Sample records for drilling fluid samples

  1. Graphene nanoplatelets as high-performance filtration control material in water-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal

    2018-05-01

    The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.

  2. Fluid sampling tool

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  3. Molecular analysis of bacterial diversity in kerosene-based drilling fluid from the deep ice borehole at Vostok, East Antarctica.

    PubMed

    Alekhina, Irina A; Marie, Dominique; Petit, Jean Robert; Lukin, Valery V; Zubkov, Vladimir M; Bulat, Sergey A

    2007-02-01

    Decontamination of ice cores is a critical issue in phylogenetic studies of glacial ice and subglacial lakes. At the Vostok drill site, a total of 3650 m of ice core have now been obtained from the East Antarctic ice sheet. The ice core surface is coated with a hard-to-remove film of impure drilling fluid comprising a mixture of aliphatic and aromatic hydrocarbons and foranes. In the present study we used 16S rRNA gene sequencing to analyze the bacterial content of the Vostok drilling fluid sampled from four depths in the borehole. Six phylotypes were identified in three of four samples studied. The two dominant phylotypes recovered from the deepest (3400 and 3600 m) and comparatively warm (-10 degrees C and -6 degrees C, respectively) borehole horizons were from within the genus Sphingomonas, a well-known degrader of polyaromatic hydrocarbons. The remaining phylotypes encountered in all samples proved to be human- or soil-associated bacteria and were presumed to be drilling fluid contaminants of rare occurrence. The results obtained indicate the persistence of bacteria in extremely cold, hydrocarbon-rich environments. They show the potential for contamination of ice and subglacial water samples during lake exploration, and the need to develop a microbiological database of drilling fluid findings.

  4. Investigation of mud density and weighting materials effect on drilling fluid filter cake properties and formation damage

    NASA Astrophysics Data System (ADS)

    Fattah, K. A.; Lashin, A.

    2016-05-01

    Drilling fluid density/type is an important factor in drilling and production operations. Most of encountered problems during rotary drilling are related to drilling mud types and weights. This paper aims to investigate the effect of mud weight on filter cake properties and formation damage through two experimental approaches. In the first approach, seven water-based drilling fluid samples with same composition are prepared with different densities (9.0-12.0 lb/gal) and examined to select the optimum mud weight that has less damage. The second approach deals with investigating the possible effect of the different weighting materials (BaSO4 and CaCO3) on filter cake properties. High pressure/high temperature loss tests and Scanning Electron Microscopy (SEM) analyses were carried out on the filter cake (two selected samples). Data analysis has revealed that mud weigh of 9.5 lb/gal has the less reduction in permeability of ceramic disk, among the seven used mud densities. Above 10.5 ppg the effect of the mud weight density on formation damage is stabilized at constant value. Fluids of CaCO3-based weighting material, has less reduction in the porosity (9.14%) and permeability (25%) of the filter disk properties than the BaSO4-based fluid. The produced filter cake porosity increases (from 0.735 to 0.859) with decreasing of fluid density in case of drilling samples of different densities. The filtration loss tests indicated that CaCO3 filter cake porosity (0.52) is less than that of the BaSO4 weighted material (0.814). The thickness of the filter cake of the BaSO4-based fluid is large and can cause some problems. The SEM analysis shows that some major elements do occur on the tested samples (Ca, Al, Si, and Ba), with dominance of Ca on the expense of Ba for the CaCO3 fluid sample and vice versa. The less effect of 9.5 lb/gal mud sample is reflected in the well-produced inter-particle pore structure and relatively crystal size. A general recommendation is given to minimize the future utilization of Barium Sulfate as a drilling fluid.

  5. Identification of sandstone core damage using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Ismail, Abdul Razak; Jaafar, Mohd Zaidi; Sulaiman, Wan Rosli Wan; Ismail, Issham; Shiunn, Ng Yinn

    2017-12-01

    Particles and fluids invasion into the pore spaces causes serious damage to the formation, resulting reduction in petroleum production. In order to prevent permeability damage for a well effectively, the damage mechanisms should be identified. In this study, water-based drilling fluid was compared to oil-based drilling fluids based on microscopic observation. The cores were damaged by several drilling fluid systems. Scanning electron microscope (SEM) was used to observe the damage mechanism caused by the drilling fluids. Results showed that the ester based drilling fluid system caused the most serious damage followed by synthetic oil based system and KCI-polymer system. Fine solids and filtrate migration and emulsion blockage are believed to be the major mechanisms controlling the changes in flow properties for the sandstone samples.

  6. A simple and inexpensive technique for assessing microbial contamination during drilling operations

    NASA Astrophysics Data System (ADS)

    Friese, André; Vuillemin, Aurèle; Kallmeyer, Jens; Wagner, Dirk

    2016-04-01

    Exploration of the Deep Biosphere relies on drilling, which inevitably causes infiltration of drilling fluids, containing allochthonous microbes from the surface, into the core. Therefore it is absolutely necessary to trace contamination of the sediment core in order to identify uncontaminated samples for microbiological investigations. Several techniques have been used in the past, including fluorescent dyes, perfluorocarbon tracers and fluorescent microspheres. Fluorescent dyes are inexpensive and easy to analyze on-site but are sensitive to light, pH and water chemistry. Furthermore, significant sorption to clays can decrease the fluorescence signal. Perfluorocarbon tracers are chemically inert hydrophobic compounds that can be detected with high sensitivity via gas chromatography, which might be a problem for on-site analysis. Samples have to be taken immediately after core retrieval as otherwise the volatile tracer will have diffused out of the core. Microsphere tracers are small (0.2 - 0.5 μm diameter) fluorescent plastic particles that are mixed into the drilling fluid. For analysis, these particles can be extracted from the sediment sample, transferred onto a filter and quantified via fluorescence microscopy. However, they are very expensive and therefore unsuitable for deep drilling operations that need large amounts of drilling fluids. Here, we present an inexpensive contamination control approach using fluorescent pigments initially used for coloring plastics. The price of this tracer is nearly three orders of magnitude lower than conventional microsphere tracers. Its suitability for large drilling campaigns was tested at the ICDP Deep Drilling at Lake Towuti, Sulawesi, Indonesia. The tracer was diluted 1:1000 in lake water, which was used as the drilling fluid. Additionally, a plastic bag filled with 20 mL of undiluted tracer was attached to the core catcher to increase the amount of particles in the liner fluid right at the core. After core retrieval, the core was cut and the liner fluid collected. From each whole round core (WRC) that was taken for microbiological and biogeochemical analyses, small samples of 1 cc were retrieved with sterile cutoff syringes from the rim, the center and an intermediate position. After dilution and homogenization in 9 mL MilliQ water, 10 μL of the sediment slurry was transferred onto a filter membrane and particles counted via fluorescence microscopy. Additionally, particles in the liner fluid were also quantified. This allows the quantification of the amount of drilling fluid that has entered the sediment sample during drilling. The minimum detectable volume of drilling fluid was in the order of single nanoliters per cc of sediment, which is in the range of established techniques. The presented method requires only a minimum of equipment and allows rapid determination of contamination in the sediment core and an easy to handle on-site analysis at low costs. The sensitivity is in the same range as perfluorocarbon and microsphere tracer applications. Thus, it offers an inexpensive but powerful technique for contamination assessment for future drilling campaigns.

  7. 40 CFR Appendix 1 to Subpart A of... - Static Sheen Test

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drilling fluids, drill cuttings, produced sand, and well treatment, completion and workover fluids. “Free... drill cuttings or produced sand are introduced into ambient seawater in a container having an air-to... specified. 6. Quality Control Procedures None currently specified. 7. Sample Collection and Handling 7...

  8. Validation and Comparison of Two Sampling Methods to Assess Dermal Exposure to Drilling Fluids and Crude Oil

    PubMed Central

    Galea, Karen S.; McGonagle, Carolyn; Sleeuwenhoek, Anne; Todd, David; Jiménez, Araceli Sánchez

    2014-01-01

    Dermal exposure to drilling fluids and crude oil is an exposure route of concern. However, there have been no published studies describing sampling methods or reporting dermal exposure measurements. We describe a study that aimed to evaluate a wipe sampling method to assess dermal exposure to an oil-based drilling fluid and crude oil, as well as to investigate the feasibility of using an interception cotton glove sampler for exposure on the hands/wrists. A direct comparison of the wipe and interception methods was also completed using pigs’ trotters as a surrogate for human skin and a direct surface contact exposure scenario. Overall, acceptable recovery and sampling efficiencies were reported for both methods, and both methods had satisfactory storage stability at 1 and 7 days, although there appeared to be some loss over 14 days. The methods’ comparison study revealed significantly higher removal of both fluids from the metal surface with the glove samples compared with the wipe samples (on average 2.5 times higher). Both evaluated sampling methods were found to be suitable for assessing dermal exposure to oil-based drilling fluids and crude oil; however, the comparison study clearly illustrates that glove samplers may overestimate the amount of fluid transferred to the skin. Further comparison of the two dermal sampling methods using additional exposure situations such as immersion or deposition, as well as a field evaluation, is warranted to confirm their appropriateness and suitability in the working environment. PMID:24598941

  9. Unique microbial community in drilling fluids from Chinese continental scientific drilling

    USGS Publications Warehouse

    Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.

    2006-01-01

    Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.

  10. Fluid sampling tool

    DOEpatents

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  11. Fluid sampling tool

    DOEpatents

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  12. Fluid-inclusion evidence for previous higher temperatures in the SUNEDCO 58-28 drill hole near Breitenbush hot springs, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.; ,

    1993-01-01

    The SUNEDCO 58-28 geothermal exploration drill hole was completed in 1981 to a depth of 2, 457 m near Breitenbush Hot Springs in the Western Cascade Mountains of northern Oregon. One hundred thirteen liquid-rich fluid inclusions (mostly secondary) were analyzed from drill cuttings samples of hydrothermal quartz, calcite, and anhydrite, as well as primary quartz phenocrysts. Except for one hydrothermal quartz specimen, minimum homogenization temperature (Th) measurements of fluid inclusions plot very close to the present measured temperatures for the drill hole. Fluid-inclusion data from near the bottom of the drill hole suggest that these rocks were altered by water of significantly greater salinity than Breitenbush Hot Springs water.

  13. Fluid sampling tool

    DOEpatents

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    2000-01-01

    A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.

  14. Validation and comparison of two sampling methods to assess dermal exposure to drilling fluids and crude oil.

    PubMed

    Galea, Karen S; McGonagle, Carolyn; Sleeuwenhoek, Anne; Todd, David; Jiménez, Araceli Sánchez

    2014-06-01

    Dermal exposure to drilling fluids and crude oil is an exposure route of concern. However, there have been no published studies describing sampling methods or reporting dermal exposure measurements. We describe a study that aimed to evaluate a wipe sampling method to assess dermal exposure to an oil-based drilling fluid and crude oil, as well as to investigate the feasibility of using an interception cotton glove sampler for exposure on the hands/wrists. A direct comparison of the wipe and interception methods was also completed using pigs' trotters as a surrogate for human skin and a direct surface contact exposure scenario. Overall, acceptable recovery and sampling efficiencies were reported for both methods, and both methods had satisfactory storage stability at 1 and 7 days, although there appeared to be some loss over 14 days. The methods' comparison study revealed significantly higher removal of both fluids from the metal surface with the glove samples compared with the wipe samples (on average 2.5 times higher). Both evaluated sampling methods were found to be suitable for assessing dermal exposure to oil-based drilling fluids and crude oil; however, the comparison study clearly illustrates that glove samplers may overestimate the amount of fluid transferred to the skin. Further comparison of the two dermal sampling methods using additional exposure situations such as immersion or deposition, as well as a field evaluation, is warranted to confirm their appropriateness and suitability in the working environment. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  15. Effect of drilling fluid systems and temperature on oil mist and vapour levels generated from shale shaker.

    PubMed

    Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie

    2011-05-01

    Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40°C against the Norwegian oil vapour OEL is questioned since these base oils are very similar to white spirit. To reduce exposures, relevant technical control measures in this area are to cool the drilling fluid <50°C before it enters the shale shaker units, enclose shale shakers and related equipment, in addition to careful consideration of which fluid system to use.

  16. Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.

    2001-12-01

    Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were colonized by palm worms, limpets, and snails. Four other drill holes showed no hydrothermal flow nor visible evidence of down hole recharge. Mapping with Tiburon confirmed that the extent of hydrothermal venting at NESCA decreased dramatically since 1988. Formerly extensive colonies of Ridgia had vanished leaving no trace of their presence. Although hydrothermal venting has collapsed to a single mound, the temperature and composition of the fluids remained nearly unchanged. This is curious given that sediment pore fluids analyzed on Leg 169 included both high salinity and low salinity components of phase separated hydrothermal fluids in the shallow subsurface indicating that the hydrothermal field must have had a relatively recent (relative to the rate of pore fluid diffusion) high temperature history. Hydrothermal fluids presently venting at this site must be derived from an essentially homogeneous, approximately 215\\degC fluid reservoir that has declined in its fluid output on a decadal scale, but has not undergone significant changes in temperature and composition. Venting at the seafloor does not seem to have been affected by drilling in the hydrothermal field.

  17. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331)

    PubMed Central

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M.; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H.; Moyer, Craig L.; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J.; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628

  18. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331).

    PubMed

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H; Moyer, Craig L; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu.

  19. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial watermore » samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.« less

  20. Hydrogeology, Chemical and Microbial Activity Measurement Through Deep Permafrost

    USGS Publications Warehouse

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with ??18O values ???5??? lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH4 was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH4 is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  1. Reconstruction of in-situ porosity and porewater compositions of low-permeability crystalline rocks: Magnitude of artefacts induced by drilling and sample recovery

    NASA Astrophysics Data System (ADS)

    Meier, D. B.; Waber, H. N.; Gimmi, T.; Eichinger, F.; Diamond, L. W.

    2015-12-01

    Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12-20 cm long, 5 cm diameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium-iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2-6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, in which iodide enrichment was up to 180 mg/kgwater, compared to 0.5 mg/kgwater in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties.

  2. Reconstruction of in-situ porosity and porewater compositions of low-permeability crystalline rocks: Magnitude of artefacts induced by drilling and sample recovery.

    PubMed

    Meier, D B; Waber, H N; Gimmi, T; Eichinger, F; Diamond, L W

    2015-12-01

    Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12-20 cm long, 5 cm diameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium-iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2-6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, in which iodide enrichment was up to 180 mg/kg water, compared to 0.5 mg/kg water in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A Simple and Inexpensive Technique for Assessing Microbial Contamination during Drilling Operations

    NASA Astrophysics Data System (ADS)

    Friese, A.; Kallmeyer, J.; Wagner, D.; Kitte, J. A.

    2016-12-01

    Exploration of the Deep Biosphere relies on drilling, which inevitably causes infiltration of drilling fluids, containing non-indigenous microbes from the surface, into the core. Therefore it is absolutely necessary to trace contamination of the sediment core in order to identify uncontaminated samples for microbiological investigations in drill core samples. To do this, usually a tracer is mixed into the drilling fluid. In past drilling operations a variety of tracers have been used including dyes, salts, dissolved gasses, and microspheres. The latter are microbe-sized fluorescent particles that can be detected with very high sensitivity. Each tracer has its specific strengths and weaknesses, for microspheres the main problem was the high price, which limited the use to spot checks or drilling operations that require only small amounts of drilling fluid. Here, we present a modified microsphere tracer approach, using an aqueous fluorescent pigment dispersion that has a similar concentration of fluorescent particles as previously used microsphere tracers. However, compared to previous microsphere tracers, the cost of the new tracer is four orders of magnitude lower, allowing for a much more liberal use even in large-scale operations. Its suitability for large drilling campaigns was successfully tested at the ICDP Deep Drilling at Lake Towuti, Sulawesi, Indonesia and at the ICDP Deep Drilling at Lake Chalco, Mexico. Contamination can be detected by fluorescence microscopy or by flow cytometry at a sensitivity that is in the range of established techniques. Quantification of the tracer thus only requires a minimum of equipment and by using a small portable cytometer, high-resolution data can be obtained directly on-site within minutes and with minimal effort. Therefore this approach offers an inexpensive but powerful alternative technique for contamination assessment for future drilling campaigns.

  4. Effects of fluid-rock interactions on faulting within active fault zones - evidence from fault rock samples retrieved from international drilling projects

    NASA Astrophysics Data System (ADS)

    Janssen, C.; Wirth, R.; Kienast, M.; Yabe, Y.; Sulem, J.; Dresen, G. H.

    2015-12-01

    Chemical and mechanical effects of fluids influence the fault mechanical behavior. We analyzed fresh fault rocks from several scientific drilling projects to study the effects of fluids on fault strength. For example, in drill core samples on a rupture plane of an Mw 2.2 earthquake in a deep gold mine in South Africa the main shock occurred on a preexisting plane of weakness that was formed by fluid-rock interaction (magnesiohornblende was intensively altered to chlinochlore). The plane acted as conduit for hydrothermal fluids at some time in the past. The chemical influence of fluids on mineralogical alteration and geomechanical processes in fault core samples from SAFOD (San Andreas Fault Observatory at Depth) is visible in pronounced dissolution-precipitation processes (stylolites, solution seams) as well as in the formation of new phases. Detrital quartz and feldspar grains are partially dissolved and replaced by authigenic illite-smectite (I-S) mixed-layer clay minerals. Transmission Electron Microscopy (TEM) imaging of these grains reveals that the alteration processes and healing were initiated within pores and small intra-grain fissures. Newly formed phyllosilicates growing into open pore spaces likely reduced the fluid permeability. The mechanical influence of fluids is indicated by TEM observations, which document open pores that formed in-situ in the gouge material during or after deformation. Pores were possibly filled with formation water and/or hydrothermal fluids suggesting elevated fluid pressure preventing pore collapse. Fluid-driven healing of fractures in samples from SAFOD and the DGLab Gulf of Corinth project is visible in cementation. Cathodoluminescence microscopy (CL) reveals different generations of calcite veins. Differences in CL-colors suggest repeated infiltration of fluids with different chemical composition from varying sources (formation and meteoric water).

  5. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  6. Comparative evaluation of the indigenous microbial diversity vs. drilling fluid contaminants in the NEEM Greenland ice core.

    PubMed

    Miteva, Vanya; Burlingame, Caroline; Sowers, Todd; Brenchley, Jean

    2014-08-01

    Demonstrating that the detected microbial diversity in nonaseptically drilled deep ice cores is truly indigenous is challenging because of potential contamination with exogenous microbial cells. The NEEM Greenland ice core project provided a first-time opportunity to determine the origin and extent of contamination throughout drilling. We performed multiple parallel cultivation and culture-independent analyses of five decontaminated ice core samples from different depths (100-2051 m), the drilling fluid and its components Estisol and Coasol, and the drilling chips collected during drilling. We created a collection of diverse bacterial and fungal isolates (84 from the drilling fluid and its components, 45 from decontaminated ice, and 66 from drilling chips). Their categorization as contaminants or intrinsic glacial ice microorganisms was based on several criteria, including phylogenetic analyses, genomic fingerprinting, phenotypic characteristics, and presence in drilling fluid, chips, and/or ice. Firmicutes and fungi comprised the dominant group of contaminants among isolates and cloned rRNA genes. Conversely, most Proteobacteria and Actinobacteria originating from the ice were identified as intrinsic. This study provides a database of potential contaminants useful for future studies of NEEM cores and can contribute toward developing standardized protocols for contamination detection and ensuring the authenticity of the microbial diversity in deep glacial ice. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Mechanical Properties of Gas Shale During Drilling Operations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Cheng, Yuanfang; Li, Menglai; Feng, Yongcun; Li, Xiaorong

    2017-07-01

    The mechanical properties of gas shale significantly affect the designs of drilling, completion, and hydraulic fracturing treatments. In this paper, the microstructure characteristics of gas shale from southern China containing up to 45.1% clay were analyzed using a scanning electron microscope. The gas shale samples feature strongly anisotropic characteristics and well-developed bedding planes. Their strength is controlled by the strength of both the matrix and the bedding planes. Conventional triaxial tests and direct shear tests are further used to study the chemical effects of drilling fluids on the strength of shale matrix and bedding planes, respectively. The results show that the drilling fluid has a much larger impact on the strength of the bedding plane than that of the shale matrix. The impact of water-based mud (WBM) is much larger compared with oil-based mud. Furthermore, the borehole collapse pressure of shale gas wells considering the effects of drilling fluids are analyzed. The results show that the collapse pressure increases gradually with the increase of drilling time, especially for WBM.

  8. Polar organic compounds in pore waters of the Chesapeake Bay impact structure, Eyreville core hole: Character of the dissolved organic carbon and comparison with drilling fluids

    USGS Publications Warehouse

    Rostad, C.E.; Sanford, W.E.

    2009-01-01

    Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.

  9. Microbial communities at the borehole observatory on the Costa Rica Rift flank (Ocean Drilling Program Hole 896A).

    PubMed

    Nigro, Lisa M; Harris, Kate; Orcutt, Beth N; Hyde, Andrew; Clayton-Luce, Samuel; Becker, Keir; Teske, Andreas

    2012-01-01

    The microbiology of subsurface, hydrothermally influenced basaltic crust flanking mid-ocean ridges has remained understudied, due to the difficulty in accessing the subsurface environment. The instrumented boreholes resulting from scientific ocean drilling offer access to samples of the formation fluids circulating through oceanic crust. We analyzed the phylogenetic diversity of bacterial communities of fluid and microbial mat samples collected in situ from the observatory at Ocean Drilling Program Hole 896A, drilled into ~6.5 million-year-old basaltic crust on the flank of the Costa Rica Rift in the equatorial Pacific Ocean. Bacterial 16S rRNA gene sequences recovered from borehole fluid and from a microbial mat coating the outer surface of the fluid port revealed both unique and shared phylotypes. The dominant bacterial clones from both samples were related to the autotrophic, sulfur-oxidizing genus Thiomicrospira. Both samples yielded diverse gamma- and alphaproteobacterial phylotypes, as well as members of the Bacteroidetes, Planctomycetes, and Verrucomicrobia. Analysis of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL and cbbM) from the sampling port mat and from the borehole fluid demonstrated autotrophic carbon assimilation potential for in situ microbial communities; most cbbL genes were related to those of the sulfur-oxidizing genera Thioalkalivibrio and Thiomicrospira, and cbbM genes were affiliated with uncultured phylotypes from hydrothermal vent plumes and marine sediments. Several 16S rRNA gene phylotypes from the 896A observatory grouped with phylotypes recovered from seawater-exposed basalts and sulfide deposits at inactive hydrothermal vents, but there is little overlap with hydrothermally influenced basaltic boreholes 1026B and U1301A on the Juan de Fuca Ridge flank, suggesting that site-specific characteristics of Hole 896A (i.e., seawater mixing into borehole fluids) affect the microbial community composition.

  10. Accessing SAFOD data products: Downhole measurements, physical samples and long-term monitoring

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Zoback, M.; Hickman, S. H.; Ellsworth, W. L.

    2005-12-01

    Many different types of data were collected during SAFOD Phases 1 and 2 (2004-2005) as part of the National Science Foundation's EarthScope program as well as from the SAFOD Pilot Hole, drilled in 2002 and funded by the International Continental Drilling Program (ICDP). Both SAFOD and the SAFOD Pilot Hole are being conducted as a close collaboration between NSF, the U.S. Geological Survey and the ICDP. SAFOD data products include cuttings, core and fluid samples; borehole geophysical measurements; and strain, tilt, and seismic recordings from the multilevel SAFOD borehole monitoring instruments. As with all elements of EarthScope, these data (and samples) are openly available to members of the scientific and educational communities. This paper presents the acquisition, storage and distribution plan for SAFOD data products. Washed and unwashed drill cuttings and mud samples were collected during Phases 1 and 2, along with three spot cores at depths of 1.5, 2.5, and 3.1 km. A total of 52 side-wall cores were also collected in the open-hole interval between 2.5 and 3.1 km depth. The primary coring effort will occur during Phase 3 (2007), when we will continuously core up to four, 250-m-long multilaterals directly within and adjacent to the San Andreas Fault Zone. Drill cuttings, core, and fluid samples from all three Phases of SAFOD drilling are being curated under carefully controlled conditions at the Integrated Ocean Drilling Program (IODP) Gulf Coast Repository in College Station, Texas. Photos of all physical samples and a downloadable sample request form are available on the ICDP website (http://www.icdp-online.de/sites/sanandreas/index/index.html). A suite of downhole geophysical measurements was conducted during the first two Phases of SAFOD drilling, as well as during drilling of the SAFOD Pilot Hole. These data include density, resistivity, porosity, seismic and borehole image logs and are also available via the ICDP website. The SAFOD monitoring program includes fiber-optic strain, tilt, seismic and fluid-pressure recording instruments. Seismic data from the Pilot Hole array are now available in SEED format from the Northern California Earthquake Data Center (http://quake.geo.berkeley.edu/safod/). The strain and tilt instruments are still undergoing testing and quality assurance, and these data will be available through the same web site as soon as possible. Lastly, two terabytes of unprocessed (SEG-2 format) data from a two-week deployment of an 80-level seismic array during April/May 2005 by Paulsson Geophysical Services, Inc. are now available via the IRIS data center (http://www.iris.edu/data/data.htm). Drilling parameters include real-time descriptions of drill cuttings mineralogy, drilling mud properties, and mechanical data related to the drilling process and are available via the ICDP web site. Current status reports on SAFOD drilling, borehole measurements, sampling, and monitoring instrumentation will continue to be available from the EarthScope web site (http://www.earthscope.org).

  11. Fluid-inclusion evidence for previous higher temperatures in the miravalles geothermal field, Costa Rica

    USGS Publications Warehouse

    Bargar, K.E.; Fournier, R.O.

    1988-01-01

    Heating and freezing data were obtained for liquid-rich secondary fluid inclusions in magmatic quartz, hydrothermal calcite and hydrothermal quartz crystals from 19 sampled depths in eight production drill holes (PGM-1, 2, 3, 5, 10, 11, 12 and 15) of the Miravalles geothermal field in northwestern Costa Rica. Homogenization temperatures for 386 fluid inclusions range from near the present measured temperatures to as much as 70??C higher than the maximum measured well temperature of about 240??C. Melting-point temperature measurements for 76 fluid inclusions suggest a calculated salinity range of about 0.2-1.9 wt% NaCl equivalent. Calculated salinities as high as 3.1-4.0 wt% NaCl equivalent for 20 fluid inclusions from the lower part of drill hole PGM-15 (the deepest drill hole) indicate that higher salinity water probably was present in the deeper part of the Miravalles geothermal field at the time these fluid inclusions were formed. ?? 1988.

  12. Metal and hydrocarbon behavior in sediments from Brazilian shallow waters drilling activities using nonaqueous drilling fluids (NAFs).

    PubMed

    do Carmo R Peralba, Maria; Pozebon, Dirce; dos Santos, João H Z; Maia, Sandra M; Pizzolato, Tânia M; Cioccari, Giovani; Barrionuevo, Simone

    2010-08-01

    The impact of drilling oil activities in the Brazilian Bonito Field/Campos Basin (Rio de Janeiro) shell drilling (300 m) using nonaqueous fluids (NAFs) was investigated with respect to Al, Fe, Mn, Ba, Co, Pb, Cu, As, Hg, Cr, Ni, Zn, Cd, V, and aliphatic and polynuclear aromatic hydrocarbons concentrations in the sediment. Sampling took place in three different times during approximately 33 months. For the metals Al, As, Co, Cr, Cu, Cd, Fe, Ni, Mn, V, and Zn, no significant variation was observed after drilling activities in most of the stations. However, an increase was found in Ba concentration--due to the drilling activity--without return to the levels found 22 months after drilling. High Ba contents was already detected prior to well drilling, probably due to drilling activities in other wells nearby. Hydrocarbon contents also suggest previous anthropogenic activities. Aliphatic hydrocarbon contents were in the range usually reported in other drilling sites. The same behavior was observed in the case of polyaromatic hydrocarbons. Nevertheless, the n-alkane concentration increased sharply after drilling, returning almost to predrilling levels 22 months after drilling activities.

  13. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, S.H.; Younker, L.W.; Zoback, M.D.

    1995-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

  14. Oil mist and vapour concentrations from drilling fluids: inter- and intra-laboratory comparison of chemical analyses.

    PubMed

    Galea, Karen S; Searl, Alison; Sánchez-Jiménez, Araceli; Woldbæk, Torill; Halgard, Kristin; Thorud, Syvert; Steinsvåg, Kjersti; Krüger, Kirsti; Maccalman, Laura; Cherrie, John W; van Tongeren, Martie

    2012-01-01

    There are no recognized analytical methods for measuring oil mist and vapours arising from drilling fluids used in offshore petroleum drilling industry. To inform the future development of improved methods of analysis for oil mist and vapours this study assessed the inter- and intra-laboratory variability in oil mist and vapour analysis. In addition, sample losses during transportation and storage were assessed. Replicate samples for oil mist and vapour were collected using the 37-mm Millipore closed cassette and charcoal tube assembly. Sampling was conducted in a simulated shale shaker room, similar to that found offshore for processing drilling fluids. Samples were analysed at two different laboratories, one in Norway and one in the UK. Oil mist samples were analysed using Fourier transform infrared spectroscopy (FTIR), while oil vapour samples were analysed by gas chromatography (GC). The comparison of replicate samples showed substantial within- and between-laboratory variability in reported oil mist concentrations. The variability in oil vapour results was considerably reduced compared to oil mist, provided that a common method of calibration and quantification was adopted. The study also showed that losses can occur during transportation and storage of samples. There is a need to develop a harmonized method for the quantification of oil mist on filter and oil vapour on charcoal supported by a suitable proficiency testing scheme for laboratories involved in the analysis of occupational hygiene samples for the petroleum industry. The uncertainties in oil mist and vapour measurement have substantial implications in relation to compliance with occupational exposure limits and also in the reliability of any exposure-response information reported in epidemiological studies.

  15. Acute toxicity of two generic drilling fluids and six additives, alone and combined, to mysids (Mysidopsis bahia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, P.R.; Macauley, J.M.; Montgomery, R.M.

    1988-01-01

    Toxicity tests were conducted with two laboratory-prepared generic drilling fluids (muds) and six commonly used drilling-fluid additives to determine their toxicity, alone and combined, to mysids (Mysidopsis bahia). In 25 tests, the acute toxicity of combinations of one, two, or three of the drilling-fluid additives mixed with either drilling fluid was less than the toxicity predicted from the empirical 96-h LC50s for drilling fluid additive(s) and/or drilling fluid alone; the observed 96-h LC50s of the mixtures were from 1.3 to 23.6 times the values predicted from the presumption of additive toxicity.

  16. 40 CFR Appendix 2 to Subpart A of... - Drilling Fluids Toxicity Test

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are designed to minimize sample contamination and alteration of the physical or chemical properties of... wet ice (do not use dry ice) and continuously maintained at 0-4 °C until the time of testing. (3) Bulk... use. (5) Most drilling mud samples may be stored for periods of time longer than 2 weeks prior to...

  17. 40 CFR Appendix 2 to Subpart A of... - Drilling Fluids Toxicity Test

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are designed to minimize sample contamination and alteration of the physical or chemical properties of... wet ice (do not use dry ice) and continuously maintained at 0-4 °C until the time of testing. (3) Bulk... use. (5) Most drilling mud samples may be stored for periods of time longer than 2 weeks prior to...

  18. Aerated drilling cutting transport analysis in geothermal well

    NASA Astrophysics Data System (ADS)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  19. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere.

    PubMed

    Kimura, Hiroyuki; Ishibashi, Jun-Ichiro; Masuda, Harue; Kato, Kenji; Hanada, Satoshi

    2007-04-01

    International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.

  20. 30 CFR 250.458 - What quantities of drilling fluids are required?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What quantities of drilling fluids are required... OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.458 What quantities of drilling fluids are...

  1. 30 CFR 250.458 - What quantities of drilling fluids are required?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.458 What quantities of drilling fluids are required? (a) You must use... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What quantities of drilling fluids are required...

  2. 30 CFR 250.458 - What quantities of drilling fluids are required?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What quantities of drilling fluids are required... OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.458 What quantities of drilling fluids are...

  3. 30 CFR 250.458 - What quantities of drilling fluids are required?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What quantities of drilling fluids are required... OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.458 What quantities of drilling fluids are...

  4. Polycyclic aromatic hydrocarbons profiles of spent drilling fluids deposited at Emu-Uno, Delta State, Nigeria.

    PubMed

    Iwegbue, Chukwujindu M A

    2011-10-01

    The concentrations and profiles of polycyclic aromatic hydrocarbons were determined in spent drilling fluid deposited at Emu-Uno, Delta State of Nigeria. The total concentrations of polycyclic aromatic hydrocarbons in the spent drilling fluid deposits ranged between 40 and 770 μg kg(-1). The PAHs profile were predominantly 2- and 3-rings with acenaphthalene, phenanthrene, fluorene being the predominant PAHs. The prevalence of 2- and 3-rings PAHs in the spent drilling fluid deposits indicate contamination of the drilling fluids with crude oil during drilling. Incorporation of spent drilling fluids into the soil has serious implication for soil, surface water and groundwater quality. © Springer Science+Business Media, LLC 2011

  5. State-of-the-art in coalbed methane drilling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impactmore » on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.« less

  6. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.456 What safe practices must the drilling fluid program follow... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What safe practices must the drilling fluid...

  7. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.

    2018-01-01

    A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.

  8. Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments

    PubMed Central

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020

  9. Real Time Mud Gas Logging During Drilling of DFDP-2B

    NASA Astrophysics Data System (ADS)

    Mathewson, L. A.; Toy, V.; Menzies, C. D.; Zimmer, M.; Erzinger, J.; Niedermann, S.; Cox, S.

    2015-12-01

    The Deep Fault Drilling Project (DFDP) aims to improve our understanding of the Alpine Fault Zone, a tectonically active mature fault system in New Zealand known to rupture in large events, by deep scientific drilling. The borehole DFDP-2B approached the Alpine Fault at depth, reaching a final depth of 892 m (820 m true vertical depth). Online gas analysis (OLGA) while drilling tracked changes in the composition of gases extracted from the circulating drill mud. The composition of fluids from fault zones can provide information about their origins, flow rates and -paths, fluid-rock interactions along these paths, and the permeability structure of the faulted rock mass. Apart from an atmospheric input, the gases in drilling mud derive from the pore space of rock, crushed at the drill bit, and from permeable layers intersected by the borehole. The rapid formation of mud wall cake seals the borehole from further fluid inflow, hence formation-derived gases enter mostly at the depth of the drill bit. OLGA analyses N2, O2, Ar, CO2, CH4, He, and H2 on a mass spectrometer, hydrocarbons CH4, C2H6, C3H8, i-C4H10, and n-C4H10 on a gas chromatograph, and Rn using a lucas-cell detector. Gas was sampled for offline analyses on noble gas and stable isotopes to complement the OLGA dataset. The principle formation-derived gases found in drilling mud during drilling of DFDP-2 were CO2 and CH4, with smaller component of H2 and He2. High radon activity is interpreted to reflect intervals of active fluid flow through highly fractured and faulted rock. 3He/4He values in many samples were extremely air-contaminated, i.e. there was almost no excess of non-atmospheric He. The 3He/4He values measured at 236 m and 610 m, which are the only analyses with uncertainties <100%, are very similar to those measured in hot springs along the Alpine Fault, e.g. Fox River (0.64 Ra), Copland (0.42 Ra), Lower Wanganui (0.81 Ra). We will compare these data to those gathered using OLGA and discuss the implications.

  10. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance ofmore » drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.« less

  11. Drilling the Thuringian Syncline, Germany: core processing during the INFLUINS scientific deep drilling campaign

    NASA Astrophysics Data System (ADS)

    Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe

    2014-05-01

    Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the cores were scanned for compositional variations using an XRF core scanner at the BGR lab and scan images of the slabbed surfaces were performed. The average core recovery rate was very high at nearly 100%. Altogether, we gained 533 m of excellent core material including sandstones, siltstones and claystones, carbonates, sulfates and chlorides. This provides valuable insight into the stratigraphic column of the Thuringian Syncline.

  12. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.

  13. High-pressure high-temperature rheological studies of colloidal suspensions with carbon nanotube

    NASA Astrophysics Data System (ADS)

    Baby, Anoop; Sadr, Reza; Yarc, Rommel; Amani, Mahmood

    2017-11-01

    Selection of the drilling fluid, drilling mud, is vital in minimizing the cost and time required for the drilling in oil fields. Drilling mud aids in cooling, lubricating drilling bit, removing the debries from the drill bore and maintaining the wellbore stability. Owing to the enhanced thermo-physical properties and stable nature, suspensions of nanoparticles have been suggested for drilling fluids. High-pressure and high-temperature rheology of a nanomud suspension (nano particles suspended in a mud solution) is studied here. The nanomud is prepared by dispersing a water-based drilling mud suspension (water with 1% Bentonite and 7% Barite particles) with multi-walled carbon nanotubes, MWCNT. The effect of pressure, temperature, and shear rate are independently studied for the various particle loading of the nanoparticles. Viscosity values are measured at a maximum pressure of 170MPa with temperatures ranging from ambient to 180oC. The effect of MWCNT concentration and variation in shear rate are also investigated A shear thinning non-Newtonian behavior is observed for the basemud and the nanomud samples for all cases. The basemud showed an increase in viscosity with an increase in pressure. However, with MWCNT particle addition, this trend is observed to have reversed.

  14. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor drilling fluids? Once you... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What equipment is required to monitor drilling...

  15. 30 CFR 250.458 - What quantities of drilling fluids are required?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.458 What quantities of drilling... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What quantities of drilling fluids are required...

  16. Evaluation of generic types of drilling fluid using a risk-based analytic hierarchy process.

    PubMed

    Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil

    2003-12-01

    The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option.

  17. Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling

    NASA Astrophysics Data System (ADS)

    Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting

    2018-02-01

    Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep-water drilling through hydrate formation, the drilling fluid with low temperatures should be given priority. The drilling process should be kept under balanced pressures, and the drilling time should be shortened.

  18. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  19. Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants

    NASA Astrophysics Data System (ADS)

    Siddique, Shohel; Kwoffie, Lorraine; Addae-Afoakwa, Kofi; Yates, Kyari; Njuguna, James

    2017-05-01

    Operational discharges of spent drilling fluid, produced water, and accumulated drill cuttings from oil and gas industry are a continuous point source of environmental pollution. To meet the strict environmental standard for waste disposal, oil and gas industry is facing a numerous challenges in technological development to ensure a clean and safe environment. Oil and gas industry generates a large amount of spent drilling fluid, produced water, and drill cuttings, which are very different in every drilling operation in terms of composition and characterisation. This review article highlights the knowledge gap in identifying the different sources of waste streams in combined drilling waste. This paper also emphasises how different chemicals turn into environmentally significant pollutants after serving great performance in oil and gas drilling operations. For instance, oil based drilling fluid performs excellent in deeper drilling and drilling in the harsh geological conditions, but ended with (produces) a significant amount of persistent toxic pollutants in the environment. This review paper provides an overview on the basic concepts of drilling fluids and their functions, sources and characterisation of drilling wastes, and highlights some environmentally significant elements including different minerals present in drilling waste stream.

  20. The Marskhod Egyptian Drill Project

    NASA Astrophysics Data System (ADS)

    Shaltout, M. A. M.

    We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.

  1. Helium isotopes in matrix pore fluids from SAFOD drill core samples suggest mantle fluids cannot be responsible for fault weakening

    NASA Astrophysics Data System (ADS)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.

    2008-12-01

    To quantify fluid flow in the San Andreas Fault (SAF) (and since direct fracture fluid sampling of the fault zone was not available), we have adapted a method to extract rare gases from matrix fluids of whole rocks by diffusion. Helium was measured on drill core samples obtained from 3054 m (Pacific Plate) to 3990 m (North American Plate) through the San Andreas Fault Zone (SAFZ) ~3300 m during SAFOD Phases I (2004), II (2005), III (2007). Samples were typically collected as 2.54 cm diameter subcores drilled into the ends of the cores, or from the core catcher and drillcore fragments within <2hr after core recovery. The samples were placed into ultra high vacuum stainless steel containers, flushed with ultra high purity nitrogen and immediately evacuated. Helium isotopes of the extracted matrix pore fluids and the solid matrix were determined by mass spectrometery at LDEO. Matrix porefluid 3He/4He ratios are ~0.4 - 0.5xRa (Ra: atmospheric 3He/4He = 1.384 x 10-6) in the Pacific Plate, increasing toward the SAFZ, while pore fluids in the North American Plate have a 3He/4He range of 0.7-0.9Ra, increasing away from the SAFZ (consistent with results from mud gas samples (Wiersberg and Erzinger, 2007) and direct fluid samples (Kennedy et al., 2007)). Helium isotope ratios of the solid matrix are less than 0.06Ra across the SAF in samples from both the North American and the Pacific plates, thereby excluding the host matrix as source for the enhanced isotopic signature. If the system is assumed to be in steady state, then the flux of mantle helium must be from the North American Plate to the Pacific plate. The steeper gradient in the Pacific Plate relative to the North American plate is consistent with a porosity corrected effective diffusivity. The source for this mantle helium in the North American Plate is likely related to a low crustal conductivity zone identified by magnetotelluric signals (Becken et al., 2008) that provides a channel for transport of mantle helium within brittle crust under high strain rates (Kennedy et al., 2007). The helium isotope gradients suggest that fault weakening by mantle-derived fluid pressure is unlikely. More likely, mantle fluids "bleed" into the North American plate below seismogenic depths and are transported across the fault by nonseismic, diffusive processes.

  2. Detachment Faulting, Serpentinization, Fluids and Life: Preliminary Results of IODP Expedition 357 (Atlantis Massif, MAR 30°N)

    NASA Astrophysics Data System (ADS)

    Fruh-Green, G. L.; Orcutt, B.; Green, S.; Cotterill, C.

    2016-12-01

    We present an overview of IODP Expedition 357, which successfully used two seabed rock drills to core 17 shallow holes at 9 sites across Atlantis Massif (Mid-Atlantic Ridge 30°N). A major goal of this expedition is to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration. The cores show highly heterogeneous rock type, bulk rock chemistry and alteration that reflect multiple phases of magmatism and fluid-rock interaction within the detachment fault zone. In cores along an E-W transect of the southern wall, recovered mantle peridotites are locally intruded by gabbroic and doleritic dikes and veins. The proportion of mafic rocks are volumetrically less than the amount of mafic rocks recovered previously in the central dome at IODP Site U1309, suggesting a lower degree of melt infiltration into mantle peridotite at the ridge-transform intersection. New technologies were developed and successfully applied for the first time: (1) an in-situ sensor package and water sampling system on each seabed drill measured real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential, temperature, and conductivity during drilling and took water samples after drilling; (2) a borehole plug system to seal the boreholes was successfully deployed at two sites to allow access for future sampling; and (3) delivery of chemical tracers into the drilling fluids for contamination testing. We will provide an overview of the drilling strategy and preliminary results of Expedition 357, and highlight the role of serpentinization in sustaining microbial communities in a region of active serpentinization and low temperature hydrothermal alteration.

  3. Selective-placement burial of drilling fluids: 2. Effects on buffalograss and fourwing saltbrush. [Atriplex canescens; Buchloe dactyloides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, M.L.; Hartmann, S.; Ueckert, D.N.

    Surface disposal of spent drilling fluids used in petroleum and natural gas exploration causes surface soil contamination that severely inhibits secondary plant succession and artificial revegetation efforts. Selective-placement burial was evaluated at two locations in western Texas for on-site disposal of drilling fluids in arid and semiarid regions. Establishment, yield, and chemical composition of fourwing saltbrush (Atriplex canescens (Pursh Nutt.)) and buffalograss (Buchloe dactyloides (Nutt.) Engelm.) transplants on undisturbed soils and on plots with spent drilling fluids and cuttings buried 30, 90 (with and without a 30-cm coarse limestone capillary barrier) and 150 cm were compared. Survival of both speciesmore » was 97 to 100% 17 months after planting on plots with buried drilling wastes. Canopy cover and aboveground biomass of fourwing saltbrush were greater over buried drilling wastes than on untreated plots, whereas canopy cover and aboveground biomass of buffalograss were not affected by the treatments. Significant increases in Na, M, and Mg concentrations in buffalograss after 17 months on plots with drilling fluids buried 30 cm deep at one location indicated plant uptake of some drilling fluid constituents. Elevated Zn concentrations in fourwing saltbush indicated that a portion of the Zn in the drilling fluids was available for plant uptake, while no evidence of plant accumulation of Ba, Cr, Cu, or Ni from drilling fluids was detected.« less

  4. Chemical and Physical Characteristics of Basaltic Formation Fluids on a Ridge Flank: Using Drilling Perturbations to Elucidate Water-Rock-Microbial Reactions

    NASA Astrophysics Data System (ADS)

    Jannasch, H. W.; Wheat, G. C.; Hulme, S.; Becker, K.; Fisher, A. T.; Davis, E. E.

    2008-12-01

    Holes 1301A and 1301B were drilled, cased, and instrumented with long-term, subseafloor observatories (CORKs) on the eastern flank of the Juan de Fuca Ridge in Summer 2004. These holes penetrate 265 m of sediment and the uppermost 108 to 318 m of 3.5 Ma basaltic basement, in an area of vigorous, warm (64C) hydrothermal circulation. The new boreholes were located 1 km south and 2.4 km southwest of instrumented Holes 1026B and 1027C, respectively, that were emplaced eight years earlier. This network of four instrumented boreholes was established as part of a long-term, cross-hole experiment that will elucidate hydrologic properties and the nature and dynamics of microbial ecosystems within the upper oceanic crust, in a well defined geochemical and physical context. Downhole instrumented OsmoSampler packages in Holes 1301A and 1026B were replaced by submersible in summer 2008, as part of a program of observatory servicing in preparation for the next drilling expedition and the initiation of cross-hole experiments in this area. The borehole instrument package from Hole 1301A sampled borehole fluids within the upper 107.5 m of basaltic crust during a four-year period of drilling disturbance, self-sustaining flow of cold bottom water into basement, and subsequent recovery to near-predrilling chemical and thermal conditions. Because the borehole was incompletely sealed at the time of initial installation, bottom seawater flowed down into the borehole during the first three years following emplacement, driven by the higher density of cold bottom water relative to warm formation fluid. Borehole thermal records during the first 1.5 years show that temperatures in basement were below 10 C, and fluid samples from the borehole have a chemical composition similar to bottom seawater. Temperatures fluctuated for the next 1.5 years between 10 and 30 C, and the fluid composition began to shift towards that seen in regional basement fluids sampled at nearby Baby Bare outcrop and from Hole 1026B. In early September 2007 the natural formation overpressure overcame the excess pressure of cold bottom water and began to vent a mixture of recently-recharged bottom water and warm formation fluid. The present day composition of fluid venting from Hole 1301A is very similar to that sampled from Baby Bare outcrop. The progression from bottom seawater to formation fluid chemistry is not conservative relative to temperature, most likely because of water-rock and microbial reactions within basaltic basement.

  5. Recurrent oil sheens at the deepwater horizon disaster site fingerprinted with synthetic hydrocarbon drilling fluids.

    PubMed

    Aeppli, Christoph; Reddy, Christopher M; Nelson, Robert K; Kellermann, Matthias Y; Valentine, David L

    2013-08-06

    We used alkenes commonly found in synthetic drilling-fluids to identify sources of oil sheens that were first observed in September 2012 close to the Deepwater Horizon (DWH) disaster site, more than two years after the Macondo well (MW) was sealed. While explorations of the sea floor by BP confirmed that the well was sound, they identified the likely source as leakage from an 80-ton cofferdam, abandoned during the operation to control the MW in May 2010. We acquired sheen samples and cofferdam oil and analyzed them using comprehensive two-dimensional gas chromatography. This allowed for the identification of drilling-fluid C16- to C18-alkenes in sheen samples that were absent in cofferdam oil. Furthermore, the spatial pattern of evaporative losses of sheen oil alkanes indicated that oil surfaced closer to the DWH wreckage than the cofferdam site. Last, ratios of alkenes and oil hydrocarbons pointed to a common source of oil found in sheen samples and recovered from oil-covered DWH debris collected shortly after the explosion. These lines of evidence suggest that the observed sheens do not originate from the MW, cofferdam, or from natural seeps. Rather, the likely source is oil in tanks and pits on the DWH wreckage, representing a finite oil volume for leakage.

  6. Microbiology of the lower ocean crust - Preliminary results from IODP Expedition 360, Atlantis Bank

    NASA Astrophysics Data System (ADS)

    Sylvan, J. B.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Expedition 360 Scientists, I.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. We present here preliminary analysis of microbial communities sampled from Hole U1473A, drilled to 789.7 m below seafloor during Expedition 360. Sub-sampling of core sections was conducted in a newly designed plexiglass enclosure with positive air pressure and HEPA filtered air, providing a clean environment for microbiology sampling aboard the JOIDES Resolution. Adenosine triphosphoate, an indicator of microbial biomass, was quantified above detection in 23 of 66 samples analyzed. We measured exoenzyme activity for alkaline phosphatase (AP), leucine aminopeptidase and arginine aminopeptidase in 16 samples and found AP to be very low but above background for 14 of the samples, with highest activities measured between 10 and 70 m below seafloor (mbsf) and peaks again at 158 and 307 mbsf, while both peptidase enzymes were above detection for only one sample at 715 mbsf. Isolates of fungi obtained from core samples as well as analyses of lipid and DNA biomarkers, and Raman spectra for a few of our rock core samples provide initial insights into microbial communities in the lower oceanic crust. Finally, a new tracer of seawater and drilling mud contamination, perfluoromethyl decaline (PFMD), was tested for the first time and its performance compared with the commonly used tracer perfluoromethylcyclohexane (PMCH). PFMD was run during coring operations for ten samples and was routinely detected in the drilling fluids, usually detected on the outside of uncleaned cores, and rarely above detection on the cleaned outside of cores. It was below detection on the inside of cores, indicating penetration of drill fluids to the interior of whole round drill cores, where we collected our samples, is unlikely.

  7. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore,more » the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  8. Helium measurements of pore fluids obtained from the San Andreas Fault Observatory at Depth (SAFOD, USA) drill cores

    NASA Astrophysics Data System (ADS)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B. M.

    2011-02-01

    4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5 ± 1.3 × 10-8 cm2 s-1 at 21°C, compared to previously published diffusion coefficients of 1.2 × 10-18 cm2 s-1 (21°C) to 3.0 × 10-15 cm2 s-1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (˜3%) and tortuosity (˜6-13) produces effective diffusion coefficients of 1 × 10-8 cm2 s-1 (21°C) and 1 × 10-7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 ± 0.4% (SD, n = 4) and mudstones 3.1 ± 0.8% (SD, n = 4).

  9. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2003-10-01

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.« less

  10. Contamination Control for Scientific Drilling Operations.

    PubMed

    Kallmeyer, J

    2017-01-01

    Drilling is an integral part of subsurface exploration. Because almost all drilling operations require the use of a drill fluid, contamination by infiltration of drill fluid into the recovered core material cannot be avoided. Because it is impossible to maintain sterile conditions during drilling the drill fluid will contain surface microbes and other contaminants. As contamination cannot be avoided, it has to be tracked to identify those parts of the drill core that were not infiltrated by the drill fluid. This is done by the addition of tracer compounds. A great variety of tracers is available, and the choice depends on many factors. This review will first explain the basic principles of drilling before presenting the most common tracers and discussing their strengths and weaknesses. The final part of this review presents a number of key questions that have to be addressed in order to find the right tracer for a particular drilling operation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general...

  12. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general...

  13. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general...

  14. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general requirements for a...

  15. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are...

  16. Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2005-09-30

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.« less

  17. New approaches to subglacial bedrock drilling technology

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical ice core drill is designed and tested. The expected average daily production of ice drilling would be not less than 25 m/day. The lower part of the drill is adapted for coring bed-rock using special tooth diamond bit. Deep ice coring requires a drilling fluid in the borehole during operation in order to keep the hole open and to compensate the hydrostatic pressures acting to close it. At present there are no ideal low-temperature drilling fluids as all of them are environmental and health hazardous substances. The new approaches of subglacial bedrock drilling technology are connected with utilization of environmental friendly, low-toxic materials, e.g. low-molecular dimethyl siloxane oils or aliphatic synthetic ester of ESTISOL™ 140 type. They have suitable density-viscosity properties, and can be consider as a viable alternative for drilling in glaciers and subglacial bedrock.

  18. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,

    1994-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.

  19. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...

  20. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...

  1. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...

  2. 40 CFR Appendix 6 to Subpart A of... - Reverse Phase Extraction (RPE) Method for Detection of Oil Contamination in Non-Aqueous Drilling...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rigorous statistical experimental design and interpretation (Reference 16.4). 14.0Pollution Prevention 14... oil contamination in drilling fluids. 1.4This method has been designed to show positive contamination....1Sample collection bottles/jars—New, pre-cleaned bottles/jars, lot-certified to be free of artifacts...

  3. Effects of non-aqueous fluids cuttings discharge from exploratory drilling activities on the deep-sea macrobenthic communities

    NASA Astrophysics Data System (ADS)

    Santos, M. F. L.; Lana, P. C.; Silva, J.; Fachel, J. G.; Pulgati, F. H.

    2009-01-01

    This paper assesses the effects of non-aqueous fluids (NAFs-type III) cuttings discharge from exploratory drilling activities on deep-sea macrobenthic communities in the Campos Basin, off the southeastern Brazilian coast, Rio de Janeiro State. One hundred and fifty nine sediment samples were taken with a 0.25 m 2 box corer at a depth of 902 m on three monitoring cruises: first cruise—before drilling (April 2001), second cruise—after drilling (July 2001), and third cruise—one year after drilling (July 2002). The results indicated no significant changes in values of density, number of families and functional groups related to drilling activities in the reference area (2500 m distance), and biological variations may be result from the natural variability of the fauna. Evidence indicates that drilling activities led to measurable effects on the community structure related to NAF cuttings discharge but were limited to a 500 m radius from the drilling well. Such effects were much more evident at isolated sites in the impact area (WBF and WBF+NAF areas) and are characterized as localized impacts. One year after drilling, a recolonization was observed, with the probable recovery of the macrobenthic community in most of the study area; only at part of the WBF+NAF area (stations 05, 24 and 36) was the community still undergoing recovery.

  4. Drilling informatics: data-driven challenges of scientific drilling

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Kyaw, Moe; Saito, Sanny

    2017-04-01

    The primary aim of scientific drilling is to precisely understand the dynamic nature of the Earth. This is the reason why we investigate the subsurface materials (rock and fluid including microbial community) existing under particular environmental conditions. This requires sample collection and analytical data production from the samples, and in-situ data measurement at boreholes. Current available data comes from cores, cuttings, mud logging, geophysical logging, and exploration geophysics, but these datasets are difficult to be integrated because of their different kinds and scales. Now we are producing more useful datasets to fill the gap between the exiting data and extracting more information from such datasets and finally integrating the information. In particular, drilling parameters are very useful datasets as geomechanical properties. We believe such approach, 'drilling informatics', would be the most appropriate to obtain the comprehensive and dynamic picture of our scientific target, such as the seismogenic fault zone and the Moho discontinuity surface. This presentation introduces our initiative and current achievements of drilling informatics.

  5. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  6. Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles

    NASA Astrophysics Data System (ADS)

    Bég, O. Anwar; Espinoza, D. E. Sanchez; Kadir, Ali; Shamshuddin, MD.; Sohail, Ayesha

    2018-04-01

    An experimental study of the rheology and lubricity properties of a drilling fluid is reported, motivated by applications in highly deviated and extended reach wells. Recent developments in nanofluids have identified that the judicious injection of nano-particles into working drilling fluids may resolve a number of issues including borehole instability, lost circulation, torque and drag, pipe sticking problems, bit balling and reduction in drilling speed. The aim of this article is, therefore, to evaluate the rheological characteristics and lubricity of different nano-particles in water-based mud, with the potential to reduce costs via a decrease in drag and torque during the construction of highly deviated and ERD wells. Extensive results are presented for percentage in torque variation and coefficient of friction before and after aging. Rheology is evaluated via apparent viscosity, plastic viscosity and gel strength variation before and after aging for water-based muds (WBM). Results are included for silica and titanium nano-particles at different concentrations. These properties were measured before and after aging the mud samples at 80 °C during 16 h at static conditions. The best performance was shown with titanium nano-particles at a concentration of 0.60% (w/w) before aging.

  7. Drilling fluid containing a copolymer filtration control agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, D.P.; Lucas, J.M.; Perricone, A.C.

    1981-10-06

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.

  8. Drilling fluid containing a copolymer filtration control agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, J. M.

    1985-10-15

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: a (meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and N, N-dialkyl (meth) acrylamide. The copolymer may be cross-linked with N,N'-methylenebisacrylamide or other appropriate cross-linking agent.

  9. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fluid. You must circulate a volume of drilling fluid equal to the annular volume with the drill pipe... fluid volume needed to fill the hole. Both sets of numbers must be posted near the driller's station... warrant. Your tests must conform to industry-accepted practices and include density, viscosity, and gel...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    William C. Maurer; William J. McDonald; Thomas E. Williams

    Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed formore » a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.« less

  11. Evaluation on the Presence of Nano Silver Particle in Improving a Conventional Water-based Drilling Fluid

    NASA Astrophysics Data System (ADS)

    Husin, H.; Ahmad, N.; Jamil, N.; Chyuan, O. H.; Roslan, A.

    2018-05-01

    Worldwide demand in oil and gas energy consumption has been driving many of oil and gas companies to explore new oil and gas resource field in an ultra-deep water environment. As deeper well is drilled, more problems and challenges are expected. The successful of drilling operation is highly dependent on properties of drilling fluids. As a way to operate drilling in challenging and extreme surroundings, nanotechnology with their unique properties is employed. Due to unique physicochemical, electrical, thermal, hydrodynamic properties and exceptional interaction potential of nanomaterials, nanoparticles are considered to be the most promising material of choice for smart fluid design for oil and gas field application. Throughout this paper, the effect of nano silver particle in improving a conventional water based drilling fluid was evaluated. Results showed that nano silver gave a significant improvement to the conventional water based drilling fluid in terms of its rheological properties and filtration test performance.

  12. OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for themore » high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.« less

  13. Mineralogy of Drill Cuttings Beowawe, Dixie Valley and Roosevelt Hot Springs

    DOE Data Explorer

    Simmons, Stuart

    2017-01-25

    Mineralogical, lithological, and geospatial data of drill cuttings from exploration production wells in Beowawe, Dixie Valley and Roosvelt Hot Springs. These data support whole rock analyses for major, minor and critical elements to assess critical metals in produced fluids from Nevada and Utah geothermal fields. The samples were analyzed by x-ray diffraction (legacy data) and then checked by thin section analysis.

  14. Infrared Spectroscopy for Rapid Characterization of Drill Core and Cutting Mineralogy

    NASA Astrophysics Data System (ADS)

    Calvin, W. M.; Kratt, C.; Kruse, F. A.

    2009-12-01

    Water geochemistry can vary with depth and location within a geothermal reservoir, owing to natural factors such as changing rock type, gas content, fluid source and temperature. The interaction of these variable fluids with the host rock will cause well known changes in alteration mineral assemblages that are commonly factored into the exploration of hydrothermal systems for economic metals, but are less utilized with regard to mapping borehole geology for geothermal energy production. Chemistry of geothermal fluids and rock alteration products can impact production factors such as pipeline corrosion and scaling and early studies explored the use of both silica and chlorites as geothermometers. Infrared spectroscopy is particularly good at identifying a wide variety of alteration minerals, especially in discrimination among clay minerals, with no sample preparation. The technique has been extensively used in the remote identification of materials, but is not commonly used on drill core or chips. We have performed several promising pilot studies that suggest the power of the technique to sample continuously and provide mineral logs akin to geophysical ones. We have surveyed a variety of samples, including drill chip boards, boxed core, and drill cuttings from envelopes, sample bottles and chip trays. This work has demonstrated that core and drill chips can be rapidly surveyed, acquiring spectra every few to tens of cm of section, or the vertical resolution of the chip tray (typically 10 feet). Depending on the sample type we can acquire spectral data over thousands of feet depth at high vertical resolution in a fraction of the time that is needed for traditional analytical methods such as XRD or TEM with better accuracy than traditional geologic drill or chip logging that uses visual inspection alone. We have successfully identified layered silicates such as illite, kaolinite, montmorillonite chlorite and prehnite, zeolites, opal, calcite, jarosite and iron oxides and hydroxides in geothermal drill samples. We are currently developing automated analysis techniques to convert this detailed spectral logging data into high-vertical-resolution mineral depth profiles that can be linked to lithology, stratigraphy, fracture zones and potential for geothermal production. Also in development are metrics that would link mapped mineralogy to known geothermometers such as Na-K, Mg depletion, discrimination among illite, montmorillonite, and beidellite, and kaolinite crystallinity. Identification of amorphous and crystalline silica components (chalcedony, crystobalite and quartz) can also constrain silica geothermometry. The degree of alteration and some mineral types have been shown to be a proxy for host rock permeability, natural circulation, and the potential for reservoir sealing. Analysis of alteration intensity is also under way. We will present a synthesis of results to date.

  15. Mini-CORK observatories using the MeBo seafloor drill rig - a new development for long-term data acquisition and sampling in shallow boreholes

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Renken, J.; Zabel, M.; Wefer, G.

    2011-12-01

    State of the art technology for long-term monitoring of fluid migration within the sea floor is the sealing of a borehole with a Circulation Obviation Retrofit Kit (CORK) after sensor installation and/or fluid sampling devices within the drill string. However, the combined used of a drilling vessels and a remotely operated drilling (ROV) required for a CORK installation in the deep sea is a costly exercise that limits the number of monitoring stations installed. Robotic sea floor drill rigs are a cost effective alternative for shallow drillings down to 50-100 m below sea floor. Here we present a Mini-CORK system that is developed for installation with the sea floor drill rig MeBo. This rig was developed at MARUM Research Centre, University of Bremen in 2005 and can sample the sea floor in water depths up to 2000 m. The MeBo is deployed on the seabed and remotely controlled from the vessel. All required drill tools for wire-line core drilling down to 70 m below sea floor are stored on two rotating magazines and can be loaded below the top drive drill head for assembling the drill string. For one of the upcoming cruises with RV Sonne offshore Japan (Nankai Trough accretionary prism), MeBo will be used for the first time to place observatories. Two different designs have been developed. The first, relatively simple long-term device resembles a MeBo drill rod in its geometry, and contains a pressure and temperature transducer in the borehole plus an identical pair of transducers for seafloor reference. The device also contains a data logger, battery unit, and an acoustic modem so that data can be downloaded at any time from a ship of opportunity. The key element at the base of the observatory rod is a seal at the conical thread to separate the borehole hydraulically from the overlying water body. It is realized by an adapter, which also contains a hotstab hydraulic connection and an electrical connection. The second observatory device is a seafloor unit, which replaces part of the first unit and which is deployed by ROV. In essence, the upper portion of the former observatory is taken away by ROV, and an umbilical containing hydraulic lines and tubing to withdraw formation water from the borehole is plugged into the hotstab female adapter by ROV. At the far end, the umbilical is connected to a seafloor unit with battery power, data logger, P and T transducers, and the same acoustic modem as the former one. In addition, the latter contains osmo samplers and biological chambers (FLOCS) for in situ sampling and experiments. After the envisaged deployment period, the entire unit is replaced while an identical one is prepared on deck and lowered from the vessel. In theory, the MeBo hole infinitely serves as an access to depth since no electronic, but only tubing is lowered into the (open) hole. In summary, long-term borehole installations with MeBo offer an affordable way to measure key physical properties over time and sample the formation fluids for geochemistry and microbiology (in case of the second, ROV-deployed CORK).

  16. AN EXPERIMENTAL STUDY OF CUTTING FLUID EFFECTS IN DRILLING. (R825370C057)

    EPA Science Inventory

    Experiments were designed and conducted on aluminum alloys and gray cast iron to determine the function of cutting fluid in drilling. The variables examined included speed, feed, hole depth, tool and workpiece material, cutting fluid condition, workpiece temperatures and drill...

  17. Mechanical behaviour of the Krafla geothermal reservoir: Insight into an active magmatic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Eggertsson, Guðjón H.; Lavallée, Yan; Kendrick, Jackie E.

    2017-04-01

    Krafla volcano, located in North-East Iceland, holds an active magmatic hydrothermal system. Since 1978, this system has been exploited for geothermal energy. Today it is exploited by Landsvirkjun National Power of Iceland and the system is generating 60 MWg from 18 wells, tapping into fluids at 200-300°C. In order to meet further demands of environmentally sustainable energy, Landsvirkjun aims to drill deeper and source fluids in the super-heated, super high-enthalpy system which resides deeper (at 400-600°C). In relation to this, the first well of the Icelandic Deep Drilling Project (IDDP) was drilled in Krafla in 2009. Drilling stopped at a depth of 2.1 km, when the drill string penetrated a rhyolitic magma body, which could not be bypassed despite attempts to side-track the well. This pioneering effort demonstrated that the area close to magma had great energy potential. Here we seek a constraint on the mechanical properties of reservoir rocks overlying the magmatic systems to gain knowledge on these systems to improve energy extraction. During two field surveys in 2015 and 2016, and through information gathered from drilling of geothermal wells, five main rock types were identified and sampled [and their porosities (i.e., storage capacities) where determined with a helium-pycnometer]: basalts (5-60% porosity), hyaloclastites (<35-45% porosity), obsidians (0.25-5% porosity), ignimbrites (13-18% porosity), and intrusive felsites and microgabbros (9-16% porosity). Samples are primarily from surface exposures, but selected samples were taken from cores drilled within the Krafla caldera, outside of the geothermal reservoir. Uniaxial and triaxial compressive strength tests have been carried out, as well as indirect tensile strength tests using the Brazilian disc method, to measure the rock strengths. The results show that the rock strength is inversely proportional to the porosity and strongly affected by the abundance of microcracks; some of the rocks are unusually weak considering their porosities, especially at low effective pressure as constrained at Krafla. The results also show that the porous lithologies may undergo significant compaction at relatively low loads (i.e., depth). Integration of the observed mechanical behaviour and associated permeability into future fluid flow simulations will aim to increase our understanding and exploitation of geothermal reservoirs.

  18. Final report on the design and development of a Rolling Float Meter for drilling-fluid outflow measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.

    1998-03-01

    Lost circulation, which is the loss of well drilling fluids to the formation while drilling, is a common problem encountered while drilling geothermal wells. The rapid detection of the loss of well drilling fluids is critical to the successful and cost-effective treatment of the wellbore to stop or minimize lost circulation. Sandia National Laboratories has developed an instrument to accurately measure the outflow rate of drilling fluids while drilling. This instrument, the Rolling Float Meter, has been under development at Sandia since 1991 and is now available for utilization by interested industry users. This report documents recent Rolling Float Metermore » design upgrades resulting from field testing and industry input, the effects of ongoing testing and evaluation both in the laboratory and in the field, and the final design package that is available to transfer this technology to industry users.« less

  19. A Comprehensive Well Testing Implementation during Exploration Phase in Rantau Dedap, Indonesia

    NASA Astrophysics Data System (ADS)

    Humaedi, M. T.; Alfiady; Putra, A. P.; Martikno, R.; Situmorang, J.

    2016-09-01

    This paper describes the implementation of comprehensive well testing programs during the 2014-2015 exploration drilling in Rantau Dedap Geothermal Field. The well testing programs were designed to provide reliable data as foundation for resource assessment as well as useful information for decision making during drilling. A series of well testing survey consisting of SFTT, completion test, heating-up downhole logging, discharge test, chemistry sampling was conducted to understand individual wells characteristics such as thermodynamic state of the reservoir fluid, permeability distribution, well output and fluid chemistry. Furthermore, interference test was carried out to investigate the response of reservoir to exploitation.

  20. The Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Matter, J.; Kelemen, P. B.; Teagle, D. A. H.

    2014-12-01

    With seed funds from the Sloan Foundation, the International Continental Drilling Program (ICDP) approved a proposal by 39 international proponents for scientific drilling in the Oman ophiolite. Via observations on core, geophysical logging, fluid sampling, hydrological measurements, and microbiological sampling in a series of boreholes, we will address long-standing, unresolved questions regarding melt and solid transport in the mantle beneath oceanic spreading ridges, igneous accretion of oceanic crust, mass transfer between the oceans and the crust via hydrothermal alteration, and recycling of volatile components in subduction zones. We will undertake frontier exploration of subsurface weathering processes in mantle peridotite, including natural mechanisms of carbon dioxide uptake from surface waters and the atmosphere, and the nature of the subsurface biosphere. Societally relevant aspects include involvement and training of university students, including numerous students from Sultan Qaboos University in Oman. Studies of natural mineral carbonation will contribute to design of engineered systems for geological carbon dioxide capture and storage. Studies of alteration will contribute to fundamental understanding of the mechanisms of reaction-driven cracking, which could enhance geothermal power generation and extraction of unconventional hydrocarbon resources. We hope to begin drilling in late 2015. Meanwhile, we are seeking an additional $2M to match the combined Sloan and ICDP funding from national and international funding agencies. Matching funds are needed for operational costs of drilling, geophysical logging, downhole fluid sampling, and core description. Information on becoming part of the named investigator pool is in Appendix 14 (page 70) of the ICDP proposal, available at https://www.ldeo.columbia.edu/gpg/projects/icdp-workshop-oman-drilling-project. This formal process should begin at about the time of the 2014 Fall AGU Meeting. Meanwhile, potential investigators who can help raise matching funds, e.g. for core description as part of petrological or structural studies or for drill site operations, are encouraged to contact the authors of this abstract.

  1. Well cementing in permafrost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.N.

    1979-12-04

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of lignosulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious materialmore » which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition fro cementing in a permafrost region of a wellbore.« less

  2. Well cementing in permafrost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious materialmore » which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.« less

  3. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    PubMed Central

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  4. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    PubMed

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

  5. Drilling Fluid Contamination during Riser Drilling Quantified by Chemical and Molecular Tracers

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; Lever, M. A.; Morono, Y.; Hoshino, T.

    2012-12-01

    Stringent contamination controls are essential to any type of microbiological investigation, and are particularly challenging in ocean drilling, where samples are retrieved from hundreds of meters below the seafloor. In summer 2012, Integrated Ocean Drilling Expedition 337 aboard the Japanese vessel Chikyu pioneered the use of chemical tracers in riser drilling while exploring the microbial ecosystem of coalbeds 2 km below the seafloor off Shimokita, Japan. Contamination tests involving a perfluorocarbon tracer that had been successfully used during past riserless drilling expeditions were complemented by DNA-based contamination tests. In the latter, likely microbial contaminants were targeted via quantitative polymerase chain reaction assays using newly designed, group-specific primers. Target groups included potential indicators of (a) drilling mud viscosifiers (Xanthomonas, Halomonas), (b) anthropogenic wastewater (Bifidobacterium, Blautia, Methanobrevibacter), and (c) surface seawater (SAR 11, Marine Group I Archaea). These target groups were selected based on past evidence suggesting viscosifiers, wastewater, and seawater as the main sources of microbial contamination in cores retrieved by ocean drilling. Analyses of chemical and molecular tracers are in good agreement, and indicate microorganisms associated with mud viscosifiers as the main contaminants during riser drilling. These same molecular analyses are then extended to subseafloor samples obtained during riserless drilling operations. General strategies to further reduce the risk of microbial contamination during riser and riserless drilling operations are discussed.

  6. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    PubMed

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  < Q max  < Q r (Case II), L h is exclusively controlled by L h1 ; while L h is only determined by L h2 when Q r  < Q min  < Q max (Case III). Furthermore, L h1 first increases and then decreases with the increase in drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  7. Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid

    NASA Astrophysics Data System (ADS)

    yang, P.

    2013-12-01

    Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid Ping Yang 1,2, Min-hui Wu2, Xue-wen Zhu2, Tao Deng2, Xue-qing Sun2 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092,China 2. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China Abstract The process of filtrate loss of low-solids drilling fluid was tested by changing the polyanionic cellulose content in low-solids drilling fluid. The effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid was analyzed. The test results showed that when time of filtration is same, the volume of filtrate loss decreases linearly with increasing polyanionic cellulose content. When polyanionic cellulose content is same, the rate of filtrate loss decreases nonlinearly with increasing time and the rate of filtrate loss will reach a stable value.The volume of filtrate loss in 7 to 8 minutes can reaches half of the total volume of filtrate loss. At the same time, the rate of filtrate loss of drilling fluid decreases nonlinearly with increasing viscosity.When the apparent viscosity is between 3.5~4.15 MPa.s, decrease speed of rate of filtrate loss of drilling fluid is quick. The results are helpful for characteristics evaluation of filtrate loss of drilling fluid and control of filtrate loss. Keyword Polyanionic Cellulose,Drilling Fluid,Process of Filtrate Loss Acknowledgments This investigation was supported by the National Natural Science Foundation of China (projects No. 41002093 and 41072205); the Fundamental Research Funds for the Central Universities; the Shanghai Leading Academic Discipline Project (project No. B308), Tongji University; and the Program for Young Excellent Talents, Tongji University. The authors are extremely grateful for the financial support from these five organizations.

  8. Geochemical monitoring of drilling fluids; A powerful tool to forecast and detect formation waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuataz, F.D.; Brach, M.; Criaud, A.

    1990-06-01

    This paper describes a method based on the difference between the chemical compositions of formation and drilling fluids for analyzing drilling mud to forecast fluid-producing zones. The method was successfully applied in three boreholes in crystalline rocks in France. Subsequent geophysical logs and hydraulic tests confirmed the occurrence of flowing fractures.

  9. Examination of body burden and taint for Iceland scallop (Chlamys islandica) and American plaice (Hippoglossoides platessoides) near the Terra Nova offshore oil development over ten years of drilling on the Grand Banks of Newfoundland, Canada

    NASA Astrophysics Data System (ADS)

    DeBlois, Elisabeth M.; Kiceniuk, Joe W.; Paine, Michael D.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Gregory Janes, G.

    2014-12-01

    This paper presents results of analyses of body burdens of metals and hydrocarbons, and taste tests for taint, in Iceland scallop and American plaice performed as part of the Environmental Effects Monitoring (EEM) program for the Terra Nova offshore oil development (Grand Banks of Newfoundland, Canada). Scallop and plaice were collected in a Study Area located within approximately 1 km of drill centres at Terra Nova and in a Reference Area located approximately 20 km from the development. Samples were collected in 1997 to establish a baseline, and from 2000 to 2010, during drilling periods. Scallop adductor muscle tissue was contaminated with >C10-C21 aliphatic hydrocarbons resembling the drilling fluid in the synthetic drilling mud (SBM) used at Terra Nova in 2000, 2002 and 2004, but contamination of adductor muscle was not noted in 2006, 2008 and 2010. The maximum concentration in muscle was 28 mg/kg wet weight, noted in 2002. Scallop viscera was contaminated with hydrocarbons resembling drilling fluid in SBMs near drill centres in all EEM years except 2010. Viscera contamination with >C10-C21 hydrocarbons gradually decreased from a maximum of 150 mg/kg in 2000, to a maximum of 27 mg/kg in 2008; all values were below the laboratory reporting detection limit of 15 mg/kg in 2010. Therefore, evidence from both muscle and viscera indicates a decrease in tissue hydrocarbon contamination in recent years. Barium, another major constituent in drilling muds, has not been noted in scallop adductor muscles at concentrations above the reporting detection limit, but barium was detected in viscera in baseline and EEM years. The maximum concentration of barium in viscera during baseline sampling was 8 mg/kg. The maximum concentration in EEM years (29 mg/kg) was noted in 2000. The maximum concentration in 2010 was 25 mg/kg. The concentration of metals other than barium in scallop tissues was similar between the Terra Nova Study Area and the Reference Area. Hydrocarbons resembling the fluid in SBMs were noted in one American plaice liver sample collected near drill centres in 2000. Otherwise, there has been no evidence of project-related metals or hydrocarbon contamination in plaice liver or fillet samples. There has been no evidence of taint (off-taste) for scallop adductor muscle and plaice fillet tissue in baseline or EEM years. Combined with a parallel study on fish bioindicators at Terra Nova that showed that fish health at Terra Nova was similar to that at the Reference Area (Mathieu et al., 2011), these results indicate little to no detectable biological effects on Iceland scallop and American plaice as a result of Terra Nova activities.

  10. Geochemical and Mineralogical Profiles Across the Listvenite- Metamorphic Transition in the Basal Megathrust of the Oman Ophiolite: First Results from Drilling at Oman Drilling Project Hole BT1B

    NASA Astrophysics Data System (ADS)

    Godard, M.; Bennett, E.; Carter, E.; Kourim, F.; Lafay, R.; Noël, J.; Kelemen, P. B.; Michibayashi, K.; Harris, M.

    2017-12-01

    The transition from the base of the Oman ophiolite to the underlying metamorphic sole was drilled at Hole BT1B (Sumail Massif) during Phase 1 of Oman Drilling Project (Winter 2016-2017). 74 samples were collected from the 300m of recovered cores for whole rock geochemical and XRD analyses. 55 listvenites, ophicarbonates and serpentinites, and 19 schists and greenstones were analyzed for major and minor elements (XRF) and for CO2 and S concentrations (CHNS) aboard DV Chikyu (ChikyuOman, Summer 2017). Analyses for trace elements (ICP-MS) at the University of Montpellier are in progress. The composition of listvenites, ophicalcites and serpentinites recovered at Hole BT1B record extensive interactions between CO2-rich fluids and the serpentinized peridotites. These reactions involved addition of SiO2 and formation of carbonates at the expense of the serpentinized peridotite protolith. All samples recovered from the mantle section are enriched in fluid mobile and incompatible trace elements compared to the mean composition of the Oman mantle. These enrichments are up to 103 times the Oman mantle for Rb and Ba. They mimic the pattern of the samples from the metamorphic sole. This suggests that the composition of the listvenites in these elements is controlled by that of contaminating fluids that may have originated in the same lithologies as those drilled at the base of Hole BT1B. Listvenites, ophicalcites and serpentinites also show notable downhole chemical variations, with listvenites showing marked variations in Al2O3 and TiO2. Occurrence of lherzolites and cpx-harzburgites has been reported at the base of the Oman dominantly harzburgitic mantle section. The observed variations in the listvenites (Al2O3 and TiO2) could be related to the composition of their protolith, the deepest having more fertile compositions. Alternatively, the observed downhole changes in the composition of listvenites may relate to the progressive equilibration of the reacting ultramafic-rocks and/or listvenite with the fluids originating in the subducting metamorphic sole; these variations could be related to heterogeneous reaction kinetics (temperature, reactive surfaces, chemical gradients) and/or to transport (e.g. local variations in permeability) within the listvenite units.

  11. New Era of Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.

    2014-12-01

    The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is equipped with state-of-the-art instruments to analyze all science samples. X-ray CT creates non-destructive 3D images of core samples providing high resolution structural detail. The microbiology laboratory offers clean and contamination-free work environments required for microbiological samples.

  12. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What equipment is required to monitor drilling...

  13. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What equipment is required to monitor drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor...

  14. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What equipment is required to monitor drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor...

  15. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What equipment is required to monitor drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor...

  16. Thermal indicator for wells

    DOEpatents

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  17. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    NASA Astrophysics Data System (ADS)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  18. Slim hole drilling and testing strategies

    NASA Astrophysics Data System (ADS)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin

    2017-12-01

    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  19. A wireline piston core barrel for sampling cohesionless sand and gravel below the water table

    USGS Publications Warehouse

    Zapico, Michael M.; Vales, Samuel; Cherry, John A.

    1987-01-01

    A coring device has been developed to obtain long and minimally disturbed samples of saturated cohesionless sand and gravel. The coring device, which includes a wireline and piston, was developed specifically for use during hollow-stem auger drilling but it also offers possibilities for cable tool and rotary drilling. The core barrel consists of an inner liner made of inexpensive aluminum or plastic tubing, a piston for core recovery, and an exterior steel housing that protects the liner when the core barrel is driven into the aquifer. The core barrel, which is approximately 1.6m (5.6 feet) long, is advanced ahead of the lead auger by hammering at the surface on drill rods that are attached to the core barrel. After the sampler has been driven 1.5m (5 feet), the drill rods are detached and a wireline is used to hoist the core barrel, with the sample contained in the aluminum or plastic liner, to the surface. A vacuum developed by the piston during the coring operation provides good recovery of both the sediment and aquifer fluids contained in the sediment. In the field the sample tubes can be easily split along their length for on-site inspection or they can be capped with the pore water fluids inside and transported to the laboratory. The cores are 5cm (2 inches) in diameter by 1.5m (5 feet) long. Core acquisition to depths of 35m (115 feet), with a recovery greater than 90 percent, has become routine in University of Waterloo aquifer studies. A large diameter (12.7cm [5 inch]) version has also been used successfully. Nearly continuous sample sequences from sand and gravel aquifers have been obtained for studies of sedimentology, hydraulic conductivity, hydrogeochemistry and microbiology.

  20. Data on cost analysis of drilling mud displacement during drilling operation.

    PubMed

    Okoro, Emeka Emmanuel; Dosunmu, Adewale; Iyuke, Sunny E

    2018-08-01

    The focus of this research was to present a data article for analyzing the cost of displacing a drilling fluid during the drilling operation. The cost of conventional Spud, KCl and Pseudo Oil base (POBM) muds used in drilling oil and gas wells are compared with that of a Reversible Invert Emulsion Mud. The cost analysis is limited to three sections for optimum and effective Comparison. To optimize drilling operations, it is important that we specify the yardstick by which drilling performance is measured. The most relevant yardstick is the cost per foot drilled. The data have shown that the prices for drilling mud systems are a function of the mud system formulation cost for that particular mud weight and maintenance per day. These costs for different mud systems and depend on the base fluid. The Reversible invert emulsion drilling fluid, eliminates the cost acquired in displacing Pseudo Oil Based mud (POBM) from the well, possible formation damage (permeability impairment) resulting from the use of viscous pill in displacing the POBM from the wellbore, and also eliminates the risk of taking a kick during mud change-over. With this reversible mud system, the costs of special fluids that are rarely applied for the well-completion purpose (cleaning of thick mud filter cake) may be reduced to the barest minimum.

  1. Temperature and volume estimation of under-seafloor fluid from the logging-while-drilling data beneath an active hydrothermal field

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Saito, S.; Sanada, Y.; Masaki, Y.; Moe, K.; Kido, Y. N.; Kumagai, H.; Takai, K.; Suzuki, K.

    2015-12-01

    In July of 2014, offshore drillings on Iheya-North Knoll, Okinawa Trough, was executed as part of Next-generation technology for ocean resources survey, which is a research program in Cross-ministerial Strategic Innovation Promotion Program (SIP). In this expedition, logging-while- drilling (LWD) and measuring-while-drilling (MWD) were inserted into 6 holes (C9011 - C9016) to investigate spatial distribution of hydrothermal deposit and geothermal fluid reservoir. Both of these tools included annular pressure-while-drilling (APWD). Annular pressure and temperature were monitored by the APWD to detect possible exceedingly-high-temperature geofluid. In addition, drilling fluid was continuously circulated at sufficient flow rate to protect LWD tools against high temperature (non-stop driller system). At C9012 and C9016, the LWD tool clearly detected pressure and temperature anomaly at 234 meter below the seafloor (mbsf) and 80 mbsf, respectively. Annular pressure and temperature quickly increases at that depth and it would reflect the injection of high-temperature fluid. During the drilling, however, drilling water was continuously circulated at high flow-rate (2600L/min) and the measured temperature is not exactly in-situ temperature. To investigate the detail of the heat source, such as in-situ temperature and quantity of heat, we performed numerical analyses of thermal fluid and energy-balance assuming injection of high-temperature fluid. We combined pressure loss theory of double cylinders and temperature equation to replicate the fluid flow and its temperature between borehole wall and drilling pipe during the thermofluid injection. As the result, we estimated the temperature and the volume of injected fluid to be 115oC~ and 17.3 m3, respectively (at C9012) from the calculation. This temperature is lower than that of a hydrothermall vent which had been found near the hole (300oC).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R.D.; Duke, T.W.; Macauley, J.M.

    Effects of a used drilling fluid on an experimental seagrass community (Thalassia testudinum) were measured by exposing the community to the suspended particulate phase (SPP) in laboratory microcosms. Structure of the macroinvertebrate assemblage, growth and chlorophyll content of grass and associated epiphytes, and rates of decomposition as indicated by weight loss of grass leaves in treated and untreated microcosms were compared. There were statistically significant differences in community structure and function among untreated microcosms and those receiving the clay and drilling fluid. For example, drilling fluid and clay caused a significant loss in the number of the ten most numericallymore » abundant (dominant) macroinvertebrates, and drilling fluid decreased the rate at which Thalassia leaves decomposed.« less

  3. Selective placement disposal of drilling fluids in west Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, M.L.

    1988-01-01

    Burial of spent drilling fluids used in petroleum and natural gas exploration was evaluated as an alternative disposal technique for reducing surface soil contamination in western Texas. Simulated reserve pits were constructed to provide burial depths of 30, 90, and 150 cm below the surface, with orderly replacement of stockpiled subsoil and topsoil. Movement of soluble salts and heavy metals from drilling fluids into the overlying soil was monitored over a 20-month period. The effects of depth of drilling fluid burial on establishment, yields, and chemical composition of transplanted fourwing saltbush (Atriplex canescens (Pursh) Nutt.) and buffalograss (Buchloe dactyloides (Nutt.)more » Engelm.) were determined for two growing seasons. Sodium, Ca{sup +2}, and Cl{sup {minus}} were the dominant mobile ions, while migration of Mg{sup +2}, K{sup +}, and SO{sub 4}{sup {minus}2} was observed to a lesser degree. Exchangeable sodium percentages in the 15-cm zone immediately above drilling fluid ranged from 1.9 to 19.0 after 20 months. Total concentrations of Ba, Cr, Cu, Ni, and Zn were greater in drilling fluids than in native soil, but there was no evidence of migration of these metals into overlying soil.« less

  4. 30 CFR 250.459 - What are the safety requirements for drilling fluid-handling areas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.459 What are the safety... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What are the safety requirements for drilling...

  5. 30 CFR 250.459 - What are the safety requirements for drilling fluid-handling areas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.459 What are the safety... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What are the safety requirements for drilling...

  6. 30 CFR 250.459 - What are the safety requirements for drilling fluid-handling areas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.459 What are... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What are the safety requirements for drilling...

  7. 30 CFR 250.459 - What are the safety requirements for drilling fluid-handling areas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are the safety requirements for drilling... OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.459 What are the safety requirements for...

  8. 30 CFR 250.459 - What are the safety requirements for drilling fluid-handling areas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.459 What are the safety... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What are the safety requirements for drilling...

  9. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  10. The campi flegrei (Italy) geothermal system: A fluid inclusion study of the mofete and San Vito fields

    USGS Publications Warehouse

    de, Vivo B.; Belkin, H.E.; Barbieri, M.; Chelini, W.; Lattanzi, P.; Lima, A.; Tolomeo, L.

    1989-01-01

    A fluid inclusion study of core from the Mofete 1, Mofete 2, Mofete 5, San Vito 1, and San Vito 3 geothermal wells (Campi Flegrei, Campania, Italy) indicates that the hydrothermal minerals were precipitated from aqueous fluids (??CO2) that were moderately saline (3-4 wt.% NaCl equiv.) to hypersaline (> 26 wt.% NaCl equiv.) and at least in part, boiling. Three types of primary fluid inclusions were found in authigenic K-feldspar, quartz, calcite, and epidote: (A) two-phase [liquid (L) + vapor (V)], liquid-rich inclusions with a range of salinity; (B) two-phase (L + V), vaporrich inclusions with low salinity; and (C) three-phase [L + V + crystals (NaCL)], liquid-rich inclusions with hypersalinity. Results of microthermometric and crushing studies are reported for twenty drill core samples taken from the lower portions of the five vertical wells. Data presented for selected core samples reveal a general decrease in porosity and increase in bulk density with increasing depth and temperature. Hydrothermal minerals commonly fill fractures and pore-spaces and define a zonation pattern, similar in all five wells studied, in response to increasing depth (pressure) and temperature. A greenschist facies assemblage, defined by albite + actinolite, gives way to an amphibolite facies, defined by plagioclase (andesine) + hornblende, in the San Vito 1 well at about 380??C. The fluid inclusion salinity values mimic the saline and hypersaline fluids found by drilling. Fluid inclusion V/L homogenization temperatures increase with depth and generally correspond to the extrapolated down-hole temperatures. However, fluid inclusion data for Mofete 5 and mineral assemblage data for San Vito 3, indicate fossil, higher-temperature regimes. A limited 87Sr/86Sr study of leachate (carbonate) and the leached cores shows that for most samples (except San Vito 3) the carbonate deposition has been from slightly 87Sr-enriched fluids and that Sr isotopic exchange has been incomplete. However, San Vito 3 cores show an approach to fluid/rock Sr equilibrium with a fluid similar to modern ocean water in 87Sr/86Sr ratio. The Campi Flegrei volcanic system has evolved undersaturated products, mostly trachyte, and defines a large (??? 12 km) caldera. The hydrothermal system developed in this location can be used as an analog for fossil systems in similar trachytic environments. The potential for ore mineralization is expressed by the recognition, from fluid inclusion and drilling data, of ore-forming environments such as boiling and brine stratification. ?? 1989.

  11. Characterization of drilling waste from shale gas exploration in Central and Eastern Poland.

    PubMed

    Mikos-Szymańska, Marzena; Rusek, Piotr; Borowik, Krzysztof; Rolewicz, Maciej; Bogusz, Paulina; Gluzińska, Joanna

    2018-05-28

    The purpose of this research was to determine and evaluate the chemical properties of drilling waste from five well sites in Central and Eastern Poland. It was found that spent drilling fluids can contain high values of nickel and mercury (270 and 8.77 mg kg -1 , respectively) and can exceed the maximum permissible limits recommended by the EC regulations for safety of soils (75 mg kg -1 for nickel and 1.5 mg kg -1 for mercury). The heavy metal concentrations in the studied drill cuttings did not exceed the maximum permissible limits recommended by the EC regulation. Drilling wastes contain macroelements (e.g., calcium, magnesium, and potassium) as well as trace elements (e.g., copper, iron, zinc, and manganese) that are essential for the plant growth. It was stated that water extracts of drilling fluids and drill cuttings, according to anions presence, had not any specific constituents of concern based on FAO irrigation guidelines, the USEPA WQC, and toxicity values. X-ray diffraction analysis was used to understand the structure and texture of waste drilling fluid solids and drill cuttings. Analysis of the mineralogical character of drilling fluid solids revealed that they contained calcite, quartz, muscovite, sylvite, barite, dolomite, and orthoclase. Drill cuttings contained calcite quartz, muscovite, barite, dolomite, and barium chloride.

  12. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  13. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors—AI Models and Their Validations

    PubMed Central

    Viumdal, Håkon; Mylvaganam, Saba

    2017-01-01

    In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595

  14. An Automated, Low Mass, Low Power Drill for Acquiring Subsurface Samples of Ground Ice for Astrobiology Studies on Earth and on Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G. A.; McKay, C.; George, J.; Derkowski, G.; Cooper, G.; Zacny, K.; Baker, R. Fincher; Pollard, W.; Clifford, S.

    2003-01-01

    As a project that is part of NASA s Astrobiology Technology & Instrument Development Program (ASTID), we are developing a low mass (approx.20kg) drill that will be operated without drilling fluids and at very low power levels (approx.60 watts electrical) to access and retrieve samples from permafrost regions of Earth and Mars. The drill, designed and built as a joint effort by NASA JSC and Baker-Hughes International, takes the form of a down-hole unit attached to a cable so that it can, in principle, be scaled easily to reach significant depths. A parallel laboratory effort is being carried out at UC Berkeley to characterize the physics of dry drilling under martian conditions of pressure, temperature and atmospheric composition. Data from the UCB and JSC laboratory experiments are being used as input to a drill simulation program which is under development to provide autonomous control of the drill. The first Arctic field test of the unit is planned for May 2004. A field expedition to Eureka on Ellesmere Island in Spring 2003 provided an introduction for several team members to the practical aspects of drilling under Arctic conditions. The field effort was organized by Wayne Pollard of McGill University and Christopher McKay of NASA ARC. A conventional science drill provided by New Zealand colleagues was used to recover ground ice cores for analysis of their microbial content and also to develop techniques using tracers to track the depth of penetration of contamination from the core surface into the interior of the samples.

  15. Contamination Control of Freeze Shoe Coring System for Collection of Aquifer Sands

    NASA Astrophysics Data System (ADS)

    Homola, K.; van Geen, A.; Spivack, A. J.; Grzybowski, B.; Schlottenmier, D.

    2017-12-01

    We have developed and tested an original device, the freeze-shoe coring system, designed to recover undisturbed samples of water contained in sand-dominated aquifers. Aquifer sands are notoriously difficult to collect together with porewater from coincident depths, as high hydraulic permeability leads to water drainage and mixing during retrieval. Two existing corer designs were reconfigured to incorporate the freeze-shoe system; a Hydraulic Piston (HPC) and a Rotary (RC) Corer. Once deployed, liquid CO­2 contained in an interior tank is channeled to coils at the core head where it changes phase, rapidly cooling the deepest portion of the core. The resulting frozen core material impedes water loss during recovery. We conducted contamination tests to examine the integrity of cores retrieved during a March 2017 yard test deployment. Perfluorocarbon tracer (PFC) was added to the drill fluid and recovered cores were subsampled to capture the distribution of PFC throughout the core length and interior. Samples were collected from two HPC and one RC core and analyzed for PFC concentrations. The lowest porewater contamination, around 0.01% invasive fluid, occurs in the center of both HPC cores. The greatest contamination (up to 10%) occurs at the disturbed edges where core material contacts drill fluid. There was lower contamination in the core interior than top, bottom, and edges, as well as significantly lower contamination in HPC cores that those recovered with the RC. These results confirm that the freeze-shoe system, proposed for field test deployments in West Bengal, India, can successfully collect intact porewater and sediment material with minimal if any contamination from drill fluid.

  16. Transesterification reaction for synthesis of palm-based ethylhexyl ester and formulation as base oil for synthetic drilling fluid.

    PubMed

    Abdul Habib, Nor Saiful Hafiz; Yunus, Robiah; Rashid, Umer; Taufiq-Yap, Yun H; Abidin, Zurina Zainal; Syam, Azhari Muhammad; Irawan, Sonny

    2014-01-01

    The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives.

  17. The Iceland Deep Drilling Project 4.5 km deep well, IDDP-2, in the seawater-recharged Reykjanes geothermal field in SW Iceland has successfully reached its supercritical target

    NASA Astrophysics Data System (ADS)

    Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.

    2017-11-01

    The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greener, J.M.; Trimble, G.E.; Singer, G.M.

    This paper describes the Opon Gas Field development drilling case history in the Middle Magdalena Basin of north-central Colombia, South America. World class levels of drilling fluid and cementing densities in excess of 22.0 ppg were required to control the extreme pressures encountered. A continuous improvement process is detailed in regard to casing, drilling fluid, cement and related drilling mechanics programs in a severely pressured and environmentally sensitive operation.

  19. High Temperature 300°C Directional Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°Cmore » capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100 hours.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R.D.; Duke, T.W.; Macauley, J.M.

    Effects of a used drilling fluid on an experimental seagrass community (Thalassia testudinum Konig et Sims) were measured by exposing the community to the suspended particulate phase (SPP) in laboratory microcosms. Structure of the macroinvertebrate assemblage, growth, and chlorophyll content of grass and associated epiphytes, and rates of decomposition as indicated by weight loss of grass leaves in treated and untreated microcosms were compared. There were statistically significant differences in community structure and function among untreated microcosms and those receiving the clay and drilling fluid. For example, drilling fluid and clay caused a significant decrease in the numbers of themore » ten most numerically abundant (dominant) macroinvertebrates, and drilling fluid decreased the rate at which Thalassia leaves decomposed.« less

  1. Geothermal state and fluid flow within ODP Hole 843B: results from wireline logging

    NASA Astrophysics Data System (ADS)

    Wiggins, Sean M.; Hildebrand, John A.; Gieskes, Joris M.

    2002-02-01

    Borehole fluid temperatures were measured with a wireline re-entry system in Ocean Drilling Program Hole 843B, the site of the Ocean Seismic Network Pilot Experiment. These temperature data, recorded more than 7 years after drilling, are compared to temperature data logged during Leg 136, approximately 1 day after drilling had ceased. Qualitative interpretations of the temperature data suggest that fluid flowed slowly downward in the borehole immediately following drilling, and flowed slowly upward 7 years after drilling. Quantitative analysis suggests that the upward fluid flow rate in the borehole is approximately 1 m/h. Slow fluid flow interpreted from temperature data only, however, requires estimates of other unmeasured physical properties. If fluid flows upward in Hole 843B, it may have led to undesirable noise for the borehole seismometer emplaced in this hole as part of the Ocean Seismic Network Pilot Experiment. Estimates of conductive heat flow from ODP Hole 843B are 51 mW/m 2 for the sediment and the basalt. These values are lower than the most recent Hawaiian Arch seafloor heat flow studies.

  2. 40 CFR 435.11 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... showers, eye-wash stations, hand-wash stations, fish cleaning stations, and galleys located within... formation oil carried out from the wellbore with the drilling fluid. (2) Dry drill cuttings means the... limitations and NSPS means the concentration (milligrams/kilogram dry sediment) of the drilling fluid in...

  3. Completion Report for Well ER-20-12: Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurtz, Jeff

    2016-08-01

    Well ER-20-12 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area Activity. The well was drilled from October 2015 to January 2016 as an addition to the Central and Western Pahute Mesa corrective action units 101 and 102 the Phase II drilling program. Well ER-20-12 was identified based on recommendations of the Pahute Mesa Guidance Team as a result of anomalous tritium detections in groundwater samples collected from Well PM-3 in 2011 and 2013. The primary purpose of the well was to provide information on the hydrogeologymore » in the area downgradient of select underground tests on Western Pahute Mesa and define hydraulic properties in the saturated Tertiary volcanic rocks. The main 46.99-centimeter (cm) (18.5-inch [in.]) borehole was drilled to a depth of 765.14 meters (m) (2,510.3 ft) and the hole opened to 66.04 cm (26 in.); followed by the 50.80-cm (20-in.) surface casing, which was installed and sealed with cement; and a piezometer (p4) was set in the Timber Mountain welded-tuff aquifer (TMWTA) between the casing and the open borehole. The borehole was continued with a 46.99-cm (18.5-in.) drill bit to a depth of 1,326.53 m (4,352.16 ft), and an intermediate 24.44-cm (9.625-in.) casing was installed and sealed to 1,188.72 m (3,900.00 ft) A piezometer (p3) was installed across the Calico Hills zeolitic composite unit (CHZCM) (lava-flow aquifer [LFA]) in the annulus of the open borehole. Two additional piezometers were installed and completed between the intermediate casing and the borehole wall, one (p2) in the CHZCM and one (p1) in the Belted Range aquifer (BRA). The piezometers are set to monitor groundwater properties in the completed intervals. The borehole was continued with a 21.59-cm (8.5-in.) drill bit to a total depth of 1,384.80 m (4,543.33 ft), and the main completion 13.97-cm (5.5-in.) casing was installed in the open borehole across the Pre-Belted Range composite unit (PBRCM). Data collected during hole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs, hydrophysical logs, percussion core samples, water-quality measurements (including tritium), and water-level measurements. The well penetrated 1,384.4 m (4,543.33 ft) of Tertiary volcanic rocks. The stratigraphy and lithology were generally as expected with one noted exception. A thick lava-flow and related ash-flow tuffs were identified as Calico Hills Formation (Th), and no Crater Flat units were noted. Additionally, many of the Thirsty Canyon and Timber Mountain units were thicker than expected. Fluid levels measured in the borehole during drilling are the following: (1) on November 2, 2015, Navarro measured the fluid level in the borehole at a depth of 492.33 m (1,615.25 ft) below ground surface (bgs); (2) Schlumberger and COLOG recorded fluid levels during geophysical logging on November 4 and 5, 2015, at a depth of 492.86 m (1,617 ft) and 492.25 m (1,615 ft) bgs, respectively; and (3) on December 4, 2015, COLOG and Navarro measured fluid level in the 20-in. casing with an open borehole to 1,326.54 m (4,352.16 ft) bgs at 575.77 m (1,889.00 ft) and 574.03 m (1,883.3 ft) bgs, respectively. These and subsequent water-level measurements indicate a potential head difference of greater than 76.2 m (250 ft) for groundwater in aquifers above and below the Upper Paintbrush confining unit (UPCU). As expected, tritium was occasionally measured above the Safe Drinking Water Act limit (20,000 picocuries per liter [pCi/L]). Lab analysis on four bailed samples and taken from the undeveloped well indicate that the tritium activities average approximately 36,545 pCi/L. All Fluid Management Plan (FMP) requirements for Well ER-20-12 were met. Analysis of monitoring samples and FMP confirmatory samples indicate that fluids generated during drilling at ER-20-12 met the FMP criteria for discharge to the lined sump and designated infiltration area. All sanitary and hydrocarbon waste generated was properly handled and disposed of.« less

  4. Radioactivity in wastes generated from shale gas exploration and production - North-Eastern Poland.

    PubMed

    Jodłowski, Paweł; Macuda, Jan; Nowak, Jakub; Nguyen Dinh, Chau

    2017-09-01

    In the present study, the K-40, U-238, Ra-226, Pb-210, Ra-228 and Th-228 activity concentrations were measured in 64 samples of wastes generated from shale gas exploration in North-Eastern Poland. The measured samples consist of drill cuttings, solid phase of waste drilling muds, fracking fluids, return fracking fluids and waste proppants. The measured activity concentrations in solid samples vary in a wide range from 116 to around 1100 Bq/kg for K-40, from 14 to 393 Bq/kg for U-238, from 15 to 415 Bq/kg for Ra-226, from 12 to 391 Bq/kg for Pb-210, from a few Bq/kg to 516 Bq/kg for Ra-228 and from a few Bq/kg to 515 Bq/kg for Th-228. Excluding the waste proppants, the measured activity concentrations in solid samples oscillate around their worldwide average values in soil. In the case of the waste proppants, the activity concentrations of radionuclides from uranium and thorium decay series are significantly elevated and equal to several hundreds of Bq/kg but it is connected with the mineralogical composition of proppants. The significant enhancement of Ra-226 and Ra-228 activity concentrations after fracking process was observed in the case of return fracking fluids, but the radium isotopes content in these fluids is comparable with that in waste waters from copper and coal mines in Poland. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation

    NASA Astrophysics Data System (ADS)

    Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-02-01

    Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.

  6. Microbial diversity within Juan de Fuca ridge basement fluids sampled from oceanic borehole observatories

    NASA Astrophysics Data System (ADS)

    Jungbluth, S.; Bowers, R.; Lin, H.; Hsieh, C.; Cowen, J. P.; Rappé, M.

    2012-12-01

    Three generations of sampling and instrumentation platforms known as Circulation Obviation Retrofit Kit (CORK) observatories affixed to Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) boreholes are providing unrivaled access to fluids originating from 1.2-3.5 million-years (Myr) old basaltic crust of the eastern flank of the Juan de Fuca ridge. Borehole fluid samples obtained via a custom seafloor fluid pumping and sampling system coupled to CORK continuous fluid delivery lines are yielding critical insights into the biogeochemistry and nature of microbial life inhabiting the sediment-covered basement environment. Direct microscopic enumeration revealed microbial cell abundances that are 2-41% of overlying bottom seawater. Snapshots of basement fluid microbial diversity and community structure have been obtained through small subunit ribosomal RNA (SSU rRNA) gene cloning and sequencing from five boreholes that access a range of basement ages and temperatures at the sediment-basement interface. SSU rRNA gene clones were derived from four different CORK installations (1026B, 1301A, 1362A, and 1362B) accessing relatively warmer (65°C) and older (3.5 Myr) ridge flank, and one location (1025C) accessing relatively cooler (39°C) and younger (1.2 Myr) ridge flank, revealing that warmer basement fluids had higher microbial diversity. A sampling time-series collected from borehole 1301A has revealed a microbial community that is temporally variable, with the dominant lineages changing between years. Each of the five boreholes sampled contained a unique microbial assemblage, however, common members are found from both cultivated and uncultivated lineages within the archaeal and bacterial domains, including meso- and thermophilic microbial lineages involved with sulfur cycling (e.g Thiomicrospira, Sulfurimonas, Desulfocapsa, Desulfobulbus). In addition, borehole fluid environmental gene clones were also closely related to uncultivated lineages recovered from both terrestrial and marine hydrothermal systems (e.g. Candidatus Desulforudis, Candidate Phylum OP8) as well as globally distributed marine sediments (e.g. Miscellaneous Crenarchaeotic Group, JTB35). This analysis provides a framework for future research investigating the evolutionary and functional diversity, population genetics, and activity of the poorly understood habitat. These ongoing sampling expeditions greatly benefit from improvements to both CORK observatories and evolving sampling equipment including microbiologically-friendly materials and dependable access to pristine fluids from the ocean crust.

  7. Initial results from the Nankai Trough shallow splay and frontal thrust (IODP Expedition 316): Implications for fluid flow

    NASA Astrophysics Data System (ADS)

    Screaton, E.; Kimura, G.; Curewitz, D.; Scientists, E.

    2008-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 316 examined the frontal thrust and the shallow portion of the megasplay fault offshore of the Kii peninsula, and was the third drilling expedition of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). NanTroSEIZE will integrate seafloor observations, drilling, and observatories to investigate the processes controlling slip along subduction zone plate boundary fault systems. Site C0004 examined a shallow portion of the splay fault system where it overrides slope basin sediments. Site C0008, located in the slope basin 1 km seaward of Site C0004, provided a reference site for the footwall sediments. Results of drilling indicate that the footwall sediments have dewatered significantly, suggesting permeable routes for fluid escape. These high-permeability pathways might be provided by coarse-grained layers within the slope sediments. In situ dewatering and multiple fluid escape paths will tend to obscure any geochemical signature of flow from depth. Sites C0006 and C0007 examined the frontal thrust system. Although poorly recovered, coarse-grained trench sediments were sampled within the footwall. These permeable sediments would be expected to allow rapid escape of any fluid pressures due to loading. At both sites, low porosities are observed at shallow depths, suggesting removal of overlying material. This observation is consistent with interpretations that the prism is unstable and currently in a period of collapse. Anomalously low temperatures were measured within boreholes at these sites. One possible explanation for the low temperatures is circulation of seawater along normal faults in the unstable prism.

  8. The case study of drillbit and borehole frozen water of the subglacial Lake Vostok, East Antarctica for microbial content

    NASA Astrophysics Data System (ADS)

    Bulat, Sergey; Doronin, Maxim; Dominique, Marie; Lipenkov, Vladimir; Lukin, Valery; Karlov, Denis; Demchenko, Leonid; Khilchenko, Margarita

    The objective was to estimate microbial content and diversity in the subglacial Lake Vostok (buried beneath 4-km thick East Antarctic ice sheet) by studying the uppermost water layer which entered the borehole upon lake entry (February 5, 2012) and then shortly frozen within. The samples of so-called drillbit water frozen on a drill bit upon lake enter (RAE57) along with re-drilled so-called borehole-frozen water (RAE58) were provided for the study with the ultimate goal to discover the life in this extreme icy environment. The comprehensive analyses (constrained by Ancient DNA research criteria) of the first lake water samples - drillbit- (one sample) and borehole-frozen (3 different depths 5G-2N-3425, 3429 et 3450m), are nearly got finished. If the drillbit water sample was heavily polluted with drill fluid (at ratio 1:1), re-drilled borehole-frozen samples were proved to be rather clean but still strongly smelling kerosene and containing numerous micro-droplets of drill fluid making the ice non-transparent. The cell concentrations measured by flow cytofluorometry showed 167 cells per ml in the drillbit water sample while in borehole-frozen samples ranged from 5.5 (full-cylinder 3429m deep frozen water ice core) to 38 cells per ml (freeze-centre of 3450m deep moon-shape ice core). DNA analyses came up with total 44 bacterial phylotypes discovered by sequencing of different regions (v3-v5, v4-v8, v4-v6 et full-gene) of 16S rRNA genes. Amongst them all but two were considered to be contaminants (were present in our contaminant library, including drill fluid findings). The 1st remaining phylotype successfully passing all contamination criteria proved to be hitherto-unknown type of bacterium (group of clones, 3 allelic variants) showing less than 86% similarity with known taxa. Its phylogenetic assignment to bacterial divisions or lineages was also unsuccessful despite of the RDP has classified it belonging to OD1 uncultured Candidate Division. The 2nd phylotype was less remarkable and still dubious in terms of contamination. It was presented by just one clone and showed 93% similarity with Janthinobacterium sp of Oxalobacteraceae (Beta-Proteobacteria) - well-known ‘water-loving’ bacteria. No archaea were detected in lake water frozen samples. Thus, the unidentified and unclassified bacterial w123-10 phylotype for the first time discovered in the uppermost water layer in subglacial Lake Vostok might represent ingenious cell populations in the lake, making the life in the lake less elusive. The proof may come (as well as novel phylotype discoveries) with farther analyses (e.g., sample screening with w123-10-specific primers, 16S rRNA v4 region amplicon sequencing) of existing and newly requested moon-shape samples of borehole-frozen water which are on a way to laboratories. We are deeply grateful to Jean Robert Petit and Jean Martins, UJF-CNRS, Grenoble (France) for assistance in conducting some analyses.

  9. Geothermal well drilling manual at Cerro Prieto

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez P., A.; Flores S., M.

    The objective of the drilling manual is to solve all problems directly related to drilling during the construction of a well. In this case, the topics dealt which are drilling fluids and hydraulics to be applied in the field to improve drilling progress, eliminate risks and achieve good well-completion. There are other topics that are applicable such as drill bits and the drilling string, which are closely linked to drilling progress. On this occasion drilling fluid and hydraulics programs are presented, in addition to a computing program for a Casio FX-502P calculator to be applied in the field to optimizemore » hydraulics and in the analysis of hydraulics for development and exploration wells at their different intervals.« less

  10. Site selection for DOE/JIP gas hydrate drilling in the northern Gulf of Mexico

    USGS Publications Warehouse

    Hutchinson, Deborah; Shelander, Dianna; Dai, J.; McConnell, D.; Shedd, William; Frye, Matthew; Ruppel, Carolyn D.; Boswell, R.; Jones, Emrys; Collett, Timothy S.; Rose, Kelly K.; Dugan, Brandon; Wood, Warren T.

    2008-01-01

    n the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses

  11. Drilling fluids: Where should research dollars be spent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauber

    This article discusses the question of where to apply research dollars in the field of drilling fluids which is gravely impacted by environmental concerns. In fact, environmental regulations are the driving force in determining the thrust of drilling fluids research. For example, use of oil-base fluids offshore have, for all practical purposes, been precluded by high disposal costs since offshore disposal has been prohibited. Consequently it must be determined if a water-base mud can be developed that has all or most of the advantages of an oil-base mud.

  12. CHIP MORPHOLOGY AND HOLE SURFACE TEXTURE IN THE DRILLING OF CAST ALUMINUM ALLOYS. (R825370C057)

    EPA Science Inventory

    The effects of cutting fluid and other process variables on chip morphology when drilling cast aluminium alloys are investigated. The effects of workpiece material, speed, feed, hole depth, cutting-fluid presence and percentage oil concentration, workpiece temperature, drill t...

  13. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system.

    PubMed

    Li, Xue-Mei; Zhao, Baolong; Wang, Zhouwei; Xie, Ming; Song, Jianfeng; Nghiem, Long D; He, Tao; Yang, Chi; Li, Chunxia; Chen, Gang

    2014-01-01

    This study examined the performance of a novel hybrid system of forward osmosis (FO) combined with vacuum membrane distillation (VMD) for reclaiming water from shale gas drilling flow-back fluid (SGDF). In the hybrid FO-VMD system, water permeated through the FO membrane into a draw solution reservoir, and the VMD process was used for draw solute recovery and clean water production. Using a SGDF sample obtained from a drilling site in China, the hybrid system could achieve almost 90% water recovery. Quality of the reclaimed water was comparable to that of bottled water. In the hybrid FO-VMD system, FO functions as a pre-treatment step to remove most contaminants and constituents that may foul or scale the membrane distillation (MD) membrane, whereas MD produces high quality water. It is envisioned that the FO-VMD system can recover high quality water not only from SGDF but also other wastewaters with high salinity and complex compositions.

  14. Investigating Created Properties of Nanoparticles Based Drilling Mud

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Mirzaee, Mojtaba; Aghayari, Reza; Maddah, Heydar

    2018-05-01

    The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. Due to unique characteristics of nanoparticles such as their size and high surface area to volume ratio, they play an effective role in solving problems associated with the drilling fluid. In this study, we investigate the effect of adding Al2O3 and TiO2 nanoparticles into the drilling mud. Al2O3 and TiO2 nanoparticles were used in 20 and 60 nm of size and 0.05 wt% in concentration. Investigating the effects of temperature and pressure has shown that an increase in temperature can reduce the drilling mud rheological properties such as plastic viscosity, while an increase in pressure can enhance these properties. Also, the effects of pressure in high temperatures were less than those in low temperatures. Studying the effects of adding nanoparticles has shown that they can reduce the drilling mud rheological properties. Moreover, they can increase gel strength, reduce capillary suction time and decrease formation damage.

  15. Impacts of exploratory drilling for oil and gas on the benthic environment of Georges Bank

    USGS Publications Warehouse

    Neff, J. M.; Bothner, Michael H.; Maciolek, N. J.; Grassle, J. F.

    1989-01-01

    Cluster analysis revealed a strong relationship between community structure and both sediment type and water depth. Little seasonal variation was detected, but some interannual differences were revealed by cluster analysis and correspondence analysis. The replicates from a station always resembled each other more than they resembled any replicates from other stations. In addition, the combined replicates from a station always clustered with samples from that station taken on other cruises. This excellent replication and uniformity of the benthic infaunal community at a station over time made it possible to detect very subtle changes in community parameters that might be related to discharges of drilling fluid and drill cuttings. Nevertheless, no changes were detected in benthic communities of Georges Bank that could be attributed to drilling activities.

  16. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    USGS Publications Warehouse

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  17. Short-term Influence of Two Types of Drilling Fluids on Wastewater Treatment Rate and Eukaryotic Organisms of Activated Sludge in Sequencing Batch Reactors.

    PubMed

    Babko, Roman; Jaromin-Gleń, Katarzyna; Łagód, Grzegorz; Danko, Yaroslav; Kuzmina, Tatiana; Pawłowska, Małgorzata; Pawłowski, Artur

    2017-07-01

    This work presents the results of studies on the impact of spent drilling fluids cotreated with municipal wastewater on the rate of the wastewater treatment process and the structure of the community of eukaryotic organisms inhabiting an activated sludge. The studies were conducted under laboratory conditions in sequencing batch reactors. The effect of added polymer-potassium drilling fluid (DF1) and polymer drilling fluid (DF2) at dosages of 1 and 3% of wastewater volume on the rate of removal of total suspended solids, turbidity, chemical oxygen demand, and the content of total and ammonium nitrogen were analyzed, taking into account the values of these parameters measured at the end of each operating cycle. In addition to the impacts on the aforementioned physicochemical indices, the influence of drilling fluid on the biomass of various groups of eukaryotes in activated sludge was analyzed. The impact of the drilling fluid was highly dependent on its type and dosage. A noticeable slowdown in the rate of the wastewater treatment process and a negative effect on the organisms were observed after the addition of DF2. This effect intensified after an increase in fluid dose. However, no statistically significant negative changes were observed after the introduction of DF1. Conversely, the removal rate of some of the analyzed pollutant increased. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Means and Method for Measurement of Drilling Fluid Properties

    NASA Astrophysics Data System (ADS)

    Lysyannikov, A.; Kondrashov, P.; Pavlova, P.

    2016-06-01

    The paper addresses the problem on creation of a new design of the device for determining rheological parameters of drilling fluids and the basic requirements which it must meet. The key quantitative parameters that define the developed device are provided. The algorithm of determining the coefficient of the yield point from the rheological Shvedov- Bingam model at a relative speed of rotation of glasses from the investigated drilling fluid of 300 and 600 rpm is presented.

  19. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  20. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  1. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  2. Pressure charged airlift pump

    DOEpatents

    Campbell, Gene K.

    1983-01-01

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  3. Wellbore stability in oil and gas drilling with chemical-mechanical coupling.

    PubMed

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale.

  4. Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling

    PubMed Central

    Deng, Jingen

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430

  5. Toxicity of used drilling fluids to mysids (Mysidopsis bahia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaetz, C.T.; Montgomery, R.; Duke, T.W.

    1986-01-01

    Static, acute toxicity tests were conducted with mysids (Mysidopsis bahia) and 11 used drilling fluids (also called drilling muds) obtained from active drilling platforms in the Gulf of Mexico, U.S.A. Each whole mud was tested, along with three phases of each mud: a liquid phase with all particulate materials removed; a suspended particulate phase composed of soluble and lighter particulate fractions; and a solid phase composed mainly of drill cuttings and rapidly settling particulates. These muds represented seven of the eight generic mud types described by the U.S. Environmental Protection Agency for use on the U.S. Outer Continental Shelf. Themore » toxicity of the 11 muds tested was apparently enhanced by the presence of aromatics. Furthermore, one mud tested repeatedly showed loss of toxicity with time, possibly from volatilization of aromatic fractions. The data demonstrated that aromatics in the drilling fluids affected their toxicity to M. bahia.« less

  6. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael S. Bruno

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptualmore » drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.« less

  7. Ages and stable-isotope compositions of secondary calcite and opal in drill cores from Tertiary volcanic rocks of the Yucca Mountain area, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Kyser, T.K.

    1990-01-01

    Stable-isotope compositions of fracture- and cavity-filling calcite from the unsaturated zone of three drill cores at Yucca Mountain Tertiary volcanic complex indicate that the water from which the minerals precipitated was probably meteoric in origin. A decrease in 18O in the calcite with depth is interpreted as being due to the increase in temperature in drill holes corresponding to an estimated average geothermal gradient of 34?? per kilometer. A few of the calcite samples and all of the opal samples yielded uranium-series ages older than 400 000 yr, although most of the calcite samples yielded ages between 26 000 and 310 000 yr. The stable-isotope and uranium-series dates from precipitated calcite and opal of this reconnaissance study suggest a complex history of fluid movement through the volcanic pile, and episodes of fracture filling predominantly from meteoric water during at least the past 400 000 yr. -Authors

  8. ASSESSING THE IMPACT OF SYNTHETIC-BASED DRILLING FLUIDS ON BENTHIC ORGANISMS IN TEMPERATE WATERS

    EPA Science Inventory

    Efforts to enhance the efficiency of oil/gas drilling operations and to minimize hazards to marine ecosystems have resulted in the increased use of synthetic-based fluids (SBF). SBFs have performance characteristics closely related to oil-based fluids (OBF) however their lower PA...

  9. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    NASA Astrophysics Data System (ADS)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  10. Gender determination of avian embryo

    DOEpatents

    Daum, Keith A.; Atkinson, David A.

    2002-01-01

    Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

  11. Drilling the centre of the Thuringian Basin, Germany, to decipher potential interrelation between shallow and deep fluid systems

    NASA Astrophysics Data System (ADS)

    Kukowski, Nina; Totsche, Kai Uwe; Abratis, Michael; Habisreuther, Annett; Ward, Timothy; Influins Drilling-Team

    2014-05-01

    To shed light on the coupled dynamics of near surface and deep fluids in a sedimentary basin on various scales, ranging from the pore scale to the extent of an entire basin, is of paramount importance to understand the functioning of sedimentary basins fluid systems and therefore e.g. drinking water supply. It is also the fundamental goal of INFLUINS (INtegrated FLuid dynamics IN Sedimentary basins), a research initiative of several groups from Friedrich-Schiller University of Jena and their partners. This research association is focusing on the nearby Thuringian basin, a well confined, small intra-continental sedimentary basin in Germany, as a natural geo laboratory. In a multidisciplinary approach, embracing different fields of geophysics like seismic reflection profiling or airborne geomagnetics, structural geology, sedimentology, hydrogeology, hydrochemistry and hydrology, remote sensing, microbiology and mineralogy, among others, and including both, field-based, laboratory-based and computer-based research, an integral INFLUINS topic is the potential interaction of aquifers within the basin and at its rims. The Thuringian basin, which is composed of sedimentary rocks from the latest Paleozoic and mainly Triassic, is particularly suited to undertake such research as it is of relative small size, about 50 to 100 km, easily accessible, and quite well known from previous studies, and therefore also a perfect candidate for deep drilling. After the acquisition of 76 km seismic reflection data in spring 2011, to get as much relevant data as possible from a deep drilling at the cross point between two seismic profiles with a limited financial budget, an optimated core sampling and measuring strategy including partial coring, borehole geophysics and pump tests as well as a drill hole design, which enables for later continuation of drilling down to the basement, had been developed. Drilling Triassic rocks from Keuper to lower Buntsandstein was successfully realised down to a final depth of 1179 m from late June to mid-September 2013. Here, we give an introduction into the layout of INFLUINS deep drilling together with a summary of preliminary results, e.g. on the nature of the boundaries between Muschelkalk and Buntsandstein, and between upper and middle Buntsandstein, a complete core recovery of upper Buntsandstein saliniferous formations as well as unexpectedly low porosity and permeability of potential aquifers.

  12. Subsurface Formation Evaluation on Mars: Application of Methods from the Oil Patch

    NASA Astrophysics Data System (ADS)

    Passey, Q. R.

    2006-12-01

    The ability to drill 10- to 100-meter deep wellbores on Mars would allow for evaluation of shallow subsurface formations enabling the extension of current interpretations of the geologic history of this planet; moreover, subsurface access is likely to provide direct evidence to determine if water or permafrost is present. Methodologies for evaluating sedimentary rocks using drill holes and in situ sample and data acquisition are well developed here on Earth. Existing well log instruments can measure K, Th, and U from natural spectral gamma-ray emission, compressional and shear acoustic velocities, electrical resistivity and dielectric properties, bulk density (Cs-137 or Co-60 source), photoelectric absorption of gamma-rays (sensitive to the atomic number), hydrogen index from epithermal and thermal neutron scattering and capture, free hydrogen in water molecules from nuclear magnetic resonance, formation capture cross section, temperature, pressure, and elemental abundances (C, O, Si, Ca, H, Cl, Fe, S, and Gd) using 14 MeV pulsed neutron activation more elements possible with supercooled Ge detectors. Additionally, high-resolution wellbore images are possible using a variety of optical, electrical, and acoustic imaging tools. In the oil industry, these downhole measurements are integrated to describe potential hydrocarbon reservoir properties: lithology, mineralogy, porosity, depositional environment, sedimentary and structural dip, sedimentary features, fluid type (oil, gas, or water), and fluid amount (i.e., saturation). In many cases it is possible to determine the organic-carbon content of hydrocarbon source rocks from logs (if the total organic carbon content is 1 wt% or greater), and more accurate instruments likely could be developed. Since Martian boreholes will likely be drilled without using opaque drilling fluids (as generally used in terrestrial drilling), additional instruments can be used such as high resolution direct downhole imaging and other surface contact measurements (such as IR spectroscopy and x-ray fluorescence). However, such wellbores would require modification of some instruments since conventional drilling fluids often provide the coupling of the instrument sensors to the formation (e.g., sonic velocity and galvanic resistivity measurements). The ability to drill wellbores on Mars opens up new opportunities for exploration but also introduces additional technical challenges. Currently it is not known if all existing terrestrial logging instruments can be miniaturized sufficiently for a shallow Mars wellbore, but the existing well logging techniques and instruments provide a solid framework on which to build a Martian subsurface evaluation program.

  13. System and method for damping vibration in a drill string

    DOEpatents

    Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT

    2007-05-22

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  14. System and method for damping vibration in a drill string

    DOEpatents

    Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT

    2008-05-27

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  15. System and method for damping vibration in a drill string

    DOEpatents

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison

    2012-08-14

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  16. System and method for damping vibration in a drill string

    DOEpatents

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison

    2014-03-04

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  17. System and method for damping vibration in a drill string

    DOEpatents

    Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT

    2011-08-16

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  18. System and method for damping vibration in a drill string

    DOEpatents

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison

    2015-02-03

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  19. Petrophysical characterization of first ever drilled core samples from an active CO2 storage site, the German Ketzin Pilot Site - Comparison with long term experiments

    NASA Astrophysics Data System (ADS)

    Zemke, Kornelia; Liebscher, Axel

    2014-05-01

    Petrophysical properties like porosity and permeability are key parameters for a safe long-term storage of CO2 but also for the injection operation itself. These parameters may change during and/or after the CO2 injection due to geochemical reactions in the reservoir system that are triggered by the injected CO2. Here we present petrophysical data of first ever drilled cores from a newly drilled well at the active CO2 storage site - the Ketzin pilot site in the Federal State of Brandenburg, Germany. By comparison with pre-injection baseline data from core samples recovered prior to injection, the new samples provide the unique opportunity to evaluate the impact of CO2 on pore size related properties of reservoir and cap rocks at a real injection site under in-situ reservoir conditions. After injection of 61 000 tons CO2, an additional well was drilled and new rock cores were recovered. In total 100 core samples from the reservoir and the overlaying caprock were investigated by NMR relaxation. Permeability of 20 core samples was estimated by nitrogen and porosity by helium pycnometry. The determined data are comparable between pre-injection and post-injection core samples. The lower part of the reservoir sandstone is unaffected by the injected CO2. The upper part of the reservoir sandstone shows consistently slightly lower NMR porosity and permeability values in the post-injection samples when compared to the pre-injection data. This upper sandstone part is above the fluid level and CO2 present as a free gas phase and a possible residual gas saturation of the cores distorted the NMR results. The potash-containing drilling fluid can also influence these results: NMR investigation of twin samples from inner and outer parts of the cores show a reduced fraction of larger pores for the outer core samples together with lower porosities and T2 times. The drill mud penetration depth can be controlled by the added fluorescent tracer. Due to the heterogeneous character of the Stuttgart Formation it is difficult to estimate definite CO2 induced changes from petrophysical measurements. The observed changes are only minor. Several batch experiments on Ketzin samples drilled prior injection confirm the results from investigation of the in-situ rock cores. Core samples of the pre-injection wells were exposed to CO2 and brine in autoclaves over various time periods. Samples were characterized prior to and after the experiments by NMR and Mercury Injection Porosimetry (MIP). The results are consistent with the logging data and show only minor change. Unfortunately, also in these experiments observed mineralogical and petrophysical changes were within the natural heterogeneity of the Ketzin reservoir and precluded unequivocal conclusions. However, given the only minor differences between post-injection well and pre-injection well, it is reasonable to assume that the potential dissolution-precipitation processes appear to have no severe consequences on reservoir and cap rock integrity or on the injection behaviour. This is also in line with the continuously recorded injection operation parameter. These do not point to any changes in reservoir injectivity.|

  20. 30 CFR 250.444 - What are the choke manifold requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... abrasiveness of drilling fluids and well fluids that you may encounter. (b) Choke manifold components must have...

  1. Tracer airflow measurement system (TRAMS)

    DOEpatents

    Wang, Duo [Albany, CA

    2007-04-24

    A method and apparatus for measuring fluid flow in a duct is disclosed. The invention uses a novel high velocity tracer injector system, an optional insertable folding mixing fan for homogenizing the tracer within the duct bulk fluid flow, and a perforated hose sampling system. A preferred embodiment uses CO.sub.2 as a tracer gas for measuring air flow in commercial and/or residential ducts. In extant commercial buildings, ducts not readily accessible by hanging ceilings may be drilled with readily plugged small diameter holes to allow for injection, optional mixing where desired using a novel insertable foldable mixing fan, and sampling hose.

  2. Preliminary biological sampling of GT3 and BT1 cores and the microbial community dynamics of existing subsurface wells

    NASA Astrophysics Data System (ADS)

    Kraus, E. A.; Stamps, B. W.; Rempfert, K. R.; Ellison, E. T.; Nothaft, D. B.; Boyd, E. S.; Templeton, A. S.; Spear, J. R.

    2017-12-01

    Subsurface microbial life is poorly understood but potentially very important to the search for life on other planets as well as increasing our understanding of Earth's geobiological processes. Fluids and rocks of actively serpentinizing subsurface environments are a recent target of biological study due to their apparent ubiquity across the solar system. Areas of serpentinization can contain high concentrations of molecular hydrogen, H2, that can serve as the dominant fuel source for subsurface microbiota. Working with the Oman Drilling Project, DNA and RNA were extracted from fluids of seven alkaline wells and two rock cores from drill sites GT3 and BT1 within the Samail ophiolite. DNA and cDNA (produced via reverse transcription from the recovered RNA) were sequenced using universal primers to identify microbial life across all three domains. Alkaline subsurface fluids support a microbial community that changes with pH and host-rock type. In peridotite with pH values of >11, wells NSHQ 14 and WAB 71 have high relative abundances of Meiothermus, Methanobacterium, the family Nitrospiraceae, and multiple types of the class Dehalococcoidia. While also hosted in peridotite but at pH 8.5, wells WAB 104 and 105 have a distinct, more diverse microbial community. This increased variance in community make-up is seen in wells that sit near/at the contact of gabbro and peridotite formations as well. Core results indicate both sampled rock types host a very low biomass environment subject to multiple sources of contamination during the drilling process. Suggestions for contaminant reduction, such as having core handlers wear nitrile gloves and flame-sterilizing the outer surfaces of core rounds for biological sampling, would have minimal impact to overall ODP coreflow and maximize the ability to better understand in situ microbiota in this low-biomass serpentinizing subsurface environment. While DNA extraction was successful with gram amounts of crushed rock, much can be done to improve yields and reduce contamination sources for Phase II drilling.

  3. Post-Drilling Changes in Seabed Landscape and Megabenthos in a Deep-Sea Hydrothermal System, the Iheya North Field, Okinawa Trough

    PubMed Central

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, ‘artificially’ creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has been altered for long-term. PMID:25902075

  4. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough.

    PubMed

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has been altered for long-term.

  5. EXECUTIVE SUMMARY OF STATE DATA RELATED TO ABANDONED CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Seay Nance

    2003-03-01

    This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertakenmore » for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.« less

  6. Identification of water-bearing fractures by the use of geophysical logs, May to July 1998, former Naval Air Warfare Center, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.; Bird, Philip H.

    1999-01-01

    Between May and July 1998, 10 monitor wells were drilled near the site of the former Naval Air Warfare Center (NAWC), Warminster, Bucks County, Pa., to monitor water levels and sample ground water in shallow and intermediate water-bearing fractures. The sampling will determine the horizontal and vertical distribution of contaminated ground water migrating from known or suspected sources. Three boreholes were drilled on the property at 960 Jacksonville Road, at the northwestern side of NAWC, along strike from Area A; seven boreholes were drilled in Area B in the southeastern corner of NAWC. Depths range from 40.5 to 150 feet below land surface.Borehole geophysical logging and video surveys were used to identify water-bearing fractures so that appropriate intervals could be screened in each monitor well. Geophysical logs were obtained at the 10 monitor wells. Video surveys were obtained at three monitor wells in the southeastern corner of the NAWC property.Caliper logs and video surveys were used to locate fractures. Inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-bearing fractures. Heatpulse-flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller's logs, all wells were screened such that water-level fluctuations could be monitored and water samples collected from discrete water-bearing fractures in each monitor well.

  7. Drilling fluid filter

    DOEpatents

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  8. Salton Sea Scientific Drilling Program

    USGS Publications Warehouse

    Sass, J.H.

    1988-01-01

    The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths  (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activites enabled the U.S Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. This program, orginally conceived by Wilfred A. Elders, professor of geology at the University of California at Riverside, was coordinated under an inter-agency accord among the Geological Survey, the U.S Department of Energy, and the National Science Foundation. 

  9. Phospholipids Polysaccharide and Its Application as Inhibitive Drilling Fluid Additive

    NASA Astrophysics Data System (ADS)

    Gu, Xue-Fan; Hu, Wei-Min; Zhang, Fan; Du, Wei-Chao; Zhang, Qiang; Zhang, Jie; Zhang, Yong-Ming; Chen, Gang

    2018-03-01

    For the improvement of solubility and the performance of the sample that derived plant polysaccharide(SJ) in drilling fluid based on water, which was improved by phosphoric esterification with phospholipids reagent. The conditions of the reaction were discussed by orthogonal ways in four factors and three levels, and the optimization of handling approaches were found out: With pH=12 at the temperature of 80°C, the mass ratio between phospholipids agent and SJ is 0.1g/1g. The viscosity about the system added by sulfonated SJ (SJP) was extremely increased and below 120°, rheological properties had a slight change. The inhibitive ability of SJP is assessed by the mud ball immersing tests and clay-swelling experiments, that is apparently better than SJ and even 4wt% KCl in free water.

  10. Method and apparatus for jet-assisted drilling or cutting

    DOEpatents

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2012-09-04

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  11. Method and apparatus for jet-assisted drilling or cutting

    DOEpatents

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2013-07-02

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  12. Successful new anti-sloughing drilling fluid application, Yanchang gas field, China

    NASA Astrophysics Data System (ADS)

    He, Peng; Liu, Hanmei; Du, Sen; He, Chenghai

    2017-10-01

    Borehole collapse had always been encountered when drilling the Shiqianfeng and Shihezi formations in Yan Chang gas field. By analyzing the reasons for the collapse can be obtained, "double layer of stone" brittle strong, pore development, water sensitivity and high mineral content filling skeleton particles, water lock effect and stress sensitivity is a potential factor in inducing strong wall collapse. According to the characteristics of the geological structure developed anti-sloughing drilling fluid system "double layer of stone," "complex fluid loss - dual inhibition - materialized block" multiple cooperative mechanism to achieve the purpose of anti-collapse.

  13. A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Koepke, J.; Garbe-Schoenberg, C. D.; Müller, T.; Mock, D.; Strauss, H.; Schuth, S.; Ildefonse, B.

    2017-12-01

    In the absence of a complete profile through fast-spreading oceanic crust in modern oceans, we established a reference profile through the whole paleocrust of the Sumail Ophiolite (Oman), which is regarded as the best analogue for fast-spreading oceanic crust on land. For establishing a coherent data set, we sampled the Wadi Gideah in the Wadi-Tayin massif from the mantle section up to the pillow basalts and performed different analytical and structural investigations on the same suite of samples (pool sample concept). The whole sample set contains about 400 samples focusing on both primary magmatic rocks and hydrothermal fault zones to characterize initial formation processes and cooling of the crust. The Wadi Gideah hosts the sites GT1A (lower crust) and GT2A (foliated / layered gabbro transition) where 400 m long cores have been drilled in the frame of the ICDP Oman Drilling Project (OmanDP). Thus, the Wadi Gideah crustal transect is well-suited for providing a reference frame for these two drill cores. Major and trace element data on minerals and rocks reveal in-situ crystallization in the deep crust, thus strongly supporting a hybrid accretion model that is characterized by sheeted sill intrusion in the lower part of the plutonic crust and gabbro glacier features in the upper section. This hybrid model is also supported by results on crystallographic preferred orientations (CPO) of the minerals within the gabbros, which call for distinct formation mechanisms in the upper and lower gabbro sections. A requirement for our hybrid model is significant hydrothermal cooling in the lower crust for the consumption of the latent heat of crystallization. This was facilitated by channelled hydrothermal flow zones, preserved today in faulted zones of extensively altered gabbro cutting both layered and foliated gabbros. These gabbros show higher Sr87/Sr86 ratios if compared to the background gabbro, the presence of late stage minerals (amphibole, oxides, orthopyroxene, apatite) and evidence for hydrous partial melting, as consequence of fluid / rock interaction at very high temperatures. Obviously, these fault zones remained active for channelled fluid flow during the entire cooling stage of the oceanic crust down to low-temperature mineral assemblages.

  14. Spotlight on the use of new natural surfactants in colloidal gas aphron (CGA) fluids: A mechanistic study

    NASA Astrophysics Data System (ADS)

    Ali Ahmadi, Mohammad; Galedarzadeh, Morteza; Reza Shadizadeh, Seyed

    2017-12-01

    Colloidal gas aphron-based (CGA) drilling fluids are defined as gas bubbles with diameters in ranges of 10 to 100 microns which are created by intensive stirring of an aphronizer surfactant solution at high speed. Furthermore, CGA-based drilling fluid properties like stability and aphron size distribution extremely depend on the inherent characteristics of the aphronizer surfactant. The selection of an appropriate surface active agent plays a vital role in the generation of micro-bubbles with the favorable characteristics. The primary motivation behind this paper is to evaluate the potential of new natural surfactants as aphronizer in CGA-based drilling fluids. Here, two new natural based surfactants derived from roots of Glycyrrhiza glabra and leaves of Matricaria recutita plant are implemented for the preparation of aphron-based fluids. The physico-chemical properties of the aphronized fluids prepared from these surfactants are studied by different fundamental tests comprising rheological characterizations, bubble size measurements, and stability tests. The effect of polymer and surfactant concentration was also evaluated. According to the experimental outcomes of this research, the two introduced natural surfactants are appropriate for generating CGA-based drilling fluids while they have no environmental impacts and have very low cost in comparison to commercial and industrial surfactants.

  15. Non-Newtonian fluid flow in 2D fracture networks

    NASA Astrophysics Data System (ADS)

    Zou, L.; Håkansson, U.; Cvetkovic, V.

    2017-12-01

    Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.

  16. Wellbore stability analysis and its application in the Fergana basin, central Asia

    NASA Astrophysics Data System (ADS)

    Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han

    2014-02-01

    Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.

  17. Metabolic Potential and Activity in Fluids of the Coast Range Ophiolite Microbial Observatory, California, USA

    NASA Technical Reports Server (NTRS)

    Hoehler, T.; Som, S.; Schrenk, M.; McCollom, T.; Cardace, D.

    2016-01-01

    Metabolic potential and activity associated with hydrogen and carbon monoxide were characterized in fluids sampled from the the Coast Range Ophiolite Microbial Observatory (CROMO). CROMO consists of two clusters of science-dedicated wells drilled to varying depths up to 35m in the actively serpentinizing, Jurassic-age Coast Range Ophiolite of Northern California, along with a suite of pre-existing monitoring wells at the same site. Consistent with the fluid chemistry observed in other serpentinizing systems, CROMO fluids are highly alkaline, with pH up to 12.5, high in methane, with concentrations up 1600 micromolar, and low in dissolved inorganic carbon (DIC), with concentrations of 10's to 100's of micromolar. CROMO is conspicuous for fluid H2 concentrations that are consistently sub-micromolar, orders of magnitude lower than is typical of other systems. However, higher H2 concentrations (10's -100's of micromolar) at an earlier stage of fluid chemical evolution are predicted by, or consistent with: thermodynamic models for fluid chemistry based on parent rock composition equivalent to local peridotite and with water:rock ratio constrained by observed pH; the presence of magnetite at several wt% in CROMO drill cores; and concentrations of formate and carbon monoxide that would require elevated H2 if formed in equilibrium with H2 and DIC. Calculated Gibbs energy changes for reaction of H2 and CO in each of several metabolisms, across the range of fluid composition encompassed by the CROMO wells, range from bioenergetically feasible (capable of driving ATP synthesis) to thermodynamically unfavorable. Active consumption relative to killed controls was observed for both CO and H2 during incubation of fluids from the pre-existing monitoring wells; in incubations of freshly cored solids, consumption was only observed in one sample set (corresponding to the lowest pH) out of three. The specific metabolisms by which H2 and CO are consumed remain to be determined.

  18. Borehole Stability in High-Temperature Formations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  19. Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA).

    PubMed

    Davis, James P; Struchtemeyer, Christopher G; Elshahed, Mostafa S

    2012-11-01

    We monitored the bacterial communities in the gas-water separator and water storage tank of two newly drilled natural gas wells in the Barnett Shale in north central Texas, using a 16S rRNA gene pyrosequencing approach over a period of 6 months. Overall, the communities were composed mainly of moderately halophilic and halotolerant members of the phyla Firmicutes and Proteobacteria (classes Βeta-, Gamma-, and Epsilonproteobacteria) in both wells at all sampling times and locations. Many of the observed lineages were encountered in prior investigations of microbial communities from various fossil fluid formations and production facilities. In all of the samples, multiple H(2)S-producing lineages were encountered; belonging to the sulfate- and sulfur-reducing class Deltaproteobacteria, order Clostridiales, and phylum Synergistetes, as well as the thiosulfate-reducing order Halanaerobiales. The bacterial communities from the separator and tank samples bore little resemblance to the bacterial communities in the drilling mud and hydraulic-fracture waters that were used to drill these wells, suggesting the in situ development of the unique bacterial communities in such well components was in response to the prevalent geochemical conditions present. Conversely, comparison of the bacterial communities on temporal and spatial scales suggested the establishment of a core microbial community in each sampled location. The results provide the first overview of bacterial dynamics and colonization patterns in newly drilled, thermogenic natural gas wells and highlights patterns of spatial and temporal variability observed in bacterial communities in natural gas production facilities.

  20. Mixing of Magmatic Volatiles With Meteoric Groundwater in the Summit of Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Hurwitz, S.; Goff, F.; Janik, C. J.; Evans, W. C.; Counce, D. A.; Sorey, M. L.; Ingebritsen, S. E.

    2001-12-01

    Water samples were collected from the only deep well (Keller Well-NSF Well) on the summit of Kilauea volcano, Hawaii. The well was drilled in 1973 to a depth of 1262 m, but sat idle until 1998 when a drilling rig was used to remove mud and renew access to the hydrothermal system at a location very close to summit fumarolic activity. The chemistry and isotopic composition of fluid samples collected in 1998-2001 differ significantly from those of samples collected before 1998 and reported in previous studies. The water from the well is rich in sulfate and has a near-neutral pH. The major element chemistry differs significantly from seawater composition and from that of hydrothermal fluids from Kilauea's east rift zone. The well water has a low chloride concentration relative to typical magmatic-hydrothermal fluids and a high sulfate to bicarbonate ratio (approximately 4:1). Based on the S/Cl mass ratio and on carbon and helium isotopes in the well fluids, summit fumaroles and the parental Kilauea magma, we conclude that the hydrothermal fluids sampled from the well formed by condensation of magmatic volatiles into shallow, mainly meteoric groundwater. The oxygen and deuterium isotopic composition indicate that the meteoric component was recharged on the eastern margin of the caldera. Steam condensation and gas dissolution beneath the crater formed an acidic fluid that dissolved the host basalt at high temperatures. The hydrothermal fluid was then modified by cooling and precipitation of secondary minerals along a flow path away from the crater towards the well. Geochemical modeling based on fluid chemistry and geothermometry suggests that the well fluids equilibrated with an assemblage of secondary minerals at temperatures between 90 and 140oC. The C/S ratios in the well water, the parental magma, and the gas plume emanating from the caldera indicate that most of the sulfur degassed from the magma is scrubbed by groundwaters beneath the summit. However, based on the mean sulfate concentration in the well water and on the estimated mean annual water recharge in the caldera region, we conclude that the sulfate concentration in groundwater beneath Kilauea's summit must be an order of magnitude higher than that found in the well water.

  1. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jill S. Buckley; Norman R. Morrow

    2006-01-01

    The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

  2. Effect of volumetric concentration of MWCNTs on the stability and thermal conductivity of nanofluids

    NASA Astrophysics Data System (ADS)

    Rehman, Wajid Ur; Bhat, A. H.; Suliamon, A. A.; Khan, Ihsan Ullah; Ullah, Hafeez

    2016-11-01

    Environmental concerns and running down of the fossil fuel deposits which are generally being used as base oil in Drilling Fluid/Mud have attended worldwide attention and thereby, researchers have focused on using environmentally friendly drilling fluids. This study demonstrates the preparation of drilling fluids and to explore the effect of increase in the volumetric concentration of nanoparticles on the stability and thermal conductivity of nanofluids. In this research, for the formation of nanofluids, Jatropha Seed Oil was used as the base oil with the addition of multi-walled carbon nanotubes as the nanoparticles using sonication technique. The raw multi-walled carbon nanotubes were characterized by using SEM for morphological examination. The prepared drilling fluid were characterized by using UV-Visible spectroscopic technique for analyzing the stability. Thermal Conductivity measurements were also carried out for heat transfer efficiency. It was observed that the heat transfer capability of the nanofluid ameliorates with the increase in the loading percentage of multi-walled carbon nanotubes.

  3. Fluid inclusions and preliminary studies of hydrothermal alteration in core hole PLTG-1, Platanares geothermal area, Honduras

    USGS Publications Warehouse

    Bargar, K.E.

    1991-01-01

    The Platanares geothermal area in western Honduras consists of more than 100 hot springs that issue from numerous hot-spring groups along the banks or within the streambed of the Quebrada de Agua Caliente (brook of hot water). Evaluation of this geothermal area included drilling a 650-m deep PLTG-1 drill hole which penetrated a surface mantling of stream terrace deposits, about 550 m of Tertiary andesitic lava flows, and Cretaceous to lower Tertiary sedimentary rocks in the lower 90 m of the drill core. Fractures and cavities in the drill core are partly to completely filled by hydrothermal minerals that include quartz, kaolinite, mixed-layer illite-smectite, barite, fluorite, chlorite, calcite, laumontite, biotite, hematite, marcasite, pyrite, arsenopyrite, stibnite, and sphalerite; the most common open-space fillings are calcite and quartz. Biotite from 138.9-m depth, dated at 37.41 Ma by replicate 40Ar/39 Ar analyses using a continuous laser system, is the earliest hydrothermal mineral deposited in the PLTG-1 drill core. This mid-Tertiary age indicates that at least some of the hydrothermal alteration encountered in the PLTG-1 drill core occured in the distant past and is unrelated to the present geothermal system. Furthermore, homogenization temperatures (Th) and melting-point temperatures (Tm) for fluid inclusions in two of the later-formed hydrothermal minerals, calcite and barite, suggest that the temperatures and concentration of dissolved solids of the fluids present at the time these fluid inclusions formed were very different from the present temperatures and fluid chemistry measured in the drill hole. Liquid-rich secondary fluid inclusions in barite and caicite from drill hole PLTG-1 have Th values that range from about 20??C less than the present measured temperature curve at 590.1-m depth to as much as 90??C higher than the temperature curve at 46.75-m depth. Many of the barite Th measurements (ranging between 114?? and 265??C) plot above the reference surface boiling-point curve for pure water assuming hydrostatic conditions; however, the absence of evidence for boiling in the fluid inclusions indicates that at the time the minerals formed, the ground surface must have been at least 80 m higher than at present and underwent stream erosion to the current elevation. Near-surface mixed-layer illite-smectite is closely associated with barite and appears to have formed at about the same temperature range (about 120?? to 200??C) as the fluid-inclusion Th values for barite. Fluid-inclusion Th values for calcite range between about 136?? and 213??C. Several of the calcite Th values are significantly lower than the present measured temperature curve. The melting-point temperatures (Tm) of fluid-inclusion ice yield calculated salinities, ranging from near zero to as much as 5.4 wt. % NaCl equivalent, which suggest that much of the barite and calcite precipitated from fluids of significantly greater salinity than the present low salinity Platanares hot-spring water or water produced from the drill hole. ?? 1991.

  4. Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China.

    PubMed

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-06-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of approximately 0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 x 10(3) to 2.4 x 10(4) cells/g and 3.5 x 10(8) to 4.2 x 10(9) cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids.

  5. Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China

    PubMed Central

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-01-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of ∼0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 × 103 to 2.4 × 104 cells/g and 3.5 × 108 to 4.2 × 109 cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids. PMID:15933024

  6. Optimal probes for withdrawal of uncontaminated fluid samples

    NASA Astrophysics Data System (ADS)

    Sherwood, J. D.

    2005-08-01

    Withdrawal of fluid by a composite probe pushed against the face z =0 of a porous half-space z >0 is modeled assuming incompressible Darcy flow. The probe is circular, of radius a, with an inner sampling section of radius αa and a concentric outer guard probe αa βa is saturated with fluid 2; the two fluids have the same viscosity. It is assumed that the interface between the two fluids is sharp and remains so as it moves through the rock. The pressure in the probe is lower than that of the pore fluid in the rock, so that the fluid interface is convected with the fluids towards the probe. This idealized axisymmetric problem is solved numerically, and it is shown that an analysis based on far-field spherical flow towards a point sink is a good approximation when the nondimensional depth of fluid 1 is large, i.e., β ≫1. The inner sampling probe eventually produces pure fluid 2, and this technique has been proposed for sampling pore fluids in rock surrounding an oil well [A. Hrametz, C. Gardner, M. Wais, and M. Proett, U.S. Patent No. 6,301,959 B1 (16 October 2001)]. Fluid 1 is drilling fluid filtrate, which has displaced the original pore fluid (fluid 2), a pure sample of which is required. The time required to collect an uncontaminated sample of original pore fluid can be minimized by a suitable choice of the probe geometry α [J. Sherwood, J. Fitzgerald and B. Hill, U.S. Patent No. 6,719,049 B2 (13 April 2004)]. It is shown that the optimal choice of α depends on the depth of filtrate invasion β and the volume of sample required.

  7. Completion Report for Well ER-2-2 Corrective Action Unit 97: Yucca Flat/Climax Mine, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurtz, Jeffrey

    Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was notmore » completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted—principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at 551.69 m (1,810.01 ft) bgs. As expected, field measurements for tritium were above the Safe Drinking Water Act limit (20,000 picocuries per liter) for a portion of the Tertiary volcanic section near the water table. Tritium concentrations were at or near the field detection limit in the Lower carbonate aquifer (LCA) while drilling. During drilling, a sample was collected while circulating in the LCA. The sample was submitted for off-site laboratory analysis. The sample results indicated low but measurable tritium concentrations. All Fluid Management Plan requirements were met during drilling activities.« less

  8. Generating false negatives and false positives for As and Mo concentrations in groundwater due to well installation.

    PubMed

    Wallis, Ilka; Pichler, Thomas

    2018-08-01

    Groundwater monitoring relies on the acquisition of 'representative' groundwater samples, which should reflect the ambient water quality at a given location. However, drilling of a monitoring well for sample acquisition has the potential to perturb groundwater conditions to a point that may prove to be detrimental to the monitoring objective. Following installation of 20 monitoring wells in close geographic proximity in central Florida, opposing concentration trends for As and Mo were observed. In the first year after well installation As and Mo concentrations increased in some wells by a factor of 2, while in others As and Mo concentrations decreased by a factor of up to 100. Given this relatively short period of time, a natural change in groundwater composition of such magnitude is not expected, leaving well installation itself as the likely cause for the observed concentration changes. Hence, initial concentrations were identified as 'false negatives' if concentrations increased with time or as 'false positives' if concentrations decreased. False negatives were observed if concentrations were already high, i.e., the As or Mo were present at the time of drilling. False positives were observed if concentrations were relatively lower, i.e., As or Mo were present at low concentrations of approximately 1 to 2μg/L before drilling, but then released from the aquifer matrix as a result of drilling. Generally, As and Mo were present in the aquifer matrix in either pyrite or organic matter, both of which are susceptible to dissolution if redox conditions change due to the addition of oxygen. Thus, introduction of an oxidant into an anoxic aquifer through use of an oxygen saturated drilling fluid served as the conceptual model for the trends where concentrations decreased with time. Mixing between drilling fluid and groundwater (i.e., dilution) was used as the conceptual model for scenarios where increasing trends were observed. Conceptual models were successfully tested through formulation and application of data-driven reactive transport models, using the USGS code MODFLOW in conjunction with the reactive multicomponent transport code PHT3D. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Reduction of the viscosity of solutions viscosified with xanthan gum polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, K.L.; Kalinski, K.L.

    1991-10-08

    This patent describes a process for reducing the viscosity of a drilling fluid containing Xanthan gum polymer solution. It comprises: contacting the drilling fluid with hydrogen peroxide and adjusting the pH of the solution to a level of at least about between 8 and 10.

  10. 30 CFR 250.444 - What are the choke manifold requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.444 What are the choke... corrosiveness, volume, and abrasiveness of drilling fluids and well fluids that you may encounter. (b) Choke...

  11. 30 CFR 250.444 - What are the choke manifold requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.444 What are the choke manifold..., and abrasiveness of drilling fluids and well fluids that you may encounter. (b) Choke manifold...

  12. 30 CFR 250.444 - What are the choke manifold requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.444 What are the choke manifold..., and abrasiveness of drilling fluids and well fluids that you may encounter. (b) Choke manifold...

  13. 30 CFR 250.444 - What are the choke manifold requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.444 What are the choke manifold..., and abrasiveness of drilling fluids and well fluids that you may encounter. (b) Choke manifold...

  14. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  15. Effect of Different Gums on Rheological Properties of Slurry

    NASA Astrophysics Data System (ADS)

    Weikey, Yogita; Sinha, S. L.; Dewangan, S. K.

    2018-02-01

    This paper presents the effect of different natural gums on water-bentonite slurry, which is used as based fluid in water based drilling fluid. The gums used are Babul gum (Acacia nilotica), Dhawda gum (Anogeissus latifolia), Katira gum (Cochlospermum religiosum) and Semal gum (Bombax ceiba). For present investigation, samples have been prepared by varying concentration of gums. The variation of shear stress and shear rate has been plotted and on the basis of this behaviour of fluids has been explained. The value of k and n are calculated by using Power law. R 2 values are also calculated to support the choice of gum selection.

  16. A database of archived drilling records of the drill cuttings piles at the North West Hutton oil platform.

    PubMed

    Marsh, Roy

    2003-05-01

    Drill cuttings piles are found underneath several hundred oil platforms in the North Sea, and are contaminated with hydrocarbons and chemical products. This study characterised the environmental risk posed by the cuttings pile at the North West Hutton (NWH) oil platform. Data on the drilling fluids and chemical products used over the platform's drilling history were transferred from archived well reports into a custom database, to which were added toxicological and safety data. Although the database contained many gaps, it established that only seven chemical products used at NWH were not in the lowest category of the Offshore Chemicals Notification Scheme, and were used in only small quantities. The study therefore supports the view that the main environmental risk posed by cuttings piles comes from hydrocarbon contamination. The (dated) well records could help future core sampling to be targeted at specific locations in the cuttings piles. Data from many platforms could also be pooled to determine generic 'discharge profiles.' Future study would benefit from the existence, in the public domain, of a standardised, 'legacy' database of chemical products.

  17. Intraosseous generation of heat during guided surgical drilling: an ex vivo study of the effect of the temperature of the irrigating fluid.

    PubMed

    Boa, Kristof; Barrak, Ibrahim; Varga, Endre; Joob-Fancsaly, Arpad; Varga, Endre; Piffko, Jozsef

    2016-10-01

    We measured the rise in the intraosseous temperature caused by freehand drilling or drilling through a surgical guide, by comparing different temperatures of irrigation fluid (10°C, 15°C, and 20°C), for every step of the drilling sequence (diameters 2.0, 2.5, 3.0, and 3.5mm) and using a constant drilling speed of 1200rpm. The axial load was controlled at 2.0kg. Bovine ribs were used as test models. In the guided group we used 3-dimensional printed surgical guides and temperature was measured with a thermocouple. The significance of differences was assessed with the Kruskal-Wallis analysis of variance. Guided drilling with 10°C irrigation yielded a significantly lower increment in temperature than the 20°C-guided group. When compared with the 20°C freehand group, the reduction in temperature in the 10°C guided group was significantly more pronounced at all diameters except 3.5mm. Finally, when the 10°C-guided group was compared with the 15°C groups, the temperature rise was significantly less at 2.5 and 3.0mm than with the guided technique, and at 3.0mm compared with the freehand technique. We suggest that the use of 10°C pre-cooled irrigation fluid is superior to warmer fluid for keeping temperature down, and this reduces the difference between guided and freehand drilling. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Kick Detection at the Bit: Early Detection via Low Cost Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tost, Brian; Rose, Kelly; Aminzadeh, Fred

    2016-06-07

    Formation fluid influxes (i.e. kicks) pose persistent challenges and operational costs during drilling operations. Implications of kicks range in scale but cumulatively result in substantial costs that affect drilling safety, environment, schedule, and infrastructure. Early kick detection presents a low-cost, easily adopted solution for avoiding well control challenges associated with kicks near the bit. Borehole geophysical tools used during the drilling process as part of the logging-while-drilling (LWD) and measurement-while-drilling (MWD) provide the advantage of offering real-time downhole data. LWD/MWD collect data on both the annulus and borehole wall. The annular data are normally treated as background, and are filteredmore » out to isolate the formation measurements. Because kicks will change the local physical properties of annular fluids, bottom-hole measurements are among the first indicators that a formation fluid has invaded the wellbore. This report describes and validates a technique for using the annular portion of LWD/MWD data to facilitate early kick detection using first order principles. The detection technique leverages data from standard and cost-effective technologies that are typically implemented during well drilling, such as MWD/LWD data in combination with mud-pulse telemetry for data transmission.« less

  19. Percolation of diagenetic fluids in the Archaean basement of the Franceville basin

    NASA Astrophysics Data System (ADS)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; Albani, Abderrazak El; Cuney, Michel; Boiron, Marie-Christine; Gauthier-Lafaye, François

    2014-01-01

    The Palaeoproterozoic Franceville basin, Gabon, is mainly known for its high-grade uranium deposits, which are the only ones known to act as natural nuclear fission reactors. Previous work in the Kiéné region investigated the nature of the fluids responsible for these natural nuclear reactors. The present work focuses on the top of the Archaean granitic basement, specifically, to identify and date the successive alteration events that affected this basement just below the unconformity separating it from the Palaeoproterozoic basin. Core from four drill holes crosscutting the basin-basement unconformity have been studied. Dating is based on U-Pb isotopic analyses performed on monazite. The origin of fluids is discussed from the study of fluid inclusion planes (FIP) in quartz from basement granitoids. From the deepest part of the drill holes to the unconformable boundary with the basin, propylitic alteration assemblages are progressively replaced by illite and locally by a phengite + Fe chlorite ± Fe oxide assemblage. Illitic alteration is particularly strong along the sediment-granitoid contact and is associated with quartz dissolution. It was followed by calcite and anhydrite precipitation as fracture fillings. U-Pb isotopic dating outlines three successive events: a 3.0-2.9-Ga primary magmatic event, a 2.6-Ga propylitic alteration and a late 1.9-Ga diagenetic event. Fluid inclusion microthermometry suggests the circulation of three types of fluids: (1) a Na-Ca-rich diagenetic brine, (2) a moderately saline (diagenetic + meteoric) fluid, and (3) a low-salinity fluid of probable meteoric origin. These fluids are similar to those previously identified within the overlying sedimentary rocks of the Franceville basin. Overall, the data collected in this study show that the Proterozoic-Archaean unconformity has operated as a major flow corridor for fluids circulation, around 1.9 Ga. highly saline diagenetic brines; hydrocarbon-rich fluids derived from organic matter-rich formations; a low-salinity fluid likely of meteoric origin migrating through the granitic basement; mineralizing fluids resulting from the mixing of fluids 1 and 3; high-temperature fluids resulting from the natural nuclear reactor environment (Mathieu et al., 2000). The present paper attempts to characterize the succession of alteration events that have affected the top of the basement below the Palaeoproterozoic sediment unconformity. Are these alterations related to early post-magmatic to hydrothermal events, to palaeoweathering, or to late infiltration of diagenetic brines from the overlying basin? Our study, carried out on drill core samples from Kiéné, is supported by petrographic investigation, new fluid inclusion data and U-Pb geochronology on monazite.

  20. Comments on some of the drilling and completion problems in Cerro Prieto geothermal wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez A, B.; Sanchez G, G.

    From 1960 to the present, 85 wells with a total drilling length exceeding 160,000 m have been constructed at Cerro Prieto, a modest figure compared to an oil field. This activity took place in five stages, each characterized by changes and modifications required by various drilling and well-completion problems. Initially, the technical procedures followed were similar to those used in the oil industry. However, several problems emerged as a result of the relatively high temperatures found in the geothermal reservoir. The various problems that have been encountered can be considered to be related to drilling fluids, cements and cementing operations,more » lithology, geothermal fluid characteristics, and casings and their accessories. As the importance of high temperatures and the characteristics of the geothermal reservoir fluids were better understood, the criteria were modified to optimize well-completion operations, and satisfactory results have been achieved to date.« less

  1. Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments

    NASA Astrophysics Data System (ADS)

    Hahn, Simon; Duda, Mandy; Stoeckhert, Ferdinand; Wittig, Volker; Bracke, Rolf

    2017-04-01

    Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments S. Hahn, M. Duda, F. Stoeckhert, V. Wittig, R. Bracke International Geothermal Centre Bochum High pressure water jet drilling technologies are widely used in the drilling industry. Especially in geothermal and hard rock applications, horizontal (radial) jet drilling is, however, confronted with several limitations like lateral length, hole size and steerability. In order to serve as a serious alternative to conventional stimulation techniques these high pressure jetting techniques are experimentally investigated to gain fundamental knowledge about the fluid-structure interaction, to enhance the rock failing process and to identify the governing drilling parameters. The experimental program is divided into three levels. In a first step jetting experiments are performed under free surface conditions while logging fluid pressures, flow speeds and extracted rock volume. All process parameters are quantified with a self-developed jet-ability index and compared to the rock properties (density, porosity, permeability, etc.). In a second step experiments will be performed under pressure-controlled conditions. A test bench is currently under construction offering the possibility to assign an in-situ stress field to the specimen while penetrating the rock sample with a high pressure water jet or a radial jet drilling device. The experimental results from levels 1 and 2 allow to identify the governing rock failure mechanisms and to correlate them with physical rock properties and limited reservoir conditions. Results of the initial tests do show a clear dependency of achievable penetration depth on the interaction of jetting and rock parameters and an individual threshold of the nozzle outlet velocity can be noticed in order to successfully penetrate different formation types. At level 3 jetting experiments will be performed at simulated reservoir conditions corresponding to 5.000 m depth (e.g. up to 1.250 bar and 180 °C) on large samples with a diameter of 25 cm and a length of up to 3m using GZB's in-situ borehole and geofluid simulator 'iBOGS'. Experiments will be documented by active and passive ultrasound measurements and high speed imaging. Acknowledgement Jetting research and work at GZB has received funding in part from the European Union's Horizon 2020 research and innovation program under grant agreement No 654662 and also from federal government GER and state of NRW.

  2. San Andreas drilling sites selected

    NASA Astrophysics Data System (ADS)

    Ellsworth, Bill; Zoback, Mark

    A new initiative for drilling and coring directly into the San Andreas fault at depths up to 10 km is being proposed by an international team of scientists led by Mark Zoback, Stanford University; Steve Hickman and Bill Ellsworth, U.S. Geological Survey; and Lee Younker, Lawrence Livermore Laboratory. In addition to exhuming samples of fault rock and fluids from seismogenic depths, the hole will be used to make a wide range of geophysical measurements within the fault zone and to monitor the fault zone over time. Four areas along the San Andreas have been selected as candidates for deep drilling: the Mojave segment of the San Andreas between Leona Valley and Big Pine, the Carrizo Plain, the San Francisco Peninsula between Los Altos and Daly City, and the Northern Gabilan Range between the Cienga winery and Melendy Ranch. These sites were chosen from an initial list compiled at the International Fault Zone Drilling Workshop held in Asilomar, Calif., in December 1992 and at meetings held this winter and spring in Menlo Park, Calif.

  3. Hawaii scientific drilling protect: Summary of preliminary results

    USGS Publications Warehouse

    DePaolo, D.; Stolper, E.; Thomas, D.; Albarede, F.; Chadwick, O.; Clague, D.; Feigenson, M.; Frey, F.; Garcia, M.; Hofmann, A.; Ingram, B.L.; Kennedy, B.M.; Kirschvink, J.; Kurz, M.; Laj, Carlo; Lockwood, J.; Ludwig, K.; McEvilly, T.; Moberly, R.; Moore, G.; Moore, J.; Morin, R.; Paillet, F.; Renne, P.; Rhodes, M.; Tatsumoto, M.; Taylor, H.; Walker, G.; Wilkins, R.

    1996-01-01

    Petrological, geochemical, geomagnetic, and volcanological characterization of the recovered core from a 1056-m-deep well into the flank of the Mauna Kea volcano in Hilo, Hawaii, and downhole logging and fluid sampling have provided a unique view of the evolution and internal structure of a major oceanic volcano unavailable from surface exposures. Core recovery was ~90%, yielding a time series of fresh, subaerial lavas extending back to ~400 ka. Results of this 1993 project provide a basis for a more ambitious project to core drill a well 4.5 km deep in a nearby location with the goal of recovering an extended, high-density stratigraphic sequence of lavas.

  4. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    NASA Astrophysics Data System (ADS)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale of the Hamersley Group near Yilgalong Creek. This location had been previously drilled by a mining company in the 1980’s and the core provided the highest biomarker yields of any Archean rocks thus far sampled. As it has been suggested that these biomarkers are non-indigenous contaminants, one possibility is that they were introduced into the drill-core at some time between drilling and sampling, so this hole tests that hypothesis. If biomarker concentrations and ratios differ significantly between the two adjacent holes with differing exposures to post-drilling contaminants, then clearly contamination has affected one or other of the cores. The third hole sampled an off-shore equivalent, through banded irons and kerogenous shales of the ~2.65 Ga Marra Mamba and Jeerinah Formations of the Hamersley Group near Cowcumba Creek. Another opportunity for contamination may arise during post-depositional but pre-drilling hydrocarbon migration, when biomarkers can potentially be introduced into previously barren rocks by younger oils, so this hole tests that possibility. As it was drilled through the same stratigraphic interval and structural domain as the second hole but in a different environment, biomarker ratios should be similar if contaminated but different if indigenous.

  5. Underground Habitats in the Río Tinto Basin: A Model for Subsurface Life Habitats on Mars

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Prieto-Ballesteros, Olga; Rodríguez, Nuria; Gómez, Felipe; Amils, Ricardo; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    A search for evidence of cryptic life in the subsurface region of a fractured Paleozoic volcanosedimentary deposit near the source waters of the Río Tinto River (Iberian pyrite belt, southwest Spain) was carried out by Mars Astrobiology Research and Technology Experiment (MARTE) project investigators in 2003 and 2004. This conventional deep-drilling experiment is referred to as the MARTE ground truth drilling project. Boreholes were drilled at three sites, and samples from extracted cores were analyzed with light microscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. Core leachates were analyzed with ion chromatography, and borehole fluids were analyzed with ion and gas chromatography. Key variables of the groundwater system (e.g. , pO2, pH, and salinity) exhibit huge ranges probably due to surficial oxygenation of overall reducing waters, physical mixing of waters, and biologically mediated water-rock interactions. Mineral distribution is mainly driven by the pH of subsurface solutions, which range from highly acidic to neutral. Borehole fluids contain dissolved gases such as CO2, CH4, and H2. SEM-EDS analyses of core samples revealed evidence of microbes attacking pyrite. The Río Tinto alteration mechanisms may be similar to subsurface weathering of the martian crust and provide insights into the possible (bio)geochemical cycles that may have accompanied underground habitats in extensive early Mars volcanic regions and associated sulfide ores.

  6. Underground habitats in the Río Tinto basin: a model for subsurface life habitats on Mars.

    PubMed

    Fernández-Remolar, David C; Prieto-Ballesteros, Olga; Rodríguez, Nuria; Gómez, Felipe; Amils, Ricardo; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A search for evidence of cryptic life in the subsurface region of a fractured Paleozoic volcanosedimentary deposit near the source waters of the Río Tinto River (Iberian pyrite belt, southwest Spain) was carried out by Mars Astrobiology Research and Technology Experiment (MARTE) project investigators in 2003 and 2004. This conventional deep-drilling experiment is referred to as the MARTE ground truth drilling project. Boreholes were drilled at three sites, and samples from extracted cores were analyzed with light microscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. Core leachates were analyzed with ion chromatography, and borehole fluids were analyzed with ion and gas chromatography. Key variables of the groundwater system (e.g., pO(2), pH, and salinity) exhibit huge ranges probably due to surficial oxygenation of overall reducing waters, physical mixing of waters, and biologically mediated water-rock interactions. Mineral distribution is mainly driven by the pH of subsurface solutions, which range from highly acidic to neutral. Borehole fluids contain dissolved gases such as CO(2), CH(4), and H(2). SEM-EDS analyses of core samples revealed evidence of microbes attacking pyrite. The Río Tinto alteration mechanisms may be similar to subsurface weathering of the martian crust and provide insights into the possible (bio)geochemical cycles that may have accompanied underground habitats in extensive early Mars volcanic regions and associated sulfide ores.

  7. K-Ar constraints on fluid-rock interaction and dissolution-precipitation events within the actively creeping shear zones from SAFOD cores

    NASA Astrophysics Data System (ADS)

    Ali, S.; Hemming, S. R.; Torgersen, T.; Fleisher, M. Q.; Cox, S. E.; Stute, M.

    2009-12-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes responsible for faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD drill cores show multiple zones of alteration and deformation due to fluid-rock interaction in the fault rocks(Schleicher et al. 2008). In context of fluid studies in the SAFZ, noble gas and potassium measurements were performed on solid samples of sedimentary rocks obtained from drill cores across the fault (3050-4000m-MD). We used a combination of 40Ar/39Ar and K-Ar methods on crushed samples of mudrock with variable amounts of visible slickensides to constrain the degree of resetting of the K-Ar system across the San Andreas Fault zone. 40Ar/39Ar was analyzed from small fragments (sand sized grains) while K-Ar was measured in crushed bulk rock samples (100-250 mg for Ar, and 5-10 mg for K analyses). The apparent 40Ar/39Ar ages based on single step laser fusion of small fragments corresponding to the detrital component in the coarse fraction, show varying ages ranging from the provenance age to <13Ma. Although more data are needed to make detailed comparisons, the apparent K-Ar ages of bulk samples in the fault zone are biased toward authigenic materials contained in the fine fraction, similar to the 40Ar/39Ar ages reported for mineralogical separates from very fine size fractions of samples obtained from 3065.98m-MD and 3294.89m-MD (Schleicher et al., submitted to Geology). The small samples measured for 40Ar/39Ar show scatter in the apparent ages, generally bracketing the bulk ages. However they are picked from sieved portions of the samples, and it is likely that there may be a loss of the younger (finer) material. Detrital provenance ages appear to be 50-60Ma in the Pacific Plate, and 100Ma in the North American Plate. 40Ar/39Ar ages within the SAFZ, as defined by geophysical logs (3200-3400m MD), are dominated by apparent detrital ages of ˜100Ma. More work is needed to test whether this is a real provenance age, or if there could be some systematic process that could lead to age bias towards older values. We observe nearly complete resetting of K-Ar ages, indicating that the K content is dominated by newly formed authigenic minerals as a result of fluid rock interaction in the SAFZ. Because the authigenic minerals are subject to successive dissolution-precipitation events over a range of time (3 to 0 Ma) and because the detrital component may not be fully reset, the K-Ar apparent ages (<300,000 years) in the SAFZ provide a maximum age on the resetting event. Similar trends of relatively young ages across the SAFZ compared to the surrounding country rock in the Pacific and North American Plates are also observed in the apparent fluid ‘ages’, corresponding to the fluid event responsible for the fluid-rock interaction in the fault (Ali et al. this session).

  8. Hydrothermal minerals and microstructures in the Silangkitang geothermal field along the Great Sumatran fault zone, Sumatra, Indonesia

    USGS Publications Warehouse

    Moore, Diane E.; Hickman, S.; Lockner, D.A.; Dobson, P.F.

    2001-01-01

    Detailed study of core samples of silicic tuff recovered from three geothermal wells along the strike-slip Great Sumatran fault zone near Silangkitang, North Sumatra, supports a model for enhanced hydrothermal circulation adjacent to this major plate-boundary fault. Two wells (A and C) were drilled nearly vertically ??1 km southwest of the eastern (i.e., the principal) fault trace, and the third, directional well (B) was drilled eastward from the site of well A to within ??100 m of the principal fault trace. The examined core samples come from depths of 1650-2120 m at measured well temperatures of 180-320 ??C. The samples collected near the principal fault trace have the highest temperatures, the largest amount of secondary pore space that correlates with high secondary permeability, and the most extensive hydrothermal mineral development. Secondary permeability and the degree of hydrothermal alteration decrease toward the southwestern margin of the fault zone. These features indicate episodic, localized flow of hot, possibly CO2-rich fluids within the fault zone. The microstructure populations identified in the core samples correlate to the subsidiary fault patterns typical of strike-slip faults. The geothermal reservoir appears to be centered on the fault zone, with the principal fault strands and adjoining, highly fractured and hydrothermally altered rock serving as the main conduits for vertical fluid flow and advective heat transport from deeper magmatic sources.

  9. Permeability Measurements of Rock Samples from Conduit Drilling at Unzen Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Shimizu, Y.; Noguchi, S.; Nakada, S.

    2006-12-01

    The last eruption of Unzen Volcano (1990-1995) was effusive to form lava domes, though magmas at depths are estimated to have contained volatile materials enough to cause explosive eruptions [e.g., Sato et al., 1995]. Most of volatile materials should have escaped from ascending magmas. The escape of gas is controlled by permeability of magmas and country rocks. Unzen Scientific Drilling Project sampled both the latest conduit and its country rock (USDP-4). In order to understand degassing processes, we have measured the permeability of these rock samples. Four cube samples with edges of 25 mm were cut from USDP-4 cores C1, C12 (country rock), C13 and C14 (conduit). Sample C1 is considered as Old Unzen Lava, and Sample C12 volcanic breccia. The transient pulse method was employed to measure the permeability. It applies a step of the fluid pressure difference across a specimen, and measures the decay rate of the fluid pressure difference. This method can be applied to samples with very low permeability, since it determines the permeability without measuring the fluid flux. Nitrogen gas was used as a pore fluid. Our permeametry system is built in a pressure vessel, and the confining pressure and the pore fluid pressure can be controlled independently. The temperature of the measurement system is kept constant within 0.1 degree. The temperature control and the background leak rate limit the measurable permeability to be higher than 10^{-20} m2. Measurements were first conducted under the atmospheric pressure. The permeability in a rock sample varies with the direction by a factor less than 5. Sample C1 has the lowest permeability (10^{-19} m2), and Sample C12 the highest value (10^{-17 m2). The permeability of C13 and C14 is of the order of 10^{- 18} m2. Though only a trace of vesicles can be seen in conduit samples, the interconnection is still maintained. The pressure dependence of the permeability is now investigated up to 50 MPa. The permeability of C13 and C14 (conduit samples) decreases by around one order of magnitude as the confining pressure increases from the atmospheric pressure to 50 MPa. The pressure dependence sensitively reflects the geometry of pores that control the interconnection of pores. Implications for degassing processes will be discussed on the basis of measured permeability and SEM images.

  10. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  11. Water Resources Management for Shale Energy Development

    NASA Astrophysics Data System (ADS)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens the use of fresh water and disposal needs thus is a major innovation for the industry. Proper water resource managment techniques from the begining of drilling through production are critical to ensure the energy necessary for society is produced while also protecting the environment.

  12. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010: data analysis and comparison to the literature

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in low-permeability, unconventional reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. This national spatial and temporal analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 (aggregated in Data Series 868) is used to identify hydraulic fracturing trends in drilling methods and use of proppants, treatment fluids, additives, and water in the United States. These trends are compared to the literature in an effort to establish a common understanding of the differences in drilling methods, treatment fluids, and chemical additives and of how the newer technology has affected the water use volumes and areal distribution of hydraulic fracturing. Historically, Texas has had the highest number of records of hydraulic fracturing treatments and associated wells in the United States documented in the datasets described herein. Water-intensive horizontal/directional drilling has also increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increases in horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. As such, the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. Publicly available derivative datasets and locations developed from these analyses are described.

  13. The Green River natural analogue as a field laboratory to study the long-term fate of CO2 in the subsurface

    NASA Astrophysics Data System (ADS)

    Busch, Andreas; Kampman, Niko; Hangx, Suzanne; Bertier, Pieter; Bickle, Mike; Harrington, Jon

    2015-04-01

    Understanding the long-term response of CO2 injected into porous reservoirs is one of the most important aspects to demonstrate safe and permanent storage. At the same time this is one of the least understood aspects of CCS in general. The reasons are that 'long-term', in the sense of hundreds to thousands of years, is impractical from a laboratory and rather idealised from a reservoir modelling perspective. However understanding the coupled long-term hydro-chemical-mechanical response of a reservoir-seal pair following CO2 injection is highly desirable to improve confidence and trust from a regulator and societal perspective, as well as to improve risk assessment and risk reduction. In order to provide one building block to advance understanding of this subject, in July 2012 Shell recovered some 300m of core from a scientific drill hole through a natural CO2 field near Green River, Utah. This core transected two sandstone formations (Entrada and Navajo) and one intervening seal layer, composed of interbedded marine clay-/silt and sandstones (Carmel Fm.). Fluid samples and core material were taken adjacent to the Little Grand Wash Fault (LGW), along which CO2-charged fluids traverse from depth to the surface and which is believed to be the migration pathway for CO2 inflow into the reservoirs. In-situ pH, CO2 concentrations, and fluid element and isotope geochemistry were determined from wireline downhole sampling of pressurized fluids taken from the Navajo reservoirs. The fluid geochemistry provides important constraints on reservoir filling by flow of CO2 -charged brines through the LGW fault damage zone, macro-scale fluid flow in the reservoirs and the state of fluid-mineral thermodynamic disequilibrium, from which the nature of the fluid-mineral reactions can be interpreted. In addition to core samples, we obtained control samples from stratigraphically equivalent outcrop locations and drill holes that were not subject to alterations by CO2 -charged fluids and served as a direct comparison to the altered samples. We obtained geomechanical, mineralogical, geochemical and petrophysical laboratory data along the entire length of the core and from the control samples. Furthermore, we performed more detailed studies through portions of the caprock in direct contact with the CO2-charged reservoirs. This was done to constrain the nature and penetration depths of the CO2-promoted fluid-mineral reaction fronts. These reactions have taken place in the last ~100,000 years, which has been set as an upper limit for the onset of CO2 influx into the formations. This data has been used as input for reactive (transport) modeling. In addition, we compared geomechanical data from the CO2 -exposed core and the unreacted control samples to assess the mechanical stability of reservoir and seal rocks in a CO2 storage complex following mineral dissolution and precipitation for thousands of years.

  14. Fluid-inclusion evidence for past temperature fluctuations in the Kilauea East Rift Zone geothermal area, Hawaii

    USGS Publications Warehouse

    Bargar, K.E.; Keith, T.E.C.; Trusdell, F.A.

    1995-01-01

    Heating and freezing data were obtained for fluid inclusions in hydrothermal quartz, calcite, and anhydrite from several depths in three scientific observation holes drilled along the lower East Rift Zone of Kilauea volcano, Hawaii. Comparison of measured drill-hole temperatures with fluid-inclusion homogenization-temperature (Th) data indicates that only about 15% of the fluid inclusions could have formed under the present thermal conditions. The majority of fluid inclusions studied must have formed during one or more times in the past when temperatures fluctuated in response to the emplacement of nearby dikes and their subsequent cooling. -from Authors

  15. 30 CFR 250.614 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... well is shut in and secured. (b) When coming out of the hole with drill pipe or a workover string, the... string and drill collars that may be pulled prior to filling the hole and the equivalent well-control... fluid volumes when filling the hole on trips; and (3) A recording mud-pit-level indicator to determine...

  16. Research on the Influence Factors of Emulsion Stability of Oil-in-water Drilling Fluid

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxu; Sun, Yuxue; Chen, Xiangming; Wang, Zengkui; Xu, Jianjun

    2018-01-01

    The evaluation standard of emulsion stability of oil-in-water drilling fluid is determined in this paper, based on which an evaluation analysis is conducted for the influence factors of emulsion stability, including the addition of emulsifier, addition of stabilizer, stirring speed, weighing agent, clay, etc. to gain the corresponding regularity understanding.

  17. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Reference C16-C18 Internal Olefin Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY...

  18. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Reference C16-C18 Internal Olefin Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY...

  19. Drilling fluid thinner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, B.

    1989-06-27

    A drilling fluid additive is described comprising a mixture of: (a) a sulfoalkylated tannin and (b) chromium acetate selected from the group consisting of chromium (III) acetate and chromium (II) acetate, wherein the chromium acetate is present in a weight ratio of the chromium acetate to the sulfoalkylated tannin in the range of from about 1:20 to about 1:1.

  20. Carboxymethylhydroxyethyl cellulose in drilling, workover and completion fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauber, C. A.

    Certain carboxymethylhydroxyethyl cellulose (CMHEC) solutions in waters of various salinities are gelled by dichromate ion at a pH of about 5 or less, thus forming a drilling fluid or component thereof. In an embodiment a CMHEC water solution is gelled using an alkali metal dichromate, e.g., Na2Cr2O7.2H2O.

  1. Evaluation of geophysical logs, Phase II, at Willow Grove Naval Air Station Joint Reserve Base, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1999-01-01

    Between March and April 1998, the U.S. Navy contracted Tetra Tech NUS Inc., to drill two monitor wells in the Stockton Formation at the Willow Grove Naval Air Station Joint Reserve Base, Horsham Township, Montgomery County, Pa. The wells MG-1634 and MG-1635 were installed to monitor water levels and sample contaminants in the shallow, intermediate, and deep water-producing zones of the fractured bedrock. Chemical analyses of the samples will help determine the horizontal and vertical distribution of any contaminated ground water migrating from known contaminant sources. Wells were drilled near the Fire Training Area (Site 5). Depths of all boreholes range from 69 to 149 feet below land surface. The U.S. Geological Survey conducted borehole geophysical logging and video surveys to identify water-producing zones in newly drilled monitor wells MG-1634 and MG-1635 and in wells MG-1675 and MG-1676. The logging was conducted from March 5, 1998, to April 16, 1998. This work is a continuation of the Phase I work. Caliper logs and video surveys were used to locate fractures; inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-producing fractures. Heatpulse-flowmeter measurements were used to verify the locations of water-producing or water-receiving zones and to measure rates of flow between water-bearing fractures. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller's notes, wells MG-1634 and MG-1635 were screened such that water-levels fluctuations could be monitored and discrete water samples collected from one or more water-producing zones in each borehole.

  2. 40 CFR Appendix 6 to Subpart A of... - Reverse Phase Extraction (RPE) Method for Detection of Oil Contamination in Non-Aqueous Drilling...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rigorous statistical experimental design and interpretation (Reference 16.4). 14.0Pollution Prevention 14... fluids. 1.4This method has been designed to show positive contamination for 5% of representative crude....1Sample collection bottles/jars—New, pre-cleaned bottles/jars, lot-certified to be free of artifacts...

  3. 40 CFR Appendix 6 to Subpart A of... - Reverse Phase Extraction (RPE) Method for Detection of Oil Contamination in Non-Aqueous Drilling...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rigorous statistical experimental design and interpretation (Reference 16.4). 14.0Pollution Prevention 14... fluids. 1.4This method has been designed to show positive contamination for 5% of representative crude....1Sample collection bottles/jars—New, pre-cleaned bottles/jars, lot-certified to be free of artifacts...

  4. 40 CFR Appendix 6 to Subpart A of... - Reverse Phase Extraction (RPE) Method for Detection of Oil Contamination in Non-Aqueous Drilling...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rigorous statistical experimental design and interpretation (Reference 16.4). 14.0Pollution Prevention 14... fluids. 1.4This method has been designed to show positive contamination for 5% of representative crude....1Sample collection bottles/jars—New, pre-cleaned bottles/jars, lot-certified to be free of artifacts...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Clay A.; Thomas, James M.; Lyles, Brad F.

    Samples from a well drilled in the Astor Pass area six-km north of the Needle Rocks area of Pyramid Lake indicate that the reservoir fluid is dominantly sodium, chloride, and sulfate, with a pH between 8.6 and 8.9. The total dissolved solids in the reservoir is approximately 1600 mg/l, about half that of the TDS of the fluids in the Needle Rocks area. One sample of dissolved gas from fluids produced during a well test in the reservoir had 4He value of 2.32 x 10 14 atoms 4He/g water, or approximately 100 times the value of atmospheric 4He. This measurement,more » in conjunction with a R/Ra measurement of 0.28, suggests that most of the reservoir helium is derived from the crust, with possibly a small value (~3.3 percent) derived from the mantle. Tritium concentration of the sample was 0.09 TU, indicating that the reservoir fluid was recharged more than 60 years ago; a simple model based upon carbon-14 suggests recharge has occurred within the past 1500 years.« less

  6. Facility for testing ice drills

    NASA Astrophysics Data System (ADS)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  7. IMPACT OF PHYSICAL AND CHEMICAL MUD CONTAMINATION ON WELLBORE CEMENT- FORMATION SHEAR BOND STRENGTH Authors: Arome Oyibo1 and Mileva Radonjic1 * 1. Craft and Hawkins Department of Petroleum Engineering, 2131 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, LA 70803, aoyibo1@tigers.lsu.edu, mileva@lsu.edu

    NASA Astrophysics Data System (ADS)

    Oyibo, A. E.

    2013-12-01

    Wellbore cement has been used to provide well integrity through zonal isolation in oil & gas wells and geothermal wells. Cementing is also used to provide mechanical support for the casing and protect the casing from corrosive fluids. Failure of cement could be caused by several factors ranging from poor cementing, failure to completely displace the drilling fluids to failure on the path of the casing. A failed cement job could result in creation of cracks and micro annulus through which produced fluids could migrate to the surface which could lead to sustained casing pressure, contamination of fresh water aquifer and blow out in some cases. In addition, cement failures could risk the release of chemicals substances from hydraulic fracturing into fresh water aquifer during the injection process. To achieve proper cementing, the drilling fluid should be completely displaced by the cement slurry. However, this is hard to achieve in practice, some mud is usually left on the wellbore which ends up contaminating the cement afterwards. The purpose of this experimental study is to investigate the impact of both physical and chemical mud contaminations on cement-formation bond strength for different types of formations. Physical contamination occurs when drilling fluids (mud) dries on the surface of the formation forming a mud cake. Chemical contamination on the other hand occurs when the drilling fluids which is still in the liquid form interacts chemically with the cement during a cementing job. We investigated the impact of the contamination on the shear bond strength and the changes in the mineralogy of the cement at the cement-formation interface to ascertain the impact of the contamination on the cement-formation bond strength. Berea sandstone and clay rich shale cores were bonded with cement cores with the cement-formation contaminated either physically or chemically. For the physically contaminated composite cores, we have 3 different sample designs: clean/not contaminated, scrapped and washed composite cores. Similarly, for the chemically contaminated samples we had 3 different sample designs: 0%, 5% and 10% mud contaminated composite cores. Shear test were performed on the composite cores to determine the shear bond strength and the results suggested that the detrimental impact of the contamination is higher when the cores are physically contaminated i.e. when we have mud cake present at the surface of the wellbore before a cement job is performed. Also, the results showed that shear bond strength is higher for sandstone formations as compared to shale formations. Material characterization analysis was carried out to determine the micro structural changes at the cement-formation interface. The results obtained from the SEM and micro CT images taken at the bond interface confirmed that chemical contamination caused substantial changes in the spatial distribution of minerals that impacted bond strength. Keywords: Cement-Formation bond strength, mud contamination, shale, sandstone and material characterization *Corresponding author

  8. Stable, geochemically mediated biospheres in the Deep Mine Microbial Observatory, SD, USA

    NASA Astrophysics Data System (ADS)

    Osburn, M. R.; Casar, C. P.; Kruger, B.; Flynn, T. M.

    2017-12-01

    The terrestrial subsurface is a vast reservoir of life, hosting diverse microbial ecosystems with varying levels of connectivity to surface inputs. Understanding long term ecosystem dynamics within the subsurface biosphere is very challenging due to limitations in accessibility, sample availability, and slow microbial growth rates. The establishment of the Deep Mine Microbial Observatory (DeMMO) at the Sanford Underground Research Facility, SD, USA has allowed for bimonthly sampling for nearly two years at six sites spanning 250 to 1500 m below the surface. Here we present a time-resolved analysis of the geomicrobiology of the six DeMMO sites, which have been created from legacy mine boreholes modified to allow for controlled sampling. Our interdisciplinary approach includes analysis of passively draining fracture fluid for aqueous and gas geochemistry, DNA sequencing, microscopy, and isotopic measurements of organic and inorganic substrates. Fluid geochemistry varies significantly between sites, but is relatively stable over time for a given site, even through significant external perturbations such as drilling and installation of permanent sampling devices into the boreholes. The fluid-hosted microbial diversity follows these trends, with consistent populations present at each site through time, even through drilling events. For instance, the shallowest site (DeMMO 1) consistently hosts >30% uncharacterized phyla and >25% Omnitrophica whereas the deepest site (DeMMO 6) is dominated by Firmicutes and Bacterioidetes. Microbial diversity appears to respond to the availability of energy sources such as organic carbon, sulfate, sulfide, hydrogen, and iron. Carbon isotopic measurements reveal closed system behavior with significant recycling of organic carbon into the DIC pool. Together these observations suggest DeMMO hosts isolated subsurface microbial populations adapted to local geochemistry that are stable on yearlong timescales.

  9. Oman Drilling Project Phase I Borehole Geophysical Survey

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for holes BT1, GT3 and BA2 due to hole obstruction (e.g. collapsed borehole wall). Results from the geophysical survey including preliminary log analysis will be presented for each OmanDP Phase I borehole.

  10. Fluid flow and water-rock interaction in the East Rift Zone of Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Conrad, Mark E.; Thomas, Donald M.; Flexser, Steven; Vennemann, Torsten W.

    1997-07-01

    The East Rift Zone of Kilauea Volcano in Hawaii represents a major area of geothermal activity. Fluid inclusion and stable isotope analyses of secondary hydrothermal minerals in core samples from three scientific observation holes (SOH) drilled into the rift zone indicate that the geothermal system is dominated by meteoric waters to depths of as much as 1500 m below sea level. Calculated δ18O and δD values for fluids on the north side of the rift zone indicate that the deep meteoric fluids may be derived from precipitation on the upper slopes of Mauna Loa Volcano. In the interior of the rift zone, recharge is dominated by seawater mixed with local meteoric water. Water/rock ratios in the rift area are approximately 2, but strongly 18O-enriched fluids in the deeper parts of the SOH-2 and SOH-4 drill holes (on the north side of the rift) indicate that the fluids underwent extensive interaction with rocks prior to reaching this part of the rift zone. Marine carbonates at the subaerial to submarine transition (between 1700 and 1780 m depth) in SOH-4 have not fully equilibrated with the fluids, suggesting that the onset of hydrothermal activity in this area was relatively recent (<2000 years). This may represent increased volcanic activity along the rift after the end of the Ai La'au phase of eruptive activity at the Kilauea summit approximately 1000 years ago, or it may reflect progressive evolution of the hydrothermal system in response to southward migration of intrusive activity within the rift.

  11. Improved diamond coring bits developed for dry and chip-flush drilling

    NASA Technical Reports Server (NTRS)

    Decker, W. E.; Hampe, W. R.; Hampton, W. H.; Simon, A. B.

    1971-01-01

    Two rotary diamond bit designs, one operating with a chip-flushing fluid, the second including auger section to remove drilled chips, enhance usefulness of tool for exploratory and industrial core-drilling of hard, abrasive mineral deposits and structural masonry.

  12. Effects of sheens associated with offshore oil and gas development on the feather microstructure of pelagic seabirds.

    PubMed

    O'Hara, Patrick D; Morandin, Lora A

    2010-05-01

    Operational discharges of hydrocarbons from maritime activities can have major cumulative impacts on marine ecosystems. Small quantities of oil (i.e., 10 ml) results in often lethally reduced thermoregulation in seabirds. Thin sheens of oil and drilling fluids form around offshore petroleum production structures from currently permissible operational discharges of hydrocarbons. Methodology was developed to measure feather microstructure impacts (amalgamation index or AI) associated with sheen exposure. We collected feather samples from two common North Atlantic species of seabirds; Common Murres (Uria aalge) and Dovekies (Alle alle). Impacts were compared after feather exposure to crude oil and synthetic lubricant sheens of varying thicknesses. Feather weight and microstructure changed significantly for both species after exposure to thin sheens of crude oil and synthetic drilling fluids. Thus, seabirds may be impacted by thin sheens forming around offshore petroleum production facilities from discharged produced water containing currently admissible concentrations of hydrocarbons. (c) 2009. Published by Elsevier Ltd. All rights reserved.

  13. Modeling pellet impact drilling process

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  14. Assessing Past Fracture Connectivity in Geothermal Reservoirs Using Clumped Isotopes: Proof of Concept in the Blue Mountain Geothermal Field, Nevada USA

    NASA Astrophysics Data System (ADS)

    Huntington, K. W.; Sumner, K. K.; Camp, E. R.; Cladouhos, T. T.; Uddenberg, M.; Swyer, M.; Garrison, G. H.

    2015-12-01

    Subsurface fluid flow is strongly influenced by faults and fractures, yet the transmissivity of faults and fractures changes through time due to deformation and cement precipitation, making flow paths difficult to predict. Here we assess past fracture connectivity in an active hydrothermal system in the Basin and Range, Nevada, USA, using clumped isotope geochemistry and cold cathodoluminescence (CL) analysis of fracture filling cements from the Blue Mountain geothermal field. Calcite cements were sampled from drill cuttings and two cores at varying distances from faults. CL microscopy of some of the cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements record variations in the composition and source of fluids that moved through the fractures as they opened episodically. CL microscopy, δ13C and δ18O values were used to screen homogeneous samples for clumped isotope analysis. Clumped isotope thermometry of most samples indicates paleofluid temperatures of around 150°C, with several wells peaking at above 200°C. We suggest that the consistency of these temperatures is related to upwelling of fluids in the convective hydrothermal system, and interpret the similarity of the clumped isotope temperatures to modern geothermal fluid temperatures of ~160-180°C as evidence that average reservoir temperatures have changed little since precipitation of the calcite cements. In contrast, two samples, one of which was associated with fault gauge observed in drill logs, record significantly cooler temperatures of 19 and 73°C and anomalous δ13C and δ18Owater values, which point to fault-controlled pathways for downwelling meteoric fluid. Finally, we interpret correspondence of paleofluid temperatures and δ18Owater values constrained by clumped isotope thermometry of calcite from different wells to suggest past connectivity of fractures among wells within the geothermal field. Results show the ability of clumped isotope geothermometry to assess fracture connectivity and geothermal reservoir characteristics in the past—with the potential to help optimize resource production and injection programs and better understand structural controls on mass and heat transfer in the subsurface.

  15. Theory and application of drilling fluid hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittaker, A.

    1985-01-01

    The objectives of this book are (1) to serve as a reasonably comprehensive text on the subject of drilling hydraulics and (2) to provide the field geologist with a quick reference to drilling hydraulics calculations. Chapter 1 introduces the basic principles of fluid properties, and Chapter 2 presents the general principles of fluid hydraulics. Chapters 3 through 10 analyze specific hydraulic considerations of the drilling process, such as viscometric measurements, pressure losses, swab and surge pressures, cuttings transport and hydraulic optimization. The units and nomenclature are consistent throughout the manual. Equations are given generally in consistent S.I. units; some commonmore » expressions are also given in oilfield units. Nomenclature is explained after every equation when necessary, and a comprehensive list of the nomenclature used is given in Appendix A. Units are listed in Appendix B. In Appendix C, all the important equations are given in both S.I. and oilfield units. Appendix D contains example hydraulics calculations.« less

  16. Multi-gradient drilling method and system

    DOEpatents

    Maurer, William C.; Medley, Jr., George H.; McDonald, William J.

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  17. Development of the concept of spatial-temporal mask for testing effects of discharge from well-drilling activities on biological communities.

    PubMed

    Pulgati, Fernando H; Ayup-Zouain, Ricardo N; Landau, Luiz; Fachel, Jandyra M G

    2010-08-01

    This paper describes the use of Bayesian spatial models to develop the concept of a spatial-temporal mask for the purpose of identifying regions in which before and after drilling effects are most clearly defined and from which the consequences of exposure of macrofauna and meiofauna to the release of drilling discharges can be evaluated over time. To determine the effects of drilling fluids and drill-cuttings on the marine benthic community, it is essential to know not only where discharged materials ended up within the possible impact area, but also the chemical concentrations to which biota were exposed during and after drilling. Barium and light hydrocarbons were used as chemical tracers for water-based and non-aqueous-based fluids in a shallow water site in the Campos Basin, off the coast of Brazil. Since the site showed evidence of exposure to waste material from earlier drilling, the analysis needed to take into account the background concentrations of these compounds. Using the Bayesian models, concentrations at unsampled sites were predicted and regions altered and previously contaminated were identified.

  18. Benthos response following petroleum exploration in the southern Caspian Sea: Relating effects of nonaqueous drilling fluid, water depth, and dissolved oxygen.

    PubMed

    Tait, R D; Maxon, C L; Parr, T D; Newton, F C

    2016-09-15

    The effects of linear alpha olefin (LAO) nonaqueous drilling fluid on benthic macrofauna were assessed over a six year period at a southern Caspian Sea petroleum exploration site. A wide-ranging, pre-drilling survey identified a relatively diverse shelf-depth macrofauna numerically dominated by amphipods, cumaceans, and gastropods that transitioned to a less diverse assemblage dominated by hypoxia-tolerant annelid worms and motile ostracods with increasing depth. After drilling, a similar transition in macrofauna assemblage was observed with increasing concentration of LAO proximate to the shelf-depth well site. Post-drilling results were consistent with a hypothesis of hypoxia from microbial degradation of LAO, supported by the presence of bacterial mats and lack of oxygen penetration in surface sediment. Chemical and biological recoveries at ≥200m distance from the well site were evident 33months after drilling ceased. Our findings show the importance of monitoring recovery over time and understanding macrofauna community structure prior to drilling. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Elastomers in mud motors for oil field applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrik, J.

    1997-08-01

    Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Resultsmore » of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.« less

  20. High-resolution seismic survey for the characterization of planned PIER-ICDP fluid-monitoring sites in the Eger Rift zone

    NASA Astrophysics Data System (ADS)

    Simon, H.; Buske, S.

    2017-12-01

    The Eger Rift zone (Czech Republic) is a intra-continental non-volcanic region and is characterized by outstanding geodynamic activities, which result in earthquake swarms and significant CO2 emanations. Because fluid-induced stress can trigger earthquake swarms, both natural phenomena are probably related to each other. The epicentres of the earthquake swarms cluster at the northern edge of the Cheb Basin. Although the location of the cluster coincides with the major Mariánské-Lázně Fault Zone (MLFZ) the strike of the focal plane indicates another fault zone, the N-S trending Počátky-Plesná Zone (PPZ). Isotopic analysis of the CO2-rich fluids revealed a significant portion of upper mantle derived components, hence a magmatic fluid source in the upper mantle was postulated. Because of these phenomena, the Eger Rift area is a unique site for interdisciplinary drilling programs to study the fluid-earthquake interaction. The ICDP project PIER (Probing of Intra-continental magmatic activity: drilling the Eger Rift) will set up an observatory, consisting of five monitoring boreholes. In preparation for the drilling, the goal of the seismic survey is the characterization of the projected fluid-monitoring drill site at the CO2 degassing mofette field near Hartoušov. This will be achieved by a 6 km long profile with dense source and receiver spacing. The W-E trending profile will cross the proposed drill site and the surface traces of MLFZ and PPZ. The outcome of the seismic survey will be a high-resolution structural image of potential reflectors related to these fault zones. This will be achieved by the application of advanced pre-stack depth migration methods and a detailed P-wave velocity distribution of the area obtained from first arrival tomography. During interpretation of the seismic data, a geoelectrical resistivity model, acquired along the same profile line, will provide important constraints, especially with respect to fluid pathways.

  1. Low temperature barrier wellbores formed using water flushing

    DOEpatents

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  2. Method for laser drilling subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1976-08-31

    Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.

  3. Hydraulic studies of drilling microbores with supercritical steam, nitrogen and carbon dioxide

    DOE Data Explorer

    Ken Oglesby

    2010-01-01

    Hydraulic studies of drilling microbores at various depths and with various hole sizes, tubing, fluids and rates showed theoretical feasibility. WELLFLO SIMULATIONS REPORT STEP 4: DRILLING 10,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 5: DRILLING 20,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 6: DRILLING 30,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE Mehmet Karaaslan, MSI

  4. Diverter bop system and method for a bottom supported offshore drilling rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roche, J. R.; Alexander, G. G.; Carbaugh, W. L.

    1985-06-25

    A system and method for installing a fluid flow controller and telescoping spools beneath an offshore bottom supported drilling rig rotary table is disclosed. Upper and lower telescoping spools are provided for initially connecting a Diverter/BOP convertible fluid flow controller between structural casing in the well and a permanent housing beneath the drilling rig rotary table. Clamp means are provided for clamping the rig vent line to an opening in the housing wall of the fluid flow controller during drilling of the borehole through the structural casing in preparation for setting and cementing the conductor casing. In that mode, themore » system is adapted as a diverter system. After the well is drilled for the conductor casing and the conductor casing is cemented and cut off at its top, a mandrel is fitted at the top of the conductor casing to which the lower end of the lower spool may be connected. The system may be used in this configuration as a diverter system, or after removal of the vent line and connection of a kill line to the housing outlet, the system may be used as a low pressure blowout preventer system.« less

  5. THE EFFECT OF GAS HYDRATES DISSOCIATION AND DRILLING FLUIDS INVASION UPON BOREHOLE STABILITY IN OCEANIC GAS HYDRATES-BEARING SEDIMENT

    NASA Astrophysics Data System (ADS)

    Ning, F.; Wu, N.; Jiang, G.; Zhang, L.

    2009-12-01

    Under the condition of over-pressure drilling, the solid-phase and liquid-phase in drilling fluids immediately penetrate into the oceanic gas hydrates-bearing sediment, which causes the water content surrounding the borehole to increase largely. At the same time, the hydrates surrounding borehole maybe quickly decompose into water and gas because of the rapid change of temperature and pressure. The drilling practices prove that this two factors may change the rock characteristics of wellbore, such as rock strength, pore pressure, resistivity, etc., and then affect the logging response and evaluation, wellbore stability and well safty. The invasion of filtrate can lower the angle of friction and weaken the cohesion of hydrates-bearing sediment,which is same to the effect of invading into conventional oil and gas formation on borehole mechnical properties. The difference is that temperature isn’t considered in the invasion process of conventional formations while in hydrates-bearing sediments, it is a factor that can not be ignored. Temperature changes can result in hydrates dissociating, which has a great effect on mechanical properties of borehole. With the application of numerical simulation method, we studied the changes of pore pressure and variation of water content in the gas hydrates-bearing sediment caused by drilling fluid invasion under pressure differential and gas hydrate dissociation under temperature differential and analyzed their influence on borehole stability.The result of simulation indicated that the temperature near borehole increased quickly and changed hardly any after 6 min later. About 1m away from the borehole, the temperature of formation wasn’t affected by the temperature change of borehole. At the place near borehole, as gas hydrate dissociated dramatically and drilling fluid invaded quickly, the pore pressure increased promptly. The degree of increase depends on the permeability and speed of temperature rise of formation around bohole. If the formation has a low permeability and is heated quickly, the dissociated gas and water couldn’t flow away in time, which is likely to bring a hazard of excess pore pressure. Especially in the area near the wall of borehole, the increase degree of pore pressure is high than other area because the dissociation of gas hydrates is relatively violent and hydraulic gradient is bigger. We also studied the distribution of water saturation around borehole after 10min, 30min and 60min respectively. It revealed that along with the invasion of drilling fluid and dissociation of gas hydrate, the degree of water saturation increased gradually. The effect of gas hydrate dissociation and drilling fluids invasion on borehole stability is to weaken mechanical properties of wellbore and change the pore pressure, then changes the effective stress of gas hydrates-bearing sediment. So temperature, pressure in the borehole and filter loss of drilling fluids should be controlled strictly to prevent gas hydrates from decomposing largely and in order to keep the borehole stability in the gas hydrates-bearing formations.

  6. Variations in the depths of sulfate-methane transition zone (SMTZ) in UBGH2-6 drilling site in Ulleung Basin, East sea of Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Chun, J. H.; Bahk, J. J.; Ryu, B. J.; Um, I. K.

    2016-12-01

    The second Ulleung Basin Gas hydrate Drilling Expedition (UBGH2) was conducted in the Ulleung Basin, East Sea of Korea in 2010. Gas hydrates were observed in depth interval from 140 mbsf (meter below seafloor) to 160 mbsf in core sediment taken from UBGH2-6 drilling site, located in the north-western part of the basin (2,164 m water depth). To characterize the geochemical process for UBGH2-6 core sediments, pore fluid samples and headspace gas samples were extracted from core sediments and analyzed SO42- and CH4 concentrations. Based on SO42- and CH4 concentrations, sulfate-methane transition zone (SMTZ), where SO42- is depleted to zero and CH4 starts to increase was defined at a depth of approximately 6.50 mbsf in 2010. And in order to identify the variations in the depths of SMTZ at UBGH2-6 drilling site since 2010 (UBGH2), whole-round piston cores were collected from UBGH2-6 drilling site from 2013 to 2015. We analyzed SO42- and CH4 concentrations and identified the SMTZ for the last 3 years. The depths of SMTZ for the cores obtained from 2013, 2014 and 2015 are approximately 3.50 mbsf, 5.00 mbsf, and 5.00 mbsf respectively. The analysis results indicate that the SMTZ in 2013, 2014, and 2015 are shallower than the SMTZ of 2010.

  7. Large scale in-situ BOrehole and Geofluid Simulator (i.BOGS) for the development and testing of borehole technologies at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Duda, Mandy; Bracke, Rolf; Stöckhert, Ferdinand; Wittig, Volker

    2017-04-01

    A fundamental problem of technological applications related to the exploration and provision of geothermal energy is the inaccessibility of subsurface processes. As a result, actual reservoir properties can only be determined using (a) indirect measurement techniques such as seismic surveys, machine feedback and geophysical borehole logging, (b) laboratory experiments capable of simulating in-situ properties, but failing to preserve temporal and spatial scales, or vice versa, and (c) numerical simulations. Moreover, technological applications related to the drilling process, the completion and cementation of a wellbore or the stimulation and exploitation of the reservoir are exposed to high pressure and temperature conditions as well as corrosive environments resulting from both, rock formation and geofluid characteristics. To address fundamental and applied questions in the context of geothermal energy provision and subsurface exploration in general one of Europe's largest geoscientific laboratory infrastructures is introduced. The in-situ Borehole and Geofluid Simulator (i.BOGS) allows to simulate quasi scale-preserving processes at reservoir conditions up to depths of 5000 m and represents a large scale pressure vessel for iso-/hydrostatic and pore pressures up to 125 MPa and temperatures from -10°C to 180°C. The autoclave can either be filled with large rock core samples (25 cm in diameter, up to 3 m length) or with fluids and technical borehole devices (e.g. pumps, sensors). The pressure vessel is equipped with an ultrasound system for active transmission and passive recording of acoustic emissions, and can be complemented by additional sensors. The i.BOGS forms the basic module for the Match.BOGS finally consisting of three modules, i.e. (A) the i.BOGS, (B) the Drill.BOGS, a drilling module to be attached to the i.BOGS capable of applying realistic torques and contact forces to a drilling device that enters the i.BOGS, and (C) the Fluid.BOGS, a geofluid reactor for the composition of highly corrosive geofluids serving as synthetic groundwater / pore fluid in the i.BOGS. The i.BOGS will support scientists and engineers in developing instruments and applications such as drilling tooling and drillstrings, borehole cements and cementation procedures, geophysical tooling and sensors, or logging/measuring while drilling equipment, but will also contribute to optimized reservoir exploitation methods, for example related to stimulation techniques, pumping equipment and long-term reservoir accessibility.

  8. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada

    NASA Astrophysics Data System (ADS)

    Lamb, A. K.; Calvin, W. M.

    2010-12-01

    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy in remote sensing data sets. Mapped by depth, we identified narrow zones of intense alteration that mark fluid circulation, and overall changes in metamorphic grade facies through clay type. Steamboat Hills is more highly altered than Hawthorne, thus the alteration assemblages reflect the pH and temperature differences.

  9. Carbonate system at Iheya North in Okinawa Trough~IODP drilling and post drilling environment~

    NASA Astrophysics Data System (ADS)

    Noguchi, T.; Hatta, M.; Sunamura, M.; Fukuba, T.; Suzue, T.; Kimoto, H.; Okamura, K.

    2012-12-01

    The Iheya North hydrothermal field in middle Okinawa Trough is covered with thick hemipelagic and volcanic sediment. Geochemical characteristics of Okinawa Trough is to provide abundant of CO2, CH4, NH4, H2, and H2S which originated from magmatic gases, sedimentary organic matters. On this hydrothermal field, a scientific drilling by Integrated Ocean Drilling Program (IODP) Expedition 331 was conducted to investigate metabolically diverse subseafloor microbial ecosystem and their physical and chemical settings. To clarify the spatial distribution of physical condition beneath seafloor around the hydrothermal filed, we focus on the carbonate species analysis to reconstruct in-situ pH, which regulate the diversities of microbial community and mineral composition. We developed the small sample volume dissolved total inorganic carbon (DIC) analyzer and conducted the onboard analysis for the interstitial water during IODP Exp.331. Total alkalinity, boron, phosphate, and ammonium also analyzed for thermodynamic calculation. In this presentation, we represent the spatial distribution of pH beneath the Iheya North hydrothermal field. In addition, we developed a 128 bottles multiple water sampler (ANEMONE) for post drilling environmental monitoring. ANEMONE sampler was deployed on the manned submersible Shinkai 6500 with other chemical sensors (CTD, turbidity, pH, ORP, and H2S), and collected the hydrothermal plume samples every 5 minutes during YK12-05 cruise by R/V Yokosuka (Japan Agency for Marine-Earth Science and Technology, JAMSTEC). DIC concentration of plume samples collected by ANEMONE sampler were analyzed just after submersible retrieve, and nutrients, manganese, density, and total cell counts determination were conducted onshore analysis. Based on these results, we describe the spatial distribution of DIC and carbonate system on Iheya North hydrothermal field (interstitial water, hydrothermal fluid, and hydrothermal plume).

  10. Permeability of intact and fractured rocks in Krafla geothermal reservoir, Iceland

    NASA Astrophysics Data System (ADS)

    Eggertsson, Gudjon; Lavallée, Yan; Markusson, Sigurdur

    2016-04-01

    The magmatic-hydrothermal system at Krafla Volcano, North-East Iceland, has been the source of an important geothermal fluids, exploited by Landsvirkjun National Power since 1977 to generate electricity (~60 MW). In the last decade, the energy was extracted from fluids of moderate temperature (200-300°C), but in order to satisfy the demand for sustainable, environmentally-safe energy, Landsvirkjun is aiming to source fluids in the super high-enthalpy hydrothermal system (400°-600°C and <220 bar). In relation to this, IDDP-1 was drilled in 2009. Drilling was terminated at a depth of 2100m when the drill string penetrated rhyolite magma. The rock around this rhyolite magma body shows great potential for production, as its temperatures are very high and it is located at shallow depth. Here, we present the results of mechanical and permeability tests carried out on the main lithologies forming the geothermal reservoir rock. During a field survey in fall 2015, and through information gathered from previous drilling exercises, five main rock types were identified and sampled to carry out this study: that is, basalts (10% to 60% porosity), hyaloclastites (35% to 45% porosity), obsidians (0,25% to 5% porosity), ignimbrites (13% to 18% porosity), and intrusive felsites and microgabbros (10% to 16% porosity). The only rock type not found in outcrops on the surface is the felsite and microgabbros which are thought to be directly above the rhyolite magma (~80m thick). The reason they can be found on the surface is that during the Mývatns-fires, an explosion creating the Víti crater and scattered these rocks around the area. For all these lithologies, the porosity was determined using helium pycnometry. On-going permeability measurements are made using a classic hydrostatic cell. To simulate the stress conditions extant in the hydrothermal field, we performed permeability measurements at a range of confining pressure (1 to 100 MPa), using a pore pressure differential of 0.5 - 1.5 MPa (at an average pore pressure of 1.25 MPa). We present the results of permeability-porosity relationships for each rock as a function of confining pressure and discuss the permeability of the fluid reservoir as a function of effective pressure (i.e., = confining pressure - pore pressure) to constrain fluid flow during different pressurisation events. Complementary Brazilian tests were also performed to induce a fracture in the samples and the permeability of these fractured rocks will be measured to describe the role of macrofractures in controlling fluid flow. Permeability measurements at high temperature (up to ~500 C) will be performed on selected rocks. The aim of these experiments will be to discover the relative role of the various lithologies on the permeability of the reservoir, which will inform us how to improve the geothermal productivity of the proposed deep well through thermo-mechanical stimulations.

  11. New mud gas monitoring system aboard D/V Chikyu

    NASA Astrophysics Data System (ADS)

    Kubo, Yusuke; Inagaki, Fumio; Eguchi, Nobuhisa; Igarashi, Chiaki

    2013-04-01

    Mud gas logging has been commonly used in oil industry and continental scientific drilling to detect mainly hydrocarbon gases from the reservoir formation. Quick analysis of the gas provides almost real-time information which is critical to evaluate the formation and, in particular, safety of drilling operation. Furthermore, mud gas monitoring complements the lack of core or fluid samples particularly in a deep hole, and strengthen interpretations of geophysical logs. In scientific ocean drilling, on the other hand, mud gas monitoring was unavailable in riserless drilling through the history of DSDP and ODP, until riser drilling was first carried out in 2009 by D/V Chikyu. In IODP Exp 319, GFZ installed the same system with that used in continental drilling aboard Chikyu. High methane concentrations are clearly correlated with increased wood content in the cuttings. The system installation was, however, temporary and gas separator was moved during the expedition for a technical reason. In 2011, new mud gas monitoring system was installed aboard Chikyu and was used for the first time in Exp 337. The gas separator was placed on a newly branched bypass mud flow line, and the gas sample was sent to analysis unit equipped with methane carbon isotope analyzer in addition to mass spectrometer and gas chromatograph. The data from the analytical instruments is converted to depth profiles by calculating the lag effects due to mud circulation. Exp 337 was carried out from July 26 to Sep 30, 2011, at offshore Shimokita peninsula, northeast Japan, targeting deep sub-seafloor biosphere in and around coal bed. Data from the hole C0020A, which was drilled to 2466 mbsf with riser drilling, provided insights into bio-geochemical process through the depth of the hole. In this presentation, we show the design of Chikyu's new mud gas monitoring system, with preliminary data from Exp 337.

  12. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores

    USGS Publications Warehouse

    Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.

    1990-01-01

    Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition during transient boiling or rock-water exchange (fracturing) events. ?? 1990.

  13. The installation of a sub sea floor observatory using the sea floor drill rig MeBo

    NASA Astrophysics Data System (ADS)

    Wefer, G.; Freudenthal, T.; Kopf, A.

    2012-04-01

    Sea floor drill rigs that can be deployed from standard research vessels are bridging the gap between dedicated drill ships that are used for deep drillings in the range of several hundred meters below sea floor and conventional sampling tools like gravity corers, piston corer or dredges that only scratch the surface of the sea floor. A major advantage of such robotic drill rigs is that the drilling action is conducted from a stable platform at the sea bed independent of any ship movements due to waves, wind or currents. At the MARUM Center for Marine Environmental Sciences at the University of Bremen we developed the sea bed drill rig MeBo that can be deployed from standard research vessels. The drill rig is deployed on the sea floor and controlled from the vessel. Drilling tools for coring the sea floor down to 70 m can be stored on two magazines on the rig. A steel-armoured umbilical is used for lowering the rig to the sea bed in water depths up to 2000 m in the present system configuration. It was successfully operated on ten expeditions since 2005 and drilled more than 1000 m in different types of geology including hemipelagic mud, glacial till as well as sedimentary and crystalline rocks. MeBo boreholes be equipped with sensors and used for long term monitoring are planned. Depending on the scientific demands, a MeBoCORK monitoring system will allow in situ measurements of eg. temperature and pressure. The "MeBoCORK" will be equipped with data loggers and data transmission interface for reading out the collected data from the vessel. By additional payload installation on the MeBoCORK with an ROV it will be possible to increase the energy capacity as well as to conduct fluid sampling in the bore hole for geochemical analyses. It is planned to install a prototype of this additional payload with the MARUM ROV QUEST4000M during the following R/V SONNE cruise in July 2012.

  14. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  15. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  16. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  17. System and method for damping vibration in a drill string using a magnetorheological damper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wassell, Mark Ellsworth; Burgess, Daniel E; Barbely, Jason R

    2012-01-03

    A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil for inducing a magnetic field thatmore » alters the resistance of the magnetorheological fluid to flow between the first and second chambers, thereby increasing the damping provided by the valve. A remnant magnetic field is induced in one or more components of the magnetorheological fluid valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils during operation except temporarily when changing the amount of damping required, thereby eliminating the need for a turbine alternator power the magnetorheological fluid valve. A demagnetization cycle can be used to reduce the remnant magnetic field when necessary.« less

  18. Curiosity Rover's CheMin Instrument Investigates Mineralogy of Gale Crater and Implications for Diagenesis

    NASA Astrophysics Data System (ADS)

    Fendrich, Kim; Rampe, Elizabeth; Vaniman, David; Bish, David; Blake, David; Treiman, Allan; Ming, Doug; Morris, Richard; Bristow, Tom; Cavanagh, Patrick; Downs, Robert; Morrison, Shaunna; Chipera, Steve; Achilles, Cherie; Farmer, Jack; Sarrazin, Philippe; Crisp, Joy; Morookian, John Michael; Yen, Albert; Gellert, Ralf

    2015-04-01

    The Mars Science Laboratory rover Curiosity employs a suite of instruments to investigate past or present habitability of Mars, as observed at Gale crater and particularly in the lower strata of the crater's central mound, informally named Mount Sharp. The X-ray diffractometer on board, CheMin, is used to assess the quantitative mineralogy of scooped soil samples and drilled rock powders. Methods of modeling diffraction peak positions and intensities to evaluate the abundances of minerals include Rietveld refinement and FULLPAT (full-pattern fitting). Each of the samples analyzed by CheMin contains X-ray amorphous material. The amorphous component chemistry is resolved by subtracting the chemistry of the crystalline composition, as determined by X-ray diffraction data, from the bulk sample chemistry, as determined by the Alpha Particle X-ray Spectrometer (APXS). Diffraction results have been obtained on five samples thus far to include Rocknest, John Klein, Cumberland, Windjana and Confidence Hills. Soil samples collected at Rocknest, an aeolian bedform in Gale crater, were the first to be analyzed in situ by CheMin. The Rocknest mineral assemblage is basaltic (plagioclase, Fe-forsterite, augite, pigeonite) and contains amorphous material that is compositionally similar to palagonitic volcanic soils found on Earth, with the addition of sulfur and chlorine. The four drill analyses are characteristic of deposition in a variety of fluvio-lacustrine environments and exhibit evidence of low-temperature diagenesis. Both John Klein and Cumberland are part of the Sheepbed mudstone at Yellowknife Bay, where the first drilled samples were acquired as well as the first evidence of a habitable environment on Mars. Drilled three meters apart from each other, the two samples reveal basaltic minerals similar to those at Rocknest, as well as phyllosilicates, Fe-oxides/hydroxides, Ca-sulfates, Fe-sulfides, and amorphous materials. The nature and hydration of interlayer cations within the phyllosilicates differs between the two samples, which implies localized diagenesis. The Windjana sandstone at the Kimberley location differs from the Sheepbed mudstone in that it contains more pyroxene and magnetite and abundant K-feldspar, as well as phyllosilicates and amorphous material. These phases may represent potassium-rich basaltic provenance or aqueous alteration by potassium-bearing fluids. While the Confidence Hills sample is still in the preliminary stages of evaluation, major crystalline phases observed in this fine-grained sedimentary rock include plagioclase, pyroxene, K-feldspar and phyllosilicates; hematite, rare in all previous samples, is notably abundant and jarosite is present. The findings suggest localized mobilization of iron-bearing fluids and acidic conditions. The more oxidized assemblage of Confidence Hills marks the transition into the lower strata of Mount Sharp.

  19. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    NASA Astrophysics Data System (ADS)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical algorithm, and the validation and application results are outlined in this work.

  20. Application of MRIL-WD (Magnetic Resonance Imaging Logging While Drilling) for irreducible water saturation, total reservoir, free-fluid, bound-fluid porosity measurements and its value for the petrophysical analysis of RT/RM data from the Shah Deniz well

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    Sperry-Sun (Sperry Drilling Services) is the leader in MWD/LWD reliability, has developed the industry's first LWD NMR/MRIL-WD (nuclear magnetic resonance) tool. The MRIL-WD (magnetic resonance imaging logging-while-drilling) service directly measures the T1 component of hydrogen in subsurface rock units while drilling to obtain total reservoir porosity and to dissect the observed total porosity into its respective components of free fluid and bound fluid porosity. These T1 data are used to secure accurate total, free-fluid, capillary-bound water, and clay-bound water porosity of the reservoir sections which can be drilled in the several Runs. Over the last decade, results from Magnetic Resonance Imaging logs (NMR) have added significant value to petrophysical analysis and understanding by providing total, free-fluid and bound-fluid porosities, combined with fluid typing capabilities. With MRIL-WD very valuable Real-Time or Recorded Memory data/information is now available during or shortly after the drilling operation (formation properties measurement can be taken right after a drill bit penetration), while trip in and trip out as well. A key point in utilizing MRIL in an LWD environment is motion-tolerant measurements. Recent MRIL-WD logging runs from the Shah Deniz wells located in the Khazarian-Caspian Sea of the Azerbaijan Republic helped to delineate and assess hydrocarbon bearing zones. Acquired results demonstrate how MRIL data can be acquired while-drilling and provide reliable/high quality measurements. Magnetic Resonance Imaging logs at some developments wells have become a cornerstone in formation evaluation and petrophysical understanding. By providing total, free-fluid, and bound-fluid porosities together with fluid typing, MRIL results have significantly added to the assessment of reservoirs. In order to reduce NPT (Non-Productive Time) and save the rig operations time, there is always the desire to obtain logging results as soon as possible, preferably while the drilling of the brand new wells (logging-while-drilling, LWD). The MRIL-WD Tool can accomplish any tasks reliably and in a timely manner thus saving drilling time and reducing the overall risk for the well. Control of water production and identification of pay zones with high irreducible water saturation are also very important for formation evaluation and petrophysical analysis in oil fields located in the Azerbaijan Republic and also other fields around the world. Sometimes above-mentioned problems can cause delay in completion decisions which will create additional expenses for field management. In many wells, breakthroughs in reservoir characterization have been achieved in directly determining hydrocarbon volumes, net permeability thickness, and hydrocarbon type, thus circumventing the problems associated with obtaining wireline data and the considerable amount of rig time required (so MRIL-WD can considerably reduce the NPT). Some reservoir zones with relatively low water saturation, which calculated from the other conventional logs, can produce with relatively high percentage of water cut, primarily because much of the water is movable. However, other zones with high calculated water saturation produce water free hydrocarbons. The difficulty in predicting water production can be related with the producing from the complex lithology, which can contain low-permeability, medium- to fine-grained shaly sands. Where grains are small, the formations have high surface to volume ratios that result in high irreducible water saturation and due to this we can see low resistivity values. As a result the use of resistivity logs as pay indicator, sometimes can cause low resistivity pay zones might be overlooked and consequently net field pay could be underestimated. In the last few years, nuclear magnetic resonance logs have shown great promise in solving problems of formation evaluation that could not be directly resolved with conventional logs. The capability of MRIL-WD can help many engineers to differentiate between the immovable and movable water in oil reservoirs in many fields. Sometimes MRIL-WD have also been capable of providing better formation permeability than conventional logs, a feature which can save time and expense in well-completion decisions. The RT & RM bound fluid and total porosity measurements can provide a tremendous new insight into the formation evaluation of shaly sands and low resistivity pays. Unlike traditional porosity devices, which are affected by rock matrix changes, the MRIL-WD tool can be used in complex or mixed lithology sequences and provide measurements of porosity that are lithology independent.

  1. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin

    USGS Publications Warehouse

    Kim, Ji-Hoon; Torres, Marta E.; Haley, Brian A.; Kastner, Miriam; Pohlman, John W.; Riedel, Michael; Lee, Young-Joo

    2012-01-01

    Analytical challenges in obtaining high quality measurements of rare earth elements (REEs) from small pore fluid volumes have limited the application of REEs as deep fluid geochemical tracers. Using a recently developed analytical technique, we analyzed REEs from pore fluids collected from Sites U1325 and U1329, drilled on the northern Cascadia margin during the Integrated Ocean Drilling Program (IODP) Expedition 311, to investigate the REE behavior during diagenesis and their utility as tracers of deep fluid migration. These sites were selected because they represent contrasting settings on an accretionary margin: a ponded basin at the toe of the margin, and the landward Tofino Basin near the shelf's edge. REE concentrations of pore fluid in the methanogenic zone at Sites U1325 and U1329 correlate positively with concentrations of dissolved organic carbon (DOC) and alkalinity. Fractionations across the REE series are driven by preferential complexation of the heavy REEs. Simultaneous enrichment of diagenetic indicators (DOC and alkalinity) and of REEs (in particular the heavy elements Ho to Lu), suggests that the heavy REEs are released during particulate organic carbon (POC) degradation and are subsequently chelated by DOC. REE concentrations are greater at Site U1325, a site where shorter residence times of POC in sulfate-bearing redox zones may enhance REE burial efficiency within sulfidic and methanogenic sediment zones where REE release ensues. Cross-plots of La concentrations versus Cl, Li and Sr delineate a distinct field for the deep fluids (z > 75 mbsf) at Site U1329, and indicate the presence of a fluid not observed at the other sites drilled on the Cascadia margin. Changes in REE patterns, the presence of a positive Eu anomaly, and other available geochemical data for this site suggest a complex hydrology and possible interaction with the igneous Crescent Terrane, located east of the drilled transect.

  2. 40 CFR 435.41 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., safety showers, eye-wash stations, hand-wash stations, fish cleaning stations, and galleys located within... formation oil carried out from the wellbore with the drilling fluid. (2) Dry drill cuttings means the...

  3. The Research of New Environment-Friendly Oil-based Drilling Fluid Base Oil

    NASA Astrophysics Data System (ADS)

    Sui, Dianjie; Sun, Yuxue; Zhao, Jingyuan; Zhao, Fulei; Zhu, Xiuyu; Xu, Jianjun

    2018-01-01

    In this paper, the heavy hydrocarbon of Daqing is used, and the desulfurization and de-aromatization experiments and refining process are carried out, A base oil suitable for oil-based drilling fluid was developed, and the performance of base oil was evaluated, we can know the aromatics content of oil base is low, less toxic, less pollution and it can meet the requirement of environmental protection.

  4. Drilling fluids and thinners therefor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, G.M. III

    1986-10-21

    This patent describes an aqueous drilling fluid comprising water, finely divided solids and a first agent and a second agent. The first agent comprises a sulfoalkylated tannin containing no complexing heavy metal. The second agent comprises at least one at least partly water-soluble metal compound comprising tin. The weight ratio of the first agent to the second agent is in the range from about 100;1 to about 1:1.

  5. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  6. 30 CFR 250.430 - When must I install a diverter system?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling... diverter system before you drill a conductor or surface hole. The diverter system consists of a diverter... the diverter system to ensure proper diversion of gases, water, drilling fluid, and other materials...

  7. 30 CFR 250.430 - When must I install a diverter system?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling... diverter system before you drill a conductor or surface hole. The diverter system consists of a diverter... the diverter system to ensure proper diversion of gases, water, drilling fluid, and other materials...

  8. 30 CFR 250.430 - When must I install a diverter system?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling... diverter system before you drill a conductor or surface hole. The diverter system consists of a diverter... the diverter system to ensure proper diversion of gases, water, drilling fluid, and other materials...

  9. Space Age Archaeology

    NASA Technical Reports Server (NTRS)

    1988-01-01

    In 1985, the Egyptian Antiques Organization (EAO) asked Dr. Farouk El-Baz whether it would be possible to examine and sample the second chamber of the subterranean chamber carved in the bedrock near the Great Pyramid of Khufu in Giza, Egypt, without admitting people, air or contaminants. He felt it could by applying space technology to the task. The initial contact led to a two year project which he organized and headed a team, co-sponsored by EAO and the National Geographic Society (NGS), to apply space technology in an effort to examine and photograph the Giza Chamber. The NGS photographic division modified and tested a remotely controlled video system and a 35-millimeter camera, and developed a lighting system that would not elevate the chamber temperature. Still needed was a drill to cut through the limestone cap without using lubricants or cooling fluids that might contaminate the chamber, and an airlock that would admit the drill shaft and photo equipment but not the air. Bob Moores from Black & Decker Corporation tailored a new drill to the Giza exploration. The drill bit broke through into the chamber at a depth of 63 inches, a stainless steel tube was lowered through the airlock to take samples of the chamber air at several levels. The video camera sent images from the chamber revealing that there was a disassembled royal boat that had been there.

  10. Constraints from fluid inclusions on sulfide precipitation mechanisms and ore fluid migration in the Viburnum Trend lead district, Missouri

    USGS Publications Warehouse

    Rowan, E.L.; Leach, D.L.

    1989-01-01

    Homogenization temperatures and freezing point depressions were determined for fluid inclusions in Bonneterre Dolomite-hosted dolomite cements in mine samples, as well as drill core from up to 13 km outside of the district. A well-defined cathodoluminescent zonation distinguishes dolomite growth zones as older or younger than main-stage mineralization. Homogenization temperatures and salinities in samples from mines are not systematically different from those of samples outside of the district. The absence of a significant, recognizable decrease in temperature either vertically within the section or east-west across the district, coupled with the minor amount of silica in the district, argues against cooling as a primary cause of sulfide precipitation. In a reduced sulfur mineralization model with Pb carried as chloride complexes, dilution is also a possible sulfide precipitation mechanism. The difference in Pb solubility in the extremes of the chloride concentration range, 3.9 vs. 5.9 molal, reaches 1 ppm only for pH values below approximately 4.5. The distribution of warm inclusions beyond the Viburnum Trend district implies that fluid migration was regional in scale. Elevated temperatures observed in fluid inclusions at shallow stratigraphic depths are consistent with a gravity flow hydrologic system characterized by rapid flow rates and the capacity for advective heat transport. -from Authors

  11. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  12. Effect of a water-based drilling waste on receiving soil properties and plants growth.

    PubMed

    Saint-Fort, Roger; Ashtani, Sahar

    2014-01-01

    This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth.

  13. Bedrock Geology of the DFDP-2 Drill-Site

    NASA Astrophysics Data System (ADS)

    Toy, V.; Sutherland, R.; Townend, J.

    2015-12-01

    Bedrock was encountered in DFDP-2B at drilled depths (MD) of 238.50-893.18 m (vertical depths of 238.40-818.00 m). Continuous sampling of cuttings revealed the bedrock is composed predominantly of ductilely sheared mylonite-series lithologies exhumed from the roots of the Alpine Fault zone. The protolith is interpreted to be amphibolite facies metasediments classified as part of the Aspiring Subdivision of the Torlesse Supergroup. Onsite description of whole cuttings and thin sections made within a few hours of sample recovery allowed identification of progressive structural changes. Fabrics were schistose in the upper part of the hole, but at greater depths we observed increasing indications that the rocks had been subjected to simple shear deformation. These macro-and micro-structural features are consistent with those that typify the Alpine Fault mylonite sequence previously described, and were used as input to drilling decisions. The structural features found to be the most useful indicators of ductile simple shear strain accommodated by the recovered rocks were the occurrence of shear bands; changes in mean quartz grain size; changes in maximum mica grain size; and redistribution of or changes in microstructural setting of accessory phases (e.g. graphite). The quartz:mica ratio based on mass was also determined but the extent to which this reflects true lithologic variations is unclear, as washing and winnowing of the samples (both by circulating drill fluids and during the sample collection process) probably modified bulk mineralogy in different particle size domains. Nevertheless, the quartz:mica dataset suggests a dramatic change in mineralogy at 730 m MD (vertical depth of 695 m). This coincides with a pronounced step in the temperature gradient, possibly related to large changes in hydrogeology.

  14. Oil and Gas Extraction Sector (NAICS 211)

    EPA Pesticide Factsheets

    Environmental regulatory information for oil and gas extraction sectors, including oil and natural gas drilling. Includes information about NESHAPs for RICE and stationary combustion engines, and effluent guidelines for synthetic-based drilling fluids

  15. Chemical Effect on Wellbore Instability of Nahr Umr Shale

    PubMed Central

    Nie, Zhen

    2013-01-01

    Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable. PMID:24282391

  16. Chemical effect on wellbore instability of Nahr Umr Shale.

    PubMed

    Yu, Baohua; Yan, Chuanliang; Nie, Zhen

    2013-01-01

    Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable.

  17. CFD modelling of liquid-solid transport in the horizontal eccentric annuli

    NASA Astrophysics Data System (ADS)

    Sayindla, Sneha; Challabotla, Niranjan Reddy

    2017-11-01

    In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, J.R.; Duke, T.W.; Harwell, M.A.

    Potential effects of oil drilling-fluid discharges upon Thalassia seagrass ecosystems were examined to provide general insights and raise ecotoxicological issues relevant to problems of addressing a priori, ecolgical effects of anthropogenic actions. Microcosm experiments have demonstrated effects upon both autotrophic and heterotrophic species, as well as the processes of primary productivity and decomposition. Significant ecological changes may result from disturbance effects related to the physical presence of higher particle loads, in addition to effects resulting from toxic features of drilling fluids.

  19. An Experimental Investigation of the Risk of Triggering Geological Disasters by Injection under Shear Stress

    PubMed Central

    Liu, Yixin; Xu, Jiang; Peng, Shoujian

    2016-01-01

    Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered. PMID:27929142

  20. An Experimental Investigation of the Risk of Triggering Geological Disasters by Injection under Shear Stress.

    PubMed

    Liu, Yixin; Xu, Jiang; Peng, Shoujian

    2016-12-08

    Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO 2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered.

  1. Quantification of subsurface pore pressure through IODP drilling

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; Flemings, P. B.

    2010-12-01

    It is critical to understand the magnitude and distribution of subsurface pore fluid pressure: it controls effective stress and thus mechanical strength, slope stability, and sediment compaction. Elevated pore pressures also drive fluid flows that serve as agents of mass, solute, and heat fluxes. The Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have provided important avenues to quantify pore pressure in a range of geologic and tectonic settings. These approaches include 1) analysis of continuous downhole logs and shipboard physical properties data to infer compaction state and in situ pressure and stress, 2) laboratory consolidation testing of core samples collected by drilling, 3) direct downhole measurements using pore pressure probes, 3) pore pressure and stress measurements using downhole tools that can be deployed in wide diameter pipe recently acquired for riser drilling, and 4) long-term monitoring of formation pore pressure in sealed boreholes within hydraulically isolated intervals. Here, we summarize key advances in quantification of subsurface pore pressure rooted in scientific drilling, highlighting with examples from subduction zones, the Gulf of Mexico, and the New Jersey continental shelf. At the Nankai, Costa Rican, and Barbados subduction zones, consolidation testing of cores samples, combined with analysis of physical properties data, indicates that even within a few km landward of the trench, pore pressures in and below plate boundary décollement zones reach a significant fraction of the lithostatic load (λ*=0.25-0.91). These results document a viable and quantifiable mechanism to explain the mechanical weakness of subduction décollements, and are corroborated by a small number of direct measurements in sealed boreholes and by inferences from seismic reflection data. Recent downhole measurements conducted during riser drilling using the modular formation dynamics tester wireline tool (MDT) in a forearc basin ~50 km from the trench document hydrostatic pore pressures in the basin fill down to ~1500 mbsf, and illustrate a promising technique for obtaining pore pressure and stress magnitude. In the Gulf of Mexico, we used pore pressure penetrometers to measure severe overpressures (λ*=0.7); a comprehensive program of consolidation testing on recovered core samples confirms elevated pore pressures due to rapid sedimentation, reflecting disequilibrium compaction. Similarly, along the New Jersey continental shelf, analysis of porosity data from downhole logs and augmented by geotechnical testing of cores demonstrates elevated pore pressures in the shallow subsurface. In both offshore New Jersey and the Gulf of Mexico, integration of direct measurements, geotechnical testing, and hydrodynamic modeling illustrate how flow is focused along permeable layers to reduce effective stress and drive submarine landslides. In sum, pore pressure observations made through the ODP and IODP provide insight into how pore pressure controls the large-scale form of passive and active continental margins, how submarine landslides form, and provide strategies for engineering deep boreholes.

  2. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Qing, Yan; Wu, Yiqiang

    2015-03-04

    Rheological and filtration characteristics of drilling fluids are considered as two critical aspects to ensure the success of a drilling operation. This research demonstrates the effectiveness of cellulose nanoparticles (CNPs), including microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) in enhancing the rheological and filtration performances of bentonite (BT) water-based drilling fluids (WDFs). CNCs were isolated from MFC through sulfuric acid hydrolysis. In comparison with MFC, the resultant CNCs had much smaller dimensions, more negative surface charge, higher stability in aqueous solutions, lower viscosity, and less evident shear thinning behavior. These differences resulted in the distinctive microstructures between MFC/BT- and CNC/BT-WDFs. A typical "core-shell" structure was created in CNC/BT-WDFs due to the strong surface interactions among BT layers, CNCs, and immobilized water molecules. However, a similar structure was not formed in MFC/BT-WDFs. As a result, CNC/BT-WDFs had superior rheological properties, higher temperature stability, less fluid loss volume, and thinner filter cakes than BT and MFC/BT-WDFs. Moreover, the presence of polyanionic cellulose (PAC) further improved the rheological and filtration performances of CNC/BT-WDFs, suggesting a synergistic effect between PAC and CNCs.

  3. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland

    PubMed Central

    Miettinen, Hanna; Kietäväinen, Riikka; Sohlberg, Elina; Numminen, Mikko; Ahonen, Lasse; Itävaara, Merja

    2015-01-01

    Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 104 cells mL−1) in water. The water for nucleic acid analysis went through high decompression (60–130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill holes. No dramatic differences in gas compositions were observed between different gas sampling methods tested. For simple characterization of gas composition the most convenient way to collect samples is from free flowing fluid. However, compared to a pressurized method a relative decrease in the least soluble gases may appear. PMID:26579109

  4. 40 CFR 147.2902 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aquifer. USDW—underground source of drinking water. Well—a bored, drilled, or driven shaft, or a dug hole... fluids through a bored, drilled, or driven well; or through a dug well, where the depth of the dug well...

  5. 40 CFR 147.2902 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aquifer. USDW—underground source of drinking water. Well—a bored, drilled, or driven shaft, or a dug hole... fluids through a bored, drilled, or driven well; or through a dug well, where the depth of the dug well...

  6. 40 CFR 147.2902 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aquifer. USDW—underground source of drinking water. Well—a bored, drilled, or driven shaft, or a dug hole... fluids through a bored, drilled, or driven well; or through a dug well, where the depth of the dug well...

  7. 40 CFR 147.2902 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aquifer. USDW—underground source of drinking water. Well—a bored, drilled, or driven shaft, or a dug hole... fluids through a bored, drilled, or driven well; or through a dug well, where the depth of the dug well...

  8. Advanced Geothermal Turbodrill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of largemore » diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.« less

  9. The Iceland Deep Drilling Project (IDDP): (I) Drilling for Supercritical Hydrothermal Fluids is Underway

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2008-12-01

    The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power production should follow in 2010. During 2009-19 two new wells, ~4 km deep, will be drilled at the Hengill and the Reykjanes geothermal fields in southern Iceland, and subsequently deepened into the supercritical zone. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, where the Mid-Atlantic Ridge comes on land. Processes at depth at Reykjanes should be more similar to those responsible for black smokers on oceanic rift systems. Because of the considerable international scientific opportunities afforded by the IDDP, the US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. Research is underway on samples from existing wells in the targeted geothermal fields, and on active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  10. Test drilling in basalts, Lalamilo area, South Kohala District, Hawaii

    USGS Publications Warehouse

    Teasdale, Warren E.

    1980-01-01

    Test drilling has determined that a downhole-percussion airhammer can be used effectively to drill basalts in Hawaii. When used in conjunction with a foam-type drilling fluid, the hammer-bit penetration rate was rapid. Continuous drill cuttings from the materials penetrated were obtained throughout the borehole except from extremely fractured or weathered basalt zones where circulation was lost or limited. Cementing of these zones as soon as encountered reduced problems of stuck tools, washouts, and loss of drill-cuttings. Supplies and logistics on the Hawaiian Islands, always a major concern, require that all anticipated drilling supplies, spare rig and tool parts, drilling muds and additives, foam, and miscellaneous hardware be on hand before starting to drill. If not, the resulting rig downtime is costly in both time and money. (USGS)

  11. Hydrologic and water-chemistry data from the Cretaceous-aquifers test well (BFT-2055), Beaufort County, South Carolina

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.

    1998-01-01

    Test well BFT-2055 was drilled through the entire thickness of Coastal Plain sediments beneath central Hilton Head Island, South Carolina, and terminated in bedrock at a depth of 3833 feet. The well was drilled to evaluate the hydraulic properties of the Cretaceous formations beneath Hilton Head Island as a potential source of supplemental water to supplies currently withdrawn from the Upper Floridan aquifer. The intervals tested include sediments of the Cape Fear and Middendorf Formations. Results from aquifer tests indicate that the transmissivity of the formations screened ranges from 1300 to 3000 feet squared per day and an average hydraulic conductivity of about 15 feet per day. Formation-fluid pressure tests indicate that the potential exists for upward ground-water flow from higher fluid pressures in the deeper Cape Fear and Middendorf Formations to lower fluid pressures in the Black Creek Formation and shallower units. A flowmeter test indicated that greater than 75 percent of the natural, unpumped flow in the well is from the screened intervals no deeper than 3100 feet. Water-chemistry analyses indicate that the water sampled from the Middendorf and Cape Fear has about 1450 milligrams per liter dissolved solids, 310 to 1000 milligrams per liter sodium, and 144 to 1600 milligrams per liter chloride. Because these chloride concentrations would render water pumped from these aquifers as nonpotable, it is unlikely that these aquifers will be used as a supplemental source of water for island residents without some form of pretreatment. Similar chloride concentrations are present in some wells in the Upper Floridan aquifer adjacent to Port Royal Sound, and these chloride concentrations were the primary reason for drilling the test well in the Cretaceous formations as a possible source of more potable water.

  12. Application of RHIZON samplers to obtain high-resolution pore-fluid records during geochemical investigations of gas hydrate systems

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, M; Waite, William F.; Rose, K.; Lapham, L.

    2008-01-01

    Obtaining accurate, high-resolution profiles of pore fluid constituents is critical for characterizing the subsurface geochemistry of hydrate-bearing sediments. Tightly-constrained downcore profiles provide clues about fluid sources, fluid flow, and the milieu of chemical and diagenetic reactions, all of which are used to interpret where and why gas and gas hydrate occur in the natural environment. Because a profile’s quality is only as good as the samples from which the data are obtained, a great deal of effort has been exerted to develop extraction systems suited to various sedimentary regimes. Pore water from deeply buried sediment recovered by scientific drilling is typically squeezed with a hydraulic press (Manheim, 1966); whereas pore water in near-surface, less consolidated sediment is more efficiently pushed from the sediment using compressed gas (Reeburgh, 1967) or centrifugation.

  13. Development of a Drilling Fluid Drive Downhole Tractor in Oil Field

    NASA Astrophysics Data System (ADS)

    Fang, Delei; Shang, Jianzhong; Liu, Yiying; Wu, Wei; Luo, Zirong

    2018-01-01

    This paper proposes a drilling fluid drive downhole tractor, which has the advantages of compact structure, large traction, fast speed and high reliability. The overall mechanical structure of the tractor is introduced, the concrete structures including supporting structure and cushion mechanism are designed. And its all-hydraulic drive continuous propulsion principle is analyzed. Finally the simulation analysis of the tractor operation is carried out to prove that the traction motion scheme is feasible.

  14. Waste minimization in horizontal boring operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, M.

    Horizontal boring has become a highly useful, and competitive, practice. Its uses include river crossings, tunneling under existing roads and buildings, and increasing the effectiveness of groundwater remediation programs. As this method becomes more popular, more contractors enter the market place and compete for each project. So, it is important to provide quality service and reduce cost to maintain market share and profitability. This article is about reducing project cost with sound drilling fluid practices. Recirculation of drilling fluid provides many benefits. It reduces the amount of fluid required for a project, reduces waste volume, and improves boring operations. Improvedmore » boring rate, lower torque and drag, greater hole stability, and increased equipment life are all results of proper fluid management.« less

  15. Evolution of water chemistry during Marcellus Shale gas development: A case study in West Virginia.

    PubMed

    Ziemkiewicz, Paul F; Thomas He, Y

    2015-09-01

    Hydraulic fracturing (HF) has been used with horizontal drilling to extract gas and natural gas liquids from source rock such as the Marcellus Shale in the Appalachian Basin. Horizontal drilling and HF generates large volumes of waste water known as flowback. While inorganic ion chemistry has been well characterized, and the general increase in concentration through the flowback is widely recognized, the literature contains little information relative to organic compounds and radionuclides. This study examined the chemical evolution of liquid process and waste streams (including makeup water, HF fluids, and flowback) in four Marcellus Shale gas well sites in north central West Virginia. Concentrations of organic and inorganic constituents and radioactive isotopes were measured to determine changes in waste water chemistry during shale gas development. We found that additives used in fracturing fluid may contribute to some of the constituents (e.g., Fe) found in flowback, but they appear to play a minor role. Time sequence samples collected during flowback indicated increasing concentrations of organic, inorganic and radioactive constituents. Nearly all constituents were found in much higher concentrations in flowback water than in injected HF fluids suggesting that the bulk of constituents originate in the Marcellus Shale formation rather than in the formulation of the injected HF fluids. Liquid wastes such as flowback and produced water, are largely recycled for subsequent fracturing operations. These practices limit environmental exposure to flowback. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of drilling fluids on soils and plants: I. Individual fluid components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.W.; Honarvar, S.; Hunsaker, B.

    1980-01-01

    The effects of 31 drilling fluid (drilling mud) components on the growth of green beans (Phaseolus vulgaris L., Tendergreen) and sweet corn (Zea may var. saccharata (Sturtev.) Bailey, Northrup King 199) were evaluated in greenhouse studies. Plants grew well in fertile Dagor silt loam soil (Cumulic Haploxeroll) when the soil was mixed with most soil-component mixtures at disposal proportions normally expected. Vinyl acetate and maleic acid polymer (VAMA) addition caused significantly increased growth at the 95% confidence level. No statistically significant depression of plant growth occurred at normal rates with asbestos, asphalt, barite, bentonite, calcium lignosulfonate, sodium polyacrylate, a modifiedmore » tannin, ethoxylated nonylphenol, a filming amine, gilsonite, a Xanthan gum, paraformaldehyde, a pipe dope, hydrolized polyacrylamide, sodium acid pyrophosphate, sodium carboxymethyl cellulose, sodium hydroxide added as pellets, and a sulfonated tall oil. Statistically significant reductions in plant yields (at the 95% confidence level) occurred at normal disposal rates with a long-chained aliphatic alcohol, sodium dichromate, diesel oil, guar gum, an iron chromelignosulfonate, lignite, a modified asphalt, a plant fibersynthetic fiber mixture, lignite, a nonfermenting starch, potassium chloride, pregelatinized starch, and sulfated triglyceride. Thirteen drilling fluid components added individually to a fluid base (water, bentonite, and barite) and then to soil were also tested for their effect on plant growth. Only the sulfated triglyceride (Torq-Trim) and the long-chain (high molecular weight) alcohol (Drillaid 405) caused no plant growth reductions at either rate added. The modified tannin (Desco) caused minimal reduction in bean growth only when added to soil in excess levels.« less

  17. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.

    2017-12-01

    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work has suggested that the Reykjanes geothermal system has been active since the last glaciation, 10ka. No shallow melt bodies have been detected on the Reykjanes Peninsula suggesting that hydrothermal circulation typical of black smoker systems can be sustained with out a magmatic heat source.

  18. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trexler, D.T.; Flynn, T.; Koenig, B.A.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, andmore » temperature gradient drilling.« less

  19. Application of drilling, coring, and sampling techniques to test holes and wells

    USGS Publications Warehouse

    Shuter, Eugene; Teasdale, Warren E.

    1989-01-01

    The purpose of this manual is to provide ground-water hydrologists with a working knowledge of the techniques of test drilling, auger drilling, coring and sampling, and the related drilling and sampling equipment. For the most part, the techniques discussed deal with drilling, sampling, and completion of test holes in unconsolidated sediments because a hydrologist is interested primarily in shallow-aquifer data in this type of lithology. Successful drilling and coring of these materials usually is difficult, and published research information on the subject is not readily available. The authors emphasize in-situ sampling of unconsolidated sediments to obtain virtually undisturbed samples. Particular attention is given to auger drilling and hydraulic-rotary methods of drilling because these are the principal means of test drilling performed by the U.S. Geological Survey during hydrologic studies. Techniques for sampling areas contaminated by solid or liquid waste are discussed. Basic concepts of well development and a detailed discussion of drilling muds, as related to hole conditioning, also are included in the report. The information contained in this manual is intended to help ground-water hydrologists obtain useful subsurface data and samples from their drilling programs.

  20. Computer Simulation To Assess The Feasibility Of Coring Magma

    NASA Astrophysics Data System (ADS)

    Su, J.; Eichelberger, J. C.

    2017-12-01

    Lava lakes on Kilauea Volcano, Hawaii have been successfully cored many times, often with nearly complete recovery and at temperatures exceeding 1100oC. Water exiting nozzles on the diamond core bit face quenches melt to glass just ahead of the advancing bit. The bit readily cuts a clean annulus and the core, fully quenched lava, passes smoothly into the core barrel. The core remains intact after recovery, even when there are comparable amounts of glass and crystals with different coefficients of thermal expansion. The unique resulting data reveal the rate and sequence of crystal growth in cooling basaltic lava and the continuous liquid line of descent as a function of temperature from basalt to rhyolite. Now that magma bodies, rather than lava pooled at the surface, have been penetrated by geothermal drilling, the question arises as to whether similar coring could be conducted at depth, providing fundamentally new insights into behavior of magma. This situation is considerably more complex because the coring would be conducted at depths exceeding 2 km and drilling fluid pressures of 20 MPa or more. Criteria that must be satisfied include: 1) melt is quenched ahead of the bit and the core itself must be quenched before it enters the barrel; 2) circulating drilling fluid must keep the temperature of the coring assembling cooled to within operational limits; 3) the drilling fluid column must nowhere exceed the local boiling point. A fluid flow simulation was conducted to estimate the process parameters necessary to maintain workable temperatures during the coring operation. SolidWorks Flow Simulation was used to estimate the effect of process parameters on the temperature distribution of the magma immediately surrounding the borehole and of drilling fluid within the bottom-hole assembly (BHA). A solid model of the BHA was created in SolidWorks to capture the flow behavior around the BHA components. Process parameters used in the model include the fluid properties and temperature of magma, coolant flow rate, rotation speed, and rate of penetration (ROP). The modeling results indicate that there are combinations of process parameters that will provide sufficient cooling to enable the desired coring process in magma.

  1. Loaded Transducer Fpr Downhole Drilling Component

    DOEpatents

    Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2005-07-05

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  2. Loaded transducer for downhole drilling components

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  3. Controllable magneto-rheological fluid-based dampers for drilling

    DOEpatents

    Raymond, David W [Edgewood, NM; Elsayed, Mostafa Ahmed [Youngsville, LA

    2006-05-02

    A damping apparatus and method for a drillstring comprising a bit comprising providing to the drillstring a damping mechanism comprising magnetorheological fluid and generating an electromagnetic field affecting the magnetorheological fluid in response to changing ambient conditions encountered by the bit.

  4. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  5. A Compendium of Arctic Environmental Information

    DTIC Science & Technology

    1986-03-01

    warn- ing of possible future ice invasions during petroleum drill - ing operations in open-water conditions. Development of sea ice Several basic...tubes, triple beam balance snow temperature thermistor and bridge ice ttiicl^ness hand auger, electric drill with auger, tape with toggle ice...fluids, 8 quarts daily. Acidify urine by drink- ing cranberry juice, taking Vitamin C, etc. Machines All machinery in the Arctic (engines, drills

  6. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jill S. Buckley; Norman r. Morrow

    2002-06-01

    This first semiannual report covers efforts to select the materials that will be used in this project. Discussions of crude oils, rocks, smooth mineral surfaces, and drilling mud additives are included in this report.

  7. An assessment of the mechanical stability of wells offshore Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, J.P.; Ottesen, S.

    In 1991 lost time due to stuck pipe related drilling problems accounted for approximately 18% of total drilling time in Mobil Producing Nigeria Ultd.`s (MPN) offshore operations. The primary cause of stuck pipe was identified as mechanical wellbore instability. This paper presents an assessment of the mechanical stability of MPN`s wells offshore Nigeria. The objectives of the study were to: (1) determine the magnitude of the in-situ principal stresses and material properties of the troublesome Intra-Biafra and Qua Iboe shale sequences; (2) quantify the drilling fluid densities required to drill mechanically stable wells through these formations; (3) review and recommendmore » well planning and operational parameters which aid in minimizing wellbore stability-related drilling problems. The well-bore stability assessment was carried out with the aid of a 3-dimensional wellbore stability model using field derived data from the study area to corroborate the results. The collection and analysis of drilling data (borehole geometry and density logs, pore pressure, leak-off tests, local geology and other relevant well records) to determine the magnitude of the in-situ principal stresses, together with compressive strength tests on formation cores are discussed. Minimum safe drilling fluid densities to promote wellbore stability as a function of well geometry and depth are presented for the most troublesome shales drilled in the study area. Implementation of the results reduced wellbore stability related problems and associated trouble time to less than 5% in 1992.« less

  8. The Mojave Subsurface Bio-Geochemistry Explorer (MOSBE)

    NASA Technical Reports Server (NTRS)

    Guerrero, J.; Beegle, L.; Abbey, W.; Bhartia, R.; Kounaves, S.; Russell, M.; Towles, D.

    2012-01-01

    The MOSBE Team has developed a terrestrial field campaign to explore two subsurface biological habitats under the Mojave Desert. This field campaign will not only help us understand terrestrial desert biology, but also will develop methodologies and strategies for potential future Mars missions that would seek to explore the Martian subsurface. We have proposed to the ASTEP program to integrate a suite of field demonstrated instruments with a 20 m subsurface drill as a coherent unit, the Mojave Subsurface Bio-geochemistry Explorer. The ATK Space Modular Planetary Drill System (MPDS) requires no drilling fluid, which allows aseptic sampling, can penetrate lithic ground up to 20 meters of depth, and utilizes less than 100 Watts throughout the entire depth. The drill has been developed and demonstrated in field testing to a depth of 10 meters in Arizona, December 2002. In addition to caching a continuous core throughout the drilling depth, it also generates and caches cuttings and fines that are strata-graphically correlated with the core. As a core segment is brought to the surface, it will be analyzed for texture and structure by a color microscopic imager and for relevant chemistry and mineralogy with a UV fluorescence/Raman spectrometer. Organic and soluble ionic species will be identified through two instruments -- a microcapillary electrophoresis, and an ion trap mass spectrometer that have been developed under PIDDP, ASTID and MIDP funding.

  9. Economic and statistical analysis of time limitations for spotting fluids and fishing operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, P.S.; Brinkmann, P.E.; Taneja, P.K.

    1984-05-01

    This paper reviews the statistics of ''Spotting Fluids'' to free stuck drill pipe as well as the economics and statistics of drill string fishing operations. Data were taken from Mobil Oil Exploration and Producing Southeast Inc.'s (MOEPSI) records from 1970-1981. Only those events which occur after a drill string becomes stuck are discussed. The data collected were categorized as Directional Wells and Straight Wells. Bar diagrams are presented to show the Success Ratio vs. Soaking Time for each of the two categories. An analysis was made to identify the elapsed time limit to place the spotting fluid for maximum probabilitymore » of success. Also determined was the statistical minimum soaking time and the maximum soaking time. For determining the time limit for fishing operations, the following criteria were used: 1. The Risked ''Economic Breakeven Analysis'' concept was developed based on the work of Harrison. 2. Statistical Probability of Success based on MOEPSI's records from 1970-1981.« less

  10. Overview of SAFOD Phases 1 and 2: Drilling, Sampling and Measurements in the San Andreas Fault Zone at Seismogenic Depth

    NASA Astrophysics Data System (ADS)

    Zoback, M. D.; Hickman, S.; Ellsworth, W.

    2005-12-01

    In this talk we provide an overview of on-site drilling, sampling and downhole measurement activities associated with the first two Phases of the San Andreas Fault Observatory at Depth. SAFOD is located at the transition between the creeping and locked sections of the fault, 9 km NW of Parkfield, CA. A 2.1 km deep vertical pilot hole was drilled at the site in 2002. The SAFOD main borehole was drilled vertically to a depth of 1.5 km and then deviated at an average angle of 55° to vertical, passing beneath the surface trace of the San Andreas fault, 1.8 km to the NW at a depth of 3.2 km. Repeating microearthquakes on the San Andreas define the main active fault trace at depth, as well as a secondary active fault about 250 m to the SW (i.e., closer to SAFOD). The hole was rotary drilled, comprehensive cuttings were obtained and a real-time analysis of gases in the drilling mud was carried out. Spot cores were obtained at three depths (at casing set points) in the shallow granite and deeper sedimentary rocks penetrated by the hole, augmented by over fifty side-wall cores. Continuous coring of the San Andreas Fault Zone will be carried out in Phase 3 of the project in the summer of 2007. In addition to sampling mud gas, discrete fluid and gas samples were obtained at several depths for geochemical analysis. Real-time geophysical measurements were made while drilling through most of the San Andreas Fault Zone. A suite of "open hole" geophysical measurements were also made over essentially the entire depth of the hole. Construction of the multi-component SAFOD observatory is well underway, with a seismometer and tiltmeter operating at 1 km depth in the pilot hole and a fiber-optic laser strainmeter cemented behind casing in the main hole. A seismometer deployed at depth in the hole between Phases 1 and 2 detected one of the target earthquakes. A number of surface-to-borehole seismic experiments have been carried out to characterize seismic velocities and structures at depth, including deployment of an 80-level, 240-component seismic array in SAFOD in the spring of 2005. With knowledge of P- and S-wave velocities obtained from the geophysical measurements in conjunction with downhole recordings of the SAFOD target earthquake, it appears that the seismically active main trace of the fault is on the order of 400 m SW of the surface trace, in proximity to several candidate zones of particularly anomalous geophysical properties. Observations of casing deformation to be made over the next several years, as well as monitoring of the microearthquakes using seismometers directly within the fault zone, will pinpoint the exact location of this and other active fault traces prior to continuous coring in Phase 3. As will be elaborated in detail by the presentations of the SAFOD science team at this meeting, the activities carried out as part of Phases 1 and 2 of SAFOD lay the ground work for years of exciting research in earthquake physics, fault-rock geology, rock mechanics and the role of fluids and gases in faulting and earthquake generation.

  11. 30 CFR 250.514 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uppermost BOP; (2) A well-control, fluid-volume measuring device for determining fluid volumes when filling the hole on trips; and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and... the hole with drill pipe, the annulus shall be filled with well-control fluid before the change in...

  12. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., (2) A well-control fluid-volume measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and losses... the change in fluid level decreases the hydrostatic pressure 75 psi or every five stands of drill pipe...

  13. Basic data report for drilling and hydrologic testing of drillhole DOE-2 at the Waste Isolation Pilot Plant (WIIP) site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercer, J.W.; Beauheim, R.L.; Snyder, R.P.

    1987-04-01

    Drillhole DOE-2 was drilled to investigate a structural depression marked by the downward displacement of stratigraphic markers in the Salado Formation. Contrary to several hypotheses, halite layers were thicker in the lower part of the Salado, not thinner as a result of any removal of halite. The upper Castile anhydrite in Drillhole DOE-2 is anomalously thick and is strongly deformed relative to the anhydrite in adjacent drillholes. In contrast, the halite was <8 ft thick and significantly thinner than usually encountered. The lower Castile anhydrite appears to be normal. The depression within the correlated marker beds in the Salado Formationmore » in Drillhole DOE-2 is interpreted as a result of gravity-driven deformation of the underlying Castile Formation. Several stratigraphic units were hydrologically tested in Drillhole DOE-2. Testing of the unsaturated lower portion of the Dewey Lake Red Beds was unsuccessful because of exceptionally small rates of fluid intake. Drill-stem tests were conducted in five intervals in the Rustler Formation, over the Marker Bed 138-139 interval in the Salado formation, and over three sandstone members of the Bell Canyon Formation. A pumping test was conducted in the Culebra Dolomite Member of the Rustler Formation. Pressure-pulse tests were conducted over the entire Salado Formation. Fluid samples were collected from the Culebra Dolomite Member and from the Hays Member of the Bell Canyon Formation. 31 refs., 31 figs., 5 tabs.« less

  14. Stable isotope geochemistry of pore waters from the New Jersey shelf - No evidence for Pleistocene melt water

    NASA Astrophysics Data System (ADS)

    van Geldern, Robert; Hayashi, Takeshi; Böttcher, Michael E.; Mottl, Michael J.; Barth, Johannes A. C.; Stadler, Susanne

    2013-04-01

    Scientific drillings in the 1970s revealed the presence of a large fresh water lens below the New Jersey Shelf. The origin and age of this fresh water body is still under debate. Groundwater flow models suggest that the water mainly originates from glacial melt water that entered the ground below large continental ice sheets during the last glacial maximum (LGM), whereas other studies suggest an age up to late Miocene. In this study, interstitial water was sampled during the Integrated Ocean Drilling Program (IODP) expedition 313 "New Jersey Shallow Shelf" (Mountain et al., 2010) and analyzed for water chemistry and stable isotope ratios (van Geldern et al, 2013). The pore fluid stable isotope values define a mixing line with end members that have oxygen and hydrogen isotope values of -7.0‰ and -41‰ for fresh water, and -0.8‰ and -6‰ for saltwater, respectively. The analyses revealed the following sources of fluids beneath the shelf: (1) modern rainwater, (2) modern seawater, and (3) a brine that ascends from deep sediments. The stable isotope composition of the water samples indicates modern meteoric recharge from New Jersey onshore aquifers as the fresh-water end member. This contradicts earlier views on the formation of the New Jersey fresh water lens, as it does not support the ice-age-origin theory. The salt-water end member is identical to modern New Jersey shelf seawater. Lower core parts of the drilling sites are characterized by mixing with a brine that originates from evaporites in the deep underground and that ascends via faults into the overlying sediments. The geochemical data from this study may provide the basis for an approach to construct a transect across the New Jersey shallow shelf since they fill a missing link in the shelf's geochemical profile. They also lay foundations for future research on hardly explored near-shore freshwater resources. References Mountain, G. and the Expedition 313 Scientists, 2010, Proceedings of the Integrated Ocean Drilling Program, Volume 313, Tokyo, available at: http://publications.iodp.org/proceedings/313/313toc.htm. van Geldern, R., Hayashi, T., Böttcher, M. E., Mottl, M. J., Barth, J. A. C., and Stadler, S., 2013, Stable isotope geochemistry of pore waters and marine sediments from the New Jersey shelf: Methane formation and fluid origin: Geosphere, v. 9, no. 1, p. in press.

  15. Modular support blocks for fluid lines

    NASA Technical Reports Server (NTRS)

    Dimino, J. M.; Deskin, R. D.

    1974-01-01

    Modular line block comprises matched modular elements machined to accept fluid lines of different diameters. Modules can support different fluid-line configurations. Top and bottom surfaces are machined to accept dovetail strip used for holding modules together. End modules have holes drilled through to accept fastening screws.

  16. Acoustic and mechanical properties of Nankai accretionary prism core samples

    NASA Astrophysics Data System (ADS)

    Raimbourg, Hugues; Hamano, Yozo; Saito, Saneatsu; Kinoshita, Masataka; Kopf, Achim

    2011-04-01

    We studied undeformed sediment and accreted strata recently recovered by Ocean Drilling Program/Integrated Ocean Drilling Program (ODP/IODP) drilling in Nankai Trough convergent margin to unravel the changes in physical properties from initial deposition to incipient deformation. We have derived acoustic (Vp) and mechanical (uniaxial poroelastic compliance, compaction amplitude) properties of samples from various drill sites along the Muroto (ODP 1173) and Kii transects (IODP C0001, C0002, C0006, and C0007) from isotropic loading tests where confining and pore pressure were independently applied. We quantified the dependence of Vp on both effective (Peff) and confining (Pc) pressure, which can be used to correct atmospheric pressure measurements of Vp. Experimental Vp obtained on core samples extrapolated to in situ conditions are slightly higher than logging-derived velocities, which can be attributed either to velocity dispersion or to the effect of large-scale faults and weak zones on waves with longer wavelength. In the high-porosity (30%-60%) tested sediments, velocities are controlled at first order by porosity and not by lithology, which is in agreement with our static measurements of drained framework incompressibility, much smaller than fluid incompressibility. Rather than framework incompressibility, shear modulus is probably the second-order control on Vp, accounting for most of the difference between actual Vp and the prediction by Wood's (1941) suspension model. We also quantified the mechanical state of Nankai samples in terms of anisotropy, diagenesis, and consolidation. Both acoustic and mechanical parameters reveal similar values in vertical and horizontal directions, attesting to the very low anisotropy of the tested material. When considering the porous samples of the Upper Shikoku Basin sediments (Site 1173) as examples of diagenetically cemented material, several mechanical and acoustic attributes appeared as reliable experimental indicators of the presence of intergrain cementation. We also detected incipient cementation in samples from IODP Site C0001 (accretionary prism unit). In terms of consolidation, we distinguished two classes of material response (shallow, deformable samples and deep, hardly deformable ones) based on the amount of compaction upon application of a Peff large with respect to the inferred in situ value, with a transition that might be related to a critical porosity.

  17. Fluid source inferred from strontium isotopes in pore fluid and carbonate recovered during Expedition 337 off Shimokita, Japan

    NASA Astrophysics Data System (ADS)

    Hong, W.; Moen, N.; Haley, B. A.

    2013-12-01

    IODP Expedition 337 was designed to understand the relationship between a deep-buried (2000 meters below seafloor) hydrocarbon reservoir off the Shimokita peninsula (Japan), and the microbial community that this carbon reservoir sustains at such depth. Understanding sources and pathways of flow of fluids that carry hydrocarbons, nutrients, and other reduced components is of particular interest to fulfilling the expedition objectives, since this migrating fluid supports microbial activity not only of the deep-seated communities but also to the shallow-dwelling organisms. To this aim, the concentration and isotopic signature of Sr can be valuable due to that it is relatively free from biogenic influence and pristine in terms of drill fluid contamination. From the pore water Sr profile, concentration gradually increases from 1500 to 2400 mbsf. The depth where highest Sr concentration is observed corresponds to the depths where couple layers of carbonate were observed. Such profile suggests an upward-migrating fluid carries Sr from those deep-seated carbonate layers (>2400 mbsf) to shallower sediments. To confirm this inference, pore water, in-situ formation fluid, and carbonate samples were analyzed for Sr isotopes to investigate the fluid source.

  18. Transducer for downhole drilling components

    DOEpatents

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  19. Fluid inclusions as a tool to constrain the preservation conditions of sub-seafloor cryptoendoliths

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.; Broman, C.; Lindblom, S.; Holm, N. G.

    2009-04-01

    The combination of fluid inclusion analyses and microfossil analyses is an excellent method to study the preservation process of deep sub-seafloor microorganisms. By studying fluid inclusions in the same mineral phases as microfossils, it is possible to reconstruct the conditions that prevailed when the microorganisms where entombed and to put them in a geological and environmental context. This study has been performed on carbonate and gypsum veins in drilled basalt samples from three seamounts belonging to the Emperor Seamounts in the Pacific Ocean: Detroit, Nintoku and Koko Seamounts. The study show that variations in salt composition (MgCl 2, NaCl, KCl and CaCl 2) and salinity (2.1 and 10.5 eq. wt% NaCl) of the hydrothermal fluids do not have an influence on the occurrence of microfossils throughout the samples. The microorganisms were trapped and entombed at minimum temperatures of ˜130 °C which implies that the microorganisms could have existed at temperatures of ˜130 °C for shorter periods of time. The microorganisms were entrapped at shallow-marine to submarine conditions and the entrapment of the microorganisms occurred relatively late compared to the volcanic activity.

  20. Critical Elements in Reservoir Rocks of Produced Fluids Nevada and Utah August 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Stuart

    Critical and trace element data for drill cuttings from Beowawe, Dixie Valley, and Roosevelt Hot Springs-Blundell geothermal production fields, for drill cuttings from Uinta basin producing oil-gas wells, and from outcrops in the Sevier Thermal Anomaly-Utah.

  1. Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2006-03-01

    Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7more » 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.« less

  2. New bulk and in situ isotopic and elemental geochemistry of shallow drill core from Atlantis Massif: insights into the sources and paths of fluids and clasts

    NASA Astrophysics Data System (ADS)

    Bilenker, L.; Weis, D.; Scoates, J. S.

    2017-12-01

    We present stable Fe and radiogenic isotope and complementary trace element data for samples from Atlantis Massif. This oceanic core complex is located at 30°N where the Atlantis Transform Fault intersects the Mid-Atlantic Ridge (MAR) and is associated with the Lost City Hydrothermal Field (LCHF). It is a unique place to investigate the abiotic and biotic geochemical processes that play a role in the alteration of both crustal and mantle seafloor rocks. The samples analyzed represent a shallow (<15 m) survey of five drill sites (IODP Expedition 357) within Atlantis Massif, varying in distance from the LCHF and MAR. Analyses were performed on a sample set spanning a wide range in degree of alteration and lithology. Bulk measurements involved dissolving whole rock powders, whereas in situ analyses were performed on digested microdrilled samples or by laser ablation. Bulk rock Fe isotope values (n = 34) are correlated with loss-on-ignition (LOI) by sample lithology and location relative to LCHF. Using LOI as a proxy for degree of alteration, this observation indicates that the Fe isotope systematics of seafloor crustal and mantle rocks preserve indicators of fluid flow and source. The Hf and Nd isotope compositions for various lithologies form all analyzed sites are homogeneous, indicating minimal alteration of these isotopic systems. Bulk Sr values provide insight into elemental exchange between seawater and the surface of Atlantis Massif and bulk Pb isotopes allow for fingerprinting of the source of basalt breccias through comparison with published Pb isotope values of MAR basalts. The new results cluster around the Pb, Hf, Nd isotopic composition of mid-ocean ridge basalt from 30.68°N and do not match samples north or south of that location. In situ Fe isotope data within three altered samples reflect varying degrees of hydrothermal and seawater interaction, where the Fe isotope ratios within each sample are likely correlated with extent of exchange or redox. Laser trace element and Pb isotope data in progress will allow us to investigate this further. This study contributes to our understanding of element mobility and mass transfer during chemical reactions within the seafloor, provides insight into the source of the lithological units and fluid flow, and allows for quantification of alteration processes.

  3. 18 CFR 806.22 - Standards for consumptive uses of water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... shall apply to all water, including stimulation additives, flowback, drilling fluids, formation fluids... with the mitigation requirements set forth in § 806.22(b). (6) Any flowback or production fluids... such approvals. (8) The project sponsor shall certify to the Commission that all flowback and...

  4. 18 CFR 806.22 - Standards for consumptive uses of water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... shall apply to all water, including stimulation additives, flowback, drilling fluids, formation fluids... with the mitigation requirements set forth in § 806.22(b). (6) Any flowback or production fluids... such approvals. (8) The project sponsor shall certify to the Commission that all flowback and...

  5. Evaluation of geophysical logs, Phase I, at Willow Grove Naval Air Station, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Conger, R.W.

    1997-01-01

    Between April and June 1997, the U.S. Navy contracted Brown and Root Environmental, Inc., to drill 20 monitor wells at the Willow Grove Naval Air Station in Horsham Township, Montgomery County, Pa. The wells were installed to monitor water levels and allow collection of water samples from shallow, intermediate, and deep water-bearing zones. Analysis of the samples will determine the horizontal and vertical distribution of any contaminated ground water migrating from known contaminant sources. Eight wells were drilled near the Fire Training Area (Site 5), five wells near the 9th Street Landfill (Site 3), four wells at the Antenna Field Landfill (Site 2), and three wells near Privet Road Compound (Site 1). Depths range from 73 to 167 feet below land surface. The U.S. Geological Survey conducted borehole-geophysical and borehole-video logging to identify water-bearing zones so that appropriate intervals could be screened in each monitor well. Geophysical logs were run on the 20 monitor wells and 1 existing well. Video logs were run on 16 wells. Caliper and video logs were used to locate fractures, inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video logs, and driller's notes, all wells were screened such that water-level fluctuations could be monitored and discrete water samples collected from one or more shallow and intermediate water-bearing zones in each borehole.

  6. Fluid expulsion sites on the Cascadia accretionary prism: mapping diagenetic deposits with processed GLORIA imagery

    USGS Publications Warehouse

    Carson, Bobb; Seke, Erol; Paskevich, Valerie F.; Holmes, Mark L.

    1994-01-01

    Point-discharge fluid expulsion on accretionary prisms is commonly indicated by diagenetic deposition of calcium carbonate cements and gas hydrates in near-surface (<10 m below seafloor; mbsf) hemipelagic sediment. The contrasting clastic and diagenetic lithologies should be apparent in side scan images. However, sonar also responds to variations in bottom slope, so unprocessed images mix topographic and lithologic information. We have processed GLORIA imagery from the Oregon continental margin to remove topographic effects. A synthetic side scan image was created initially from Sea Beam bathymetric data and then was subtracted iteratively from the original GLORIA data until topographic features disappeared. The residual image contains high-amplitude backscattering that we attribute to diagenetic deposits associated with fluid discharge, based on submersible mapping, Ocean Drilling Program drilling, and collected samples. Diagenetic deposits are concentrated (1) near an out-of-sequence thrust fault on the second ridge landward of the base of the continental slope, (2) along zones characterized by deep-seated strikeslip faults that cut transversely across the margin, and (3) in undeformed Cascadia Basin deposits which overlie incipient thrust faults seaward of the toe of the prism. There is no evidence of diagenetic deposition associated with the frontal thrust that rises from the dècollement. If the dècollement is an important aquifer, apparently the fluids are passed either to the strike-slip faults which intersect the dècollement or to the incipient faults in Cascadia Basin for expulsion. Diagenetic deposits seaward of the prism toe probably consist dominantly of gas hydrates.

  7. 30 CFR 250.514 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-control, fluid-volume measuring device for determining fluid volumes when filling the hole on trips; and... shall include both a visual and an audible warning device. (c) When coming out of the hole with drill... collars that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...

  8. Engineering Fracking Fluids with Computer Simulation

    NASA Astrophysics Data System (ADS)

    Shaqfeh, Eric

    2015-11-01

    There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.

  9. Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa)

    NASA Astrophysics Data System (ADS)

    Albut, Gülüm; Babechuk, Michael G.; Kleinhanns, Ilka C.; Benger, Manuela; Beukes, Nicolas J.; Steinhilber, Bernd; Smith, Albertus J. B.; Kruger, Stephanus J.; Schoenberg, Ronny

    2018-05-01

    Previously reported stable Cr isotopic fractionation in Archaean paleosols and iron formations (IFs) have been interpreted as a signature of oxidative weathering of Cr(III) to Cr(VI) in soils, and delivery of isotopically heavy Cr(VI) into the oceans. One of the oldest reported fingerprints of this process is isotopically heavy Cr preserved in the 2.95 Ga old Ijzermijn IF, Sinqeni Formation of the Mozaan Group (Pongola Supergroup), South Africa and could suggest that atmospheric free oxygen was present ca. 600 million years earlier than the Great Oxidation Event (GOE). However, fractionated stable Cr isotopic signatures have only been found to date in surface outcrop samples of the White Mfolozi Inlier exposed along the White Mfolozi River Gorge. In this study, the latter outcrop was resampled along with two drill cores of the Ijzermijn IF and a drill core of the Scotts Hill IF to represent multiple exposures of Mozaan Group IFs with different states of preservation. A detailed geochemical comparison on bulk samples of different units was undertaken using stable Cr isotopes coupled with trace and major elements. Outcrop iron-rich mudstones (Fe - lutites) show very low LOI [wt] %, and very low Fe(II)/Fetot ratios, and lower Ca and Mg relative to equivalent facies in drill cores, indicating the effects that oxidative recent surface weathering had on Fe/Mn-rich carbonate minerals of the IF. Overall rare earth element and yttrium (REE + Y) mixing models agree well with previous studies, confirming that they were minimally disturbed by weathering and are consistent with a high magnitude of continental solutes delivered in a near-shore depositional environment, with a minor contribution of hydrothermally derived fluids that upwelled into shallower depositional setting. Importantly, all drill core samples of this study revealed δ53/52Cr values within the igneous inventory, despite variable amounts of detrital Cr input that includes nearly detritus-free, chert/jasper-rich units. By contrast, a specific group of Fe-lutite samples near the base of White Mfolozi River outcrop bear fractionated Cr isotopic signatures with δ53/52Cr values up to 0.418‰. These outcrop samples also display unusually high U/Th ratios (max. 12.6) as well as enrichments of other elements (W, Tl, As, MREE) that far exceed that observed in correlative drill core units. These observations together with the lack of Cr isotopic fractionation in drill core samples lead us to propose that the heavy δ53/52Cr values of Fe-lutites from outcrop Ijzermijn IF samples reported here and in a previous study are the product of modern oxidative weathering rather than an indicator for Mesoarchaean oxidative weathering at ca. 2.95 Ga.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.B.

    This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is causedmore » by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.« less

  11. A comparison/validation of a fractional derivative model with an empirical model of non-linear shock waves in swelling shales

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Salusti, Ettore

    2013-04-01

    Control of drilling parameters, as fluid pressure, mud weight, salt concentration is essential to avoid instabilities when drilling through shale sections. To investigate shale deformation, fundamental for deep oil drilling and hydraulic fracturing for gas extraction ("fracking"), a non-linear model of mechanic and chemo-poroelastic interactions among fluid, solute and the solid matrix is here discussed. The two equations of this model describe the isothermal evolution of fluid pressure and solute density in a fluid saturated porous rock. Their solutions are quick non-linear Burger's solitary waves, potentially destructive for deep operations. In such analysis the effect of diffusion, that can play a particular role in fracking, is investigated. Then, following Civan (1998), both diffusive and shock waves are applied to fine particles filtration due to such quick transients , their effect on the adjacent rocks and the resulting time-delayed evolution. Notice how time delays in simple porous media dynamics have recently been analyzed using a fractional derivative approach. To make a tentative comparison of these two deeply different methods,in our model we insert fractional time derivatives, i.e. a kind of time-average of the fluid-rocks interactions. Then the delaying effects of fine particles filtration is compared with fractional model time delays. All this can be seen as an empirical check of these fractional models.

  12. High-throughput metabarcoding of eukaryotic diversity for environmental monitoring of offshore oil-drilling activities.

    PubMed

    Lanzén, Anders; Lekang, Katrine; Jonassen, Inge; Thompson, Eric M; Troedsson, Christofer

    2016-09-01

    As global exploitation of available resources increases, operations extend towards sensitive and previously protected ecosystems. It is important to monitor such areas in order to detect, understand and remediate environmental responses to stressors. The natural heterogeneity and complexity of communities means that accurate monitoring requires high resolution, both temporally and spatially, as well as more complete assessments of taxa. Increased resolution and taxonomic coverage is economically challenging using current microscopy-based monitoring practices. Alternatively, DNA sequencing-based methods have been suggested for cost-efficient monitoring, offering additional insights into ecosystem function and disturbance. Here, we applied DNA metabarcoding of eukaryotic communities in marine sediments, in areas of offshore drilling on the Norwegian continental shelf. Forty-five samples, collected from seven drilling sites in the Troll/Oseberg region, were assessed, using the small subunit ribosomal RNA gene as a taxonomic marker. In agreement with results based on classical morphology-based monitoring, we were able to identify changes in sediment communities surrounding oil platforms. In addition to overall changes in community structure, we identified several potential indicator taxa, responding to pollutants associated with drilling fluids. These included the metazoan orders Macrodasyida, Macrostomida and Ceriantharia, as well as several ciliates and other protist taxa, typically not targeted by environmental monitoring programmes. Analysis of a co-occurrence network to study the distribution of taxa across samples provided a framework for better understanding the impact of anthropogenic activities on the benthic food web, generating novel, testable hypotheses of trophic interactions structuring benthic communities. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  13. Well water contamination in a rural community in southwestern Pennsylvania near unconventional shale gas extraction.

    PubMed

    Alawattegama, Shyama K; Kondratyuk, Tetiana; Krynock, Renee; Bricker, Matthew; Rutter, Jennifer K; Bain, Daniel J; Stolz, John F

    2015-01-01

    Reports of ground water contamination in a southwestern Pennsylvania community coincided with unconventional shale gas extraction activities that started late 2009. Residents participated in a survey and well water samples were collected and analyzed. Available pre-drill and post-drill water test results and legacy operations (e.g., gas and oil wells, coal mining) were reviewed. Fifty-six of the 143 respondents indicated changes in water quality or quantity while 63 respondents reported no issues. Color change (brown, black, or orange) was the most common (27 households). Well type, when known, was rotary or cable tool, and depths ranged from 19 to 274 m. Chloride, sulfate, nitrate, sodium, calcium, magnesium, iron, manganese and strontium were commonly found, with 25 households exceeding the secondary maximum contaminate level (SMCL) for manganese. Methane was detected in 14 of the 18 houses tested. The 26 wells tested for total coliforms (2 positives) and E. coli (1 positive) indicated that septic contamination was not a factor. Repeated sampling of two wells in close proximity (204 m) but drawing from different depths (32 m and 54 m), revealed temporal variability. Since 2009, 65 horizontal wells were drilled within a 4 km (2.5 mile) radius of the community, each well was stimulated on average with 3.5 million gal of fluids and 3.2 million lbs of proppant. PA DEP cited violations included an improperly plugged well and at least one failed well casing. This study underscores the need for thorough analyses of data, documentation of legacy activity, pre-drill testing, and long term monitoring.

  14. A mineralogical petrographic and geochemical study of samples from wells in the geothermal field of Milos Island (Greece)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakopoulos, A.

    1991-01-01

    This paper presents a study of hydrothermal alteration on Milos Island, Greece. Examination of cores and cuttings from the two drill sites, obtained from a depth of about 1100 m in Milos geothermal field, showed that the hydrothermal minerals occurring in the rock include: K-feldspar, albite, chlorite, talc, diopside, epidote, muscovite, tremolite, kaolinite, montmorillonite, alunite, anhydrite, gypsum, calcite, and opaque minerals. The chemical composition of the minerals (104 analyses) was determined with Electron Probe Microanalysis. The composition of the hydrothermal fluid was determined and correlated with the mineralogy. Isotopic ratios of C and O for one calcite sample taken frommore » 341 m depth were determined and used for geochemical calculations. A number of reactions feasible at the P-T conditions of the geothermal field are given to establish the chemical evolution of the hydrothermal fluid. The distribution of the hydrothermal minerals indicates the dilution of the K-, Na- Cl-rich hydrothermal fluid of the deep reservoir by a Ca-, Mg-rich cold water at a shallower level.« less

  15. Long-lived interaction between hydrothermal and magmatic fluids in the Soultz-sous-Forêts granitic system (Rhine Graben, France)

    NASA Astrophysics Data System (ADS)

    Gardien, Véronique; Rabinowicz, Michel; Vigneresse, Jean-Louis; Dubois, Michel; Boulvais, Philippe; Martini, Rossana

    2016-03-01

    The 5 km deep drilling at Soultz-sous-Forêts samples a granitic intrusion under its sedimentary cover. Core samples at different depths allow study of the evolving conditions of fluid-rock interaction, from the syn-tectonic emplacement of Hercynian granites at depth until post-cooling history and alteration close to the surface. Hydrogen, carbon and oxygen isotope compositions of CO2 and H2O have been measured in fluid inclusions trapped in magmatic quartz within samples collected along the drill core. Early Fluid Inclusions Assemblage (FIA) contains aqueous carbonic fluids whereas the latest FIA are H2O-rich. In the early FIA, the amount of CO2 and the δ13C value both decrease with depth, revealing two distinct sources of carbon, one likely derived from sedimentary carbonates (δ13C = - 2‰ V-PDB) and another from the continental crust (δ13C = - 9‰ V-PDB). The carbon isotope composition of bulk granites indicates a third carbon source of organic derivation (δ13C = - 20‰ V-PDB). Using a δD - δ18O plot, we argue that the water trapped in quartz grains is mainly of meteoric origin somewhat mixed with magmatic water. The emplacement of the Soultz-sous-Forêts granite pluton occurred in a North 030-040° wrench zone. After consolidation of the granite mush at 600 °C, sinistral shear (γ 1) concentrated the final leucocratic melt in vertical planes oriented along (σ1, σ2). Crystallization of this residual leucocratic melt occurred while shearing was still active. At a temperature of 550 °C, crystallization ended with the formation of vertical quartz veins spaced about 5 mm, and exhibiting a width of several cm. The quartz veins form a connected network of a few kilometers in height, generated during hydrothermal contraction of the intrusion. Quartz crystallization led to the exsolution of 30% by volume of the aqueous fluid. As quartz grains were the latest solid phase still plastic, shearing localized inside the connected quartz network. Aqueous fluid was thus concentrated in these vertical channels. Eventually, when the channels intersected the top of the crack network, water boiling caused the formation of primary inclusions. At the same temperature, the saline magmatic waters, which were denser than the meteoric waters, initiated thermohaline convection with the buoyant "cold" hydrothermal water layer. This mechanism can explain the mixing of surface and deep-seated fluids in the same primary inclusions trapped during the crystallization of magmatic minerals. This study, which separately considers fluid-rock interactions at the level of successive mineral facies, brings new insights into how fluids may be different, their origin and composition, and depending on tectono-thermal conditions, bears implications for eventual ore forming processes.

  16. Elemental Geochemistry of Samples From Fault Segments of the San Andreas Fault Observatory at Depth (SAFOD) Drill Hole

    NASA Astrophysics Data System (ADS)

    Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.

    2006-12-01

    Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching of the wall rock during faulting.

  17. IceBreaker: Mars Drill and Sample Delivery System

    NASA Astrophysics Data System (ADS)

    Mellerowicz, B. L.; Paulsen, G. L.; Zacny, K.; McKay, C.; Glass, B. J.; Dave, A.; Davila, A. F.; Marinova, M.

    2012-12-01

    We report on the development and testing of a one meter class prototype Mars drill and cuttings sample delivery system. The IceBreaker drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sam-pling station for moving the augered ice shavings or soil cuttings into a sample cup. The drill is deployed from a 3 Degree of Freedom (DOF) robotic arm. The drill demonstrated drilling in ice-cemented ground, ice, and rocks at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This cor-responds to an average energy of 100 Whr. The drill has been extensively tested in the Mars chamber to a depth of 1 meter, as well as in the Antarctic and the Arctic Mars analog sites. We also tested three sample delivery systems: 1) 4 DOF arm with a custom soil scoop at the end; 2) Pneumatic based, and 3) Drill based enabled by the 3 (DOF) drill deployment boom. In all approaches there is an air-gap between the sterilized drill (which penetrates subsurface) and the sample transfer hardware (which is not going to be sterilized). The air gap satisfies the planetary protection requirements. The scoop acquires cuttings sample once they are augered to the surface, and drops them into an in-strument inlet port. The system has been tested in the Mars chamber and in the Arctic. The pneumatic sample delivery system uses compressed gas to move the sample captured inside a small chamber inte-grated with the auger, directly into the instrument. The system was tested in the Mars chamber. In the third approach the drill auger captures the sample on its flutes, the 3 DOF boom positions the tip of the auger above the instrument, and then the auger discharges the sample into an instrument. This approach was tested in the labolatory (at STP). The above drilling and sample delivery tests have shown that drilling and sample transfer on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in dis-crete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.

  18. Uncovering a Salt Giant. Deep-Sea Record of Mediterranean Messinian Events (DREAM) multi-phase drilling project

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Aoisi, Vanni; Lofi, Johanna; Hübscher, Christian; deLange, Gert; Flecker, Rachel; Garcia-Castellanos, Daniel; Gorini, Christian; Gvirtzman, Zohar; Krijgsman, Wout; Lugli, Stefano; Makowsky, Yizhaq; Manzi, Vinicio; McGenity, Terry; Panieri, Giuliana; Rabineau, Marina; Roveri, Marco; Sierro, Francisco Javier; Waldmann, Nicolas

    2014-05-01

    In May 2013, the DREAM MagellanPlus Workshop was held in Brisighella (Italy). The initiative builds from recent activities by various research groups to identify potential sites to perform deep-sea scientific drilling in the Mediterranean Sea across the deep Messinian Salinity Crisis (MSC) sedimentary record. In this workshop three generations of scientists were gathered: those who participated in formulation of the deep desiccated model, through DSDP Leg 13 drilling in 1973; those who are actively involved in present-day MSC research; and the next generation (PhD students and young post-docs). The purpose of the workshop was to identify locations for multiple-site drilling (including riser-drilling) in the Mediterranean Sea that would contribute to solve the several open questions still existing about the causes, processes, timing and consequences at local and planetary scale of an outstanding case of natural environmental change in the recent Earth history: the Messinian Salinity Crisis in the Mediterranean Sea. The product of the workshop is the identification of the structure of an experimental design of site characterization, riser-less and riser drilling, sampling, measurements, and down-hole analyses that will be the core for at least one compelling and feasible multiple phase drilling proposal. Particular focus has been given to reviewing seismic site survey data available from different research groups at pan-Mediterranean basin scale, to the assessment of additional site survey activity including 3D seismics, and to ways of establishing firm links with oil and gas industry. The scientific community behind the DREAM initiative is willing to proceed with the submission to IODP of a Multi-phase Drilling Project including several drilling proposals addressing specific drilling objectives, all linked to the driving objectives of the MSC drilling and understanding . A series of critical drilling targets were identified to address the still open questions related to the MSC event. Several proposal ideas also emerged to support the Multi-phase drilling project concept: Salt tectonics and fluids, Deep stratigraphic and crustal drilling in the Gulf of Lion (deriving from the GOLD drilling project), Deep stratigraphic and crustal drilling in the Ionian Sea, Deep Biosphere, Sapropels, and the Red Sea. A second MagellanPlus workshop held in January 2014 in Paris (France), has proceeded a step further towards the drafting of the Multi-phase Drilling Project and a set of pre-proposals for submission to IODP.

  19. Interstitial water studies on small core samples, Deep Sea Drilling Project, Leg 8

    USGS Publications Warehouse

    Manheim, F.T.; Sayles, F.L.

    1971-01-01

    Leg 8 sites are dominated by siliceous-calcareous biogenic oozes having depositional rates of 0.1 to 1.5 cm/1000 years. Conservative constituents of pore fluids showed, as have cores from other pelagic areas of the Pacific, insignificant or marginally significant changes with depth and location. However, in Sites 70 and 71, calcium, magnesium and strontium showed major shifts in concentration with depth. These changes appear to be related to recrystallization phenomena in skeletal debris of nannoplankton and to the relative accumulation rate of the sediments. The chemical anomalies increase relatively smoothly with depth, demonstrating the effectiveness of vertical diffusional communication, and apparent lack of bulk fluid movement, as noted in Leg 7 and other sites.

  20. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (< 5N) and thus offers significant advantages for operation from lightweight platforms and in low gravity environments. The USDC is lightweight (<0.5kg), and can be driven at low power (<5W) using duty cycling. It consists of an actuator with a piezoelectric stack, ultrasonic horn, free-mass, and drill bit. The stack is driven with a 20 kHz AC voltage at resonance. The strain generated by the piezoelectric is amplified by the horn by a factor of up to 10 times the displacement amplitude. The tip impacts the free-mass and drives it into the drill bit in a hammering action. The free-mass rebounds to interact with the horn tip leading to a cyclic rebound at frequencies in the range of 60-1000 Hz. It does not require lubricants, drilling fluid or bit sharpening and it has the potential to operate at high and low temperatures using a suitable choice of piezoelectric material. To assess whether the powder from an ultrasonic drill would be adequate for analyses by an XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL ultrasonic drill were analyzed and the results were compared to carefully prepared powders obtained using a laboratory bench scale Retsch mill.

  1. USE OF DRILLING FLUIDS IN MONITORING WELL NETWORK INSTALLATION: LANL AND OPEN DISCUSSION

    EPA Science Inventory

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to provide a technical analysis of the impacts of well drilling practices implemented at the Los Alamos National Laboratory (LANL) as part of the development of their grou...

  2. New mud system produces solids-free, reusable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Corpus Christi, Texas, based Cameron Equipment Co., Inc., has developed a closed-loop mud treating system that removes solids from water-based systems and leaves the separated fluid clean and chemical free enough to be re-used directly on the rig. The system has been successfully applied by a Gulf of Mexico operator in areas where zero discharge is required. The alternative mud conditions program offered by the developers is called the Cameron Fluid Recycling System. Designed for closed-loop water-based fluids, the system is a new method of removing solids from normally discharged fluids such as drilling mud, waste and wash water,more » or any other water-based fluid that contains undesirable solids. The patented method efficiently produces end products that are (1) dry solids; and (2) essentially 100% solids-free fluid that can be re-used in the same mud system. All excess drilling mud, and all wash water that would normally go to the reserve pit or a cuttings barge are collected in a tank. Recycled fluid is compatible with the mud system fluid, no harmful chemicals are used, and pH is not altered.« less

  3. Gulf Petro Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fathi Boukadi

    2011-02-05

    In this report, technologies for petroleum production and exploration enhancement in deepwater and mature fields are developed through basic and applied research by: (1) Designing new fluids to efficiently drill deepwater wells that can not be cost-effectively drilled with current technologies. The new fluids will be heavy liquid foams that have low-density at shallow dept to avoid formation breakdown and high density at drilling depth to control formation pressure. The goal of this project is to provide industry with formulations of new fluids for reducing casing programs and thus well construction cost in deepwater development. (2) Studying the effects ofmore » flue gas/CO{sub 2} huff n puff on incremental oil recovery in Louisiana oilfields bearing light oil. An artificial neural network (ANN) model will be developed and used to map recovery efficiencies for candidate reservoirs in Louisiana. (3) Arriving at a quantitative understanding for the three-dimensional controlled-source electromagnetic (CSEM) geophysical response of typical Gulf of Mexico hydrocarbon reservoirs. We will seek to make available tools for the qualitative, rapid interpretation of marine CSEM signatures, and tools for efficient, three-dimensional subsurface conductivity modeling.« less

  4. Geothermal Energy Geopressure Subprogram: DOE Lafourche Crossing No. 1, Terrebonne Parish and Lafourche Parish, Louisiana: Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-01

    The proposed action will consist of drilling one geothermal fluid well for intermittent production testing of 284 days over a three year period. Two disposal wells will initially be drilled to provide disposal of lower volume fluids produced during initial testing. Two additional disposal wells will be drilled, logged, completed, tested, and operated prior to commencement of high volume fluid production. Construction of the proposed action will change the land-use of 2 ha (5 ac) for the test well and each of the injection wells from agriculture or wetlands to resource exploration. Lands will be cleared and erosion and runoffmore » will result. During operation of the well test, the only expected impacts are from venting of gases or flaring of gases and noise. After the tests are completed, the area will be restored as much as possible to its natural condition by revegetation programs using nature species. All sources of pollutants will be collected and disposed in environmentally acceptable ways. Accidents may result from this proposed action.« less

  5. Water based drilling mud additive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrary, J.L.

    1983-12-13

    A water based fluid additive useful in drilling mud used during drilling of an oil or gas well is disclosed, produced by reacting water at temperatures between 210/sup 0/-280/sup 0/ F. with a mixture comprising in percent by weight: gilsonite 25-30%, tannin 7-15%, lignite 25-35%, sulfonating compound 15-25%, water soluble base compound 5-15%, methylene-yielding compound 1-5%, and then removing substantially all of the remaining water to produce a dried product.

  6. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

    NASA Astrophysics Data System (ADS)

    Nicolas-Lopez, Ruben

    2005-11-01

    In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

  7. Redox control of gas compositions in Philippine volcanic-hydrothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giggenbach, W.F.

    1993-10-01

    Gas samples from five volcanic-hydrothermal systems in the Philippines were analyzed for CO{sub 2}, H{sub 2}S, NH{sub 3}, H{sub 2}, He, Ne, Ar, N{sub 2}, CH{sub 4} and CO. Even in systems with sulfate minerals as common components of alteration assemblages, indicating highly immature, oxidizing conditions at depth, the redox potential governing the concentrations of the reactive gases CO{sub 2}, H{sub 2}S, H{sub 2}, CH{sub 4} and CO approaches closely that expected for attainment of equilibrium with rock in more mature, reduced systems. The finding suggests that overall fluid compositions reflect more closely redox conditions established at the advancing frontmore » of interaction with primary rock rather than those of equilibrium with the set of secondary minerals left behind. With the exception of CO and NH{sub 3}, the close agreement in the compositions of gas samples, taken from pools and deep wells indicates that the secondary processes have only a slight effect on the vapors during their rise from drilled depths (1.8 km) to the surface and that samples from natural features may be taken to be representative of redox conditions at drilled depths.« less

  8. Microbial life in cold, hydrologically active oceanic crustal fluids

    NASA Astrophysics Data System (ADS)

    Meyer, J. L.; Jaekel, U.; Girguis, P. R.; Glazer, B. T.; Huber, J. A.

    2012-12-01

    It is estimated that at least half of Earth's microbial biomass is found in the deep subsurface, yet very little is known about the diversity and functional roles of these microbial communities due to the limited accessibility of subseafloor samples. Ocean crustal fluids, which may have a profound impact on global nutrient cycles given the large volumes of water moving through the crustal aquifer, are particularly difficult to sample. Access to uncontaminated ocean crustal fluids is possible with CORK (Circulation Obviation Retrofit Kit) observatories, installed through the Integrated Ocean Drilling Program (IODP). Here we present the first microbiological characterization of the formation fluids from cold, oxygenated igneous crust at North Pond on the western flank of the Mid Atlantic Ridge. Fluids were collected from two CORKs installed at IODP boreholes 1382A and 1383C and include fluids from three different depth horizons within oceanic crust. Collection of borehole fluids was monitored in situ using an oxygen optode and solid-state voltammetric electrodes. In addition, discrete samples were analyzed on deck using a comparable lab-based system as well as a membrane-inlet mass spectrometer to quantify all dissolved volatiles up to 200 daltons. The instruments were operated in parallel and both in situ and shipboard geochemical measurements point to a highly oxidized fluid, revealing an apparent slight depletion of oxygen in subsurface fluids (~215μM) relative to bottom seawater (~245μM). We were unable to detect reduced hydrocarbons, e.g. methane. Cell counts indicated the presence of roughly 2 x 10^4 cells per ml in all fluid samples, and DNA was extracted and amplified for the identification of both bacterial and archaeal community members. The utilization of ammonia, nitrate, dissolved inorganic carbon, and acetate was measured using stable isotopes, and oxygen consumption was monitored to provide an estimate of the rate of respiration per cell per day. These results provide the first dataset describing the diversity of microbes present in cold, oxygenated ocean crustal fluids and the biogeochemical processes they mediate in the subseafloor.

  9. Time Dependent Fluids

    ERIC Educational Resources Information Center

    Collyer, A. A.

    1974-01-01

    Discusses the flow characteristics of thixotropic and negative thixotropic fluids; various theories underlying the thixotropic behavior; and thixotropic phenomena exhibited in drilling muds, commercial paints, pastes, and greases. Inconsistencies in the terminology used to label time dependent effects are revealed. (CC)

  10. Evaluation of a Dust Control for a Small Slab-Riding Dowel Drill for Concrete Pavement

    PubMed Central

    Echt, Alan; Mead, Kenneth

    2016-01-01

    Purpose To assess the effectiveness of local exhaust ventilation to control respirable crystalline silica exposures to acceptable levels during concrete dowel drilling. Approach Personal breathing zone samples for respirable dust and crystalline silica were collected while laborers drilled holes 3.5 cm diameter by 36 cm deep in a concrete slab using a single-drill slab-riding dowel drill equipped with local exhaust ventilation. Data were collected on air flow, weather, and productivity. Results All respirable dust samples were below the 90 µg detection limit which, when combined with the largest sample volume, resulted in a minimum detectable concentration of 0.31 mg m−3. This occurred in a 32-min sample collected when 27 holes were drilled. Quartz was only detected in one air sample; 0.09 mg m−3 of quartz was found on an 8-min sample collected during a drill maintenance task. The minimum detectable concentration for quartz in personal air samples collected while drilling was performed was 0.02 mg m−3. The average number of holes drilled during each drilling sample was 23. Over the course of the 2-day study, air flow measured at the dust collector decreased from 2.2 to 1.7 m3 s−1. Conclusions The dust control performed well under the conditions of this test. The initial duct velocity with a clean filter was sufficient to prevent settling, but gradually fell below the recommended value to prevent dust from settling in the duct. The practice of raising the drill between each hole may have prevented the dust from settling in the duct. A slightly higher flow rate and an improved duct design would prevent settling without regard to the position of the drill. PMID:26826033

  11. Evaluation of a Dust Control for a Small Slab-Riding Dowel Drill for Concrete Pavement.

    PubMed

    Echt, Alan; Mead, Kenneth

    2016-05-01

    To assess the effectiveness of local exhaust ventilation to control respirable crystalline silica exposures to acceptable levels during concrete dowel drilling. Personal breathing zone samples for respirable dust and crystalline silica were collected while laborers drilled holes 3.5 cm diameter by 36 cm deep in a concrete slab using a single-drill slab-riding dowel drill equipped with local exhaust ventilation. Data were collected on air flow, weather, and productivity. All respirable dust samples were below the 90 µg detection limit which, when combined with the largest sample volume, resulted in a minimum detectable concentration of 0.31 mg m(-3). This occurred in a 32-min sample collected when 27 holes were drilled. Quartz was only detected in one air sample; 0.09 mg m(-3) of quartz was found on an 8-min sample collected during a drill maintenance task. The minimum detectable concentration for quartz in personal air samples collected while drilling was performed was 0.02 mg m(-3). The average number of holes drilled during each drilling sample was 23. Over the course of the 2-day study, air flow measured at the dust collector decreased from 2.2 to 1.7 m(3) s(-1). The dust control performed well under the conditions of this test. The initial duct velocity with a clean filter was sufficient to prevent settling, but gradually fell below the recommended value to prevent dust from settling in the duct. The practice of raising the drill between each hole may have prevented the dust from settling in the duct. A slightly higher flow rate and an improved duct design would prevent settling without regard to the position of the drill. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2016.

  12. Reaching 1 m deep on Mars: the Icebreaker drill.

    PubMed

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  13. Development potential of the Dauin geothermal prospect, Negros Oriental, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayrante, L.F.; Hermoso, D.Z.; Candelaria, M.R.

    1997-12-31

    The Dauin geothermal prospect, situated 5 km southeast of the Palinpinon I and II sectors, was drilled between 1982 and 1983 to test its viability for development. Drilling results indicated that DN-1 was drilled closer to the source region than DN-2 where permeability, temperature, and alteration mineralogy were generally unpromising. DN-1 encountered temperatures of at least 240{degrees}C and a neutral-pH fluid with reservoir chloride of 3000 mg/kg. In particular, the presence of sulphur in the DN-1 discharge provoked debates and many speculation on the nature of the fluid in the area. The area was re-evaluated in 1996 for the followingmore » reasons: (1) Renewed interests on other geothermal prospects within Negros Island from an economic point of view and the success of modular plant developments are Pal II and other areas in the Philippines; (2) Reinterpretation of the genesis of sulphur contained in the DN-1 discharge fluid; (3) Encouraging temperature, permeability and neutral-pH alterations at depth and the neutral character of DN-1 discharge fluid; and (4) Reinterpretation of the hydrological model from a geochemical and geological point of view. The study indicates good potential for modular power development.« less

  14. Geoethical Approach to Antarctic Subglacial Lakes Exploration

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Markov, Alexey; Sysoev, Mikhail

    2014-05-01

    Antarctic subglacial aquatic environment have become of great interest to the science community because they may provide unique information about microbial evolution, the past climate of the Earth, and the formation of the Antarctic ice sheet. Nowadays it is generally recognized that a vast network of lakes, rivers, and streams exists thousands of meters beneath Antarctic Ice Sheets. Up to date only four boreholes accessed subglacial aquatic system but three of them were filled with high-toxic drilling fluid, and the subglacial water was contaminated. Two recent exploration programs proposed by UK and USA science communities anticipated direct access down to the lakes Ellsworth and Whillans, respectively, in the 2012/2013 Antarctic season. A team of British scientists and engineers engaged in the first attempt to drill into Lake Ellsworth but failed. US research team has successfully drilled through 800 m of Antarctic ice to reach a subglacial lake Whillans and retrieve water and sediment samples. Both activities used hot-water drilling technology to access lakes. Hot water is considered by the world science community as the most clean drilling fluid medium from the present point of view but it cannot solve environmental problems in total because hot-water even when heated to 90 °C, filtered to 0.2 μm, and UV treated at the surface could pick up microorganisms from near-surface snow and circulate them in great volume through the borehole. Another negative impact of hot-water circulation medium is thermal pollution of subglacial water. The new approach to Antarctic subglacial lakes exploration is presented by sampling technology with recoverable autonomous sonde which is equipped by two hot-points with heating elements located on the bottom and top sides of the sonde. All down-hole sonde components will be sterilized by combination of chemical wash, HPV and UV sterilization prior using. At the beginning of the summer season sonde is installed on the surface of the Antarctic ice sheet above subglacial lake. All equipment is got into working trim, the bottom hot-point is powered, and the sonde starts to melt down to the ice sheet bed. The personnel leave the site, and all further operations are going on in semi-automatic mode. The melted water does not recover from the hole and refreezes behind the sonde. Electric line for power supply and communication with down-hole sensors is released from the coil installed inside the sonde. Since the sonde enters into the subglacial lake, it samples the water and examines subglacial conditions. After sampling, the motor connected with coil is switched on, and the top hot-point is put into action. The sonde begins to recover itself to the surface by spooling the cable and melting overlying ice with the help of the upper hot-point. Since 8-9 months from starting, the sonde reaches the surface and waits the personnel for servicing and moving to the next site. The big advantage of the proposed technology is that subglacial lake would be measured and sampled while subglacial water is reliably isolated from surface environment.

  15. Installation Restoration Program. Phase II. Confirmation/Quantification Stage I.

    DTIC Science & Technology

    1986-02-24

    Drilling and sampling three...borings at Site 8; o Drilling and sampling three borings at Site 11; and o Drilling and sampling three borings at Site 12. The ground water samples...8217-"~~~~~~.."." . " -’ - . .. . ;’ "..-. ’,"",,.- - -".-" - ’ -- -... ... ~ -. . ... ... " " 1 *. Sites Recommended Action Rationale U 8 Drill and sample one background To estimate

  16. Structure and clay mineralogy: borehole images, log interpretation and sample analyses at Site C0002 Nankai Trough accretionary prism

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Schleicher, Anja

    2015-04-01

    Our research focused on the characterization of fracture and fault structures from the deep Nankai Trough accretionary prism in Japan. Logging Data and cuttings samples from the two most recent International Ocean Discovery Program (IODP) Expeditions 338 and 348 of the NanTroSEIZE project were analyzed by Logging While Drilling (LWD) oriented images, geophysical logs and clay mineralogy. Both expeditions took place at Site C0002, but whereas Hole C0002F (Expedition 338) was drilled down to 2004.5 mbsf, Hole C0002N and C0002P (Expedition 348) reached a depth of 2325.5 mbsf and 3058.8 mbsf respectively. The structural interpretation of borehole imaging data illustrates the deformation within the fractured and faulted sections of the accretionary prism. All drill holes show distinct areas of intense fracturing and faulting within a very clay-dominated lithology. Here, smectite and illite are the most common clay minerals, but the properties and the role they may play in influencing the fractures, faults and folds in the accretionary prism is still not well understood. When comparing clay mineralogy and fracture/fault areas in hole C0002F (Expedition 338), a trend in the abundance of illite and smectite, and in particular the swelling behavior of smectite is recognizable. In general, the log data provided a good correlation with the actual mineralogy and the relative abundance of clay. Ongoing postcruise preliminary research on hole C0002 N and C0002P (Expedition 348) should confirm these results. The relationship between fracture and fault structures and the changes in clay mineralogy could be explained by the deformation of specific areas with different compaction features, fluid-rock interaction processes, but could also be related to beginning diagenetic processes related to depth. Our results show the integration of logging data and cutting sample analyses as a valuable tool for characterization of petrophysical and mineralogical changes of the structures of the Nankai accretionary prism. This is critical for our understanding of clay-fluid interaction and mechanical properties duing fault displacements and seismogenesis.

  17. A Record of Uranium-Series Transport in Fractured, Unsaturated Tuff at Nopal I, Sierra Peña Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Denton, J.; Goldstein, S. J.; Paviet, P.; Nunn, A. J.; Amato, R. S.; Hinrichs, K. A.

    2015-12-01

    In this study we utilize U-series disequilibria measurements to investigate mineral fluid interactions and the role fractures play in the geochemical evolution of an analogue for a high level nuclear waste repository, the Nopal I uranium ore deposit. Samples of fracture-fill materials have been collected from a vertical drill core and surface fractures. High uranium concentrations in these materials (12-7700 ppm) indicate U mobility and transport from the deposit in the past. U concentrations generally decrease with horizontal distance away from the ore deposit but show no trend with depth. Isotopic activity ratios indicate a complicated geochemical evolution in terms of the timing and extent of actinide mobility, possibly due to changing environmental (redox) conditions over the history of the deposit. 234U/238U activity ratios are generally distinct from secular equilibrium and indicate some degree of open system U behavior during the past 1.2 Ma. However, calculated closed system 238U-234U-230Th model ages are generally >313 ka and >183 ka for the surface fracture and drill core samples respectively, suggesting closed system behavior for U and Th over this most recent time period. Whole rock isochrons drawn for the drill core samples show that at two of three depths fractures have remained closed with respect to U and Th mobility for >200 ka. However, open system behavior for U in the last 350 ka is suggested at 67 m depth. 231Pa/235U activity ratios within error of unity suggest closed system behavior for U and Pa for at least the past 185 ka. 226Ra/230Th activity ratios are typically <1 (0.7-1.2), suggesting recent (<8 ka) radium loss and mobility due to ongoing fluid flow in the fractures. Overall, the mainly closed system behavior of U-Th-Pa over the past ~200 ka provides one indicator of the geochemical immobility of these actinides over long time-scales for potential nuclear waste repositories sited in fractured, unsaturated tuff.

  18. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  19. Real-Time Fluid and Gas Monitoring During Drilling of the SAFOD Main Hole in Parkfield, CA.

    NASA Astrophysics Data System (ADS)

    Wiersberg, T.; Erzinger, J.

    2005-12-01

    Little is known about the role and origin of fluids and gases associated with the San Andreas Fault zone (SAF). To gain information on fluids and gases at depth, we performed real-time mud gas monitoring during drilling of the SAFOD (San Andreas Fault Observatory at Depth) Pilot Hole (PH) and Main Hole (MH). Gas extracted from returning drill mud was piped into a nearby laboratory trailer and analyzed on-line. Permanent gases were detected using a portable mass spectrometer, hydrocarbons with a gas chromatograph, and the 222Rn-activity with a Lucas-Cell detector. When significant amounts of non-atmospheric gases were detected, off-line gas samples were collected from the gas line for further isotope studies. The SAFOD PH and MH were drilled in only a few meter distance, but in contrast to the straight PH, which penetrates through 768 m of sediments into granites down to 2168 m target depth (TD), the nearby MH is deviated towards the SAF and returns into sedimentary strata below 1930 m. The MH drilled sedimentary rocks down to 3987 m TD, approximately 45 m northeast of the surface trace of the SAF. From surface to 1930 m, the depth distribution of gas is similar for SAFOD PH and MH. Shear zones, identified by geophysical logging, are often characterized by elevated concentrations of CH4, CO2, H2, Rn, and He. The same gases were found in the MH below 1930 m, but their concentrations were, with the exception of He, significantly higher: CH4, CO2, and H2 sometimes reach several volume percent. Generally, the gas composition is partly controlled by the lithology. Variation in the methane concentration in several depth intervals reflects the changes in lithology from low gas abundance in clays and silts to more gas rich shales, which are the source rocks for hydrocarbons. Highly porous and permeable sandstone yield the highest concentrations of hydrocarbons (up to 15 vol% methane), and may be regarded as reservoir rocks. We interpret high radon activities in mud gas as indicator for circulating fluids entering the borehole via fractures. These fluids are also rich in hydrocarbons, carbon dioxide, and hydrogen, but only low concentrated in helium. Such intervals could be identified in several depth intervals (2675-2750 m, 2825-2900 m, and 3550-3650 m depth, and below 3700 m). The hydrocarbons in the surrounding rocks show a similar composition as those associated with fault zones. In addition to the low helium concentration, these results demonstrate fluid migration from the nearby with only little evidence for gas migration from a deeper source. A striking observation is the high amount of hydrogen found in these intervals. We can exclude a significant contribution of artificial hydrogen (drilling artifact) and mantle hydrogen. From soil gas studies, it is known that fault zones sometimes show enhanced concentration of hydrogen. As a possible source of hydrogen, the interaction of water with freshly ground rock, caused by fault zone movement, is discussed. Isotopic studies on hydrogen in combination with laboratory experiments are ongoing to test hydrogen synthesis by rock-water interaction. First isotopic studies on δ13C of methane indicate mixing of microbial methane with only small amounts of methane generated by thermal degradation of organic matter in the shallower depth (down to ~2500 m). Below this depth, the concentration of heavy hydrocarbons increases. CH4/(C2H6+C3H8) significantly drops from >100 to values <30 towards the bottom of the MH, and, methane becomes isotopically heavier, which is more typical for thermogenic hydrocarbons.

  20. Diverter/bop system and method for a bottom supported offshore drilling rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roche, J.R.; Alexander, G.G.; Carbaugh, W.L.

    1986-07-01

    A system is described adapted for alternative use as a diverter or a blowout preventer for a bottom supported drilling rig and adapted for connection to a permanent housing attached to rig structural members beneath a drilling rig rotary table, the permanent housing having an outlet connectable to a rig fluid system flow line. The system consists of: a fluid flow controller having a controller housing with a lower cylindrical opening and an upper cylindrical opening and a vertical path therebetween and a first outlet passage and a second outlet passage provided in its wall, a packing element disposed withinmore » the controller housing, and annular piston means adapted for moving from a first position to a second position, whereby in the first position the piston means wall prevents interior fluid from communicating with the outlet passages in the controller housing wall and in the second position the piston means wall allows fluid communication of interior fluid with the outlet passages and urges the annular packing element to close about an object extending through the bore of the controller housing or to close the vertical flow path through through the controller housing in the absence of any object in the vertical flow path, means for connecting a vent line to the outlet passage provided in the controller housing wall, a lower telescoping spool having a lower joining means at its lower end for joining alternatively to structural casing or to a mandrel connected to a conductor string cemented within the structural casing and an upper connection means at its upper end for connection to the lower cylindrical opening of the fluid flow controller, and an upper telescoping spool having a lower connection means for connection to the upper cylindrical opening of the fluid flow controller.« less

  1. Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development

    PubMed Central

    Llewellyn, Garth T.; Dorman, Frank; Westland, J. L.; Yoxtheimer, D.; Grieve, Paul; Sowers, Todd; Humston-Fulmer, E.; Brantley, Susan L.

    2015-01-01

    High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼1–3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad—the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide. PMID:25941400

  2. Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development.

    PubMed

    Llewellyn, Garth T; Dorman, Frank; Westland, J L; Yoxtheimer, D; Grieve, Paul; Sowers, Todd; Humston-Fulmer, E; Brantley, Susan L

    2015-05-19

    High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼ 1-3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad-the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide.

  3. DEVELOPMENT OF NEW DRILLING FLUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David B. Burnett

    2003-08-01

    The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addressesmore » the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.« less

  4. Impedance loading and radiation of finite aperture multipole sources in fluid filled boreholes

    NASA Astrophysics Data System (ADS)

    Geerits, Tim W.; Kranz, Burkhard

    2017-04-01

    In the exploration of oil and gas finite aperture multipole borehole acoustic sources are commonly used to excite borehole modes in a fluid-filled borehole surrounded by a (poro-) elastic formation. Due to the mutual interaction of the constituent sources and their immediate proximity to the formation it has been unclear how and to what extent these effects influence radiator performance. We present a theory, based on the equivalent surface source formulation for fluid-solid systems that incorporates these 'loading' effects and allows for swift computation of the multipole source dimensionless impedance, the associated radiator motion and the resulting radiated wave field in borehole fluid and formation. Dimensionless impedance results are verified through a comparison with finite element modeling results in the cases of a logging while drilling tool submersed in an unbounded fluid and a logging while drilling tool submersed in a fluid filled borehole surrounded by a fast and a slow formation. In all these cases we consider a monopole, dipole and quadrupole excitation, as these cases are relevant to many borehole acoustic applications. Overall, we obtain a very good agreement.

  5. Prediction of magnitude of minimum horizontal stress from extended leak-off test conducted by the riser vessel CHIKYU

    NASA Astrophysics Data System (ADS)

    Lin, W.; Masago, H.; Yamamoto, K.; Kawamura, Y.; Saito, S.; Kinoshita, M.

    2007-12-01

    By means of introduction of the drilling vessel 'CHIKYU', riser drilling operations using mud fluid will be carried out in NanTroSEIZE Stage 2 for the first time as an oceanic scientific-drilling. For determining drilling operation parameter such as a mud density, a downhole experiment, leak-off test (LOT) or extended leak-off test (XLOT), is going to be implemented next to casing and cementing at each casing shoe during the drilling process. Data of the downhole experiment aimed for operation can also be used for an important scientific application to obtain in-situ stress information which is necessary for various cases of scientific drillings such as seismogenic zone drillings etc. In order to examine feasibility of the application of the LOT or XLOT data, we analyzed an example of XLOT conducted by the riser vessel CHIKYU during its Shimokita shakedown cruise, 2006; and then estimated magnitude of minimum principal stress in horizontal plane, Shmin. Moreover, we will propose the test procedures to possibly improve the quality of stress result from the applications of LOT or XLOT. The XLOT of Shimokita cruise was conducted under following conditions; 1180 m water depth, 525 mbsf (meter below seafloor) depth, 1030 kg/m3 fluid density (seawater) and 80 litter/min injection flow-rate. Estimated magnitude of the Shmin is equal to 18.3 MPa based on the assumption that fracture closure pressure balances with the minimum principal stress perpendicular to the fracture plane. For comparison, the vertical stress magnitude at the depth was estimated from density profile of core samples retrieved from the same borehole; and was equal to 20 MPa approximately. These two values can be considered to be not disagreement. Therefore, we can say that the XLOT data is valuable and practical for estimating the magnitude of minimum horizontal stress. From the viewpoint of determining stress magnitude, the XLOT is more essential rather than the LOT because it might be hardly to obtain reliable Shmin magnitude only by leak-off pressure which is exclusive stress-related parameter obtained from the latter. In addition, implementation of the LOT/XLOT multi-cycles (3 cycles) is preferable if possible. The first cycle with a lower maximum injection pressure is for knowing permeable property of the formation and for examining whether there is pre-existing fracture(s). The second cycle is a normal XLOT; and the third one is the repeat of the second one for confirm the pressure values obtained from the XLOTs.

  6. Drilling fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, J.A.; Patel, B.B.

    1987-11-03

    A drilling fluid additive mixture is described consisting essentially of a sulfoalkylated tannin in admixture with a non-sulfoalkylated alkali-solubilized lignite wherein the weight ratio of the sulfoalkylated tannin to the non-sulfoalkylated lignite is in the range from about 2:1 to about 1:1. The sulfoalkylated tannin has been sulfoalkylated with at least one -(C(R-)/sub 2/-SO/sub 3/M side chain, wherein each R is selected from the group consisting of hydrogen and alkyl radicals containing from 1 to about 5 carbon atoms, and M is selected from the group consisting of ammonium and the alkali metals.

  7. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers anmore » economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.« less

  8. 80 Million Years of Prolonged and Localized Fluid flow on Shatsky Rise

    NASA Astrophysics Data System (ADS)

    Vermillion, K. B.; Koppers, A.; Heaton, D. E.; Harris, R. N.

    2017-12-01

    Shatsky Rise is a large igneous province (LIP) in the northwest Pacific Ocean, which formed at an unstable ridge-ridge-ridge (RRR) triple junction at the Jurassic-Cretaceous boundary. High resolution 40Ar/39Ar incremental heating analyses of samples from TAMU and Ori Massif, the two largest volcanic features on Shatsky Rise, yield mixing ages between fresh plagioclase and sericite alteration phases. Mixing ages range from several million years younger to 75 Myr younger than the eruption ages of 147 (TAMU Massif) and 140 Ma (Ori Massif). Sericitic alteration in plagioclase from IODP (Integrated Ocean Drilling Program) Expedition 324 Holes U1347A, U1349A, U1350A and U1346A on TAMU, Ori and Shirshov Massifs suggests pervasive fluid flow throughout Shatsky Rise in the first million years after eruption. Sericitic alteration in plagioclase from ODP (Ocean Drilling Program) Hole 1231B on the flanks of the TAMU Massif also suggests fluid flow. However, localized and very late stage fluid flow is found in the deepest highly altered pillow basalt sequence (Unit IV) of IODP Hole U1350A, where sericitic plagioclase samples is dated to be 65.8, 70.2 and 82.1 Ma. Since the sericite 40Ar/39Ar ages obtained are a mixture between fresh plagioclase and sericite alteration in the plagioclase, we estimate the true age of alteration, using the Verati and Jourdan (Geological Society, London, 2015) mixing model, showing that in IODP Hole U1350A (140 Ma eruption age) the sericite formed around 127 Ma or much later between 85 and 60 Ma. Thermal modeling suggests that throughout Shatsky Rise sustained fluid flow may occur and could be responsible for sericite alteration up to approximately 22 Myr after eruption. During this initial Shatsky Rise cool down phase, the natural geothermal gradient remains high enough to form sericite at temperatures of 100-215 °C. However, the same model shows that the conductive geothermal gradient alone does not sustain enough heat to form sericite 80 Myr after the age of eruption at Ori Massif in Unit IV of IODP Hole U1350A. The overall mechanism driving the additional heat required to form sericite so much later and locally at Ori Massif is still under investigation, but our models suggest that discharging fluids from the crustal aquifer can supply the heat needed for alteration.

  9. Sample Acqusition Drilling System for the the Resource Prospector Mission

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; Quinn, J.; Smith, J.; Kleinhenz, J.

    2015-12-01

    The goal of the Lunar Resource Prospector Mission (RPM) is to capture and identify volatiles species within the top meter of the lunar regolith. The RPM drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RPM drill is based on the Mars Icebreaker drill developed for capturing samples of ice and ice cemented ground on Mars. The drill weighs approximately 10 kg and is rated at ~300 Watt. It is a rotary-percussive, fully autonomous system designed to capture cuttings for analysis. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing station, 4. Z-stage, 5. Deployment stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in ~10 cm intervals. The first generation drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama in 2012. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The third generation drill was tested in NASA GRC's vacuum chamber, VF13, at 10-5 torr and approximately 200 K. It demonstrated successful capture and transfer of icy samples to a crucible. The drill has been modified and integrated onto the NASA JSC RPM rover. It has been undergoing testing in a lab and in the field during the Summer of 2015.

  10. Chemistry and geothermometry of brine produced from the Salton Sea Scientific drill hole, Imperial Valley, California

    USGS Publications Warehouse

    Thompson, J.M.; Fournier, R.O.

    1988-01-01

    The December 29-30, 1985, flow test of the State 2-14 well, also known as the Salton Sea Scientific drill hole, produced fluid from a depth of 1865-1877 m at a reservoir temperature of 305????5??C. Samples were collected at five different flashing pressures. The brines are Na-Ca-K-Cl-type waters with very high metal and low SO4 and HCO3 contents. Compositions of the flashed brines were normalized relative to the 25??C densities of the solutions, and an ionic charge balance was achieved by adjusting the Na concentration. Calculated Na/K geothermometer temperatures, using equations suggested by different investigators, range from 326?? to 364??C. The Mg/K2 method gives a temperature of about 350??C, Mg/Li2 about 282??, and Na/Li 395??-418??C. -from Authors

  11. An experimental system for coiled tubing partial underbalanced drilling (CT-PUBD) technique

    NASA Astrophysics Data System (ADS)

    Shi, H. Z.; Ji, Z. S.; Zhao, H. Q.; Chen, Z. L.; Zhang, H. Z.

    2018-05-01

    To improve the rate of penetration (ROP) in hard formations, a new high-speed drilling technique called Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) is proposed. This method uses a rotary packer to realize an underbalanced condition near the bit by creating a micro-annulus and an overbalanced condition at the main part of the annulus. A new full-scale laboratory experimental system is designed and set up to study the hydraulic characteristics and drilling performance of this method. The system is composed of a drilling system, circulation system, and monitor system, including three key devices, namely, cuttings discharge device, rotary packer, and backflow device. The experimental results showed that the pressure loss increased linearly with the flow rate of the drilling fluid. The high drilling speed of CT-PUBD proved it a better drilling method than the conventional drilling. The experimental system may provide a fundamental basis for the research of CT-PUBD, and the results proved that this new method is feasible in enhancing ROP and guaranteeing the drilling safety.

  12. Surfactants in lubrication – Recent developments

    USDA-ARS?s Scientific Manuscript database

    Lubricants are used in a wide range of industries and applications including: manufacturing (stamping, grinding, drilling, rolling, etc.,); transportation (e.g., engine oils, gear oils, transmission fluids, greases etc.); mining and construction (e.g., hydraulic fluids); medical and personal care (e...

  13. 30 CFR 250.449 - What additional BOP testing requirements must I meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.449 What additional BOP... water to conduct this test. You may use drilling fluids to conduct subsequent tests of a subsea BOP...

  14. 30 CFR 250.449 - What additional BOP testing requirements must I meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.449 What additional BOP... water to conduct this test. You may use drilling fluids to conduct subsequent tests of a subsea BOP...

  15. 30 CFR 250.449 - What additional BOP testing requirements must I meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.449 What... installation. You must use water to conduct this test. You may use drilling fluids to conduct subsequent tests...

  16. 40 CFR 435.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT SOURCE CATEGORY... parameter BCT effluent limitation Produced water Oil & grease The maximum for any one day shall not exceed...

  17. 30 CFR 250.449 - What additional BOP testing requirements must I meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.449 What additional BOP... water to conduct this test. You may use drilling fluids to conduct subsequent tests of a subsea BOP...

  18. 40 CFR 435.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT SOURCE CATEGORY... parameter BCT effluent limitation Produced water Oil & grease The maximum for any one day shall not exceed...

  19. 40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  20. 40 CFR 435.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Effluent limitations guidelines... control technology (BCT). 435.14 Section 435.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  1. 40 CFR 435.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Effluent limitations guidelines... control technology (BCT). 435.14 Section 435.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  2. 40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  3. 40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  4. SYNTHETIC-BASED DRILLING FLUIDS: AN ASSESSMENT OF THE SPATIAL DISTRIBUTION OF TOXICANTS IN SEDIMENTS FROM GULF OF MEXICO DRILLING PLATFORMS

    EPA Science Inventory

    Use of the amphipods, Leptocheirus plumulosus and Ampelisca abdita, in these bioassays presented no major difficulties in the execution of these test protocols. Sensitivity to the toxicants was exhibited by L. plumulosus and survival of control animals was good suggesting the sui...

  5. Methanogenic archaea in marcellus shale: a possible mechanism for enhanced gas recovery in unconventional shale resources.

    PubMed

    Tucker, Yael Tarlovsky; Kotcon, James; Mroz, Thomas

    2015-06-02

    Marcellus Shale occurs at depths of 1.5-2.5 km (5000 to 8000 feet) where most geologists generally assume that thermogenic processes are the only source of natural gas. However, methanogens in produced fluids and isotopic signatures of biogenic methane in this deep shale have recently been discovered. This study explores whether those methanogens are indigenous to the shale or are introduced during drilling and hydraulic fracturing. DNA was extracted from Marcellus Shale core samples, preinjected fluids, and produced fluids and was analyzed using Miseq sequencing of 16s rRNA genes. Methanogens present in shale cores were similar to methanogens in produced fluids. No methanogens were detected in injected fluids, suggesting that this is an unlikely source and that they may be native to the shale itself. Bench-top methane production tests of shale core and produced fluids suggest that these organisms are alive and active under simulated reservoir conditions. Growth conditions designed to simulate the hydrofracture processes indicated somewhat increased methane production; however, fluids alone produced relatively little methane. Together, these results suggest that some biogenic methane may be produced in these wells and that hydrofracture fluids currently used to stimulate gas recovery could stimulate methanogens and their rate of producing methane.

  6. An Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and Clayey Sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mese, Ali; Dvorkin, Jack; Shillinglaw, John

    2000-09-11

    This project include experimental data and a set of models for relating elastic moduli/porosity/texture and static-to-dynamic moduli to strength and failure relationships for unconsolidated sands and clayey sands. The results of the project should provide the industry with a basis for wider use of oil base drilling fluids in water sensitive formations by implementing drill cutting injection into existing wells at abandoned formations and controlling fracture geometry to prevent ground water contamination.

  7. Core break-off mechanism

    NASA Technical Reports Server (NTRS)

    Myrick, Thomas M. (Inventor)

    2003-01-01

    A mechanism for breaking off and retaining a core sample of a drill drilled into a ground substrate has an outer drill tube and an inner core break-off tube sleeved inside the drill tube. The break-off tube breaks off and retains the core sample by a varying geometric relationship of inner and outer diameters with the drill tube. The inside diameter (ID) of the drill tube is offset by a given amount with respect to its outer diameter (OD). Similarly, the outside diameter (OD) of the break-off tube is offset by the same amount with respect to its inner diameter (ID). When the break-off tube and drill tube are in one rotational alignment, the two offsets cancel each other such that the drill can operate the two tubes together in alignment with the drill axis. When the tubes are rotated 180 degrees to another positional alignment, the two offsets add together causing the core sample in the break-off tube to be displaced from the drill axis and applying shear forces to break off the core sample.

  8. Numerical simulation of heat transfer and fluid flow in laser drilling of metals

    NASA Astrophysics Data System (ADS)

    Zhang, Tingzhong; Ni, Chenyin; Zhou, Jie; Zhang, Hongchao; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian

    2015-05-01

    Laser processing as laser drilling, laser welding and laser cutting, etc. is rather important in modern manufacture, and the interaction of laser and matter is a complex phenomenon which should be detailed studied in order to increase the manufacture efficiency and quality. In this paper, a two-dimensional transient numerical model was developed to study the temperature field and molten pool size during pulsed laser keyhole drilling. The volume-of-fluid method was employed to track free surfaces, and melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. Besides, the enthalpy-porosity technique was also applied to account for the latent heat during melting and solidification. Temperature fields and melt pool size were numerically simulated via finite element method. Moreover, the effectiveness of the developed computational procedure had been confirmed by experiments.

  9. Integrated environmental monitoring and multivariate data analysis-A case study.

    PubMed

    Eide, Ingvar; Westad, Frank; Nilssen, Ingunn; de Freitas, Felipe Sales; Dos Santos, Natalia Gomes; Dos Santos, Francisco; Cabral, Marcelo Montenegro; Bicego, Marcia Caruso; Figueira, Rubens; Johnsen, Ståle

    2017-03-01

    The present article describes integration of environmental monitoring and discharge data and interpretation using multivariate statistics, principal component analysis (PCA), and partial least squares (PLS) regression. The monitoring was carried out at the Peregrino oil field off the coast of Brazil. One sensor platform and 3 sediment traps were placed on the seabed. The sensors measured current speed and direction, turbidity, temperature, and conductivity. The sediment trap samples were used to determine suspended particulate matter that was characterized with respect to a number of chemical parameters (26 alkanes, 16 PAHs, N, C, calcium carbonate, and Ba). Data on discharges of drill cuttings and water-based drilling fluid were provided on a daily basis. The monitoring was carried out during 7 campaigns from June 2010 to October 2012, each lasting 2 to 3 months due to the capacity of the sediment traps. The data from the campaigns were preprocessed, combined, and interpreted using multivariate statistics. No systematic difference could be observed between campaigns or traps despite the fact that the first campaign was carried out before drilling, and 1 of 3 sediment traps was located in an area not expected to be influenced by the discharges. There was a strong covariation between suspended particulate matter and total N and organic C suggesting that the majority of the sediment samples had a natural and biogenic origin. Furthermore, the multivariate regression showed no correlation between discharges of drill cuttings and sediment trap or turbidity data taking current speed and direction into consideration. Because of this lack of correlation with discharges from the drilling location, a more detailed evaluation of chemical indicators providing information about origin was carried out in addition to numerical modeling of dispersion and deposition. The chemical indicators and the modeling of dispersion and deposition support the conclusions from the multivariate statistics. Integr Environ Assess Manag 2017;13:387-395. © 2016 SETAC. © 2016 SETAC.

  10. Play-fairway analysis for geothermal exploration: Examples from the Great Basin, western USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siler, Drew L; Faulds, James E

    2013-10-27

    Elevated permeability within fault systems provides pathways for circulation of geothermal fluids. Future geothermal development depends on precise and accurate location of such fluid flow pathways in order to both accurately assess geothermal resource potential and increase drilling success rates. The collocation of geologic characteristics that promote permeability in a given geothermal system define the geothermal ‘fairway’, the location(s) where upflow zones are probable and where exploration efforts including drilling should be focused. We define the geothermal fairway as the collocation of 1) fault zones that are ideally oriented for slip or dilation under ambient stress conditions, 2) areas withmore » a high spatial density of fault intersections, and 3) lithologies capable of supporting dense interconnected fracture networks. Areas in which these characteristics are concomitant with both elevated temperature and fluids are probable upflow zones where economic-scale, sustainable temperatures and flow rates are most likely to occur. Employing a variety of surface and subsurface data sets, we test this ‘play-fairway’ exploration methodology on two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These analyses, based on 3D structural and stratigraphic framework models, reveal subsurface characteristics about each system, well beyond the scope of standard exploration methods. At Brady’s, the geothermal fairways we define correlate well with successful production wells and pinpoint several drilling targets for maintaining or expanding production in the field. In addition, hot-dry wells within the Brady’s geothermal field lie outside our defined geothermal fairways. At Astor Pass, our play-fairway analysis provides for a data-based conceptual model of fluid flow within the geothermal system and indicates several targets for exploration drilling.« less

  11. Formation of ore minerals in metamorphic rocks of the German continental deep drilling site (KTB)

    NASA Astrophysics Data System (ADS)

    Kontny, A.; Friedrich, G.; Behr, H. J.; de Wall, H.; Horn, E. E.; Möller, P.; Zulauf, G.

    1997-08-01

    The German Continental Deep Drilling Program (KTB) drilled a 9.1 km deep profile through amphibolite facies metamorphic rocks and reached in situ temperatures of 265°C. Each lithologic unit is characterized by typical ore mineral assemblages related to the regional metamorphic conditions. Paragneisses contain pyrrhotite + rutile + ilmenite ± graphite, metabasic units bear ilmenite + rutile + pyrrhotite ± pyrite, and additionally, the so-called variegated units yield pyrrhotite + titanite assemblages. In the latter unit, magnetite + ilmenite + rutile + titanite assemblages related to the lower amphibolite facies breakdown of ilmenite-hematite solid solution also occur locally. Retrograde hydrothermal mineralization which commenced during Upper Carboniferous times is characterized by the following geochemical conditions: (1) low saline Na-K-Mg-Cl fluids with sulfur and oxygen fugacities at the pyrite-pyrrhotite buffer and temperatures of 400-500°C, (2) fluids with CO2, CH4±N2, andpH, Eh, sulfur, and oxygen fugacity in the stability field of graphite + pyrite at temperatures of 280-350° and (3) moderate to high saline Ca-Na-Cl fluids with CH4+ N2; sulfur and oxygen fugacity are in the stability field of pyrrhotite at temperatures <300°C. The latter environment is confirmed by in situ conditions found at the bottom of the deep drilling. Monoclinic, ferrimagnetic pyrrhotite is the main carrier of magnetization which disappears below about 8.6 km, corresponding to in situ temperatures of about 250°C. Below this depth, hexagonal antiferromagnetic pyrrhotite with a Curie temperature of 260°C is the stable phase. Temperature-dependent transformation of pyrrhotite and the reaching of its Curie isotherm within the Earth crust are one of the striking results of the KTB deep drilling project.

  12. Seismic attributes and advanced computer algorithm to predict formation pore pressure: Qalibah formation of Northwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Nour, Abdoulshakour M.

    Oil and gas exploration professionals have long recognized the importance of predicting pore pressure before drilling wells. Pre-drill pore pressure estimation not only helps with drilling wells safely but also aids in the determination of formation fluids migration and seal integrity. With respect to the hydrocarbon reservoirs, the appropriate drilling mud weight is directly related to the estimated pore pressure in the formation. If the mud weight is lower than the formation pressure, a blowout may occur, and conversely, if it is higher than the formation pressure, the formation may suffer irreparable damage due to the invasion of drilling fluids into the formation. A simple definition of pore pressure is the pressure of the pore fluids in excess of the hydrostatic pressure. In this thesis, I investigated the utility of advance computer algorithm called Support Vector Machine (SVM) to learn the pattern of high pore pressure regime, using seismic attributes such as Instantaneous phase, t*Attenuation, Cosine of Phase, Vp/Vs ratio, P-Impedance, Reflection Acoustic Impedance, Dominant frequency and one well attribute (Mud-Weigh) as the learning dataset. I applied this technique to the over pressured Qalibah formation of Northwest Saudi Arabia. The results of my research revealed that in the Qalibah formation of Northwest Saudi Arabia, the pore pressure trend can be predicted using SVM with seismic and well attributes as the learning dataset. I was able to show the pore pressure trend at any given point within the geographical extent of the 3D seismic data from which the seismic attributes were derived. In addition, my results surprisingly showed the subtle variation of pressure within the thick succession of shale units of the Qalibah formation.

  13. Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers.

    PubMed

    Katayama, Taiki; Yoshioka, Hideyoshi; Muramoto, Yoshiyuki; Usami, Jun; Fujiwara, Kazuhiro; Yoshida, Satoshi; Kamagata, Yoichi; Sakata, Susumu

    2015-02-01

    The Minami-Kanto gas field, where gases are dissolved in formation water, is a potential analogue for a marine gas hydrate area because both areas are characterized by the accumulation of microbial methane in marine turbidite sand layers interbedded with mud layers. This study examined the physicochemical impacts associated with natural gas production and well drilling on the methanogenic activity and composition in this gas field. Twenty-four gas-associated formation water samples were collected from confined sand aquifers through production wells. The stable isotopic compositions of methane in the gases indicated their origin to be biogenic via the carbonate reduction pathway. Consistent with this classification, methanogenic activity measurements using radiotracers, culturing experiments and molecular analysis of formation water samples indicated the predominance of hydrogenotrophic methanogenesis. The cultivation of water samples amended only with methanogenic substrates resulted in significant increases in microbial cells along with high-yield methane production, indicating the restricted availability of substrates in the aquifers. Hydrogenotrophic methanogenic activity increased with increasing natural gas production from the corresponding wells, suggesting that the flux of substrates from organic-rich mudstones to adjacent sand aquifers is enhanced by the decrease in fluid pressure in sand layers associated with natural gas/water production. The transient predominance of methylotrophic methanogens, observed for a few years after well drilling, also suggested the stimulation of the methanogens by the exposure of unutilized organic matter through well drilling. These results provide an insight into the physicochemical impacts on the methanogenic activity in biogenic gas deposits including marine gas hydrates.

  14. Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers

    PubMed Central

    Katayama, Taiki; Yoshioka, Hideyoshi; Muramoto, Yoshiyuki; Usami, Jun; Fujiwara, Kazuhiro; Yoshida, Satoshi; Kamagata, Yoichi; Sakata, Susumu

    2015-01-01

    The Minami-Kanto gas field, where gases are dissolved in formation water, is a potential analogue for a marine gas hydrate area because both areas are characterized by the accumulation of microbial methane in marine turbidite sand layers interbedded with mud layers. This study examined the physicochemical impacts associated with natural gas production and well drilling on the methanogenic activity and composition in this gas field. Twenty-four gas-associated formation water samples were collected from confined sand aquifers through production wells. The stable isotopic compositions of methane in the gases indicated their origin to be biogenic via the carbonate reduction pathway. Consistent with this classification, methanogenic activity measurements using radiotracers, culturing experiments and molecular analysis of formation water samples indicated the predominance of hydrogenotrophic methanogenesis. The cultivation of water samples amended only with methanogenic substrates resulted in significant increases in microbial cells along with high-yield methane production, indicating the restricted availability of substrates in the aquifers. Hydrogenotrophic methanogenic activity increased with increasing natural gas production from the corresponding wells, suggesting that the flux of substrates from organic-rich mudstones to adjacent sand aquifers is enhanced by the decrease in fluid pressure in sand layers associated with natural gas/water production. The transient predominance of methylotrophic methanogens, observed for a few years after well drilling, also suggested the stimulation of the methanogens by the exposure of unutilized organic matter through well drilling. These results provide an insight into the physicochemical impacts on the methanogenic activity in biogenic gas deposits including marine gas hydrates. PMID:25105906

  15. Changes in Ultrasonic Velocity from Fluid Substitution, Calculated with Laboratory Methods, Digital Rock Physics, and Biot Theory

    NASA Astrophysics Data System (ADS)

    Goldfarb, E. J.; Ikeda, K.; Tisato, N.

    2017-12-01

    Seismic and ultrasonic velocities of rocks are function of several variables including fluid saturation and type. Understanding the effect of each variable on elastic waves can be valuable when using seismic methods for subsurface modeling. Fluid type and saturation are of specific interest to volcanology, water, and hydrocarbon exploration. Laboratory testing is often employed to understand the effects of fluids on elastic waves. However, laboratory testing is expensive and time consuming. It normally requires cutting rare samples into regular shapes. Fluid injection can also destroy specimens as removing the fluid after testing can prove difficult. Another option is theoretical modeling, which can be used to predict the effect of fluids on elastic properties, but it is often inaccurate. Alternatively, digital rock physics (DRP) can be used to investigate the effect of fluid substitution. DRP has the benefit of being non invasive, as it does not require regular sample shapes or fluid injection. Here, we compare the three methods for dry and saturated Berea sandstone to test the reliability of DRP. First, ultrasonic velocities were obtained from laboratory testing. Second, for comparison, we used a purely theoretical approach - i.e., Hashin-Shtrikman and Biot theory - to estimate the wave speeds at dry and wet conditions. Third, we used DRP. The dry sample was scanned with micro Computed Tomography (µCT), and a three dimensional (3D) array was recorded. We employed a segmentation-less method to convert each 3D array value to density, porosity, elastic moduli, and wave speeds. Wave propagation was simulated numerically at similar frequency as the laboratory. To simulate fluid substitution, we numerically substituted air values for water and repeated the simulation. The results from DRP yielded similar velocities to the laboratory, and accurately predicted the velocity change from fluid substitution. Theoretical modeling could not accurately predict velocity, and under-predicted the velocity change from fluid substitution. The mathematical approach proved to be a poor comparison for the laboratory measurement. DRP proved to be effective, and could be used in future with drill cuttings, perhaps to limit the use of expensive cores. DRP could also limit the requirement for physically testing fluid substitution.

  16. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...

  17. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...

  18. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...

  19. Application of Formation Testing While Drilling (GeoTap) for acquiring formation pressure data from the Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    A new technology to acquire wireline quality pressure tests using a Logging While Drilling approach has been successfully implemented few years ago in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic. The Formation Tester While Drilling tool (GeoTap) uses a testing sequence similar to wireline tools. A single probe is extended to the borehole wall and a small pretest volume withdrawn from the formation. The resulting pressure transient is then analyzed for formation pressure, formation permeability and mobility information. Up-link and down-link capabilities have been added to achieve test control and quality feedback. An efficient downlink algorithm is used downhole to analyze the data. The parameters and pressure data are transmitted to the surface in real-time for continuous monitoring of the test. More detailed pressure data is recorded and retrieved after returning to surface. Use of a quartz gauge allows excellent accuracy. Azeri, Chirag and Guneshli fields consist of layered sand reservoirs alternation with shale sequences and detailed pressure data is acquired on a high percentage of wells in order to understand lateral and vertical continuity of different flow units. The formation tester can be utilized with the 'triple combo' Logging While Drilling string which eliminates the need to rig up wireline on many wells. Wireline formation tester runs are time consuming - particularly if high deviation or high overbalance conditions are encountered requiring pipe conveyed techniques. Non-Productive Time is high when the wireline tools are stuck and fishing operations are required. The Sperry Drilling GeoTap formation pressure tester service provides real-time formation pressure measurements. It bridges the critical gap between drilling safety and optimization, by providing early and reliable measurements of key reservoir properties, while improving reservoir understanding and completion design in real time. The GeoTap tester obtains direct pore-pressure measurements as the well is being drilled, with accuracy and precision comparable to that of wireline testers. The GeoTap service can eliminate the time, risk, and cost associated with running pipe-conveyed wireline test tools. It also measures annular and bore pressure while drilling, providing accurate, continuous, real-time hydrostatic pressure, and equivalent circulating density (ECD) information. This aids in determining and maintaining optimal mud weight, reduces formation damage, increases the rate of penetration, and increases operational safety. GeoTap benefits can be improvement of formation evaluation, real-time fluid gradients and fluid mobility (permeability/viscosity indicator), identification of fluid contact points, determination of reservoir connectivity/compartmentalization and depletion, increase safety of operation, determination of optimal mud weight and manage of ECD. We can also continuously monitor wellbore stability for assessments in order to reduce formation damage which in turns will help to increase drilling effectiveness (determine precise overbalance for maximizing ROP and continuously monitor hole-cleaning effectiveness with pressure-while-drilling, while reducing formation damage due to swab/surge). Save time and money by reducing rig down time associated with wireline testing. GeoTap Tool capable of performing more than 150 pressure tests per run and optional orientation of pressure measurement is available (top, right, bottom or left). GeoTap testing has been completed with encouraging results in many wells up to circa 3000m deep. Data has been acquired successfully both in a "Drill-Test-Drill' mode and a "Post-Drill-Test" mode. GeoTap tests have spanned wide ranges of borehole temperature, pressure, mobility as well as formation permeability and overbalance conditions. GeoTap tests in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic have proved that a logging while drilling approach can be successfully employed to acquire formation pressure data in open hole (which is also very useful for fluid gradient analysis, oil water and gas oil contacts delineation/identification).

  20. Mission Specific Platforms: Past achievements and future developments in European led ocean research drilling.

    NASA Astrophysics Data System (ADS)

    Cotterill, Carol; McInroy, David; Stevenson, Alan

    2013-04-01

    Mission Specific Platform (MSP) expeditions are operated by the European Consortium for Ocean Research Drilling (ECORD). Each MSP expedition is unique within the Integrated Ocean Drilling Program (IODP). In order to complement the abilities of the JOIDES Resolution and the Chikyu, the ECORD Science Operator (ESO) must source vessels and technology suitable for each MSP proposal on a case-by-case basis. The result is that ESO can meet scientific requirements in a flexible manner, whilst maintaining the measurements required for the IODP legacy programme. The process of tendering within EU journals for vessels and technology means that the planning process for each MSP Expedition starts many years in advance of the operational phase. Involvement of proposal proponents from this early stage often leads to the recognition for technological research and development to best meet the scientific aims and objectives. One example of this is the planning for the Atlantis Massif proposal, with collaborative development between the British Geological Survey (BGS) and MARUM, University of Bremen, on suitable instruments for seabed drills, with the European Petrophysics Consortium (EPC) driving the development of suitable wireline logging tools that can be used in association with such seabed systems. Other technological developments being undertaken within the European IODP community include in-situ pressure sampling for gas hydrate expeditions, deep biosphere and fluid sampling equipment and CORK technology. This multi-national collaborative approach is also employed by ESO in the operational phase. IODP Expedition 302 ACEX saw vessel and ice management support from Russia and Sweden to facilitate the first drilling undertaken in Arctic sea ice. A review of MSP expeditions past, present and future reveal the significant impact of European led operations and scientific research within the current IODP programme, and also looking forward to the start of the new International Ocean Discovery Programme in October 2013. Key successes encompass technological development, operational procedures in sensitive areas and research into palaeoclimate and shoreline responses to sea level change amongst others. Increased operational flexibility in the new programme only serves to make the future an exciting one for ocean drilling in Europe.

  1. Innovative computational tools for reducing exploration risk through integration of water-rock interactions and magnetotelluric surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Joseph

    2017-04-20

    Mapping permeability distributions in geothermal reservoirs is essential for reducing the cost of geothermal development. To avoid the cost and sampling bias of measuring permeability directly through drilling, we require remote methods of imaging permeability such as geophysics. Electrical resistivity (or its inverse, conductivity) is one of the most sensitive geophysical properties known to reflect long range fluid interconnection and thus the likelihood of permeability. Perhaps the most widely applied geophysical methods for imaging subsurface resistivity is magnetotellurics (MT) due to its relatively great penetration depths. A primary goal of this project is to confirm through ground truthing at existingmore » geothermal systems that MT resistivity structure interpreted integratively is capable of revealing permeable fluid pathways into geothermal systems.« less

  2. Development and Testing of The Lunar Resource Prospector Drill

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; Kleinhenz, J.; Smith, J. T.; Quinn, J.

    2017-12-01

    The goal of the Lunar Resource Prospector (RP) mission is to capture and identify volatiles species within the top one meter layer of the lunar surface. The RP drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RP drill is based on the TRL4 Mars Icebreaker drill and TRL5 LITA drill developed for capturing samples of ice and ice cemented ground on Mars, and represents over a decade of technology development effort. The TRL6 RP drill weighs approximately 15 kg and is rated at just over 500 Watt. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing Station, 4. Feed Stage, and 5. Deployment Stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in 10 cm depth intervals. The first generation, TRL4 Icebreaker drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation, TRL5 LITA drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama, Antarctica, the Arctic, and Greenland. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The modified LITA drill was tested in NASA GRC's lunar vacuum chamber at <10^-5 torr and <200 K. It demonstrated successful capture and transfer of volatile rich frozen samples to a crucible for analysis. The modified LITA drill has also been successfully vibration tested at NASA KSC. The drill was integrated with RP rover at NASA JSC and successfully tested in a lab and in the field, as well as on a large vibration table and steep slope. The latest TRL6 RP drill is currently undergoing testing at NASA GRC lunar chamber facilities.

  3. Well-planning programs give students field-like experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sifferman, T.R.; Chapman, L.

    1983-01-01

    The University of Tulsa recently was given a package of computer well planning and drilling programs that will enable petroleum engineering students to gain valuable experience in designing well programs while still in school. Comprehensive homework assignments are now given in areas of drilling fluids programing, hydraulics, directional wells and surveying. Additional programs are scheduled for next semester.

  4. Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank

    PubMed Central

    Jungbluth, Sean P; Grote, Jana; Lin, Huei-Ting; Cowen, James P; Rappé, Michael S

    2013-01-01

    Despite its immense size, logistical and methodological constraints have largely limited microbiological investigations of the subseafloor basement biosphere. In this study, a unique sampling system was used to collect fluids from the subseafloor basaltic crust via a Circulation Obviation Retrofit Kit (CORK) observatory at Integrated Ocean Drilling Program borehole 1301A, located at a depth of 2667 m in the Pacific Ocean on the eastern flank of the Juan de Fuca Ridge. Here, a fluid delivery line directly accesses a 3.5 million years old basalt-hosted basement aquifer, overlaid by 262 m of sediment, which serves as a barrier to direct exchange with bottom seawater. At an average of 1.2 × 104 cells ml−1, microorganisms in borehole fluids were nearly an order of magnitude less abundant than in surrounding bottom seawater. Ribosomal RNA genes were characterized from basement fluids, providing the first snapshots of microbial community structure using a high-integrity fluid delivery line. Interestingly, microbial communities retrieved from different CORKs (1026B and 1301A) nearly a decade apart shared major community members, consistent with hydrogeological connectivity. However, over three sampling years, the dominant gene clone lineage changed from relatives of Candidatus Desulforudis audaxviator within the bacterial phylum Firmicutes in 2008 to the Miscellaneous Crenarchaeotic Group in 2009 and a lineage within the JTB35 group of Gammaproteobacteria in 2010, and statistically significant variation in microbial community structure was observed. The enumeration of different phylogenetic groups of cells within borehole 1301A fluids supported our observation that the deep subsurface microbial community was temporally dynamic. PMID:22791235

  5. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    PubMed

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  6. The Subsurface Geology of Río Tinto: Material Examined During a Simulated Mars Drilling Mission for the Mars Astrobiology Research and Technology Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  7. Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Chia; Song, Sheng-Rong; Wang, Pei-Ling; Wu, Chung-Che; Mii, Horng-Sheng; MacDonald, John; Shen, Chuan-Chou; John, Cédric M.

    2017-11-01

    The Chingshui geothermal field, a moderate-temperature and water-dominated hydrothermal system, was the site of the first geothermal power plant in Taiwan. Many geological, geophysical and geochemical studies using more than 21 drilled wells have been performed since the 1960s. However, there are still controversies regarding the heat and fluid sources due to the tectonically complicated geological setting. To clarify the heat and fluid sources, we analyzed clumped isotopes with carbon and oxygen isotopic compositions of calcite scaling in geothermal wells and veins on outcrops and calculated the δ18O values of the source fluids. Two populations of δ18O values were calculated: -5.8 ± 0.8‰ VSMOW from scaling in the well and -1.0 ± 1.6‰ to 10.0 ± 1.3‰ VSMOW from outcropping calcite veins, indicative of meteoric and magmatic fluid sources, respectively. Meanwhile, two hydrothermal reservoirs at different depths have been identified by magnetotelluric (MT) imaging with micro-seismicity underneath this area. As a result, we propose a two-reservoir model: the shallow reservoir provides fluids from meteoric water for the scaling sampled from wells, whereas the deep reservoir provides magmatic fluids from deep marble decarbonization recorded in outcropping calcite veins.

  8. Production and disposal of waste materials from gas and oil extraction from the Marcellus Shale Play in Pennsylvania

    USGS Publications Warehouse

    Maloney, Kelly O.; Yoxtheimer, David A.

    2012-01-01

    The increasing world demand for energy has led to an increase in the exploration and extraction of natural gas, condensate, and oil from unconventional organic-rich shale plays. However, little is known about the quantity, transport, and disposal method of wastes produced during the extraction process. We examined the quantity of waste produced by gas extraction activities from the Marcellus Shale play in Pennsylvania for 2011. The main types of wastes included drilling cuttings and fluids from vertical and horizontal drilling and fluids generated from hydraulic fracturing [i.e., flowback and brine (formation) water]. Most reported drill cuttings (98.4%) were disposed of in landfills, and there was a high amount of interstate (49.2%) and interbasin (36.7%) transport. Drilling fluids were largely reused (70.7%), with little interstate (8.5%) and interbasin (5.8%) transport. Reported flowback water was mostly reused (89.8%) or disposed of in brine or industrial waste treatment plants (8.0%) and largely remained within Pennsylvania (interstate transport was 3.1%) with little interbasin transport (2.9%). Brine water was most often reused (55.7%), followed by disposal in injection wells (26.6%), and then disposed of in brine or industrial waste treatment plants (13.8%). Of the major types of fluid waste, brine water was most often transported to other states (28.2%) and to other basins (9.8%). In 2011, 71.5% of the reported brine water, drilling fluids, and flowback was recycled: 73.1% in the first half and 69.7% in the second half of 2011. Disposal of waste to municipal sewage treatment plants decreased nearly 100% from the first half to second half of 2011. When standardized against the total amount of gas produced, all reported wastes, except flowback sands, were less in the second half than the first half of 2011. Disposal of wastes into injection disposal wells increased 129.2% from the first half to the second half of 2011; other disposal methods decreased. Some issues with data were uncovered during the analytical process (e.g., correct geospatial location of disposal sites and the proper reporting of end use of waste) that obfuscated the analyses; correcting these issues will help future analyses.

  9. Research on high speed drilling technology and economic integration evaluation in Oilfield

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Ni, Hongjian; Cheng, Na; Song, Jingbo

    2018-01-01

    The carbonate reservoir in the oilfield mainly formed in Ordovician System and Carboniferous System. The geology here is very complicated, with high heterogeneity. It gets much more difficult to control the well deflection in Permian system so that high accident ratio could be expected. The buried depth of the reservoir is large, normally 4600-6600m deep. The temperature of the layer is higher than 132 and the pressure is greater than 62MPa. The reservoir is with a high fluid properties, mainly including thin oil, heavy oil, condensate oil, gas and so on; the ground is very hard to drill, so we can foresee low drilling speed, long drilling period and high drilling cost, which will surely restrict the employing progress of the reservoir.

  10. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.

    PubMed

    Alam, Khurshid

    2016-05-12

    Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.

  11. Study on the effect of innovative leaching solvent on the oil removal for oily drilling cuttings

    NASA Astrophysics Data System (ADS)

    Li, Long; Ma, Cha; Hao, Weiwei; Li, Mu; Huang, Zhao; Liu, Yushuang

    2018-02-01

    A new type of leaching solvent for oily drilling cuttings was developed, and the effect of leaching solvent on the oil removal for oily cuttings was investigated. The results indicated that the leaching solvent had good capacity of oil removal for oily cuttings, and the oil content of treated cuttings is less than 0.6%. The leaching solvent could be separated from the oil phase through distillation, and the recyclable solvent could be reused to treat other cuttings. Moreover, oil resources adsorbed on the oily cuttings could be recycled and reused to prepare new drilling fluids, so the drilling cost could be reduced greatly. As a result, the leaching solvent could treat the oily cuttings effectively, and recycle and reuse oil resources, and thus produce great economic benefits. It can play an essential role in safe drilling jobs and improvement of drilling efficiency in the future.

  12. Influence of plasma shock wave on the morphology of laser drilling in different environments

    NASA Astrophysics Data System (ADS)

    Zhai, Zhaoyang; Wang, Wenjun; Mei, Xuesong; Wang, Kedian; Yang, Huizhu

    2017-05-01

    Nanosecond pulse laser was used to study nickel-based alloy drilling and compare processing results of microholes in air environment and water environment. Through analysis and comparison, it's found that environmental medium had obvious influence on morphology of laser drilling. High-speed camera was used to shoot plasma morphology during laser drilling process, theoretical formula was used to calculate boundary dimension of plasma and shock wave velocity, and finally parameters were substituted into computational fluid dynamics simulation software to obtain solutions. Obtained analysis results could intuitively explain different morphological features and forming reasons between laser drilling in air environment and water environment in the experiment from angle of plasma shock waves. By comparing simulation results and experimental results, it could help to get an understanding of formation mechanism of microhole morphology, thus providing basis for further improving process optimization of laser drilling quality.

  13. Geothermal energy geopressure subprogram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The followingmore » are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)« less

  14. Core Across the San Andreas Fault at SAFOD - Photographs, Physical Properties Data, and Core-Handling Procedures

    NASA Astrophysics Data System (ADS)

    Kirschner, D. L.; Carpenter, B.; Keenan, T.; Sandusky, E.; Sone, H.; Ellsworth, B.; Hickman, S.; Weiland, C.; Zoback, M.

    2007-12-01

    Core samples were obtained that cross three faults of the San Andreas Fault Zone north of Parkfield, California, during the summer of 2007. The cored intervals were obtained by sidetracking off the SAFOD Main Hole that was rotary drilled across the San Andreas in 2005. The first cored interval targeted the pronounced lithologic boundary between the Salinian terrane and the Great Valley and Franciscan formations. Eleven meters of pebbly conglomerate (with minor amounts of fine sands and shale) were obtained from 3141 to 3152 m (measured depth, MD). The two conglomerate units are heavily fractured with many fractures having accommodated displacement. Within this cored interval, there is a ~1m zone with highly sheared, fine-grained material, possibly ultracataclasite in part. The second cored interval crosses a creeping segment of a fault that has been deforming the cemented casing of the adjacent Main Hole. This cored interval sampled the fault 100 m above a seismogenic patch of M2 repeating earthquakes. Thirteen meters of core were obtained across this fault from 3186 to 3199 m (MD). This fault, which is hosted primarily in siltstones and shales, contains a serpentinite body embedded in a highly sheared shale and serpentinite-bearing fault gouge unit. The third cored interval crosses a second creeping fault that has also been deforming the cemented casing of the Main Hole. This fault, which is the most rapidly shearing fault in the San Andreas fault zone based on casing deformation, contains multiple fine- grained clay-rich fault strands embedded in highly sheared shales and lesser deformed sandstones. Initial processing of the cores was carried out at the drill site. Each core came to the surface in 9 meter-long aluminum core barrels. These were cut into more manageable three-foot sections. The quarter-inch-thick aluminum liner of each section was cut and then split apart to reveal the 10 cm diameter cores. Depending on the fragility and porosity of the rock, the drilling fluid was removed either by washing with dilute calcium chloride brine (to approximately match the salinity of the formation fluids) or by gently scraping away drilling mud on the core surface. Once cleaned, each core section was photographed to very high resolution on a Geotek Multi- Sensor Core Logging (MSCL) system. This system was also used to determine the bulk density and magnetic susceptibility of each section. The 25 MB high-resolution photographs and the raw and processed physical properties data were then uploaded to the ICDP web server in Potsdam for public access (http://safod.icdp- online.org). The cores will be archived at the Gulf Coast Repository of the Integrated Ocean Drilling Program in College Station, TX. The MSCL photographs, physical property measurements, and other related data, such as geophysical logs, will be integrated using CoreWall, and will be on display at the meeting. All samples, data, and imagery are available to the science community.

  15. Viruses in the Oceanic Basement.

    PubMed

    Nigro, Olivia D; Jungbluth, Sean P; Lin, Huei-Ting; Hsieh, Chih-Chiang; Miranda, Jaclyn A; Schvarcz, Christopher R; Rappé, Michael S; Steward, Grieg F

    2017-03-07

    Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement), but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C) were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B) drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 10 5 to 2 × 10 5  ml -1 ( n = 8), higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27). Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%). Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR)-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737), 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome. IMPORTANCE The hydrothermally active ocean basement is voluminous and likely provided conditions critical to the origins of life, but the microbiology of this vast habitat is not well understood. Viruses in particular, although integral to the origins, evolution, and ecology of all life on earth, have never been documented in basement fluids. This report provides the first estimate of free virus particles (virions) within fluids circulating through the extrusive basalt of the seafloor and describes the morphological and genetic signatures of basement viruses. These data push the known geographical limits of the virosphere deep into the ocean basement and point to a wealth of novel viral diversity, exploration of which could shed light on the early evolution of viruses. Copyright © 2017 Nigro et al.

  16. Systematics of Alkali Metals in Pore Fluids from Serpentinite Mud Volcanoes: IODP Expedition 366

    NASA Astrophysics Data System (ADS)

    Wheat, C. G.; Ryan, J.; Menzies, C. D.; Price, R. E.; Sissmann, O.

    2017-12-01

    IODP Expedition 366 focused, in part, on the study of geo­chemical cycling, matrix alteration, material and fluid transport, and deep biosphere processes within the subduction channel in the Mariana forearc. This was accomplished through integrated sampling of summit and flank regions of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts). These edifices present a transect of depths to the Pacific Plate, allowing one to characterize thermal, pressure and compositional effects on processes that are associated with the formation of serpentinite mud volcanoes and continued activity below and within them. Previous coring on ODP Legs 125 and 195 at two other serpentinite mud volcanoes (Conical and South Chamorro Seamounts) and piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add to this transect of sites where deep-sourced material is discharged at the seafloor. Pore waters (149 samples) were squeezed from serpentinite materials to determine the composition of deep-sourced fluid and to assess the character, extent, and effect of diagenetic reactions and mixing with seawater on the flanks of the seamounts as the serpentinite matrix weathers. In addition two Water Sampler Temperature Tool (WSTP) fluid samples were collected within two of the cased boreholes, each with at least 30 m of screened casing that allows formations fluids to discharge into the borehole. Shipboard results for Na and K record marked seamount-to-seamount differences in upwelling summit fluids, and complex systematics in fluids obtained from flank sites. Here we report new shore-based Rb and Cs measurements, two elements that have been used to constrain the temperature of the deep-sourced fluid. Data are consistent with earlier coring and drilling expeditions, resulting in systematic changes with depth (and by inference temperature) to the subduction channel.

  17. Determining temperature limits of drilling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thuren, J.B.; Chenevert, M.E.; Huang, W.T.W.

    A capillary three tube viscometer has been designed which allows the measurement of rheological properties of time dependent non-Newtonian fluids in laminar flow at high temperture and pressure. The objective of this investigation is to determine the temperature stability of clay-water suspensions containing various drilling fluid additives. The additives studied consisted of viscosifiers, filtrate reducers, and chemical thinners. The temperature range studied is from room temperature to 550{sup 0}F. The system pressure is consistently maintained above the vapor pressure. The Bentonite and water standardized base mud used is equivalent to a 25 ppB fluid. Stabilization of the base mud ismore » necessary to obtain steady state laminar flow conditions and to obtain reliable temperature thinning effects with each temperature interval under investigation. Generally the temperature levels are maintained for one hour until 550{sup 0}F is attained. The last interval is then maintained until system fluid degradation occurs. Rheological measurements are obtained from differential pressure transducers located in a three diameter tube test section and externally at ambient conditions from a Baroid Rotational Viscometer. The power law model for non-Newtonian fluids is used to correlate the data.« less

  18. ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Chu, Philip; Spring, Justin; Zacny, Kris

    2014-01-01

    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.

  19. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    NASA Astrophysics Data System (ADS)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning fluid-rock interaction processes in geothermal reservoirs, and their effects on rock properties, that will aid improved understanding of the evolution of high-temperature geothermal systems, provide constraints to parameterization of reservoir models and assist future well planning and design through prediction of rock properties in the context of drilling strategies.

  20. Fault zone hydrogeologic properties and processes revealed by borehole temperature monitoring

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.

    2015-12-01

    High-resolution borehole temperature monitoring can provide valuable insight into the hydrogeologic structure of fault zones and transient processes that affect fault zone stability. Here we report on results from a subseafloor temperature observatory within the Japan Trench plate boundary fault. In our efforts to interpret this unusual dataset, we have developed several new methods for probing hydrogeologic properties and processes. We illustrate how spatial variations in the thermal recovery of the borehole after drilling and other spectral characteristics provide a measure of the subsurface permeability architecture. More permeable zones allow for greater infiltration of cool drilling fluids, are more greatly thermally disturbed, and take longer to recover. The results from the JFAST (Japan Trench Fast Drilling Project) observatory are consistent with geophysical logs, core data, and other hydrologic observations and suggest a permeable damage zone consisting of steeply dipping faults and fractures overlays a low-permeability clay-rich plate boundary fault. Using high-resolution time series data, we have also developed methods to map out when and where fluid advection occurs in the subsurface over time. In the JFAST data, these techniques reveal dozens of transient earthquake-driven fluid pulses that are spatially correlated and consistently located around inferred permeable areas of the fault damage zone. These observations are suspected to reflect transient fluid flow driven by pore pressure changes in response to dynamic and/or static stresses associated with nearby earthquakes. This newly recognized hydrologic phenomenon has implications for understanding subduction zone heat and chemical transport as well as the redistribution of pore fluid pressure which influences fault stability and can trigger other earthquakes.

  1. Development of Overpressures at Nankai Accretionary Prism, Ocean Drilling Program Sites 1173 and 1174

    NASA Astrophysics Data System (ADS)

    Gamage, K.; Screaton, E.

    2003-12-01

    In this study, we used a one-dimensional model of sedimentation, initial prism loading, and fluid flow to examine the development of overpressures at the toe of the Nankai accretionary complex. A permeability-porosity relationship was established for hemipelagic sediments from laboratory measured permeabilities as an input to the model. Vertical permeabilities were measured for 10 core samples from the Ocean Drilling Program (ODP) Leg 190, Sites 1173 and 1174, from the upper and lower Shikoku Basin facies. Both sites were drilled along the Muroto Transect through the dècollement zone or its equivalent. Site 1173 is located 11 km seaward of the deformation front and it represents the undeformed incoming sediments, where as Site 1174 represents sediments within the proto-thrust zone. Although turbidite-rich sediments dominate the Nankai accretionary prism, the dècollement and underthrust sediments are primarily composed of hemipelagic muds. Using the permeability-porosity relationship, our modeling results indicate excess pore pressures that are greater than 30% of lithostatic pressure at the toe of the prism at a convergence rate of 4cm/yr. These values are slightly lower than previously inferred excess pore pressures estimated from porosity data. Additional runs were conducted to simulate a 10-m thick low permeability barrier at the dècollement where vertical fluid flow is restricted. The low permeability barrier required a permeability less than 1 x 10-19 m2 to generate excess pore pressures greater than 50% of lithostatic pressure. Modeling was further extended to test the significance of variable prism loading rates due to uncertainties in the convergence rate and affects of lateral stress above the dècollement.

  2. Evaluation of geophysical logs, phase I, for Crossley Farms Superfund Site, Berks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1998-01-01

    Twenty-one wells were drilled at Crossley Farms Superfund Site between December 15, 1987, and May 1, 1988, to define and monitor the horizontal and vertical distribution of ground-water contamination emanating from a suspected contaminant source area (Blackhead Hill). Eight well clusters were drilled on or near the Crossley Site and three well clusters were drilled at locations hydrologically down gradient from the site. Depths of wells range from 21 to 299 feet below land surface. These wells were installed in saprolite in shallow, intermediate, and deep water-producing zones of the fractured bedrock aquifer. Borehole-geophysical and video logging were conducted between April 24, 1997, and May 8, 1997, to determine the water-producing zones, water-receiving zones, zones of vertical flow, borehole depth, and casing integrity in each well. This data and interpretation will be used to determine the location of the well intake for the existing open-hole wells, which will be retrofitted to isolate and monitor water-producing zones and prevent further cross-contamination within each open borehole, and identify wells that may need rehabilitation or replacement. Caliper and video logs were used to locate fractures, inflections on fluid-temperature and fluidresistivity logs indicated possible fluid-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video logs, and driller?s notes, all wells will be constructed so that water-level fluctuations can be monitored and discrete water samples collected from shallow, intermediate, and deep water-bearing zones in each well. Geophysical logs were run on seven bedrock and two deep bedrock wells. Gamma logs were run on 10 bedrock wells. Twenty-two wells were inspected visually with the borehole video camera for casing integrity.

  3. Uranium-series disequilibrium in tuffs from Yucca Mountain, Nevada, as evidence of pore-fluid flow over the last million years

    USGS Publications Warehouse

    Gascoyne, M.; Miller, N.H.; Neymark, L.A.

    2002-01-01

    Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of 'bomb' 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th/234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95??0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10??0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean = 0.94??0.07). These data indicate that 234U has been removed from the rock samples in the last ???350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock, More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U sorption, precipitation and re-solution are believed to be occurring and would account for these anomalous results but have not been included in the model. Despite the difficulties, the U-series data suggest that fractured rock, specifically the Sundance and Drill Hole Wash faults, are not preferred flow paths for groundwater flowing through the Topopah Spring tuff and, by implication, rapid-flow, within 50 a, from the surface to the level of the ESF is improbable. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOEpatents

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  5. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinzler, Charles C.; Zediker, Mark S.; Faircloth, Brian O.

    2016-12-06

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  6. 30 CFR 250.224 - What information on support vessels, offshore vehicles, and aircraft you will use must accompany...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the transportation method and quantities of drilling fluids and chemical products (see § 250.213(b... description of the composition, quantities, and destination(s) of solid and liquid wastes (see § 250.217(a)) you will transport from your drilling unit. (e) Vicinity map. A map showing the location of your...

  7. Kelly mud saver valve sub

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddoch, J.A.

    1986-12-02

    A mud saver valve is described for preventing drilling mud from escaping from a kelly when a drill string is broken below the kelly, the valve comprising: a tubular valve body having first and second ends, the first end being provided with means for attachment in fluid communicating relationship with the kelly, the second end being provided with means for attachment to the drill string; an annular seat fixed in the interior of the valve body adjacent its first end; a tubular closure member within the valve body. The closure member is provided with a selectively closed seating end formore » seating in valve closing engagement with the annular seat, an open non-seating end in fluid communicating relationship with the drill string, and an annular expansion in the outer diameter of the closure member adjacent the seating end; a top and bottom spacer ring disposed in sliding relationship around the tubular closure member intermediate the annular expansion and the non-seating end of the closure member. The spacer ring and annular expansion cooperatively define an annular chamber around the closure member; and a helical spring disposed around the closure member towards the annular seat.« less

  8. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08835 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  9. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08778 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  10. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08775 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  11. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08773 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  12. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08822 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  13. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08831 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  14. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08805 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  15. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08784 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  16. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08836 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  17. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08799 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  18. Design and testing of coring bits on drilling lunar rock simulant

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo; Ma, Chao; Zhang, Hui; Qin, Hongwei; Deng, Zongquan

    2017-02-01

    Coring bits are widely utilized in the sampling of celestial bodies, and their drilling behaviors directly affect the sampling results and drilling security. This paper introduces a lunar regolith coring bit (LRCB), which is a key component of sampling tools for lunar rock breaking during the lunar soil sampling process. We establish the interaction model between the drill bit and rock at a small cutting depth, and the two main influential parameters (forward and outward rake angles) of LRCB on drilling loads are determined. We perform the parameter screening task of LRCB with the aim to minimize the weight on bit (WOB). We verify the drilling load performances of LRCB after optimization, and the higher penetrations per revolution (PPR) are, the larger drilling loads we gained. Besides, we perform lunar soil drilling simulations to estimate the efficiency on chip conveying and sample coring of LRCB. The results of the simulation and test are basically consistent on coring efficiency, and the chip removal efficiency of LRCB is slightly lower than HIT-H bit from simulation. This work proposes a method for the design of coring bits in subsequent extraterrestrial explorations.

  19. Computational fluid dynamic modeling of a medium-sized surface mine blasthole drill shroud

    PubMed Central

    Zheng, Y.; Reed, W.R.; Zhou, L.; Rider, J.P.

    2016-01-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) recently developed a series of models using computational fluid dynamics (CFD) to study airflows and respirable dust distribution associated with a medium-sized surface blasthole drill shroud with a dry dust collector system. Previously run experiments conducted in NIOSH’s full-scale drill shroud laboratory were used to validate the models. The setup values in the CFD models were calculated from experimental data obtained from the drill shroud laboratory and measurements of test material particle size. Subsequent simulation results were compared with the experimental data for several test scenarios, including 0.14 m3/s (300 cfm) and 0.24 m3/s (500 cfm) bailing airflow with 2:1, 3:1 and 4:1 dust collector-to-bailing airflow ratios. For the 2:1 and 3:1 ratios, the calculated dust concentrations from the CFD models were within the 95 percent confidence intervals of the experimental data. This paper describes the methodology used to develop the CFD models, to calculate the model input and to validate the models based on the experimental data. Problem regions were identified and revealed by the study. The simulation results could be used for future development of dust control methods for a surface mine blasthole drill shroud. PMID:27932851

  20. Hydraulics calculation in drilling simulator

    NASA Astrophysics Data System (ADS)

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  1. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2003-07-01

    This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2003 through June 2003. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). Accomplishments included the following: (1) Hughes Christensen has recently expressed interest in the possibility of a program to examine cutter impact testing, which would be useful in a better understanding of the physics of rock impact. Their interest however is notmore » necessarily fluid hammers, but to use the information for drilling bit development. (2) Novatek (cost sharing supplier of tools) has informed the DOE project manager that their tool may not be ready for ''optimization'' testing late summer 2003 (August-September timeframe) as originally anticipated. During 3Q Novatek plans to meet with TerraTek to discuss progress with their tool for 4Q 2003 testing. (3) A task for an addendum to the hammer project related to cutter impact studies was written during 2Q 2003. (4) Smith International internally is upgrading their hammer for the optimization testing phase. One currently known area of improvement is their development program to significantly increase the hammer blow energy.« less

  2. Making Safe Surgery Affordable: Design of a Surgical Drill Cover System for Scale.

    PubMed

    Buchan, Lawrence L; Black, Marianne S; Cancilla, Michael A; Huisman, Elise S; Kooyman, Jeremy J R; Nelson, Scott C; OʼHara, Nathan N; OʼBrien, Peter J; Blachut, Piotr A

    2015-10-01

    Many surgeons in low-resource settings do not have access to safe, affordable, or reliable surgical drilling tools. Surgeons often resort to nonsterile hardware drills because they are affordable, robust, and efficient, but they are impossible to sterilize using steam. A promising alternative is to use a Drill Cover system (a sterilizable fabric bag plus surgical chuck adapter) so that a nonsterile hardware drill can be used safely for surgical bone drilling. Our objective was to design a safe, effective, affordable Drill Cover system for scale in low-resource settings. We designed our device based on feedback from users at Mulago Hospital (Kampala, Uganda) and focused on 3 main aspects. First, the design included a sealed barrier between the surgical field and hardware drill that withstands pressurized fluid. Second, the selected hardware drill had a maximum speed of 1050 rpm to match common surgical drills and reduce risk of necrosis. Third, the fabric cover was optimized for ease of assembly while maintaining a sterile technique. Furthermore, with the Drill Cover approach, multiple Drill Covers can be provided with a single battery-powered drill in a "kit," so that the drill can be used in back-to-back surgeries without requiring immediate sterilization. The Drill Cover design presented here provides a proof-of-concept for a product that can be commercialized, produced at scale, and used in low-resource settings globally to improve access to safe surgery.

  3. Systems and Methods for Gravity-Independent Gripping and Drilling

    NASA Technical Reports Server (NTRS)

    Thatte, Nitish (Inventor); King, Jonathan P. (Inventor); Parness, Aaron (Inventor); Frost, Matthew A. (Inventor)

    2016-01-01

    Systems and methods for gravity independent gripping and drilling are described. The gripping device can also comprise a drill or sampling devices for drilling and/or sampling in microgravity environments, or on vertical or inverted surfaces in environments where gravity is present. A robotic system can be connected with the gripping and drilling devices via an ankle interface adapted to distribute the forces realized from the robotic system.

  4. From vein precipitates to deformation and fluid rock interaction within a SSZ: Insights from the Izu-Bonin-Mariana fore arc

    NASA Astrophysics Data System (ADS)

    Micheuz, Peter; Quandt, Dennis; Kurz, Walter

    2017-04-01

    International Ocean Discovery Program (IODP) expeditions 352 and 351 drilled through oceanic crust of the Philippine Sea plate. The two study areas are located near the outer Izu-Bonin-Mariana (IBM) fore arc and in the Amami Sankaku Basin. The primary objective was to improve our understanding of supra-subduction zones (SSZ) and the process of subduction initiation. The recovered drill cores during IODP expedition 352 represent approximately 50 Ma old fore arc basalts (FAB) and boninites revealing an entire volcanic sequence of a SSZ. Expedition 351 drilled FAB like oceanic crust similar in age to the FABs of expedition 352. In this study we present data on vein microstructures, geochemical data and isotopic signatures of vein precipitates to give new insights into fluid flow and precipitation processes and deformation within the Izu-Bonin fore arc. Veins formed predominantly as a consequence of hydrofracturing resulting in the occurrence of branched vein systems and brecciated samples. Along these hydrofractures the amount of altered host rock fragments varies and locally alters the host rock completely to zeolites and carbonates. Subordinately extensional veins released after the formation of the host rocks. Cross-cutting relationships of different vein types point to multiple fracturing events subsequently filled with minerals originating from a fluid with isotopic seawater signature. Based on vein precipitates, their morphology and their growth patterns four vein types have been defined. Major vein components are (Mg-) calcite and various zeolites determined by Raman spectra and electron microprobe analyses. Zeolites result from alteration of volcanic glass during interaction with a seawaterlike fluid. Type I veins which are characterized by micritic infill represent neptunian dykes. They predominantly occur in the upper levels of drill cores being the result of an initial volume change subsequently to crystallization of the host rocks. Type II veins are characterized by blocky carbonates and idiomorphic to blocky zeolites. Blocky carbonates locally exhibit zonation patterns. Type III and type IV veins are both assumed to be extensional veins. Type III is characterized by syntaxial growth and elongate blocky carbonate minerals. They predominantly occur as asymmetric syntaxial veins, locally exhibiting more than one crack-seal event. Type IV veins are defined as antitaxial fibrous carbonates. Type II veins commonly show deformation microstructures like twinning (type I/II twins), slightly curved twins, and subgrain boundaries indicative of incipient plastic deformation. Based on these observations differential stresses around 50 MPa were needed to deform vein minerals, presumably related to IBM fore arc extension due to the retreat of the subducted Pacific plate. We acknowledge financial support by the Austrian Research Fund (P27982-N29) to W. Kurz

  5. Identification and characterization of the active hydrothermal deposits in Okinawa Trough, SW Japan: Estimates from logging-while-drilling

    NASA Astrophysics Data System (ADS)

    Saito, S.; Sanada, Y.; Moe, K.; Kido, Y. N.; Hamada, Y.; Kumagai, H.; Nozaki, T.; Takai, K.; Suzuki, K.

    2015-12-01

    A scientific drilling expedition was conducted at an active hydrothermal field on the Iheya-North Knoll by D/V Chikyu in 2014 (Expedition 907) as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program. During the expedition logging while drilling (LWD) was deployed to constrain the area of the fluid reservoir beneath seafloor followed by three coring holes down to 150 meter below the seafloor (mbsf). The LWD system is composed of arcVISION for resistivity and natural gamma ray measurement and TeleScope for real-time transmission of drilling parameters and arcVISION data. Five sites (C9011-15) at the Iheya-North Original Site and one site (C9016) at Aki Site were drilled with LWD. At C9012 and C9016, the arcVISION detected temperature anomaly up to 84℃ at 234 mbsf and up to 39℃ at 80 mbsf, respectively. The temperature quickly increases at that depth and it would reflect the existence of high-temperature heat source along borehole. Due to the continuous fluid circulation during drilling, the measured temperature does not indicate in-situ temperature, but it reflects the heat disturbed by the cold circulated water instead. High quality resistivity and natural gamma ray data were acquired at six sites. The log curves at Site C9016 show characteristic response; the natural gamma ray log exhibits extremely high radiation (>500 gAPI) at 7-13 and 23-31 mbsf (Zone A). In the underlying interval of 31-40 mbsf, the resistivity log exhibits extremely low value (<0.2 ohm-m) (Zone B). Then the resistivity log exhibits higher value (~10 ohm-m) and the natural gamma ray log shows very low radiation (<50 gAPI) at the interval of 41-48 mbsf (Zone C). The log characteristics in Zone A, B, and C can be interpreted as a series of K-rich alteration zone, sulfide zone, and low-K hard (silicified) sediments, respectively. The LWD-based lithological interpretation was confirmed by the following core description. Zones A and B can be correlated to altered clay zone and sulfide zone including sphalerite, galena, chalcopyrite, and pyrite. Our results show that LWD is a powerful tool for the identification and characterization of submarine hydrothermal deposits and LWD survey enhances the successful recovery of sulfide samples.

  6. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  7. Helium and carbon gas geochemistry of pore fluids from the sediment-rich hydrothermal system in Escanaba Trough

    USGS Publications Warehouse

    Ishibashi, J.-I.; Sato, M.; Sano, Y.; Wakita, H.; Gamo, T.; Shanks, Wayne C.

    2002-01-01

    Ocean Drilling Program (ODP) Leg 169, which was conducted in 1996 provided an opportunity to study the gas geochemistry in the deeper part of the sediment-rich hydrothermal system in Escanaba Trough. Gas void samples obtained from the core liner were analyzed and their results were compared with analytical data of vent fluid samples collected by a submersible dive program in 1988. The gas geochemistry of the pore fluids consisted mostly of a hydrothermal component and was basically the same as that of the vent fluids. The He isotope ratios (R/RA = 5.6-6.6) indicated a significant mantle He contribution and the C isotopic compositions of the hydrocarbons [??13C(CH4) = -43???, ??13C(C2H6) = -20???] were characterized as a thermogenic origin caused by hydrothermal activity. On the other hand, the pore fluids in sedimentary layers away from the hydrothermal fields showed profiles which reflected lateral migration of the hydrothermal hydrocarbons and abundant biogenic CH4. Helium and C isotope systematics were shown to represent a hydrothermal component and useful as indicators for their distribution beneath the seafloor. Similarities in He and hydrocarbon signatures to that of the Escanaba Trough hydrothermal system were found in some terrestrial natural gases, which suggested that seafloor hydrothermal activity in sediment-rich environments would be one of the possible petroleum hydrocarbon generation scenarios in unconventional geological settings. ?? 2002 Elsevier Science Ltd. All rights reserved.

  8. Determining the Area of Review for Industrial Waste Disposal Wells.

    DTIC Science & Technology

    1981-12-01

    pressure increases sufficiently to force formation fluids and/or injected wastes up abandoned well bores to contaminate underground sources of drinking...Drilling Mud Circulating System . . 72 9. Increase in Gel Strength of Various Mud Types With Time . . . . . . . . . . . . . . . . . . 96 10. Gel... increased fluid pressure in a disposal zone which results from a waste injection operation may force injected and/or formation fluid to migrate up an

  9. Analysis of the archaeal sub-seafloor community at Suiyo Seamount on the Izu-Bonin Arc.

    PubMed

    Hara, Kurt; Kakegawa, Takeshi; Yamashiro, Kan; Maruyama, Akihiko; Ishibashi, Jun-Ichiro; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2005-01-01

    A sub-surface archaeal community at the Suiyo Seamount in the Western Pacific Ocean was investigated by 16S rRNA gene sequence and whole-cell in situ hybridization analyses. In this study, we drilled and cased holes at the hydrothermal area of the seamount to minimize contamination of the hydrothermal fluid in the sub-seafloor by penetrating seawater. PCR clone analysis of the hydrothermal fluid samples collected from a cased hole indicated the presence of chemolithoautotrophic primary biomass producers of Archaeoglobales and the Methanococcales-related archaeal HTE1 group, both of which can utilize hydrogen as an electron donor. We discuss the implication of the microbial community on the early history of life and on the search for extraterrestrial life. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  10. A study of electro-osmosis as applied to drilling engineering

    NASA Astrophysics Data System (ADS)

    Hariharan, Peringandoor Raman

    In the present research project. the application of the process of electro-osmosis has been extended to a variety of rocks during the drilling operation. Electro-osmosis has been utilized extensively to examine its influence in reducing (i) bit balling, (ii) coefficient of friction between rock and metal and (iii) bit/tool wear. An attempt has been made to extend the envelope of confidence in which electro-osmosis was found to be operating satisfactorily. For all the above cases the current requirements during electro-osmosis were identified and were recorded. A novel test method providing repeatable results has been developed to study the problem of bit balling in the laboratory through the design of a special metallic bob simulating the drill bit. A numerical parameter described as the Degree-of-Balling (DOB) defined by the amount of cuttings stuck per unit volume of rock cut for the same duration of time is being proposed as a means to quantitatively describe the balling process in the laboratory. Five different types of shales (Pierre I & II, Catoosa, Mancos and Wellington) were compared and evaluated for balling characteristics and to determine the best conditions for reducing bit balling with electro-osmosis in a variety of drilling fluids including fresh water, polymer solutions and field type drilling fluids. Through the design, fabrication and performing of experiments conducted with a model Bottom Hole Assembly (BHA). the feasibility of maintaining the drill bit separately at a negative potential and causing the current to flow through the rock back into the string through a near bit stabilizer has been demonstrated. Experiments conducted with this self contained arrangement for the application of electro-osmosis have demonstrated a substantial decrease in balling and increase in the rate of penetration (ROP) while drilling with both a roller cone and PDC microbit (1-1/4" dia.) in Pierre I and Wellington shales. It is believed that the results obtained from the model BHA will aid in scaling up to a full-scale prototype BHA for possible application in the field. Experiments conducted with electro-osmosis in a simulated drill string under loaded conditions have clearly demonstrated that the coefficient of friction (mu) can be reduced at the interface of a rotating cylinder (simulating the drill-pipe) and a rock (usually a type of shale), through electro-osmosis. Studies examined the influence of many variables such as drilling fluid, rock type, and current on mu. The need for the correct estimation of mu is for reliable correlation between values obtained in the laboratory with those observed in the field. The knowledge of the coefficient of friction (mu) is an important requirement for drill string design and well trajectory planning. The use of electro-osmosis in reducing bit/tool wear through experiments in various rocks utilizing a specially designed steel bob simulating the drill bit has clearly indicated a decreased average tool wear, varying from 35% in Pierre I shale up to 57% in sandstone when used with the tool maintained at a cathodic DC potential. (Abstract shortened by UMI.)

  11. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...

  12. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...

  13. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...

  14. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... where neither the presence nor absence of H2S has been confirmed. Well-control fluid means drilling mud..., well logs, formation tests, cores and analysis of formation fluids; and (4) Submit a request for... initiate when the SO2 concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect...

  15. Ocean Drilling Program Contributions to the Understanding of the Deep Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Fisk, M. R.

    2003-12-01

    Tantalizing evidence for microbes in oceanic basalts has been reported for a few decades, but it was from rocks cored on Ocean Drilling Program (ODP) Leg 148 in 1993 that the first clear-cut evidence of microbial invasion of ocean basalts was obtained. (Work on ODP legs, starting with Leg 112 in 1986, had already revealed the presence of significant microbial biomass in sediments.) In 1997 ODP created the Deep Biosphere Program Planning Group to promote the investigation of the microbiology of the ocean crust. In 1999 ODP built a microbiology lab on the JOIDES Resolution, and used the lab that year (Legs 185 and 187) to test the amount of microbial contamination introduced into rocks during drilling and to establish cultures from cored basalts. These experiments have been repeated on several legs since then. The development of CORKs has permitted long-term sampling of subseafloor fluids, and microorganisms have been recovered from CORKed holes. Thus, ODP made it possible for the scientific community to address major questions about the biology of the igneous crust, such as, (1) What microbes are present? (2) How abundant are they? (3) How are they distributed? DNA from basalts and subseafloor fluids reveal what types of organisms are present. Cell abundance and biomass have been estimated based on cell counts and on organic content of basalts. Surveys of basalts in DSDP/ODP repositories indicate that microorganisms are ubiquitous in the igneous crust. Microorganisms are found in rocks that are close to 100° C. They are found as deep as 1500 m below the sea floor, and in rocks as young as a few years and as old as 170 million years. Because of the vast size of the habitat, microorganism, even if present in small numbers, could be a significant fraction of the Earth's biomass. In a short time ODP contributed to advances in our understanding of the oceanic subsurface biosphere. Answers to other significant questions such as: (1) How do the microorganisms live?, (2) What impact do subsurface microorganisms have on the surface biosphere? (3) And, what roles do the subsurface biosphere play in element cycling? will be answered by future drilling. The International Ocean Drilling Program (IODP) is in the enviable position of providing support to address these key questions about the Earth's subsurface biosphere.

  16. Deep and Ultra-deep Underground Observatory for In Situ Stress, Fluids, and Life

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.; Wang, H.; Kieft, T. L.

    2008-12-01

    The question 'How deeply does life extend into the Earth?' forms a single, compelling vision for multidisciplinary science opportunities associated with physical and biological processes occurring naturally or in response to construction in the deep and ultra-deep subsurface environment of the Deep Underground Science and Engineering Laboratory (DUSEL) in the former Homestake mine. The scientific opportunity is to understand the interaction between the physical environment and microbial life, specifically, the coupling among (1) stress state and deformation; (2) flow and transport and origin of fluids; and (3) energy and nutrient sources for microbial life; and (4) microbial identity, diversity and activities. DUSEL-Homestake offers the environment in which these questions can be addressed unencumbered by competing human activities. Associated with the interaction among these variables are a number of questions that will be addressed at variety of depths and scales in the facility: What factors control the distribution of life as a function of depth and temperature? What patterns in microbial diversity, microbial activity and nutrients are found along this gradient? How do state variables (stress, strain, temperature, and pore pressure) and constitutive properties (permeability, porosity, modulus, etc.) vary with scale (space, depth, time) in a large 4D heterogeneous system: core - borehole - drift - whole mine - regional? How are fluid flow and stress coupled in a low-permeability, crystalline environment dominated by preferential flow paths? How does this interaction influence the distribution of fluids, solutes, gases, colloids, and biological resources (e.g. energy and nutritive substrates) in the deep continental subsurface? What is the interaction between geomechanics/geohydrology and microbiology (microbial abundance, diversity, distribution, and activities)? Can relationships elucidated within the mechanically and hydrologically altered subsurface habitat of the Homestake DUSEL be extrapolated to the pristine subsurface biosphere? In the absence of extensive intrusive investigations (drifts, mines, etc), can we characterize hydrogeologic and geomechanical processes in the subsurface? To what depth can we effectively characterize such processes, and what is the confidence in our interpretations? In addition to addressing these question in the 10-km3 of mine volume, the Homestake facility offers the deepest drilling platform in North America. The extant depth of 8000 feet can be doubled by drilling. An array of three or more 8,200 ft. boreholes, wire-line drilled from the 8,000 ft. level at Homestake will probe to at least 16,200 ft. below land surface, a depth at this location approaching the expected lower biosphere limit (e.g. the 120°C isotherm). Cores will be collected aseptically and then fracture patterns (e.g., orientation, aperture, etc.) will be determined and fracture fluids will be intensively sampled over time. Cores and fracture fluids will be analyzed for indigenous microbial communities, including their genetic elements, metabolic processes, and biosignatures.

  17. Chemical logging of geothermal wells

    DOEpatents

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  18. Chemical logging of geothermal wells

    DOEpatents

    Allen, Charles A.; McAtee, Richard E.

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  19. Hydrodynamics of the Fluid Filtrate on Drilling-In

    NASA Astrophysics Data System (ADS)

    Abbasov, É. M.; Agaeva, N. A.

    2014-01-01

    The volume of the liquid penetrating into the formation after drilling-in has been determined on the basis of theoretical investigations. The dynamics of change in the bottom-hole pressure has been determined in this process. It has been shown that because of the water hammer, the bottom-hole pressure can be doubled in the presence of large fractures and pores closer to the well-bottom zone.

  20. Offshore wellbore stability analysis based on fully coupled poro-thermo-elastic theory

    NASA Astrophysics Data System (ADS)

    Cao, Wenke; Deng, Jingen; Yu, Baohua; Liu, Wei; Tan, Qiang

    2017-03-01

    Drilling-induced tensile fractures are usually caused when the weight of mud is too high, and the effective tangential stress becomes tensile. It is thus hard to explain why tensile fractures are distributed along the lower part of a hole in an offshore exploration well when the mud weight is low. According to analysis, the reason could be the thermal effect, which cannot be ignored because of the drilling fluid and the cooling action of sea water during circulation. A heat transfer model is set up to obtain the temperature distribution of the wellbore and its formation by the finite difference method. Then, fully coupled poro-thermo-elastic theory is used to study the pore pressure and effective stress around the wellbore. By comparing it with both poroelastic and elastic models, it is indicated that the poroelastic effect is dominant at the beginning of circulation and inhibits tensile fractures from forming; then, the thermal effect becomes more important and decreases the effective tangential stress with the passing of time, so the drilling fluid and the cooling effect of sea water can cause tensile fractures to happen. Meanwhile, tensile fractures are shallow and not likely to lead to mud leakage with lower mud weight, which agrees with the actual drilling process. On the other hand, the fluid cooling effect could increase the strength of the rock and reduce the likelihood of shear failure, which would be beneficial for wellbore stability. So, the thermal effect cannot be neglected in offshore wellbore stability analysis, and mud weight and borehole exposure time should be controlled in the case of mud loss.

  1. Fluid Management Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Findlay, Rick

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Offsites Project to characterize the risk posed to human health and the environment as a result of testing at formerly used nuclear sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The scope of this Fluid Management Plan (FMP) is to support the subsurface investigation at the Project Shoal Area (PSA) Corrective Action Unit (CAU) 447, Shoal - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Spring Range, southmore » of Highway 50, about 39 miles southeast of Fallon, Nevada. (Figure 1-1). This FMP will be used at the PSA in lieu of an individual discharge permit for each well or a general water pollution control permit for management of all fluids produced during the drilling, construction, development, testing, experimentation, and/or sampling of wells conducted by the Offsites Project. The FMP provides guidance for the management of fluids generated during investigation activities and provides the standards by which fluids may be discharged on site. Although the Nevada Division of Environmental Protection (NDEP), Bureau of Federal Facilities (BoFF) is not a signatory to this FMP, it is involved in the negotiation of the contents of this plan and approves the conditions contained within. The major elements of this FMP include: (1) establishment of a well-site operations strategy; (2) site design/layout; (3) monitoring of contamination indicators (monitoring program); (4) sump characterization (sump sampling program); (5) fluid management decision criteria and fluid disposition; and (6) reporting requirements.« less

  2. Fluid Management Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 1 with ROTC 1 and Errata Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Echelard

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Offsites Project to characterize the risk posed to human health and the environment as a result of testing at formerly used nuclear sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The scope of this Fluid Management Plan (FMP) is to support the subsurface investigation at the Project Shoal Area (PSA) Corrective Action Unit (CAU) 447, Shoal-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Spring Range, south of Highwaymore » 50, about 39 miles southeast of Fallon, Nevada. (Figure 1-1). This FMP will be used at the PSA in lieu of an individual discharge permit for each well or a general water pollution control permit for management of all fluids produced during the drilling, construction, development, testing, experimentation, and/or sampling of wells conducted by the Offsites Project. The FMP provides guidance for the management of fluids generated during investigation activities and provides the standards by which fluids may be discharged on site. Although the Nevada Division of Environmental Protection (NDEP), Bureau of Federal Facilities (BoFF) is not a signatory to this FMP, it is involved in the negotiation of the contents of this plan and approves the conditions contained within. The major elements of this FMP include: (1) establishment of a well-site operations strategy; (2) site design/layout; (3) monitoring of contamination indicators (monitoring program); (4) sump characterization (sump sampling program); (5) fluid management decision criteria and fluid disposition; and (6) reporting requirements.« less

  3. The Experiences and Challenges in Drilling into Semi molten or Molten Intrusive in Menengai Geothermal Field

    NASA Astrophysics Data System (ADS)

    Mortensen, A. K.; Mibei, G. K.

    2017-12-01

    Drilling in Menengai has experienced various challenges related to drilling operations and the resource itself i.e. quality discharge fluids vis a vis gas content. The main reason for these challenges is related to the nature of rocks encountered at depths. Intrusives encountered within Menengai geothermal field have been group into three based on their geological characteristics i.e. S1, S2 and S3.Detailed geology and mineralogical characterization have not been done on these intrusive types. However, based on physical appearances, S1 is considered as a diorite dike, S2 is syenite while S3 is molten rock material. This paper summarizes the experiences in drilling into semi molten or molten intrusive (S3).

  4. Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.

    2013-12-01

    In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.

  5. Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros

    NASA Astrophysics Data System (ADS)

    Grimes, Craig B.; Ushikubo, Takayuki; John, Barbara E.; Valley, John W.

    2011-01-01

    Lower ocean crust is primarily gabbroic, although 1-2% felsic igneous rocks that are referred to collectively as plagiogranites occur locally. Recent experimental evidence suggests that plagiogranite magmas can form by hydrous partial melting of gabbro triggered by seawater-derived fluids, and thus they may indicate early, high-temperature hydrothermal fluid circulation. To explore seawater-rock interaction prior to and during the genesis of plagiogranite and other late-stage magmas, oxygen-isotope ratios preserved in igneous zircon have been measured by ion microprobe. A total of 197 zircons from 43 plagiogranite, evolved gabbro, and hydrothermally altered fault rock samples have been analyzed. Samples originate primarily from drill core acquired during Ocean Drilling Program and Integrated Ocean Drilling Program operations near the Mid-Atlantic and Southwest Indian Ridges. With the exception of rare, distinctively luminescent rims, all zircons from ocean crust record remarkably uniform δ18O with an average value of 5.2 ± 0.5‰ (2SD). The average δ18O(Zrc) would be in magmatic equilibrium with unaltered MORB [δ18O(WR) ~ 5.6-5.7‰], and is consistent with the previously determined value for equilibrium with the mantle. The narrow range of measured δ18O values is predicted for zircon crystallization from variable parent melt compositions and temperatures in a closed system, and provides no indication of any interactions between altered rocks or seawater and the evolved parent melts. If plagiogranite forms by hydrous partial melting, the uniform mantle-like δ18O(Zrc) requires melting and zircon crystallization prior to significant amounts of water-rock interactions that alter the protolith δ18O. Zircons from ocean crust have been proposed as a tectonic analog for >3.9 Ga detrital zircons from the earliest (Hadean) Earth by multiple workers. However, zircons from ocean crust are readily distinguished geochemically from zircons formed in continental crustal environments. Many of the >3.9 Ga zircons have mildly elevated δ18O (6.0-7.5‰), but such values have not been identified in any zircons from the large sample suite examined here. The difference in δ18O, in combination with newly acquired lithium concentrations and published trace element data, clearly shows that the >3.9 Ga detrital zircons did not originate by processes analogous to those in modern mid-ocean ridge settings.

  6. Icebreaker-3 Drill Integration and Testing at Two Mars-Analog Sites

    NASA Technical Reports Server (NTRS)

    Glass, B.; Bergman, D.; Yaggi, B.; Dave, A.; Zacny, K.

    2016-01-01

    A decade of evolutionary development of integrated automated drilling and sample handling at analog sites and in test chambers has made it possible to go 1 meter through hard rocks and ice layers on Mars. The latest Icebreaker-3 drill has been field tested in 2014 at the Haughton Crater Marsanalog site in the Arctic and in 2015 with a Mars lander mockup in Rio Tinto, Spain, (with sample transfer arm and with a prototype life-detection instrument). Tests in Rio Tinto in 2015 successfully demonstrated that the drill sample (cuttings) was handed-off from the drill to the sample transfer arm and thence to the on-deck instrument inlet where it was taken in and analyzed ("dirt-to-data").

  7. Serpentinization and Synthesis: Can abiotic and biotic non-volatile organic molecules be identified in the subsurface of the Atlantis Massif?

    NASA Astrophysics Data System (ADS)

    Hickok, K.; Nguyen, T.; Orcutt, B.; Fruh-Green, G. L.; Wanamaker, E.; Lang, S. Q.

    2016-12-01

    The high concentrations of hydrogen created during serpentinization can promote the formation of abiotic organic carbon molecules such as methane, formate, short chain hydrocarbons and, in laboratory experiments, larger molecules containing up to 32 carbon atoms. Subsurface archaeal and bacterial communities can use these reduced compounds for metabolic energy. International Ocean Discovery Project Expedition 357 drilled into the Atlantis Massif with the goals of investigating carbon cycling and the presence of life in a zone of active serpentinization. The expedition recovered multiple rock lithologies including gabbros, basalts, carbonate sands, and serpentinites. A subset of these samples are being analyzed to determine if non-volatile organic molecules are produced abiotically in serpentinizing environments and to identify `hot spots' of microbial life in the subsurface. Rock samples of contrasting representative lithologies are being analyzed for the presence of n-alkanes and fatty acids. Preliminary results have so far indicated the presence of alkanes in some samples. The isotopic (13C, 2H) characteristics of these compounds are being compared to a suite of oils, greases, and drilling fluids used during sample collection to distinguish in situ abiotic and biotic signatures from contaminant compounds. Other initial results have shown the efficacy of various sample-handling procedures designed to reduce surface contamination. This study will contribute to the overall understanding of the role serpentinization plays in the global carbon cycle and its implications for pre-biotic chemistry.

  8. The mechanics and physics of fracturing: application to thermal aspects of crack propagation and to fracking.

    PubMed

    Cherepanov, Genady P

    2015-03-28

    By way of introduction, the general invariant integral (GI) based on the energy conservation law is presented, with mention of cosmic, gravitational, mass, elastic, thermal and electromagnetic energy of matter application to demonstrate the approach, including Coulomb's Law generalized for moving electric charges, Newton's Law generalized for coupled gravitational/cosmic field, the new Archimedes' Law accounting for gravitational and surface energy, and others. Then using this approach the temperature track behind a moving crack is found, and the coupling of elastic and thermal energies is set up in fracturing. For porous materials saturated with a fluid or gas, the notion of binary continuum is used to introduce the corresponding GIs. As applied to the horizontal drilling and fracturing of boreholes, the field of pressure and flow rate as well as the fluid output from both a horizontal borehole and a fracture are derived in the fluid extraction regime. The theory of fracking in shale gas reservoirs is suggested for three basic regimes of the drill mud permeation, with calculating the shape and volume of the local region of the multiply fractured rock in terms of the pressures of rock, drill mud and shale gas. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. The replacement of alkyl-phenol ethoxylates to improve the environment acceptability of drilling fluid additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getliff, J.M.; James, S.G.

    1996-12-31

    Alkyl-phenol ethoxylates (APEO) are a class of surfactants which have been used widely in the drilling fluid industry. The popularity of these surfactants is based on their cost effectiveness, availability and the range of hydrophilic-lipophilic balance values obtainable. Studies have shown that APEOs exhibit oestrogenic effects, and can cause sterility in some male aquatic species. This may have subsequent human consequences and such problems have lead to a banning of their use in some countries and agreements to phase out their use e.g. PARCOM recommendation 92/8. The use of APEOs as additives in detergents, lubricants and stuck-pipe release agents formore » drilling fluid applications is discussed. The effectiveness of products formulated with APEOs are directly compared with alternative products which are non-persistent and less damaging to aquatic species. Lubricity measurements using standard and in-house designed equipment and washing tests to compare the efficiency of surfactants are explained and product performance results presented. The results show that alternatives to products containing APEOs are available and that in some cases they show a better technical performance. In addition to the improved environmental acceptability of the base chemicals, the better performance enables lower concentrations to be used, hence reducing the environmental impact even further.« less

  10. Geohydrologic data from test hole USW UZ-7, Yucca Mountain area, Nye County, Nevada

    USGS Publications Warehouse

    Kume, Jack; Hammermeister, D.P.

    1990-01-01

    This report contains a description of the methods used in drilling and coring of the test-hole USW UZ-7, a description of the methods used in collecting, handling, and testing of test-hole samples; Lithologic information from the test hole; and water-content, water-potential, bulk-density, grain-density, porosity, and tritium data for the test hole. Test-hole USW UZ-7 was drilled and cored to a total depth of 62.94 m. The drilling was done using air as a drilling fluid to minimize disturbance to the water content of cores, drill-bit cuttings, and borehole wall-rock. Beginning at the land surface, the unsaturated-zone rock that was penetrated consisted of alluvium; welded and partially to nonwelded ash-flow tuff; bedded and reworked ash-fall tuff; nonwelded ash-flow tuff; and welded ash-flow tuff. Values of gravimetric water content and water potential of alluvium were intermediate between the extreme values in welded and nonwelded units of tuff. Gravimetric water content was largest in bedded and nonwelded ash-fall tuffs and was smallest in welded ash-flow tuff. Values of water potential were more negative in densely welded ash-flow tuffs and were less negative in bedded and nonwelded ash-fall tuffs. Bulk density was largest in densely welded ash-flow tuffs and smallest in nonwelded and bedded ash-fall tuffs. Grain density was uniform but was slightly larger in nonwelded and bedded ash-fall tuffs than in welded ash-flow tuffs. Porosity trends were opposite to bulk-density trends. Tritium content in alluvium was smallest near the alluvium-bedrock contact, markedly increased in the middle of the deposit, and decreased in the near-surface zone of the deposit. (Author 's abstract)

  11. Shipboard Analytical Capabilities on the Renovated JOIDES Resolution, IODP Riserless Drilling Vessel

    NASA Astrophysics Data System (ADS)

    Blum, P.; Foster, P.; Houpt, D.; Bennight, C.; Brandt, L.; Cobine, T.; Crawford, W.; Fackler, D.; Fujine, K.; Hastedt, M.; Hornbacher, D.; Mateo, Z.; Moortgat, E.; Vasilyev, M.; Vasilyeva, Y.; Zeliadt, S.; Zhao, J.

    2008-12-01

    The JOIDES Resolution (JR) has conducted 121 scientific drilling expeditions during the Ocean Drilling Program (ODP) and the first phase of the Integrated Ocean Drilling Program (IODP) (1983-2006). The vessel and scientific systems have just completed an NSF-sponsored renovation (2005-2008). Shipboard analytical systems have been upgraded, within funding constraints imposed by market driven vessel conversion cost increases, to include: (1) enhanced shipboard analytical services including instruments and software for sampling and the capture of chemistry, physical properties, and geological data; (2) new data management capabilities built around a laboratory information management system (LIMS), digital asset management system, and web services; (3) operations data services with enhanced access to navigation and rig instrumentation data; and (4) a combination of commercial and home-made user applications for workflow- specific data extractions, generic and customized data reporting, and data visualization within a shipboard production environment. The instrumented data capture systems include a new set of core loggers for rapid and non-destructive acquisition of images and other physical properties data from drill cores. Line-scan imaging and natural gamma ray loggers capture data at unprecedented quality due to new and innovative designs. Many instruments used to characterize chemical compounds of rocks, sediments, and interstitial fluids were upgraded with the latest technology. The shipboard analytical environment features a new and innovative framework (DESCinfo) and application (DESClogik) for capturing descriptive and interpretive data from geological sub-domains such as sedimentology, petrology, paleontology, structural geology, stratigraphy, etc. This system fills a long-standing gap by providing a global database, controlled vocabularies and taxa name lists with version control, a highly configurable spreadsheet environment for data capture, and visualization of context data collected with the shipboard core loggers and other instruments.

  12. Tethyan Anhydrite Preserved in the Lower Ocean Crust of the Samail Ophiolite? Evidence from Oman Drilling Project Holes GT1A and 2A

    NASA Astrophysics Data System (ADS)

    Teagle, D. A. H.; Harris, M.; Crispini, L.; Deans, J. R.; Cooper, M. J.; Kelemen, P. B.; Alt, J.; Banerjee, N.; Shanks, W. C., III

    2017-12-01

    Anhydrite is important in mid-ocean ridge hydrothermal systems because of the high concentrations of calcium and sulfate in modern seawater and anhydrite's retrograde solubility. Because anhydrite hosts many powerful tracers of fluid-rock interactions (87Sr/86Sr, δ18O, δ34S, trace elements, fluid inclusions) it is useful for tracing the chemical evolution of hydrothermal recharge fluids and estimating time-integrated fluid fluxes. Anhydrite can form from heated seawater (>100°C), through water-rock reaction, or by mixing of seawater and hydrothermal fluids. Although abundant in active hydrothermal mounds, and predicted to form from downwelling, warming fluids during convection, anhydrite is rare in drill core from seafloor lavas, sheeted dikes and upper gabbros, with only minor amounts in ODP Holes 504B and 1256D. Because anhydrite can dissolve during weathering, its occurrence in ophiolites is unexpected. Instead, gypsum is present in Macquarie Island lavas and Miocene gypsum fills cavities within the Cretaceous Troodos ore deposits. Thus, the occurrence of numerous anhydrite veins in cores from the gabbroic lower crust of the Samail ophiolite in Oman was unanticipated. To our knowledge, anhydrite in Oman gabbros has not been previously reported. Oman Drilling Project Holes GT1A and GT2A were drilled into the Wadi Gideah section of the Wadi Tayin massif. Both recovered 400 m of continuous core from sections of layered gabbros (GT1) and the foliated-layered gabbro transition (GT2). Anhydrite is present throughout both holes, some in vein networks but more commonly as isolated 1-110 mm veins (>60 mm ave). Anhydrite is mostly the sole vein filling but can occur with greenschist minerals such as epidote, quartz, chlorite and prehnite. Anhydrite commonly exhibits prismatic and bladed textures but can also be capriciously microcrystalline. Though definitive cross cutting relationships are elusive, anhydrite veins cut across some greenschist veins. Anhydrite is deformed in faults with asymmetries consistent with normal senses of shear, suggestive of formation near the ridge, or at least before obduction. Gypsum is also present in both holes, but is clearly late stage and cuts across all earlier vein sets and deformation features. Notably, anhydrite was not observed in core from Hole GT3, in the dike-gabbro transition.

  13. Deep Subsurface Microbial Communities Shaped by the Chicxulub Impactor

    NASA Astrophysics Data System (ADS)

    Cockell, C. S.; Coolen, M.; Schaefer, B.; Grice, K.; Gulick, S. P. S.; Morgan, J. V.; Kring, D. A.; Osinski, G.

    2017-12-01

    Fresh core material was obtained by drilling of the Chicxulub impact crater during IODP-ICDP Expedition 364 to assess the present-day biosphere in the crater structure. Cell enumerations through the core show that beneath the post-impact sedimentary rock there is a region of enhanced cell abundance that corresponds to the upper impact suevite layer (Units 1G/2A). We also observed a peak in cell numbers in samples at the bottom of suevite Unit 2C and between the suevitic and grainitoid interface (Unit 3/4). These patterns may reflect preferential movement of fluid and/or availability of nutrients and energy at interfaces. 16S rDNA analysis allows us to rule out contamination of the suevite material since no taxa associated with the drilling mud were observed. Two hundred and fifty microbial enrichments were established using diverse culture media for heterotrophs, autotrophs and chemolithotrophs at temperatures consistent with measured core temperatures. Six yielded growth in the breccia, lower breccia and upper granitoid layer and they affiliated with Acidiphilium, Thermoanaerobacteracea and Desulfohalbiaceae. The latter exhibited visible microbial sulfate-reduction. By contrast, the granitoid material exhibited low cell abundances, most samples were below direct cell detection. DNA extraction revealed pervasive low level contamination by drilling mud taxa, consistent with the highly fractured, high porosity of the impact-shocked granitoids. Few taxa can be attributed to an indigenous biota and no enrichments (at 60 and 70°C) yielded growth. These data show that even with a porosity approximately an order of magnitude greater than most unshocked granites, the uplifted granites have not experienced sufficient fluid flow to establish a significant deep biosphere. Paleosterilisation of the material during impact may have re-set colonisation and the material may have originally been below the depth at which temperatures exceeded the upper temperature limit for life. These data show that the deep biosphere can preserve the imprint of catastrophe long after these events. In this case, the distribution of deep subsurface microbial communities reflects the lithological sequence established during the substantial impact-induced geological rearrangements that occurred in the first hours of the Cenozoic.

  14. Numerical Simulation of Bottomhole Flow Field Structure in Particle Impact Drilling

    NASA Astrophysics Data System (ADS)

    Zhou, Weidong; Huang, Jinsong; Li, Luopeng

    2018-01-01

    In order to quantitatively describe the flow field distribution of the PID drilling bit in the bottomhole working condition, the influence of the fluid properties (pressure and viscosity) on the flow field of the bottom hole and the erosion and wear law of the drill body are compared. The flow field model of the eight - inch semi - vertical borehole drilling bit was established by CFX software. The working state of the jet was returned from the inlet of the drill bit to the nozzle outlet and flowed out at the bottom of the nozzle. The results show that there are irregular three-dimensional motion of collision and bounce after the jetting, resulting in partial impact on the drill body and causing impact and damage to the cutting teeth. The jet of particles emitted by different nozzles interfere with each other and affect the the bottom of the impact pressure; reasonable nozzle position can effectively reduce these interference.

  15. Rolling-Tooth Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bickler, Donald B.; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Hudson, Nicolas H.

    2011-01-01

    Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale that is robust and versatile enough to be used for a variety of core samples. This design consists of a set of tubes (a drill tube and an inner tube) and a rolling element (rolling tooth). An additional tube can be used as a sample tube. The drill tube and the inner tube have longitudinal holes with the axes offset from the axis of each tube. The two eccentricities are equal. The inner tube fits inside the drill tube, and the sample tube fits inside the inner tube. While drilling, the two tubes are positioned relative to each other such that the sample tube is aligned with the drill tube axis and core. The drill tube includes teeth and flutes for cuttings removal. The inner tube includes, at the base, the rolling element implemented as a wheel on a shaft in an eccentric slot. An additional slot in the inner tube and a pin in the drill tube limit the relative motion of the two tubes. While drilling, the drill assembly rotates relative to the core and forces the rolling tooth to stay hidden in the slot along the inner tube wall. When the drilling depth has been reached, the drill bit assembly is rotated in the opposite direction, and the rolling tooth is engaged and penetrates into the core. Depending on the strength of the created core, the rolling tooth can score, lock the inner tube relative to the core, start the eccentric motion of the inner tube, and break the core. The tooth and the relative position of the two tubes can act as a core catcher or core-retention mechanism as well. The design was made to fit the core and hole parameters produced by an existing bit; the parts were fabricated and a series of demonstration tests were performed. This invention is potentially applicable to sample return and in situ missions to planets such as Mars and Venus, to moons such as Titan and Europa, and to comets. It is also applicable to terrestrial applications like forensic sampling and geological sampling in the field.

  16. Drilling into molten rock at Kilauea Iki

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colp, J.L.; Okamura, R.T.

    1978-01-01

    The scientific feasibility of extracting energy directly from buried circulating magma resources is being assessed. One of the tasks of the project is the study of geophysical measuring systems to locate and define buried molten rock bodies. To verify the results of a molten rock sensing experiment performed at Kilauea Iki lava lake, it is necessary to drill a series of holes through the solid upper crust and through the molten zone at that location. Thirteen holes have been drilled in Kilauea Iki. The results achieved during the drilling of the last two holes indicated that the molten zone inmore » Kilauea Iki is not a simple, relatively homogeneous fluid body as expected. The encountering of an unexpected, unknown rigid obstruction 2.5 ft below the crust/melt interface has led to the conceptual development of a drilling system intended to have the capability to drill through a hot, rigid obstruction while the drill stem is immersed in molten rock. The concept will be field tested at Kilauea Iki in the summer of 1978.« less

  17. Deep Borehole Field Test Research Activities at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterizedmore » by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.« less

  18. PDC bit hydraulics design, profile are key to reducing balling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, P.R.; Azar, J.J.

    1996-12-09

    Polycrystalline diamond compact (PDC) bits with a parabolic profile and bladed hydraulic design have a lesser tendency to ball during drilling of reactive shales. PDC bits with ribbed or open-face hydraulic designs and those with flat or rounded profiles tended to ball more often in the bit balling experiments conducted. Experimental work also indicates that PDC hydraulic design seems to have a greater influence on bit balling tendency compared to bit profile design. There are five main factors that affect bit balling: formation type, drilling fluid, drilling hydraulics, bit design, and confining pressures. An equation for specific energy showed thatmore » it could be used to describe the efficiency of the drilling process by examining the amount of energy spent in drilling a unit volume of rock. This concept of specific energy has been used herein to correlate with the parameter Rd, a parameter to quantify the degree of balling.« less

  19. Improving Coolant Effectiveness through Drill Design Optimization in Gundrilling

    NASA Astrophysics Data System (ADS)

    Woon, K. S.; Tnay, G. L.; Rahman, M.

    2018-05-01

    Effective coolant application is essential to prevent thermo-mechanical failures of gun drills. This paper presents a novel study that enhances coolant effectiveness in evacuating chips from the cutting zone using a computational fluid dynamic (CFD) method. Drag coefficients and transport behaviour over a wide range of Reynold numbers were first established through a series of vertical drop tests. With these, a CFD model was then developed and calibrated with a set of horizontal drilling tests. Using this CFD model, critical drill geometries that lead to poor chip evacuation including the nose grind contour, coolant hole configuration and shoulder dub-off angle in commercial gun drills are identified. From this study, a new design that consists a 20° inner edge, 15° outer edge, 0° shoulder dub-off and kidney-shaped coolant channel is proposed and experimentally proven to be more superior than all other commercial designs.

  20. Subsurface fluid pressures from drill-stem tests, Uinta Basin, Utah

    USGS Publications Warehouse

    Nelson, P.H.

    2002-01-01

    High fluid pressures are known to be associated with oil and gas fields in the Uinta Basin, Utah. Shut-in pressure measurements from drill-stem tests show how pressure varies with depth and by area within the basin. The data base used in this report incorporates over 2,000 pressure measurements from drill-stem tests in wells completed prior to 1985. However, the number of useful pressure measurements is considerably less, because many drill-stem tests fail to stabilize at the actual formation pressure if the permeability is low. By extracting the maximum pressure measurements recorded in a collection of wells within an area, the trend of formation pressure within that area can be approximated. Areal compilations of pressures from drill-stem tests show that overpressured rock formations occur throughout much of the northern and eastern areas of the Uinta Basin. In particular, significant overpressuring (0.5 < pressure gradient < 0.8 psi/ft) is found throughout much of the Altamont-Bluebell field at depths ranging from 10,000 to 13,000 ft, equivalent to 5,000 to 8,000 ft below sea level. Limited data indicate that the pressure gradient declines at depths greater than 13,000 ft. An underpressured zone appears to exist in the Altamont-Bluebell field at depths shallower than 5,000 ft. Throughout the eastern Uinta Basin, moderately overpressured zones (0.46 < pressure gradient < 0.5 psi/ft) are common, with local evidence of significantly overpressured zones, but pressure gradients greater than 0.6 psi/ft are rare.

Top