonated forms

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    The equilibrium structures, harmonic vibrational frequencies, IR intensities, and relative energetics of HNO3 and its protonated form H2NO3+ were investigated using double-zeta plus polarization and triple-zeta plus polarization basis sets in conjunction with high-level ab initio methods. The latter include second-order Moller-Plesset perturbation theory, the single and double excitation coupled cluster (CCSD) methods, a perturbational estimate of the effects of connected triple excitations (CCSD(T)), and the self-consistent field. To determine accurate energy differences CCSD(T) energies were computed using large atomic natural orbital basis sets. Four different isomers of H2NO3+ were considered. The lowest energy form of protonated nitric acid was found to correspond to a complex between H2O and NO2+, which is consistent with earlier theoretical and experimental studies.

  11. Fast coupled-cluster singles and doubles for extended systems: Application to the anharmonic vibrational frequencies of polyethylene in the Γ approximation

    NASA Astrophysics Data System (ADS)

    Keçeli, Murat; Hirata, So

    2010-09-01

    The mod- n scheme is introduced to the coupled-cluster singles and doubles (CCSD) and third-order Møller-Plesset perturbation (MP3) methods for extended systems of one-dimensional periodicity. By downsampling uniformly the wave vectors in Brillouin-zone integrations, this scheme accelerates these accurate but expensive correlation-energy calculations by two to three orders of magnitude while incurring negligible errors in their total and relative energies. To maintain this accuracy, the number of the nearest-neighbor unit cells included in the lattice sums must also be reduced by the same downsampling rate (n) . The mod- n CCSD and MP3 methods are applied to the potential-energy surface of polyethylene in anharmonic frequency calculations of its infrared- and Raman-active vibrations. The calculated frequencies are found to be within 46cm-1 (CCSD) and 78cm-1 (MP3) of the observed.

  12. PRELIMINARY DRILLING IN THE POWDER RIVER BASIN, CONVERSE, CAMPBELL, AND JOHNSON COUNTRIES, WYOMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geslin, H.E.; Bromley, C.P.

    1957-06-01

    On July 16, 1953, a diamond core-drilling program was begun in the pumpkin Buttes area to secure geologic information. Drilling was terminated March 11, 1964, after 12 holes had been completed for a total of 5,813 feet. An investigational rotary noncore-drilling project was conducted from June l4, to September 17, 1954, in the southern part of the Powder River Basin, Campbell, Johnson, and Converse Counties, Wyoming. Drilling was done in the Pumpkin Buttes area and the Converse County area. A total of 52,267 feet was drilled and the average depth of hole was 75.3 feet. Forty-one anomalous areas in themore » Powder River Basin were drilled; of these, three in Converse County were found to contain possible commercial ore bodies. All of the drilling was done in the Wasatch formation of Eocene age except one locality, which was in the Fort Union formation of Paleocene age. (auth)« less

  13. Improvement for determining the axial capacity of drilled shafts in shale in Illinois.

    DOT National Transportation Integrated Search

    2013-05-01

    In this project, Illinois-specific design procedures were developed for drilled shafts founded in weak shale. In addition, : recommendations for field and laboratory testing to characterize the in situ condition of weak shales in Illinois were : deve...

  14. Comparison of conventional and self-consolidating concrete for drilled shaft construction : [tech summary].

    DOT National Transportation Integrated Search

    2015-04-01

    Significant anomalies have been observed in many of the recent drilled shaft construction projects throughout Louisiana. : The anomalies typically occur in the form of honeycombing within the zones of heavy reinforcement or sometimes at the : shaft b...

  15. Drilled Shaft Foundations for Noise Barrier Walls and Slope Stabilization : Executive Summary

    DOT National Transportation Integrated Search

    2002-12-01

    This research project is focused on two primary objectives. The first objective relates to the development of a methodology for using the SPT (Standard Penetration Test) results to design the laterally loaded drilled shafts. The second objective aims...

  16. Towards a distributed infrastructure for research drilling in Europe

    NASA Astrophysics Data System (ADS)

    Mevel, C.; Gatliff, R.; Ludden, J.; Camoin, G.; Horsfield, B.; Kopf, A.

    2012-04-01

    The EC-funded project "Deep Sea and Sub-Seafloor Frontier" (DS3F) aims at developing seafloor and sub seafloor sampling strategies for enhanced understanding of deep-sea and sub seafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. DS3F has identified access to sub seafloor sampling and instrumentation as a key element of this approach. There is a strong expertise in Europe concerning direct access to the sub seafloor. Within the international program IODP (Integrated Ocean Drilling Program), ECORD (European Consortium for Ocean Research Drilling) has successfully developed the concept of mission specific platforms (MSPs), contracted on a project basis to drill in ice covered and shallow water areas. The ECORD Science Operator, lead by the British Geological Survey (BGS) has build a internationally recognized expertise in scientific ocean drilling, from coring in challenging environment, through down hole measurements and laboratory analysis to core curation and data management. MARUM, at the Bremen University in Germany, is one of the three IODP core repositories. Europe is also at the forefront of scientific seabed drills, with the MeBo developed by MARUM as well as the BGS seabed rocks drills. Europe also plays a important role in continental scientific drilling and the European component of ICDP (International Continental Scientific Drilling Program) is strengthening, with the recent addition of France and foreseen addition of UK. Oceanic and continental drilling have very similar scientific objectives. Moreover, they share not only common technologies, but also common data handling systems. To develop an integrated approach to technology development and usage, a move towards a a distributed infrastructure for research drilling in Europe has been initiated by these different groups. Built on existing research & operational groups across Europe, it will facilitate the sharing of technological and scientific expertise for the benefit of the science community. It will link with other relevant infrastructure initiatives such as EMSO (European Marine Seafloor Observatories). It will raise the profile of scientific drilling in Europe and hopefully lead to better funding opportunities.

  17. Geological Setting of Diamond Drilling for the Archean Biosphere Drilling Project, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Hickman, A.

    2004-12-01

    The Archean Biosphere Drilling Project (ABDP) is a collaborative international research project conducting systematic (bio)geochemical investigations to improve our understanding of the biosphere of the early Earth. The Pilbara Craton of Western Australia, which includes exceptionally well preserved 3.52 to 2.70 Ga sedimentary sequences, was selected for an innovative sampling program commencing in 2003. To avoid near-surface alteration and contamination effects, sampling was by diamond drilling to depths of between 150 and 300 m, and was located at sites where the target lithologies were least deformed and had lowest metamorphic grade (below 300°C). The first of five successful drilling sites (Jasper Deposit) targeted red, white and black chert in the 3.46 Ga Marble Bar Chert Member. This chert marks the top of a thick mafic-felsic volcanic cycle, the third of four such cycles formed by mantle plumes between 3.52 and 3.43 Ga. The geological setting was a volcanic plateau founded on 3.72 to 3.60 Ga sialic crust (isotopic evidence). The second hole (Salgash) was sited on the basal section of the fourth cycle, and sampled sulfidic (Cu-Zn-Fe), carbon-rich shale and sandstone units separated by flows of peridotite. The third hole (Eastern Creek) was sited on the margin of a moderately deep-water rift basin, the 2.95 to 2.91 Ga Mosquito Creek Basin. This is dominated by turbidites, but the sandstones and carbon-rich shales intersected at the drilling site were deposited in shallower water. The fourth and fifth holes, located 300 km apart, sampled 2.77 to 2.76 Ga continental formations of the Fortescue Group; both holes included black shales.

  18. A Proposed Borehole Scientific Laboratory in Quay County, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Nielson, Dennis; Eckels, Marc; Mast, Peter; Zellman, Mark; Creed, Robert

    2017-04-01

    Our team has received funding from the US Department of Energy to initiate a Deep Borehole Field Test that will develop a subsurface test site to evaluate the drilling and scientific aspects of deep borehole disposal of nuclear waste in crystalline rock. Phase 1 of the project will focus on Public Outreach and land acquisition whereas Phase 2 will generate a drilling and testing plan and secure regulatory approvals. Phase 3 will complete the Drilling and Testing Plan and Phase 4 will include the drilling and testing. Phase 5 will be devoted to borehole science and experiments with emplacement technology. Although we are specifically considering issues associated with the disposal of waste, this project is a proof of concept, and no waste will be emplaced at our site. In brief, the concept envisions an 8-1/2 inch open-hole completion at a depth of 5000 m in crystalline rock. There will be an extensive program of sample collection (including core) and analysis as well as geophysical logging and borehole testing. Critical issues will be low permeability in the crystalline rock as well as the ability to manage borehole quality. Our team has proposed a site in Quay County, New Mexico that has an 850 meter thick Paleozoic section overlying homogeneous Precambrian granite. A subsequent phase of the project may drill a second hole with a 17-1/2 inch completion located about 200 m from the first. Our long-term plan is that this site will be managed as a deep scientific observatory that also provides a facility for scientific experiments and testing of borehole infrastructure and drilling equipment.

  19. Improved recovery demonstration for Williston Basin carbonates. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sippel, M.A.

    The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technologymore » and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.« less

  20. The Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Matter, J.; Kelemen, P. B.; Teagle, D. A. H.

    2014-12-01

    With seed funds from the Sloan Foundation, the International Continental Drilling Program (ICDP) approved a proposal by 39 international proponents for scientific drilling in the Oman ophiolite. Via observations on core, geophysical logging, fluid sampling, hydrological measurements, and microbiological sampling in a series of boreholes, we will address long-standing, unresolved questions regarding melt and solid transport in the mantle beneath oceanic spreading ridges, igneous accretion of oceanic crust, mass transfer between the oceans and the crust via hydrothermal alteration, and recycling of volatile components in subduction zones. We will undertake frontier exploration of subsurface weathering processes in mantle peridotite, including natural mechanisms of carbon dioxide uptake from surface waters and the atmosphere, and the nature of the subsurface biosphere. Societally relevant aspects include involvement and training of university students, including numerous students from Sultan Qaboos University in Oman. Studies of natural mineral carbonation will contribute to design of engineered systems for geological carbon dioxide capture and storage. Studies of alteration will contribute to fundamental understanding of the mechanisms of reaction-driven cracking, which could enhance geothermal power generation and extraction of unconventional hydrocarbon resources. We hope to begin drilling in late 2015. Meanwhile, we are seeking an additional $2M to match the combined Sloan and ICDP funding from national and international funding agencies. Matching funds are needed for operational costs of drilling, geophysical logging, downhole fluid sampling, and core description. Information on becoming part of the named investigator pool is in Appendix 14 (page 70) of the ICDP proposal, available at https://www.ldeo.columbia.edu/gpg/projects/icdp-workshop-oman-drilling-project. This formal process should begin at about the time of the 2014 Fall AGU Meeting. Meanwhile, potential investigators who can help raise matching funds, e.g. for core description as part of petrological or structural studies or for drill site operations, are encouraged to contact the authors of this abstract.

  1. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jill S. Buckley; Norman R. Morrow

    2006-01-01

    The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

  2. Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1976-11-01

    The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hotmore » brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.« less

  3. Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology. Full Project Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert

    This DOE Nuclear STTR project DE-SC001238 investigated the use of MMW directed energy to form rock melt and steel plugs in deep wellbores to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This current project builds upon a prior DOE project, DE-EE0005504, which developed the basic low power, low 28 GHz frequency waveguide setup, process and instruments. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future higher power field prototype testing. This technology also has potential for deep well drillingmore » for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled, called 'mono-bore drilling'. This allows for higher levels of safety and protection of the environment during deep drilling operations while providing vast cost savings. The larger purpose of this project was to find answers to key questions in developing MMW technology for its many subsurface applications.« less

  4. Bridging worlds/charting new courses

    NASA Astrophysics Data System (ADS)

    This report describes the work being done within Sandia's renewable energy program. This work touches on four major disciplines. (1) Photovoltaics. The goal of this project is to develop costeffective, reliable energy system technologies for energy supplies worldwide produced by U.S. industry. It encompasses cell research and development, collector development, technology evaluation, systems engineering, domestic and international applications, and design assistance. (2) Solar Thermal. This project endeavors to develop and increase acceptance of solar thermal electric and industrial technologies as cost-competitive candidates for power generation and to promote their commercialization. Its' major activities are with dish/Stirling systems, the Solar Two power tower, design assistance to industry and users, technology development and research activities. (3) Wind. The wind project impacts domestic and international markets with commercially feasible systems for utility-scale and other applications of wind energy. The project conducts applied research in aerodynamics, structural dynamics, fatigue, materials and controls, and engineering systems, and develops cooperative work with industry. (4) Geothermal. This project is developing technology to increase proven geothermal reserves and is assisting industry in expanding geothermal power on-line. Development work is in stemhole drilling, drilling techniques, instrumentation for geothermal wells, acoustic telemetry, and drilling exploratory wells.

  5. Modeling σ-Bond Activations by Nickel(0) Beyond Common Approximations: How Accurately Can We Describe Closed-Shell Oxidative Addition Reactions Mediated by Low-Valent Late 3d Transition Metal?

    PubMed

    Hu, Lianrui; Chen, Kejuan; Chen, Hui

    2017-10-10

    Accurate modelings of reactions involving 3d transition metals (TMs) are very challenging to both ab initio and DFT approaches. To gain more knowledge in this field, we herein explored typical σ-bond activations of H-H, C-H, C-Cl, and C-C bonds promoted by nickel(0), a low-valent late 3d TM. For the key parameters of activation energy (ΔE ‡ ) and reaction energy (ΔE R ) for these reactions, various issues related to the computational accuracy were systematically investigated. From the scrutiny of convergence issue with one-electron basis set, augmented (A) basis functions are found to be important, and the CCSD(T)/CBS level with complete basis set (CBS) limit extrapolation based on augmented double-ζ and triple-ζ basis pair (ADZ and ATZ), which produces deviations below 1 kcal/mol from the reference, is recommended for larger systems. As an alternative, the explicitly correlated F12 method can accelerate the basis set convergence further, especially after its CBS extrapolations. Thus, the CCSD(T)-F12/CBS(ADZ-ATZ) level with computational cost comparable to the conventional CCSD(T)/CBS(ADZ-ATZ) level, is found to reach the accuracy of the conventional CCSD(T)/A5Z level, which produces deviations below 0.5 kcal/mol from the reference, and is also highly recommendable. Scalar relativistic effects and 3s3p core-valence correlation are non-negligible for achieving chemical accuracy of around 1 kcal/mol. From the scrutiny of convergence issue with the N-electron basis set, in comparison with the reference CCSDTQ result, CCSD(T) is found to be able to calculate ΔE ‡ quite accurately, which is not true for the ΔE R calculations. Using highest-level CCSD(T) results of ΔE ‡ in this work as references, we tested 18 DFT methods and found that PBE0 and CAM-B3LYP are among the three best performing functionals, irrespective of DFT empirical dispersion correction. With empirical dispersion correction included, ωB97XD is also recommendable due to its improved performance.

  6. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less

  7. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,

    1994-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.

  8. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, S.H.; Younker, L.W.; Zoback, M.D.

    1995-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

  9. Modified Standard Penetration Test–based Drilled Shaft Design Method for Weak Rocks (Phase 2 Study)

    DOT National Transportation Integrated Search

    2017-12-15

    In this project, Illinois-specific design procedures were developed for drilled shafts founded in weak shale or rock. In particular, a modified standard penetration test was developed and verified to characterize the in situ condition of weak shales ...

  10. 75 FR 48305 - Kaibab National Forest; Arizona; Uranium Exploratory Drilling Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... DEPARTMENT OF AGRICULTURE Forest Service Kaibab National Forest; Arizona; Uranium Exploratory... a notice of intent to prepare an Environmental Impact Statement for the Uranium Exploratory Drilling... this notice may be mailed or hand-delivered to Kaibab National Forest, Attn: VANE Minerals Uranium...

  11. Multi-level Quantum Mechanics and Molecular Mechanics Study of Ring Opening Process of Guanine Damage by Hydroxyl Radical in Aqueous Solution.

    PubMed

    Liu, Peng; Wang, Qiong; Niu, Meixing; Wang, Dunyou

    2017-08-10

    Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.

  12. Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation

    NASA Astrophysics Data System (ADS)

    Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2014-02-01

    The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.

  13. Bibliography of US geological survey reports on coal drilling and geophysical logging projects, and related reports on geologic uses, Powder River Basin, Montana and Wyoming, 1973-1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathcart, J.D.

    1984-01-01

    This bibliography includes reports on coal drilling, geophysical logging projects, and related geologic uses, in the Powder River Basin of Montana and Wyoming. Reports on chemical analyses of Powder River Basin coals, coal quality, methane studies, and geotechnical studies are also included, as are EMRIA (Energy Mineral Rehabilitation Inventory and Analysis) reports on resource and potential reclamation of selected study areas in Montana and Wyoming.

  14. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer

    Jaffe, Todd

    2012-01-01

    Newberry seeks to explore "blind" (no surface evidence) convective hydrothermal systems associated with a young silicic pluton on the flanks of Newberry Volcano. This project will employ a combination of innovative and conventional techniques to identify the location of subsurface geothermal fluids associated with the hot pluton. Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

  15. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and convergent plate margins (subduction zones). This workshop brought together a diverse group of scientists with a broad range of scientific experience and interests. A particular strength was the involvement of both early-career scientists, who will initiate and carry out these new research programs, and more senior researchers with many years of experience in scientific drilling and active tectonics research. Each of the themes and questions outlined above has direct benefits to society, including improving hazard assessment, direct monitoring of active systems for early warning, renewable and non-renewable resource and energy exploitation, and predicting the environmental impacts of natural hazards, emphasizing the central role that scientific drilling will play in future scientific and societal developments.

  16. Alterations in bottom sediment physical and chemical characteristics at the Terra Nova offshore oil development over ten years of drilling on the grand banks of Newfoundland, Canada

    NASA Astrophysics Data System (ADS)

    DeBlois, Elisabeth M.; Paine, Michael D.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory

    2014-12-01

    This paper describes sediment composition at the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland, Canada, at an approximate water depth of 100 m. Surface sediment samples (upper 3 cm) were collected for chemical and particle size analyses at the site pre-development (1997) and in 2000-2002, 2004, 2006, 2008 and 2010. Approximately 50 stations have been sampled in each program year, with stations extending from less than 1 km to a maximum of 20 km from source (drill centres) along five gradients, extending to the southeast, southwest, northeast, northwest and east of Terra Nova. Results show that Terra Nova sediments were contaminated with >C10-C21 hydrocarbons and barium-the two main constituents of synthetic-based drilling muds used at the site. Highest levels of contamination occurred within 1 to 2 km from source, consistent with predictions from drill cuttings dispersion modelling. The strength of distance gradients for >C10-C21 hydrocarbons and barium, and overall levels, generally increased as drilling progressed but decreased from 2006 to 2010, coincident with a reduction in drilling. As seen at other offshore oil development sites, metals other than barium, sulphur and sulphide levels were elevated and sediment fines content was higher in the immediate vicinity (less than 0.5 km) of drill centres in some sampling years; but there was no strong evidence of project-related alterations of these variables. Overall, sediment contamination at Terra Nova was spatially limited and only the two major constituents of synthetic-based drilling muds used at the site, >C10-C21 hydrocarbons and barium, showed clear evidence of project-related alternations.

  17. Similkameen River Multipurpose Project Feasibility Study, Cultural Resource Reconnaissance

    DTIC Science & Technology

    1987-04-01

    fill below the vicinity of Nighthawk. Soil survey data and well drilling logs suggest that a large block of ice occupied the western half of Palmer Lake...granodiorite on the south side of the river opposite the staging gauge at R.M. 15.3 (Rinehart and Fox 1972); the north side of the river does not...Utilized 7 Penetration Drilling Drill 1 Projectile Impact Projectile Point 10 Percussion Chopping Chopper 2 Flaking Complete Flake 84 Broken Flake 40

  18. Río Tinto Faulted Volcanosedimentary Deposits as Analog Habitats for Extant Subsurface Biospheres on Mars: A Synthesis of the MARTE Drilling Project Geobiology Results

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, D. C.; Prieto-Ballesteros, O.; Rodríguez, N.; Dávila, F.; Stevens, T.; Amils, R.; Gómez-Elvira, J.; Stoker, C. R.

    2005-03-01

    Reconstruction of the probable habitats hosting the detected microbial communities through the integration of the geobiological data obtained from the MARTE drilling campaigns, TEM sounding and field surface geological survey

  19. Benchmark calculations with correlated molecular wavefunctions. XIII. Potential energy curves for He2, Ne2 and Ar2 using correlation consistent basis sets through augmented sextuple zeta

    NASA Astrophysics Data System (ADS)

    van Mourik, Tanja

    1999-02-01

    The potential energy curves of the rare gas dimers He2, Ne2, and Ar2 have been computed using correlation consistent basis sets ranging from singly augmented aug-cc-pVDZ sets through triply augmented t-aug-cc-pV6Z sets, with the augmented sextuple basis sets being reported herein. Several methods for including electron correlation were investigated, namely Moller-Plesset perturbation theory (MP2, MP3 and MP4) and coupled cluster theory [CCSD and CCSD(T)]. For He2CCSD(T)/d-aug-cc-pV6Z calculations yield a well depth of 7.35cm-1 (10.58K), with an estimated complete basis set (CBS) limit of 7.40cm-1 (10.65K). The latter is smaller than the 'exact' well depth (Aziz, R. A., Janzen, A. R., and Moldover, M. R., 1995, Phys. Rev. Lett., 74, 1586) by about 0.2cm-1 (0.35K). The Ne well depth, computed with the CCSD(T)/d-aug-cc-pV6Z method, is 28.31cm-1 and the estimated CBS limit is 28.4cm-1, approximately 1cm-1 smaller than the empirical potential of Aziz, R. A., and Slaman, M., J., 1989, Chem. Phys., 130, 187. Inclusion of core and core-valence correlation effects has a negligible effect on the Ne well depth, decreasing it by only 0.04cm-1. For Ar2, CCSD(T)/ d-aug-cc-pV6Z calculations yield a well depth of 96.2cm-1. The corresponding HFDID potential of Aziz, R. A., 1993, J. chem. Phys., 99, 4518 predicts of D of 99.7cm-1. Inclusion of core and core-valence effects in Ar increases the well depth and decreases the discrepancy by approximately 1cm-1.

  20. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation.

    PubMed

    Minenkov, Yury; Bistoni, Giovanni; Riplinger, Christoph; Auer, Alexander A; Neese, Frank; Cavallo, Luigi

    2017-04-05

    In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treatment, giving rise to the computationally very efficient FC (frozen core) approach; in the latter, all non-ECP electrons were included in the correlation treatment, giving rise to the AE (all electron) approach. Apart from reactions involving Li and Be, the FC approach resulted in non-homogeneous performance. The FC approach leads to very small errors (<2 kcal mol -1 ) for some reactions of Na, Mg, Ca, Sr, Ba and Pb, while for a few reactions of Ca and Ba deviations up to 40 kcal mol -1 have been obtained. Large errors are both due to artificial mixing of the core (sub-valence) orbitals of metals and the valence orbitals of oxygen and halogens in the molecular orbitals treated as core, and due to neglecting core-core and core-valence correlation effects. These large errors are reduced to a few kcal mol -1 if the AE approach is used or the sub-valence orbitals of metals are included in the correlation treatment. On the technical side, the CCSD(T) and DLPNO-CCSD(T) results differ by a fraction of kcal mol -1 , indicating the latter method as the perfect choice when the CPU efficiency is essential. For completely black-box applications, as requested in catalysis or thermochemical calculations, we recommend the DLPNO-CCSD(T) method with all electrons that are not covered by effective core potentials included in the correlation treatment and correlation-consistent polarized core valence basis sets of cc-pwCVQZ(-PP) quality.

  1. Comparison and combination of "direct" and fragment based local correlation methods: Cluster in molecules and domain based local pair natural orbital perturbation and coupled cluster theories

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Becker, Ute; Neese, Frank

    2018-03-01

    Local correlation theories have been developed in two main flavors: (1) "direct" local correlation methods apply local approximation to the canonical equations and (2) fragment based methods reconstruct the correlation energy from a series of smaller calculations on subsystems. The present work serves two purposes. First, we investigate the relative efficiencies of the two approaches using the domain-based local pair natural orbital (DLPNO) approach as the "direct" method and the cluster in molecule (CIM) approach as the fragment based approach. Both approaches are applied in conjunction with second-order many-body perturbation theory (MP2) as well as coupled-cluster theory with single-, double- and perturbative triple excitations [CCSD(T)]. Second, we have investigated the possible merits of combining the two approaches by performing CIM calculations with DLPNO methods serving as the method of choice for performing the subsystem calculations. Our cluster-in-molecule approach is closely related to but slightly deviates from approaches in the literature since we have avoided real space cutoffs. Moreover, the neglected distant pair correlations in the previous CIM approach are considered approximately. Six very large molecules (503-2380 atoms) were studied. At both MP2 and CCSD(T) levels of theory, the CIM and DLPNO methods show similar efficiency. However, DLPNO methods are more accurate for 3-dimensional systems. While we have found only little incentive for the combination of CIM with DLPNO-MP2, the situation is different for CIM-DLPNO-CCSD(T). This combination is attractive because (1) the better parallelization opportunities offered by CIM; (2) the methodology is less memory intensive than the genuine DLPNO-CCSD(T) method and, hence, allows for large calculations on more modest hardware; and (3) the methodology is applicable and efficient in the frequently met cases, where the largest subsystem calculation is too large for the canonical CCSD(T) method.

  2. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency andmore » project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.« less

  3. Towngas Lantau link beach approach, Hong Kong and China Gas Co. Ltd.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callnon, D.P.; Bertolucci, L.

    1997-07-01

    Horizontal directional drilling (HDD) laid dual, 12-in. OD, natural gas pipelines beneath a critical sea wall on Lantau island, Hong Kong New Territories. This was part of a 30-mile gas pipeline crossing under the South China Sea associated with the Towngas Lantau construction project for Hong Kong`s new Chep Lap Kok International Airport. During a twenty-one day project, Cherrington Corp. drilled and forward-reamed two, 20-in., 1,294-ft. holes to pull back the twin pipelines. The project was completed during typhoon weather, strong currents and logistical problems associated with operation in a remote uninhabited area. The successful installation of the twin gasmore » lines was the result of proper hole design, high-quality surveying techniques and innovative directional drilling methods. Each hole exited approximately 90-ft. from the pre-installed product pipe in the sea floor trench. A 20-in. reamer with bull-nose and rear stabilizer was used to open both holes from 9 to 20-inches.« less

  4. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    PubMed

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  5. The Subsurface Geology of Río Tinto: Material Examined During a Simulated Mars Drilling Mission for the Mars Astrobiology Research and Technology Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  6. Photoelectron Imaging Spectroscopy as a Window to Unexpected Molecules

    NASA Astrophysics Data System (ADS)

    Blackstone, Christopher C.

    2017-06-01

    Targeting an anion with the formula CH_{3}O_{3} for exploration with photoelectron imaging spectroscopy, we determine its identity to be dihydroxymethanolate, an anion largely absent in the literature, and the conjugate base of the hypothetical species orthoformic acid. Comparing the observed photoelectron spectrum to CCSD-EOM-IP and CCSD-EOM-SF calculations completed in QChem and Franck-Condon overlap simulations in PESCAL, we are able to determine with confidence the connectivity of the atoms in this molecule.

  7. Impacts on seafloor geology of drilling disturbance in shallow waters.

    PubMed

    Corrêa, Iran C S; Toldo, Elírio E; Toledo, Felipe A L

    2010-08-01

    This paper describes the effects of drilling disturbance on the seafloor of the upper continental slope of the Campos Basin, Brazil, as a result of the project Environmental Monitoring of Offshore Drilling for Petroleum Exploration--MAPEM. Field sampling was carried out surrounding wells, operated by the company PETROBRAS, to compare sediment properties of the seafloor, including grain-size distribution, total organic carbon, and clay mineral composition, prior to drilling with samples obtained 3 and 22 months after drilling. The sampling grid used had 74 stations, 68 of which were located along 7 radials from the well up to a distance of 500 m. The other 6 stations were used as reference, and were located 2,500 m from the well. The results show no significant sedimentological variation in the area affected by drilling activity. The observed sedimentological changes include a fining of grain size, increase in total organic carbon, an increase in gibbsite, illite, and smectite, and a decrease in kaolinite after drilling took place.

  8. Use of spectral gamma ray as a lithology guide for fault rocks: A case study from the Wenchuan Earthquake Fault Scientific Drilling project Borehole 4 (WFSD-4).

    PubMed

    Amara Konaté, Ahmed; Pan, Heping; Ma, Huolin; Qin, Zhen; Guo, Bo; Yevenyo Ziggah, Yao; Kounga, Claude Ernest Moussounda; Khan, Nasir; Tounkara, Fodé

    2017-10-01

    The main purpose of the Wenchuan Earthquake Fault Scientific drilling project (WFSD) was to produce an in-depth borehole into the Yingxiu-Beichuan (YBF) and Anxian-Guanxian faults in order to gain a much better understanding of the physical and chemical properties as well as the mechanical faulting involved. Five boreholes, namely WFSD-1, WFSD-2, WFSD-3P, WFSD-3 and WFSD-4, were drilled during the project entirety. This study, therefore, presents first-hand WFSD-4 data on the lithology (original rocks) and fault rocks that have been obtained from the WFSD project. In an attempt to determine the physical properties and the clay minerals of the lithology and fault rocks, this study analyzed the spectral gamma ray logs (Total gamma ray, Potassium, Thorium and Uranium) recorded in WFSD-4 borehole on the Northern segment of the YBF. The obtained results are presented as cross-plots and statistical multi log analysis. Both lithology and fault rocks show a variability of spectral gamma ray (SGR) logs responses and clay minerals. This study has shown the capabilities of the SGR logs for well-logging of earthquake faults and proves that SGR logs together with others logs in combination with drill hole core description is a useful method of lithology and fault rocks characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Kegang; Zeng, Zhengwen; He, Jun

    2013-12-31

    On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improvemore » the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.« less

  10. Ocean Drilling Simulation Activity.

    ERIC Educational Resources Information Center

    Telese, James A.; Jordan, Kathy

    The Ocean Drilling Project brings together scientists and governments from 20 countries to explore the earth's structure and history as it is revealed beneath the oceans' basins. Scientific expeditions examine rock and sediment cores obtained from the ocean floor to learn about the earth's basic processes. The series of activities in this…

  11. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  12. A new drilling method—Earthworm-like vibration drilling

    PubMed Central

    Wang, Peng; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed “earthworm-like drilling” is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a “soft-string” model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling. PMID:29641615

  13. The Marskhod Egyptian Drill Project

    NASA Astrophysics Data System (ADS)

    Shaltout, M. A. M.

    We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.

  14. Drilling the first horizontal well in the Gulf of Mexico; A case history of East Cameron Block 278 Well B-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, E.K.; French, M.R.

    East Cameron Block 278 Well B-12 was the first horizontal well drilled in the Gulf of Mexico. This gas well, located in the Texaco Inc. operated Eat Cameron 265 field, was drilled and completed in May 1990. The objective formation was a high-permeability, shallow, unconsolidated gas sand located about 1,450 ft below the mudline (BML). The success of this well proved that horizontal wells are viable alternatives to extended-reach development wells from offshore platforms in the Gulf of Mexico. The cost to drill and complete this horizontal well was less than comparable extended-reach development wells drilled in the same field.more » A minimal increase in drilling costs accompanied by considerable savings in completion costs resulted in favorable economics for the project. Drilling a shallow horizontal well in the Gulf of Mexico presented several challenges. This paper discusses prewell planning, formulation of contingency plans, and implementation of a drilling/completion program designed to meet these challenges.« less

  15. Clean subglacial access: prospects for future deep hot-water drilling

    PubMed Central

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  16. Noncovalent Interactions of DNA Bases with Naphthalene and Graphene.

    PubMed

    Cho, Yeonchoo; Min, Seung Kyu; Yun, Jeonghun; Kim, Woo Youn; Tkatchenko, Alexandre; Kim, Kwang S

    2013-04-09

    The complexes of a DNA base bound to graphitic systems are studied. Considering naphthalene as the simplest graphitic system, DNA base-naphthalene complexes are scrutinized at high levels of ab initio theory including coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] at the complete basis set (CBS) limit. The stacked configurations are the most stable, where the CCSD(T)/CBS binding energies of guanine, adenine, thymine, and cytosine are 9.31, 8.48, 8.53, 7.30 kcal/mol, respectively. The energy components are investigated using symmetry-adapted perturbation theory based on density functional theory including the dispersion energy. We compared the CCSD(T)/CBS results with several density functional methods applicable to periodic systems. Considering accuracy and availability, the optB86b nonlocal functional and the Tkatchenko-Scheffler functional are used to study the binding energies of nucleobases on graphene. The predicted values are 18-24 kcal/mol, though many-body effects on screening and energy need to be further considered.

  17. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azar, Richard Julian, E-mail: julianazar2323@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu

    2015-05-28

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidationmore » of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.« less

  18. Ab Initio Studies of Fluorine and Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The quality of fundamental vibrational frequencies determined using the CCSD(T) method (singles and doubles coupled-cluster theory plus a perturbational estimate of the effects of connected triple excitations) is shown to be very good, usually predicting band centers to within plus or minus 8 per centimeter. This approach is applied to several molecules of interest in atmospheric chemistry, such as HNO, cis-FONO, cis-ClONO, and ClOOH. The HNO molecule displays a large and unusual anharmonicity in the H-N stretch. For the calculation of ultraviolet (UV) spectra, the linear response CCSD (LRCCSD) approach (which is equivalent to EOM-CCSD) has been shown to yield vertical excitation energies that are accurate to approximately equal to 0.1 eV for singly excited electronic states. This method together with more approximate methods is used to examine the UV spectra of several molecules important in stratospheric chemistry, including HOCl, Cl2O, ClONO2, HONO2, ClOOCl, ClOOH, and HOOH.

  19. The resolution of identity and chain of spheres approximations for the LPNO-CCSD singles Fock term

    NASA Astrophysics Data System (ADS)

    Izsák, Róbert; Hansen, Andreas; Neese, Frank

    2012-10-01

    In the present work, the RIJCOSX approximation, developed earlier for accelerating the SCF procedure, is applied to one of the limiting factors of LPNO-CCSD calculations: the evaluation of the singles Fock term. It turns out that the introduction of RIJCOSX in the evaluation of the closed shell LPNO-CCSD singles Fock term causes errors below the microhartree limit. If the proposed procedure is also combined with RIJCOSX in SCF, then a somewhat larger error occurs, but reaction energy errors will still remain negligible. The speedup for the singles Fock term only is about 9-10 fold for the largest basis set applied. For the case of Penicillin using the def2-QZVPP basis set, a single point energy evaluation takes 2 day 16 h on a single processor leading to a total speedup of 2.6 as compared to a fully analytic calculation. Using eight processors, the same calculation takes only 14 h.

  20. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  1. Importance of the Electron Correlation and Dispersion Corrections in Calculations Involving Enamines, Hemiaminals, and Aminals. Comparison of B3LYP, M06-2X, MP2, and CCSD Results with Experimental Data.

    PubMed

    Castro-Alvarez, Alejandro; Carneros, Héctor; Sánchez, Dani; Vilarrasa, Jaume

    2015-12-18

    While B3LYP, M06-2X, and MP2 calculations predict the ΔG° values for exchange equilibria between enamines and ketones with similar acceptable accuracy, the M06-2X/6-311+G(d,p) and MP2/6-311+G(d,p) methods are required for enamine formation reactions (for example, for enamine 5a, arising from 3-methylbutanal and pyrrolidine). Stronger disagreement was observed when calculated energies of hemiaminals (N,O-acetals) and aminals (N,N-acetals) were compared with experimental equilibrium constants, which are reported here for the first time. Although it is known that the B3LYP method does not provide a good description of the London dispersion forces, while M06-2X and MP2 may overestimate them, it is shown here how large the gaps are and that at least single-point calculations at the CCSD(T)/6-31+G(d) level should be used for these reaction intermediates; CCSD(T)/6-31+G(d) and CCSD(T)/6-311+G(d,p) calculations afford ΔG° values in some cases quite close to MP2/6-311+G(d,p) while in others closer to M06-2X/6-311+G(d,p). The effect of solvents is similarly predicted by the SMD, CPCM, and IEFPCM approaches (with energy differences below 1 kcal/mol).

  2. An Early Pleistocene high-resolution paleoclimate reconstruction from the West Turkana (Kenya) HSPDP drill site

    NASA Astrophysics Data System (ADS)

    Stockhecke, Mona; Beck, Catherine; Brown, Erik T.; Cohen, Andrew; Deocampo, Daniel M.; Feibel, Craig S.; Pelletier, Jon D.; Rabideaux, Nathane M.; Sier, Mark

    2016-04-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP), and the related Olorgesailie Drilling Project (ODP), recovered ~2 km of drill core since 2012. At the HSPDP West Turkana Kaitio (WTK) site a 216 m-long core that covers the Early Pleistocene time window (1.3 to 1.87 Ma) during which hominids first expanded out of Africa and marine records document reorganization of tropical climate and the development of the strong Walker circulation. WTK carries particular interest for paleoclimate and paleoenvironmental reconstructions as it is located only 2.5 km from the location of one of the most complete hominin skeletons ever recovered (Nariokotome Boy). XRF core scanning data provide a means of evaluating records of past environmental conditions continuously and at high resolution. However, the record contains complex lithologies reflecting repeated episodes of inundation and desiccation along a dynamic lake margin. Here we present a methodological approach to address the highly variable lithostratigraphy of the East African records to establish comprehensive paleoclimate timeseries. The power spectrum of the presented hydroclimate record peaks at Milankovitch cycles, qualifying HSPDP drill cores from the Turkana Basin to be used as high-resolution Early Pleistocene paleoclimate archive. Comparing these data with marine climate reconstructions sheds light into athmospheric processes and continental climate dynamics.

  3. Scientific Drilling at Lake Tanganyika, Africa: A Transformative Record for Understanding Evolution in Isolation and the Biological History of the African Continent, University of Basel, 6-8 June 2016

    NASA Astrophysics Data System (ADS)

    Cohen, Andrew S.; Salzburger, Walter

    2017-05-01

    We report on the outcomes of a workshop held to discuss evolutionary biology, paleobiology and paleoecology questions that could be addressed by a scientific drilling project at Lake Tanganyika, the largest, deepest and oldest of the African Rift Valley lakes. Lake Tanganyika is of special significance to evolutionary biologists as it harbors one of the most spectacular endemic faunas of any lake on earth, with hundreds of unique species of fish, molluscs, crustaceans and other organisms that have evolved over the lake's long history. Most of these groups of organisms are known from fossils in short cores from the lake, raising the possibility that both body fossil and ancient DNA records might be recovered from long drill cores. The lake's sedimentary record could also provide a record of African terrestrial ecosystem history since the late Miocene. This 3-day workshop brought together biological and geological specialists on the lake and its surroundings to prioritize paleobiological, ecological and microbiological objectives that could ultimately be incorporated into an overall drilling plan for Lake Tanganyika and to consider how biological objectives can effectively be integrated into the paleoclimate and tectonics objectives of a Lake Tanganyika drilling project already considered in prior workshops.

  4. Foraminiferal, lithic, and isotopic changes across four major unconformities at Deep Sea Drilling Project Site 548, Goban Spur: Chapter 14 in Initial reports of the Deep Sea Drilling Project

    USGS Publications Warehouse

    Poag, C. Wylie; Reynolds, Leslie A.; Mazzullo, James M.; Keigwin, Loyd D.

    1985-01-01

    Sediment samples taken at close intervals across four major unconformities (middle Miocene/upper Miocene, lower Oligocene/upper Oligocene, lower Eocene/upper Eocene, lower Paleocene/upper Paleocene) at DSDP-IPOD Site 548, Goban Spur, reveal that coeval biostratigraphic gaps, sediment discontinuities, and seismic unconformities coincide with postulated low stands of sea level. Foraminiferal, lithic, and isotopic analyses demonstrate that environments began to shift prior to periods of marine erosion, and that sedimentation resumed in the form of turbidites derived from nearby upper-slope sources. The unconformities appear to have developed where a water-mass boundary intersected the continental slope, rhythmically crossing the drill site in concert with sea-level rise and fall.

  5. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu

    2016-03-28

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of termsmore » is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N{sub 2} problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree–Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT-n), and 3) via an excited state approximation through the equation of motion (EOM) approach (EOM-DCD, EOM-DCSD). The EOM-CC method is used to identify lower-energy CC solutions to overcome singularities in the CC potential energy curves. It is also shown that UHF based CC and DC methods behave very similarly in bond-breaking of N{sub 2}, and that using spatially broken but spin preserving SCF references makes the CCSD solutions better than those for DCSD.« less

  6. 75 FR 78228 - Takes of Marine Mammals Incidental to Specified Activities; Columbia River Crossing Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... (Zalophus californianus), and harbor seals (Phoca vitulina). Specified Activities CRC is proposing a...-water bents, consisting of one to three drilled shafts. The permanent in-water piers of both the Columbia River and North Portland Harbor crossings will be constructed using drilled shafts, rather than...

  7. 76 FR 33019 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ..., 2011. 10. Aruba Petroleum, Inc., Pad ID: Lundy Well Pad, ABR-201103010, Gamble Township, Lycoming...-- 4H Drilling Pad, ABR-201104012, Gamble Township, Lycoming County, Pa.; Consumptive Use of up to 5.000...-- 4H Drilling Pad, ABR-201104013, Gamble Township, Lycoming County, Pa.; Consumptive Use of up to 5.000...

  8. Project scientists discover magnetic phenomenon under Bermuda Rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-05-01

    Drilling results in water depths of 18,000 ft between Puerto Rico and Bermuda indicate strong magnetic reverses occur in the rocks underlying the seabed. These and other findings during a cruise of the Glomar Challenger are reported. Information is included on the location of magnetic anomalies, sedimentation, and open-sea drilling. (JRD)

  9. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in populated calderas (e.g., Campi Flegrei, Italy). Experiments with the live system will aid in hazard assessment and eruption forecasting for this most difficult of volcano hazard problems. We will report on an International Continental Scientific Drilling Program (ICDP) workshop held to assess feasibility and to develop a plan for KMDP.

  10. Preliminary physical stratigraphy, biostratigraphy, and geophysical data of the USGS South Dover Bridge Core, Talbot County, Maryland

    USGS Publications Warehouse

    Alemán González, Wilma B.; Powars, David S.; Seefelt, Ellen L.; Edwards, Lucy E.; Self-Trail, Jean M.; Durand, Colleen T.; Schultz, Arthur P.; McLaughlin, Peter P.

    2012-01-01

    The South Dover Bridge (SDB) corehole was drilled in October 2007 in Talbot County, Maryland. The main purpose for drilling this corehole was to characterize the Upper Cretaceous and Paleogene lithostratigraphy and biostratigraphy of the aquifers and confining units of this region. The data obtained from this core also will be used as a guide to geologic mapping and to help interpret well data from the eastern part of the Washington East 1:100,000-scale map near the town of Easton, Md. Core drilling was conducted to a depth of 700 feet (ft). The Cretaceous section was not penetrated due to technical problems during drilling. This project was funded by the U.S. Geological Survey’s (USGS) Eastern Geology and Paleoclimate Science Center (EGPSC) as part of the Geology of the Atlantic Watersheds Project; this project was carried out in cooperation with the Maryland Geological Survey (MGS) through partnerships with the Aquifer Characterization Program of the USGS’s Maryland-Delaware-District of Columbia Water Science Center and the National Cooperative Geologic Mapping Program. The SDB corehole was drilled by the USGS drilling crew in the northeastern corner of the Trappe 7.5-minute quadrangle, near the type locality of the Boston Cliffs member of the Choptank Formation. Geophysical logs (gamma ray, single point resistance, and 16-inch and 64-inch normal resistivity) were run to a depth of 527.5 ft; the total depth of 700.0 ft could not be reached because of the collapse of the lower part of the hole. Of the 700.0 ft drilled, 531.8 ft of core were recovered, representing a 76 percent core recovery. The elevation of the top of the corehole is approximately 12 ft above mean sea level; its coordinates are lat 38°44′49.34″N. and long 76°00′25.09″W. (38.74704N., 76.00697W. in decimal degrees). A groundwater monitoring well was not installed at this site. The South Dover Bridge corehole was the first corehole that will be used to better understand the geology and hydrology of the Maryland Eastern Shore.

  11. Relevance of East African Drill Cores to Human Evolution: the Case of the Olorgesailie Drilling Project

    NASA Astrophysics Data System (ADS)

    Potts, R.

    2016-12-01

    Drill cores reaching the local basement of the East African Rift were obtained in 2012 south of the Olorgesailie Basin, Kenya, 20 km from excavations that document key benchmarks in the origin of Homo sapiens. Sediments totaling 216 m were obtained from two drilling locations representing the past 1 million years. The cores were acquired to build a detailed environmental record spatially associated with the transition from Acheulean to Middle Stone Age technology and extensive turnover in mammalian species. The project seeks precise tests of how climate dynamics and tectonic events were linked with these transitions. Core lithology (A.K. Behrensmeyer), geochronology (A. Deino), diatoms (R.B. Owen), phytoliths (R. Kinyanjui), geochemistry (N. Rabideaux, D. Deocampo), among other indicators, show evidence of strong environmental variability in agreement with predicted high-eccentricity modulation of climate during the evolutionary transitions. Increase in hominin mobility, elaboration of symbolic behavior, and concurrent turnover in mammalian species indicating heightened adaptability to unpredictable ecosystems, point to a direct link between the evolutionary transitions and the landscape dynamics reflected in the Olorgesailie drill cores. For paleoanthropologists and Earth scientists, any link between evolutionary transitions and environmental dynamics requires robust evolutionary datasets pertinent to how selection, extinction, population divergence, and other evolutionary processes were impacted by the dynamics uncovered in drill core studies. Fossil and archeological data offer a rich source of data and of robust environment-evolution explanations that must be integrated into efforts by Earth scientists who seek to examine high-resolution climate records of human evolution. Paleoanthropological examples will illustrate the opportunities that exist for connecting evolutionary benchmarks to the data obtained from drilled African muds. Project members: R. Potts, A.K. Behrensmeyer, E. Beverly, K. Brady, J. Bright, E. Brown, J. Clark, A. Cohen, A. Deino, P. deMenocal, D. Deocampo, R. Dommain, J.T. Faith, J. King, R. Kinyanjui, N. Levin, J. Moerman, V. Muiruri, A. Noren, R.B. Owen, N. Rabideaux, R. Renaut, S. Rucina, J. Russell, J. Scott, M. Stockhecke, K. Uno

  12. Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Datta, Dipayan; Kossmann, Simone; Neese, Frank

    2016-09-01

    The domain-based local pair-natural orbital coupled-cluster (DLPNO-CC) theory has recently emerged as an efficient and powerful quantum-chemical method for the calculation of energies of molecules comprised of several hundred atoms. It has been demonstrated that the DLPNO-CC approach attains the accuracy of a standard canonical coupled-cluster calculation to about 99.9% of the basis set correlation energy while realizing linear scaling of the computational cost with respect to system size. This is achieved by combining (a) localized occupied orbitals, (b) large virtual orbital correlation domains spanned by the projected atomic orbitals (PAOs), and (c) compaction of the virtual space through a truncated pair natural orbital (PNO) basis. In this paper, we report on the implementation of an analytic scheme for the calculation of the first derivatives of the DLPNO-CC energy for basis set independent perturbations within the singles and doubles approximation (DLPNO-CCSD) for closed-shell molecules. Perturbation-independent one-particle density matrices have been implemented in order to account for the response of the CC wave function to the external perturbation. Orbital-relaxation effects due to external perturbation are not taken into account in the current implementation. We investigate in detail the dependence of the computed first-order electrical properties (e.g., dipole moment) on the three major truncation parameters used in a DLPNO-CC calculation, namely, the natural orbital occupation number cutoff used for the construction of the PNOs, the weak electron-pair cutoff, and the domain size cutoff. No additional truncation parameter has been introduced for property calculation. We present benchmark calculations on dipole moments for a set of 10 molecules consisting of 20-40 atoms. We demonstrate that 98%-99% accuracy relative to the canonical CCSD results can be consistently achieved in these calculations. However, this comes with the price of tightening the threshold for the natural orbital occupation number cutoff by an order of magnitude compared to the DLPNO-CCSD energy calculations.

  13. Deep-sea observations at hydrocarbon drilling locations: Contributions from the SERPENT Project after 120 field visits

    NASA Astrophysics Data System (ADS)

    Gates, Andrew R.; Benfield, Mark C.; Booth, David J.; Fowler, Ashley M.; Skropeta, Danielle; Jones, Daniel O. B.

    2017-03-01

    The SERPENT Project has been running for over ten years. In this time scientists from universities and research institutions have made more than 120 visits to oil rigs, drill ships and survey vessels operated by 16 oil companies, in order to work with the industry's Remotely Operated Vehicles (ROV). Visits have taken place in Europe, North and South America, Africa and Australasia at water depths from 100 m to nearly 3000 m. The project has directly produced >40 peer reviewed publications and data from the project's >2600 entry online image and video archive have been used in many others. The aim of this paper is to highlight examples of how valuable data can be obtained through collaboration with hydrocarbon exploration and production companies to use existing industry infrastructure to increase scientific discovery in unexplored areas and augment environmental monitoring of industrial activity. The large number of industry ROVs operating globally increases chance encounters with large, enigmatic marine organisms. SERPENT video observations include the deepest known records of species previously considered epipelagic such as scalloped hammerhead (Sphyrna lewini) and southern sunfish (Mola ramsayi) and the first in situ observations of pelagic species such as oarfish (Regalecus glesne). Such observations enable improvements to distribution records and description of behaviour of poorly understood species. Specimen collection has been used for taxonomic descriptions, functional studies and natural products chemistry research. Anthropogenic effects been assessed at the local scale using in situ observations and sample collection at the time of drilling operations and subsequent visits have enabled study of recovery from drilling. Future challenges to be addressed using the SERPENT approach include ensuring unique faunal observations by industry ROV operators are reported, further study of recovery from deep-water drilling activity and to carry out in situ studies to improve the understanding of potential future decommissioning of obsolete hydrocarbon infrastructure.

  14. The DIS, the CODD, IGSNs and DOIs: Tools you need to succeed with your ocean and continental scientific drilling project

    NASA Astrophysics Data System (ADS)

    Gorgas, Thomas; Conze, Ronald; Lorenz, Henning; Elger, Kirsten; Ulbricht, Damian; Wilkens, Roy; Lyle, Mitchell; Westerhold, Thomas; Drury, Anna Joy; Tian, Jun; Hahn, Annette

    2017-04-01

    Scientific ocean drilling over the past >40 years and corresponding efforts on land (by now for more than >20 years) has led to the accumulation of an enormous amount of valuable petrophysical, geochemical, biological and geophysical data obtained through laboratory and field experiments across a multitude of scale-and time dimensions. Such data can be utilized comprehensively in a holistic fashion, and thereby provide base toward an enhanced "Core-Log-Integration", modeling small-scale basin processes to large-scale Earth phenomena, while also storing and managing all relevant information in an "Open Access" fashion. Since the early 1990's members of our team have acquired and measured a large dataset of physical and geochemical properties representing both terrestrial and marine geological environments. This dataset cover a variety of both macro-to-microscale dimensions, and thereby allowing this type of interdisciplinary data examination. Over time, data management and processing tools have been developed and were recently merged with modern data publishing methods, which allow identifying and tracking data and associated publications in a trackable and concise manner. Our current presentation summarizes an important part of the value chain in geosciences, comprising: 1) The state-of-the-art in data management for continental and lake drilling projects performed with and through ICDP's Drilling Information System (DIS). 2) The CODD (Code for Ocean Drilling Data) as numerical-based, programmable data processing toolbox and applicable for both continental and marine drilling projects. 3) The implementation of Persistent Identifiers, such as the International Geo Sample Number (IGSN) to identify and track sample material as part of Digital-Object-Identifier (DOI)-tagged operation reports and research publications. 4) A list of contacts provided for scientists with an interest in learning and applying methods and techniques we offer in form of basic and advanced training courses at our respective research institutions and facilities around the world.

  15. Structure and stress state of Hawaiian island basalts penetrated by the Hawaii Scientific Drilling Project deep core hole

    USGS Publications Warehouse

    Morin, R.H.; Wilkens, R.H.

    2005-01-01

    As part of the Hawaii Scientific Drilling Project (HSDP), an exploratory hole was drilled in 1993 to a depth of 1056 meters below sea level (mbsl) and a deeper hole was drilled to 3098 mbsl in 1999. A set of geophysical well logs was obtained in the deeper hole that provides fundamental information regarding the structure and the state of stress that exist within a volcanic shield. The acoustic televiewer generates digital, magnetically oriented images of the borehole wall, and inspection of this log yields a continuous record of fracture orientation with depth and also with age to 540 ka. The data depict a clockwise rotation in fracture strike through the surficial Mauna Loa basalts that settles to a constant heading in the underlying Mauna Kea rocks. This behavior reflects the depositional slope directions of lavas and the locations of volcanic sources relative to the drill site. The deviation log delineates the trajectory of the well bore in three-dimensional space. This path closely follows changes in fracture orientation with depth as the drill bit is generally prodded perpendicular to fracture strike during the drilling process. Stress-induced breakouts observed in the televiewer log identify the orientations ot the maximum and minimum horizontal principal stresses to be north-south and east-west, respectively. This stress state is attributed to the combination of a sharp break in onshore-offshore slope that reduces stress east-west and the emergence of Kilauea that increases stress north-south. Breakouts are extensive and appear over approximately 30% of the open hole. Copyright 2005 by the American Geophysical Union.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sim, Eunji; Kim, Min-Cheol; Burke, Kieron

    We investigate dissociation of diatomic molecules using standard density functional theory (DFT) and density-corrected density functional theory (DC-DFT) compared with CCSD(T) results as reference. The results show the difference between the HOMO values of dissociated atomic species often can be used as an indicator whether DFT would predict the correct dissociation limit. DFT predicts incorrect dissociation limits and charge distribution in molecules or molecular ions when the fragments have large HOMO differences, while DC-DFT and CCSD(T) do not. The criteria for large HOMO difference is about 2 ∼ 4 eV.

  17. Density functional Theory Based Generalized Effective Fragment Potential Method (Postprint)

    DTIC Science & Technology

    2014-07-01

    is acceptable for other applications) leads to induced dipole moments within 10−6 to 10−7 au of the precise values . Thus, the applied field of 10−4...noncovalent interactions. The water-benzene clusters17 and WATER2711 reference values were also ob- tained at the CCSD(T)/CBS level, except for the clusters...with n = 20,42 where MP2/CBS was used. The n-alkane dimers18 benchmark values were CCSD(T)/CBS for ethane to butane and a linear extrapolation method

  18. Elementary reaction profile and chemical kinetics study of [C(1D)/(3P) + SiH4] with the CCSD(T) method

    NASA Astrophysics Data System (ADS)

    Ranka, Karnamohit; Perera, Ajith; Bartlett, Rodney J.

    2017-07-01

    Carbon and silicon-based molecules are omnipresent in the fields of combustion, atmospheric, semiconductor, and astronomical chemistry, among others. This paper reports the underlying elementary reactions for the [C(1D) + SiH4] and [C(3P) + SiH4] reaction profiles, optimized geometries of the intermediates, transition states (at the CCSD(T) level), RRKM and TST rate constants, and the corresponding branching ratios. Previously unreported van der Waals complex intermediates have been found for both reactions.

  19. The Atomization Energy of Mg4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The atomization energy of Mg4 is determined using the MP2 and CCSD(T) levels of theory. Basis set incompleteness, basis set extrapolation, and core-valence effects are discussed. Our best atomization energy, including the zero-point energy and scalar relativistic effects, is 24.6+/-1.6 kcal per mol. Our computed and extrapolated values are compared with previous results, where it is observed that our extrapolated MP2 value is good agreement with the MP2-R12 value. The CCSD(T) and MP2 core effects are found to have the opposite signs.

  20. Catalytic Hydrogenation of Carbon Dioxide with Ammonia-Borane by Pincer-type Phosphorus Compound: A Theoretical Prediction.

    PubMed

    Zeng, Guixiang; Maeda, Satoshi; Taketsugu, Tetsuya; Sakaki, Shigeyoshi

    2016-10-01

    Theoretically designed pincer-type phosphorus compound is found to be active for the hydrogenation of carbon dioxide (CO 2 ) with ammonia-borane. DFT, ONIOM(CCSD(T):MP2), and CCSD(T) computational results demonstrated that the reaction occurs through the phosphorus-ligand cooperative catalysis function, which provides an unprecedented protocol for metal-free CO 2 conversion. The phosphorus compounds with the NNN ligand are more active than those with the ONO ligand. The conjugate and planar ligand considerably improves the efficiency of the catalyst.

  1. Potential energy surfaces of the ground and low-lying states of HCCS and NCS: CASSCF, MRCI and CCSD(T) studies

    NASA Astrophysics Data System (ADS)

    Li, Yumin; Iwata, Suehiro

    1997-07-01

    For astronomically interesting molecules, HCCS and NCS, the equilibrium geometries and potential energy curves of three states (X 2Π, A 2Π and B 2Σ+) as well as vertical excitation energies are studied using complete active space SCF (CASSCF), multi-reference configuration interaction (MRCI) and coupled cluster (CCSD(T)) methods with cc-pVTZ basis sets. The difference and similarity in the three states of HCCS and NCS are illustrated. The results obtained are in good agreement with available experimental data.

  2. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, J.A.

    1996-12-31

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.« less

  3. Drilling into molten rock at Kilauea Iki

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colp, J.L.; Okamura, R.T.

    1978-01-01

    The scientific feasibility of extracting energy directly from buried circulating magma resources is being assessed. One of the tasks of the project is the study of geophysical measuring systems to locate and define buried molten rock bodies. To verify the results of a molten rock sensing experiment performed at Kilauea Iki lava lake, it is necessary to drill a series of holes through the solid upper crust and through the molten zone at that location. Thirteen holes have been drilled in Kilauea Iki. The results achieved during the drilling of the last two holes indicated that the molten zone inmore » Kilauea Iki is not a simple, relatively homogeneous fluid body as expected. The encountering of an unexpected, unknown rigid obstruction 2.5 ft below the crust/melt interface has led to the conceptual development of a drilling system intended to have the capability to drill through a hot, rigid obstruction while the drill stem is immersed in molten rock. The concept will be field tested at Kilauea Iki in the summer of 1978.« less

  4. Oman Drilling Project Phase I Borehole Geophysical Survey

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for holes BT1, GT3 and BA2 due to hole obstruction (e.g. collapsed borehole wall). Results from the geophysical survey including preliminary log analysis will be presented for each OmanDP Phase I borehole.

  5. Elastic anisotropy and borehole stress estimation in the Seve Nappe Complex from the COSC-1 well, Åre, Sweden.

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn; Almquist, Bjarne; Ask, Maria; Schmitt, Douglas R.; Zappone, Alba

    2015-04-01

    The Caledonian orogeny, preserved in Scandinavia and Greenland, began with the closure of the Iapetus Ocean and culminated in the collision of Baltica and Laurentia cratons during the middle Paleozoic. The COSC scientific drilling project aims at understanding the crustal structure and composition of the Scandinavian Caledonides. The first well of the dual phase drilling program, completed in Summer of 2014, drilled through ~2.5 km of the Seve Nappe Complex near the town of Åre, Sweden. Newly acquired drill core and borehole logs provide fresh core material for physical rock property measurements and in-situ stress determination. This contribution presents preliminary data on compressional and shear wave ultrasonic velocities (Vp, Vs) determined from laboratory measurements on drill cores, together with in-situ stress orientation analysis using image logs from the first borehole of the Collisional Orogeny in the Scandinavian Caledonides project (COSC-1). An hydrostatically oil pressurized apparatus is used to test the ultrasonic Vp and Vs on three orthogonally cut samples of amphibolite, calcium bearing and felsic gneiss, meta-gabbro, and mylonitic schist from drill core. We measure directional anisotropy variability for each lithology using one sample cut perpendicular to the foliation and two additional plugs cut parallel to the foliation with one parallel to the lineation and the other perpendicular. Measurements are performed using the pulse transmission technique on samples subjected to hydrostatic pressure from 1-350 MPa at dry conditions. We present preliminary results relating Vp and Vs anisotropy to geologic units and degree of deformation. Additionally, we use acoustic borehole televiewer logs to estimate the horizontal stress orientation making use of well developed techniques for observed borehole breakouts (compressive failure) and drilling induced fractures (tensile failure). Preliminary observations show that very few drilling-induced tensile fractures are produced, and that borehole breakouts are episodic and suggests a NE-SW minimum horizontal stress direction

  6. Beneficial Use of Drilling Waste - A Wetland Restoration Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioneer Natural Resources

    2000-08-14

    This project demonstrated that treated drill cuttings derived from oil and gas operations could be used as source material for rebuilding eroding wetlands in Louisiana. Planning to supply a restoration site, drill a source well, and provide part of the funding. Scientists from southeastern Louisiana University's (SLU) Wetland Biology Department were contracted to conduct the proposed field research and to perform mesocosm studies on the SLU campus. Plans were to use and abandoned open water drill slip as a restoration site. Dredged material was to be used to create berms to form an isolated cell that would then be filledmore » with a blend of dredged material and drill cuttings. Three elevations were used to test the substrates ability to support various alternative types of marsh vegetation, i.e., submergent, emergent, and upland. The drill cuttings were not raw cuttings, but were treated by either a dewatering process (performed by Cameron, Inc.) or by a stabilization process to encapsulate undesirable constituents (performed by SWACO, Division of Smith International).« less

  7. Honey Lake Geothermal Project, Lassen County, California

    NASA Astrophysics Data System (ADS)

    1984-11-01

    The drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel is reported. The project is located within the Wendel-Amedee Known Geothermal Resource Area.

  8. Operations Summary During Riserless Drilling to >7700 mbsl in the Japan Trench for IODP Expedition 343 & 343T: JFAST, and Discussion of the Relationship Between Drilling Parameters and Rock Damage.

    NASA Astrophysics Data System (ADS)

    Toy, V. G.; Maeda, L.; Toczko, S.; Eguchi, N.; Chester, F. M.; Mori, J. J.; Sawada, I.; Saruhashi, T.

    2014-12-01

    During IODP Expedition 343: The Japan Trench Fast Drilling Project (JFAST), two main boreholes were drilled from the D/V Chikyu in ~7000 m water depth. An uncored hole that penetrated to 850.5 meters below seafloor (mbsf) (total depth [TD] = 7740 meters below sea level [mbsl]) was documented using logging while drilling (LWD) tools. From an adjacent partially cored hole drilled to 844.5 mbsf (TD = 7734 mbsl) 21 cores were acquired that spanned the two main fault targets. The operations lasted 88 days. The drilling operation was very technically challenging. The drill string had to be withdrawn a number of times due to high seas, and technical issues; five holes were drilled (one abandoned after spud-in) and reoccupied in >6800 m water depth. A simple observatory was deployed in the wellhead installed during Exp 343 during the follow-up Exp 343T. In certain intervals during coring we mostly recovered loose, subrounded fine gravel clasts of the two major lithologies penetrated to those depths (silt and mudstones). We have performed particle shape and size analysis on these gravel aggregates. Particle shape variations apparent visually are not clearly quantified by conventional 'shape descriptors'. Variations in particle size distributions are apparent and we will discuss whether these relate to variations in drilling parameters.

  9. Cheap-GSHPs, an European project aiming cost-reducing innovations for shallow geothermal installations. - Geological data reinterpretation

    NASA Astrophysics Data System (ADS)

    Bertermann, David; Müller, Johannes; Galgaro, Antonio; Cultrera, Matteo; Bernardi, Adriana; Di Sipio, Eloisa

    2016-04-01

    The success and widespread diffusion of new sustainable technologies are always strictly related to their affordability. Nowadays the energy price fluctuations and the economic crisis are jeopardizing the development and diffusion of renewable technologies and sources. With the aim of both reduce the overall costs of shallow geothermal systems and improve their installation safety, an European project has took place recently, under the Horizon 2020 EU Framework Programme for Research and Innovation. The acronym of this project is Cheap-GSHPs, meaning "cheap and efficient application of reliable ground source heat exchangers and pumps"; the CHEAP-GSHPs project involves 17 partners among 9 European countries such Belgium, France, Germany, Greece, Ireland, Italy, Romania, Spain, Switzerland. In order to achieve the planned targets, an holistic approach is adopted, where all involved elements that take part of shallow geothermal activities are here integrated. In order to reduce the drilling specific costs and for a solid planning basis the INSPIRE-conformal ESDAC data set PAR-MAT-DOM ("parent material dominant") was analysed and reinterpreted regarding the opportunities for cost reductions. Different ESDAC classification codes were analysed lithologically and sedimentologically in order to receive the most suitable drilling technique within different formations. Together with drilling companies this geological data set was translated into a geotechnical map which allows drilling companies the usage of the most efficient drilling within a certain type of underground. The scale of the created map is 1: 100,000 for all over Europe. This leads to cost reductions for the final consumers. Further there will be the definition of different heat conductivity classes based on the reinterpreted PAR-MAT-DOM data set which will provide underground information. These values will be reached by sampling data all over Europe and literature data. The samples will be measured by several different laboratory instruments in variable states of saturation. Literature data are then also compared to the resulting laboratory measurements. All in all this new data set will provide the development of more efficient cost planning tools. It provides detailed underground information on an European-wide level and the dimensioning of a spatial geothermal installation can be optimised. In order to provide a new drilling cost estimation, a new parameter called "drillability" is here suggested; the drillability is based on the drilling time for different type of rocks/sediments. The results are cost reductions which makes geothermal energy solution more attractive for end consumers especially on residential levels.

  10. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less

  11. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less

  12. A critical review of existing innovative science and drilling proposals within IODP

    NASA Astrophysics Data System (ADS)

    Behrmann, J. H.

    2009-04-01

    In the present phase of the Integrated Ocean Drilling Program (IODP) activities are guided by the Initial Science Plan that identified three major themes: The Deep Biosphere and the Subseafloor Ocean; Environmental Change, Processes and Effects; and Solid Earth Cycles and Geodynamics. New initiatives and complex drilling proposals were developed that required major advances in drilling platforms and technologies, and expansion of the drilling community into new areas of specialization. The guiding themes in the Initial Science Plan are instrumental for the proposal development and evaluation, and will continue to represent the goals of IODP until 2013. A number of innovative and highly ranked individual proposals and coordinated sets of proposals ready to be drilled has been forwarded by the Science Planning Committee (SPC) to the IODP Operations Task Force (OTF) for scoping, planning and scheduling. For the Deep Biosphere theme these include proposals to drill targets in the Central Atlantic, the Okinawa Trough, and the Southern Pacific. The Environmental Change, Processes and Effects theme is proposed to - among others - be studied by a coordinated approach regarding the Southeast Asian Monsoon, but also by proposals addressing sdimentation, facies evolution and the paleoclimate record in the Atlantic and Indian Oceans. The Solid Earth Cycles and Geodynamics theme is represented by several proposals addressing subduction processes, seismogenesis, and oceanic crust formation mainly in the Pacific. Some of these have shaped drilling programs that are already in the process of being carried out, such as drilling in the Nankai Trough off Japan (the NantroSEIZE project), or drilling in oceanic crust created in a superfast spreading environment in the Eastern Pacific. There are many remaining issues to be addressed, and drilling programs to be completed before the end of the present phase of IODP in 2013. Planning of expeditions needs to be done in such a way that a balance between risk, cost, and scientific impact is achieved. At least part of the dilling also is required to be a necessary precursor for future investigations in coming phases of Ocean Drilling. Presently IODP faces the challenges of tight budgetary constraints, increasing operating costs of their platforms, and the need to develop drilling schedules that allow off-contract work of the R/V Chikyu and R/V Joides Resolution drilling vessels. Chikyu will operate within IODP for an average of 7 months per year over a 5-year period with the goals of achieving major milestones in NantroSEIZE, maximizing the use of the vessel for riser drilling, and start a new IODP project that requires riser drilling. Joides Resolution will also operate an average of 7 months per year with the goal of optimizing operating days within the restrictions imposed by the prioritized science. Mission Specific Platform expeditions will be carried out once every two years on average, with the goal of pioneering drilling in new, challenging environments. For the first time in IODP history, operations of Chikyu, Joides Resolution and Mission Specific Platform expeditions will be conducted simultaneously in 2009. This new phase of operations provides an unprecedented chance of progress in scientific ocean drilling.

  13. Homogeneous and heterogeneous noncovalent dimers of formaldehyde and thioformaldehyde: structures, energetics, and vibrational frequencies.

    PubMed

    Van Dornshuld, Eric; Holy, Christina M; Tschumper, Gregory S

    2014-05-08

    This work provides the first characterization of five stationary points of the homogeneous thioformaldehyde dimer, (CH2S)2, and seven stationary points of the heterogeneous formaldehyde/thioformaldehyde dimer, CH2O/CH2S, with correlated ab initio electronic structure methods. Full geometry optimizations and corresponding harmonic vibrational frequencies were computed with second-order Møller-Plesset perturbation theory (MP2) and 13 different density functionals in conjunction with triple-ζ basis sets augmented with diffuse and multiple sets of polarization functions. The MP2 results indicate that the three stationary points of (CH2S)2 and four of CH2O/CH2S are minima, in contrast to two stationary points of the formaldehyde dimer, (CH2O)2. Single-point energies were also computed using the explicitly correlated MP2-F12 and CCSD(T)-F12 methods and basis sets as large as heavy-aug-cc-pVTZ. The (CH2O)2 and CH2O/CH2S MP2 and MP2-F12 binding energies deviated from the CCSD(T)-F12 binding energies by no more than 0.2 and 0.4 kcal mol(-1), respectively. The (CH2O)2 and CH2O/CH2S global minimum is the same at every level of theory. However, the MP2 methods overbind (CH2S)2 by as much as 1.1 kcal mol(-1), effectively altering the energetic ordering of the thioformaldehyde dimer minima relative to the CCSD(T)-F12 energies. The CCSD(T)-F12 binding energies of the (CH2O)2 and CH2O/CH2S stationary points are quite similar, with the former ranging from around -2.4 to -4.6 kcal mol(-1) and the latter from about -1.1 to -4.4 kcal mol(-1). Corresponding (CH2S)2 stationary points have appreciably smaller CCSD(T)-F12 binding energies ranging from ca. -1.1 to -3.4 kcal mol(-1). The vibrational frequency shifts upon dimerization are also reported for each minimum on the MP2 potential energy surfaces.

  14. The electron affinity of Al13H cluster: high level ab initio study

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy

    2014-11-01

    Al13H clusters have been considered candidates for cluster assembled materials. Here we have carried out benchmark calculations for the Al13H cluster, both neutral and anionic, with the aim of verifying the nature of stationary points on the potential energy surface, studying dynamics of H atom and determining an adiabatic electron affinity. A range of correlated methods applied include second-order perturbation theory (MP2), spin-component-scaled MP2, coupled electron pair (CEPA) and coupled cluster singles and doubles with perturbative triple corrections (CCSD(T)). These methods are used in combination with the correlation consistent basis sets through aug-cc-pVTZ including extrapolation to the complete basis set (CBS) limit. Performance of several different flavours of density functional theory (DFT) such as generalised gradient approximation (GGA), hybrid GGA, meta-GGA and hybrid-meta-GGA is assessed with respect to the ab initio correlated reference data. The harmonic force constant analysis is systematically performed with the MP2 and DFT methods. The MP2 results show that for neutral Al13H only the hollow structure is a potential energy minimum, with the bridged structure being a transition state for the H shift from the hollow site to the adjacent hollow site. The CCSD(T)/aug-cc-pVTZ (CCSD(T)/CBS) estimate of the energy barrier to this H shift is 2.6 (2.9) kcal/mol, implying that the H atom movement over the Al13H cluster surface is facile. By contrast, the DFT force constant analysis results suggest additional terminal and bridged minima structures. For the anion Al13H-, exhibiting 'stiffer' potential energy surface compared to the neutral, the existence of the hollow and terminal isomers is consistent with the earlier photoelectron spectroscopy assignment. The adiabatic electron affinity of Al13H is determined to be 2.00 and 1.95 eV (the latter including the ΔZPE correction) based on the CCSD(T) energies extrapolated to the CBS limit, whereas the respective CCSD(T)/CBS thermodynamic EA values are 2.79 and 2.80 eV.

  15. Theoretical study on the polar hydrogen-π (Hp-π) interactions between protein side chains

    PubMed Central

    2013-01-01

    Background In the study of biomolecular structures and interactions the polar hydrogen-π bonds (Hp-π) are an extensive molecular interaction type. In proteins 11 of 20 natural amino acids and in DNA (or RNA) all four nucleic acids are involved in this type interaction. Results The Hp-π in proteins are studied using high level QM method CCSD/6-311 + G(d,p) + H-Bq (ghost hydrogen basis functions) in vacuum and in solutions (water, acetonitrile, and cyclohexane). Three quantum chemical methods (B3LYP, CCSD, and CCSD(T)) and three basis sets (6-311 + G(d,p), TZVP, and cc-pVTZ) are compared. The Hp-π donors include R2NH, RNH2, ROH, and C6H5OH; and the acceptors are aromatic amino acids, peptide bond unit, and small conjugate π-groups. The Hp-π interaction energies of four amino acid pairs (Ser-Phe, Lys-Phe, His-Phe, and Tyr-Phe) are quantitatively calculated. Conclusions Five conclusion points are abstracted from the calculation results. (1) The common DFT method B3LYP fails in describing the Hp-π interactions. On the other hand, CCSD/6-311 + G(d,p) plus ghost atom H-Bq can yield better results, very close to the state-of-the-art method CCSD(T)/cc-pVTZ. (2) The Hp-π interactions are point to π-plane interactions, possessing much more interaction conformations and broader energy range than other interaction types, such as common hydrogen bond and electrostatic interactions. (3) In proteins the Hp-π interaction energies are in the range 10 to 30 kJ/mol, comparable or even larger than common hydrogen bond interactions. (4) The bond length of Hp-π interactions are in the region from 2.30 to 3.00 Å at the perpendicular direction to the π-plane, much longer than the common hydrogen bonds (~1.9 Å). (5) Like common hydrogen bond interactions, the Hp-π interactions are less affected by solvation effects. PMID:23705926

  16. An Extended Ab Initio and Theoretical Thermodynamics Studies of the Bergman Reaction and the Energy Splitting of the Singlet Ortho-, Meta-, and Para-Benzynes

    NASA Technical Reports Server (NTRS)

    Lindh, Roland; Lee, Timothy J.; Bernhardsson, Anders; Persson, B. Joakim; Karlstroem, Gunnar; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The autoaromatization of (Z)-hex-3-ene-1,5-diyne to the singlet biradical para-benzyne has been reinvestigated by state of the art ab initio methods. Previous CCSD(T)/6-31G(d,p) and CASPT2[0]/ANO[C(5s4p2d1f)/H(3s2p)] calculations estimated the the reaction heat at 298 K to be 8-10 and 4.9 plus or minus 3.2 kcal/mol, respectively. Recent NO- and oxygen-dependent trapping experiments and collision-induced dissociation threshold energy experiments estimate the heat of reaction to be 8.5 plus or minus 1.0 at 470 K (recomputed to 9.5 plus or minus 1.0 at 298 K) and 8.4 plus or minus 3.0 kcal/mol at 298 K, respectively. New theoretical estimates at 298 K predict the values at the basis set limit for the CCSD(T) and CASPT2(g1) methods to be 12.7 plus or minus 2.0 and 5.4 plus or minus 2.0 kcal/mol, respectively. The experimentally predicted electronic contribution to the heat of activation is 28.6 kcal/mol. This can be compared with 25.5 and 29.8 kcal/mol from the CASPT2[g1] and the CCSD(T) methods, respectively. The new study has in particular improved on the one-particle basis set for the CCSD(T) method as compared to earlier studies. For the CASPT2 investigation the better suited CASPT2[g1] approximation is utilized. The original CASPT2 method, CASPT2[0], systematically favors open shell systems relative to closed shell systems. This was previously corrected empirically. The study shows that the energy difference between CCSD(T) and CASPT2[g1] at the basis set limit is estimated to be 7 plus or minus 2 kcal/mol. The study also demonstrates that the estimated heat of reaction is very sensitive to the quality of the basis set.

  17. Advanced secondary recovery demonstration for the Sooner Unit. Progress report, July 1--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sippel, M.A.; Cammon, T.J.

    1995-09-30

    The objective of this project is to increase production from the Cretaceous ``D`` Sand in the Denver-Julesburg (D-J) Basin through geologically targeted infill drilling and improved reservoir management of waterflood operations. This project involves multi-disciplinary reservoir characterization using high-density 3-D seismic, detailed stratigraphy and reservoir simulation studies. Infill drilling, water-injection conversion and recompleting some wells to add short-radius laterals will be based on the results of the reservoir characterization studies. Production response will be evaluated using reservoir simulation and production tests. Technology transfer will utilize workshops, presentations and technical papers which will emphasize the economic advantages of implementing the demonstratedmore » technologies. The success of this project and effective technology transfer should prompt-re-appraisal of older waterflood projects and implementation of new projects in oil provinces such as the D-J Basin. Three wells have been drilled by the project based on 3-D seismic and integrated reservoir characterization study. Oil production has increased in September to 54.0 m{sup 3}/D (340 bopd) after the completion of the SU 21-16-9. Combination-attribute maps from 3-D seismic data closely predicted the net-pay thickness of the new well. Inter-well tracer tests with sodium bromide indicate a high-permeability channel between two wells. An oral presentation was made at the Rocky Mountain AAPG meeting in Reno, NV.« less

  18. An efficient linear-scaling CCSD(T) method based on local natural orbitals.

    PubMed

    Rolik, Zoltán; Szegedy, Lóránt; Ladjánszki, István; Ladóczki, Bence; Kállay, Mihály

    2013-09-07

    An improved version of our general-order local coupled-cluster (CC) approach [Z. Rolik and M. Kállay, J. Chem. Phys. 135, 104111 (2011)] and its efficient implementation at the CC singles and doubles with perturbative triples [CCSD(T)] level is presented. The method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys. 131, 114109 (2009)] with frozen natural orbital (NO) techniques. To break down the unfavorable fifth-power scaling of our original approach a two-level domain construction algorithm has been developed. First, an extended domain of localized molecular orbitals (LMOs) is assembled based on the spatial distance of the orbitals. The necessary integrals are evaluated and transformed in these domains invoking the density fitting approximation. In the second step, for each occupied LMO of the extended domain a local subspace of occupied and virtual orbitals is constructed including approximate second-order Mo̸ller-Plesset NOs. The CC equations are solved and the perturbative corrections are calculated in the local subspace for each occupied LMO using a highly-efficient CCSD(T) code, which was optimized for the typical sizes of the local subspaces. The total correlation energy is evaluated as the sum of the individual contributions. The computation time of our approach scales linearly with the system size, while its memory and disk space requirements are independent thereof. Test calculations demonstrate that currently our method is one of the most efficient local CCSD(T) approaches and can be routinely applied to molecules of up to 100 atoms with reasonable basis sets.

  19. Benchmark coupled-cluster g-tensor calculations with full inclusion of the two-particle spin-orbit contributions.

    PubMed

    Perera, Ajith; Gauss, Jürgen; Verma, Prakash; Morales, Jorge A

    2017-04-28

    We present a parallel implementation to compute electron spin resonance g-tensors at the coupled-cluster singles and doubles (CCSD) level which employs the ACES III domain-specific software tools for scalable parallel programming, i.e., the super instruction architecture language and processor (SIAL and SIP), respectively. A unique feature of the present implementation is the exact (not approximated) inclusion of the five one- and two-particle contributions to the g-tensor [i.e., the mass correction, one- and two-particle paramagnetic spin-orbit, and one- and two-particle diamagnetic spin-orbit terms]. Like in a previous implementation with effective one-electron operators [J. Gauss et al., J. Phys. Chem. A 113, 11541-11549 (2009)], our implementation utilizes analytic CC second derivatives and, therefore, classifies as a true CC linear-response treatment. Therefore, our implementation can unambiguously appraise the accuracy of less costly effective one-particle schemes and provide a rationale for their widespread use. We have considered a large selection of radicals used previously for benchmarking purposes including those studied in earlier work and conclude that at the CCSD level, the effective one-particle scheme satisfactorily captures the two-particle effects less costly than the rigorous two-particle scheme. With respect to the performance of density functional theory (DFT), we note that results obtained with the B3LYP functional exhibit the best agreement with our CCSD results. However, in general, the CCSD results agree better with the experimental data than the best DFT/B3LYP results, although in most cases within the rather large experimental error bars.

  20. Is the regulation of the electronic properties of organic molecules by polynuclear superhalogens more effective than that by mononuclear superhalogens? A high-level ab initio case study.

    PubMed

    Li, Miao-Miao; Li, Jin-Feng; Bai, Hongcun; Sun, Yin-Yin; Li, Jian-Li; Yin, Bing

    2015-08-21

    The regulation of the electronic properties of organic molecules induced by polynuclear superhalogens is theoretically explored here for sixteen composite structures. It is clearly indicated by the higher vertical electron detachment energy (VDE) that polynuclear superhalogens are more effective in regulating the electronic properties than mononuclear structures. However, this enhanced regulation is not only determined by superhalogens themselves but also related to the distribution of the extra electron of the final composites. The composites, in which the extra electron is mainly aggregated into the superhalogen moiety, will possess higher VDE values, as reported in the case of C1', 7.12 eV at the CCSD(T) level. This is probably due to the fact that, compared with organic molecules, superhalogens possess stronger attraction towards the extra electron and thus should lead to lower energies of the extra electrons and to higher VDE values eventually. Compared with CCSD(T), the Outer Valence Green's Function (OVGF) method fails completely for composite structures containing Cl atoms, while MP2 results are generally consistent in terms of the relative order of VDEs. Actually if the extra electron distribution of the systems could be approximated by the HOMO, the results at the OVGF level will be consistent with the CCSD(T) results. Conversely, the difference in VDEs between OVGF and CCSD(T) is significantly large. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to various fragmentation channels were also investigated for all the composite structures.

  1. Mountain Home Well - Photos

    DOE Data Explorer

    Shervais, John

    2012-01-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  2. Waste minimization in horizontal boring operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, M.

    Horizontal boring has become a highly useful, and competitive, practice. Its uses include river crossings, tunneling under existing roads and buildings, and increasing the effectiveness of groundwater remediation programs. As this method becomes more popular, more contractors enter the market place and compete for each project. So, it is important to provide quality service and reduce cost to maintain market share and profitability. This article is about reducing project cost with sound drilling fluid practices. Recirculation of drilling fluid provides many benefits. It reduces the amount of fluid required for a project, reduces waste volume, and improves boring operations. Improvedmore » boring rate, lower torque and drag, greater hole stability, and increased equipment life are all results of proper fluid management.« less

  3. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael S. Bruno

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptualmore » drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.« less

  4. Field Testing of Environmentally Friendly Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of themore » environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.« less

  5. Physical rock properties in and around a conduit zone by well-logging in the Unzen Scientific Drilling Project, Japan

    USGS Publications Warehouse

    Ikeda, R.; Kajiwara, T.; Omura, K.; Hickman, S.

    2008-01-01

    The objective of the Unzen Scientific Drilling Project (USDP) is not only to reveal the structure and eruption history of the Unzen volcano but also to clarify the ascent and degassing mechanisms of the magma conduit. Conduit drilling (USDP-4) was conducted in 2004, which targeted the magma conduit for the 1990-95 eruption. The total drilled length of USDP-4 was 1995.75??m. Geophysical well logging, including resistivity, gamma-ray, spontaneous potential, sonic-wave velocity, density, neutron porosity, and Fullbore Formation MicroImager (FMI), was conducted at each drilling stage. Variations in the physical properties of the rocks were revealed by the well-log data, which correlated with not only large-scale formation boundaries but also small-scale changes in lithology. Such variations were evident in the lava dike, pyroclastic rocks, and breccias over depth intervals ranging from 1 to 40??m. These data support previous models for structure of the lava conduit, in that they indicate the existence of alternating layers of high-resistivity and high P-wave velocity rocks corresponding to the lava dikes, in proximity to narrower zones exhibiting high porosity, low resistivity, and low P-wave velocity. These narrow, low-porosity zones are presumably higher in permeability than the adjacent rocks and may form preferential conduits for degassing during magma ascent. ?? 2008 Elsevier B.V.

  6. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2003-07-01

    This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2003 through June 2003. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). Accomplishments included the following: (1) Hughes Christensen has recently expressed interest in the possibility of a program to examine cutter impact testing, which would be useful in a better understanding of the physics of rock impact. Their interest however is notmore » necessarily fluid hammers, but to use the information for drilling bit development. (2) Novatek (cost sharing supplier of tools) has informed the DOE project manager that their tool may not be ready for ''optimization'' testing late summer 2003 (August-September timeframe) as originally anticipated. During 3Q Novatek plans to meet with TerraTek to discuss progress with their tool for 4Q 2003 testing. (3) A task for an addendum to the hammer project related to cutter impact studies was written during 2Q 2003. (4) Smith International internally is upgrading their hammer for the optimization testing phase. One currently known area of improvement is their development program to significantly increase the hammer blow energy.« less

  7. Time-lapse characterization of hydrothermal seawater and microbial interactions with basaltic tephra at Surtsey Volcano

    NASA Astrophysics Data System (ADS)

    Jackson, M. D.; Gudmundsson, M. T.; Bach, W.; Cappelletti, P.; Coleman, N. J.; Ivarsson, M.; Jónasson, K.; Jørgensen, S. L.; Marteinsson, V.; McPhie, J.; Moore, J. G.; Nielson, D.; Rhodes, J. M.; Rispoli, C.; Schiffman, P.; Stefánsson, A.; Türke, A.; Vanorio, T.; Weisenberger, T. B.; White, J. D. L.; Zierenberg, R.; Zimanowski, B.

    2015-12-01

    A new International Continental Drilling Program (ICDP) project will drill through the 50-year-old edifice of Surtsey Volcano, the youngest of the Vestmannaeyjar Islands along the south coast of Iceland, to perform interdisciplinary time-lapse investigations of hydrothermal and microbial interactions with basaltic tephra. The volcano, created in 1963-1967 by submarine and subaerial basaltic eruptions, was first drilled in 1979. In October 2014, a workshop funded by the ICDP convened 24 scientists from 10 countries for 3 and a half days on Heimaey Island to develop scientific objectives, site the drill holes, and organize logistical support. Representatives of the Surtsey Research Society and Environment Agency of Iceland also participated. Scientific themes focus on further determinations of the structure and eruptive processes of the type locality of Surtseyan volcanism, descriptions of changes in fluid geochemistry and microbial colonization of the subterrestrial deposits since drilling 35 years ago, and monitoring the evolution of hydrothermal and biological processes within the tephra deposits far into the future through the installation of a Surtsey subsurface observatory. The tephra deposits provide a geologic analog for developing specialty concretes with pyroclastic rock and evaluating their long-term performance under diverse hydrothermal conditions. Abstracts of research projects are posted at http://surtsey.icdp-online.org.

  8. Passive and semi-active heave compensator: Project design methodology and control strategies.

    PubMed

    Cuellar Sanchez, William Humberto; Linhares, Tássio Melo; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa

    2017-01-01

    Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator.

  9. Passive and semi-active heave compensator: Project design methodology and control strategies

    PubMed Central

    Cuellar Sanchez, William Humberto; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa

    2017-01-01

    Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator. PMID:28813494

  10. Is the Bethe–Salpeter Formalism Accurate for Excitation Energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD

    PubMed Central

    2017-01-01

    Developing ab initio approaches able to provide accurate excited-state energies at a reasonable computational cost is one of the biggest challenges in theoretical chemistry. In that framework, the Bethe–Salpeter equation approach, combined with the GW exchange-correlation self-energy, which maintains the same scaling with system size as TD-DFT, has recently been the focus of a rapidly increasing number of applications in molecular chemistry. Using a recently proposed set encompassing excitation energies of many kinds [J. Phys. Chem. Lett.2016, 7, 586–591], we investigate here the performances of BSE/GW. We compare these results to CASPT2, EOM-CCSD, and TD-DFT data and show that BSE/GW provides an accuracy comparable to the two wave function methods. It is particularly remarkable that the BSE/GW is equally efficient for valence, Rydberg, and charge-transfer excitations. In contrast, it provides a poor description of triplet excited states, for which EOM-CCSD and CASPT2 clearly outperform BSE/GW. This contribution therefore supports the use of the Bethe–Salpeter approach for spin-conserving transitions. PMID:28301726

  11. The electron affinities of C{sub 3}O and C{sub 4}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rienstra-Kiracofe, J.C.; Ellison, G.B.; Hoffman, B.C.

    The authors predict the adiabatic electron affinities of C{sub 3}O and C{sub 4}O based on electronic structure calculations, using a large triple-{zeta} basis set with polarization and diffuse functions (TZ2Pf+diff) with the SCF, CCSD, and CCSD(T) methods as well as with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The results imply electron affinities for C{sub 3}O and C{sub 4}O; EA(C{sub 3}O) = 0.93 eV {+-} 0.10 and EA(C{sub 4}O) = 2.99 {+-} 0.10. The EA(C{sub 3}O) is 0.41 eV lower than the experimental value of 1.34 {+-} 0.15 eV, while the EA(C{sub 4}O) is 0.94 eV higher than the experimental valuemore » of 2.05 {+-} 0.15 eV. Optimized geometries for all species at each level of theory are given, and harmonic vibrational frequencies are reported at the SCF/TZ2Pf+diff and CCSD/aug-cc-pVDZ levels.« less

  12. Scattering resonances in bimolecular collisions between NO radicals and H2 challenge the theoretical gold standard

    NASA Astrophysics Data System (ADS)

    Vogels, Sjoerd N.; Karman, Tijs; Kłos, Jacek; Besemer, Matthieu; Onvlee, Jolijn; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.

    2018-02-01

    Over the last 25 years, the formalism known as coupled-cluster (CC) theory has emerged as the method of choice for the ab initio calculation of intermolecular interaction potentials. The implementation known as CCSD(T) is often referred to as the gold standard in quantum chemistry. It gives excellent agreement with experimental observations for a variety of energy-transfer processes in molecular collisions, and it is used to calibrate density functional theory. Here, we present measurements of low-energy collisions between NO radicals and H2 molecules with a resolution that challenges the most sophisticated quantum chemistry calculations at the CCSD(T) level. Using hitherto-unexplored anti-seeding techniques to reduce the collision energy in a crossed-beam inelastic-scattering experiment, a resonance structure near 14 cm-1 is clearly resolved in the state-to-state integral cross-section, and a unique resonance fingerprint is observed in the corresponding differential cross-section. This resonance structure discriminates between two NO-H2 potentials calculated at the CCSD(T) level and pushes the required accuracy beyond the gold standard.

  13. A pair natural orbital based implementation of CCSD excitation energies within the framework of linear response theory

    NASA Astrophysics Data System (ADS)

    Frank, Marius S.; Hättig, Christof

    2018-04-01

    We present a pair natural orbital (PNO)-based implementation of coupled cluster singles and doubles (CCSD) excitation energies that builds upon the previously proposed state-specific PNO approach to the excited state eigenvalue problem. We construct the excited state PNOs for each state separately in a truncated orbital specific virtual basis and use a local density-fitting approximation to achieve an at most quadratic scaling of the computational costs for the PNO construction. The earlier reported excited state PNO construction is generalized such that a smooth convergence of the results for charge transfer states is ensured for general coupled cluster methods. We investigate the accuracy of our implementation by applying it to a large and diverse test set comprising 153 singlet excitations in organic molecules. Already moderate PNO thresholds yield mean absolute errors below 0.01 eV. The performance of the implementation is investigated through the calculations on alkene chains and reveals an at most cubic cost-scaling for the CCSD iterations with the system size.

  14. Interaction of monovalent cations with acetonitrile

    NASA Astrophysics Data System (ADS)

    Černušák, Ivan; Aranyosiová, Monika; Vollárová, Ol'ga; Velič, Dušan; Kirdajová, Ol'ga; Benko, Ján

    Solvation of monovalent cations (Me+) of alkali metals=Na+, K+, Rb+, and Cs+, coinage metals=Cu+, Ag+, Au+, and p-block elements Ga+, In+, and Tl+ with acetonitrile was studied by means of ab initio calculations and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The intermolecular interactions in the complexes Me+···CH3CN were investigated using the coupled clusters theory including single, double, and noniterative triple substitutions (CCSD(T)) in conjunction with the Pol and Pol-dk basis sets. The binding energies of these donor-acceptor complexes were estimated; taking into account the basis set superposition error, zero-point vibrations, correlation contribution, and scalar relativistic corrections. The theoretical ΔG0298 K values based on CCSD(T)/Pol and/or CCSD(T)/Pol-dk binding energies correlated well with experimental transfer Gibbs energies (from water to acetonitrile) for the series of cations. In the case of Au monocation, relativistic correction turned out to be extremely important. Composition of the complex of Ag+ and Na+ with acetonitrile was determined by using SIMS supporting both theoretical and experimental transfer Gibbs energies.

  15. The Workplace Literacy System Project (WLS). Final Performance Report.

    ERIC Educational Resources Information Center

    Poulton, Bruce R.

    The Workplace Literacy System Project (WLS) prepared interactive CD-ROM discs containing about 50 hours of instruction and drill in basic skills presented within the context of the textile/apparel manufacturing industry. The project was conducted at a Sara Lee knit products plant in North Carolina. During the project, literacy task analyses were…

  16. Publications - GMC 369 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 369 Publication Details Title: Pyramid Project: Aleut-Quintana-Duval Joint Venture Report on Project: Aleut-Quintana-Duval Joint Venture Report on 1975 Drill Programme: Alaska Division of Geological

  17. Hole at Buckskin Drilled Days Before Landing Anniversary

    NASA Image and Video Library

    2015-08-05

    NASA's Curiosity Mars Rover drilled this hole to collect sample material from a rock target called "Buckskin" on July 30, 2015, during the 1060th Martian day, or sol, of the rover's work on Mars. The diameter is slightly smaller than a U.S. dime. Curiosity landed on Mars on Aug. 6, 2012, Universal Time (evening of Aug. 5, PDT). The rover took this image with the Mars Hand Lens Imager (MAHLI) camera, which is mounted on the same robotic arm as the sample-collecting drill. Rock powder from the collected sample was subsequently delivered to a laboratory inside the rover for analysis. The rover's drill did not experience any sign during this sample collection of an intermittent short-circuiting issue that was detected earlier in 2015. The Buckskin target is in an area near "Marias Pass" on lower Mount Sharp where Curiosity had detected unusually high levels of silica and hydrogen. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19804

  18. Continental drilling for paleoclimatic records: Recommendations from an international workshop

    USGS Publications Warehouse

    Colman, Steve M.

    1995-01-01

    The Workshop, entitled "Continental Drilling for Paleoclimate Records", was sponsored by the Past Global Changes (PAGES) Project, a core project of the International Geosphere-Biosphere Programme (IGBP) and by the GeoForschungsZentrum, Potsdam, Germany, in conjunction with the International Continental Drilling Programme (ICDP). The impetus for the meeting was the need for long continental paleoclimate records that will fill gaps left by the marine and ice-core records and provide information on time and spatial scales that are relevant to human activities. Further impetus came from a perceived need to balance the forecasts and reconstructions of climate models with information on actual behavior of the climate system on the continents. The meeting was organized by Steven M. Colman, Suzanne A.G. Leroy, and Jörg F.W. Negendank and was held at the GeoForschungsZentrum, Potsdam, Germany, June 30-July 2, 1995. Because the Workshop was primarily a working meeting, a relatively small number of participants were invited (Appendix 3). Leaders of the PAGES Pole-Equator-Pole (PEP) transects and existing large-lake drilling programs, along with a mixture of technical experts, were the primary group of attendees.

  19. The nuclear electric quadrupole moment of antimony from the molecular method.

    PubMed

    Haiduke, Roberto L A; da Silva, Albérico B F; Visscher, Lucas

    2006-08-14

    Relativistic Dirac-Coulomb (DC) Hartree-Fock calculations are employed to obtain the analytic electric field gradient (EFG) on the antimony nucleus in the SbN, SbP, SbF, and SbCl molecules. The electronic correlation contribution to the EFGs is included with the DC-CCSD(T) and DC-CCSD-T approaches, also in the four-component framework, using a finite-difference method. The total EFG results, along with the experimental nuclear quadrupole coupling constants from microwave spectroscopy, allow to derive the nuclear quadrupole moments of (121)Sb and (123)Sb, respectively, as -543(11) and -692(14) mb.

  20. A Massively Parallel Tensor Contraction Framework for Coupled-Cluster Computations

    DTIC Science & Technology

    2014-08-02

    CCSDT The CCSD model [41], where T = T1 + T2 (i.e. n = 2 in Equation 2), is one of the most widely used coupled-cluster methods as it provides a good...derived from response theory. Extending this to CCSDT [30, 35], where T = T1 + T2 + T3 ( n = 3), gives an even more accurate method (often capable of...CCSD and CCSDT have leading-order costs of O(n2on 4 v) and O( n 3 on 5 v), where no and nv are the number of occupied and virtual orbitals, respectively

  1. The Calculation of Accurate Metal-Ligand Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Partridge, Harry, III; Ricca, Alessandra; Arnold, James O. (Technical Monitor)

    1997-01-01

    The optimization of the geometry and calculation of zero-point energies are carried out at the B3LYP level of theory. The bond energies are determined at this level, as well as at the CCSD(T) level using very large basis sets. The successive OH bond energies to the first row transition metal cations are reported. For most systems there has been an experimental determination of the first OH. In general, the CCSD(T) values are in good agreement with experiment. The bonding changes from mostly covalent for the early metals to mostly electrostatic for the late transition metal systems.

  2. Theoretical study of the gas-phase reactions of iodine atoms ((2)P(3/2)) with H(2), H(2)O, HI, and OH.

    PubMed

    Canneaux, Sébastien; Xerri, Bertrand; Louis, Florent; Cantrel, Laurent

    2010-09-02

    The rate constants of the reactions of iodine atoms with H(2), H(2)O, HI, and OH have been estimated using 39, 21, 13, and 39 different levels of theory, respectively, and have been compared to the available literature values over the temperature range of 250-2500 K. The aim of this methodological work is to demonstrate that standard theoretical methods are adequate to obtain quantitative rate constants for the reactions involving iodine-containing species. Geometry optimizations and vibrational frequency calculations are performed using three methods (MP2, MPW1K, and BHandHLYP) combined with three basis sets (cc-pVTZ, cc-pVQZ, and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVnZ (n = T, Q, and 5), aug-cc-pVnZ (n = T, Q, and 5), 6-311G(d,p), 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Canonical transition state theory with a simple Wigner tunneling correction is used to predict the rate constants as a function of temperature. CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory provide accurate kinetic rate constants when compared to available literature data. The use of the CCSD(T)/cc-pVQZ//MP2/cc-pVTZ and CCSD(T)/6-311++G(3df,3pd) levels of theory allows one to obtain a better agreement with the literature data for all reactions with the exception of the I + H(2) reaction R(1) . This computational procedure has been also used to predict rate constants for some reactions where no available experimental data exist. The use of quantum chemistry tools could be therefore extended to other elements and next applied to develop kinetic networks involving various fission products, steam, and hydrogen in the absence of literature data. The final objective is to implement the kinetics of gaseous reactions in the ASTEC (Accident Source Term Evaluation Code) code to improve speciation of fission transport, which can be transported along the Reactor Coolant System (RCS) of a Pressurized Water Reactor (PWR) in case of a severe accident.

  3. ICDP drilling in the Scandinavian Caledonides: the SDDP-COSC project

    NASA Astrophysics Data System (ADS)

    Lorenz, Henning; Juhlin, Christopher; Gee, David; Pascal, Christophe; Tsang, Chin-Fu; Pedersen, Karsten; Rosberg, Jan-Erik

    2013-04-01

    The Swedish Deep Drilling Program (SDDP) Collisional Orogeny in the Scandinavian Caledonides (COSC) project is a multidisciplinary investigation of the Scandian mountain belt. Cenozoic uplift of the Scandes has exposed a lower- to middle-crustal level section through this Himalaya-type orogen, providing unique opportunities to better understand not only the Caledonides, but also on-going orogeny and the earthquake-prone environments of modern mountains belts. COSC will also contribute to our knowledge of mountain belt hydrology, provide the first information about deep thermal gradients for paleoclimate modeling and potential geothermal energy resources, contribute new information about the deep biosphere, and improve our understanding of the Cenozoic uplift history of the Scandes. The drilling program targets the far-traveled (> 400 km) allochthons of the Scandinavian Caledonides and their emplacement across the Baltoscandian foreland basin onto the platform of continent Baltica. Two 2.5 km deep holes are planned. COSC-1, to be drilled in the summer of 2013, will target the high-grade metamorphic complex of the Seve Nappes (SNC) and its contact to underlying allochthons. COSC-2 will start in the lower thrust sheets, pass through the basal décollement and investigate the character of the deformation in the underlying basement. An international science team, including expertise on Himalaya-Tibet and other young orogens, is running the science program. New high-resolution reflection seismic data provide excellent images of the upper crust. Alternative interpretations of the reflectors' origin, particularly those in the basement, will be tested. The site of COSC-1 is based on a 3D geological model, constructed from surface geology, recent and vintage regional reflection seismic profiles, regional and local gravity data, and high-resolution aeromagnetics, acquired recently by the Geological Survey of Sweden. The drilling will be carried out utilising the new Swedish scientific drilling infrastructure, located at Lund University, an Atlas Copco CT20 diamond core-drilling rig, with versatile drilling equipment (see EGU2012-7379), providing the ideal platform for core-drilling to 2.5 km depths. Existing drilling, sampling and testing techniques (e.g. triple-tube core drilling for best core quality) will need to be adapted to highly variable lithologies and new techniques will be developed, as necessary. COSC-1 drilling operations and the directly related on-site investigations are financed by ICDP and the Swedish Research Council. All drill cores will be transferred to the core repository of the Geological Survey of Sweden, and a sampling party will be announced later this year. Researchers who want to participate in COSC and contribute their expertise are encouraged to inform us of their interests.

  4. Comparative evaluation of the indigenous microbial diversity vs. drilling fluid contaminants in the NEEM Greenland ice core.

    PubMed

    Miteva, Vanya; Burlingame, Caroline; Sowers, Todd; Brenchley, Jean

    2014-08-01

    Demonstrating that the detected microbial diversity in nonaseptically drilled deep ice cores is truly indigenous is challenging because of potential contamination with exogenous microbial cells. The NEEM Greenland ice core project provided a first-time opportunity to determine the origin and extent of contamination throughout drilling. We performed multiple parallel cultivation and culture-independent analyses of five decontaminated ice core samples from different depths (100-2051 m), the drilling fluid and its components Estisol and Coasol, and the drilling chips collected during drilling. We created a collection of diverse bacterial and fungal isolates (84 from the drilling fluid and its components, 45 from decontaminated ice, and 66 from drilling chips). Their categorization as contaminants or intrinsic glacial ice microorganisms was based on several criteria, including phylogenetic analyses, genomic fingerprinting, phenotypic characteristics, and presence in drilling fluid, chips, and/or ice. Firmicutes and fungi comprised the dominant group of contaminants among isolates and cloned rRNA genes. Conversely, most Proteobacteria and Actinobacteria originating from the ice were identified as intrinsic. This study provides a database of potential contaminants useful for future studies of NEEM cores and can contribute toward developing standardized protocols for contamination detection and ensuring the authenticity of the microbial diversity in deep glacial ice. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlick, Skip; Walsh, Patrick; Rhodes, Greg

    2015-06-30

    Ormat sited 2 full-size exploration wells based on 3D seismic interpretation of fractures, prior drilling results, and temperature anomaly. The wells indicated commercial temperatures (>300 F), but almost no permeability, despite one of the wells being drilled within 820 ft of an older exploration well with reported indications of permeability. Following completion of the second well in 2012, Ormat undertook a lengthy program to 1) evaluate the lack of observed permeability, 2) estimate the likelihood of finding permeability with additional drilling, and 3) estimate resource size based on an anticipated extent of permeability.

  6. The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits

    NASA Astrophysics Data System (ADS)

    Cohen, A.; Campisano, C.; Arrowsmith, R.; Asrat, A.; Behrensmeyer, A. K.; Deino, A.; Feibel, C.; Hill, A.; Johnson, R.; Kingston, J.; Lamb, H.; Lowenstein, T.; Noren, A.; Olago, D.; Owen, R. B.; Potts, R.; Reed, K.; Renaut, R.; Schäbitz, F.; Tiercelin, J.-J.; Trauth, M. H.; Wynn, J.; Ivory, S.; Brady, K.; O'Grady, R.; Rodysill, J.; Githiri, J.; Russell, J.; Foerster, V.; Dommain, R.; Rucina, S.; Deocampo, D.; Russell, J.; Billingsley, A.; Beck, C.; Dorenbeck, G.; Dullo, L.; Feary, D.; Garello, D.; Gromig, R.; Johnson, T.; Junginger, A.; Karanja, M.; Kimburi, E.; Mbuthia, A.; McCartney, T.; McNulty, E.; Muiruri, V.; Nambiro, E.; Negash, E. W.; Njagi, D.; Wilson, J. N.; Rabideaux, N.; Raub, T.; Sier, M. J.; Smith, P.; Urban, J.; Warren, M.; Yadeta, M.; Yost, C.; Zinaye, B.

    2016-02-01

    The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.

  7. Resonance: The science behind the art of sonic drilling

    NASA Astrophysics Data System (ADS)

    Lucon, Peter Andrew

    The research presented in this dissertation quantifies the system dynamics and the influence of control variables of a sonic drill system. The investigation began with an initial body of work funded by the Department of Energy under a Small Business Innovative Research Phase I Grant, grant number: DE-FG02-06ER84618, to investigate the feasibility of using sonic drills to drill micro well holes to depths of 1500 feet. The Department of Energy funding enabled feasibility testing using a 750 hp sonic drill owned by Jeffery Barrow, owner of Water Development Co. During the initial feasibility testing, data was measured and recorded at the sonic drill head while the sonic drill penetrated to a depth of 120 feet. To demonstrate feasibility, the system had to be well understood to show that testing of a larger sonic drill could simulate the results of drilling a micro well hole of 2.5 inch diameter. A first-order model of the system was developed that produced counter-intuitive findings that enabled the feasibility of using this method to drill deeper and produce micro-well holes to 1500 feet using sonic drills. Although funding was not continued, the project work continued. This continued work expanded on the sonic drill models by understanding the governing differential equation and solving the boundary value problem, finite difference methods, and finite element methods to determine the significance of the control variables that can affect the sonic drill. Using a design of experiment approach and commercially available software, the significance of the variables to the effectiveness of the drill system were determined. From the significant variables, as well as the real world testing, a control system schematic for a sonic drill was derived and is patent pending. The control system includes sensors, actuators, personal logic controllers, as well as a human machine interface. It was determined that the control system should control the resonant mode and the weight on the bit as the primary two control variables. The sonic drill can also be controlled using feedback from sensors mounted on the sonic drill head, which is the driver for the sonic drill located above ground

  8. Development of a risk-based environmental management tool for drilling discharges. Summary of a four-year project.

    PubMed

    Singsaas, Ivar; Rye, Henrik; Frost, Tone Karin; Smit, Mathijs G D; Garpestad, Eimund; Skare, Ingvild; Bakke, Knut; Veiga, Leticia Falcao; Buffagni, Melania; Follum, Odd-Arne; Johnsen, Ståle; Moltu, Ulf-Einar; Reed, Mark

    2008-04-01

    This paper briefly summarizes the ERMS project and presents the developed model by showing results from environmental fates and risk calculations of a discharge from offshore drilling operations. The developed model calculates environmental risks for the water column and sediments resulting from exposure to toxic stressors (e.g., chemicals) and nontoxic stressors (e.g., suspended particles, sediment burial). The approach is based on existing risk assessment techniques described in the European Union technical guidance document on risk assessment and species sensitivity distributions. The model calculates an environmental impact factor, which characterizes the overall potential impact on the marine environment in terms of potentially impacted water volume and sediment area. The ERMS project started in 2003 and was finalized in 2007. In total, 28 scientific reports and 9 scientific papers have been delivered from the ERMS project (http://www.sintef.no/erms).

  9. 75 FR 7457 - Notice of Public Hearing on Stone Energy Corporation Proposed Surface Water Withdrawal and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ...Because of the high level of public interest in projects within the Delaware Basin that are associated with natural gas drilling activities, the Delaware River Basin Commission (DRBC or ``Commission'') will hold a special public hearing on two projects sponsored by the Stone Energy Corporation (hereinafter, ``Stone Energy'') to support natural gas exploration and development activities within the basin. One of the two projects entails a surface water withdrawal from the West Branch Lackawaxen River in Mount Pleasant Township, Pennsylvania (Docket No. D-2009-13-1). The other concerns an existing natural gas well drilling pad site in Clinton Township, Pennsylvania (Docket No. D-2009-18-1). Both projects are located in Wayne County, Pennsylvania, within the drainage area of a portion of the main stem Delaware River that the Commission has classified as Special Protection Waters.

  10. Machine Shop Projects. Instructor Guide. General Information.

    ERIC Educational Resources Information Center

    Westbrook, Raymond E.

    Developed in Georgia, this manual contains 101 projects for use in machine shop courses, arranged according to a suggested machine shop curriculum. Each project, included in a student workbook, contains complete drawings and instructions for implementation. Tasks are listed under the broad headings of measuring, layout, bench work, saws, drilling,…

  11. Report on drilling activities in the Thar Desert, Sindh Province, Pakistan

    USGS Publications Warehouse

    Thomas, Roger E.; Fassett, James E.; Warwick, Peter D.; Wardlaw, Bruce R.; Shah, Abas A.; Khan, Shafique Ahmed; Tagar, Mohammad A.; Memon, Abdul R.; Lashari, Ghulam S.; Khan, Zameer M.; Khan, Muhammad D.; Chandio, Altaf H.; Anwar, Mohammad; Nizamani, Mohammad A.; Ahmad, Mujeeb; Ur-Raman, Mehtab-

    1994-01-01

    Coal test drilling in the Thar Desert of southeast Pakistan was conducted as part of the Coal Exploration and Assessment Program (COALREAP) involving the United States Agency for International Development (USAID), the Geological Survey of Pakistan (GSP), and the U.S. Geological Survey. Drilling was performed in the Thar Desert, or Great Indian Desert, approximately 175 km northeast of Karachi. Twenty five exploration holes were drilled between January 1992 and May 1994. Drill core was described by geologists of the Pakistan Geological Survey and coal samples were analyzed in both the United States and Pakistan. U.S. Geological Survey geologists offered technical assistance, trained GSP personnel, and managed the drilling program according to an agreement with USAID under the Energy Planning and Development Project.Drilling was performed by the Geological Survey of Pakistan. During drilling, the first 50 m was rotary drilled and cuttings collected every 2 m for examination. Average depth for all coal beds is 214 m with a total average thickness of 10 m of coal per drill hole. Core was described, boxed, and stored at the Geological Survey of Pakistan core library at Sonda, near Hyderabad. Approximately 6,412 m of Paleocene to Eocene rock was drilled of which 3,990 m was cored and 1,113 m was rotary drilled.There was 1,309 m of core loss. Geophysical logging of each drill hole permitted detailed thicknesses of coal to be determined. Analysis of the coal indicated a rank of lignite B with an as-received heating value over 5,000 Btu.This report presents data collected at the drill sites and should be used inconjunction with the published interpretive report (Fassett and Durrani, 1994) and the USGS Open-File Report 94-167, which contains analysis of the coal samples. Tables provide quick reference to numeric data and results. Detailed index maps and specific data, for each drill hole are included. This report covers drill holes TP-5 to TP-31. Drill holes TP-16, 17, 21, 26, 27, and 29 were planned but not drilled due to time restraints and (or) a determination that those drill sites were not needed to effectively delineate the coal deposit. The basic data for drill holes TP-1 through TP-4 are included in SanFilipo and others, 1994 however, some data for these drill holes are included for consistency.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhleman, T.; Dempsey, P.

    Although reduced activity has left its mark on engineering budgets and many projects have been delayed, industry remains committed to research and development. This year's emphasis is offshore where new-generation semi-submersibles are under construction for Arctic waters and where equipment technology is reaching maturity. Improved tubulars such as new process-forged drill pipe, special alloy, corrosion-resistant pipe and new tool joint designs are finding eager markets both on and offshore. And back in the office, microcomputers, a curiosity a few years ago, are making significant advances in improving drilling and production operations. Specific examples of this new technology include: Two high-tech,more » high-risk floaters Hard rock sidewall coring tool New torque-resistant tool joint Two improved riser connection systems Breakthrough in drill pipe manufacturing Power-packed portable drilling computer.« less

  13. Problems of deep drilling in abnormally pressured zones of the Kara Sea continental shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonov, V.I.

    1996-12-31

    There are discussed results of drilling operations in shelf hydrocarbon areas of the Far North of Tyumen Region (Kharassavieskaya, Bovanenkovskaya and Krusenshternskaya ones) and on the Bely Island. The author describes equipment and technologies used, problems arising in the process of operations and possible ways of solving them. Application of the results discussed in the report seems rather attractive in connection with possible realization of joint projects on development of the mentioned areas. Thus, Amoco Eurasia plans to participate in development of Bovanenkovskoye and Novoportovskoye fields. Well planning for Amoco has been done of specialists of ZapSibBurNIPI. Experience of Russianmore » drilling companies in the Yamal area (Far North of Tyumen Region) has proved that well planning for shelf areas requires special attention as drilling-in both overpressured zones (Bovanenkovskoye field) and underpressured ones (Novoportovskoye field) is done actually in balance. Investigated are reasons for such drilling problems as kicks and lost circulation. Taking them into consideration will help to decrease considerably the cost of well drilling in shelf areas.« less

  14. Ab initio study of nitrogen and position-specific oxygen kinetic isotope effects in the NO + O3 reaction

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-12-01

    Ab initio calculations have been carried out to investigate nitrogen (k15/k14) and position-specific oxygen (k17/k16O & k18/k16) kinetic isotope effects (KIEs) for the reaction between NO and O3 using CCSD(T)/6-31G(d) and CCSD(T)/6-311G(d) derived frequencies in the complete Bigeleisen equations. Isotopic enrichment factors are calculated to be -6.7‰, -1.3‰, -44.7‰, -14.1‰, and -0.3‰ at 298 K for the reactions involving the 15N16O, 14N18O, 18O16O16O, 16O18O16O, and 16O16O18O isotopologues relative to the 14N16O and 16O3 isotopologues, respectively (CCSD(T)/6-311G(d)). Using our oxygen position-specific KIEs, a kinetic model was constructed using Kintecus, which estimates the overall isotopic enrichment factors associated with unreacted O3 and the oxygen transferred to NO2 to be -19.6‰ and -22.8‰, respectively, (CCSD(T)/6-311G(d)) which tends to be in agreement with previously reported experimental data. While this result may be fortuitous, this agreement suggests that our model is capturing the most important features of the underlying physics of the KIE associated with this reaction (i.e., shifts in zero-point energies). The calculated KIEs will useful in future NOx isotopic modeling studies aimed at understanding the processes responsible for the observed tropospheric isotopic variations of NOx as well as for tropospheric nitrate.

  15. The 3d Rydberg (3A2) electronic state observed by Herzberg and Shoosmith for methylene

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yukio; Schaefer, Henry F., III

    1997-06-01

    In 1959 and 1961 Herzberg and Shoosmith reported the vacuum ultraviolet spectrum of the triplet state of CH2. The present study focuses on a characterization of the upper state, the 3d Rydberg (3A2) state, observed at 1415 Å. The theoretical interpretation of these experiments is greatly complicated by the presence of a lower-lying 3A2 valence state with a very small equilibrium bond angle. Ab initio electronic structure methods involving self-consistent-field (SCF), configuration interaction with single and double excitations (CISD), complete active space (CAS) SCF, state-averaged (SA) CASSCF, coupled cluster with single and double excitations (CCSD), CCSD with perturbative triple excitations [CCSD(T)], CASSCF second-order (SO) CI, and SACASSCF-SOCI have been employed with six distinct basis sets. With the largest basis set, triple zeta plus triple polarization with two sets of higher angular momentum functions and three sets of diffuse functions TZ3P(2 f,2d)+3diff, the CISD level of theory predicts the equilibrium geometry of the 3d Rydberg (3A2) state to be re=1.093 Å and θe=141.3 deg. With the same basis set the energy (Te value) of the 3d Rydberg state relative to the ground (X˜ 3B1) state has been determined to be 201.6 kcal mol-1 (70 500 cm-1) at the CCSD (T) level, 200.92kcal mol-1 (70 270 cm-1) at the CASSCF-SOCI level, and 200.89kcal mol-1 (70 260 cm-1) at the SACASSCF-SOCI level of theory. These predictions are in excellent agreement with the experimental T0 value of 201.95 kcalmol-1 (70 634 cm-1) reported by Herzberg.

  16. Computing sextic centrifugal distortion constants by DFT: A benchmark analysis on halogenated compounds

    NASA Astrophysics Data System (ADS)

    Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi

    2017-05-01

    This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.

  17. Kimberly Well - Photos

    DOE Data Explorer

    Shervais, John

    2011-06-16

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

  18. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  19. Kimberly Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

  20. Hawaii scientific drilling protect: Summary of preliminary results

    USGS Publications Warehouse

    DePaolo, D.; Stolper, E.; Thomas, D.; Albarede, F.; Chadwick, O.; Clague, D.; Feigenson, M.; Frey, F.; Garcia, M.; Hofmann, A.; Ingram, B.L.; Kennedy, B.M.; Kirschvink, J.; Kurz, M.; Laj, Carlo; Lockwood, J.; Ludwig, K.; McEvilly, T.; Moberly, R.; Moore, G.; Moore, J.; Morin, R.; Paillet, F.; Renne, P.; Rhodes, M.; Tatsumoto, M.; Taylor, H.; Walker, G.; Wilkins, R.

    1996-01-01

    Petrological, geochemical, geomagnetic, and volcanological characterization of the recovered core from a 1056-m-deep well into the flank of the Mauna Kea volcano in Hilo, Hawaii, and downhole logging and fluid sampling have provided a unique view of the evolution and internal structure of a major oceanic volcano unavailable from surface exposures. Core recovery was ~90%, yielding a time series of fresh, subaerial lavas extending back to ~400 ka. Results of this 1993 project provide a basis for a more ambitious project to core drill a well 4.5 km deep in a nearby location with the goal of recovering an extended, high-density stratigraphic sequence of lavas.

  1. Equipment and strategies to enhance the post-wildfire establishment and persistence of Great Basin native plants

    Treesearch

    Loren St. John

    2009-01-01

    The objectives of this project are to: examine seeding techniques for Wyoming big sagebrush; test seeding technology for native species, particularly native forbs; compare the ability of a modified rangeland drill and an experimental minimum-till drill to plant native seed species of diverse size and to reduce surface disturbance; apply and examine the use of USGS...

  2. A ~600 kyr duration Early Pleistocene record from the West Turkana (Kenya) HSPDP drill site: elemental XRF variability to reconstruct climate change in Turkana Boy's backyard

    NASA Astrophysics Data System (ADS)

    Stockhecke, M.; Beck, C. C.; Brown, E. T.; Cohen, A.; Deino, A. L.; Feibel, C. S.; Sier, M.

    2015-12-01

    Outcrops in the Kenyan and Ethiopian rift valleys document repeated occurrences of freshwater lakes and wooded landscapes over the past 4 million years at locations that are currently seasonally-dry savanna. Studies of the rich fossil records, in combination with outcropping lacustrine sequences, led to major breakthroughs in our knowledge of driving factors in human evolution. However, study of continuous drill core from ancient lake basins provides a basis for to unravel East African climate dynamics in an unseen fashion. The Hominin Sites and Paleolakes Drilling Project (HSPDP), and the related Olorgesailie Drilling Project, recovered ~2 km of drill core since 2012. A major project goal is characterization of East African paleoclimate in order to evaluate its impact on hominin evolution. XRF core scanning data provide a means of evaluating records of past environmental conditions continuously and at high resolution. However, the HSPDP records contain complex lithologies reflecting repeated episodes of inundation and desiccation of the lake basins. Nevertheless, careful data evaluation based on detailed lithostratigraphy, which includes smear-slide microscopic analyses and X-radiographic images, allows disentanglement of complex signals and robust identification of continuous sequences for any cyclostratigraphic and statistical analysis. At the HSPDP Turkana Basin site a 175.6 m-long core the covers the Early Pleistocene time window during which hominids first expanded out of Africa and marine records document reorganization of tropical climate and the development of the strong Walker circulation. This drill site carries particular interest as it is located in only 2.5 km from the location of one of the most complete hominin skeletons ever recovered (Turkana Boy). Here we present a methodological approach to address the highly variable lithostratigraphy of the East African records to establish comprehensive and environmentally meaningful paleoclimate timeseries. In addition, the XRF record of the changing hydroclimate of the West Turkana Basin from 1.3 to 1.9 kyrs will be explored in relation to regional reconstructions and marine stratigraphies.

  3. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and anaylsis

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Myung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of MexicoGasHydrateJointIndustryProjectLegII (GOM JIP LegII) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gashydrates under various geologic conditions and to understand the geologic controls on the occurrence of gashydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gashydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gashydrate in nature: From using electrical resistivity and acoustic logs to identify gashydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gashydrate reservoirs and the distribution and concentration of gashydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gashydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gashydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP LegII effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  4. 43 CFR 3212.21 - What criteria establish a qualified expansion project for the purpose of obtaining a production...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... additional generation capacity to existing plants, and enhanced recovery projects such as augmented injection.... Examples include the drilling of additional wells, retrofitting existing wells and collection systems to...

  5. 43 CFR 3212.21 - What criteria establish a qualified expansion project for the purpose of obtaining a production...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... additional generation capacity to existing plants, and enhanced recovery projects such as augmented injection.... Examples include the drilling of additional wells, retrofitting existing wells and collection systems to...

  6. 43 CFR 3212.21 - What criteria establish a qualified expansion project for the purpose of obtaining a production...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... additional generation capacity to existing plants, and enhanced recovery projects such as augmented injection.... Examples include the drilling of additional wells, retrofitting existing wells and collection systems to...

  7. Special Issue on Earth Science: The View From '76

    ERIC Educational Resources Information Center

    Geotimes, 1976

    1976-01-01

    Presents the latest developments concerning the following topics: astrogeology, coal, deep sea drilling project, engineering geology; environmental geology, exploration geophysics, geochemistry, geodynamics project, hydrology, industrial minerals, international geology, mapping, mathematical geology, metals, mineralogy, oil and gas, invertebrate…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen A. Holditch; Emrys Jones

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as buildingmore » and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.« less

  9. An innovative fast-track development for Cote d`Ivoire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreider, G.J.; Barnes, J.E.; Smitherman, J.E.

    1996-12-31

    In May, 1994, approval was received for the development of the Panthere Gas Field and Lion Oil Field by UMC Petroleum Corporation as operator. At that time, UMC had drilled one well from a jackup at Panthere in 270 feet of water and had set a guyed caisson. Following the Panthere gas discovery, the Lion oil discovery well was drilled in 235 feet of water and another guyed caisson was set. Paragon Engineering Services had been hired in late 1993 to develop project scenarios and cost estimates and as the project evolved, detailed engineering, procurement and construction management services. Productionmore » equipment for 30,000 BOPD, 16,000 BWPD and 75 MMSCFD was to be installed on a jackup drilling rig converted to a Mobile Offshore Production Unit (MOPU) located at the Lion A caisson. Production from Panthere would flow through an 8-inch line to the MOPU. The production equipment on the MOPU would (1) separate oil, water and gas, (2) treat the oil for sale and the water for discharge, (3) pump the oil into an 8-inch pipeline to the refinery in Abidjan, (4) compress the oil well and gas well gas as needed, and (5) dehydrate it for sale. A CALM buoy with shuttle tanker was included in the original plan for early production and as a backup to the oil pipeline. It was also unknown at project initiation whether a gas sales contract would be successfully negotiated, and thus the project was to proceed on the basis of flaring produced gas with capability to add equipment at a later date for gas sales. This paper describes how the project was organized and how this organization allowed the project to accommodate changes and construction problems as they developed while completing the project on time.« less

  10. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.

    2017-12-01

    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work has suggested that the Reykjanes geothermal system has been active since the last glaciation, 10ka. No shallow melt bodies have been detected on the Reykjanes Peninsula suggesting that hydrothermal circulation typical of black smoker systems can be sustained with out a magmatic heat source.

  11. DE-FOA-EE0005502 Advanced Percussive Drilling Technology for Geothermal Exploration and Development Phase II Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiann-Cherng; Raymond, David W.; Prasad, Somuri V.

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two- phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phasemore » I and evaluating performance of the materials and designs at high- operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for user in the driller's toolbox.« less

  12. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiann; Raymond, David; Prasad, Somuri

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phasemore » I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.« less

  13. Theoretical study on the dissociation energies, ionization potentials and electron affinities of three perfluoroalkyl iodides

    NASA Astrophysics Data System (ADS)

    Cheng, Li; Shen, Zuochun; Lu, Jianye; Gao, Huide; Lü, Zhiwei

    2005-11-01

    Dissociation energies, ionization potentials and electron affinities of three perfluoroalkyl iodides, CF 3I, C 2F 5I, and i-C 3F 7I are calculated accurately with B3LYP, MP n ( n = 2-4), QCISD, QCISD(T), CCSD, and CCSD(T) methods. Calculations are performed by using large-core correlation-consistent pseudopotential basis set (SDB-aug-cc-pVTZ) for iodine atom. In all energy calculations, the zero point vibration energy is corrected. And the basis set superposition error is corrected by counterpoise method in the calculation of dissociation energy. Theoretical results are compared with the experimental values.

  14. Equation of motion coupled cluster methods for electron attachment and ionization potential in fullerenes C60 and C70

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Moreno, Juana

    Discovery of fullerenes has opened a entirely new chapter in chemistry due to their wide range of properties which holds exciting applications in numerous disciplines of science. The Nobel Prize in Chemistry 1996 was awarded jointly to Robert F. Curl Jr., Sir Harold W. Kroto and Richard E. Smalley in recoginition for their discovery of this new carbon allotrope. In this letter we are reporting ionization potential and electron attachment studies on fullerenes (C60 and C70) obtained with novel parallel implementation of the EA-EOM-CCSD and IP-EOM-CCSD methods in NWChem program package.

  15. Heats of NF(sub n) (n= 1-3) and NF(sub n)(+)(n = 1-3)

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Arnold, James (Technical Monitor)

    1998-01-01

    Accurate heats of formation are computed for NF(sub n) and NF(sub n)(+), for n = 1-3. The geometries and the vibrational frequencies are determined at the B3LYP level of theory. The energetics are determined at the CCSD(T) level of theory. Basis set limit values are obtained by extrapolation. In those cases where the CCSD(T) calculations become prohibitively large, the basis set extrapolation is performed at the MP2 level. The temperature dependence of the heat of formation, heat capacity, and entropy are computed for the temperature range 300 to 4000 K and fit to a polynomial.

  16. Surprising performance for vibrational frequencies of the distinguishable clusters with singles and doubles (DCSD) and MP2.5 approximations

    NASA Astrophysics Data System (ADS)

    Kesharwani, Manoj K.; Sylvetsky, Nitai; Martin, Jan M. L.

    2017-11-01

    We show that the DCSD (distinguishable clusters with all singles and doubles) correlation method permits the calculation of vibrational spectra at near-CCSD(T) quality but at no more than CCSD cost, and with comparatively inexpensive analytical gradients. For systems dominated by a single reference configuration, even MP2.5 is a viable alternative, at MP3 cost. MP2.5 performance for vibrational frequencies is comparable to double hybrids such as DSD-PBEP86-D3BJ, but without resorting to empirical parameters. DCSD is also quite suitable for computing zero-point vibrational energies in computational thermochemistry.

  17. Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study.

    PubMed

    Altun, Ahmet; Neese, Frank; Bistoni, Giovanni

    2018-01-01

    The local energy decomposition (LED) analysis allows for a decomposition of the accurate domain-based local pair natural orbital CCSD(T) [DLPNO-CCSD(T)] energy into physically meaningful contributions including geometric and electronic preparation, electrostatic interaction, interfragment exchange, dynamic charge polarization, and London dispersion terms. Herein, this technique is employed in the study of hydrogen-bonding interactions in a series of conformers of water and hydrogen fluoride dimers. Initially, DLPNO-CCSD(T) dissociation energies for the most stable conformers are computed and compared with available experimental data. Afterwards, the decay of the LED terms with the intermolecular distance ( r ) is discussed and results are compared with the ones obtained from the popular symmetry adapted perturbation theory (SAPT). It is found that, as expected, electrostatic contributions slowly decay for increasing r and dominate the interaction energies in the long range. London dispersion contributions decay as expected, as r -6 . They significantly affect the depths of the potential wells. The interfragment exchange provides a further stabilizing contribution that decays exponentially with the intermolecular distance. This information is used to rationalize the trend of stability of various conformers of the water and hydrogen fluoride dimers.

  18. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.

    PubMed

    Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.

  19. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhifan; Hu, Shu; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis setmore » without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.« less

  20. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura

    2012-04-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the highermore » energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.« less

  1. Evaluation of the performance of MP4-based procedures for a wide range of thermochemical and kinetic properties

    NASA Astrophysics Data System (ADS)

    Yu, Li-Juan; Wan, Wenchao; Karton, Amir

    2016-11-01

    We evaluate the performance of standard and modified MPn procedures for a wide set of thermochemical and kinetic properties, including atomization energies, structural isomerization energies, conformational energies, and reaction barrier heights. The reference data are obtained at the CCSD(T)/CBS level by means of the Wn thermochemical protocols. We find that none of the MPn-based procedures show acceptable performance for the challenging W4-11 and BH76 databases. For the other thermochemical/kinetic databases, the MP2.5 and MP3.5 procedures provide the most attractive accuracy-to-computational cost ratios. The MP2.5 procedure results in a weighted-total-root-mean-square deviation (WTRMSD) of 3.4 kJ/mol, whilst the computationally more expensive MP3.5 procedure results in a WTRMSD of 1.9 kJ/mol (the same WTRMSD obtained for the CCSD(T) method in conjunction with a triple-zeta basis set). We also assess the performance of the computationally economical CCSD(T)/CBS(MP2) method, which provides the best overall performance for all the considered databases, including W4-11 and BH76.

  2. An ab initio study of the electronic structure and relative stability of the halogenated thiophosphorus compounds SPX (X = Cl, F, Br) and their isomers

    NASA Astrophysics Data System (ADS)

    Nowek, Andrzej; Richardson, Rhonda; Babinec, Peter; Leszczyński, Jerzy

    1997-12-01

    The electronic structure and relative stability of the halogenated thiophosphorus compounds SPCl, SPF, and SPBr and their isomers ClSP, FSP, and BrSP were investigated using ab initio post-Hartree-Fock methods. Molecular geometries of all these structures together with the transition states between isomers, have been optimized at the SCF, MP2, and CCSD levels. Single-point CCSD(T) and MP4 calculations have been performed at the optimal CCSD and MP2 geometries. All calculations have been done using the standard 6-311G(2d) basis set. Harmonic vibrational frequencies and IR intensities for all species were calculated at the correlated levels, and they are in good agreement with the available data from matrix-isolated IR spectroscopy. Because the isomers ClSP, FSP, and BrSP have not yet been experimentally observed, we extended our study by calculating of equilibrium constants of isomerization using Eyring transition state theory, and we have found that at sufficiently high temperatures (≈ 1000 K) the equilibrium constants are large enough for the possible detection of these isomers.

  3. Straightening the Hierarchical Staircase for Basis Set Extrapolations: A Low-Cost Approach to High-Accuracy Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Varandas, António J. C.

    2018-04-01

    Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.

  4. Theoretical investigation of gas-phase molecular complex formation between 2-hydroxy thiophenol and a water molecule.

    PubMed

    Kumar Deb, Debojit; Sarkar, Biplab

    2017-01-18

    The torsional potential of OH and SH rotations in 2-hydroxy thiophenol is systematically studied using the MP2 ab initio method. The outcome of state-of-the-art calculations is used in the investigation of the structures and conformational preferences of 2-hydroxy thiophenol and aims at further interaction studies with a gas phase water molecule. SCS-MP2 and CCSD(T) complete basis set (CBS) limit interaction energies for these complexes are presented. The SCS-MP2/CBS limit is achieved using various two-point extrapolation methods with aug-cc-pVDZ and aug-cc-pVTZ basis sets. The CCSD(T) correction term is determined as the difference between CCSD(T) and SCS-MP2 interaction energies calculated using a smaller basis set. The effect of counterpoise correction on the extrapolation to the CBS limit is discussed. The performance of DFT based wB97XD, M06-2X and B3LYP-D3 functionals is tested against the benchmark energy from ab initio calculations. Hydrogen bond interactions are characterized by carrying out QTAIM, NCIPLOT, NBO and SAPT analyses.

  5. Salton Sea Scientific Drilling Program

    USGS Publications Warehouse

    Sass, J.H.

    1988-01-01

    The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths  (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activites enabled the U.S Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. This program, orginally conceived by Wilfred A. Elders, professor of geology at the University of California at Riverside, was coordinated under an inter-agency accord among the Geological Survey, the U.S Department of Energy, and the National Science Foundation. 

  6. Laser Materials Processing Final Report CRADA No. TC-1526-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, J.; Lehane, C. J.

    2017-09-08

    This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to bemore » developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.« less

  7. Monroe, Utah, Hydrothermal System: Results from Drilling of Test Wells MC1 and MC2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, D.S.; Harrison, Roger

    1978-10-01

    Following detailed geological (Parry et al., 1976; Miller, 1976) and geophysical (Mase, Chapman, and Ward, 1978; Kilty, Mase, and Chapman, 1978) studies of the Monroe, Utah hydrothermal system, a program of drilling two intermediate depth test wells was undertaken. The objectives of the test well drilling were three-fold: (1) to obtain structural information bearing on the poorly known dip of the Sevier Fault, (2) to obtain temperature information below the shallow depths (approximately 300 ft.) sampled in the first phase of exploration, and (3) to provide cased wells which could act as monitor wells during the production phase of themore » project. The test well drilling was seen to be vital to the selection of a site for a production well. This report describes the results from the drilling of the two test wells, designated MC1 and MC2, and offers interpretation of the hydrothermal system which may be used as a basis for selecting production wells.« less

  8. Psychology on Computers: Simulations, Experiments and Projects.

    ERIC Educational Resources Information Center

    Belcher, Duane M.; Smith, Stephen D.

    PSYCOM is a unique mixed media package which combines high interest projects on the computer with a written text of expository material. It goes beyond most computer-assisted instruction which emphasizes drill and practice and testing of knowledge. A project might consist of a simulation or an actual experiment, or it might be a demonstration, a…

  9. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the anticipated use in a project or activity is a reasonable method. (b) Costs defined—(1) Qualified... used in the tertiary recovery method. Therefore, the storage tank is used directly in the project and... qualified tertiary recovery method. As part of the enhanced oil recovery project, K drills injection wells...

  10. Mathematics: PROJECT DESIGN. Educational Needs, Fresno, 1968, Number 12.

    ERIC Educational Resources Information Center

    Smart, James R.

    This report examines and summarizes the needs in mathematics of the Fresno City school system. The study is one in a series of needs assessment reports for PROJECT DESIGN, an ESEA Title III project administered by the Fresno City Unified School District. Theoretical concepts, rather than computational drill, would be emphasized in the proposed…

  11. Preliminary report on geophysical well-logging activity on the Salton Sea Scientific Drilling Project, Imperial Valley, California

    USGS Publications Warehouse

    Paillet, Frederick L.; Morin, R.H.; Hodges, H.E.

    1986-01-01

    The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous factors that may be relevant to this interpretation also is presented. (Lantz-PTT)

  12. Development of environmental friendly lost circulation material from banana peel

    NASA Astrophysics Data System (ADS)

    Sauki, Arina; Hasan, Nur â.€˜Izzati; Naimi, Fardelen Binti Md; Othman, Nur Hidayati

    2017-12-01

    Loss of expensive mud could lead to major financial problem in executing a drilling project and is one of the biggest problems that need to be tackled during drilling. Synthetic Based Mud (SBM) is the most stable state of the art drilling mud used in current drilling technologies. However, the problem with lost circulation is still inevitable. The focus of this project is to develop a new potential waste material from banana peel in order to combat lost circulation in SBM. Standard industrial Lost Circulation Material (LCM) is used to compare the performance of banana peel as LCM in SBM. The effects of different sizing of banana peels (600 micron, 300 micron and 100 micron) were studied on the rheological and filtration properties of SBM and the bridging performance of banana peel as LCM additive. The tests were conducted using viscometer, HTHP filter press and sand bed tester. Thermal analysis of banana peel was also studied using TGA. According to the results obtained, 300 and 100 micron size of banana peel LCM exhibited an improved bridging performance by 65% as compared to industrial LCM. However, banana peel LCM with the size of 600 micron failed to act as LCM due to the total invasion of mud into the sand bed.

  13. Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling and Completion of a Trilateral Horizontal Well, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Operators Offshore, Inc.

    The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a seriesmore » of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.« less

  14. The Italian drilling project of the Mont Blanc road tunnel in the late fifties: an example of no geological care and lack of ethics in carrying out a big work.

    NASA Astrophysics Data System (ADS)

    Gosso, Guido; Croce, Giuseppe; Matteucci, Ruggero; Peppoloni, Silvia; Piacente, Sandra; Wasowski, Janusz

    2013-04-01

    In the first decade after the Second World War Italy was rushing to recover a positive role among European countries; basic needs as road communications with European neighbours became main priorities. The necessity of a rapid connection with South-eastern France, a subject already debated between the two nations over more than 50 years, appeared then on first line; the two countries convened on a joint investment for the construction of a tunnel across the international border of Mont Blanc, along the shortest track between Courmayeur and Chamonix. The political agreements were in favour of the quickest start of the drilling operations and such obligation imposed on the Italian side an impoverishment of the project content, specially concerning geological issues. No surveys were performed on fracture systems, cataclastic zones and faults, on the few rock ridges standing above the tunnel line and outcropping through thick talus cones, moraines, ice tongues and their related ice plateaus. Metasediments, migmatites and poorly foliated granites were to be drilled. Three Italian academics were allowed by the drilling company to track the working progress and collect rocks for comparison with other Alpine types; they mapped the lithology and the fault zonesall along the freshly excavated tunnel; the results of such survey appeared after the end of works. Geologists from Florence University published the surface granite faulting pattern 20 years after the road tunnel became operative. Such geological cares could have located the risky zones in time for the tunnel project, mitigating the catastrophic effects of sudden drainage of subglacial water from the Vallée Blanche ice plateau (Ghiacciaio del Gigante) at progression 3800m, that caused dramatic accidents and affected negatively the economy of the drilling. Also the wallrock temperature drops, measured during the drill, should have warned the company management on the location of dangerous fracture zones. Anxiety of national renaissance probably committed the Italian team to a fast conclusion, skipping attention from geological urgencies. But did attitudes change since then? This late episode gives us the opportunity to reflect on the necessity of making politicians seriously aware of the importance of geology when carrying out big works, to impose by law more effective policies and make interrelations between the involved professionals mandatory. Firm geoethic principles should guide choices and decisions in projects of great environmental impact.

  15. The Final Phase of Drilling of the Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Stolper, E.; Depaolo, D.; Thomas, D.; Garcia, M.; Haskins, E.; Baker, M.

    2008-12-01

    The principal goal of the Hawaii Scientific Drilling Project (HSDP) was to core continuously deep into the flank of a Hawaiian volcano and to investigate the petrology, geochemisty, geochronology, magnetics, etc. of the recovered samples. Drilling in Hilo, on the island of Hawaii proceeded in three phases. A 1.06 km pilot hole was core-drilled in 1993; a second hole was core-drilled to 3,098 meters below sea level (mbsl) in 1999, then deepened in 2004-2007 to 3,509 mbsl. Although the final phase of drilling was at times technically challenging, core recovery was close to 100%. All rocks from the final phase of drilling were emplaced below sea level and are from the Mauna Kea volcano. On-site core logging identified 45 separate units (the 1999 phase of drilling yielded 345 units). Five lithologies were identified: pillows (~60%); pillow breccias (~10%); massive lavas (~12%); hyaloclastites (~17%); intrusives (~1%; these are mostly multiple thin (down to cm scale) fingers of magma with identical lithologies occurring over narrow depth intervals). The rocks are primarily tholeiitic, ranging from aphyric to highly olivine-phyric lavas (up to ~25% olivine phenocrysts), with considerable fresh glass and olivine; clays and zeolites are present throughout the core. Forty whole-rock samples were collected as a reference suite and sent to multiple investigators for study. Additionally, glass was collected at roughly 3 m intervals for electron microprobe analysis. Although continuous and consistent with the shallower rocks from the previous phase of coring, there are several noteworthy features of the deepest core: (1) Glasses from shallower portions of the core exhibited bimodal silica contents, a low SiO2 group (~48-50 wt.%) and a high SiO2 group (~50.5- 52 wt.%). Glasses from the last phase of drilling are essentially all in the high-silica group and are somewhat more evolved than the high-silica glasses from the shallower portion of the core (5.1-7.6 vs. 5.1-10.4 wt.% MgO). (2) The expected sequence of lithologies with depth in the core is subaerial lava flows, hyaloclastites (formed by debris flows carrying glass and lithic fragments from the shoreline down the submarine flanks of the volcano), and finally pillow lavas. This sequence was generally observed in the earlier phases of drilling, and it appeared that the deepest rocks from the 1999 phase of drilling were essentially all formed from pillow lavas (i.e., there were no more hyaloclastites). However, thick hyaloclastites reflecting long distance transport from the ancient shoreline reappear in the bottom ~100 m of the drill hole. Although it may be coincidence, pillow breccias occur in the shallower parts of the core from the final phase of drilling, but not in the deeper parts in which the hyaloclastites reappear. (3) Intrusive rocks make up a lower fraction (~1%) of samples from the final phase of coring than in the deeper parts of the section from the 1999 phase of drilling (3.8%). It had been suggested that intrusives might become more common the deeper the drilling, but this is not the case at depths down to 3.5 km. (4) There are three units classified as "massive" including one relatively thick (~40 m), featureless (no internal boundaries, no evidence of mixing or internal differentiation), moderately olivine-phyric basalt.

  16. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and the Reykjanes geothermal fields during 2009-2010, and subsequently deepened. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land in southern Iceland. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. The IDDP has engendered considerable international scientific interest. The US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. In preparation for studying the data and samples that will be recovered by deep drilling research is underway on samples from existing wells in the target geothermal fields, and on exposed "fossil" geothermal systems and active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  17. A Search for Life in the Subsurface At Rio Tinto Spain, An Analog To Searching For Life On Mars.

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.

    2003-12-01

    Most familiar life forms on Earth live in the surface biosphere where liquid water, sunlight, and the essential chemical elements for life are abundant. However, such environments are not found on Mars or anywhere else in the solar system. On Mars, the surface environmental conditions of pressure and temperature prevent formation of liquid water. Furthermore, conditions at the Martian surface are unfavorable to life due to intense ultraviolet radiation and strong oxidizing compounds that destroy organic compounds. However, subsurface liquid water on Mars has been predicted on theoretical grounds. The recent discovery of near surface ground ice by the Mars Odyssey mission, and the abundant evidence for recent Gully features observed by the Mars Global Surveyor mission strengthen the case for subsurface liquid water on Mars. Thus, the strategy for searching for life on Mars points to drilling to the depth of liquid water, bringing samples to the surface and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. The MARTE (Mars Astrobiology Research and Technology Experiment) project is a field experiment focused on searching for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Rio Tinto, a river in southwestern Spain while also demonstrating technology relevant to searching for a subsurface biosphere on Mars. The Tinto river is located in the Iberian Pyrite belt, one of the largest deposits of sulfide minerals in the world. The surface (river) system is an acidic extreme environment produced and maintained by microbes that metabolize sulfide minerals and produce sulfuric acid as a byproduct. Evidence suggests that the river is a surface manifestation of an underground biochemical reactor. Organisms found in the river are capable of chemoautotrophic metabolism using sulfide and ferric iron mineral substrates, suggesting these organisms could thrive in groundwater which is the source of the Rio Tinto. The MARTE project will simulate the search for subsurface life on Mars using a drilling system developed for future Mars flight to accomplish subsurface access. Augmenting the drill are robotic systems for extracting the cores from the drill head and performing analysis using a suite of instruments to understand the composition, mineralogy, presence of organics, and to search for life signatures in subsurface samples. A robotic bore-hole inspection system will characterize borehole properties in situ. A Mars drilling mission simulation including remote operation of the drilling, sample handling, and instruments and interpretation of results by a remote science team will be performed. This simulated mission will be augmented by manual methods of drilling, sample handling, and sample analysis to fully document the subsurface, prevent surface microbial contamination, identify subsurface biota, and compare what can be learned with robotically-operated instruments. The first drilling campaign in the MARTE project takes place in September 2003 and is focused on characterizing the microbiology of the subsurface at Rio Tinto using conventional drilling, sample handling and laboratory analysis techniques. Lessons learned from this "ground truth" drilling campaign will guide the development of robotic systems and instruments needed for searching for life underground on Mars.

  18. Kimama Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  19. Kimama Well - Photos

    DOE Data Explorer

    Shervais, John

    2011-01-16

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  20. Combining conventional and thermal drilling in order to increase speed and reduce costs of drilling operations to access deep geothermal resources

    NASA Astrophysics Data System (ADS)

    Rossi, Edoardo; Kant, Michael A.; von Rohr, Philipp Rudolf; Saar, Martin O.

    2017-04-01

    The exploitation of deep geothermal resources for energy production relies on finding cost effective solutions to increase the drilling performance in hard rocks. Conventional rotary drilling techniques, based on mechanical rock exportation, result in high rates of drilling tool wearing, causing significant costs. Additionally, rotary drilling results in low drilling speeds in the typically hard crystalline basement rocks targeted for enhanced geothermal energy utilization technologies. Furthermore, even lower overall drilling rates result, when considering tripping times required to exchange worn drill tools. Therefore, alternative drilling techniques, such as hammering, thermal drilling, plasma drilling, and jetting processes are widely investigated in order to provide cost-effective alternatives to conventional drilling methods. A promising approach, that combines conventional rotary and thermal drilling techniques, is investigated in the present work. Here, the rock material is thermally weakened before being exported by conventional cutters. Heat is locally provided by a flame, which moves over the rock surface, heat-treating the material. Besides reducing the rock strength, an in-depth smoothening effect of the mechanical rock properties is observed due to the thermal treatment. This results in reduced rates of drill bit wearing and higher rates of penetration, which in turn decreases drilling costs significantly, particularly for deep-drilling projects. Due to the high heating rates, rock-hardening, commonly observed at moderate temperatures, can be avoided. The flame action can be modelled as a localized, high heat transfer coefficient flame treatment, which results in orders of magnitude higher heating rates than conventional oven treatments. Therefore, we analyse rock strength variations after different maximum temperatures, flame-based heating rates, and rock confinement pressures. The results show that flame treatments lead to a monotonous decrease of rock strength with temperature. This is different from oven treatments, where an initial increase of strength is typically observed, followed by a steep decrease upon further (slow) oven-heating. Thus, the weakening of sandstone and granite samples due to flame treatments indicates the feasibility of a combined mechanical-thermal drilling system. These results suggest that the new combined method enables improved rates of penetration in hard rocks while reducing the rate of drill tool wear. We also present possible implementations of this combined drilling system in the field. From field test results, advantages and limitations of the proposed new technology are presented, with an emphasis on accessing geothermal energy resources in crystalline basement rocks.

  1. Deep drilling in the Chesapeake Bay impact structure - An overview

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a granite megablock (275 m); and sediment blocks and boulders, polymict, sediment-clast-dominated sedimentary breccias, and a thin upper section of stratified sediments (652 m). The cored postimpact sediments provide insight into the effects of a large continental-margin impact on subsequent coastal-plain sedimentation. This volume contains the first results of multidisciplinary studies of the Eyreville cores and related topics. The volume is divided into these sections: geologic column; borehole geophysical studies; regional geophysical studies; crystalline rocks, impactites, and impact models; sedimentary breccias; postimpact sediments; hydrologic and geothermal studies; and microbiologic studies. ?? 2009 The Geological Society of America.

  2. The Iceland Deep Drilling Project 4.5 km deep well, IDDP-2, in the seawater-recharged Reykjanes geothermal field in SW Iceland has successfully reached its supercritical target

    NASA Astrophysics Data System (ADS)

    Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.

    2017-11-01

    The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.

  3. Recovery Efficiency Test Project: Phase 1, Activity report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.

    1988-04-01

    This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.

  4. Method for machining holes in composite materials

    NASA Technical Reports Server (NTRS)

    Daniels, Julia G. (Inventor); Ledbetter, Frank E., III (Inventor); Clemons, Johnny M. (Inventor); Penn, Benjamin G. (Inventor); White, William T. (Inventor)

    1987-01-01

    A method for boring well defined holes in a composite material such as graphite/epoxy is discussed. A slurry of silicon carbide powder and water is projected onto a work area of the composite material in which a hole is to be bored with a conventional drill bit. The silicon carbide powder and water slurry allow the drill bit, while experiencing only normal wear, to bore smooth, cylindrical holes in the composite material.

  5. An Automated, Low Mass, Low Power Drill for Acquiring Subsurface Samples of Ground Ice for Astrobiology Studies on Earth and on Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G. A.; McKay, C.; George, J.; Derkowski, G.; Cooper, G.; Zacny, K.; Baker, R. Fincher; Pollard, W.; Clifford, S.

    2003-01-01

    As a project that is part of NASA s Astrobiology Technology & Instrument Development Program (ASTID), we are developing a low mass (approx.20kg) drill that will be operated without drilling fluids and at very low power levels (approx.60 watts electrical) to access and retrieve samples from permafrost regions of Earth and Mars. The drill, designed and built as a joint effort by NASA JSC and Baker-Hughes International, takes the form of a down-hole unit attached to a cable so that it can, in principle, be scaled easily to reach significant depths. A parallel laboratory effort is being carried out at UC Berkeley to characterize the physics of dry drilling under martian conditions of pressure, temperature and atmospheric composition. Data from the UCB and JSC laboratory experiments are being used as input to a drill simulation program which is under development to provide autonomous control of the drill. The first Arctic field test of the unit is planned for May 2004. A field expedition to Eureka on Ellesmere Island in Spring 2003 provided an introduction for several team members to the practical aspects of drilling under Arctic conditions. The field effort was organized by Wayne Pollard of McGill University and Christopher McKay of NASA ARC. A conventional science drill provided by New Zealand colleagues was used to recover ground ice cores for analysis of their microbial content and also to develop techniques using tracers to track the depth of penetration of contamination from the core surface into the interior of the samples.

  6. Development of a Drilling Simulator for Dental Implant Surgery.

    PubMed

    Kinoshita, Hideaki; Nagahata, Masahiro; Takano, Naoki; Takemoto, Shinji; Matsunaga, Satoru; Abe, Shinichi; Yoshinari, Masao; Kawada, Eiji

    2016-01-01

    The aim of this study was to develop and evaluate a dental implant surgery simulator that allows learners to experience the drilling forces necessary to perform an osteotomy in the posterior mandibular bone. The simulator contains a force-sensing device that receives input and counteracts this force, which is felt as resistance by the user. The device consists of an actuator, a load cell, and a control unit. A mandibular bone model was fabricated in which the predicted forces necessary to drill the cortical and trabecular bone were determined via micro CT image-based 3D finite element analysis. The simulator was evaluated by five dentists from the Department of Implantology at Tokyo Dental College. The ability of the evaluators to distinguish the drilling resistance through different regions of the mandibular bone was investigated. Of the five dentists, four sensed the change in resistance when the drill perforated the upper cortical bone. All five dentists were able to detect when the drill made contact with lingual cortical bone and when the lingual bone was perforated. This project successfully developed a dental implant surgery simulator that allows users to experience the forces necessary to drill through types of bone encountered during osteotomy. Furthermore, the researchers were able to build a device by which excessive drilling simulates a situation in which the lingual cortical bone is perforated--a situation that could lead to negative repercussions in a clinical setting. The simulator was found to be useful to train users to recognize the differences in resistance when drilling through the mandibular bone.

  7. A MRCC study of the isomerisation of cyclopropane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Jakub; Švaňa, Matej; Demel, Ondřej

    2017-01-19

    Mukherjee’s and Brillouin-Wigner multi-reference coupled cluster methods were used to study the isomerization of cyclopropane to propene through a trimethylene/propylidene diradicals. Main aim was to obtain high quality ab-initio data using advanced methods that treat both static and dynamic correlation in the involved species. The MkCCSD(T)/cc-pVQZ activation energy of cyclopropane isomerization via trimethylene is 65.6 kcal/mol, in a good agreement with experimental values in the range 60-65 kcal/mol. The MkCCSD(T)/cc-pV5Z adiabatic singlet-triplet gap in trimethylene is 0.6 kcal/mol, slightly higher than previous CASPT2 result -0.7 kcal/mol by Skancke et al.

  8. Phase 1 drilling operations at the Magma Energy Exploratory Well (LVF 51-20)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finger, J.T.; Jacobson, R.D.

    1990-12-01

    This report describes the Phase 1 drilling operations for the Magma Energy Exploratory Well near Mammoth Lakes, California. An important part of the Department of Energy's Magma Energy Program, this well is designed to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degree}C, whichever comes first. There will be four drilling phases, at least a year apart, with scientific investigations in the borehole between the drilling intervals. Phase 1 of this project resulted in a 20 inch cased hole to 2558 feet, with 185 feet of coring beyond that. This document comprises a narrative of themore » daily activities, copies of the daily mud and lithologic reports, time breakdowns of rig activities, inventories of lost circulation materials, temperature logs of the cored hole, and a strip chart mud log. 2 figs.« less

  9. EXECUTIVE SUMMARY OF STATE DATA RELATED TO ABANDONED CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Seay Nance

    2003-03-01

    This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertakenmore » for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.« less

  10. Forecasting petroleum discoveries in sparsely drilled areas: Nigeria and the North Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attanasi, E.D.; Root, D.H.

    1988-10-01

    Decline function methods for projecting future discoveries generally capture the crowding effects of wildcat wells on the discovery rate. However, these methods do not accommodate easily situations where exploration areas and horizons are expanding. In this paper, a method is presented that uses a mapping algorithm for separating these often countervailing influences. The method is applied to Nigeria and the North Sea. For an amount of future drilling equivalent to past drilling (825 wildcat wells), future discoveries (in resources found) for Nigeria are expected to decline by 68% per well but still amount to 8.5 billion barrels of oil equivalentmore » (BOE). Similarly, for the total North Sea for an equivalent amount and mix among areas of past drilling (1322 wildcat wells), future discoveries are expected to amount to 17.9 billion BOE, whereas the average discovery rate per well is expected to decline by 71%.« less

  11. Forecasting petroleum discoveries in sparsely drilled areas: Nigeria and the North Sea

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1988-01-01

    Decline function methods for projecting future discoveries generally capture the crowding effects of wildcat wells on the discovery rate. However, these methods do not accommodate easily situations where exploration areas and horizons are expanding. In this paper, a method is presented that uses a mapping algorithm for separating these often countervailing influences. The method is applied to Nigeria and the North Sea. For an amount of future drilling equivalent to past drilling (825 wildcat wells), future discoveries (in resources found) for Nigeria are expected to decline by 68% per well but still amount to 8.5 billion barrels of oil equivalent (BOE). Similarly, for the total North Sea for an equivalent amount and mix among areas of past drilling (1322 wildcat wells), future discoveries are expected to amount to 17.9 billion BOE, whereas the average discovery rate per well is expected to decline by 71%. ?? 1988 International Association for Mathematical Geology.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temple, Brian Allen; Pimentel, David A.

    This document covers the various testing and modifications of the Device Modeler Tool Kit (DMTK) for project LANL12-RS-108J in FY14. The testing has been comprised of different device modelers and trainees for device modeling using DMTK on the secure network for a few test problems. Most of these problems have been synthetic data problems. There has been a local secure network training drill where one of the trainees has used DMTK for real data. DMTK has also been used on a laptop for a deployed real data training drill. Once DMTK gets into the home team, it will be usedmore » for more training drills (TDs) which will contain real data in the future.« less

  13. Summary: High Temperature Downhole Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, David W.

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at themore » surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.« less

  14. PROMESS 1: Past Global Changes Investigated by Drilling Mediterranean Continental Margins

    NASA Astrophysics Data System (ADS)

    Berne, S.

    2004-12-01

    Between June, 24th and July, 22nd, 2004, a team of European scientists embarked from Brindisi (Italy) to Barcelona (Spain) onboard the Russian vessel "Bavenit", operated by the Dutch geotechnical company FUGRO, for a drilling expedition in the Adriatic Sea and the NW Mediterranean Sea. The purpose of this cruise was to collect long sediment sections and in situ measurements from two deltaic margins where the history of global changes during the last ca. 400 kyr is particularly well preserved. In the Adriatic, two boreholes were drilled at site PRAD1 (water depth 184 m), where the objective was to study the record of the last 4 glacial cycles. A pilot hole was first drilled for assessing the risk of shallow gases, a downhole logging was carried out in this borehole. A second site allowed continuous coring to the targeted depth (71m below sea-floor) with excellent recovery (better than 95%). Very preliminary interpretation indicates that seismic sequences previously identified correspond to 100 kyr glacial cycles. Downhole logging and physical properties of cores allow to identify magnetic events, and tephras. Site PRAD2 was devoted to the study of the recent most sediments (last 12,000 yrs) near the coastline, at a water depth of 56m. The targeted depth was 32 m below sea floor, sufficient to obtain a good record for the last ca 12,000 years. All together, six boreholes were drilled at PRAD2, including a pilot hole, one for continuous sediment recovery, and additional holes for in situ geotechnical tests and sampling. One of the objectives of these tests is to determine whether the wavy features shaping the sedimentary sequences are caused by near-bottom currents or result from liquefaction of unstable sediments triggered by earthquakes or storms. Site PRGL1 in the Gulf of Lion is at 298 m water depth, and the targeted depth below sea floor was 300 m, allowing to reach an expected age of about 430 kyr BP. A pilot hole was drilled down to 310 mbsf, and logged. Two geotechnical boreholes were drilled, allowing tests and measurements to a depth of 150 mbsf. Another borehole was drilled for continuous coring to the depth of 300 mbsf. The recovery was excellent (>95%). Preliminary estimations of coccolithophore assemblages provide a general time-frame for this site. Marine isotope stage (MIS) 12 was reached at the bottom of the hole. We have also good estimates of the position of the intervals corresponding to MIS 2-3, MIS 4, MIS 5a-d, and the transition between MIS 8 and 7. This shows that, as in the Adriatic Sea, seismic bounding surfaces are linked to 100 kyr cycles, that modify lithology and sedimentation rates on the upper slope. The presence of coarser sediment at the end of each "forced regression", and the occurrence of some biogenic gas, trapped by the overlying clayey sediments deposited during the ensuing warm period, is likely at the origin of seismic anomalies. Site PRGL2 is at 103 m water depth, an area where glacial shorelines that formed duringthe last ca. 500 kyr are the best preserved. A CPTU borehole was first drilled, followed by a sampling borehole, down to 100 mbsf. As expected, many sandy intervals were encountered, but the overall recovery was however quite good, in the order of 82%. Gamma ray downhole logging was performed in the drill pipe afterward. PROMESS 1 is an European Community funded project of the 5th framework programme (EVR1-2001-41). It belongs to the OMARC cluster of projects. It is a companion project of the joint Euro-US "EUROSTRATAFORM" project. The "PROMESS 1" shipboard party: S. Berne, M. Canals, A. Cattaneo, E. Colmenero, G. Floch, B. Dennielou, J. Frigola, R. Gelfort, J. Gravalosa, D. Ridente, T. Schoolmeester, N. Sultan, G. Tulloch, H.J. Wallrabe-Adams

  15. Kern River steam expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rintoul, B.

    1970-09-15

    The newest addition to Getty Oil Co.'s imposing array of steam equipment at Kern River is a 240-million-btu-per-hr boiler. This boiler is almost 5 times more powerful than the previous largest piece of steam-generating hardware in use in the field. The huge boiler went into operation in Aug. on the Canfield Fee property on Sec. 29, 28S-28E. It is being used to furnish steam for 60 wells in a displacement project. The components that have made Getty Oil Co. the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells,more » steam generators, and--since last year--a computer. There are more than 4,500 oil wells in the Kern River field, including more than 2,600 on Getty Oil properties. Getty Oil's steam operations involve 2,469 producing wells and 151 injection wells, including 2,167 producing wells in stimulation projects and 302 producing wells in displacement projects. The Kern River drilling program for 1970 consists of 313 wells of which 179 are steam-injection wells for the expansion of displacement projects. Wells are shallow, drilled mainly to the Kern River Series sands at an average depth of 900 ft, with a few drilled to the China Grade zone at an average depth of 1,300 ft. To furnish steam for the massive Kern River program, Getty Oil has assembled a force of 96 steam generators.« less

  16. Early Cenozoic tropical climate: report from the Tanzania Onshore Paleogene Integrated Coring (TOPIC) workshop

    NASA Astrophysics Data System (ADS)

    Pearson, P. N.; Hudson, W.

    2014-12-01

    We are currently developing a proposal for a new International Continental Scientific Drilling Program (ICDP) project to recover a stratigraphic and paleoclimatic record from the full succession of Eocene hemipelagic sediments that are now exposed on land in southern Tanzania. Funding for a workshop was provided by ICDP, and the project was advertised in the normal way. A group of about 30 delegates assembled in Dar-es-Salaam for 3 intensive days of discussion, project development, and proposal writing. The event was hosted by the Tanzania Petroleum Development Corporation (TPDC) and was attended by several geologists, geochemists, geophysicists, and micropaleontologists from TPDC and the University of Dar-es-Salaam. International delegates were from Canada, Germany, India, Ireland, Italy, the Netherlands, United Kingdom, and United States (and we also have project partners from Australia, Belgium, and Sweden who were not able to attend). Some of the scientists are veterans of previous scientific drilling in the area, but over half are new on the scene, mostly having been attracted by Tanzania's reputation for world-class paleoclimate archives. Here we outline the broad aims of the proposed drilling and give a flavor of the discussions and the way our proposal developed during the workshop. A video of the workshop with an introduction to the scientific goals and interviews of many of the participants is available at http://vimeo.com/107911777.

  17. Lineaments on Skylab photographs: Detection, mapping, and hydrologic significance in central Tennessee

    NASA Technical Reports Server (NTRS)

    Moore, G. K.

    1976-01-01

    An investigation was carried out to determine the feasibility of mapping lineaments on SKYLAB photographs of central Tennessee and to determine the hydrologic significance of these lineaments, particularly as concerns the occurrence and productivity of ground water. Sixty-nine percent more lineaments were found on SKYLAB photographs by stereo viewing than by projection viewing, but longer lineaments were detected by projection viewing. Most SKYLAB lineaments consisted of topographic depressions and they followed or paralleled the streams. The remainder were found by vegetation alinements and the straight sides of ridges. Test drilling showed that the median yield of wells located on SKYLAB lineaments were about six times the median yield of wells located by random drilling. The best single detection method, in terms of potential savings, was stereo viewing. Larger savings might be achieved by locating wells on lineaments detected by both stereo viewing and projection.

  18. Optimization of geothermal well trajectory in order to minimize borehole failure

    NASA Astrophysics Data System (ADS)

    Dahrabou, A.; Valley, B.; Ladner, F.; Guinot, F.; Meier, P.

    2017-12-01

    In projects based on Enhanced Geothermal System (EGS) principle, deep boreholes are drilled to low permeability rock masses. As part of the completion operations, the permeability of existing fractures in the rock mass is enhanced by injecting large volumes of water. These stimulation treatments aim at achieving enough water circulation for heat extraction at commercial rates which makes the stimulation operations critical to the project success. The accurate placement of the stimulation treatments requires well completion with effective zonal isolation, and wellbore stability is a prerequisite to all zonal isolation techniques, be it packer sealing or cement placement. In this project, a workflow allowing a fast decision-making process for selecting an optimal well trajectory for EGS projects is developed. In fact, the well is first drilled vertically then based on logging data which are costly (100 KCHF/day), the direction in which the strongly deviated borehole section will be drilled needs to be determined in order to optimize borehole stability and to intersect the highest number of fractures that are oriented favorably for stimulation. The workflow applies to crystalline rock and includes an uncertainty and risk assessment framework. An initial sensitivity study was performed to identify the most influential parameters on borehole stability. The main challenge in these analyses is that the strength and stress profiles are unknown independently. Calibration of a geomechanical model on the observed borehole failure has been performed using data from the Basel Geothermal well BS-1. In a first approximation, a purely elastic-static analytical solution in combination with a purely cohesive failure criterion were used as it provides the most consistent prediction across failure indicators. A systematic analysis of the uncertainty on all parameters was performed to assess the reliability of the optimal trajectory selection. To each drilling scenario, failure probability and the associated risks, are computed stochastically. In addition, model uncertainty is assessed by confronting various failure modelling approaches to the available failure data from the Basel Project. Together, these results form the basis of an integrated workflow optimizing geothermal (EGS) well trajectory.

  19. Oil and Gas.

    ERIC Educational Resources Information Center

    Meyerhoff, Arthur A.

    1983-01-01

    Highlights worldwide oil and gas developments during 1982, focusing on production, drilling, and other activities/projects in specific countries and regional areas. Indicates that the most political actions (other than the U.S. decision not to protest further the Siberian pipeline project) were the continued Afghanistan and Iraq-Iran wars.…

  20. Keeping Research Data from the Continental Deep Drilling Programme (KTB) Accessible and Taking First Steps Towards Digital Preservation

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Ulbricht, D.; Conze, R.

    2014-12-01

    The Continental Deep Drilling Programme (KTB) was a scientific drilling project from 1987 to 1995 near Windischeschenbach, Bavaria. The main super-deep borehole reached a depth of 9,101 meters into the Earth's continental crust. The project used the most current equipment for data capture and processing. After the end of the project key data were disseminated through the web portal of the International Continental Scientific Drilling Program (ICDP). The scientific reports were published as printed volumes. As similar projects have also experienced, it becomes increasingly difficult to maintain a data portal over a long time. Changes in software and underlying hardware make a migration of the entire system inevitable. Around 2009 the data presented on the ICDP web portal were migrated to the Scientific Drilling Database (SDDB) and published through DataCite using Digital Object Identifiers (DOI) as persistent identifiers. The SDDB portal used a relational database with a complex data model to store data and metadata. A PHP-based Content Management System with custom modifications made it possible to navigate and browse datasets using the metadata and then download datasets. The data repository software eSciDoc allows storing self-contained packages consistent with the OAIS reference model. Each package consists of binary data files and XML-metadata. Using a REST-API the packages can be stored in the eSciDoc repository and can be searched using the XML-metadata. During the last maintenance cycle of the SDDB the data and metadata were migrated into the eSciDoc repository. Discovery metadata was generated following the GCMD-DIF, ISO19115 and DataCite schemas. The eSciDoc repository allows to store an arbitrary number of XML-metadata records with each data object. In addition to descriptive metadata each data object may contain pointers to related materials, such as IGSN-metadata to link datasets to physical specimens, or identifiers of literature interpreting the data. Datasets are presented by XSLT-stylesheet transformation using the stored metadata. The presentation shows several migration cycles of data and metadata, which were driven by aging software systems. Currently the datasets reside as self-contained entities in a repository system that is ready for digital preservation.

  1. Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low Vp, high Vp/ Vs in the transparent frontal prism

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou

    2014-12-01

    Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.

  2. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Tibbitts; Arnis Judzis

    2001-10-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting July 2001 through September 2001. Accomplishments to date include the following: TerraTek highlighted DOE's National Energy Technology Laboratory effort on Mud Hammer Optimization at the recent Annual Conference and Exhibition for the Society of Petroleum Engineers. The original exhibit scheduled by NETL was canceled due to events surrounding the September tragedies in the US. TerraTek has completed analysis of drilling performance (rates of penetration, hydraulics, etc.) for themore » Phase One testing which was completed at the beginning of July. TerraTek jointly with the Industry Advisory Board for this project and DOE/NETL conducted a lessons learned meeting to transfer technology vital for the next series of performance tests. Both hammer suppliers benefited from the testing program and are committed to pursue equipment improvements and ''optimization'' in accordance with the scope of work. An abstract for a proposed publication by the society of Petroleum Engineers/International Association of Drilling Contractors jointly sponsored Drilling Conference was accepted as an alternate paper. Technology transfer is encouraged by the DOE in this program, thus plans are underway to prepare the paper for this prestigious venue.« less

  3. The PASADO core processing strategy — A proposed new protocol for sediment core treatment in multidisciplinary lake drilling projects

    NASA Astrophysics Data System (ADS)

    Ohlendorf, Christian; Gebhardt, Catalina; Hahn, Annette; Kliem, Pierre; Zolitschka, Bernd

    2011-07-01

    Using the ICDP (International Continental Scientific Drilling Program) deep lake drilling expedition no. 5022 as an example, we describe core processing and sampling procedures as well as new tools developed for subsampling. A manual core splitter is presented that is (1) mobile, (2) able to cut plastic core liners lengthwise without producing swarf of liner material and (3) consists of off-the-shelf components. In order to improve the sampling of sediment cores, a new device, the core sampling assembly (CSA), was developed that meets the following targets: (1) the partitioning of the sediment into discs of equal thickness is fast and precise, (2) disturbed sediment at the inner surface of the liner is discarded during this sampling process, (3) usage of the available sediment is optimised, (4) subsamples are volumetric and oriented, and (5) identical subsamples are taken. The CSA can be applied to D-shaped split sediment cores of any diameter and consists of a divider and a D-shaped scoop. The sampling plan applied for ICDP expedition 5022 is illustrated and may be used as a guideline for planning the efficient partitioning of sediment amongst different lake research groups involved in multidisciplinary projects. For every subsample, the use of quality flags is suggested (1) to document the sample condition, (2) to give a first sediment classification and (3) to guarantee a precise adjustment of logging and scanning data with data determined on individual samples. Based on this, we propose a protocol that might be applied across lake drilling projects in order to facilitate planning and documentation of sampling campaigns and to ensure a better comparability of results.

  4. The 1,2-hydrogen shift reaction for monohalogenophosphanes PH2X and HPX (X = F, Cl)

    NASA Astrophysics Data System (ADS)

    Viana, Rommel B.; Varela, Jaldyr J. G., Jr.; Tello, Ana C. M.; Savedra, Ranylson M. L.; da Silva, Albérico B. F.

    2016-10-01

    The aim of the present study was to perform a quantum chemical investigation in the 1,2-hydrogen shift reaction for the PH2X and HPX molecules (X = F,Cl). Several phosphorus-halogen-bearing molecules were studied, including PH2F, PH2Cl, HPF, HPCl, HPFH, HPClH, PFH and PClH. The energies of stationary and saddle points on the ground electronic potential energy surface were investigated with post-Hartree-Fock methods [CCSD(T), MP2, QCISD] and different DFT functionals. The PH2F 1,2-hydrogen shift energy barrier was 75 kcal mol-1 at the CCSD(T) level and only a small increase in this value was observed for the HPF isomerisation. In contrast, the HPCl 1,2-hydrogen shift barrier is higher than the PH2Cl one, which presented a barrier height of 69 kcal mol-1 among CCSD(T) and composite methods. The rate constants of these unimolecular rearrangements varied from 10-44 to 10-38 s-1, and these isomerisation channels exhibited large half-lives. In addition, the heat of formation of each monohalogenophosphane was also calculated. The Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbital (NBO) analysis were also employed to characterise the differences between the phosphorous-halogen bonds.

  5. Anharmonic Vibrational Spectroscopy of the F-(H20)n, complexes, n=1,2

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Xantheas, Sotiris; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)

    2003-01-01

    We report anharmonic vibrational spectra (fundamentals, first overtones) for the F-(H(sub 2)O) and F-(H(sub 2)O)2 clusters computed at the MP2 and CCSD(T) levels of theory with basis sets of triple zeta quality. Anharmonic corrections were estimated via the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The CC-VSCF anharmonic spectra obtained on the potential energy surfaces evaluated at the CCSD(T) level of theory are the first ones reported at a correlated level beyond MP2. We have found that the average basis set effect (TZP vs. aug-cc-pVTZ) is on the order of 30-40 cm(exp -1), whereas the effects of different levels of electron correlation [MP2 vs. CCSD(T)] are smaller, 20-30 cm(exp -1). However, the basis set effect is much larger in the case of the H-bonded O-H stretch of the F-(H(sub 2)O) cluster amounting to 100 cm(exp -1) for the fundamentals and 200 cm (exp -1) for the first overtones. Our calculations are in agreement with the limited available set of experimental data for the F-(H(sub 2)O) and F-(H(sub 2)O)2 systems and provide additional information that can guide further experimental studies.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, J. Grant, E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu; Peterson, Kirk A., E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu

    New correlation consistent basis sets, cc-pVnZ-PP-F12 (n = D, T, Q), for all the post-d main group elements Ga–Rn have been optimized for use in explicitly correlated F12 calculations. The new sets, which include not only orbital basis sets but also the matching auxiliary sets required for density fitting both conventional and F12 integrals, are designed for correlation of valence sp, as well as the outer-core d electrons. The basis sets are constructed for use with the previously published small-core relativistic pseudopotentials of the Stuttgart-Cologne variety. Benchmark explicitly correlated coupled-cluster singles and doubles with perturbative triples [CCSD(T)-F12b] calculations of themore » spectroscopic properties of numerous diatomic molecules involving 4p, 5p, and 6p elements have been carried out and compared to the analogous conventional CCSD(T) results. In general the F12 results obtained with a n-zeta F12 basis set were comparable to conventional aug-cc-pVxZ-PP or aug-cc-pwCVxZ-PP basis set calculations obtained with x = n + 1 or even x = n + 2. The new sets used in CCSD(T)-F12b calculations are particularly efficient at accurately recovering the large correlation effects of the outer-core d electrons.« less

  7. Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data.

    PubMed

    Pitonák, Michal; Neogrády, Pavel; Cerný, Jirí; Grimme, Stefan; Hobza, Pavel

    2009-01-12

    Scaled MP3 interaction energies calculated as a sum of MP2/CBS (complete basis set limit) interaction energies and scaled third-order energy contributions obtained in small or medium size basis sets agree very closely with the estimated CCSD(T)/CBS interaction energies for the 22 H-bonded, dispersion-controlled and mixed non-covalent complexes from the S22 data set. Performance of this so-called MP2.5 (third-order scaling factor of 0.5) method has also been tested for 33 nucleic acid base pairs and two stacked conformers of porphine dimer. In all the test cases, performance of the MP2.5 method was shown to be superior to the scaled spin-component MP2 based methods, e.g. SCS-MP2, SCSN-MP2 and SCS(MI)-MP2. In particular, a very balanced treatment of hydrogen-bonded compared to stacked complexes is achieved with MP2.5. The main advantage of the approach is that it employs only a single empirical parameter and is thus biased by two rigorously defined, asymptotically correct ab-initio methods, MP2 and MP3. The method is proposed as an accurate but computationally feasible alternative to CCSD(T) for the computation of the properties of various kinds of non-covalently bound systems.

  8. Excited States and Luminescent Properties of UO 2F 2 and Its Solvated Complexes in Aqueous Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jing; Wang, Zheming; Pan, Duoqiang

    2014-07-21

    The electronic absorption and emission spectra of free UO 2F 2 and its water solvated complexes below 32 000 cm –1 are investigated at the levels of ab initio CASPT2 and CCSD(T) with inclusion of scalar relativistic and spin–orbit coupling effects. The influence of the water coordination on the electronic spectra of UO 2F 2 is explored by investigating the excited states of solvated complexes (H 2O) nUO 2F 2 (n = 1–3). In these uranyl complexes, water coordination is found to have appreciable influence on the 3Δ (Ω = 1 g) character of the luminescent state and on themore » electronic spectral shape. The simulated luminescence spectral curves based on the calculated spectral parameters of (H 2O) nUO 2F 2 from CCSD(T) approach agree well with experimental spectra in aqueous solution at both near-liquid-helium temperature and room temperature. The possible luminescence spectra of free UO 2F 2 in gas phase are predicted on the basis of CASPT2 and CCSD(T) results, respectively, by considering three symmetric vibration modes. Finally, the effect of competition between spin–orbit coupling and ligand field repulsion on the luminescent state properties is discussed.« less

  9. Lower crustal section of the Oman Ophiolite drilled in Hole GT1A, ICDP Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Umino, S.; Kelemen, P. B.; Matter, J. M.; Coggon, J. A.; Takazawa, E.; Michibayashi, K.; Teagle, D. A. H.

    2017-12-01

    Hole GT1A (22° 53.535'N, 58° 30.904'E) was drilled by the Oman Drilling Project (OmDP) into GT1A of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT1A was diamond cored in 22 Jan to 08 Feb 2017 to a total depth of 403.05 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT1A drilled the lower crustal section in the southern Oman Ophiolite and recovered 401.52 m of total cores (99.6% recovery). The main lithology is dominated by olivine gabbro (65.9%), followed in abundance by olivine-bearing gabbro (21.5%) and olivine melagabbro (3.9%). Minor rock types are orthopyroxene-bearing olivine gabbro (2.4%), oxide-bearing olivine gabbro (1.5%), gabbro (1.1%), anorthositic gabbro (1%), troctolitic gabbro (0.8%); orthopyroxene-bearing gabbro (0.5%), gabbronorite (0.3%); and dunite (0.3%). These rocks are divided into Lithologic Unit I to VII at 26.62 m, 88.16 m, 104.72 m, 154.04 m, 215.22 m, 306.94 m in Chikyu Curated Depth in descending order; Unit I and II consist of medium-grained olivine gabbro with lower olivine abundance in Unit II. Unit III is medium-grained olivine melagabbros, marked by an increase in olivine. Unit IV is relatively homogenous medium-grained olivine gabbros with granular textures. Unit V is identified by the appearance of fine-grained gabbros, but the major rocktypes are medium grained olivine gabbros. Unit VI is medium-grained olivine gabbro, marked by appearance of orthopyroxene. Unit VII is of fine- to medium-grained olivine gabbros with less olivine.

  10. Geologic report on the San Rafael Swell Drilling Project, San Rafael Swell, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bluhm, C.T.; Rundle, J.G.

    1981-08-01

    Twenty-two holes totaling 34,874 feet (10,629.6 meters) were rotary and core drilled on the northern and western flanks of the San Rafael Swell to test fluvial-lacustrine sequences of the Morrison Formation and the lower part of the Chinle Formation. The objective of the project was to obtain subsurface data so that improved uranium resource estimates could be determined for the area. Although the Brushy Basin and the Salt Wash Members of the Morrison Formation are not considered favorable in this area for the occurrence of significant uranium deposits, uranium minerals were encountered in several of the holes. Some spotty ormore » very low-grade mineralization was also encountered in the White Star Trunk area. The lower part of the Chinle Formation is considered to be favorable for potentially significant uranium deposits along the west flank of the San Rafael Swell. One hole (SR-202) east of Ferron, Utah, intersected uranium, silver, molybdenum, and copper mineralization. More exploratory drilling in the vicinity of this hole is recommended. As a result of the study of many geochemical analyses and a careful determination of the lithology shown by drilling, a sabkha environment is suggested for the concentration of uranium, zinc, iron, lead, copper, silver, and perhaps other elements in parts of the Moody Canyon Member of the Moenkopi Formation.« less

  11. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coringmore » operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.« less

  12. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  13. Chew Bahir: A Key Site within the Hominin Sites and Paleolakes Drilling Project, towards a Half Million-Year Climate Record from Southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Schaebitz, F.; Asrat, A.; Lamb, H. F.; Trauth, M. H.; Foerster, V. E.; Junginger, A.; Raub, T. D.; Gromig, R.; Viehberg, F. A.; Roberts, H. M.; Cohen, A.

    2015-12-01

    Chew Bahir, a saline mudflat today, is one of the five sites in East Africa, drilled within the framework of HSPDP (Hominin Site and Paleolakes Drilling Project). It is also one of the key sites of the Collaborative Research Centre (CRC-806) "Our way to Europe" aiming at the reconstruction of environmental conditions in the source region of modern man (H. sapiens). It is suggested that a changing environment could have triggered the mobility and dispersal of modern man. The oldest known fossils of anatomical modern humans (~195 ka BP) were found in the Omo basin, not more than 90km westwards of our drill site. The deposits in the tectonic basin of Chew Bahir in southern Ethiopia were cored in Nov. 2014 in two boreholes down to 280 m and 260 m below surface respectively. The overlapping long cores (drilled ~20 m apart from each other), were opened, scanned, described and sampled in low resolution in April 2015. The recovered sediments mostly contain green-greyish to light coloured and brown to reddish clays and silty clays, interbedded with some laminated mica-rich sand layers and occurrences of carbonate concretions and nodules, which decrease upcore. Here we will present a first set of results on the composite core, comprising mainly lithology and magnetic susceptibility (MS). Based on known sedimentation rates from pre-studies performed on short cores across the basin, we anticipate the deep drilled cores to cover at least 500 ka BP. Moreover, new insights into the role of post-depositional alteration, especially of clay minerals and zeolites, will be presented as a contribution to an improved understanding of formation processes. The results support the identification of wet and dry climate periods in the past. Those pronounced variations of moisture availability, are thought to have influenced the evolution and mobility of Homo sapiens sapiens.

  14. A theoretical study of the H-abstraction reactions from HOI by moist air radiolytic products (H, OH, and O (3P)) and iodine atoms (2P(3/2)).

    PubMed

    Hammaecher, Catherine; Canneaux, Sébastien; Louis, Florent; Cantrel, Laurent

    2011-06-23

    The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.

  15. Carbon X-ray absorption spectra of fluoroethenes and acetone: A study at the coupled cluster, density functional, and static-exchange levels of theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fransson, Thomas; Norman, Patrick; Coriani, Sonia

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as themore » state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger {pi}-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to {pi}*-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate {pi}*-peak separations due to spectral compressions, a characteristic which is inherent to this method.« less

  16. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    PubMed

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this method.

  17. Theoretical chemical kinetic study of the H-atom abstraction reactions from aldehydes and acids by Ḣ atoms and ȮH, HȮ2, and ĊH3 radicals.

    PubMed

    Mendes, Jorge; Zhou, Chong-Wen; Curran, Henry J

    2014-12-26

    We have performed a systematic, theoretical chemical kinetic investigation of H atom abstraction by Ḣ atoms and ȮH, HȮ2, and ĊH3 radicals from aldehydes (methanal, ethanal, propanal, and isobutanal) and acids (methanoic acid, ethanoic acid, propanoic acid, and isobutanoic acid). The geometry optimizations and frequencies of all of the species in the reaction mechanisms of the title reactions were calculated using the MP2 method and the 6-311G(d,p) basis set. The one-dimensional hindered rotor treatment for reactants and transition states and the intrinsic reaction coordinate calculations were also determined at the MP2/6-311G(d,p) level of theory. For the reactions of methanal and methanoic acid with Ḣ atoms and ȮH, HȮ2, and ĊH3 radicals, the calculated relative electronic energies were obtained with the CCSD(T)/cc-pVXZ (where X = D, T, and Q) method and were extrapolated to the complete basis set limit. The electronic energies obtained with the CCSD(T)/cc-pVTZ method were benchmarked against the CCSD(T)/CBS energies and were found to be within 1 kcal mol(-1) of one another. Thus, the energies calculated using the less expensive CCSD(T)/cc-pVTZ method were used in all of the reaction mechanisms and in calculating our high-pressure limit rate constants for the title reactions. Rate constants were calculated using conventional transition state theory with an asymmetric Eckart tunneling correction, as implemented in Variflex. Herein, we report the individual and average rate constants, on a per H atom basis, and total rate constants in the temperature range 500-2000 K. We have compared some of our rate constant results to available experimental and theoretical data, and our results are generally in good agreement.

  18. A new scientific drilling infrastructure in Sweden

    NASA Astrophysics Data System (ADS)

    Rosberg, J.-E.; Lorenz, H.

    2012-04-01

    A new scientific drilling infrastructure is currently under commissioning at Lund University in southern Sweden and is intended primarily for Swedish scientific drilling projects. However, it will be available to the scientific community and even industry when not occupied. The drill rig, a crawler mounted Atlas Copco CT20, was funded by the Swedish Research Council (VR) after an application by the Swedish scientific drilling community under the lead of Prof. Leif Bjelm, Lund University. As a national resource it is, together with support of the Swedish Deep Drilling Program (SDDP) and the Swedish membership in ICDP, part of VR's commitment to scientific drilling. The Atlas Copco CT20 is a top modern, versatile diamond wireline core-drilling rig which can handle P, H and N sizes. It can operate on very small drill sites (500-800 m2) and, thus, leaves a minimal environmental footprint. The crawler makes the rig ideal for operations in remote locations. A total of only 3-4 truckloads is necessary for mobilization of the basic drilling equipment. Main technical specifications are: Depth capacity coring, based on vertical water filled hole: P-size to around 1050 m, hole size 123 mm and core size 85 mm. H-size to around 1600 m, hole size 96 mm and core size 63 mm. N-size to around 2500 m, hole size 76 mm and core size 48 mm. Weight: Complete rig including crawler, wet - 23500 kg Dimensions in (length, width, height) transport position: 11560 x 2500 x 3750 mm. Available in-hole equipment: Complete core retrieval system for PQ, HQ and NQ-sizes, including PHD, HRQ (V-Wall) and NRQ (V-Wall) drill rods covering the maximum drilling depth for each size (see rig depth capacity above). Both dual and triple tube for HQ and NQ-sizes. Casing advancers (PW, HW, NW and BW). Casing PWT, HWT, NW and BW. Bits and reamers. Additional equipment: Mud cleaning and mixing system. MWD-system (Measurements While Drilling). Cementing equipment. Fishing tools (Bowen Spear). Blow Out Preventer (BOP). Deviation tools. Wireline packers. And more.

  19. Using DSDP/ODP/IODP core photographs and digital images in the classroom

    NASA Astrophysics Data System (ADS)

    Pereira, Hélder; Berenguer, Jean-Luc

    2017-04-01

    Since the late 1960's, several scientific ocean drilling programmes have been uncovering the history of the Earth hidden beneath the seafloor. The adventure began in 1968 with the Deep Sea Drilling Project (DSDP) and its special drill ship, the Glomar Challenger. The next stage was the Ocean Drilling Program (ODP) launched in 1985 with a new drill ship, the JOIDES Resolution. The exploration of the ocean seafloor continued, between 2003 and 2013, through the Integrated Ocean Drilling Program (IODP). During that time, in addition to the JOIDES Resolution, operated by the US, the scientists had at their service the Chikyu, operated by Japan, and Mission-Specific-Platforms, funded and implemented by the European Consortium for Ocean Research Drilling. Currently, scientific ocean drilling continues through the collaboration of scientists from 25 nations within the International Ocean Discovery Program (IODP). Over the last 50 years, the scientific ocean drilling expeditions conducted by these programmes have drilled and cored more than 3500 holes. The numerous sediment and rock samples recovered from the ocean floor have provided important insight on the active biological, chemical, and geological processes that have shaped the Earth over millions of years. During an expedition, once the 9.5-meter long cores arrive from the seafloor, the technicians label and cut them into 1.5-meter sections. Next, the shipboard scientists perform several analysis using non-destructive methods. Afterward, the technicians split the cores into two halves, the "working half", which scientists sample and use aboard the drilling platform, and the "archive half", which is kept in untouched condition after being visually described and photographed with a digital imaging system. The shipboard photographer also takes several close-up pictures of the archive-half core sections. This work presents some examples of how teachers can use DSDP/ODP/IODP core photographs and digital images, available through the Janus and LIMS online databases, to develop inquiry-based learning activities for secondary level students.

  20. Effects of the Terra Nova offshore oil development on benthic macro-invertebrates over 10 years of development drilling on the Grand Banks of Newfoundland, Canada

    NASA Astrophysics Data System (ADS)

    Paine, Michael D.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Pocklington, Patricia; Crowley, Roger D.; Williams, Urban P.; Gregory Janes, G.

    2014-12-01

    This paper describes effects of drilling with water and synthetic-based drilling muds on benthic macro-invertebrates over 10 years at the Terra Nova offshore oil development. As such, the paper provides insight on the effects of relatively new synthetic-based drilling muds (SBMs), and makes an important contribution to our understanding of the long-term chronic effects of drilling on benthic communities. The Terra Nova Field is located approximately 350 km offshore on the Grand Banks of Newfoundland (Canada). Sediment and invertebrate samples were collected in 1997 (baseline) prior to drilling, and subsequently in 2000, 2001, 2002, 2004, 2006, 2008 and 2010. Approximately 50 stations were sampled in each year at distances of less than 1 to approximately 20 km from drill centres. Summary benthic invertebrate community measures examined were total abundance, biomass, richness, diversity and multivariate measures of community composition based on non-Metric Dimensional Scaling (nMDS). Decreases in abundance, biomass and richness were noted at one station located nearest (0.14 km) to a drill centre in some environmental effects monitoring (EEM) years. These decreases coincided with higher levels of tracers of drill muds in sediments (barium and >C10-C21 hydrocarbons). Abundances of selected individual taxa were also examined to help interpret responses when project-related effects on summary measures occurred. Enrichment effects on some tolerant taxa (e.g., the polychaete family Phyllodocidae and the bivalve family Tellinidae) and decreased abundances of sensitive taxa (e.g., the polychaete families Orbiniidae and Paraonidae) were detected to within approximately 1-2 km from discharge source. Lagged responses three to five years after drilling started were noted for Phyllodocidae and Tellinidae, suggesting chronic or indirect effects. Overall, results of benthic community analyses at Terra Nova indicate that effects on summary measures of community composition were spatially limited but, as seen elsewhere, some taxa were more sensitive to drilling discharges.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleiziffer, Patrick, E-mail: patrick.bleiziffer@fau.de; Krug, Marcel; Görling, Andreas

    A self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem, employing the frequency-dependent exact exchange kernel f{sub x} is presented. The resulting SC-exact-exchange-only (EXX)-ACFD method leads to even more accurate correlation potentials than those obtained within the direct random phase approximation (dRPA). In contrast to dRPA methods, not only the Coulomb kernel but also the exact exchange kernel f{sub x} is taken into account in the EXX-ACFD correlation which results in a method that, unlike dRPA methods, is free of self-correlations, i.e., a method that treats exactly all one-electron systems, like, e.g., the hydrogen atom. The self-consistent evaluation ofmore » EXX-ACFD total energies improves the accuracy compared to EXX-ACFD total energies evaluated non-self-consistently with EXX or dRPA orbitals and eigenvalues. Reaction energies of a set of small molecules, for which highly accurate experimental reference data are available, are calculated and compared to quantum chemistry methods like Møller-Plesset perturbation theory of second order (MP2) or coupled cluster methods [CCSD, coupled cluster singles, doubles, and perturbative triples (CCSD(T))]. Moreover, we compare our methods to other ACFD variants like dRPA combined with perturbative corrections such as the second order screened exchange corrections or a renormalized singles correction. Similarly, the performance of our EXX-ACFD methods is investigated for the non-covalently bonded dimers of the S22 reference set and for potential energy curves of noble gas, water, and benzene dimers. The computational effort of the SC-EXX-ACFD method exhibits the same scaling of N{sup 5} with respect to the system size N as the non-self-consistent evaluation of only the EXX-ACFD correlation energy; however, the prefactor increases significantly. Reaction energies from the SC-EXX-ACFD method deviate quite little from EXX-ACFD energies obtained non-self-consistently with dRPA orbitals and eigenvalues, and the deviation reduces even further if the Coulomb kernel is scaled by a factor of 0.75 in the dRPA to reduce self-correlations in the dRPA correlation potential. For larger systems, such a non-self-consistent EXX-ACFD method is a competitive alternative to high-level wave-function-based methods, yielding higher accuracy than MP2 and CCSD methods while exhibiting a better scaling of the computational effort than CCSD or CCSD(T) methods. Moreover, EXX-ACFD methods were shown to be applicable in situation characterized by static correlation.« less

  2. Archaeological Investigations at Site 45-DO-273, Chief Joseph Dam Project, Washington.

    DTIC Science & Technology

    1984-01-01

    CHOPPERS . .. ........................... 60 DRILLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 GRAVERS...6 Plate 3-1. Shaft abrader, hammerstones, netslnker, and chopper . . . . 50 Plate 3-2. Blfaces and scrapers .. .. .. .... ... .... . ... 58 Plate 3...sites as low as possible. * . The Project’s Investigations are documented In four report series. Reports describing archaeological reconnaissance and

  3. ICDP supported coring in IDDP-2 at Reykjanes - the DEEPEGS demonstrator in Iceland - Supercritical conditions reached below 4.6 km depth.

    NASA Astrophysics Data System (ADS)

    Ómar Friðleifsson, Guðmundur; Elders, Wilfred A.; Zierenberg, Robert; Steafánsson, Ari; Sigurðsson, Ómar; Gíslason, Þór; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.

    2017-04-01

    The Iceland Deep Drilling Project (IDDP) is exploring the technical and economic feasibility of producing supercritical geothermal resources. The IDDP-2 well is located in the Reykjanes saline geothermal system in SW Iceland, on the landward extension of the Mid-Atlantic Ridge, where we are probing the analog of the root zone of a black smoker. In 2009, Phase 1 of the IDDP was unsuccessful in reaching supercritical conditions in the Krafla volcanic caldera in NE Iceland, when the IDDP-1 drill hole unexpectedly encountered 900°C rhyolite magma at only 2.1 km depth. The completed well produced superheated steam with a well head temperature of 453°C with an enthalpy and flow rate sufficient to generate 35 MWe. Drilling the IDDP-2 began by deepening an existing 2.5 km deep production well (RN-15) to 3 km depth, casing it to 2941m depth and drilling it to 4626m. Total circulation losses which were encountered below 3 km depth, could not be cured by LCM and multiple cement jobs. Accordingly, drilling continued "blind" to total depth, without return of drill cuttings. We attempted 12 core runs below 3 km depth, half of which recovered some core. The cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting formation temperatures >450°C. After a final report from the on-site science team, expected mid-year 2017, detailed petrological, petrophysical, and geochemical analyses of cores will be undertaken by the IDDP science team and collaborators and published in a special issue of a main-stream scientific journal. The drilling of the IDDP-2 was funded by the field operator HS Orka, and by Statoil, and the IDDP industry consortium. The coring was funded by ICDP and the science program of the IDDP. Deepening the RN-15 began 11th August 2016, and was completed to 4626m, 17th December 2016. A perforated liner was inserted to 4,571m and the well subsequently logged for temperature, pressure and injectivity, after 6 days partial heating-up. The injectivity index proved to be 1.7 (kg/s)/bar. Supercritical conditions were measured at the bottom, 427°C at 340 bar pressure. The T-log showed the main permeable zones to be at around 3360m, 4200m, 4370m and 4550m depth. Estimates suggest that 30% of 40 L/s injected into the well are received by the three deepest feed zones. This can possibly be enhanced by massive soft stimulation, which is a part of the DEEPEGS plan to be executed later this year. The DEEPEGS project is a demonstration project, supported by the European Commission, Horizon 2020. The goal is to demonstrate the feasibility of enhanced geothermal systems (EGS) for delivering energy from renewable resources in Europe. It is a four-year project coordinated by HS Orka, Iceland, in cooperation with partners from Iceland, France, Germany, Italy, and Norway. The project will demonstrate advanced technologies in three types of geothermal reservoirs, (i) in high enthalpy resource beneath existing hydrothermal field at Reykjanes with temperature up to 550°C, and (ii) in two very deep hydrothermal reservoirs in France with temperatures up to 220°C.

  4. Bit selection using field drilling data and mathematical investigation

    NASA Astrophysics Data System (ADS)

    Momeni, M. S.; Ridha, S.; Hosseini, S. J.; Meyghani, B.; Emamian, S. S.

    2018-03-01

    A drilling process will not be complete without the usage of a drill bit. Therefore, bit selection is considered to be an important task in drilling optimization process. To select a bit is considered as an important issue in planning and designing a well. This is simply because the cost of drilling bit in total cost is quite high. Thus, to perform this task, aback propagation ANN Model is developed. This is done by training the model using several wells and it is done by the usage of drilling bit records from offset wells. In this project, two models are developed by the usage of the ANN. One is to find predicted IADC bit code and one is to find Predicted ROP. Stage 1 was to find the IADC bit code by using all the given filed data. The output is the Targeted IADC bit code. Stage 2 was to find the Predicted ROP values using the gained IADC bit code in Stage 1. Next is Stage 3 where the Predicted ROP value is used back again in the data set to gain Predicted IADC bit code value. The output is the Predicted IADC bit code. Thus, at the end, there are two models that give the Predicted ROP values and Predicted IADC bit code values.

  5. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Tibbitts; Arnis Judzis

    2001-04-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2001 through March 2001. Accomplishments to date include the following: (1) On January 9th of 2001, details of the Mud Hammer Drilling Performance Testing Project were presented at a ''kick-off'' meeting held in Morgantown. (2) A preliminary test program was formulated and prepared for presentation at a meeting of the advisory board in Houston on the 8th of February. (3) The meeting was held with the advisorymore » board reviewing the test program in detail. (4) Consensus was achieved and the approved test program was initiated after thorough discussion. (5) This new program outlined the details of the drilling tests as well as scheduling the test program for the weeks of 14th and 21st of May 2001. (6) All the tasks were initiated for a completion to coincide with the test schedule. (7) By the end of March the hardware had been designed and the majority was either being fabricated or completed. (8) The rock was received and cored into cylinders.« less

  6. Listvenite logging on D/V CHIKYU: Hole BT1B, Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Beinlich, A.; Morishita, T.; Greenberger, R. N.; Johnson, K. T. M.; Lafay, R.; Michibayashi, K.; Harris, M.; Phase I Science Party, T. O. D. P.

    2017-12-01

    Listvenite, quartz-carbonate altered ultramafic rock containing minor fuchsite (Cr-muscovite) forms by complete carbonation of peridotite and is thus an attractive objective for carbon mitigation studies. However, reaction controls and evolution of listvenite are still enigmatic. Here we present the first results of Phase 1 of the ICDP (International Continental Drilling Program) Oman Drilling Project and subsequent core logging using the analytical facilities on board the research vessel D/V CHIKYU. Hole BT1B contains 300 m of continuous drill core intersecting alluvium, listvenite-altered serpentinite, serpentinite, ophicarbonate and the underlying metamorphic sole of the Semail ophiolite, Oman. The drill core has been systematically investigated by visual core description, thin section petrography, X-ray fluorescence core logging, X-ray diffractometry, visible-shortwave infrared imaging spectroscopy and X-ray Computer Tomography. Our observations show that listvenite is highly variable in texture and color on the mm to m scale. Listvenite was visually categorized into 5 principal color groups: the dominant dark red (47 %), light red (19 %), orange (14 %), pale (2 %) and green (16 %). The presence of hematite/goethite results in dark reddish, red and orange hues. Light grey or pale colored listvenite lacks hematite and/or goethite veins and may represent the `true' listvenite. Green listvenite is characterized by the presence of cm-sized quartz-fuchsite intergrowths. Five zones of serpentinite, which vary in thickness between several tens of cm and 4 m, are intercalated within the massive listvenite of Hole BT1B. Gradational listvenite-serpentinite transition zones contain the ophicarbonate assemblage (magnesite + serpentine) and sometimes additional talc, representing intermediate carbonation reaction progress. Preservation of the former mesh texture and bastite after orthopyroxene in the listvenite suggest that the listvenite precursor had already been serpentinized prior to infiltration of the CO2-bearing alteration fluid.

  7. Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos 21 B well

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.; Lewis, K.A.

    2012-01-01

    Through the use of 3-D seismic amplitude mapping, several gashydrate prospects were identified in the Alaminos Canyon (AC) area of the Gulf of Mexico. Two locations were drilled as part of the Gulf of MexicoGasHydrate Joint Industry Project Leg II (JIP Leg II) in May of 2009 and a comprehensive set of logging-while-drilling (LWD) logs were acquired at each well site. LWD logs indicated that resistivity in the range of ~2 ohm-m and P-wave velocity in the range of ~1.9 km/s were measured in the target sand interval between 515 and 645 feet below sea floor. These values were slightly elevated relative to those measured in the sediment above and below the target sand. However, the initial well log analysis was inconclusive regarding the presence of gashydrate in the logged sand interval, mainly because largewashouts caused by drilling in the target interval degraded confidence in the well log measurements. To assess gashydratesaturations in the sedimentary section drilled in the Alaminos Canyon 21B (AC21-B) well, a method of compensating for the effect of washouts on the resistivity and acoustic velocities was developed. The proposed method models the washed-out portion of the borehole as a vertical layer filled with sea water (drilling fluid) and the apparent anisotropic resistivity and velocities caused by a vertical layer are used to correct the measured log values. By incorporating the conventional marine seismic data into the well log analysis, the average gashydratesaturation in the target sand section in the AC21-Bwell can be constrained to the range of 8–28%, with 20% being our best estimate.

  8. Environmental security control of resource utilization of shale gas' drilling cuttings containing heavy metals.

    PubMed

    Wang, Chao-Qiang; Lin, Xiao-Yan; Zhang, Chun; Mei, Xu-Dong

    2017-09-01

    The overall objective of this research project was to investigate the heavy metals environmental security control of resource utilization of shale gas' drilling cuttings. To achieve this objective, we got through theoretical calculation and testing, ultimately and preliminarily determine the content of heavy metals pollutants, and compared with related standards at domestically and abroad. The results indicated that using the second Fike's law, the theoretical model of the release amount of heavy metal can be made, and the groundwater environmental risk as main point compared with soil. This study can play a role of standard guidance on environmental security control of drilling cuttings resource utilization by the exploration and development of shale gas in our country.

  9. Hawaii Geothermal Project. Phase II: final report on well HGP-A extension to Contract E(04-3)-1093

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shupe, J.W.

    1976-07-01

    Drilling was completed on HGP-A to a depth of 6445 feet on April 27, 1976. A final core was taken; a series of logging runs performed, both with Gearhart-Owen equipment and with the Kuster temperature gauge; and the drill stem was withdrawn and laid down on the side adjacent to the rig - as a safety measure against possible volcanic tremors. A maximum temperature to date of 288/sup 0/C (550/sup 0/F) was recorded on May 13 at 4500 feet. The weighted temperature probe would penetrate no deeper into the drilling mud, which apparently is stiffening. The temperature depth relationship developedmore » in HGP-A is illustrated.« less

  10. Prediction of drilling site-specific interaction of industrial acoustic stimuli and endangered whales: Beaufort Sea (1985). Final report, July 1985-March 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, P.R.; Malme, C.I.; Shepard, G.W.

    1986-10-01

    Research was performed during the first year (1985) of the two-year project investigating potential responsiveness of bowhead and gray whales to underwater sounds associated with offshore oil-drilling sites in the Alaskan Beaufort Sea. The underwater acoustic environment and sound propagation characteristics of five offshore sites were determined. Estimates of industrial noise levels versus distance from those sites are provided. LGL Ltd. (bowhead) and BBN (gray whale) jointly present zones of responsiveness of these whales to typical underwater sounds (drillship, dredge, tugs, drilling at gravel island). An annotated bibliography regarding the potential effects of offshore industrial noise on bowhead whales inmore » the Beaufort Sea is included.« less

  11. Theoretical Studies of Oxygen Reduction and Proton Transfer in SOFCs and Nerve Agents on Selected Surfaces

    DTIC Science & Technology

    2015-11-19

    hand, the energy change for CO3 2- +O2→CO5 2- is calculated to be - 105.5 kJ/mol and -87.3 kJ/mol by B3LYP and CCSD(T), respectively. Similarly, the...formation energy of CO4 2- ( CO3 2- +1/2O2→CO4 2- ) is -9.8 kJ/mol and -5.4 kJ/mol by B3LYP and CCSD(T), respectively. All testing results have...This configuration is same as those in their crystal structures of bulk Li2CO3, Na2CO3, and K2CO3. In addition, the average bond length between alkali

  12. Ortho-, meta-, and para-benzyne. A comparative CCSD (T) investigation

    NASA Astrophysics Data System (ADS)

    Kraka, Elfi; Cremer, Dieter

    1993-12-01

    Geometries and energies of ortho-benzyne ( 1), mata-benzyne ( 2), and para-benzyne ( 3) have been calculated at the CCSD (T), GVB, GVB-LSDC, and MBPT (2) levels of theory employing the 6-31G(d, p) basis. Calculations suggest relative energies of O, 13.7, and 25.3 kcal/mol, respectively, and Δ H0f(298) values of 110.8, 123.9, and 135.7 kcal/mol for 1, 2, and 3. With the Δ H0f(298) value of 3, the reaction enthalpy Δ RH(298) and the activation enthalpy Δ H#(298) for the Bergman cyclization of (Z)-hexa-1,5-diy -ene to 3 are calculated to be 9.1 and 28.5 kcal/mol.

  13. VizieR Online Data Catalog: Protonated oxirane characterization (Puzzarini+, 2014)

    NASA Astrophysics Data System (ADS)

    Puzzarini, C.; Ali, A.; Biczysko, M.; Barone, V.

    2017-04-01

    The coupled-cluster (CC) singles and doubles approximation augmented by a perturbative treatment of triple excitations (CCSD(T); Raghavachari et al., 1989, ChPhL, 157, 479) was employed in molecular structure and anharmonic force-field calculations. Harmonic force fields were also computed using the less expensive and less accurate second-order Moller-Plesset perturbation theory (MP2; Moller & Plesset, 1934, PhRv, 46, 618). CCSD(T) and MP2 calculations were carried out in conjunction with the correlation-consistent basis sets, (aug)-cc-p(C)VnZ (n = T, Q) (Dunning, 1989, JChPh, 90, 1007; Kendall et al., 1992, JChPh, 96, 6796; Woon & Dunning, 1995, JChPh, 103, 4572), with the quantum-chemical CFour program package employed throughout. (4 data files).

  14. The Molecular Structure of cis-FONO

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Rice, Julia E.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The molecular structure of cis-FONO has been determined with the CCSD(T) correlation method using an spdf quality basis set. In agreement with previous coupled-cluster calculations but in disagreement with density functional theory, cis-FONO is found to exhibit normal bond distances. The quadratic and cubic force fields of cis-FONO have also been determined in order to evaluate the effect of vibrational averaging on the molecular geometry. Vibrational averaging is found to increase bond distances, as expected, but it does not affect the qualitative nature of the bonding. The CCSD(T)/spdf harmonic frequencies of cis-FONO support our previous assertion that a band observed at 1200 /cm is a combination band (upsilon(sub 3) + upsilon(sub 4)), and not a fundamental.

  15. Unusual reaction paths of SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-: Quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Minyaev, Ruslan M.; Quapp, Wolfgang; Schmidt, Benjamin; Getmanskii, Ilya V.; Koval, Vitaliy V.

    2013-11-01

    Quantum chemical (CCSD(full)/6-311++G(3df,3pd), CCSD(T)(full)/6-311++G(3df,3pd)) and density function theory (B3LYP/6-311++G(3df,3pd)) calculations were performed for the SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-. The calculated gradient reaction pathways for both reactions have an unusual behavior. An unusual stationary point of index 2 lies on the gradient reaction path. Using Newton trajectories for the reaction path, we can detect VRI point at which the reaction path branches.

  16. Benefits Analysis of Past Projects. Volume 2. Individual Project Assessments.

    DTIC Science & Technology

    1984-11-01

    209 S- ..-...-......... a nineteenth century one which had been developed for .he braiding of fire hoses . Project Results The program revealed...was found for protecting the drilling and position sensing optics from expelled metal particles. Process and work-material variables were optimized...HPT vane material. Hastelloy X is a nickel-chromium superalloy used in high temperature sheet metal applications, such as combustion liners and

  17. Marine Seismic System Deployment (MSS). Phase 2. Investigation of Techniques and Deployment Scenarios for Installation of Triaxial Seismometer in a Borehole in the Deep Ocean

    DTIC Science & Technology

    1981-01-09

    CHALLENGER for an estimated period of six days. The design for the test Borehole Instrumentation Package (BIP) reentry-sub and associated handling...equipment has been completed ard hmi been submitted for vendor bid. Details of the specialized support equipment for installation on the GLOMAR CHALLENGER ...developed under the direction of the Deep Sea Drilling Project (DSDP) by the dynamically positioned drilling vessel GLOMAR CHALLENGER . Deployment of the

  18. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbank, Brian D.

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award bemore » transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified the DOE on February 13, 2014 that it would not be able to complete the project objectives before the recovery act awards deadline and submitted a mutual termination request to the DOE which was accepted.« less

  19. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth; Woskov, Paul; Einstein, Herbert

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system wasmore » designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650°C, even exceeding 3000°C, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.« less

  20. Scientific Drilling in the Snake River Plain: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Hanan, B. B.; Hughes, S. S.; Geist, D.; Vetter, S. K.

    2006-12-01

    The Snake River-Yellowstone volcanic province has long been linked to the concept of lithospheric drift over a fixed mantle thermal anomaly or hotspot. This concept is reinforced by seismic tomography that images this anomaly to depths around 500 km, but alternative proposals still present a serious challenge. Basaltic volcanism spans a significant age range and basaltic volcanism in the western SRP lies well off the hotspot track and cannot be related directly to the hotspot in any simple way. The plume-track age progression is documented by rhyolite volcanic centers, but even these represent extended time periods that overlap in age with adjacent centers. Scientific drilling projects carried out over the last two decades have made significant contributions to our understanding of both basaltic and rhyolitic volcanism associated with the Snake River-Yellowstone hotspot system. Because these drill holes also intercept sedimentary interbeds or, in the case of the western SRP, thick sections of Pliocene and Pleistocene sediments, they have also contributed to our understanding of basin formation by thermal collapse in the wake of the hotspot passage or by rifting, paleoclimate of the interior west, and groundwater systems in volcanic rocks. Many of these drill holes are associated with the Idaho National Laboratory (INL) in the eastern plain; others were drilled for geothermal or petroleum exploration. The latter include older holes that were not instrumented or logged in detail, but which still provide valuable stratigraphic controls. We focus here on the result of basalt drilling, which have been high-lighted in recent publications. Basaltic volcanism in the Snake River plain is dominated by olivine tholeiites that have major and trace element characteristics of ocean island basalt: the range in MgO is similar to MORB, but Ti, Fe, P, K, Sr, Zr and LREE/HREE ratios are all higher. Recent studies of basalts from the drill holes show that they evolved by fractionation in a mid-crustal sill complex that has been imaged seismically. Further, the chemical and isotopic systematics of these basalts require assimilation of consanguineous mafic material inferred to represent previously intruded sills. Major and trace element modeling suggest formation of the primary melts by melting of a source similar to E- MORB source. Trace element systematics document mixing between a plume-like source and a more depleted source that is not DMM. A similar more depleted source is inferred for Hawaii, suggesting that it is not continental lithosphere. Future scientific drilling in the SRP is the focus of Project HOTSPOT, a multi-disciplinary initiative that seeks to document time-space variations in the SRP-Yellowstone volcanic system. A workshop sponsored by the International Continental Drilling Program was held in May 2006 to develop a targeted program of scientific drilling that examines the entire plume-lithosphere system across a major lithospheric boundary, with holes targeting basalt, rhyolite, and sediments. These drill holes will complement geophysical studies of continental dynamics (e.g., Earthscope), as well as current studies centered on Yellowstone. Additional components of a targeted drilling program include studies of lacustrine sediments that document paleoclimate change in North America during the Pliocene—Pleistocene and fluid flow at deeper crustal levels.

  1. Comparison of drilling reports and detailed geophysical analysis of ground-water production in bedrock wells

    USGS Publications Warehouse

    Paillet, Frederick; Duncanson, Russell

    1994-01-01

    The most extensive data base for fractured bedrock aquifers consists of drilling reports maintained by various state agencies. We investigated the accuracy and reliability of such reports by comparing a representative set of reports for nine wells drilled by conventional air percussion methods in granite with a suite of geophysical logs for the same wells designed to identify the depths of fractures intersecting the well bore which may have produced water during aquifer tests. Production estimates reported by the driller ranged from less than 1 to almost 10 gallons per minute. The moderate drawdowns maintained during subsequent production tests were associated with approximately the same flows as those measured when boreholes were dewatered during air percussion drilling. We believe the estimates of production during drilling and drawdown tests were similar because partial fracture zone dewatering during drilling prevented larger inflows otherwise expected from the steeper drawdowns during drilling. The fractures and fracture zones indicated on the drilling report and the amounts of water produced by these fractures during drilling generally agree with those identified from the geophysical log analysis. Most water production occurred from two fractured and weathered zones which are separated by an interval of unweathered granite. The fractures identified in the drilling reports show various depth discrepancies in comparison to the geophysical logs, which are subject to much better depth control. However, the depths of the fractures associated with water production on the drilling report are comparable to the depths of the fractures shown to be the source of water inflow in the geophysical log analysis. Other differences in the relative contribution of flow from fracture zones may by attributed to the differences between the hydraulic conditions during drilling, which represent large, prolonged drawdowns, and pumping tests, which consisted of smaller drawdowns maintained over shorter periods. We conclude that drilling reports filed by experienced well drillers contain useful information about the depth, thickness, degree of weathering, and production capacity of fracture zones supplying typical domestic water wells. The accuracy of this information could be improved if relatively simple and inexpensive geophysical well logs such as gamma, caliper, and normal resistivity logs were routinely run in conjunction with bedrock drilling projects.

  2. Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.

    2009-01-01

    Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.

  3. Computer-Assisted Instruction: Stanford's 1965-66 Arithmetic Program.

    ERIC Educational Resources Information Center

    Suppes, Patrick; And Others

    A review of the possibilities and challenges of computer-assisted instruction (CAI), and a brief history of CAI projects at Stanford serve to give the reader the context of the particular program described and analyzed in this book. The 1965-66 arithmetic drill-and-practice program is described, summarizing the curriculum and project operation. An…

  4. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less

  5. Initial Assessment of the Excavation and Deposition of Impact Lithologies Exposed by the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Horz, Friedrich; Zurcher, Lukas

    2003-01-01

    The Chicxulub Scientific Drilling Project (www.icdp-online.de) recovered a continuous core from a depth of 404 m (in Tertiary cover) to 1511 m (in a megablock of Cretaceous target sediments), penetrating approx. 100 m of melt-bearing impactites between 794 and 895 m. The Yaxcopoil-1 (YAX-1) borehole is approx. 60-65 km from the center of the Chicxulub structure, which is approx. 15 km beyond the limit of the estimated approx. 50 km radius transient crater (excavation cavity), but within the rim of the estimated approx. 90 km radius final crater. In general, the impactite sequence is incredibly rich in impact melts of unusual textural variety and complexity, quite unlike melt-bearing impact formations from other terrestrial craters.

  6. Status of the Magma Energy Project

    NASA Astrophysics Data System (ADS)

    Dunn, J. C.

    The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.

  7. Real time observation system for monitoring environmental impact on marine ecosystems from oil drilling operations.

    PubMed

    Godø, Olav Rune; Klungsøyr, Jarle; Meier, Sonnich; Tenningen, Eirik; Purser, Autun; Thomsen, Laurenz

    2014-07-15

    Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-basedmore » drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.« less

  9. Outokumpu Deep Drill Hole: Window to the Precambrian bedrock

    NASA Astrophysics Data System (ADS)

    Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo

    2017-04-01

    Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a strong reflector. This fracture, as well as other fractures penetrated by the drill hole, contains saline water and gases, mainly methane, nitrogen, hydrogen and helium. Salinity of water in the deeper part (>1000 m) of the drill hole has continuously increased since the drilling. Gas-rich water slowly seeps upward and bubble out at the water table. In total, five different water types have been discerned along the drill hole by geochemical and isotopic methods and residence times up to 58 Ma indicated by the accumulation of noble gases. Microbiological studies in the Outokumpu Deep Drill Hole show that not only do different fracture zones act as places for shift in groundwater chemistry but also in the microbial communities. After a decade of research, Outokumpu drill hole site is geologically well known and thus provides a good environment to test new tools developed for exploration, microbiological or hydrogeological purposes, for example. Geological Survey of Finland is open for new research collaboration projects related to the drill site.

  10. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Witter; Robert Knoll; William Rehm

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conductedmore » in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.« less

  11. Equation-of-motion coupled-cluster method for ionised states with spin-orbit coupling using open-shell reference wavefunction

    NASA Astrophysics Data System (ADS)

    Wang, Zhifan; Wang, Fan

    2018-04-01

    The equation-of-motion coupled-cluster method for ionised states at the singles and doubles level (EOM-IP-CCSD) with spin-orbit coupling (SOC) included in post-Hartree-Fock (HF) steps is extended to spatially non-degenerate open-shell systems such as high spin states of s1, p3, σ1 or π2 configuration in this work. Pseudopotentials are employed to treat relativistic effects and spin-unrestricted scalar relativistic HF determinant is adopted as reference in calculations. Symmetry is not exploited in the implementation since both time-reversal and spatial symmetry is broken due to SOC. IPs with the EOM-IP-CCSD approach are those from the 3Σ1- states for high spin state of π2 configuration, while the ground state is the 3Σ0- state. When removing an electron from the high spin state of p3 configuration, only the 3P2 state can be reached. The open-shell EOM-IP-CCSD approach with SOC was employed in calculating IPs of some open-shell atoms with s1 configuration, diatomic molecules with π2 configuration and SOC splitting of the ionised π1 state, as well as IPs of VA atoms with p3 configuration. Our results demonstrate that this approach can be applied to ionised states of spatially non-degenerate open-shell states containing heavy elements with reasonable accuracy.

  12. Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.

    PubMed

    Soniat, Marielle; Rogers, David M; Rempe, Susan B

    2015-07-14

    A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected ωB97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the ωB97X-D functional predicts the smallest ion-water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals - a trend consistent with CCSD(T) results. Also, ωB97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding free energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment.

  13. A Reinvestigation of the Dimer of para-Benzoquinone with Pyrimidine with MP2, CCSD(T) and DFT using Functionals including those Designed to Describe Dispersion

    PubMed Central

    Marianski, Mateusz; Oliva, Antoni

    2012-01-01

    We reevaluate the interaction of pyridine and p-benzoquinone using functionals designed to treat dispersion. We compare the relative energies of four different structures: stacked, T-shaped (identified for the first time) and two planar H-bonded geometries using these functionals (B97-D, ωB97x-D, M05, M05-2X, M06, M06L, M06-2X), other functionals (PBE1PBE, B3LYP, X3LYP), MP2 and CCSD(T) using basis sets as large as cc-pVTZ. The functionals designed to treat dispersion behave erratically as the predictions of the most stable structure vary considerably. MP2 predicts the experimentally observed structure (H-bonded) to be the least stable, while single point CCSD(T) at the MP2 optimized geometry correctly predicts the observed structure to be most stable. We have confirmed the assignment of the experimental structure using new calculations of the vibrational frequency shifts previously used to identify the structure. The MP2/cc-pVTZ vibrational calculations are in excellent agreement with the observations. All methods used to calculate the energies provide vibrational shifts that agree with the observed structure even though most do not predict this structure to be most stable. The implications for evaluating possible π-stacking in biologically important systems are discussed. PMID:22765283

  14. A reinvestigation of the dimer of para-benzoquinone and pyrimidine with MP2, CCSD(T), and DFT using functionals including those designed to describe dispersion.

    PubMed

    Marianski, Mateusz; Oliva, Antoni; Dannenberg, J J

    2012-08-02

    We reevaluate the interaction of pyridine and p-benzoquinone using functionals designed to treat dispersion. We compare the relative energies of four different structures: stacked, T-shaped (identified for the first time), and two planar H-bonded geometries using these functionals (B97-D, ωB97x-D, M05, M05-2X, M06, M06L, and M06-2X), other functionals (PBE1PBE, B3LYP, X3LYP), MP2, and CCSD(T) using basis sets as large as cc-pVTZ. The functionals designed to treat dispersion behave erratically as the predictions of the most stable structure vary considerably. MP2 predicts the experimentally observed structure (H-bonded) to be the least stable, while single-point CCSD(T) at the MP2 optimized geometry correctly predicts the observed structure to be the most stable. We have confirmed the assignment of the experimental structure using new calculations of the vibrational frequency shifts previously used to identify the structure. The MP2/cc-pVTZ vibrational calculations are in excellent agreement with the observations. All methods used to calculate the energies provide vibrational shifts that agree with the observed structure even though most do not predict this structure to be most stable. The implications for evaluating possible π-stacking in biologically important systems are discussed.

  15. Accurate energetics of small molecules containing third-row atoms Ga-Kr: A comparison of advanced ab initio and density functional theory

    NASA Astrophysics Data System (ADS)

    Yockel, Scott; Mintz, Benjamin; Wilson, Angela K.

    2004-07-01

    Advanced ab initio [coupled cluster theory through quasiperturbative triple excitations (CCSD(T))] and density functional (B3LYP) computational chemistry approaches were used in combination with the standard and augmented correlation consistent polarized valence basis sets [cc-pVnZ and aug-cc-pVnZ, where n=D(2), T(3), Q(4), and 5] to investigate the energetic and structural properties of small molecules containing third-row (Ga-Kr) atoms. These molecules were taken from the Gaussian-2 (G2) extended test set for third-row atoms. Several different schemes were used to extrapolate the calculated energies to the complete basis set (CBS) limit for CCSD(T) and the Kohn-Sham (KS) limit for B3LYP. Zero point energy and spin orbital corrections were included in the results. Overall, CCSD(T) atomization energies, ionization energies, proton affinities, and electron affinities are in good agreement with experiment, within 1.1 kcal/mol when the CBS limit has been determined using a series of two basis sets of at least triple zeta quality. For B3LYP, the overall mean absolute deviation from experiment for the three properties and the series of molecules is more significant at the KS limit, within 2.3 and 2.6 kcal/mol for the cc-pVnZ and aug-cc-pVnZ basis set series, respectively.

  16. Uncertainty analysis of depth predictions from seismic reflection data using Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.

    2018-06-01

    Estimating the depths of target horizons from seismic reflection data is an important task in exploration geophysics. To constrain these depths we need a reliable and accurate velocity model. Here, we build an optimum 2-D seismic reflection data processing flow focused on pre-stack deghosting filters and velocity model building and apply Bayesian methods, including Gaussian process emulation and Bayesian History Matching, to estimate the uncertainties of the depths of key horizons near the Deep Sea Drilling Project (DSDP) borehole 258 (DSDP-258) located in the Mentelle Basin, southwest of Australia, and compare the results with the drilled core from that well. Following this strategy, the tie between the modelled and observed depths from DSDP-258 core was in accordance with the ±2σ posterior credibility intervals and predictions for depths to key horizons were made for the two new drill sites, adjacent to the existing borehole of the area. The probabilistic analysis allowed us to generate multiple realizations of pre-stack depth migrated images, these can be directly used to better constrain interpretation and identify potential risk at drill sites. The method will be applied to constrain the drilling targets for the upcoming International Ocean Discovery Program, leg 369.

  17. Simulation of friction stir drilling process

    NASA Astrophysics Data System (ADS)

    Vijayabaskar, P.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    The project is the study of the thermal drilling process. The process is a hole forming process in the sheet metals using the heat generated by means of friction. The main advantage of the process over the conventional drilling process is that the holes formed using this process does not need any backing arrangements such as weld nuts, rivet nuts etc. Because the extruded bush itself acts as a supporting structure for the fasteners. This eliminates the need for the access to the backside of the work material for fastening operations. The major factors contributing the thermal drilling operation are the spindle speed and the thrust force required for forming a hole. The process of finding out the suitable thrust force and the speed for drilling a particular material with particular thickness is a tedious process. The process can be simplified by forming a mathematical model by combining the empirical formulae from the literature. These formulae were derived in the literature from the experimental trials by following certain assumptions. In this paper a suitable mathematical model is formed by replicating the experiments and tried to be validated by the results from numerical analysis. The numerical analysis of the model is done using the ANSYS software.

  18. S-Wave Velocity Structure of the Taiwan Chelungpu Fault Drilling Project (TCDP) Site Using Microtremor Array Measurements

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2015-10-01

    The Taiwan Chelungpu Fault Drilling Project (TCDP) drilled a 2-km-deep hole 2.4 km east of the surface rupture of the 1999 Chi-Chi earthquake ( M w 7.6), near the town of Dakeng. Geophysical well logs at the TCDP site were run over depths ranging from 500 to 1,900 m to obtain the physical properties of the fault zones and adjacent damage zones. These data provide good reference material for examining the validity of velocity structures using microtremor array measurement; therefore, we conduct array measurements for a total of four arrays at two sites near the TCDP drilling sites. The phase velocities at frequencies of 0.2-5 Hz are calculated using the frequency-wavenumber ( f- k) spectrum method. Then the S-wave velocity structures are estimated by employing surface wave inversion techniques. The S-wave velocity from the differential inversion technique gradually increases from 1.52 to 2.22 km/s at depths between 585 and 1,710 m. This result is similar to those from the velocity logs, which range from 1.4 km/s at a depth of 597 m to 2.98 km/s at a depth of 1,705 m. The stochastic inversion results are similar to those from the seismic reflection methods and the lithostratigraphy of TCDP-A borehole, comparatively. These results show that microtremor array measurement provides a good tool for estimating deep S-wave velocity structure.

  19. Grain Refinement of Steels through Solidification Modification

    DTIC Science & Technology

    2017-09-14

    each student work on some type of design project related to the research project. This ranges from new equipment to fixlures. Through the project a...addressed via this process. Finally, the students build their design by themselves or with their peers. This results in immediate feedback on the...using the various CNC mills to create experimental apparatus. Students receive training on bow to use drill presses, grinding benches, lathes. mills

  20. Implicit and Explicit: An Experiment in Applied Psycholinguistics, Assessing Different Methods of Teaching Grammatical Structures in English as a Foreign Language.

    ERIC Educational Resources Information Center

    Olsson, Margareta

    Project 3 of the GUME research project on foreign language teaching methods, in line with Projects 1 and 2, questions whether the best effect in language teaching is achieved solely by intensive drilling of the structure in question (the implicit method) or if grammatical explanations further the assimilation of the patterns so that, within the…

  1. Geothermal materials development

    NASA Astrophysics Data System (ADS)

    Kukacka, L. E.

    1991-12-01

    Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY-91, utility company sponsored 'full cost' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY-91, the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO2-resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

  2. Geothermal observation wells, Mt. Hood, Oregon. Final report, October 4, 1977-July 9, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covert, W.F.; Meyer, H.J.

    1979-11-01

    Exploration drilling operations were conducted which included the deepening of an existing hole, designated as Old Maid Flat No. 1, from 1850 ft (564 m) to 4002 (1220 m) on the western approaches to Mt. Hood and the drilling of three new holes ranging from 940 ft (287 m) to 1340 ft (409 m). The Clear Fork hole, located in Old Maid Flat, was drilled to 1320 ft (402 m). The Zigzag hole was drilled to 940 ft (287 m) at the southwestern base of Mt. Hood in the Zigzag River valley. The remaining hole was drilled on the Timberlinemore » Lodge grounds which is on the south flank of Mt. Hood at an elevation of about 6000 ft (1829 m) above sea level. The deepening project designated as Old Maid Flat No. 1 encountered a maximum bottom hole temperature of about 180/sup 0/F (82/sup 0/C) and is to this date the deepest exploratory hole in the Mt. Hood vicinity. No significant drilling problems were encountered. The Clear Fork and Zigzag River holes were completed without significant problems. The Timberline Lodge hole encountered severe drilling conditions, including unconsolidated formations. Two strings of tools were left in the hole from structural collapse of the hole. The hole was scheduled as a 2000 ft (610 m) test. Drilling did not proceed beyond 1350 ft (412 m) and due to junk it was unobstructed to a depth of 838 ft (255 m). Observation pipe was installed to 735 ft (224 m) due to further disintegration of the hole. The work was prematurely terminated due to weather conditions.« less

  3. Results of the exploratory drill hole Ue5n,Frenchman Flat, Nevada Test Site. [Geologic and geophysical parameters of selected locations with anomalous seismic signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramspott, L.D.; McArthur, R.D.

    1977-02-18

    Exploratory hole Ue5n was drilled to a depth of 514 m in central Frenchmam Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA) to determine the geologic and geophysical parameters of selected locations with anomalous seismic signals. The specific goal of drilling Ue5n was to provide the site characteristics for emplacement sites U5b and U5e. We present here data on samples, geophysical logs, lithology and stratigraphy, and depth to the water table. From an analysis of the measurements of the physical properties, a set of recommendedmore » values is given.« less

  4. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.

    2002-07-24

    This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterizemore » and grade each field's potential for drilling horizontal laterals from existing development wells.« less

  5. Answers from deep inside the Earth; Continental Scientific Drilling at Cajon Pass, California

    USGS Publications Warehouse

    Russ, D.P.

    1989-01-01

    Drilling of a 12,000-foot-deep scientific well has been completed at Cajon Pass in southern California to measure crustal properties, to determine crustal structure, and to better understanding the generation of earthquakes along the San Andreas fault. A joint effort of the National Science Foundation (NFS) and the U.S Geological Survey (USGS), the well was begun in November 1986, and is one of the first projects to be undertaken in the new national Continental Scientific Drilling Program. This program aims to enchance our knowledge of the compostiion, sturcture, dynamics, and evolution of the continental crust and of how these factors affect the origin and distribution of mineral and energy resources and natural phenomena such as volcanic eruptions and earthquakes. 

  6. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out themore » pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.« less

  7. Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey

    USGS Publications Warehouse

    Poppe, Lawrence J.; Poppe, Lawrence J.

    1981-01-01

    In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.

  8. Data for ground-water test hole near Zamora, Central Valley Aquifer Project, California

    USGS Publications Warehouse

    French, J.J.; Page, R.W.; Bertoldi, G.L.

    1982-01-01

    Preliminary data are presented for the first of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 SE 1/4 sec. 34, T. 12 N. , R. 1 E., Yolo County, California, about 3 miles northeast of the town of Zamora. Drilled to a depth of 2,500 feet below land surface, the hole is cased to a depth of 190 feet and equipped with three piezometer tubes to depths of 947, 1,401, and 2,125 feet. A 5-foot well screen is at the bottom of each piezometer. Eighteen cores and 68 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, diatom identification, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  9. Use of geostatistics in planning optimum drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghose S.

    1989-08-01

    Application of geostatistics in the natural resources industry is well established. In a typical process of estimation, the statistically dependent geological data are used to predict the characteristics of a deposit. The estimator used is the best linear unbiased estimator (or BLUE), and a numerical factor of confidence is also provided. The natural inhomogeneity and anisotropy of a deposit are also quantified with preciseness. Drilling is the most reliable way of obtaining data for mining and related industries. However, it is often difficult to decide what is the optimum number of drill holes necessary for evaluation. In this paper, sequentialmore » measures of percent variation at 95% confidence level of a geological variable have been used to decipher economically optimum drilling density. A coal reserve model has been used to illustrate the method and findings. Fictitious drilling data were added (within the domain of population characteristics) in stages, to obtain a point of stability, beyond which the gain was significant (diminishing marginal benefit). The final relations are established by graphically projecting and comparing two variables - cost and precision. By mapping the percent variation at each stage, the localized areas of discrepancies can be identified. These are the locations where additional drilling is needed. The system can be controlled if performed at progressive stages and the preciseness toward stability is monitored.« less

  10. Geologic cross section, gas desorption, and other data from four wells drilled for Alaska rural energy project, Wainwright, Alaska, coalbed methane project, 2007-2009

    USGS Publications Warehouse

    Clark, Arthur C.; Roberts, Stephen B.; Warwick, Peter D.

    2010-01-01

    Energy costs in rural Alaskan communities are substantial. Diesel fuel, which must be delivered by barge or plane, is used for local power generation in most off-grid communities. In addition to high costs incurred for the purchase and transport of the fuel, the transport, transfer, and storage of fuel products pose significant difficulties in logistically challenging and environmentally sensitive areas. The Alaska Rural Energy Project (AREP) is a collaborative effort between the United States Geological Survey (USGS) and the Bureau of Land Management Alaska State Office along with State, local, and private partners. The project is designed to identify and evaluate shallow (<3,000 ft) subsurface resources such as coalbed methane (CBM) and geothermal in the vicinity of rural Alaskan communities where these resources have the potential to serve as local-use power alternatives. The AREP, in cooperation with the North Slope Borough, the Arctic Slope Regional Corporation, and the Olgoonik Corporation, drilled and tested a 1,613 ft continuous core hole in Wainwright, Alaska, during the summer of 2007 to determine whether CBM represents a viable source of energy for the community. Although numerous gas-bearing coal beds were encountered, most are contained within the zone of permafrost that underlies the area to a depth of approximately 1,000 ft. Because the effective permeability of permafrost is near zero, the chances of producing gas from these beds are highly unlikely. A 7.5-ft-thick gas-bearing coal bed, informally named the Wainwright coal bed, was encountered in the sub-permafrost at a depth of 1,242 ft. Additional drilling and testing conducted during the summers of 2008 and 2009 indicated that the coal bed extended throughout the area outlined by the drill holes, which presently is limited to the access provided by the existing road system. These tests also confirmed the gas content of the coal reservoir within this area. If producible, the Wainwright coal bed contains sufficient gas to serve as a long-term source of energy for the community.

  11. On basis set superposition error corrected stabilization energies for large n-body clusters.

    PubMed

    Walczak, Katarzyna; Friedrich, Joachim; Dolg, Michael

    2011-10-07

    In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections. © 2011 American Institute of Physics

  12. A comparison of the coupled cluster and internally contracted averaged coupled-pair functional levels of theory for the calculation of the MCH2(+) binding energies for M = Sc to Cu

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Scuseria, Gustavo E.

    1992-01-01

    The correlation contribution to the M-C binding energy for the MCH2(+) systems can exceed 100 kcal/mol. At the self-consistent field (SCF) level, these systems can be more than 50 kcal/mol above the fragment energies. In spite of the poor zeroth-order reference, the coupled cluster single and double excitation method with a perturbational estimate of triple excitations, CCSD(T), method is shown to provide an accurate description of these systems. The maximum difference between the CCSD(T) and internally contracted averaged coupled-pair functional binding energies is 1.5 kcal/mol for CrCH2(+), with the remaining systems agreeing to within 1.0 kcal/mol.

  13. Ab initio/DFT/GIAO-CCSD(T) calculational study of the t-butyl cation: comparison of experimental data with structures, energetics, IR vibrational frequencies, and 13C NMR chemical shifts indicating preferred C(s) conformation.

    PubMed

    Rasul, Golam; Chen, Jonathan L; Prakash, G K Surya; Olah, George A

    2009-06-18

    The C(s) conformation of the tert-butyl cation 3 was established to be the preferred global energy minimum using a combination of ab initio, DFT, and CCSD(T) methodology with correlation-consistent basis sets. The potential energy surface of methyl rotation involving the C(3v), C(s), and C(3h) forms, however, in accord with previous studies, is quite flat. The computed IR absorptions of 3 indicate that it has the greatest degree of electron donation from C-H bonds into the C(+)-C bonds. The experimental (13)C NMR chemical shifts also agree very well with the experimental data.

  14. Symmetry-adapted perturbation theory interaction energy decomposition for some noble gas complexes

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Sadlej, Joanna

    2008-06-01

    This Letter contains a study of the interaction energy in HArF⋯N 2 and HArF⋯P 2 complexes. Symmetry-adapted perturbation theory (SAPT) has been applied to analyze the electrostatic, induction, dispersion and exchange contributions to the total interaction energy. The interaction energy has also been obtained by supermolecular method at the MP2, MP4, CCSD, CCSD(T) levels. The interaction energy for the studied complexes results from a partial cancelation of large attractive electrostatic, induction, dispersion terms by a strong repulsive exchange contribution. The induction and dispersion effects proved to be crucial in establishing the preference for the colinear HArF⋯N 2 and HArF⋯P 2 structures and shift direction of νHAr stretching vibrations.

  15. The OH-initiated atmospheric oxidation of cyclopentene: A coupled-cluster study of the potential energy surface

    NASA Astrophysics Data System (ADS)

    Zhang, Weichao; Du, Benni

    2013-07-01

    We performed the first theoretical potential energy surface investigation on the mechanism and products of the reaction of OH+ cyclopentene in the absence and presence of O2 by using high-level quantum chemical methods CCSD(T)/6-311++G(d,p)//BH&HLYP/6-311++G(d,p)+ZPE × 0.9335. Energies for several species are also refined at the CCSD(T)/cc-pVTZ levels of theory. The calculations indicate that the major products are cyclopentanone, 1-cyclopenten-1-ol, and 2-cyclopenten-1-ol in the absence of O2, which are in qualitative accordance with the available experimental observations. In the presence of O2, the dominant products are predicted to be glutaraldehyde and 1,2-epoxycyclopentanol.

  16. The Successive OH Binding Energies of Sc(OH)n+ for n=1-3

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1996-01-01

    The geometries of Sc(OH)n+, for n = 1-3, have been optimized using density functional theory, in conjunction with the B3LYP hybrid functional. The zero-point energies are computed at the same level of theory. The successive OH bond energies have been computed at the CCSD(T) level for ScOH+ and Sc(OH)2+. The computed result for ScOD+ is in excellent agreement with the recent experiment of Armentrout and co-workers. There is a dramatic drop for the third OH, because Sc+ has only two valence electrons and therefore the bonding changes when the third OH is added. The difference between the B3LYP and CCSD(T) OH binding energies for the first two OH groups is discussed.

  17. Phenylalanyl-Glycyl-Phenylalanine Tripeptide: A Model System for Aromatic-Aromatic Side Chain Interactions in Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, Haydee; Pluhackova, Kristyna; Hobza, Pavel

    The performance of a wide range of quantum chemical calculations for the ab initio study of realistic model systems of aromatic-aromatic side chain interactions in proteins (in particular those π-π interactions occurring between adjacent residues along the protein sequence) is here assessed on the phenylalanyl-glycyl-phenylalanine (FGF) tripeptide. Energies and geometries obtained at different levels of theory are compared with CCSD(T)/CBS benchmark energies and RI-MP2/cc-pVTZ benchmark geometries, respectively. Consequently, a protocol of calculation alternative to the very expensive CCSD(T)/CBS is proposed. In addition to this, the preferred orientation of the Phe aromatic side chains is discussed and compared with previous resultsmore » on the topic.« less

  18. Initial results from the ICDP SCOPSCO drilling project, Lake Ohrid (Macedonia, Albania)

    NASA Astrophysics Data System (ADS)

    Francke, A.; Wagner, B.; Krastel, S.; Lindhorst, K.; Wilke, T.; Zanchetta, G.; Sulpizio, R.; Grazhdani, A.; Reicherter, K. R.

    2013-12-01

    Lake Ohrid (Macedonia, Albania) is about 30 km long and 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe, providing a high-resolution, continuous archive of environmental change and tectonic and tephrostratigraphic history in the Eastern Mediterranean Region. The deep drilling campaign at Lake Ohrid in spring 2013 within the scope of the ICDP project SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the 'DEEP' site in the center of the lake, seismic data implied a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Coarse-grained gravel and pebbles underlying clay and shallow water facies sediments hampered deeper penetration. 6 boreholes at the 'DEEP' site resulted in a total of 1526 m of sediment cores and a composite field recovery of 544 m (95%). Initial geochemical and magnetic susceptibility data imply that the sediments from 'DEEP' site are highly sensitive to climate and environmental variations in the Balkan area probably over the last 1.5 Mio years. Long-term climate oscillations on a glacial/interglacial timescale and also short-term events such as Dansgaard-Oescher cycles during the last glacial period can be inferred from the initial data. Although a high amount of greigite complicates the paleomagnetic dating of the recovered sediments, a robust age model can likely be inferred from numerous tephras and cryptotephras, which are indicated by spikes in the magnetic susceptibility data. Three additional sites at lateral parts of Lake Ohrid were drilled to un-ravel lake level fluctuations, catchment dynamics, biodiversity and evolution processes ('Cerava', deepest drilled depth: 90 m), active tectonics and spring dynamics ('Gradiste', deepest drilled depth: 123 m), and the early development of the Ohrid Basin ('Pestani', deepest drilled depth: 194 m). The composite field recovery is >90% at each site. The initial results obtained from the field campaign indicate that Lake Ohrid provides an extraordinary record of environmental change in the northern Mediterranean and will become a key site for a better understanding of speciation triggers.

  19. The shape of Au8: gold leaf or gold nugget?

    NASA Astrophysics Data System (ADS)

    Serapian, Stefano A.; Bearpark, Michael J.; Bresme, Fernando

    2013-06-01

    The size at which nonplanar isomers of neutral, pristine gold nanoclusters become energetically favored over planar ones is still debated amongst theoreticians and experimentalists. Spectroscopy confirms planarity is preferred at sizes up to Au7, however, starting with Au8, the uncertainty remains for larger nanoclusters. Au8 computational studies have had different outcomes: the planar D4h ``cloverleaf'' isomer competes with the nonplanar Td, C2v and D2d ``nugget'' isomers for greatest energetic stability. We here examine the 2D vs. 3D preference in Au8 by presenting our own B2PLYP, MP2 and CCSD(T) calculations on these isomers: these methods afford a better treatment of long-range correlation, which is at the root of gold's characteristic aurophilicity. We then use findings from these high-accuracy computations to evaluate two less expensive DFT approaches, applicable to much larger nanoclusters: alongside the standard functional PBE, we consider M06-L (highly parametrized to incorporate long-range dispersive interactions). We find that increasing basis set size within the B2PLYP framework has a greater destabilizing effect on the nuggets than it has on the Au8 cloverleaf. Our CCSD(T) and B2PLYP predictions, replicated by DFT-PBE, all identify the cloverleaf as the most stable isomer; MP2 and DFT-M06-L show overestimation of aurophilicity, and favor, respectively, the nonplanar D2d and Td nuggets in its stead. We conclude that PBE, which more closely reproduces CCSD(T) findings, may be a better candidate density functional for the simulation of gold nanoclusters in this context.The size at which nonplanar isomers of neutral, pristine gold nanoclusters become energetically favored over planar ones is still debated amongst theoreticians and experimentalists. Spectroscopy confirms planarity is preferred at sizes up to Au7, however, starting with Au8, the uncertainty remains for larger nanoclusters. Au8 computational studies have had different outcomes: the planar D4h ``cloverleaf'' isomer competes with the nonplanar Td, C2v and D2d ``nugget'' isomers for greatest energetic stability. We here examine the 2D vs. 3D preference in Au8 by presenting our own B2PLYP, MP2 and CCSD(T) calculations on these isomers: these methods afford a better treatment of long-range correlation, which is at the root of gold's characteristic aurophilicity. We then use findings from these high-accuracy computations to evaluate two less expensive DFT approaches, applicable to much larger nanoclusters: alongside the standard functional PBE, we consider M06-L (highly parametrized to incorporate long-range dispersive interactions). We find that increasing basis set size within the B2PLYP framework has a greater destabilizing effect on the nuggets than it has on the Au8 cloverleaf. Our CCSD(T) and B2PLYP predictions, replicated by DFT-PBE, all identify the cloverleaf as the most stable isomer; MP2 and DFT-M06-L show overestimation of aurophilicity, and favor, respectively, the nonplanar D2d and Td nuggets in its stead. We conclude that PBE, which more closely reproduces CCSD(T) findings, may be a better candidate density functional for the simulation of gold nanoclusters in this context. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01500a

  20. > Exploring the Scandinavian Mountain Belt by Deep Drilling (COSC)

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Gee, D. G.; Lorenz, H.; Pascal, C.; Pedersen, K.; Tsang, C.-F.

    2012-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project proposes to drill two fully cored scientific boreholes, both to c. 2.5 km depth, in the Swedish Caledonides, one near the town of Åre (COSC 1) and the other further east (COSC 2). Together they will provide a c. 5 km deep high-resolution mid-crustal section through this major mid-Palaeozoic orogen. Main project objectives include (i) improved understanding of mountain building processes (orogeny), (ii) investigation of the geothermal gradient and its response to palaeoclimatic influences, (iii) the hydrogeological-hydrochemical state of the mountain belt, (iv) the deep biosphere in the metamorphic rocks and crystalline basement, and (v) calibration of surface geophysics and geology. The Caledonide Orogen is comparable in size and many other respects to today's Himalayan mountain belt. Silurian collision with underthrusting of the paleo-continent Baltica below Laurentia resulted in widespread formation of eclogite. Major allochthons were transported many hundreds of kilometers onto the Baltoscandian Platform, including high-grade metamorphic rocks and migmatites which were generated during continental margin subduction and emplaced ductilely at mid-crustal levels. COSC will provide detailed insight into mid-Palaeozoic mountain building processes and further our understanding of past, present and future orogen dynamics. Located in a key-area for Caledonian geology, it is close to a major geophysical transect across the mountain belt which has been complemented recently with high-resolution reflection seismics and aerogeophysics for site-selection. The COSC research program is being developed by five working groups, geology, geophysics, geothermics, hydrogeology and microbiology. It has direct relevance for society by improving our understanding of mountain building processes, hydrological-hydrochemical regimes in mountain areas and Precambrian shields, deep subsurface conditions for underground engineering, ore genesis and assessment of geothermal potential. After a general scientific workshop supported by ICDP in 2010, the hydrogeological aspects of deep drilling were the topic of a separate workshop last year; orogen dynamics will provide a focus at EGU; and geothermics research will be addressed at a workshop in Autumn 2012. The geothermics workshop will be announced on the ICDP homepage. Partial funding for the drilling has been achieved through national sources and ICDP. Additional funding (c. 500000€) is being sought to allow drilling to commence in 2013. Scientific and financial partners, both from academia and industry, are welcome to the project. The presentation will review the current status of the COSC project and the research leading up to the site selection for COSC 1.

  1. Groundwater Exploration for Rural Communities in Ghana, West Africa

    NASA Astrophysics Data System (ADS)

    McKay, W. A.

    2001-05-01

    Exploration for potable water in developing countries continues to be a major activity, as there are more than one billion people without access to safe drinking water. Exploration for groundwater becomes more critical in regions where groundwater movement and occurrence is controlled by secondary features such as fractures and faults. Drilling success rates in such geological settings are generally very low, but can be improved by integrating geological, hydrogeological, aerial photo interpretation with land-based geophysical technology in the selection of drilling sites. To help alleviate water supply problems in West Africa, the Conrad N. Hilton Foundation and other donors, since 1990, have funded the World Vision Ghana Rural Water Project (GRWP) to drill wells for potable water supplies in the Greater Afram Plains (GAP) of Ghana. During the first two years of the program, drilling success rates using traditional methods ranged from 35 to 80 percent, depending on the area. The average drilling success rate for the program was approximately 50 percent. In an effort to increase the efficiency of drilling operations, the Desert Research Institute evaluated and developed techniques for application to well-siting strategies in the GAP area of Ghana. A critical project element was developing technical capabilities of in-country staff to independently implement the new strategies. Simple cost-benefit relationships were then used to evaluate the economic advantages of developing water resources using advanced siting methods. The application of advanced methods in the GAP area reveal an increase of 10 to 15 percent in the success rate over traditional methods. Aerial photography has been found to be the most useful of the imagery products covering the GAP area. An effective approach to geophysical exploration for groundwater has been the combined use of EM and resistivity methods. Economic analyses showed that the use of advanced methods is cost-effective when success rates with traditional methods are less than 70 to 90 percent. Finally, with the focus of GRWP activities shifting to Ghana's northern regions, new challenges in drilling success rates are being encountered. In certain districts, success rates as low as 35 percent are observed, raising questions about the efficacy of existing well-siting strategies in the current physical setting, and the validity of traditional cost-benefit analyses for assessing the economic aspects of water exploration in drought-stricken areas.

  2. A New Method of Stress Measurement Based upon Elastic Deformation of Core Sample with Stress Relief by Drilling

    NASA Astrophysics Data System (ADS)

    Ito, T.; Funato, A.; Tamagawa, T.; Tezuka, K.; Yabe, Y.; Abe, S.; Ishida, A.; Ogasawara, H.

    2017-12-01

    When rock is cored at depth by drilling, anisotropic expansion occurs with the relief of anisotropic rock stresses, resulting in a sinusoidal variation of core diameter with a period of 180 deg. in the core roll angle. The circumferential variation of core diameter is given theoretically as a function of rock stresses. These new findings can lead various ideas to estimate the rock stress from circumferential variation of core diameter measured after the core retrieving. In the simplest case when a single core sample is only available, the difference between the maximum and minimum components of rock stress in a plane perpendicular to the drilled hole can be estimated from the maximum and minimum core diameters (see the detail in, Funato and Ito, IJRMMS, 2017). The advantages of this method include, (i) much easier measurement operation than those in other in-situ or in-lab estimation methods, and (ii) applicability in high stress environment where stress measurements need pressure for packers or pumping system for the hydro-fracturing methods higher than their tolerance levels. We have successfully tested the method at deep seismogenic zones in South African gold mines, and we are going to apply it to boreholes collared at 3 km depth and intersecting a M5.5 rupture plane several hundred meters below the mine workings in the ICDP project of "Drilling into Seismogenic zones of M2.0 - M5.5 earthquakes in deep South African gold mines" (DSeis) (e.g., http://www.icdp-online.org/projects/world/africa/orkney-s-africa/details/). If several core samples with different orientation are available, all of three principal components of 3D rock stress can be estimated. To realize this, we should have several boreholes drilled in different directions in a rock mass where the stress field is considered to be uniform. It is commonly carried out to dill boreholes in different directions from a mine gallery. Even in a deep borehole drilled vertically from the ground surface, the downhole tool of rotary sidewall coring allows us to take core samples with different orientations at depths of interest from the sidewall of the vertically-drilled borehole. The theoretical relationship between the core expansion and rock stress has been verified through the examination of core samples prepared in laboratory experiments and retrieved field cores.

  3. GPRsurvey as a part of land-use planning in Levi, Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Kupila, Juho

    2010-05-01

    The need for detailed information regarding overlying soil layers in townplanning areas has become an important issue, especially in certain areas of Finnish Lapland where the lack of usable soil materials is obvious. Use of ground penetrating radar (GPR) is a fast and cost-effective method of determining the structure of subsurface layers and quantity of soil material above the bedrock surface. This environmental project was carried out by the Geological Survey of Finland together with local enterprises, environmental authorities and an EU structural fund. One of the goals of the project was to use GPR to determine the thickness of soil layers and the differences in material above the bedrock level in certain target areas of the project. The study area is located in the municipality of Kittilä, in the center of the Levi ski resort. The study area (total size of 28 hectares) and surroundings are under fast townplanning and there are, for example, plans for a hotel, apartments and underground garages and service routes, thus it is very important to determine the volume of quarrying. As well, the quality and quantity of existing soil is valid data for the reuse of materials and upcoming construction. One drilling program has already been executed in the area (11 boreholes), so GPR profiles were planned based on this drilling data, soil mapping data and data collected from the townplanning map of the area. According to these earlier drillings and soil mapping, most of the soil in the study area was morainic, so the antenna for the GPR-survey was set at 100 MHz. The positioning method used in this project was VRS-GPS (Virtual Reference Station Global Positioning System), which is a very accurate positioning system to use. Accuracy can be as good as a few centimeters. After the GPR-survey, secondary drilling program was carried out according to the GPR-profiles, thus the total amount of collected data from the planning area was 23 boreholes and 3500 meters of GPR-profiles. In the second phase of the project, all the collected data was used as a reference to build a 3D-model of the planning area. Interpreted GPR-profiles, surface soil map and borehole data formed a database from which an exact model of the study area subsurface was created using GISsoftware. Acquired results show the feasibility of this method to help local actors and authorities in planning and constructing of the area, in present and upcoming projects.

  4. Determining the Water Ice Content of Martian Regolith by Nonlinear Spectral Mixture Modeling

    NASA Technical Reports Server (NTRS)

    Gyalay, S.; Noe Dobrea, E. Z.

    2015-01-01

    In the search for evidence of life, Icebreaker will drill in to the Martian ice-rich regolith to collect samples, which will then be analyzed by an array of instruments designed to identify biomarkers. In addition, drilling into the subsurface will provide the opportunity to assess the vertical distribution of ice to a depth of 1 meter. The purpose of this particular project was to understand the uncertainties involved in the use of the imaging system to constrain the water ice content in regolith samples.

  5. Special Operations Forces Language and Culture Needs Assessment Project: Defense Language Aptitude Battery (DLAB): Perspectives from the Field

    DTIC Science & Technology

    2010-09-29

    facilities (the room was 100 degrees in the middle of a hot North Carolina summer) and because our drill sergeants did not let us get enough sleep the...inadquate facilities (the room was 100 degrees in the middle of a hot North Carolina summer) and because our drill sergeants did not let us get enough ...environment was too hot. Furthermore, some operators reported they did not receive adequate sleep the night before the test due to other training

  6. Environmental Assessment for Atlantic White Cedar Restoration Project at Dare County Range, Seymour Johnson Air Force Base, North Carolina

    DTIC Science & Technology

    2014-12-23

    bond of$5,000 with ENR running to Stale of NC: conditional that n Permit to drill exploratory oil or gas well m1y well opened by drill operator shall...Native American Consultation B – U.S. Fish and Wildlife Service Endangered Species Consultation C – Greenhouse Gas Estimates D – Air Emissions...on the north by the Albemarle Sound, on the west by the Alligator River, on the east by the Croatan Sound, and on the southeast by the Pamlico Sound

  7. A proposal to investigate higher enthalpy geothermal systems in the USA

    NASA Astrophysics Data System (ADS)

    Elders, W. A.

    2013-12-01

    After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly productive capable of generating >35 MWe from superheated steam at a well-head temperature of ~450°C. Plans for deep drilling to explore for deeper, much higher enthalpy, geothermal resources are already underway in the Taupo Volcanic Zone of New Zealand (Project HADES), and in northeast Japan the 'Beyond Brittle Project' (Project JBBP) is an ambitious program attempting to create an EGS reservoir in ~500oC rocks. However in the USA there is no comparable national program to develop such resources. There is a significant undeveloped potential for developing high-enthalpy geothermal systems in the western USA, Hawaii and Alaska. The purpose of this paper is to encourage the formation of a consortium to systematically explore, assess, and eventually develop such higher-enthalpy geothermal resources. Not only would this help develop large new sources of energy but it would permit scientific studies of pressure-temperature regimes not otherwise available for direct investigation, such as the coupling of magmatic and hydrothermal systems.

  8. Initial Results of Gulf of Mexico Gas Hydrate Joint Industry Program Leg II Logging-While-Drilling Operations

    NASA Astrophysics Data System (ADS)

    Boswell, R. M.; Collett, T. S.; Frye, M.; McConnell, D.; Shedd, W.; Shelander, D.; Dai, J.; Mrozewski, S.; Guerin, G.; Cook, A.; Dufrene, R.; Godfriaux, P. D.; Roy, R.; Jones, E.

    2009-12-01

    The Gulf of Mexico gas hydrates Joint Industry Project (the JIP), a cooperative research program between the US Department of Energy and an international industrial consortium under the leadership of Chevron, conducted its “Leg II” logging-while-drilling operations in April and May of 2009. JIP Leg II was intended to expand the existing JIP work from previous emphasis on fine-grained sedimentary systems to the direct evaluation of gas hydrate in sand-dominated reservoirs. The selection of the locations for the JIP Leg II drilling were the result of a geological and geophysical prospecting approach that integrated direct geophysical evidence of gas hydrate-bearing strata with evidence of gas sourcing and migration and occurrence of sand reservoirs within the gas hydrate stability zone. Logging-while-drilling operations included the drilling of seven wells at three sites. The expedition experienced minimal operational problems with the advanced LWD tool string, and successfully managed a number of shallow drilling challenges, including borehole breakouts, and shallow gas and water flows. Two wells drilled in Walker Ridge block 313 (WR-313) confirmed the pre-drill predictions by discovering gas hydrates at high saturations in multiple sand horizons with reservoir thicknesses up to 50 ft. In addition, drilling in WR-313 discovered a thick, strata-bound interval of grain-displacing gas hydrate in shallow fine-grained sediments. Two of three wells drilled in Green Canyon block 955 (GC-955) confirmed the pre-drill prediction of extensive sand occurrence with gas hydrate fill along the crest of a structure with positive indications of gas source and migration. In particular, well GC955-H discovered ~100 ft of gas hydrate in sand at high saturations. Two wells drilled in Alaminos Canyon block 21 (AC-21) confirmed the pre-drill prediction of potential extensive occurrence of gas hydrates in shallow sand reservoirs at low to moderate saturations; however, further data collection and analyses at AC-21 will be needed to better understand the nature of the pore filling material. JIP Leg II fully met its scientific objectives with the collection of abundant high-quality data from gas hydrate bearing sands in the Gulf of Mexico. Ongoing work within the JIP will enable further validation of the geophysical and geological methods used to predict the occurrence of gas hydrate. Expedition results will also support the selection of locations for future JIP drilling, logging and coring operations.

  9. Can tephra be recognized in Hawaiian drill core, and if so, what can be learned about the explosivity of Hawaiian volcanoes?

    NASA Astrophysics Data System (ADS)

    Lautze, N. C.; Haskins, E.; Thomas, D. M.

    2013-12-01

    Nearly 6000 feet of drill core was recently recovered from the Pohakula Training Area (PTA) near the Saddle Road between Mauna Loa and Mauna Kea volcanoes on Hawaii Island. Drilling was funded by the US Army with an objective to find a potable water source; the rock core was logged and archived thanks to funding from the National Science Foundation. Within the first few hundred meters, alluvial outwash from the slopes of Mauna Kea is underlain by post-shield Mauna Kea lavas. Below this depth the core is predominantly pahoehoe and to a lesser extent a'a lavas expected to be from Mauna Kea's shield stage volcanism. During the logging effort, and throughout the core, a number of suspect-pyroclastic deposits were identified (largely based on particle texture). These deposits will be examined in more detail, with results presented here. An effort will be made to determine whether explosive deposits can, in fact, be unequivocally identified in drill core. Two anticipated challenges are differentiating between: scoria and 'clinker' (the latter associated with a'a lava flows), and primary volcanic ash, loess, and glacial sediments. Recognition of explosive deposits in the PTA drill core would lend insight into Mauna Kea's explosive history, and potentially that of other Big Island volcanoes as well. If the characteristics of tephra in Hawaiian drill core can be identified, core from the Hawaiian Scientific Drilling Project (HSDP) and Scientific Observation Holes (SOH-1,2,4) may also be examined.

  10. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: Introduction and overview

    USGS Publications Warehouse

    Ruppel, C.; Boswell, R.; Jones, E.

    2008-01-01

    The Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) is a consortium of production and service companies and some government agencies formed to address the challenges that gas hydrates pose for deepwater exploration and production. In partnership with the U.S. Department of Energy and with scientific assistance from the U.S. Geological Survey and academic partners, the JIP has focused on studies to assess hazards associated with drilling the fine-grained, hydrate-bearing sediments that dominate much of the shallow subseafloor in the deepwater (>500 m) Gulf of Mexico. In preparation for an initial drilling, logging, and coring program, the JIP sponsored a multi-year research effort that included: (a) the development of borehole stability models for hydrate-bearing sediments; (b) exhaustive laboratory measurements of the physical properties of hydrate-bearing sediments; (c) refinement of new techniques for processing industry-standard 3-D seismic data to constrain gas hydrate saturations; and (d) construction of instrumentation to measure the physical properties of sediment cores that had never been removed from in situ hydrostatic pressure conditions. Following review of potential drilling sites, the JIP launched a 35-day expedition in Spring 2005 to acquire well logs and sediment cores at sites in Atwater Valley lease blocks 13/14 and Keathley Canyon lease block 151 in the northern Gulf of Mexico minibasin province. The Keathley Canyon site has a bottom simulating reflection at ???392 m below the seafloor, while the Atwater Valley location is characterized by seafloor mounds with an underlying upwarped seismic reflection consistent with upward fluid migration and possible shoaling of the base of the gas hydrate stability (BGHS). No gas hydrate was recovered at the drill sites, but logging data, and to some extent cores, suggest the occurrence of gas hydrate in inferred coarser-grained beds and fractures, particularly between 220 and 330 m below the seafloor at the Keathley Canyon site. This paper provides an overview of the results of the initial phases of the JIP work and introduces the 15 papers that make up this special volume on the scientific results related to the 2005 logging and drilling expedition.

  11. Paleomagnetism of the Oman Ophiolite: New Results from Oman Drilling Project Cores

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Till, J. L.; Koornneef, L.; Usui, Y.; Kim, H.; Morris, A.

    2017-12-01

    The Oman Drilling Project drilled holes at four sites in a transect through the southern massifs of the Samail ophiolite, and recovered 1500 m of igneous and metamorphic rocks. We focus on three sites from the oceanic crustal section including lower layered gabbros (GT1A), the mid-crustal layered to foliated gabbro transition (GT2A), and the shallower transition from sheeted dikes to varitextured gabbros (GT3A). Detailed core descriptions, analyses, and paleomagnetic measurements, were made on D/V Chikyu from July to September 2017 to utilize the core laboratory facilities similar to IODP expeditions. Shipboard measurements included anisotropy of magnetic susceptibility (AMS) and alternating field and thermal demagnetization of 597 discrete samples. Sample demagnetization behavior is varied from each of the cores, with some revealing multiple components of magnetization, and others yielding nearly univectorial data. The interpretation of results from the lower crustal cores is complicated by the pervasive presence of secondary magnetite. In almost all samples, a stable component was resolved (interpreted as a characteristic remanent magnetization) after removal of a lower-coercivity or lower unblocking-temperature component. The inclinations of the stable components in the core reference frame are very consistent in Hole GT1A. However, a transition from negative to positive inclinations in GT2A suggests some structural complexity, possibly as a result of intense late faulting activity. Both abrupt and gradual transitions between multiple zones of negative and positive inclinations occur in Hole GT3A. Interpretation and direct comparison of remanence between drill sites is difficult as recovered core pieces currently remain azimuthally unoriented, and GT2A was drilled at a plunge of 60°, whereas GT1A and GT3A were both drilled vertically. Work is ongoing to use borehole imagery to reorient the core pieces and paleomagnetic data into a geographic in situ reference frame. We will present an overview of preliminary AMS and remanence data that will be used in the future to 1) document deformational histories, 2) characterize magmatic flow directions at different structural levels, and 3) identify the magnetic mineralogy of remanence carriers throughout the oceanic crustal section.

  12. Determination of three-dimensional stress orientations in the Wenchuan earthquake Fault Scientific Drilling (WFSD) hole-1: A preliminary result by anelastic strain recovery measurements of core samples

    NASA Astrophysics Data System (ADS)

    Cui, J.; Lin, W.; Wang, L.; Tang, Z.; Sun, D.; Gao, L.; Wang, W.

    2010-12-01

    A great and destructive earthquake (Ms 8.0; Mw 7.9), Wunchuan earthquake struck on the Longmen Shan foreland trust zone in Sichuan province, China on 12 May 2008 (Xu et al., 2008; Episodes, Vol.31, pp.291-301). As a rapid response scientific drilling project, Wenchuan earthquake Fault Scientific Drilling (WFSD) started on 6 November 2008 shorter than a half of year from the date of earthquake main shock. The first pilot borehole (hole-1) has been drilled to the target depth (measured depth 1201 m MD, vertical depth 1179 m) at Hongkou, Dujianyan, Sichuan and passed through the main fault of the earthquake around 589 m MD. We are trying to determine three dimensional in-situ stress states in the WFSD boreholes by a core-based method, anelastic strain recovery (ASR) method (Lin et al., 2006; Tectonophysics, Vol4.26, pp.221-238). This method has been applied in several scientific drilling projects (TCDP: Lin et al., 2007; TAO, Vol.18, pp.379-393; NanTtoSEIZE: Byrne et al., 2009; GRL, Vol.36, L23310). These applications confirm the validity of using the ASR technique in determining in situ stresses by using drilled cores. We collected total 15 core samples in a depth range from 340 m MD to 1180 m MD, approximately for ASR measurements. Anelastic normal strains, measured every ten minutes in nine directions, including six independent directions, were used to calculate the anelastic strain tensors. The data of the ASR tests conducted at hole-1 is still undergoing analysis. As a tentative perspective, more than 10 core samples showed coherent strain recovery over one - two weeks. However, 2 or 3 core samples cannot be re-orientated to the global system. It means that we cannot rink the stress orientation determined by the core samples to geological structure. Unfortunately, a few core samples showed irregular strain recovery and were not analyzed further. The preliminary results of ASR tests at hole-1 show the stress orientations and stress regime changes a lot with the depth.

  13. Scientific drilling and the evolution of the earth system: climate, biota, biogeochemistry and extreme systems

    NASA Astrophysics Data System (ADS)

    Soreghan, G. S.; Cohen, A. S.

    2013-11-01

    A US National Science Foundation-funded workshop occurred 17-19 May 2013 at the University of Oklahoma to stimulate research using continental scientific drilling to explore earth's sedimentary, paleobiological and biogeochemical record. Participants submitted 3-page "pre-proposals" to highlight projects that envisioned using drill-core studies to address scientific issues in paleobiology, paleoclimatology, stratigraphy and biogeochemistry, and to identify locations where key questions can best be addressed. The workshop was also intended to encourage US scientists to take advantage of the exceptional capacity of unweathered, continuous core records to answer important questions in the history of earth's sedimentary, biogeochemical and paleobiologic systems. Introductory talks on drilling and coring methods, plus best practices in core handling and curation, opened the workshop to enable all to understand the opportunities and challenges presented by scientific drilling. Participants worked in thematic breakout sessions to consider questions to be addressed using drill cores related to glacial-interglacial and icehouse-greenhouse transitions, records of evolutionary events and extinctions, records of major biogeochemical events in the oceans, reorganization of earth's atmosphere, Lagerstätte and exceptional fossil biota, records of vegetation-landscape change, and special sampling requirements, contamination, and coring tool concerns for paleobiology, geochemistry, geochronology, and stratigraphy-sedimentology studies. Closing discussions at the workshop focused on the role drilling can play in studying overarching science questions about the evolution of the earth system. The key theme, holding the most impact in terms of societal relevance, is understanding how climate transitions have driven biotic change, and the role of pristine, stratigraphically continuous cores in advancing our understanding of this linkage. Scientific drilling, and particularly drilling applied to continental targets, provides unique opportunities to obtain continuous and unaltered material for increasingly sophisticated analyses, tapping the entire geologic record (extending through the Archean), and probing the full dynamic range of climate change and its impact on biotic history.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upchurch, J.L.; Money, R.P.

    On May 1, 1995 Phillips Petroleum`s Seastar Project began production as the first cluster-type subsea development in the Gulf of Mexico. Seastar production reached approximately 60 million cubic feet of gas per day (mmscfd) in November 1995 with the completion of a second {open_quotes}sales{close_quotes} line (a pipeline that transports the petroleum to shore) at the Vermilion Block 386-B host platform. Currently, the field is producing 40 to 50 mmscfd and plans are on schedule for the addition of a third producing well during the first quarter of 1997. All of the subsea equipment was installed using a drilling vessel andmore » onboard ROV support. The Seastar project began in 1987 when Phillips and its partners leased Garden Banks Blocks 70 and 71, located 110 miles south of Cameron Louisiana. The partnership drilled two wells in 1990 that discovered noncommercial hydrocarbon reserves. Following a reevaluation of the seismic data, Phillips assumed 100 percent ownership in the leases and drilled Garden Banks 71 No. 2, which discovered 350 feet of {open_quotes}pay{close_quotes} sand (oil resource) in March 1993. The initial phase of the project consisted of two satellite subsea trees tied back to a four-slot retrievable subsea manifold in 760 feet of water. Commingled gas production is delivered via dual subsea pipelines to a host platform processing facility in 300 feet of water 13 miles away in Vermilion Block 386-B, thence via sales lines to shore.« less

  15. Thermal regime of the State 2-14 well, Salton Sea Scientific Drilling Project

    USGS Publications Warehouse

    Sass, J.H.; Priest, S.S.; Duda, L.E.; Carson, C.C.; Hendricks, J.D.; Robison, L.C.

    1988-01-01

    Temperature logs were made repeatedly during breaks in drilling and both during and after flow tests in the Salton Sea Scientific Drilling Project well (State 2-14). The purpose of these logs was to assist in identifying zones of fluid loss or gain and to characterize reservoir temperatures. At the conclusion of the active phase of the project, a series of logs was begun in an attempt to establish the equilibrium temperature profile. Thermal gradients decrease from about 250 mK m-1 in the upper few hundred meters to just below 200 mK m-1 near the base of the conductive cap. Using one interpretation, thermal conductivities increase with depth (mainly because of decreasing porosity), resulting in component heat flows that agree reasonably well with the mean of about 450 mW m-2. This value agrees well with heat flow data from the shallow wells within the Salton Sea geothermal field. A second interpretation, in which measured temperature coefficients of quartz- and carbonate-rich rocks are used to correct thermal conductivity, results in lower mean conductivities that are roughly constant with depth and, consequently, systematically decreasing heat flux averaging about 350 mW m-2 below 300 m. This interpretation is consistent with the inference (from fluid inclusion studies) that the rocks in this part of the field were once several tens of degrees Celsius hotter than they are now. The age of this possible disturbance is estimated at a few thousand years. -from Authors

  16. Dehydrogenation reactions of cyclic C(2)B(2)N(2)H(12) and C(4)BNH(12) isomers.

    PubMed

    Matus, Myrna H; Liu, Shih-Yuan; Dixon, David A

    2010-02-25

    The energetics for different dehydrogenation pathways of C(2)B(2)N(2)H(12) and C(4)BNH(12) cycles were calculated at the B3LYP/DGDZVP2 and G3(MP2) levels with additional calculations at the CCSD(T)/complete basis set level. The heats of formation of the different isomers were calculated from the G3(MP2) relative energies and the heats of formation of the most stable isomers of c-C(2)B(2)N(2)H(6), c-C(2)B(2)N(2)H(12), and c-C(4)BNH(12) at the CCSD(T)/CBS including additional corrections together with the previously reported value for c-C(4)BNH(6). Different isomers were analyzed for c-C(2)B(2)N(2)H(x) and c-C(4)BNH(x) (x = 6 and 12), and the most stable cyclic structures were those with C-C-B-N-B-N and C-C-C-C-B-N sequences, respectively. The energetics for the stepwise loss of three H(2) were predicted, and the most feasible thermodynamic pathways were found. Dehydrogenation of the lowest energy c-C(2)B(2)N(2)H(12) isomer (6-H(12)) is almost thermoneutral with DeltaH(3dehydro) = 3.4 kcal/mol at the CCSD(T)/CBS level and -0.6 kcal/mol at the G3(MP2) level at 298 K. Dehydrogenation of the lowest energy c-C(4)BNH(12) isomer (7-H(12)) is endothermic with DeltaH(3dehydro) = 27.9 kcal/mol at the CCSD(T)/CBS level and 23.5 kcal/mol at the G3(MP2) level at 298 K. Dehydrogenation across the B-N bond is more favorable as opposed to dehydrogenation across the B-C, N-C, and C-C bonds. Resonance stabilization energies in relation to that of benzene are reported as are NICS NMR chemical shifts for correlating with the potential aromatic character of the rings.

  17. Comparing ab initio density-functional and wave function theories: the impact of correlation on the electronic density and the role of the correlation potential.

    PubMed

    Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J

    2011-09-21

    The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of exchange and correlation contributions within the KS framework that is more consistent with traditional ab initio wave function based methods.

  18. Characterization of the HSiN HNSi system in its electronic ground state

    NASA Astrophysics Data System (ADS)

    Lind, Maria C.; Pickard, Frank C.; Ingels, Justin B.; Paul, Ankan; Yamaguchi, Yukio; Schaefer, Henry F.

    2009-03-01

    The electronic ground states (X˜Σ+1) of HSiN, HNSi, and the transition state connecting the two isomers were systematically studied using configuration interaction with single and double (CISD) excitations, coupled cluster with single and double (CCSD) excitations, CCSD with perturbative triple corrections [CCSD(T)], multireference complete active space self-consistent field (CASSCF), and internally contracted multireference configuration interaction (ICMRCI) methods. The correlation-consistent polarized valence (cc-pVXZ), augmented correlation-consistent polarized valence (aug-cc-pVXZ) (X=T,Q,5), correlation-consistent polarized core-valence (cc-pCVYZ), and augmented correlation-consistent polarized core-valence (aug-cc-pCVYZ) (Y=T,Q) basis sets were used. Via focal point analyses, we confirmed the HNSi isomer as the global minimum on the ground state HSiN HNSi zero-point vibrational energy corrected surface and is predicted to lie 64.7kcalmol-1 (22640cm-1, 2.81eV) below the HSiN isomer. The barrier height for the forward isomerization reaction (HSiN→HNSi) is predicted to be 9.7kcalmol-1, while the barrier height for the reverse process (HNSi→HSiN) is determined to be 74.4kcalmol-1. The dipole moments of the HSiN and HNSi isomers are predicted to be 4.36 and 0.26D, respectively. The theoretical vibrational isotopic shifts for the HSiN/DSiN and HNSi/DNSi isotopomers are in strong agreement with the available experimental values. The dissociation energy for HSiN [HSiN(X˜Σ+1)→H(S2)+SiN(XΣ+2)] is predicted to be D0=59.6kcalmol-1, whereas the dissociation energy for HNSi [HNSi(X˜Σ+1)→H(S2)+NSi(XΣ+2)] is predicted to be D0=125.0kcalmol-1 at the CCSD(T)/aug-cc-pCVQZ level of theory. Anharmonic vibrational frequencies computed using second order vibrational perturbation theory are in good agreement with available matrix isolation experimental data for both HSiN and HNSi isomers root mean squared derivation (RMSD=9cm-1).

  19. Biological assessment: possible impacts of exploratory drilling in Section 18B, Naval Petroleum Reserve No. 2, Kern County, California on the endangered San Joaquin kit fox, blunt-nosed leopard lizard, and other sensitive species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Farrell, T.P.

    1981-11-01

    The proposed site is thought to provide habitat for the endangered an Joaquin kit fox and blunt-nosed leopard lizard, as well as the giant kangaroo rat and San Joaquin antelope ground squirrel. The objective of this study was to assess the possible impacts of the exploratory drilling on these species and their essential habitats. The proposed project will have four phases: (1) surveying; (2) site preparation; (3) drilling, logging, and testing; and (4) cleanup and restoration. During site preparation approximately 1.5 acres of vegetation and surface soils will be removed for an access road and well pad. During a 20-daymore » drilling, logging, and testing phase, there will be increased vehicular traffic, human activities, noise and ground vibrations, and illumination during the night. Although 1.5 acres of habitat will be disturbed, there is no evidence to indicate any of the species has burrows on-site that will be lost during land clearing. Loss of habitat will be mitigated during the cleanup and restoration phases when disturbed areas will be revegetated. Increased traffic, human activities, noise and ground vibration levels, as well as illumination throughout the night, may disturb the fauna. However, these species have adapted to intensive human disturbances on Elk Hills without obvious negative effects. The most direct threat to the species is the possibility that they might be killed by vehicles. Since the project poses so few threats to individual endangered or sensitive species, and since minor habitat disturbances will be mitigated during a restoration program, it is unlikely that completion of the project jeopardizes the continued existence of any of the species or their essential habitats. (ERB)« less

  20. Historical methane hydrate project review

    USGS Publications Warehouse

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated effort, the U.S. Congress enacted Public Law 106-­‐193, the Methane Hydrate Research and Development Act of 2000. This Act called for the Secretary of Energy to begin a methane hydrate research and development program in consultation with other U.S. federal agencies. At the same time a new methane hydrate research program had been launched in Japan by the Ministry of International Trade and Industry to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. Since this early start we have seen other countries including India, China, Canada, and the Republic of Korea establish large gas hydrate research and development programs. These national led efforts have also included the investment in a long list of important scientific research drilling expeditions and production test studies that have provided a wealth of information on the occurrence of methane hydrate in nature. The most notable expeditions and projects have including the following:-­‐Ocean Drilling Program Leg 164 (1995)-­‐Japan Nankai Trough Project (1999-­‐2000)-­‐Ocean Drilling Program Leg 204 (2004)-­‐Japan Tokai-­‐oki to Kumano-­‐nada Project (2004)-­‐Gulf of Mexico JIP Leg I (2005)-­‐Integrated Ocean Drilling Program Expedition 311 (2005)-­‐Malaysia Gumusut-­‐Kakap Project (2006)-­‐India NGHP Expedition 01 (2006)-­‐China GMGS Expedition 01 (2007)-­‐Republic of Korea UBGH Expedition 01 (2007)-­‐Gulf of Mexico JIP Leg II (2009)-­‐Republic of Korea UBGH Expedition 02 (2010)-­‐MH-­‐21 Nankai Trough Pre-­‐Production Expedition (2012-­‐2013)-­‐Mallik Gas Hydrate Testing Projects (1998/2002/2007-­‐2008)-­‐Alaska Mount Elbert Stratigraphic Test Well (2007)-­‐Alaska Iġnik Sikumi Methane Hydrate Production Test Well (2011-­‐2012)Research coring and seismic programs carried out by the Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP), starting with the ODP Leg 164 drilling of the Blake Ridge in the Atlantic Ocean in 1995, have also contributed greatly to our understanding of the geologic controls on the formation, occurrence, and stability of gas hydrates in marine environments. For the most part methane hydrate research expeditions carried out by the ODP and IODP provided the foundation for our scientific understanding of gas hydrates. The methane hydrate research efforts under ODP-­‐IODP have mostly dealt with the assessment of the geologic controls on the occurrence of gas hydrate, with a specific goal to study the role methane hydrates may play in the global carbon cycle.Over the last 10 years, national led methane hydrate research programs, along with industry interest have led to the development and execution of major methane hydrate production field test programs. Two of the most important production field testing programs have been conducted at the Mallik site in the Mackenzie River Delta of Canada and in the Eileen methane hydrate accumulation on the North Slope of Alaska. Most recently we have also seen the completion of the world’s first marine methane hydrate production test in the Nankai Trough in the offshore of Japan. Industry interest in gas hydrates has also included important projects that have dealt with the assessment of geologic hazards associated with the presence of hydrates.The scientific drilling and associated coring, logging, and borehole monitoring technologies developed in the long list of methane hydrate related field studies are one of the most important developments and contributions associated with methane hydrate research and development activities. Methane hydrate drilling has been conducted from advanced scientific drilling platforms like the JOIDES Resolution and the D/V Chikyu, which feature highly advanced integrated core laboratories and borehole logging capabilities. Hydrate research drilling has also included the use of a wide array of industry, geotechnical and multi-­‐service ships. All of which have been effectively used to collect invaluable geologic and engineering data on the occurrence of methane hydrates throughout the world. Technologies designed specifically for the collection and analysis of undisturbed methane hydrate samples have included the development of a host of pressure core systems and associated specialty laboratory apparatus. The study and use of both wireline conveyed and logging-­‐while-­‐drilling technologies have also contributed greatly to our understanding of the in-­‐situ nature of hydrate-­‐bearing sediments. Recent developments in borehole instrumentation specifically designed to monitor changes associated with hydrates in nature through time or to evaluate the response of hydrate accumulations to production have also contributed greatly to our understanding of the complex nature and evolution of methane hydrate systems.Our understanding of how methane hydrates occur and behave in nature is still growing and evolving – we do not yet know if methane hydrates can be economically produced, nor do we know fully the role of hydrates as an agent of climate change or as a geologic hazard. But it is known for certain that scientific drilling has contributed greatly to our understanding of hydrates in nature and will continue to be a critical source of the information to advance our understanding of methane hydrates.

  1. A proven record in changing attitudes about MWD logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, L.; Paxson, K.B.; Keyser, W.L.

    1993-07-01

    Measurement while drilling (MWD) logs for quantitative reservoir characterization were evaluated during drilling of Gulf of Mexico flexure trend projects, Kilauea (Green Canyon Blocks 6 and 50) and Tick (Garden Banks Block 189). Comparisons confirmed that MWD can be used as an accurate replacement for wireline logging when borehole size is not a limiting factor. Texaco MWD experience evolved from last resort' to primary formation evaluation logging, which resulted in rigtime and associated cost savings. Difficult wells are now drilled and evaluated with confidence, geopressure is safely monitored, conventional core interval tops are selected, and geologic interpretations and operational decisionsmore » are made before wells TD. This paper reviews the performance, accuracy, and limitations of the MWD systems and compares the results to standard geophysical well logging techniques. Four case histories are presented.« less

  2. Data for four geologic test holes in the Sacramento Valley, California

    USGS Publications Warehouse

    Berkstresser, C.F.; French, J.J.; Schaal, M.E.

    1985-01-01

    The report provides geological and geophysical data for four of seven test holes drilled as a part of the Central Valley Aquifer Project, which is part of the Regional Aquifer Systems Analysis. The holes were drilled with a rotary well drilling machine to depths of 900 feet in the southwestern part of the Sacramento Valley in Solano and Yolo Counties. Geologic data for each well include lithology, texture, color, character of the contact, sorting, rounding, and cementation, determined from cuttings, cores, and sidewall covers. Fifty cores, 3 feet long, were obtained from each hole, and from eight to fourteen sidewall cores were collected. Geophysical data include a dual-induction log, spherically focused log (SFL), compensated neutron-formation density log, gamma-ray log, and a caliper log. These data are presented in four tables and on four plates. (USGS)

  3. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis)

    NASA Astrophysics Data System (ADS)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas

    2017-04-01

    The International Continental Scientific Drilling Program (ICDP) approved our proposal (Ogasawara et al., EGU 2016) to drill into and around seismogenic zones where critically stressed faults initiated ruptures at depth. The drilling targets include four ruptures equivalent to M2.0, 2.8, 3.5, and 5.5 that dynamically and quasi-statically evolved in 2.9 Ga hard rock in the Witwatersrand basin, South Africa. Major advantages of our drilling locations are the large quantity and high-quality of existing data from dense seismic arrays both on surface and near-field underground in three deep South African gold mines. Additionally, the great depths (1.0 to 3.3 km from surface) to collar holes reduce drilling costs significantly and enable a larger number of holes to be drilled. Flexibility in drilling direction will also allow us to minimize damage in borehole or drilled cores. With the ICDP funds, we will conduct full-core drilling of 16 holes with drilling ranges from 50 to 750 m to recover both materials and fractures in and around the seismogenic zones, followed by core and borehole logging. Additional in-hole monitoring at close proximity will be supported by co-mingled funds and will follow the ICDP drilling. Expected magnitudes of maximum shear stress are several tens of MPa. We have established an overcoring procedure to measure 3D-stress state for adverse underground working conditions so as not to interfere with mining operations. This procedure was optimized based on the Compact Conic-ended Borehole Overcoring (CCBO) technique (ISRM suggested; Sugawara and Obara, 1999). Funato and Ito (2016 IJRMMS) developed a diametrical core deformation analysis (DCDA) method to measure differential stress using only drilled core by assuming diametrical change with roll angles caused by elastic in-axisymmetrical expansion during drilling. A gold mine has already drilled a hole to intersect the hypocenter of a 2016 M3.5 earthquake and carried out the CCBO stress measurement in other holes at the M3.5 seismogenic zone. As we successfully conducted DCDA with the above-mentioned drilled core, we look forward to shedding light on spatial variations of stress in the seismogenic zones following our ICDP DSeis drilling. A M5.5 earthquake which took place near Orkney, South Africa on 5 August 2014, offers a special opportunity to compare seismically inverted spatio-temporal evolution of both the main rupture and the aftershock activity with the information directly probed by the ICDP DSeis project. Moyer et al. (2016 Seismol. Res. Lett. submitted) calls for comparing seismic source models as part of a workshop proposed to the Southern California Earthquake Center for Fall 2017. In addition, the upper edge of the M5.5 rupture is located hundreds of meters below the mining horizon, sufficiently away from anthropogenic activity. This allows geomicrobiologists to investigate deep microbiological activity fueled by H2 from seismic rupture to address questions about Earth's early life. Drilling machines are being rigged underground soon to kick off our ICDP DSeis drilling in early 2017.

  4. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Tibbitts; Arnis Judzis

    2002-07-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting April 2002 through June 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments include the following: (1) Presentation material was provided to the DOE/NETL project manager (Dr. John Rogers) for the DOE exhibit at the 2002 Offshore Technology Conference. (2) Two meeting at Smith International and one at Andergauge in Houston were held to investigate their interest in joining the Mud Hammer Performancemore » study. (3) SDS Digger Tools (Task 3 Benchmarking participant) apparently has not negotiated a commercial deal with Halliburton on the supply of fluid hammers to the oil and gas business. (4) TerraTek is awaiting progress by Novatek (a DOE contractor) on the redesign and development of their next hammer tool. Their delay will require an extension to TerraTek's contracted program. (5) Smith International has sufficient interest in the program to start engineering and chroming of collars for testing at TerraTek. (6) Shell's Brian Tarr has agreed to join the Industry Advisory Group for the DOE project. The addition of Brian Tarr is welcomed as he has numerous years of experience with the Novatek tool and was involved in the early tests in Europe while with Mobil Oil. (7) Conoco's field trial of the Smith fluid hammer for an application in Vietnam was organized and has contributed to the increased interest in their tool.« less

  5. Test holes drilled in support of ground-water investigations, Project Gnome, Eddy County, New Mexico

    USGS Publications Warehouse

    Cooper, J.B.

    1962-01-01

    Project Gnome is a proposed underground nuclear shot to be detonated within a massive salt bed in Eddy County, N. Mex. Potable and neat potable ground water is present in rocks above the salt and is being studied in relation to this nuclear event. This report presents details of two test holes which were drilled to determine ground-water conditions in the near vicinity of the shot point. A well-defined aquifer is present at the site of USGS test hole 1, about 1,000 feet south of the access shaft to the underground shot point. Water with 75 feet of artesian pressure head is contained in the Culebra dolomite member of the Rustler formation. The dolomite aquifer is 32 feet thick and its top lies at a depth of 517 feet below land surface. The aquifer yielded 100 gpm (gallons per minute) with a drawdown of 40 feet during a pumping period of 24 hours. Water was not found in rocks above or below the Culebra dolomite. At the site of USGS test hole 2, about 2 miles southwest of the access shaft no distinctive aquifer exists. About one-half gpm was yielded to the well from the rocks between the Culebra dolomite and the top of the salt. Water could not be detected in the Culebra dolomite or overlying rocks. The report contains drawdown and recovery curves of yield tests, drilling-time charts, and electric logs. The data are given in tables; they include summaries of hole construction, sample description logs, water measurements, drilling-time logs, and water analyses.

  6. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel

    2013-07-01

    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316-328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for this rather thin fallback impactite sequence may be the location of the drill core on an elevated part of the central uplift. A general lack of large coherent melt bodies is evident, similar to that found at the similarly sized Bosumtwi impact crater in Ghana that, however, was formed in a target composed of a thin layer of sediment above crystalline rocks.

  7. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project.

    PubMed

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Spray, John

    2013-07-01

    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316-328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for this rather thin fallback impactite sequence may be the location of the drill core on an elevated part of the central uplift. A general lack of large coherent melt bodies is evident, similar to that found at the similarly sized Bosumtwi impact crater in Ghana that, however, was formed in a target composed of a thin layer of sediment above crystalline rocks.

  8. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project

    PubMed Central

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Spray, John

    2013-01-01

    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316–328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for this rather thin fallback impactite sequence may be the location of the drill core on an elevated part of the central uplift. A general lack of large coherent melt bodies is evident, similar to that found at the similarly sized Bosumtwi impact crater in Ghana that, however, was formed in a target composed of a thin layer of sediment above crystalline rocks. PMID:26074719

  9. Stability analysis of Hawaiian Island flanks using insight gained from strength testing of the HSDP core

    NASA Astrophysics Data System (ADS)

    Thompson, Nick; Watters, Robert J.; Schiffman, Peter

    2008-04-01

    Hawaiian Island flank failures are recognized as the largest landslide events on Earth, reaching volumes of several thousand cubic kilometers and lengths of over 200 km and occurring on an average of once every 100 000 years. The 3.1 km deep Hawaii Scientific Drilling Project (HSDP) enabled an investigation of the rock mass strength variations on the island of Hawaii [Schiffman, P., Watters, R.J., Thompson, N., Walton, A.W., 2006. Hyaloclastites and the slope stability of Hawaiian volcanoes: insights from the Hawaiian Scientific Drilling Project's 3-km drill core. Journal of Volcanology and Geothermal Research, 151 (1-3): 217-228]. This study builds on that of Schiffman et al. [Schiffman, P., Watters, R.J., Thompson, N., Walton, A.W., 2006. Hyaloclastites and the slope stability of Hawaiian volcanoes: Insights from the Hawaiian Scientific Drilling Project's 3-km drill core. Journal of Volcanology and Geothermal Research, 151 (1-3): 217-228] by considering more in-depth rock mass classification and strength testing methods of the HSDP core. Geotechnical core logging techniques combined with laboratory strength testing methods show that rock strength differences exist within the edifice. Comparing the rock strength parameters obtained from the various volcano lithologies identified weak zones, suggesting the possible location of future slip surfaces for large flank failures. Relatively weak rock layers were recognized within poorly consolidated hyaloclastite zones, with increases in strength based on degree of alteration. Subaerial and submarine basalt flows are found to be significantly stronger. With the aid of digital elevation models, cross-sections have been developed of key flank areas on the island of Hawaii. Limit equilibrium slope stability analyses are performed on each cross-section using various failure criteria for the rock mass strength calculations. Based on the stability analyses the majority of the slopes analyzed are considered stable. In cases where instability (i.e. failure) is predicted, decreased rock mass quality (strength) of the altered and highly poorly consolidated lithologies is found to have a significant influence. These lithologies are present throughout the Hawaiian Islands, representing potential failure surfaces for large flank collapses. Failure criterion input parameters are considered in sensitivity analyses as are the influences of certain external stability factors such as sea level variation and seismic loading.

  10. Borehole instability analysis for IODP Site C0002 of the NanTroSEIZE Project, Nankai Trough subduction zone

    NASA Astrophysics Data System (ADS)

    Wu, H.; Kido, Y. N.; Kinoshita, M.; Saito, S.

    2013-12-01

    Wellbore instability is a major challenge for the engineer evaluating borehole and formation conditions. Instability is especially important to understand in areas with high stress variations, significant structure anisotropy, or pre-existing fracture systems. Borehole (in)stability is influenced by rock strength, structural properties, and near-field principal stresses. During drilling, the borehole conditions also impact borehole integrity. Factors that we can measure in the borehole during with logging while drilling (LWD) to understand these conditions include mud weight, mud loss, ROP (Rate of Penetration), RPM (Rotation Per Minute), WOB (Weight on Bit), and TORQ (Power swivel torque value). We conducted borehole instability analysis for Site C0002 of the Nankai Trough transect based on riser and riserless drilling during IODP Expedition 338. The borehole shape, determined from LWD resistivity images, indicates that most of drilling occurred in stable environments, however, in a few instances the bottom hole assembly became stuck. We used our stress profile model to evaluate the mud weight required to drill a stable borehole for the estimated rock strength and physical properties. Based on our analysis, we interpret that borehole instability during IODP Expedition 338 may have been caused by weak bedding plane and fluid overpressure state. Future work with this model will investigate the roles of these conditions.

  11. Vibrational Fingerprints of Low-Lying Pt(n)P(2n) (n = 1-5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces.

    PubMed

    Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe

    2015-12-03

    Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.

  12. An efficient formulation and implementation of the analytic energy gradient method to the single and double excitation coupled-cluster wave function - Application to Cl2O2

    NASA Technical Reports Server (NTRS)

    Rendell, Alistair P.; Lee, Timothy J.

    1991-01-01

    The analytic energy gradient for the single and double excitation coupled-cluster (CCSD) wave function has been reformulated and implemented in a new set of programs. The reformulated set of gradient equations have a smaller computational cost than any previously published. The iterative solution of the linear equations and the construction of the effective density matrices are fully vectorized, being based on matrix multiplications. The new method has been used to investigate the Cl2O2 molecule, which has recently been postulated as an important intermediate in the destruction of ozone in the stratosphere. In addition to reporting computational timings, the CCSD equilibrium geometries, harmonic vibrational frequencies, infrared intensities, and relative energetics of three isomers of Cl2O2 are presented.

  13. Electron correlation contribution to the physisorption of CO on MgF2(110).

    PubMed

    Hammerschmidt, Lukas; Müller, Carsten; Paulus, Beate

    2012-03-28

    We have performed CCSD(T), MP2, and DF-LMP2 calculations of the interaction energy of CO on the MgF(2)(110) surface by applying the method of increments and an embedded cluster model. In addition, we performed periodic HF, B3LYP, and DF-LMP2 calculations and compare them to the cluster results. The incremental CCSD(T) calculations predict an interaction energy of E(int) = -0.37 eV with a C-down orientation of CO above a Mg(2+) ion at the surface with a basis set of VTZ quality. We find that electron correlation constitutes about 50% of the binding energy and a detailed evaluation of the increments shows that the largest contribution to the correlation energy originates from the CO interaction with the closest F ions on the second layer.

  14. What correlation effects are covered by density functional theory?

    NASA Astrophysics Data System (ADS)

    He, Yuan; Grafenstein, Jurgen; Kraka, Elfi; Cremer, Dieter

    The electron density distribution rho(r) generated by a DFT calculation was systematically studied by comparison with a series of reference densities obtained by wavefunction theory (WFT) methods that cover typical electron correlation effects. As a sensitive indicator for correlation effects the dipole moment of the CO molecule was used. The analysis reveals that typical LDA and GGA exchange functionals already simulate effects that are actually reminiscent of pair and three-electron correlation effects covered by MP2, MP4, and CCSD(T) in WFT. Correlation functionals contract the density towards the bond and the valence region thus taking negative charge out of the van der Waals region. It is shown that these improvements are relevant for the description of van der Waals interactions. Similar to certain correlated single-determinant WFT methods, BLYP and other GGA functionals underestimate ionic terms needed for a correct description of polar bonds. This is compensated for in hybrid functionals by mixing in HF exchange. The balanced mixing of local and non-local exchange and correlation effects leads to the correct description of polar bonds as in the B3LYP description of the CO molecule. The density obtained with B3LYP is closer to CCSD and CCSD(T) than to MP2 or MP4, which indicates that the B3LYP hybrid functional mimics those pair and three-electron correlation effects, which in WFT are only covered by coupled cluster methods.

  15. Combining Accuracy and Efficiency: An Incremental Focal-Point Method Based on Pair Natural Orbitals.

    PubMed

    Fiedler, Benjamin; Schmitz, Gunnar; Hättig, Christof; Friedrich, Joachim

    2017-12-12

    In this work, we present a new pair natural orbitals (PNO)-based incremental scheme to calculate CCSD(T) and CCSD(T0) reaction, interaction, and binding energies. We perform an extensive analysis, which shows small incremental errors similar to previous non-PNO calculations. Furthermore, slight PNO errors are obtained by using T PNO = T TNO with appropriate values of 10 -7 to 10 -8 for reactions and 10 -8 for interaction or binding energies. The combination with the efficient MP2 focal-point approach yields chemical accuracy relative to the complete basis-set (CBS) limit. In this method, small basis sets (cc-pVDZ, def2-TZVP) for the CCSD(T) part are sufficient in case of reactions or interactions, while some larger ones (e.g., (aug)-cc-pVTZ) are necessary for molecular clusters. For these larger basis sets, we show the very high efficiency of our scheme. We obtain not only tremendous decreases of the wall times (i.e., factors >10 2 ) due to the parallelization of the increment calculations as well as of the total times due to the application of PNOs (i.e., compared to the normal incremental scheme) but also smaller total times with respect to the standard PNO method. That way, our new method features a perfect applicability by combining an excellent accuracy with a very high efficiency as well as the accessibility to larger systems due to the separation of the full computation into several small increments.

  16. Probing the Properties of Polynuclear Superhalogens without Halogen Ligand via ab Initio Calculations: A Case Study on Double-Bridged [Mg2 (CN)5 ](-1) Anions.

    PubMed

    Li, Jin-Feng; Li, Miao-Miao; Bai, Hongcun; Sun, Yin-Yin; Li, Jian-Li; Yin, Bing

    2015-12-01

    An ab initio study of the superhalogen properties of eighteen binuclear double-bridged [Mg2 (CN)5 ](-1) clusters is reported herein by using various theoretical methods. High-level CCSD(T) results indicate that all the clusters possess strong superhalogen properties owing to their high vertical electron detachment energies (VDEs), which exceed 6.8 eV (highest: 8.15 eV). The outer valence Green's function method provides inaccurate relative VDE values; hence, this method is not suitable for this kind of polynuclear superhalogens. Both the HF and MP2 results are generally consistent with the CCSD(T) level regarding the relative VDE values and-especially interesting-the average values of the HF and MP2 VDEs are extremely close to the CCSD(T) results. The distributions of the extra electrons of the anions are mainly aggregated into the terminal CN units. These distributions are apparently different from those of previously reported triple-bridged isomers and may be the reason for the decreased VDE values of the clusters. In addition, comparisons of the VDEs of binuclear and mononuclear superhalogens as well as studies of the thermodynamic stabilities with respect to the detachment of various CN(-1) ligands are also performed. These results confirm that polynuclear structures with pseudohalogen ligands can be considered as probable new superhalogens with enhanced properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Significance of distinct electron-correlation effects in determining the (P ,T )-odd electric dipole moment of 171Yb

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.; Singh, Yashpal

    2017-06-01

    The parity and time-reversal violating electric dipole moment (EDM) of 171Yb is calculated accounting for the electron-correlation effects over the Dirac-Hartree-Fock method in the relativistic Rayleigh-Schrödinger many-body perturbation theory, with the second- [MBPT(2) method] and third-order [MBPT(3) method] approximations, and two variants of all-order relativistic many-body approaches, in the random phase approximation (RPA) and coupled-cluster (CC) method with singles and doubles (CCSD method) framework. We consider electron-nucleus tensor-pseudotensor (T-PT) and nuclear Schiff moment (NSM) interactions as the predominant sources that induce EDM in a diamagnetic atomic system. Our results from the CCSD method to EDM (da) of 171Yb due to the T-PT and NSM interactions are found to be da=4.85 (6 ) ×10-20<σ > CT|e | cm and da=2.89 (4 ) ×10-17S /(|e |fm3) , respectively, where CT is the T-PT coupling constant and S is the NSM. These values differ significantly from the earlier calculations. The reason for the same has been attributed to large correlation effects arising through non-RPA type of interactions among the electrons in this atom that are observed by analyzing the differences in the RPA and CCSD results. This has been further scrutinized from the MBPT(2) and MBPT(3) results and their roles have been demonstrated explicitly.

  18. Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China.

    PubMed

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-06-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of approximately 0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 x 10(3) to 2.4 x 10(4) cells/g and 3.5 x 10(8) to 4.2 x 10(9) cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids.

  19. Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China

    PubMed Central

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-01-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of ∼0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 × 103 to 2.4 × 104 cells/g and 3.5 × 108 to 4.2 × 109 cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids. PMID:15933024

  20. High-resolution seismic survey for the characterization of planned PIER-ICDP fluid-monitoring sites in the Eger Rift zone

    NASA Astrophysics Data System (ADS)

    Simon, H.; Buske, S.

    2017-12-01

    The Eger Rift zone (Czech Republic) is a intra-continental non-volcanic region and is characterized by outstanding geodynamic activities, which result in earthquake swarms and significant CO2 emanations. Because fluid-induced stress can trigger earthquake swarms, both natural phenomena are probably related to each other. The epicentres of the earthquake swarms cluster at the northern edge of the Cheb Basin. Although the location of the cluster coincides with the major Mariánské-Lázně Fault Zone (MLFZ) the strike of the focal plane indicates another fault zone, the N-S trending Počátky-Plesná Zone (PPZ). Isotopic analysis of the CO2-rich fluids revealed a significant portion of upper mantle derived components, hence a magmatic fluid source in the upper mantle was postulated. Because of these phenomena, the Eger Rift area is a unique site for interdisciplinary drilling programs to study the fluid-earthquake interaction. The ICDP project PIER (Probing of Intra-continental magmatic activity: drilling the Eger Rift) will set up an observatory, consisting of five monitoring boreholes. In preparation for the drilling, the goal of the seismic survey is the characterization of the projected fluid-monitoring drill site at the CO2 degassing mofette field near Hartoušov. This will be achieved by a 6 km long profile with dense source and receiver spacing. The W-E trending profile will cross the proposed drill site and the surface traces of MLFZ and PPZ. The outcome of the seismic survey will be a high-resolution structural image of potential reflectors related to these fault zones. This will be achieved by the application of advanced pre-stack depth migration methods and a detailed P-wave velocity distribution of the area obtained from first arrival tomography. During interpretation of the seismic data, a geoelectrical resistivity model, acquired along the same profile line, will provide important constraints, especially with respect to fluid pathways.

Top