Publications - GMC 396 | Alaska Division of Geological & Geophysical
DGGS GMC 396 Publication Details Title: Drill records, logs, reports, field notes, and cross sections Bibliographic Reference Andover Ventures, Inc., 2011, Drill records, logs, reports, field notes, and cross
3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL ...
3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL HOLES IN GRANITE AT RIGHT EDGE. US GEOLOGICAL SURVEY BENCHMARK AT BOTTOM CORNER OF SIDEWALK - 4,621 FEET. SLOT IN FAR WALL FOR SEMAPHORE OF OBSOLETE CARBON MONOXIDE WARNING SYSTEM. - Wawona Tunnel, Wawona Road through Turtleback Dome, Yosemite Village, Mariposa County, CA
Presley, T.K.; Oki, D.S.
1996-01-01
The Thompson Corner exploratory wells I and II (State well numbers 3-3307-20 and -21) were drilled near Thompson Corner, about 2.2 miles south-southwest of the town of Haleiwa. The wells are located on agricultural land in the Waialua ground-water area. The wells are about 50 feet apart and penetrate about 90 feet into the ground water. Aquifer tests were conducted using well 3-3307-20 as a pumping well and well 3-3307-21 as an observation well. Well-construction data, logs of drilling notes, geologic descriptions for the samples, and aquifer-test data are presented for the wells. The wells are two of twelve exploratory wells drilled in the north-central Oahu area between July 1993 and May 1994 in cooperation with the Honolulu Board of Water Supply.
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
NASA Astrophysics Data System (ADS)
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galbraith, R.M.
1978-05-01
The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characcterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the accoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galbraith, R.M.
1978-05-01
The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the acoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less
Publications - GMC 377 | Alaska Division of Geological & Geophysical
Quadrangle, Alaska: 1977-1980 Drill holes (Drill Logs and Assay Records) Authors: U.S. Borax Publication Date : 1977-1980 Drill holes (Drill Logs and Assay Records): Alaska Division of Geological & Geophysical
Robb, James M.
1980-01-01
In 1976 the U.S. Geological Survey undertook a program to sample the eastern United States Shelf for stratigraphic information by drilling a set of core holes. Results of this Atlantic Margin Coring Program (AMCOR) have been reported by Hathaway and others. Sites were chosen from seismic-reflection data and were reviewed by a safety panel to minimize the risk of penetrating any hydrocarbon accumulation which might lead to environmental contamination.The M-V-L'OLONNOIS, the service ship for the drilling operation, was fitted with seismic-reflection profiling equipment (listed below), to run seismic-reflection profiles before drilling began on each hole. This provided additional assurance that no closed structures would be penetrated and allowed minor adjustment with the site selection. A total of 491 km of high-resolution seismic profiles was collected on 22 sites.Equipment used (specifics for each site noted on records): Bolt Air Guns 1-40 cubic inch chambers EPC Recorder Teledyne Minisparker (last two sites) Navigation used two Internav 101 Loran-C receivers.
Day, Warren C.; Granitto, Matthew
2014-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources/Missouri Geological Survey, undertook a study from 1988 to 1994 on the iron-oxide deposits and their host Mesoproterozoic igneous rocks in southeastern Missouri. The project resulted in an improvement of our understanding of the geologic setting, mode of formation, and the composition of many of the known deposits and prospects and the associated rocks of the St. Francois terrane in Missouri. The goal for this earlier work was to allow the comparison of Missouri iron-oxide deposits in context with other iron oxide-copper ± uranium (IOCG) types of mineral deposits observed globally. The raw geochemical analyses were released originally through the USGS National Geochemical Database (NGDB, http://mrdata.usgs.gov). The data presented herein offers all of the field notes, locations, rock descriptions, and geochemical analyses in a coherent package to facilitate new research efforts in IOCG deposit types. The data are provided in both Microsoft Excel (Version Office 2010) spreadsheet format (*.xlsx) and MS-DOS text formats (*.txt) for ease of use by numerous computer programs.
Report on drilling activities in the Thar Desert, Sindh Province, Pakistan
Thomas, Roger E.; Fassett, James E.; Warwick, Peter D.; Wardlaw, Bruce R.; Shah, Abas A.; Khan, Shafique Ahmed; Tagar, Mohammad A.; Memon, Abdul R.; Lashari, Ghulam S.; Khan, Zameer M.; Khan, Muhammad D.; Chandio, Altaf H.; Anwar, Mohammad; Nizamani, Mohammad A.; Ahmad, Mujeeb; Ur-Raman, Mehtab-
1994-01-01
Coal test drilling in the Thar Desert of southeast Pakistan was conducted as part of the Coal Exploration and Assessment Program (COALREAP) involving the United States Agency for International Development (USAID), the Geological Survey of Pakistan (GSP), and the U.S. Geological Survey. Drilling was performed in the Thar Desert, or Great Indian Desert, approximately 175 km northeast of Karachi. Twenty five exploration holes were drilled between January 1992 and May 1994. Drill core was described by geologists of the Pakistan Geological Survey and coal samples were analyzed in both the United States and Pakistan. U.S. Geological Survey geologists offered technical assistance, trained GSP personnel, and managed the drilling program according to an agreement with USAID under the Energy Planning and Development Project.Drilling was performed by the Geological Survey of Pakistan. During drilling, the first 50 m was rotary drilled and cuttings collected every 2 m for examination. Average depth for all coal beds is 214 m with a total average thickness of 10 m of coal per drill hole. Core was described, boxed, and stored at the Geological Survey of Pakistan core library at Sonda, near Hyderabad. Approximately 6,412 m of Paleocene to Eocene rock was drilled of which 3,990 m was cored and 1,113 m was rotary drilled.There was 1,309 m of core loss. Geophysical logging of each drill hole permitted detailed thicknesses of coal to be determined. Analysis of the coal indicated a rank of lignite B with an as-received heating value over 5,000 Btu.This report presents data collected at the drill sites and should be used inconjunction with the published interpretive report (Fassett and Durrani, 1994) and the USGS Open-File Report 94-167, which contains analysis of the coal samples. Tables provide quick reference to numeric data and results. Detailed index maps and specific data, for each drill hole are included. This report covers drill holes TP-5 to TP-31. Drill holes TP-16, 17, 21, 26, 27, and 29 were planned but not drilled due to time restraints and (or) a determination that those drill sites were not needed to effectively delineate the coal deposit. The basic data for drill holes TP-1 through TP-4 are included in SanFilipo and others, 1994 however, some data for these drill holes are included for consistency.
Geological Mapping Using Legacy Geophysical Data in Las Vegas Valley
NASA Astrophysics Data System (ADS)
Donovan, D.; O'Donnell, J.; McLin, K.
2014-12-01
In 2008-2011, Clark County, Building Department contracted with Optim to collect 10,700 Reflection Microtremor (ReMi) 600 ft seismic lines that cover most of the metropolitan area of Las Vegas and other outlying communities such as Moapa, Laughlin, Primm, and Coyote Spring. The County completed their goal of characterizing seismic susceptibility of the top 100 ft and the results are posted at http://gisgate.co.clark.nv.us/openweb/. The research question of the authors is: What additional geologic information can be inferred from the data, either through reprocessing, cross correlation of drill hole data or additional data collection? An advantage of geophysical data is that it can be reprocessed to provide additional insight into the local geologic setting. The interpretation is also improved if combined with drill hole data and / or hydrologic information. It should be noted that there is also legacy geophysical data in limited areas collected by the USGS, primarily in conjunction with water well drilling, where some of the ReMi seismic data was collected. An unexpected result of the ReMi survey was a clear delineation of current and paleo channels in Laughlin, Moapa, and Las Vegas. The geometry of the paleochanel, of the Colorado River, is well away from the current position. however the signal is very similar to modern streams such as the Muddy River. Although the surficial geologic mapping in Las Vegas Valley was very detailed, and importantly, was performed prior to development; the new geophysical data provides better details of the lithologic properties of the units. That is it may be an excellent basis for remapping for specific properties related to engineering and hydrologic modeling.
Goat paddock cryptoexplosion crater, Western Australia
Harms, J.E.; Milton, D.J.; Ferguson, J.; Gilbert, D.J.; Harris, W.K.; Goleby, B.
1980-01-01
Goat Paddock, a crater slightly over 5 km in diameter (18??20??? S, 126??40???E), lies at the north edge of the King Leopold Range/Mueller Range junction in the Kimberley district, Western Australia (Fig. 1). It was noted as a geological anomaly in 1964 during regional mapping by the Bureau of Mineral Resources, Geology and Geophysics and the Geological Survey of Western Australia. The possibility of its being a meteorite impact crater has been discussed1, although this suggestion was subsequently ignored2. Two holes were drilled by a mining corporation in 1972 to test whether kimberlite underlay the structure. Here we report the findings of five days of reconnaissance in August 1979 which established that Goat Paddock is a cryptoexplosion crater containing shocked rocks and an unusually well exposed set of structural features. ?? 1980 Nature Publishing Group.
Stamm, Robert G.
2018-06-08
BackgroundIn the fall of 2011, the U.S. Geological Survey (USGS) was afforded an opportunity to participate in an environmental monitoring study of the potential impacts of a deep, unconventional Marcellus Shale hydraulic fracturing site. The drill site of the prospective case study is the “Range Resources MCC Partners L.P. Units 1-5H” location (also referred to as the “RR–MCC” drill site), located in Washington County, southwestern Pennsylvania. Specifically, the USGS was approached to provide a geologic framework that would (1) provide geologic parameters for the proposed area of a localized groundwater circulation model, and (2) provide potential information for the siting of both shallow and deep groundwater monitoring wells located near the drill pad and the deviated drill legs.The lead organization of the prospective case study of the RR–MCC drill site was the Groundwater and Ecosystems Restoration Division (GWERD) of the U.S. Environmental Protection Agency. Aside from the USGS, additional partners/participants were to include the Department of Energy, the Pennsylvania Geological Survey, the Pennsylvania Department of Environmental Protection, and the developer Range Resources LLC. During the initial cooperative phase, GWERD, with input from the participating agencies, drafted a Quality Assurance Project Plan (QAPP) that proposed much of the objectives, tasks, sampling and analytical procedures, and documentation of results.Later in 2012, the proposed cooperative agreement between the aforementioned partners and the associated land owners for a monitoring program at the drill site was not executed. Therefore, the prospective case study of the RR–MCC site was terminated and no installation of groundwater monitoring wells nor the collection of nearby soil, stream sediment, and surface-water samples were made.Prior to the completion of the QAPP and termination of the perspective case study the geologic framework was rapidly conducted and nearly completed. This was done for three principal reasons. First, there was an immediate need to know the distribution of the relatively undisturbed surface to near-surface bedrock geology and unconsolidated materials for the collection of baseline surface data prior to drill site development (drill pad access road, drill pad leveling) and later during monitoring associated with well drilling, well development, and well production. Second, it was necessary to know the bedrock geology to support the siting of: (1) multiple shallow groundwater monitoring wells (possibly as many as four) surrounding and located immediately adjacent to the drill pad, and (2) deep groundwater monitoring wells (possibly two) located at distance from the drill pad with one possibly being sited along one of the deviated production drill legs. Lastly, the framework geology would provide the lateral extent, thickness, lithology, and expected discontinuities of geologic units (to be parsed or grouped as hydrostratigraphic units) and regional structure trends as inputs into the groundwater model.This report provides the methodology of geologic data accumulation and aggregation, and its integration into a geographic information system (GIS) based program. The GIS program will allow multiple data to be exported in various formats (shapefiles [.shp], database files [.dbf], and Keyhole Markup Language files [.KML]) for use in surface and subsurface geologic site characterization, for sampling strategies, and for inputs for groundwater modeling.
Code of Federal Regulations, 2014 CFR
2014-10-01
... geologic or reservoir information, such as: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production...
Code of Federal Regulations, 2013 CFR
2013-10-01
... geologic or reservoir information, such as: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production...
Code of Federal Regulations, 2012 CFR
2012-10-01
... geologic or reservoir information, such as: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.
1981-02-01
This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre,more » and drill site geologic maps and cross-sections from most of the holes.« less
Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications
Grauch, V.J.; Sawyer, David A.; Fridrich, Chris J.; Hudson, Mark R.
1999-01-01
Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The region has been loosely divided into six domains based on structural style and overall geophysical character. For each domain, the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work has been reviewed. Where possible, abrupt changes in geophysical fields as evidence for potential structural lithologic control on ground-water flow has been noted. Inferred lithology is used to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses from regional ground-water pathways where no drill-hole information exists.
ERIC Educational Resources Information Center
White, Stan M.
1979-01-01
Drilling during 1978 focused on three major geologic problems: the nature and origin of the oceanic crust, the nature and geologic history of the active continental margins, and the oceanic paleoenvironment. (Author/BB)
Using analogues to quantify geological uncertainty in stochastic reserve modelling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, B.; Brown, I.
1995-08-01
The petroleum industry seeks to minimize exploration risk by employing the best possible expertise, methods and tools. Is it possible to quantify the success of this process of risk reduction? Due to inherent uncertainty in predicting geological reality and due to changing environments for hydrocarbon exploration, it is not enough simply to record the proportion of successful wells drilled; in various parts of the world it has been noted that pseudo-random drilling would apparently have been as successful as the actual drilling programme. How, then, should we judge the success of risk reduction? For many years the E&P industry hasmore » routinely used Monte Carlo modelling to generate a probability distribution for prospect reserves. One aspect of Monte Carlo modelling which has received insufficient attention, but which is essential for quantifying risk reduction, is the consistency and repeatability with which predictions can be made. Reducing the subjective element inherent in the specification of geological uncertainty allows better quantification of uncertainty in the prediction of reserves, in both exploration and appraisal. Building on work reported at the AAPG annual conventions in 1994 and 1995, the present paper incorporates analogue information with uncertainty modelling. Analogues provide a major step forward in the quantification of risk, but their significance is potentially greater still. The two principal contributors to uncertainty in field and prospect analysis are the hydrocarbon life-cycle and the geometry of the trap. These are usually treated separately. Combining them into a single model is a major contribution to the reduction risk. This work is based in part on a joint project with Oryx Energy UK Ltd., and thanks are due in particular to Richard Benmore and Mike Cooper.« less
Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties, Utah
Feltis, R.D.; Robinson, G.B. Jr.
1963-01-01
A test-drilling program was conducted by the U.S. Geological Survey in the upper Sevier River drainage basin (fig. 1) in the summer of 1962. The program was part of a ground-water investigation made in cooperation with the Utah State Engineer. The drilling was financed cooperatively through the State Engineer by the U.S. Geological Survey, Garfield, Piute, Sevier, Sanpete, and Millard Counties, and various water users within those counties. Drilling began in May and continued through September 1962, and 21 test holes were drilled.
NASA Astrophysics Data System (ADS)
Banz, B.; Bohling, G.; Doveton, J.
2008-12-01
Traditional programs of geological education continue to be focused primarily on the evaluation of surface or near-surface geology accessed at outcrops and shallow boreholes. However, most students who graduate to careers in geology work almost entirely on subsurface problems, interpreting drilling records and petrophysical logs from exploration and production wells. Thus, college graduates commonly find themselves ill-prepared when they enter the petroleum industry and require specialized training in drilling and petrophysical log interpretation. To aid in this training process, we are developing an environment for interactive instruction in the geological aspects of petroleum reservoir characterization employing a virtual subsurface closely reflecting the geology of the US mid-continent, in the fictional setting of Small County, Kansas. Stochastic simulation techniques are used to generate the subsurface characteristics, including the overall geological structure, distributions of facies, porosity, and fluid saturations, and petrophysical logs. The student then explores this subsurface by siting exploratory wells and examining drilling and petrophysical log records obtained from those wells. We are developing the application using the Eclipse Rich Client Platform, which allows for the rapid development of a platform-agnostic application while providing an immersive graphical interface. The application provides an array of views to enable relevant data display and student interaction. One such view is an interactive map of the county allowing the student to view the locations of existing well bores and select pertinent data overlays such as a contour map of the elevation of an interesting interval. Additionally, from this view a student may choose the site of a new well. Another view emulates a drilling log, complete with drilling rate plot and iconic representation of examined drill cuttings. From here, students are directed to stipulate subsurface lithology and interval tops as they progress through the drilling operation. Once the interpretation process is complete, the student is guided through an exercise emulating a drill stem test and then is prompted to decide on perforation intervals. The application provides a graphical framework by which the student is guided through well site selection, drilling data interpretation, and well completion or dry-hole abandonment, creating a tight feedback loop by which the student gains an over-arching view of drilling logistics and the subsurface data evaluation process.
Drilling and testing of well 340, Fort Wingate Army Depot, McKinley County, New Mexico
Shomaker, John W.
1969-01-01
The U.S. Geological Survey was requested by Fort Wingate Army Depot to designate a well location, suggest construction and testing procedures, and provide continuing technical advice with respect to the drilling of a new production well. The location was determined during a brief preliminary study of the Depot's water supply which is summarized in a report transmitted to the Depot in April of 1968, and the Geological Survey's suggestions for construction and testing are contained in the specifications written by the Post Engineer at the Depot as part of the well-drilling contract. A representative of the the Geological Survey was present during most of the drilling and testing of the well.
Neogene and Quaternary geology of a stratigraphic test hole on Horn Island, Mississippi Sound
Gohn, Gregory S.; Brewster-Wingard, G. Lynn; Cronin, Thomas M.; Edwards, Lucy E.; Gibson, Thomas G.; Rubin, Meyer; Willard, Debra A.
1996-01-01
During April and May, 1991, the U.S. Geological Survey (USGS) drilled a 510-ft-deep, continuously cored, stratigraphic test hole on Horn Island, Mississippi Sound, as part of a field study of the Neogene and Quaternary geology of the Mississippi coastal area. The USGS drilled two new holes at the Horn Island site. The first hole was continuously cored to a depth of 510 ft; coring stopped at this depth due to mechanical problems. To facilitate geophysical logging, an unsampled second hole was drilled to a depth of 519 ft at the same location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This paper reports that Myanmar's state oil company has awarded production sharing contracts (PSCs) on two blocks to units of Apache Corp. and Santa Fe Energy Resources Inc., both of Houston. That comes on the heels of a report by County NatWest Woodmac that notes Myanmar's oil production, currently meeting less than half the country's demand, is set to fall further this year. 150 line km of new seismic data could be acquired and one well drilled. During the initial 2 year exploration period on Block EP-3, Apache will conduct geological studies and conduct at least 200 line km ofmore » seismic data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.
2008-01-22
The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less
Alemán González, Wilma B.; Powars, David S.; Seefelt, Ellen L.; Edwards, Lucy E.; Self-Trail, Jean M.; Durand, Colleen T.; Schultz, Arthur P.; McLaughlin, Peter P.
2012-01-01
The South Dover Bridge (SDB) corehole was drilled in October 2007 in Talbot County, Maryland. The main purpose for drilling this corehole was to characterize the Upper Cretaceous and Paleogene lithostratigraphy and biostratigraphy of the aquifers and confining units of this region. The data obtained from this core also will be used as a guide to geologic mapping and to help interpret well data from the eastern part of the Washington East 1:100,000-scale map near the town of Easton, Md. Core drilling was conducted to a depth of 700 feet (ft). The Cretaceous section was not penetrated due to technical problems during drilling. This project was funded by the U.S. Geological Survey’s (USGS) Eastern Geology and Paleoclimate Science Center (EGPSC) as part of the Geology of the Atlantic Watersheds Project; this project was carried out in cooperation with the Maryland Geological Survey (MGS) through partnerships with the Aquifer Characterization Program of the USGS’s Maryland-Delaware-District of Columbia Water Science Center and the National Cooperative Geologic Mapping Program. The SDB corehole was drilled by the USGS drilling crew in the northeastern corner of the Trappe 7.5-minute quadrangle, near the type locality of the Boston Cliffs member of the Choptank Formation. Geophysical logs (gamma ray, single point resistance, and 16-inch and 64-inch normal resistivity) were run to a depth of 527.5 ft; the total depth of 700.0 ft could not be reached because of the collapse of the lower part of the hole. Of the 700.0 ft drilled, 531.8 ft of core were recovered, representing a 76 percent core recovery. The elevation of the top of the corehole is approximately 12 ft above mean sea level; its coordinates are lat 38°44′49.34″N. and long 76°00′25.09″W. (38.74704N., 76.00697W. in decimal degrees). A groundwater monitoring well was not installed at this site. The South Dover Bridge corehole was the first corehole that will be used to better understand the geology and hydrology of the Maryland Eastern Shore.
Drilling a deep geologic test well at Hilton Head Island, South Carolina
Schultz, Arthur P.; Seefelt, Ellen L.
2011-01-01
The U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC), is drilling a deep geologic test well at Hilton Head Island, S.C. The test well is scheduled to run between mid-March and early May 2011. When completed, the well will be about 1,000 feet deep. The purpose of this test well is to gain knowledge about the regional-scale Floridan aquifer, an important source of groundwater in the Hilton Head area. Also, cores obtained during drilling will enable geologists to study the last 60 million years of Earth history in this area.
Salton Sea Scientific Drilling Program
Sass, J.H.
1988-01-01
The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activites enabled the U.S Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. This program, orginally conceived by Wilfred A. Elders, professor of geology at the University of California at Riverside, was coordinated under an inter-agency accord among the Geological Survey, the U.S Department of Energy, and the National Science Foundation.
Publications - GMC 376 | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska DGGS GMC 376 Publication Details Title: NWE Drill Logs for the Orange Hill Property, Nabesna Quadrangle , Alaska: 1973 and 1974 Drill holes No. 112 through No. 123 Authors: Northwest Explorations Publication
Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.
2018-01-01
Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.
1987-12-01
mineralogy and igneous petrology . Consultant to Shield Energy. Inc.; performed mudlogging and well site geology duties on 4,670’ wildcat weil in...Taylor County, Texas. Evaluated prospects for hydrocarbon potential. Prepared geologic reports for drilling prospectus. Geologist, Wold Minerals...Exploration Company; conducted geologic and geophysi- cal mapping in Precambrian metamorphic terrain of West Texas for talc depos- its. Supervised the drilling
30 CFR 251.7 - Test drilling activities under a permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Test drilling activities under a permit. 251.7... GEOLOGICAL AND GEOPHYSICAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 251.7 Test drilling activities... of drilling activities; (ii) A description of your drilling rig, indicating the important features...
30 CFR 551.7 - Test drilling activities under a permit.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Test drilling activities under a permit. 551.7... GEOLOGICAL AND GEOPHYSICAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 551.7 Test drilling activities under a permit. (a) Shallow test drilling. Before you begin shallow test drilling under a permit, the...
30 CFR 551.7 - Test drilling activities under a permit.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Test drilling activities under a permit. 551.7... GEOLOGICAL AND GEOPHYSICAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 551.7 Test drilling activities under a permit. (a) Shallow test drilling. Before you begin shallow test drilling under a permit, the...
30 CFR 551.7 - Test drilling activities under a permit.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Test drilling activities under a permit. 551.7... GEOLOGICAL AND GEOPHYSCIAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 551.7 Test drilling activities under a permit. (a) Shallow test drilling. Before you begin shallow test drilling under a permit, the...
NASA Astrophysics Data System (ADS)
Wakizaka, Yasuhiko
2013-10-01
The recent development of high-quality boring, which uses foam surfactants, has made it possible to examine the detailed geological constitution and structure of landslide bodies. However, geological information related to landslides has not been obtained appropriately even from undisturbed high-quality drilled cores. Moreover, it has been difficult to distinguish between rocks crushed by landslide movement and the fault breccia in accretionary complexes. We examined the detailed geology of high-quality drilled cores of landslide bodies on the Shimanto Belt and the Chichibu Belt. The fault breccia near the landslide bodies was found to exhibit planar fabrics while the crushed breccias in the landslide bodies showed a random fabric. We discovered that classifying the degree of crushing and inspecting the planar fabrics of rocks are effective in the geological determination of landslide bodies.
Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant
2009-01-01
From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.
Physical exploration for uranium during 1951 in the Silver Reef district, Washington County, Utah
Stugard, Frederick
1953-01-01
During 1951 a joint exploration program of the most promising uraniferous areas in the Silver Reef district was made by the U.S. Geological Survey and the u.S. Atomic Energy Commission. A U.S. Bureau of Mines drill crew, on contract to the Atomic Energy Commission, did 2,450 feet of diamond drilling under the geological supervision of the U.S. Geological Survey. The purpose of the drilling was to delineate broadly the favorable ground for commercial development of the uranium depostis. Ten drill holes were located around Pumpkin Point, which is the northeastern end of Buckeye Reef, to probe for extensions of small ore shootsmined on the Point in fine-grained sandstones of the Chinle formation. Three additional holes were located around teh Tecumseh Hill to prbe for extensions of the small showings of uranium-bearing rocks of Buckeye Reef.
Records of wells drilled for oil and gas in Montana, June 1, 1951 through December 31, 1953
Smith, Howard R.
1955-01-01
Data concerning about 1, 800 dry holes and selected producing wells drilled in Montana from June 1, 1951, through December 31, 1953, are contained in this circular, which supplements Circular 172 published in 1952. Also included is a table listing the oil and gas fields of Montana. WELLS DRILLED FOR OIL AND GAS IN MONTANA FROM JUNE 1, 1951, THOROUGH DECEMBER 31, 1953 This circular contains data on dry holes and selected producing wells drilled in Montana from June 1, 1951, through December 31, 1953, and supplements Circular 172 published in 1952 showing records of wells drilled prior to June 1, 1951. Table 1 lists the oil and gas fields of Montana (see map OM 130). The list of wells in table 2 has been compiled from information in Geological Survey files and includes most if not all the unsuccessful wildcat test wells and unsuccessful field extension wells drilled from June 1, 1951 to December 31, 1953. It also includes some older but successful field extension wells that had not been listed in Circular 172. Data are tabulated under location, county, field or geologic structure, operator, lease, and well number, elevation, geologic formation (at the surface and lowest formation reached), production or shows of oil or gas, total depth, and status and date. The wells are tabulated by township, range, quarter, and section in the order of townships north-ranges west, townships north-ranges east, townships south-ranges east, and townships south-ranges west. The names entered under 'Field or geologic structure' are those of the productive area or the geologic structure on or near which the wells have been drilled. Ground elevations have been given for wells for which the records indicated the reference point of the elevation. The surface formation and lowest formation reached in the wells are indicated by symbols which are identified on the accompanying explanation of formation symbols (fig. 1). Not all of the nomenclature is in accord with current Geological Survey usage. In the column 'Production or shows of oil and gas' the symbol GS is used for gas shows, OS for oil shows, GOS for shows of both gas and oil, GP for gas production, and OP for oil production. A number following the symbol for a show or production indicates the depth to the top of the zone in which the gas or oil was found. The letter symbol following the number or the hyphen indicates the geologic formation in which the gas or oil occurs. The status and depth of each well is indicated. The letters A, C, and D preceding the date indicate abandoned, completed, or drilling, respectively, in the specified year. Most if not all producing wells that have been abandoned are shown as completed wells. The date of abandonment is the year in which drilling ceased, except for a few wells in which the abandonment was preceded by one or more years of suspended operations. The diagrammatic representation of the succession of geologic formations in Montana (fig. 1) provides identification of the letter symbols used in the tabulation to indicate geologic formations.
Accelerating Neoproterozoic Research through Scientific Drilling
NASA Astrophysics Data System (ADS)
Condon, Daniel; Prave, Anthony; Boggiani, Paulo; Fike, David; Halverson, Galen; Kasemann, Simone; Knoll, Andrew; Zhu, Maoyan
2014-05-01
The Neoproterozoic Era (1.0 to 0.541 Ga) and earliest Cambrian (541 to ca. 520 Ma) records geologic changes unlike any other in Earth history: supercontinental tectonics of Rodinia followed by its breakup and dispersal into fragments that form the core of today's continents; a rise in oxygen that, perhaps for the first time in Earth history, resulted in the deep oceans becoming oxic; snowball Earth, which envisages a blanketing of global ice cover for millions of years; and, at the zenith of these combined biogeochemical changes, the evolutionary leap from eukaryotes to animals. Such a concentration of hallmark events in the evolution of our planet is unparalleled and many questions regarding Earth System evolution during times of profound climatic and geological changes remain to be answered. Neoproterozoic successions also offer insight into the genesis of a number of natural resources. These include banded-iron formation, organic-rich shale intervals (with demonstrated hydrocarbon source rocks already economically viable in some countries), base and precious metal ore deposits and REE occurrences, as well as industrial minerals and dimension stone. Developing our understanding of the Neoproterozoic Earth-system, combined with regional geology has the potential to impact the viability of these resources. Our understanding of the Neoproterozoic and early Cambrian, though, is overwhelmingly dependent on outcrop-based studies, which suffer from lack of continuity of outcrop and, in many instances, deep weathering profiles. A limited number of research projects study Precambrian strata have demonstrated the potential impact of scientific drilling to augment and complement ongoing outcrop based studies and advancing research. An ICDP and ECORD sponsored workshop, to be held in March 2014, has been convened to discuss the utility of scientific drilling for accelerating research of the Neoproterozoic through early Cambrian (ca. 0.9 to 0.52 Ga) rock record. The aim is to discuss the potential for establishing a collaborative, integrated, worldwide drilling programme to obtain the pristine samples and continuous sections needed to refine Neoproterozoic Earth history, inform assessment of resource potential, and address the major questions noted above. Such an initiative would be a platform to define complementary research and discovery between cutting-edge interdisciplinary scientific studies and synergistic collaborations with national agencies (Geological Surveys) and industry partners. A number of potential sites have been identified and discussed, along with identifying the mechanisms by which the Neoproterozoic research community can development data archives, open access data, sample archiving, and the approaches to multi-national funding. We will, amongst other things, present a summary of the workshop discussions. For more information visit: https://sites.google.com/site/drillingtheneoproterozoic/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathcart, J.D.
1984-01-01
This bibliography includes reports on coal drilling, geophysical logging projects, and related geologic uses, in the Powder River Basin of Montana and Wyoming. Reports on chemical analyses of Powder River Basin coals, coal quality, methane studies, and geotechnical studies are also included, as are EMRIA (Energy Mineral Rehabilitation Inventory and Analysis) reports on resource and potential reclamation of selected study areas in Montana and Wyoming.
30 CFR 251.7 - Test drilling activities under a permit.
Code of Federal Regulations, 2013 CFR
2013-07-01
... drilling activities. (iv) A description of the probable impacts of the proposed action on the environment... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Test drilling activities under a permit. 251.7... OFFSHORE GEOLOGICAL AND GEOPHYSICAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 251.7 Test drilling...
30 CFR 251.7 - Test drilling activities under a permit.
Code of Federal Regulations, 2012 CFR
2012-07-01
... drilling activities. (iv) A description of the probable impacts of the proposed action on the environment... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Test drilling activities under a permit. 251.7... OFFSHORE GEOLOGICAL AND GEOPHYSICAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 251.7 Test drilling...
30 CFR 251.7 - Test drilling activities under a permit.
Code of Federal Regulations, 2014 CFR
2014-07-01
... drilling activities. (iv) A description of the probable impacts of the proposed action on the environment... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Test drilling activities under a permit. 251.7... OFFSHORE GEOLOGICAL AND GEOPHYSICAL (G&G) EXPLORATIONS OF THE OUTER CONTINENTAL SHELF § 251.7 Test drilling...
Geologic and operational summary, COST No. G-2 well, Georges Bank area, North Atlantic OCS
Amato, Roger V.; Simonis, Edvardas K.
1980-01-01
The Continental Offshore Stratigraphic Test (COST) No. G-2 well is the second deep well to be drilled in the Georges Bank Basin and the third in a series of COST wells on the Atlantic Outer Continental Shelf (OCS). The G-2 was drilled by Ocean Production Company, acting as the operator for 19 participating companies between January 6 and August 30, 1977. The semisubmersible rig Ocean Victory was used to drill the well to a depth of 21,874 feet at a location 132 statute miles east-southeast of Nantucket Island in 272 feet of water. An earlier deep Stratigraphic test, the COST No. G-l well, was drilled 42 statute miles west of the G-2 well, to a depth of 16,071 feet in 1976 (fig. 1). Geological and engineering data obtained from the well were used by companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for lease sale 42 held on December 18, 1979. The Stratigraphic test was intentionally drilled away from any potential petroleum-bearing feature, but in a block bordering several tracts that were included in the sale area.
Carnotite resources of the Spud Patch area, San Miguel County, Colorado
Bell, Henry
1953-01-01
The Spud Patch area comprises about 8 square in T. 43 M., R. 18 and 19 W., San Miguel County, Colo., and is about 4 miles northeast of Egnar, Colo. Claims of the United States Vanadium Co. and the Vanadium Corp. of America cover about half the area. Claims of other owners, public land, and patented agricultural land, comprise the remainder of the area. The area is about 38 miles from the Government mill at Montecello, Utah, and 55 miles from the Vanadium Corp. of America mill at Naturita, Colo.Between 1940 and 1951, the Spud Patch area yielded about 24,000 short tons of carnotite ore that probably averaged 0.21 percent U3O8 and 2.2 percent V2O5.The deposits are in a broad sandstone lens near the top of the Salt Wash member of the Jurassic Morrison formation. Although the deposits mined have been mainly impregnations of sandstone by carnotite and gray vanadium-bearing clay minerals, some of the richer deposits found by Geological Survey drilling have a finely disseminated black uranium mineral but no carnotite. The deposits commonly are thin irregular tabular layers, which locally thicken to form elongate masses called "rolls". These rolls have a dominant northeasterly trend. Geologic features found to be most useful as guides to ore are listed.From November 1949 to May 1952, the U.S. Geological Survey drilled 415 diamond-drill holes totaling 67,215 feet in the Spud Patch area. The purpose of this drilling was to find deposits that would make new mines and to appraise the reserves in the unexplored area.As a result of Geological Survey drilling, indicated and inferred reserves computed at the cutoff of 1 foot or more thick and 0.10 percent U3O8 or 1.0 percent V2O5 total 20,500 short tons, averaging 0.28 percent U3O8 and 2.1 percent V2O5. These reserves and those computed at a lower grade cutoff of 0.05 percent U3O8 or 0.50 percent V2O5 and the pounds of contained metal are summarized in table 1.Potential reserves, whose existence is based on geologic evidence alone, are predicted to total about 42,000 short tons, averaging 0.25 percent U3O8 and 2.0 percent V2O5.No additional exploratory-type drilling by the Geological Survey is planned in the Spud Patch area. Recommendations are offered for additional development-type drilling, preferably by claim owners or lessees in specific areas in the vicinity of deposits discovered by Geological Survey drilling.
Special Issue on Earth Science: The View From '76
ERIC Educational Resources Information Center
Geotimes, 1976
1976-01-01
Presents the latest developments concerning the following topics: astrogeology, coal, deep sea drilling project, engineering geology; environmental geology, exploration geophysics, geochemistry, geodynamics project, hydrology, industrial minerals, international geology, mapping, mathematical geology, metals, mineralogy, oil and gas, invertebrate…
Code of Federal Regulations, 2013 CFR
2013-10-01
...: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production or injection wells; (6) Reservoir... lease at the end of that year unless you qualify for a drilling extension under § 3207.13. (i) Every...
Code of Federal Regulations, 2012 CFR
2012-10-01
...: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production or injection wells; (6) Reservoir... lease at the end of that year unless you qualify for a drilling extension under § 3207.13. (i) Every...
Code of Federal Regulations, 2014 CFR
2014-10-01
...: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production or injection wells; (6) Reservoir... lease at the end of that year unless you qualify for a drilling extension under § 3207.13. (i) Every...
Code of Federal Regulations, 2011 CFR
2011-10-01
...: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production or injection wells; (6) Reservoir... lease at the end of that year unless you qualify for a drilling extension under § 3207.13. (i) Every...
Method and apparatus for drilling horizontal holes in geological structures from a vertical bore
Summers, David A.; Barker, Clark R.; Keith, H. Dean
1982-01-01
This invention is directed to a method and apparatus for drilling horizontal holes in geological strata from a vertical position. The geological structures intended to be penetrated in this fashion are coal seams, as for in situ gasification or methane drainage, or in oil-bearing strata for increasing the flow rate from a pre-existing well. Other possible uses for this device might be for use in the leaching of uranium ore from underground deposits or for introducing horizontal channels for water and steam injections.
NASA Astrophysics Data System (ADS)
Mortensen, A. K.; Mibei, G. K.
2017-12-01
Drilling in Menengai has experienced various challenges related to drilling operations and the resource itself i.e. quality discharge fluids vis a vis gas content. The main reason for these challenges is related to the nature of rocks encountered at depths. Intrusives encountered within Menengai geothermal field have been group into three based on their geological characteristics i.e. S1, S2 and S3.Detailed geology and mineralogical characterization have not been done on these intrusive types. However, based on physical appearances, S1 is considered as a diorite dike, S2 is syenite while S3 is molten rock material. This paper summarizes the experiences in drilling into semi molten or molten intrusive (S3).
Josset, Jean-Luc; Westall, Frances; Hofmann, Beda A; Spray, John; Cockell, Charles; Kempe, Stephan; Griffiths, Andrew D; De Sanctis, Maria Cristina; Colangeli, Luigi; Koschny, Detlef; Föllmi, Karl; Verrecchia, Eric; Diamond, Larryn; Josset, Marie; Javaux, Emmanuelle J; Esposito, Francesca; Gunn, Matthew; Souchon-Leitner, Audrey L; Bontognali, Tomaso R R; Korablev, Oleg; Erkman, Suren; Paar, Gerhard; Ulamec, Stephan; Foucher, Frédéric; Martin, Philippe; Verhaeghe, Antoine; Tanevski, Mitko; Vago, Jorge L
The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.
Preserving Geological Samples and Metadata from Polar Regions
NASA Astrophysics Data System (ADS)
Grunow, A.; Sjunneskog, C. M.
2011-12-01
The Office of Polar Programs at the National Science Foundation (NSF-OPP) has long recognized the value of preserving earth science collections due to the inherent logistical challenges and financial costs of collecting geological samples from Polar Regions. NSF-OPP established two national facilities to make Antarctic geological samples and drill cores openly and freely available for research. The Antarctic Marine Geology Research Facility (AMGRF) at Florida State University was established in 1963 and archives Antarctic marine sediment cores, dredge samples and smear slides along with ship logs. The United States Polar Rock Repository (USPRR) at Ohio State University was established in 2003 and archives polar rock samples, marine dredges, unconsolidated materials and terrestrial cores, along with associated materials such as field notes, maps, raw analytical data, paleomagnetic cores, thin sections, microfossil mounts, microslides and residues. The existence of the AMGRF and USPRR helps to minimize redundant sample collecting, lessen the environmental impact of doing polar field work, facilitates field logistics planning and complies with the data sharing requirement of the Antarctic Treaty. USPRR acquires collections through donations from institutions and scientists and then makes these samples available as no-cost loans for research, education and museum exhibits. The AMGRF acquires sediment cores from US based and international collaboration drilling projects in Antarctica. Destructive research techniques are allowed on the loaned samples and loan requests are accepted from any accredited scientific institution in the world. Currently, the USPRR has more than 22,000 cataloged rock samples available to scientists from around the world. All cataloged samples are relabeled with a USPRR number, weighed, photographed and measured for magnetic susceptibility. Many aspects of the sample metadata are included in the database, e.g. geographical location, sample description, collector, rock age, formation, section location, multimedia images as well structural data, field observations, logistics, surface features, etc. The metadata are entered into a commercial, museum based database called EMu. The AMGRF houses more than 25,000m of deep-sea cores and drill cores as well as nearly 3,000 meters of rotary cored geological material from Antarctica. Detailed information on the sediment cores including location, sediment composition are available in cruise reports posted on the AMGRF web-site. Researchers may access the sample collections through the online websites (http://www-bprc.mps.ohio-state.edu/emuwebusprr and http://www.arf.fsu.edu). Searches may be done using multiple search terms or by use of the mapping feature. The on-line databases provide an essential resource for proposal preparation, pilot studies and other sample based research that should make fieldwork more efficient.
Data for four geologic test holes in the Sacramento Valley, California
Berkstresser, C.F.; French, J.J.; Schaal, M.E.
1985-01-01
The report provides geological and geophysical data for four of seven test holes drilled as a part of the Central Valley Aquifer Project, which is part of the Regional Aquifer Systems Analysis. The holes were drilled with a rotary well drilling machine to depths of 900 feet in the southwestern part of the Sacramento Valley in Solano and Yolo Counties. Geologic data for each well include lithology, texture, color, character of the contact, sorting, rounding, and cementation, determined from cuttings, cores, and sidewall covers. Fifty cores, 3 feet long, were obtained from each hole, and from eight to fourteen sidewall cores were collected. Geophysical data include a dual-induction log, spherically focused log (SFL), compensated neutron-formation density log, gamma-ray log, and a caliper log. These data are presented in four tables and on four plates. (USGS)
Physical exploration for uranium during 1951 in the Silver Reef district, Washington County, Utah
Stugard, Frederick
1954-01-01
During 1951 a joint exploration program of the most promising uraniferous areas in the Silver Reef district was made by the U.S. Geological Survey and the U.S. atomic Energy Commission. A U.S. Bureau of Mines drill crew, on contract to the Atomic Energy Commission, did 2,450 feet of diamond drilling under the geological supervision of the U.S. Geological Survey. The purpose of the drilling was to delineate broadly the favorable ground for commercial development of the uranium deposits. Ten drill holes were located around Pumpkin Point, which is the northeastern end of Buckeye Reef, to probe for extensions of small ore sheets mined on the Point in fine-grained sandstones of the Chinle formation. Three additional holes were located around Tecumseh Hill to probe for extensions of the small showings of uranium-bearing rocks of Buckeye Reef. Only one trace of uranium mineral was detected in the 13 drill holes by logging of drill cores, gamma-ray logging of the holes, and analysis of many core splits from favorable lithology. Extensive traversing with Geiger counters throughout the district and detailed geologic mapping of areas on Buckeye Reef and on East Reef indicate that the chances of discovering significant uranium deposits in the Silver Reef district are very poor, because of: highly variable lithology, closely faulted structure, and obliteration of the shallow uranium-bearing lenses by silver mining. Most of the available ore in the district was in the Pumpkin Point area and has been mined during 1950 to 1953. No ore reserves can be computed for the district before further development work. The most favorable remaining area in the district is now being explored by the operators with Atomic Energy Commission supervision.
30 CFR 784.22 - Geologic information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be collected and analyzed from test borings; drill cores; or fresh, unweathered, uncontaminated... not be removed, samples shall be collected and analyzed from test borings or drill cores to provide...
30 CFR 784.22 - Geologic information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be collected and analyzed from test borings; drill cores; or fresh, unweathered, uncontaminated... not be removed, samples shall be collected and analyzed from test borings or drill cores to provide...
Geologic distributions of US oil and gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-31
This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists` Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail thanmore » has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study.« less
Geologic distributions of US oil and gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-31
This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists' Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail thanmore » has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study.« less
Publications - GMC 375 | Alaska Division of Geological & Geophysical
: Rotary Drill Hole No. 3, 6, 8, 9, 10, 11, 11A, 13, 14, 15, 16, 17, 18, 19, 20, 26, 27, 28, 29, 30A, 31 ., 2010, AMEX Drill Logs and Assays for the Orange Hill Property, 1970: Rotary Drill Hole No. 3, 6, 8, 9
43 CFR 3150.0-5 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... and trails and cross-country transit of vehicles over such lands. It does not include core drilling for subsurface geologic information or drilling for oil and gas; these activities shall be authorized only by the issuance of an oil and gas lease and the approval of an Application for a Permit to Drill...
43 CFR 3150.0-5 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... and trails and cross-country transit of vehicles over such lands. It does not include core drilling for subsurface geologic information or drilling for oil and gas; these activities shall be authorized only by the issuance of an oil and gas lease and the approval of an Application for a Permit to Drill...
43 CFR 3150.0-5 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and trails and cross-country transit of vehicles over such lands. It does not include core drilling for subsurface geologic information or drilling for oil and gas; these activities shall be authorized only by the issuance of an oil and gas lease and the approval of an Application for a Permit to Drill...
Pantea, Michael P.; Cole, James C.; Smith, Bruce D.; Faith, Jason R.; Blome, Charles D.; Smith, David V.
2008-01-01
This multimedia report shows and describes digital three-dimensional faulted geologic surfaces and volumes of the lithologic units of the Edwards aquifer in the upper Seco Creek area of Medina and Uvalde Counties in south-central Texas. This geologic framework model was produced using (1) geologic maps and interpretations of depositional environments and paleogeography; (2) lithologic descriptions, interpretations, and geophysical logs from 31 drill holes; (3) rock core and detailed lithologic descriptions from one drill hole; (4) helicopter electromagnetic geophysical data; and (5) known major and minor faults in the study area. These faults were used because of their individual and collective effects on the continuity of the aquifer-forming units in the Edwards Group. Data and information were compared and validated with each other and reflect the complex relationships of structures in the Seco Creek area of the Balcones fault zone. This geologic framework model can be used as a tool to visually explore and study geologic structures within the Seco Creek area of the Balcones fault zone and to show the connectivity of hydrologic units of high and low permeability between and across faults. The software can be used to display other data and information, such as drill-hole data, on this geologic framework model in three-dimensional space.
Geologic and operational summary, COST No. 1 well, Georges Bank area, North Atlantic OCS
Amato, Roger V.; Bebout, John W.
1980-01-01
The first Continental Offshore Stratigraphic Test (COST) well on the U.S. North Atlantic Outer Continental Shelf (OCS) was drilled by Ocean Production Company between April 6 and July 26, 1976, and designated the COST No. G-l. Geological and engineering data obtained from this deep well in the Georges Bank Basin were used by the 31 participating companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for Lease Sale 42 held on December 18, 1979.
NASA Astrophysics Data System (ADS)
Lépine, Isabelle; Farrow, Darrell
2018-04-01
The Renard 2 kimberlite pipe is one of nine diamondiferous kimberlite pipes that form a cluster in the south-eastern portion of the Superior Province, Québec, Canada and is presently being extracted at the Renard Mine. It is interpreted as a diatreme-zone kimberlite consisting of two Kimberley-type pyroclastic units and related country rock breccias, all cross-cut by coherent kimberlite dykes and irregular intrusives. Renard 2 has been the subject of numerous diamond drilling campaigns since its discovery in 2001. The first two geological models modelled kimberlite and country rock breccia units separately. A change in modelling philosophy in 2009, which incorporated the emplacement envelope and history, modelled the entire intrusive event and projected the pipe shape to depth allowing for more targeted deep drilling where kimberlite had not yet been discovered. This targeted 2009 drilling resulted in a > 400% increase in the volume of the Indicated Resource. Modelling only the kimberlite units resulted in a significant underestimation of the pipe shape. Current open pit and underground mapping of the pipe shape corresponds well to the final 2015 geological model and contact changes observed are within the expected level of confidence for an Indicated Resource. This study demonstrates that a sound understanding of the geological emplacement is key to developing a reliable 3D geological and resource model that can be used for targeted delineation drilling, feasibility studies and during the initial stages of mining.
ICDP drilling in the Scandinavian Caledonides: the SDDP-COSC project
NASA Astrophysics Data System (ADS)
Lorenz, Henning; Juhlin, Christopher; Gee, David; Pascal, Christophe; Tsang, Chin-Fu; Pedersen, Karsten; Rosberg, Jan-Erik
2013-04-01
The Swedish Deep Drilling Program (SDDP) Collisional Orogeny in the Scandinavian Caledonides (COSC) project is a multidisciplinary investigation of the Scandian mountain belt. Cenozoic uplift of the Scandes has exposed a lower- to middle-crustal level section through this Himalaya-type orogen, providing unique opportunities to better understand not only the Caledonides, but also on-going orogeny and the earthquake-prone environments of modern mountains belts. COSC will also contribute to our knowledge of mountain belt hydrology, provide the first information about deep thermal gradients for paleoclimate modeling and potential geothermal energy resources, contribute new information about the deep biosphere, and improve our understanding of the Cenozoic uplift history of the Scandes. The drilling program targets the far-traveled (> 400 km) allochthons of the Scandinavian Caledonides and their emplacement across the Baltoscandian foreland basin onto the platform of continent Baltica. Two 2.5 km deep holes are planned. COSC-1, to be drilled in the summer of 2013, will target the high-grade metamorphic complex of the Seve Nappes (SNC) and its contact to underlying allochthons. COSC-2 will start in the lower thrust sheets, pass through the basal décollement and investigate the character of the deformation in the underlying basement. An international science team, including expertise on Himalaya-Tibet and other young orogens, is running the science program. New high-resolution reflection seismic data provide excellent images of the upper crust. Alternative interpretations of the reflectors' origin, particularly those in the basement, will be tested. The site of COSC-1 is based on a 3D geological model, constructed from surface geology, recent and vintage regional reflection seismic profiles, regional and local gravity data, and high-resolution aeromagnetics, acquired recently by the Geological Survey of Sweden. The drilling will be carried out utilising the new Swedish scientific drilling infrastructure, located at Lund University, an Atlas Copco CT20 diamond core-drilling rig, with versatile drilling equipment (see EGU2012-7379), providing the ideal platform for core-drilling to 2.5 km depths. Existing drilling, sampling and testing techniques (e.g. triple-tube core drilling for best core quality) will need to be adapted to highly variable lithologies and new techniques will be developed, as necessary. COSC-1 drilling operations and the directly related on-site investigations are financed by ICDP and the Swedish Research Council. All drill cores will be transferred to the core repository of the Geological Survey of Sweden, and a sampling party will be announced later this year. Researchers who want to participate in COSC and contribute their expertise are encouraged to inform us of their interests.
Seismic imaging for an ocean drilling site survey and its verification in the Izu rear arc
NASA Astrophysics Data System (ADS)
Yamashita, Mikiya; Takahashi, Narumi; Tamura, Yoshihiko; Miura, Seiichi; Kodaira, Shuichi
2018-01-01
To evaluate the crustal structure of a site proposed for International Ocean Discovery Program drilling, the Japan Agency for Marine-Earth Science and Technology carried out seismic surveys in the Izu rear arc between 2006 and 2008, using research vessels Kaiyo and Kairei. High-resolution dense grid surveys, consisting of three kinds of reflection surveys, generated clear seismic profiles, together with a seismic velocity image obtained from a seismic refraction survey. In this paper, we compare the seismic profiles with the geological column obtained from the drilling. Five volcaniclastic sedimentary units were identified in seismic reflection profiles above the 5 km/s and 6 km/s contours of P-wave velocity obtained from the velocity image from the seismic refraction survey. However, some of the unit boundaries interpreted from the seismic images were not recognised in the drilling core, highlighting the difficulties of geological target identification in volcanic regions from seismic images alone. The geological core derived from drilling consisted of seven lithological units (labelled I to VII). Units I to V were aged at 0-9 Ma, and units VI and VII, from 1320-1806.5 m below seafloor (mbsf) had ages from 9 to ~15 Ma. The strong heterogeneity of volcanic sediments beneath the drilling site U1437 was also identified from coherence, calculated using cross-spectral analysis between grid survey lines. Our results suggest that use of a dense grid configuration is important in site surveys for ocean drilling in volcanic rear-arc situations, in order to recognise heterogeneous crustal structure, such as sediments from different origins.
Distribution of fluoride in ground water of West Virginia
Mathes, M.V.; Waldron, M.C.
1993-01-01
This report describes the results of a study by the U.S. Geological Survey, in cooperation with the West Virginia Geological and Economic Survey, to evaluate the distribution of fluoride in ground water of West Virginia. Fluoride is a natural chemical constituent in domestic and public water supplies in West Virginia. Fluoride concentrations of about 1.0 milligram per liter in drinking water are beneficial to dental health. Concentrations greater than 2.0 milligrams per liter, however, could harm teeth and bones. Fluoride concentra- tions in ground water of West Virginia range from less than 0.1 to 12 milligrams per liter. Fluoride concentrations that exceed 2.0 milligrams per liter are found in wells drilled to all depths, wells drilled in all topographic settings, and wells drilled into most geologic units. Most fluoride concentrations that exceed 2.0 milligrams per liter are located at sites clustered in the northwestern part of the State.
43 CFR 3141.2-2 - Exploration licenses.
Code of Federal Regulations, 2011 CFR
2011-10-01
... license to conduct core drilling and other exploration activities to collect geologic, environmental and... drilling for oil or gas will be allowed under an exploration license issued under this subpart. No specific...
43 CFR 3141.2-2 - Exploration licenses.
Code of Federal Regulations, 2013 CFR
2013-10-01
... license to conduct core drilling and other exploration activities to collect geologic, environmental and... drilling for oil or gas will be allowed under an exploration license issued under this subpart. No specific...
43 CFR 3141.2-2 - Exploration licenses.
Code of Federal Regulations, 2012 CFR
2012-10-01
... license to conduct core drilling and other exploration activities to collect geologic, environmental and... drilling for oil or gas will be allowed under an exploration license issued under this subpart. No specific...
43 CFR 3141.2-2 - Exploration licenses.
Code of Federal Regulations, 2014 CFR
2014-10-01
... license to conduct core drilling and other exploration activities to collect geologic, environmental and... drilling for oil or gas will be allowed under an exploration license issued under this subpart. No specific...
Publications - SR 58 | Alaska Division of Geological & Geophysical Surveys
; Arsenopyrite; Barite; Base Metals; Big Delta; Bismuth; Chalcopyrite; Chicken Pluton; Cliff Mine; Coal ; Delta Junction; Diamond Drilling; Diamonds; Donlin Creek; Drift Mine; Drilling; Duke Island; Economic
Publications - SR 59 | Alaska Division of Geological & Geophysical Surveys
Peninsula; Alaska, State of; Antimony; Arsenic; Arsenopyrite; Barite; Base Metals; Big Delta; Bismuth Materials; Copper; Core Drilling; Council; Crushed Gravel; Crushed Rock; Delta Junction; Diamond Drilling
Publications - GMC 262 | Alaska Division of Geological & Geophysical
DGGS GMC 262 Publication Details Title: Map location and geological logs of core for 7 1991 diamond Reference Cominco American Inc., 1996, Map location and geological logs of core for 7 1991 diamond drill
Publications - GMC 401 | Alaska Division of Geological & Geophysical
DGGS GMC 401 Publication Details Title: Core photographs, lithologic logs, drilling data, and borehole , 2012, Core photographs, lithologic logs, drilling data, and borehole inventory for the Caribou Dome publication sales page for information on ordering data on DVD. Keywords Core Drilling; Core Logs; Valdez
Publications - GMC 263 | Alaska Division of Geological & Geophysical
Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications GMC 263 main content DGGS GMC 263 Publication Details Title: Map location and geological logs of core for 1994 diamond drill
Ryder, Robert T.; Kinney, Scott A.; Suitt, Stephen E.; Merrill, Matthew D.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
In 2006 and 2007, the greenline Appalachian basin field maps were digitized under the supervision of Scott Kinney and converted to geographic information system (GIS) files for chapter I.1 (this volume). By converting these oil and gas field maps to a digital format and maintaining the field names where noted, they are now available for a variety of oil and gas and possibly carbon-dioxide sequestration projects. Having historical names assigned to known digitized conventional fields provides a convenient classification scheme into which cumulative production and ultimate field-size databases can be organized. Moreover, as exploratory and development drilling expands across the basin, many previously named fields that were originally treated as conventional fields have evolved into large, commonly unnamed continuous-type accumulations. These new digital maps will facilitate a comparison between EUR values from recently drilled, unnamed parts of continuous accumulations and EUR values from named fields discovered early during the exploration cycle of continuous accumulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regenhardt, C.; Dean, J.; Hancock, J.
The purpose of this study was to determine the feasibility of the multi-drain well method in tight, lenticular formations. Although directional drilling is more costly than conventional vertical drilling, this practice could triple well production. The proposed drilling plan may be more cost efficient than drilling three separate wells with less than 320-acre spacing because it would save the costs of site surveys, rig setup, purchase of the surface lease area, and gas pipeline hookups for two additional well sites. This feasibility study was conducted on the Piceance Basin area, mainly because of the availability of geological information. The resultsmore » of this study will generally apply to other regions with tight, lenticular sand, depending upon the similarity in the total percentage of sand lenses in the area and the lens dimensions and orientations. Appendix A discusses the geology of the eastern Uinta Basin in eastern Utah, and the applicability of this study to the area. Appendix B provides calculation of expected production increase due to angle of drilling. 18 refs., 30 figs., 14 tabs.« less
Burton, W.C.; Ratcliffe, N.M.
1985-01-01
In the summer of 1983, two holes were drilled through the border fault of the Newark basin near Oldwick, New Jersey, in the Gladstone 7.5minute quadrangle. Figure 1A shows the location of the drill site in relation to regional geology and the major faults. The fault drilled in this study connects to the south with the Flemington fault, which trends southwestward across the Newark basin, as shown. To the north, the fault can be traced along the valley that extends towards Mendham, N. J., beyond the limits of exposed Mesozoic rocks, to connect with the Ramapo fault near Morristown N. J. (fig. 1A; Ratcliffe, 1980). For this reason, we use the name "Flemington" for the border fault in the region of the drill site. A detailed map (fig. 1B) shows the local geology along the border fault from Pottersville, N. J. southward to the axis of the Oldwick syncline.
Description and results of test-drilling program at Picatinny Arsenal, New Jersey, 1982-84
Harte, P.T.; Sargent, B.P.; Vowinkel, E.F.
1986-01-01
Picatinny Arsenal, located in north-central New Jersey, has a long history of explosives manufacturing. Past industrial activities and past waste-disposal practices have caused some groundwater contamination problems. In 1982, the U.S. Geological Survey, in cooperation with the U.S. Army, began a water resources investigation of the Arsenal. The test drilling program is designed to define the hydrogeology and install observation wells. Twenty-two boreholes were drilled and 21 observation wells installed in these holes. All drilling was done in a glaciated valley. The report includes lithologic and gamma-ray logs, results of grain-size analyses, well-construction data, and some groundwater levels. The generalized stratigraphic sequence of geologic units penetrated from the test-drilling program are from lower to upper: (1) pre-dominantly dolomitic Leithsville Formation, (2) in the upper part of bedrock, a weathered dolomite zone, (3) a thin discontinuous mantle of till, and (4) stratified drift deposit up to 208 ft thick. (USGS)
View of Yellowknife Bay Formation, with Drilling Sites
2013-12-09
This mosaic of images from NASA Curiosity shows geological members of the Yellowknife Bay formation, and the sites where Curiosity drilled into the lowest-lying member, called Sheepbed, at targets John Klein and Cumberland.
Publications - GMC 67 | Alaska Division of Geological & Geophysical Surveys
from Alaska; drill cuttings being from the following three wells: Mobil Oil Corporation Salmonberry ; drill cuttings being from the following three wells: Mobil Oil Corporation Salmonberry Lake Unit #1
Publications - GMC 372 | Alaska Division of Geological & Geophysical
DGGS GMC 372 Publication Details Title: 1928 Alaska Nebesna Corporation drill logs and assay records Nebesna Corporation drill logs and assay records for the Orange Hill Property, Nabesna Quadrangle, Alaska
31. VIEW OF DRILL HALL FROM NORTH END OF DRILL ...
31. VIEW OF DRILL HALL FROM NORTH END OF DRILL FLOOR FACING SOUTH. SHOWS EAST AND WEST BALCONIES, VEHICLE ENTRANCE AT THE SOUTHWEST CORNER OF THE DRILL FLOOR, THE CONCESSION STAND IN THE SOUTHEAST CORNER OF THE DRILL FLOOR AND THE FOUR WINDOWS IN THE SOUTH TRUSS SPACE. NOTE CRACKS IN THE UPPER RIGHT CORNER (WEST) OF THE SOUTH WALL. - Yakima National Guard Armory, 202 South Third Street, Yakima, Yakima County, WA
High strain rate method of producing optimized fracture networks in reservoirs
Roberts, Jeffery James; Antoun, Tarabay H.; Lomov, Ilya N.
2015-06-23
A system of fracturing a geological formation penetrated by a borehole. At least one borehole is drilled into or proximate the geological formation. An energetic charge is placed in the borehole. The energetic charge is detonated fracturing the geological formation.
Heyl, Allen Van; Lyons, Erwin J.; Agnew, Allen F.
1951-01-01
The U. S. Geological Survey in cooperation with the Wisconsin Geological and Natural History Survey explored the Prairie du Chien group in the main productive area of the Wisconsin zinc-lead district during 1949-50. Eight properties--Crow Branch diggings, Leix, Harris, Spitzbarth, Kennedy, James, Raisbeck and Vinegar Hill Roaster--were explored using both diamond and churn drills. Twenty holes were drilled that totaled 8,582 feet in depth. The objectives of the exploration were to determine if the Prairie du Chien and other formations below the principal ore-bearing strata (Galena, Decorah, and Platteville formations) of the district are favorable for ore deposits, and to determine the type of ore deposits, if present. Lean deposits of sphalerite, marcasite, and pyrite were found in the Prairie du Chien on five properties--Crow Branch, Leix, Harris, Spitzbarth, and Vinegar Hill 1%ouster-and also in the Franconia sandstone on the Leix property. In the drilled area the sulfides in the Prairie du Chien group occur in certain more brittle or soluble dolomite beds that contain cavities formed by brecciation or solution.
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-01-01
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered. PMID:27929142
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-12-08
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO 2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered.
PREFACE: Scientific and Technical Challenges in the Well Drilling Progress
NASA Astrophysics Data System (ADS)
2015-02-01
The Conference "Advanced Engineering Problems in Drilling" was devoted to the 60th anniversary of the Drilling Department, Institute of Natural Resources. Today this Department is the "descendant" of two existing departments - Mining Exploration Technology and Oil and Gas Drilling. It should be mentioned that this remarkable date is associated with the first graduation class of mining engineers in "Mining Exploration Technologies", as well as the 30th anniversary of the Oil and Gas Well Drilling Department. Anniversary is an excellent occasion to remember one's historical past. At the beginning of the last century within the Tomsk Technological Institute n.a. Emperor Nikolai II the Mining Department was established which soon embraced the Obruchev-Usov Mining-Geological School. This School became the parent of mining-geological education in the Asian region of Russia, as well as the successor of mining-geological science. It was and is today one of the leading schools in the spheres of mineral resources exploration, surveying and mining. 1927 is the year of the establishment of the Department of Technology in Mineral Exploration. SibGeokom (Western-Siberia branch of the Geological Committee) under the supervision of M.A. Usov obtained the first Krelis rotary boring drill. Prior to that only the Keystone cable drilling rig was used in exploration. It was I.A. Molchanov who was responsible for the development and implementation of new technology in the field of exploration. In the yard of SibGeokom (now it is Building № 6, Usov St.) the first drilling rig was mounted. This was the beginning of the first training courses for Krelis drilling foremen under the supervision of I.A. Molchanov. In 1931 I.A. Molchanov headed the Department of Exploration which was located in Building № 6. In the outside territory of this building a drilling site was launched, including Keystone cable drilling rig, CAM-500 drilling rig and others. In the Building itself, i.e. in one study room (now № 107), the floor was lowered to 2 m and a drilling rig was mounted where students could obtain practical skills in drilling. The Department of Exploration became the foundation of the future department of Mining Exploration Technologies. However, the Department of Exploration, headed by A.A. Belitshky from 1944, furthered its work in the research sphere of drilling (including such leading specialists as P.F. Palyanov, V.I. Molchanov, I.S. Mitushkin, V.M. Matrosov, V.P. Krendelev) and in 1949 a new speciality was introduced "Technologies in Mineral Exploration." In 1952 the graduate of Moscow Geological Institute (now Geological Institute, Russian Academy of Science) PhD. S.S. Sulakshin began working in this Department, and in 1954 headed the newly established Department of Technologies in Mineral Exploration and was its continuous Head for more than 32 years and during the last 60 years has been a close associate of this department. Due to his brilliant supervision, this Department flourished and during the last 20 years has been one of the top departments in Russian affliated departments. In 1962 within the framework of this Department a new speciality was introduced - Oil and Gas Well Drilling. 125 full-time and 50 part-time students were enrolled in the two above-mentioned specialities. As a result, there was a necessity to open a new independent department which was in 1984 (October 1). The Department of Oil and Gas Well Drilling was located in Building № 8 and then in Building № 15. The Department staff included graduates of the Department of Technologies in Mineral Exploration and was headed by Yu. L. Boyarko, one of the first graduates of this Department. Time passed by and life made its own adjustments which influenced the further existence of these two departments. Due to the decrease of exploration and development drilling scope the student enrollment in the two above-mentioned specialties also decreased many-fold. As a result the two departments - Technologies in Mineral Exploration and Technologies in Mineral Exploration were merged into one department. In 2003 the newly merged Department of Drilling was established within the Institute of Petroleum Engineering, now the Institute of Natural Resources and is located in Building № 6 where it began its life. During these 60 years more than 3000 specialists have graduated the Department of Drilling, many whom are highly-qualified and dedicated professionals. There is no doubt that this Conference involved comprehensive advanced engineering problems in drilling and issues on relevant personnel training. It is extremely important to understand how the 60-year progress and contribution in the field of drilling has left its trace in the history of this Department; and, that, now, it is necessary to move further and seek new and new horizons in drilling.
NASA Astrophysics Data System (ADS)
Zhang, Hanyu; Liu, Huaishan; Wu, Shiguo; Sun, Jin; Yang, Chaoqun; Xie, Yangbing; Chen, Chuanxu; Gao, Jinwei; Wang, Jiliang
2018-02-01
Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure (HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques (PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.
Locating scatterers while drilling using seismic noise due to tunnel boring machine
NASA Astrophysics Data System (ADS)
Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.
2018-05-01
Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.
NASA Astrophysics Data System (ADS)
Ishii, T.
2015-12-01
The Pacific plate is surrounded by circum-Pacific active margin, along which volcanic and seismic activities are very high. Ultra-Mega-Earthquakes (=UMEs, M>9.0) are occasionally observed along the margin, where sedimentary rocks of subducting slaves contact with the accreted sedimentary rocks of subducted slaves. But, those UME have never been occured along western Pacific islandarc-trench system including Izu-Ogasawara (=Bonin)-Mariana-Yap-Palau-Philippine-Tonga-Kermadec Trenches. I assume that the geological and petrological characteristics of the subduction boundaries are very important to understand those different seismic activities. Along the above mentioned trench inner wall, especially in the southern Mariana, mantle peridotites are widely distributed. Subducting slave contacts directly with the olivine dominant mantle peridotites of subducted slave, serpentinite layer can be deposited easily under hydrous oceanic sub-bottom environment and very slippery subduction boundaries are left along the subduction zone.On the other hand, those geological evidences give us some ideas on how to avoid UMEs in the Japanese Islands along Japan Trench and Nankai Trough in future. We will be able to change artificially from normal subduction boundaries with asperity zone into slippery subduction boundaries with serpentine layer, by means of serpentine mud injection toward the subduction boundaries interior by combining the following improved drilling technologies A and B. (A) Deep Sea Drilling Vessel CHIKYU has a drilling ability to reach subduction boundary with asperity zone in the Nankai Trough. (B) Advanced drilling technology in the shale gas industry is tremendous, that is, after one vertical deep drilling, horizontal drilling towards several direction are performed, then shale gas is collected by hydraulic fracturing method. I hope that, after several generations, our posterity will be able to avoid UMEs by continuous serpentine mud injection.
Advantages and limitations of remotely operated sea floor drill rigs
NASA Astrophysics Data System (ADS)
Freudenthal, T.; Smith, D. J.; Wefer, G.
2009-04-01
A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional drilling. It has the advantage that the drill string stays in the drilled hole during the entire drilling process and prevents the drilled hole from collapsing while the inner core barrels comprising the drilled core sections are hooked up inside the drill string using a wire.
Debate continues on northwest's merits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1984-07-01
Estimates of northwest Montana's petroleum reserves range from barren Precambrian rock to reserves exceeding those of Alaska's Prudhoe Bay. Geological debates concerning the merits of the vast areas continues. Seismic data and geological studies indicate that the area holds considerable promise. Several large structures have been identified, and oil and gas seeps have been reported. The area's true potential, however, will be revealed only by drilling, which is both risky and expensive. Several wildcat drilling operations are underway but the area's hydrocarbon potential may not be released for several years.
THE NEAR SURFACE GEOLOGY AT ENIWETOK AND BIKINI ATOLLS.
ROCK, *NUCLEAR EXPLOSIONS, BIKINI ATOLL, CRATERING, SURFACE PROPERTIES, PARTICLE SIZE, GEOPHYSICAL PROSPECTING, LIMESTONE, GEOLOGICAL SURVEYS, SAND, GRAVEL, CORAL REEFS, DRILLING, ROCK, MARSHALL ISLANDS , SANDSTONE, FRICTION, COMPRESSIVE PROPERTIES, SOILS.
The effects of the Yogyakarta earthquake at LUSI mud volcano, Indonesia
NASA Astrophysics Data System (ADS)
Lupi, M.; Saenger, E. H.; Fuchs, F.; Miller, S. A.
2013-12-01
The M6.3 Yogyakarta earthquake shook Central Java on May 27th, 2006. Forty seven hours later, hot mud outburst at the surface near Sidoarjo, approximately 250 km from the earthquake epicentre. The mud eruption continued and originated LUSI, the youngest mud volcanic system on earth. Since the beginning of the eruption, approximately 30,000 people lost their homes and 13 people died due to the mud flooding. The causes that initiated the eruption are still debated and are based on different geological observations. The earthquake-triggering hypothesis is supported by the evidence that at the time of the earthquake ongoing drilling operations experienced a loss of the drilling mud downhole. In addition, the eruption of the mud began only 47 hours after the Yogyakarta earthquake and the mud reached the surface at different locations aligned along the Watukosek fault, a strike-slip fault upon which LUSI resides. Moreover, the Yogyakarta earthquake also affected the volcanic activity of Mt. Semeru, located as far as Lusi from the epicentre of the earthquake. However, the drilling-triggering hypothesis points out that the earthquake was too far from LUSI for inducing relevant stress changes at depth and highlight how upwelling fluids that reached the surface first emerged only 200 m far from the drilling rig that was operative at the time. Hence, was LUSI triggered by the earthquake or by drilling operations? We conducted a seismic wave propagation study on a geological model based on vp, vs, and density values for the different lithologies and seismic profiles of the crust beneath LUSI. Our analysis shows compelling evidence for the effects produced by the passage of seismic waves through the geological formations and highlights the importance of the overall geological structure that focused and reflected incoming seismic energy.
Unique microbial community in drilling fluids from Chinese continental scientific drilling
Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.
2006-01-01
Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.
Publications - GMC 373 | Alaska Division of Geological & Geophysical
DGGS GMC 373 Publication Details Title: 1964 Bear Creek Mining Company drill logs and assay records for and assay records for the Orange Hill Property, Nabesna Quadrangle, Alaska: Drill holes OH #1 and OH
Inexpensive Laboratory Model with Many Applications.
ERIC Educational Resources Information Center
Archbold, Norbert L.; Johnson, Robert E.
1987-01-01
Presents a simple, inexpensive and realistic model which allows introductory geology students to obtain subsurface information through a simulated drilling experience. Offers ideas on additional applications to a variety of geologic situations. (ML)
Publications - PIR 2016-2 | Alaska Division of Geological & Geophysical
; Core Drilling; Cretaceous; Geologic Materials Center; Gold; Hayes Glacier Belt; Holocene; Intrusion ; Molybdenum; Placer Gold; Porphyry; Tellurium Top of Page Department of Natural Resources, Division of
Basic data from five core holes in the Raft River geothermal area, Cassia County, Idaho
Crosthwaite, E. G.
1976-01-01
meters) were completed in the area (Crosthwaite, 1974), and the Aerojet Nuclear Company, under the auspices of the U.S. Energy Research and Development Administration, was planning some deep drilling 4,000 to 6,000 feet (1,200 to 1,800 meters) (fig. 1). The purpose of the core drilling was to provide information to test geophysical interpretations of the subsurface structure and lithology and to provide hydrologic and geologic data on the shallow part of the geothermal system. Samples of the core were made available to several divisions and branches of the Geological Survey and to people and agencies outside the Survey. This report presents the basic data from the core holes that had been collected to September 1, 1975, and includes lithologic and geophysical well logs, chemical analyses of water (table 1), and laboratory analyses of cores (table 2) that were completed as of the above date. The data were collected by the Idaho District office, Hydrologic Laboratory, Borehole Geophysics Research Project, and Drilling, Sampling, and Testing Section, all of the Water Resources Division, and the Branch of Central Environmental Geology of the Geologic Divison.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, J.A.
During the summer of 1975, the Department of Geology and Geophysics drilled nine drill thermal gradient/heat flow holes. Total footage drilled was 2125 feet. Seven holes were drilled with a Mayhew 1000 drill using various combinations of down the hole hammer drilling, rotary drilling, and NX diamond core drilling. Three of these were heat flow holes--one in the Mineral Range, one in the Tushar Range near Beaver, Utah, and one near Monroe, Utah. Two were alteration study holes in the Roosevelt KGRA and two were temperature gradient holes, in alluvium in the Roosevelt KGRA. The average depth of the holesmore » drilled with the Mayhew 1000 drill was 247 feet. Holes ranged from 135 feet to 492 feet. Cost per foot averaged $18.53. Two holes were core drilled with a Joy 12, BX-size drill. One was to 75 feet, in perlite. This hole was abandoned. The other was to 323 feet in granite.« less
Geologic investigation of Playa Lakes, Tonopah Test Range, Nevada : data report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rautman, Christopher Arthur
Subsurface geological investigations have been conducted at two large playa lakes at the Tonopah Test Range in central Nevada. These characterization activities were intended to provide basic stratigraphic-framework information regarding the lateral distribution of ''hard'' and ''soft'' sedimentary materials for use in defining suitable target regions for penetration testing. Both downhole geophysical measurements and macroscopic lithilogic descriptions were used as a surrogate for quantitative mechanical-strength properties, although some quantitative laboratory strength measurements were obtained as well. Both rotary (71) and core (19) holes on a systematic grid were drilled in the southern half of the Main Lake; drill hole spacingsmore » are 300 ft north-south and 500-ft east-west. The drilled region overlaps a previous cone-penetrometer survey that also addressed the distribution of hard and soft material. Holes were drilled to a depth of 40 ft and logged using both geologic examination and down-hole geophysical surveying. The data identify a large complex of very coarse-grained sediment (clasts up to 8 mm) with interbedded finer-grained sands, silts and clays, underlying a fairly uniform layer of silty clay 6 to 12 ft thick. Geophysical densities of the course-grained materials exceed 2.0 g/cm{sup 2}, and this petrophysical value appears to be a valid discriminator of hard vs. soft sediments in the subsurface. Thirty-four holes, including both core and rotary drilling, were drilled on a portion of the much larger Antelope Lake. A set of pre-drilling geophysical surveys, including time-domain electromagnetic methods, galvanic resistivity soundings, and terrain-conductivity surveying, was used to identify the gross distribution of conductive and resistive facies with respect to the present lake outline. Conductive areas were postulated to represent softer, clay-rich sediments with larger amounts of contained conductive ground water. Initial drilling, consisting of cored drill holes to 100-ft (33-m) depth, confirmed both the specific surface geophysical measurements and the more general geophysical model of the subsurface lake facies. Good agreement of conductive regions with drill holes containing little to no coarse-grained sediments was observed, and vice-versa. A second phase of grid drilling on approximately 300-ft (100-m) centers was targeted a delineating a region of sufficient size containing essentially no coarse-grained ''hard'' material. Such a region was identified in the southwestern portion of Antelope Lake.« less
NASA Technical Reports Server (NTRS)
Levine, Arlene S.
2008-01-01
Planetary impact craters are a common surface feature of many planetary bodies, including the Earth, the Moon, Mars, Mercury, Venus, and Jupiter s moons, Ganymede and Callisto. The NASA Langley Research Center in Hampton, VA, is located about 5 km inside the outer rim of the Chesapeake Bay Impact Crater. The Chesapeake Bay Impact Crater, with a diameter of 85 km is the sixth largest impact crater on our planet. The U.S. Geological Survey (USGS), in collaboration with the NASA Langley Research Center, the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Planning District Commission (HRPDC), and the Department of Geology of the College of William and Mary (WM) drilled into and through the crater at the NASA Langley Research Center and obtained a continuous core to a depth of 2075.9 ft (632.73 meters) from the Chesapeake Bay Impact Crater. At the NASA Langley location, the granite basement depth was at 2046 ft (623.87 meters). This collaborative drilling activity provided a unique educational opportunity and ongoing educational partnership between USGS, NASA Langley and the other collaborators. NASA Langley has a decade-long, ongoing educational partnership with the Colonial Coast Council of the Girl Scouts. The core drilling and on site analysis and cataloguing of the core segments provided a unique opportunity for the Girl Scouts to learn how geologists work in the field, their tools for scientific investigation and evaluation, how they perform geological analyses of the cores in an on-site tent and learn about the formation of impact craters and the impact of impacting bodies on the sub-surface, the surface, the oceans and atmosphere of the target body. This was accomplished with a two-part activity. Girl Scout day camps and local Girl Scout troops were invited to Langley Research Center Conference Center, where more than 300 Girl Scouts, their leaders and adult personnel were given briefings by scientists and educators from the USGS, NASA, VDEQ, HRPDC and WM on the principles of geology, the formation of impact craters, the consequences of the impacting body on the atmosphere, ocean, surface and sub-surface, the geological, chemical and biological analyses of the core and the cataloguing and storage of the core segments, etc. After the briefings, the Girl Scouts visited the drilling site where they inspected the core drilling rig, examined the core samples and discussed the drilling procedures, cores and interpretation of the cores with scientists and educators from the organizations conducting the core drilling. Demonstrations at the drilling site included demonstrations of impacting objects hitting multi-colored layered mud targets at different angles of entry. The multi-colored layers of mud were instructive in mapping out the distribution of impact-ejected material around the impact crater. The presentation will include a series of photographs of the Girl Scout participating in activities at the Chesapeake Bay Impact Crater drill site, including retrieving cores from the drilling rig, inspecting the core samples and participating in the impact-crater formation demonstrations.
Publications - GMC 327 | Alaska Division of Geological & Geophysical
drill holes of the Coal Creek tin property of the Talkeetna Mountains D-6 Quadrangle of the Alaska Range and assays of cores from 1980, 1981, and 1982 drill holes of the Coal Creek tin property of the
Publications - GMC 369 | Alaska Division of Geological & Geophysical
DGGS GMC 369 Publication Details Title: Pyramid Project: Aleut-Quintana-Duval Joint Venture Report on Project: Aleut-Quintana-Duval Joint Venture Report on 1975 Drill Programme: Alaska Division of Geological
Dechesne, Marieke; Cole, James Channing; Martin, Christopher B.
2016-01-01
Overview of the geologic history of the North Park–Middle Park area and its past and recent drilling activity. Field trip stops highlight basin formation and the consequences of geologic configuration on oil and gas plays and development. The starting point is the west flank of the Denver Basin to compare and contrast the latest Cretaceous through Eocene basin fill on both flanks of the Front Range, before exploring sediments of the same age in the North Park – Middle Park intermontane basin.
Geology of the Marble exploration hole 4, Nevada Test Site, Nye County, Nevada
McKeown, Francis Alexander; Wilmarth, Verl Richard
1959-01-01
This report summarizes the information obtained during preparation of the lithologic log of the core and presents results of chemical analyses of marble samples collected from surface near the drill hole. The report was prepared by the U.S. Geological Survey on behalf of the Albuquerque Operations Office, U.S. Atomic Energy Commission. The writers acknowledge the assistance of Mr. John Foster, drilling foreman for Minerals Engineering Company and Mr. Walter A. Johnson, field engineer for Holmes and Narver, Inc., the engineering-contracting firm.
Mineral and Lithology Mapping of Drill Core Pulps Using Visible and Infrared Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, G. R., E-mail: G.Taylor@unsw.edu.au
2000-12-15
A novel approach for using field spectrometry for determining both the mineralogy and the lithology of drill core pulps (powders) is developed and evaluated. The methodology is developed using material from a single drillhole through a mineralized sequence of rocks from central New South Wales. Mineral library spectra are used in linear unmixing routines to determine the mineral abundances in drill core pulps that represent between 1 m and 3 m of core. Comparison with X-Ray Diffraction (XRD) analyses shows that for most major constituents, spectrometry provides an estimate of quantitative mineralogy that is as reliable as that provided bymore » XRD. Confusion between the absorption features of calcite and those of chlorite causes the calcite contents determined by spectrometry to be unreliable. Convex geometry is used to recognize the spectra of those samples that are extreme and are representative of unique lithologies. Linear unmixing is used to determine the abundance of these lithologies in each drillhole sample and these abundances are used to interpret the geology of the drillhole. The interpreted geology agrees well with conventional drillhole logs of the visible geology and photographs of the split core. The methods developed provide a quick and cost-effective way of determining the lithology and alteration mineralogy of drill core pulps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramspott, L.D.; McArthur, R.D.
1977-02-18
Exploratory hole Ue5n was drilled to a depth of 514 m in central Frenchmam Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA) to determine the geologic and geophysical parameters of selected locations with anomalous seismic signals. The specific goal of drilling Ue5n was to provide the site characteristics for emplacement sites U5b and U5e. We present here data on samples, geophysical logs, lithology and stratigraphy, and depth to the water table. From an analysis of the measurements of the physical properties, a set of recommendedmore » values is given.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helz, R.T.; Wright, T.L.
1983-01-01
The purpose is: (1) to describe the 1981 drilling of Kilauea Iki lava lake, (2) to present the logs for the drill core recovered during the 1981 drilling, and (3) to present a summary of some of the field observations made during the 1967, 1975, 1976 and 1979 drillings that are relevant to the crystallization history of Kilauea Iki lava lake. This report supplements logs for the 1967-1979 core presented in Helz et al. (1980). 21 references, 4 figures, 4 tables.
Ryder, Robert T.; Swezey, Christopher S.; Crangle, Robert D.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
This chapter is a re-release of U.S. Geological Survey Scientific Investigations Map 2985, of the same title, by Ryder and others (2008). For this chapter, two appendixes have been added that do not appear with the original version. Appendix A provides Log ASCII Standard (LAS) files for each drill hole along cross-section E–E'; they are text files which encode gamma-ray, neutron, density, and other logs that can be used by most well-logging software. Appendix B provides graphic well-log traces from each drill hole.
Spreadsheet log analysis in subsurface geology
Doveton, J.H.
2000-01-01
Most of the direct knowledge of the geology of the subsurface is gained from the examination of core and drill-cuttings recovered from boreholes drilled by the petroleum and water industries. Wireline logs run in these same boreholes generally have been restricted to tasks of lithostratigraphic correlation and thee location of hydrocarbon pay zones. However, the range of petrophysical measurements has expanded markedly in recent years, so that log traces now can be transformed to estimates of rock composition. Increasingly, logs are available in a digital format that can be read easily by a desktop computer and processed by simple spreadsheet software methods. Taken together, these developments offer accessible tools for new insights into subsurface geology that complement the traditional, but limited, sources of core and cutting observations.
Compilation of Reprints Number 63.
1986-03-01
Michel Be6, Stephen H1. Johnson, and E.F. Chiburis PRELIMINARY SEISMIC REFRACTION RESULTS USING A BOREHOLE SEISMOMETER IN DEEP SEA DRILLING PROJECT HOLE...refraction data with wells drilled on land and offshore reflection profiles permits tentative identification of geologic sequences on the basis of...PERIOD CO’VEAEO PRELIMINARY SEISMIC REFRACTION RESULTS USING A Rern BOREHOLE SEISMOMETER IN DEEP SEA DRILLING ~ rn PROJECT HOLE 395A 6.PERFORMING ORG
Olea, R.A.; Luppens, J.A.; Tewalt, S.J.
2011-01-01
A common practice for characterizing uncertainty in coal resource assessments has been the itemization of tonnage at the mining unit level and the classification of such units according to distance to drilling holes. Distance criteria, such as those used in U.S. Geological Survey Circular 891, are still widely used for public disclosure. A major deficiency of distance methods is that they do not provide a quantitative measure of uncertainty. Additionally, relying on distance between data points alone does not take into consideration other factors known to have an influence on uncertainty, such as spatial correlation, type of probability distribution followed by the data, geological discontinuities, and boundary of the deposit. Several geostatistical methods have been combined to formulate a quantitative characterization for appraising uncertainty. Drill hole datasets ranging from widespread exploration drilling to detailed development drilling from a lignite deposit in Texas were used to illustrate the modeling. The results show that distance to the nearest drill hole is almost completely unrelated to uncertainty, which confirms the inadequacy of characterizing uncertainty based solely on a simple classification of resources by distance classes. The more complex statistical methods used in this study quantify uncertainty and show good agreement between confidence intervals in the uncertainty predictions and data from additional drilling. ?? 2010.
Reducing Risk in Horizontal Directional Drilling (HDD) in Soft Sedimentary Environments
NASA Astrophysics Data System (ADS)
Yarbrough, L. D.; Skonberg, E.
2017-12-01
This is a focus on the applied outcome of geologic reports and the scale of near surface geologic process which affect the success of horizontal directional drilling (HDD) operations. Often there is too little data to fully characterize the subsurface along the drilled hole. Adding uncertainty is the exploration borehole is typically vertical while the drill path orientation of the HDD is not. The stratigraphic principle of original horizontality is heavily relied upon when interpreting the geology of the drill path and for good reason because of the depositional processes involved. However, the scale of secondary sedimentary processes, specifically zones of induration and their potential effects on the HDD can be at a scale or frequency that is not properly sampled during the geotechnical investigation. This lack of direct evidence could lead geologists and designers not to include these low-frequency phenomena in their risk analysis. For HDD planning and design, the industry routinely generalizes the earth materials to be encountered as soft or hard. This use of inexact, colloquial phrasing paints a picture of the a nearly homogeneous drilling site. Even though a majority of the site can be characterized as a low-strength or high-strength material, the diagenesis of sediments can include zones with wide-ranging strengths that can negatively impact the rate of penetration, the ability to steer and bore hole stability. In this generalization, soft is a majority of low strength or unconsolidated material (sands, silts, and clays). This does not preclude concretions and other indurated lenticular features that are widespread in the Gulf Coast states. This investigation reviews several formations commonly encountered during medium to large diameter (>10 inches) HDD operations. The Bashi formation with surface exposures in Mississippi and Alabama; the Wilcox Group in southern Mississippi and central Louisiana; the Cook Mountain Formation; the Hatchetigbee formation and Catahoula Formation of Louisiana and Mississippi were reviewed and potential HDD drilling and pull back complications are discussed.
Site selection for DOE/JIP gas hydrate drilling in the northern Gulf of Mexico
Hutchinson, Deborah; Shelander, Dianna; Dai, J.; McConnell, D.; Shedd, William; Frye, Matthew; Ruppel, Carolyn D.; Boswell, R.; Jones, Emrys; Collett, Timothy S.; Rose, Kelly K.; Dugan, Brandon; Wood, Warren T.
2008-01-01
n the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses
NASA Astrophysics Data System (ADS)
Blume, F.; Herring, T.; Mattioli, G. S.; Feaux, K.; Walls, C. P.; Austin, K. E.; Dittmann, S. T.
2017-12-01
Geodetic-quality permanent GNSS stations have used a number of different monument styles for the purpose of ensuring that the motions of the GNSS antenna reflect those of the Earth's crust while minimizing non-tectonic motions near the surface. Monuments range from simple masts mounted on buildings or drilled into bedrock, costing a few hundred dollars to machine-drilled-braced monuments in soil costing tens of thousands. The stability of an individual monument will depend on its design, the construction techniques used to install it, and the local surface geology where it is installed. Previous studies have separately investigated pairs of identical monuments at a single site, monument type performance using global statistical analysis, and multiple monument styles at a single site, yet the stability of different monument types in similar geologic conditions has not been adequately determined. To better characterize the stability of various monument styles in diverse geologic conditions UNAVCO constructed two additional monuments at five existing PBO stations in 2013. Deep drilled-braced, short drilled-braced, and single mast type monuments were installed at sites with bedrock at the surface; deep drilled-braced, short driven-braced and pillar type monuments were installed at sites with alluvium or soil at the surface. The sites include a variety of geographic, hydrologic, and geologic conditions. Data collected from the PBO Multi-Monument Experiment have been analyzed using a variety of methods. Each site is characterized using quality-control parameters such as multipath, signal-to-noise and previously determined seasonal variations. High-precision processing by PBO Analysis Centers with GAMIT and GIPSY use regional and global schemes and yield time-series with millimeter-level that determine noise content, overall site stability relative to other PBO sites and differential motions between the individual monuments. Sub-millimeter results from single-frequency short-baseline processing efforts show further details of monument performance. Results show that while local site characteristics may dominate time-series stability, braced monuments outperform pillars in sediments, and an inexpensive mast installed in bedrock can be as stable as an expensive drilled-braced monument.
A Comparison of Two Flashcard Drill Methods Targeting Word Recognition
ERIC Educational Resources Information Center
Volpe, Robert J.; Mule, Christina M.; Briesch, Amy M.; Joseph, Laurice M.; Burns, Matthew K.
2011-01-01
Traditional drill and practice (TD) and incremental rehearsal (IR) are two flashcard drill instructional methods previously noted to improve word recognition. The current study sought to compare the effectiveness and efficiency of these two methods, as assessed by next day retention assessments, under 2 conditions (i.e., opportunities to respond…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.
1981-02-01
A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium andmore » 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.« less
NASA Astrophysics Data System (ADS)
Fernández-Remolar, D. C.; Prieto-Ballesteros, O.; Rodríguez, N.; Dávila, F.; Stevens, T.; Amils, R.; Gómez-Elvira, J.; Stoker, C. R.
2005-03-01
Reconstruction of the probable habitats hosting the detected microbial communities through the integration of the geobiological data obtained from the MARTE drilling campaigns, TEM sounding and field surface geological survey
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.
2010-01-01
DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the habitat) where it operated autonomously for 2-4 hours at each site. Depths achieved ranged from 15 to 70 cm depending on the soil compressive strength and the presence and depth of subsurface indurated layers. Subsurface samples weighing 0.5 to 1 g were collected at the deepest depth encountered at each of the sites using the MUM automated sample collection system, and subsequently analyzed with XRD. Downhole inspection of holes produced by MUM with the Raman spectrometer was acquired on two of the holes and spectral features associated with selenite were identified in specific soil layers. Previously unreported fossilized remains of vertebrate fauna from the Jurassic era were discovered during our mission. Analysis of mineral biomarkers associated with this discovery are underway.
Results of the second phase of the drought-disaster test-drilling program near Morristown, N.J.
Vecchioli, John; Nichols, William D.; Nemickas, Bronius
1967-01-01
The continued drought in northeastern New Jersey through the summer of 1966 with its attendant water-supply problems resulted in an extension of the drought-disaster test-drilling program originally requested by the Office of Emergency Planning on August 30, 1965. Authorization to continue test drilling was fiven by the Office of Emergency Planning on September 26, 1966, with the stipulation that all field work be complete by January 31, 1977. Contractural costs were paid by the Office of Emergency Planning, whereas personnel costs were shared by the U.S. Geological Survey and the New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply.The work undertaken in 1965 by the Geological Survey was "...to preform the necessary drilling and testing of wells to identify the extent and nature of a reserve ground-water source in the vicinity of the Passaic River near the northern New Jersey metropolitan area." Results of this first phase were made available in the fall of 1966 in Water Resources Circular 16 of the New Jersey Department of Conservation and Economic Development. Three of the five areas tested (figure 1)--two in Parsippany-Troy Hills Township (areas 2 and 4) and one in East Hanover Township (area 1), Morris County--proved capable of providing an aggregate sustained yield of 7.5 million gallons daily (mgd) from wells constructed in sand and gravel deposits. Because significant supplies of ground water for emergency use were located in the first phase of the exploratory test-drilling program, it was though desirable to extend the originally planned studies so as to obtain maximum practicable information on emergency supplies.During this second phase of the investigation, drilling was conducted in 16 sites in Chatham, Madison, and Florham Park Boroughs and in Hanover and East Hanover Townships, Morris County. (See figure 2.) The drilling in Hanover and East Hanover Townships, and part of the drilling done in Florham Park was to explore the availability of large undeveloped ground-water supplies. Drilling in Chatham, Madison, and Florham Park Boroughs was done primarily to determine the extent and continuity of buried valley-fill aquifers, so that a full evaluation of the effects of pumpage from other areas on these already heavily pumped areas could be made. In addition, it was anticipated that the drilling could help in defining the feasibility of artificial recharge of the heavily pumped areas and in the determination of the prospective method of recharge and points of emplacement.Arrangements for easements with landowners, preparation of specifications for well drilling and seismic work, and supervision of well drilling and seismic contracts were all performed by the New Jersey District, Water Resources Division of the Geological Survey.Prior to the test drilling, seismic exploration under contract with Alpine Geophysical Associates of Norwood, N. J. was conducted at five locations in the Chatham-Madison-Florham Park area and at one place in Parsippany-Troy Hills Township. The seismic work was done to determine the most favorable location for a test well at several potential test-well sites and to help in the interpretation of subsurface geology between test sites.Contracts for the drilling of the test holes were awarded during November and drilling commences on November 30. Kaye Well drilling, Inc. of Jackson, N. J. was the recipient of a contract for eight of the test holes, and a second contract was awarded to Rinbrand Well Drilling Co., Inc. of Glen Rock, N. J.--also for eight test holes.Acknowledgment is due to the many public officials of Chatham, Madison, Florham Park, Morristown, and East Hanover Township as well as officials of the Braidburn Corporation and Esso Research and Engineering Co., who cooperated by making their lands available for exploration.
43 CFR 3150.0-5 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for subsurface geologic information or drilling for oil and gas; these activities shall be authorized only by the issuance of an oil and gas lease and the approval of an Application for a Permit to Drill..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS GEOPHYSICAL EXPLORATION Onshore Oil...
Data for wells at the low-level radioactive-waste burial site in the Palos Forest Preserve, Illinois
Olimpio, J.C.
1982-01-01
The U.S. Geological Survey is studying the geologic, hydrologic, and geochemical properties of the glacial drift and underlying bedrock at a low-level radioactive-waste burial site in the Palos Forest Preserve, 22 kilometers southwest of Chicago. Data collected from the 33 test wells drilled into the drift plus data from 4 wells drilled into the underlying dolomite bedrock are presented. Data include maps showing the location of the test wells, a general description of the drift, well-construction information, and lithologic descriptions of cores from the wells finished in the drift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Joshua S.; Rautman, Christopher Arthur
2004-02-01
The geologic model implicit in the original site characterization report for the Bayou Choctaw Strategic Petroleum Reserve Site near Baton Rouge, Louisiana, has been converted to a numerical, computer-based three-dimensional model. The original site characterization model was successfully converted with minimal modifications and use of new information. The geometries of the salt diapir, selected adjacent sedimentary horizons, and a number of faults have been modeled. Models of a partial set of the several storage caverns that have been solution-mined within the salt mass are also included. Collectively, the converted model appears to be a relatively realistic representation of the geologymore » of the Bayou Choctaw site as known from existing data. A small number of geometric inconsistencies and other problems inherent in 2-D vs. 3-D modeling have been noted. Most of the major inconsistencies involve faults inferred from drill hole data only. Modem computer software allows visualization of the resulting site model and its component submodels with a degree of detail and flexibility that was not possible with conventional, two-dimensional and paper-based geologic maps and cross sections. The enhanced visualizations may be of particular value in conveying geologic concepts involved in the Bayou Choctaw Strategic Petroleum Reserve site to a lay audience. A Microsoft WindowsTM PC-based viewer and user-manipulable model files illustrating selected features of the converted model are included in this report.« less
Ryder, Robert T.; Crangle, Robert D.; Trippi, Michael H.; Swezey, Christopher S.; Lentz, Erika E.; Rowan, Elisabeth L.; Hope, Rebecca S.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
This chapter is a re-release of U.S. Geological Survey Scientific Investigations Map 3067, of the same title, by Ryder and others (2009). For this chapter, two appendixes have been added that do not appear with the original version. Appendix A provides Log ASCII Standard (LAS) files for each drill hole along cross-section D-D'; they are text files which encode gamma-ray, neutron, density, and other logs that can be used by most well-logging software. Appendix B provides graphic well-log traces and lithologic descriptions with formation tops from each drill hole.
Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.
2009-01-01
Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Gosso, Guido; Croce, Giuseppe; Matteucci, Ruggero; Peppoloni, Silvia; Piacente, Sandra; Wasowski, Janusz
2013-04-01
In the first decade after the Second World War Italy was rushing to recover a positive role among European countries; basic needs as road communications with European neighbours became main priorities. The necessity of a rapid connection with South-eastern France, a subject already debated between the two nations over more than 50 years, appeared then on first line; the two countries convened on a joint investment for the construction of a tunnel across the international border of Mont Blanc, along the shortest track between Courmayeur and Chamonix. The political agreements were in favour of the quickest start of the drilling operations and such obligation imposed on the Italian side an impoverishment of the project content, specially concerning geological issues. No surveys were performed on fracture systems, cataclastic zones and faults, on the few rock ridges standing above the tunnel line and outcropping through thick talus cones, moraines, ice tongues and their related ice plateaus. Metasediments, migmatites and poorly foliated granites were to be drilled. Three Italian academics were allowed by the drilling company to track the working progress and collect rocks for comparison with other Alpine types; they mapped the lithology and the fault zonesall along the freshly excavated tunnel; the results of such survey appeared after the end of works. Geologists from Florence University published the surface granite faulting pattern 20 years after the road tunnel became operative. Such geological cares could have located the risky zones in time for the tunnel project, mitigating the catastrophic effects of sudden drainage of subglacial water from the Vallée Blanche ice plateau (Ghiacciaio del Gigante) at progression 3800m, that caused dramatic accidents and affected negatively the economy of the drilling. Also the wallrock temperature drops, measured during the drill, should have warned the company management on the location of dangerous fracture zones. Anxiety of national renaissance probably committed the Italian team to a fast conclusion, skipping attention from geological urgencies. But did attitudes change since then? This late episode gives us the opportunity to reflect on the necessity of making politicians seriously aware of the importance of geology when carrying out big works, to impose by law more effective policies and make interrelations between the involved professionals mandatory. Firm geoethic principles should guide choices and decisions in projects of great environmental impact.
Use of geostatistics in planning optimum drilling program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghose S.
1989-08-01
Application of geostatistics in the natural resources industry is well established. In a typical process of estimation, the statistically dependent geological data are used to predict the characteristics of a deposit. The estimator used is the best linear unbiased estimator (or BLUE), and a numerical factor of confidence is also provided. The natural inhomogeneity and anisotropy of a deposit are also quantified with preciseness. Drilling is the most reliable way of obtaining data for mining and related industries. However, it is often difficult to decide what is the optimum number of drill holes necessary for evaluation. In this paper, sequentialmore » measures of percent variation at 95% confidence level of a geological variable have been used to decipher economically optimum drilling density. A coal reserve model has been used to illustrate the method and findings. Fictitious drilling data were added (within the domain of population characteristics) in stages, to obtain a point of stability, beyond which the gain was significant (diminishing marginal benefit). The final relations are established by graphically projecting and comparing two variables - cost and precision. By mapping the percent variation at each stage, the localized areas of discrepancies can be identified. These are the locations where additional drilling is needed. The system can be controlled if performed at progressive stages and the preciseness toward stability is monitored.« less
Workshop Report on Deep Mars: Accessing the Subsurface of Mars on Near Term Missions
NASA Technical Reports Server (NTRS)
Langhoff, Stephanie R. (Editor)
2008-01-01
The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft.
Sutphin, D.M.; Drew, L.J.; Schuenemeyer, J.H.; Burton, W.C.
2001-01-01
Loudoun County, Virginia, which is located about 50 km to the west of Washington, DC, was the site of intensive suburban development during the 1980s and 1990s. In the western half of the county, the source of water for domestic use has been from wells drilled into the fractured crystalline bedrock of the Blue Ridge Geologic Province. A comprehensive digital database that contains information on initial yield, location, depth, elevation, and other data for 3651 wells drilled in this 825.5-km2 area was combined with a digital geologic map to form the basis for a study of geologic and temporal controls on water-well yields. Statistical modeling procedures were used to determine that mean yields for the wells were significantly different as a function of structural setting, genetic rock type, and geologic map unit. The Bonferroni procedure then was used to determine which paired comparisons contributed to these significant differences. The data were divided into 15 temporal drilling increments to determine if the time-dependent trends that exist for the Loudoun County data are similar to those discovered in a previous study of water-well yields in the Pinardville 7.5-min quadrangle, New Hampshire. In both regions, trends, which include increasing proportions of very low yield wells and increasing well depths through time, and the counterintuitive result of increasing mean well yields through time, were similar. In addition, a yield-to-depth curve similar to that discovered in the Pinardville quadrangle was recognized in this study. Thus, the temporal model with a feed-forward-loop mechanism to explain the temporal trends in well characteristics proposed for the New Hampshire study appears to apply to western Loudoun County. ?? 2001 International Association for Mathematical Geology.
30 CFR 250.203 - Where can wells be located under an EP, DPP, or DOCD?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL... that can be economically drilled for proper reservoir management; (e) Location of drilling units and platforms; (f) Extent and thickness of the reservoir; (g) Geologic and other reservoir characteristics; (h...
Gas Hydrate Research Site Selection and Operational Research Plans
NASA Astrophysics Data System (ADS)
Collett, T. S.; Boswell, R. M.
2009-12-01
In recent years it has become generally accepted that gas hydrates represent a potential important future energy resource, a significant drilling and production hazard, a potential contributor to global climate change, and a controlling factor in seafloor stability and landslides. Research drilling and coring programs carried out by the Ocean Drilling Program (ODP), the Integrated Ocean Drilling Program (IODP), government agencies, and several consortia have contributed greatly to our understanding of the geologic controls on the occurrence of gas hydrates in marine and permafrost environments. For the most part, each of these field projects were built on the lessons learned from the projects that have gone before them. One of the most important factors contributing to the success of some of the more notable gas hydrate field projects has been the close alignment of project goals with the processes used to select the drill sites and to develop the project’s operational research plans. For example, IODP Expedition 311 used a transect approach to successfully constrain the overall occurrence of gas hydrate within the range of geologic environments within a marine accretionary complex. Earlier gas hydrate research drilling, including IODP Leg 164, were designed primarily to assess the occurrence and nature of marine gas hydrate systems, and relied largely on the presence of anomalous seismic features, including bottom-simulating reflectors and “blanking zones”. While these projects were extremely successful, expeditions today are being increasingly mounted with the primary goal of prospecting for potential gas hydrate production targets, and site selection processes designed to specifically seek out anomalously high-concentrations of gas hydrate are needed. This approach was best demonstrated in a recently completed energy resource focused project, the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II), which featured the collection of a comprehensive set of logging-while-drilling (LWD) data through expected gas-hydrate-bearing sand reservoirs in seven wells at three sites in the Gulf of Mexico. The discovery of thick hydrate-bearing sands at two of the sites drilled in the Gulf Mexico validated the integrated geological and geophysical approach used in the pre-drill site selection process to identify gas hydrate reservoirs that may be conducive to energy production. The results of the GOM JIP Leg II LWD expedition are also being used to support the selection of sites for a future drilling, logging, and coring program. Operationally, recent drilling programs, such as ODP Leg 204, IODP Expedition 311, the Japanese Toaki-oki to Kumano-nada drilling leg, the Indian NGHP Expedition 01, and the South Korean Gas Hydrate Research and Development Organization Expedition 01 have demonstrated the great benefit of a multi-leg drilling approach, including the initial acquisition of LWD data that was used to then select sites for the drilling of complex core and wireline logging test holes. It is obvious that a fully integrated site selection approach and a “goal based” operational plan, possibly including numerous drill sites and drilling legs, are required considerations for any future gas hydrate research project.
Calibrating the Truax Rough Rider seed drill for restoration plantings
Loren St. John; Brent Cornforth; Boyd Simonson; Dan Ogle; Derek Tilley
2008-01-01
The purpose of this technical note is to provide a step-by-step approach to calibrating the Truax Rough Rider range drill, a relatively new, state-of-the-art rangeland drill. To achieve the desired outcome of a seeding project, an important step following proper weed control and seedbed preparation is the calibration of the seeding equipment to ensure the recommended...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairbank, Brian D.; Smith, Nicole
The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2more » drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag, seismic, and gravity data sets are in good agreement, illustrating two or more major range-bounding faults and buried northwest trending faults. The intersections of these fault systems provide the primary targets for drilling.« less
NASA Astrophysics Data System (ADS)
Dona, Obie Mario; Ibrahim, Eddy; Susilo, Budhi Kuswan
2017-11-01
The research objective is to describe potential, to analyze the quality and quantity of limestone, and to know the limit distribution of rocks based on the value of resistivity, the pattern of distribution of rocks by drilling, the influence mineral growing on rock against resistivity values, the model deposition of limestone based on the value resistivity of rock and drilling, and the comparison between the interpretation resistivity values based on petrographic studies by drilling. Geologic Formations study area consists of assays consisting of altered sandstone, phyllite, slate, siltstone, grewake, and inset limestone. Local quartz sandstone, schist, genealogy, which is Member of Mersip Stylists Formation, consists of limestone that formed in shallow seas. Stylists Formation consists of slate, shale, siltstone and sandstone. This research methodology is quantitative using experimental observation by survey. This type of research methodology by its nature is descriptive analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, J.; Hayward, T.; Addison, F.
The Llanos Foothills petroleum trend of the Eastern Cordillera in Colombia containing the giant Cusiana Field has proven to be one of the most exciting hydrocarbon provinces discovered in recent years. The Llanos Foothills trend is a fold and thrust belt with cumulative discovered reserves to date of nearly 6 billion barrels of oil equivalent. This paper summarizes the critical exploration techniques used in unlocking the potential of this major petroleum system. The first phase of exploration in the Llanos Foothills lasted from the early 1960's to the mid-70's. Several large structures defined by surface geology and seismic data weremore » drilled. Although no major discoveries were made, evidence of a petroleum play was found. The seismic imaging and drilling technology combined with the geological understanding which was then available did not allow the full potential of the trend to be realized. In the late 1980's better data and a revised geological perception of the trend led BP, Triton and Total into active exploration, which resulted in the discovery of the Cusiana Field. The subsequent discovery of the Cupiagua, Volcanera, Florena and Pauto Sur Fields confirmed the trend as a major hydrocarbon province. The exploration programme has used a series of geological and geophysical practices and techniques which have allowed the successful exploitation of the trend. The critical success factor has been the correct application of technology in seismic acquisition and recessing and drilling techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Leary, J.; Hayward, T.; Addison, F.
The Llanos Foothills petroleum trend of the Eastern Cordillera in Colombia containing the giant Cusiana Field has proven to be one of the most exciting hydrocarbon provinces discovered in recent years. The Llanos Foothills trend is a fold and thrust belt with cumulative discovered reserves to date of nearly 6 billion barrels of oil equivalent. This paper summarizes the critical exploration techniques used in unlocking the potential of this major petroleum system. The first phase of exploration in the Llanos Foothills lasted from the early 1960`s to the mid-70`s. Several large structures defined by surface geology and seismic data weremore » drilled. Although no major discoveries were made, evidence of a petroleum play was found. The seismic imaging and drilling technology combined with the geological understanding which was then available did not allow the full potential of the trend to be realized. In the late 1980`s better data and a revised geological perception of the trend led BP, Triton and Total into active exploration, which resulted in the discovery of the Cusiana Field. The subsequent discovery of the Cupiagua, Volcanera, Florena and Pauto Sur Fields confirmed the trend as a major hydrocarbon province. The exploration programme has used a series of geological and geophysical practices and techniques which have allowed the successful exploitation of the trend. The critical success factor has been the correct application of technology in seismic acquisition and recessing and drilling techniques.« less
Ellefsen, Karl J.; Burton, William C.; Lacombe, Pierre J.
2012-01-01
Fractured sedimentary bedrock and groundwater at the former Naval Air Warfare Center in West Trenton, New Jersey (United States of America) are contaminated with chlorinated solvents. Predicting contaminant migration or removing the contaminants requires an understanding of the geology. Consequently, the geologic framework near the site was characterized with four different methods having different spatial scales: geologic field mapping, analyses of bedrock drill core, analyses of soil and regolith, and S-wave refraction surveys. A fault zone is in the southeast corner of the site and separates two distinct sedimentary formations; the fault zone dips (steeply) southeasterly, strikes northeasterly, and extends at least 550 m along its strike direction. Drill core from the fault zone is extensively brecciated and includes evidence of tectonic contraction. Approximately 300 m east of this fault zone is another fault zone, which offsets the contact between the two sedimentary formations. The S-wave refraction surveys identified both fault zones beneath soil and regolith and thereby provided constraints on their lateral extent and location.
Hawkins, Sarah J.; Charpentier, Ronald R.; Schenk, Christopher J.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Brownfield, Michael E.; Finn, Tom M.; Gaswirth, Stephanie B.; Marra, Kristen R.; Le, Phoung A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.
2016-06-08
The U.S. Geological Survey (USGS) completed a geology-based assessment of the continuous (unconventional) oil and gas resources in the Late Cretaceous Mancos Shale within the Piceance Basin of the Uinta-Piceance Province (fig. 1). The previous USGS assessment of the Mancos Shale in the Piceance Basin was completed in 2003 as part of a comprehensive assessment of the greater UintaPiceance Province (U.S. Geological Survey Uinta-Piceance Assessment Team, 2003). Since the last assessment, more than 2,000 wells have been drilled and completed in one or more intervals within the Mancos Shale of the Piceance Basin (IHS Energy Group, 2015). In addition, the USGS Energy Resources Program drilled a research core in the southern Piceance Basin that provided significant new geologic and geochemical data that were used to refine the 2003 assessment of undiscovered, technically recoverable oil and gas in the Mancos Shale.
High resolution seismic reflection profiling at Aberdeen Proving Grounds, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, R.D.; Xia, Jianghai; Swartzel, S.
1996-11-01
The effectiveness of shallow high resolution seismic reflection (i.e., resolution potential) to image geologic interfaces between about 70 and 750 ft at the Aberdeen Proving Grounds, Maryland (APG), appears to vary locally with the geometric complexity of the unconsolidated sediments that overlay crystalline bedrock. The bedrock surface (which represents the primary geologic target of this study) was imaged at each of three test areas on walkaway noise tests and CDP (common depth point) stacked data. Proven high resolution techniques were used to design and acquire data on this survey. Feasibility of the technique and minimum acquisition requirements were determined throughmore » evaluation and correlation of walkaway noise tests, CDP survey lines, and a downhole velocity check shot survey. Data processing and analysis revealed several critical attributes of shallow seismic data from APG that need careful consideration and compensation on reflection data sets. This survey determined: (1) the feasibility of the technique, (2) the resolution potential (both horizontal and vertical) of the technique, (3) the optimum source for this site, (4) the optimum acquisition geometries, (5) general processing flow, and (6) a basic idea of the acoustic variability across this site. Source testing involved an accelerated weight drop, land air gun, downhole black powder charge, sledge hammer/plate, and high frequency vibrator. Shallow seismic reflection profiles provided for a more detailed picture of the geometric complexity and variability of the distinct clay sequences (aquatards), previously inferred from drilling to be present, based on sparse drill holes and basewide conceptual models. The seismic data also reveal a clear explanation for the difficulties previously noted in correlating individual, borehole-identified sand or clay units over even short distances.« less
Addressing submarine geohazards through scientific drilling
NASA Astrophysics Data System (ADS)
Camerlenghi, A.
2009-04-01
Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the multi-platform drilling of the Nankai seismogenic zone. Scientific initiatives are flourishing to drive IODP towards the study of submarine geohazards. In the last three years international workshops, were held to address the topic: ESF-ECORD sponsored a Magellan Workshop focussed on submarine landslides (Barcelona, Spain, 2006); IODP sponsored a world-wide Geohazard Workshop (Portland, Oregon, 2007); ESF-ECORD sponsored another Magellan Workshop focussed on Mediterranean submarine geohazards (Luleå, Sweden, 2008). In addition, following the ECORD-Net Conference on the Deep Sea Frontier (Naples, Italy, 2006), the history, monitoring and prediction of geohazards was identified as one of the 6 major areas for a European science plan to integrate Ocean Drilling, Ocean Margin, and Seabed research. More than 200 scientists and private companies representatives have been mobilized world-wide to attend these meetings, from where it emerged that Ocean Drilling will play a key role in the future to answer the following basic open questions on submarine geohazards: - What is the frequency, magnitude, and distribution of geohazard events? - Do precursory phenomena exist and can they be recognized? - What are the physical and mechanical properties of materials prone to failure? - What are the roles of preconditioning vs. triggering in rapid seafloor deformation? - Can the tsunamigenic potential of past and future events be assessed? Within the global-ocean geohazards, worth of note is the attention given in this preparatory phase to submarine geohazards in the Mediterranean basin, a miniature ocean often called a "natural laboratory" because of the diversity of geological environments it contains. The coastline is very densely-populated, totalling 160 million inhabitants sharing 46,000 km of coastline. The Mediterranean is the World's leading holiday destination, receiving an average of 135 million visitors annually. Submarine landslides, volcanic flank collapses, volcanic island eruptions, earthquakes and the associated tsunamis can lead to destruction of seafloor structures potentially capable of releasing hydrocarbon pollutants into Mediterranean waters, and damage to a dense telecommunication cables net that would cause severe economic loss. However, the most devastating effect would be that of earthquake or landslide-induced tsunamis. When compared to other basins, the Mediterranean has larger vulnerability due to its small dimensions, resulting in close proximity to tsunami sources and impact areas. Recent examples include the 1979 Nice airport submarine landslide and tsunami and the 2002 Stromboli volcano landslide and tsunami. Future international scientific drilling must include submarine geohazards among priority scientific objectives. The science advisory structure must be prepared to receive and evaluate proposal specifically addressing submarine geohazards. The implementing organizations need to be prepared for the technological needs of drilling proposals addressing geohazards. Among the most relevant: geotechnical sampling, down-hole logging at shallow depths below the seafloor, in situ geotechnical and physical measurements, capability of deployment of long-term in situ observatories. Pre-site surveys will often aim at the highest possible resolution, three dimensional imaging of the seafloor ant its sub-surface. Drilling for submarine geohazards is seen as an opportunity of multiplatform drilling, and for Mission Specific drilling in particular. Rather than turning the scientific investigation in a purely engineering exercise, proposals addressing submarine geohazards should offer an opportunity to scientists and engineers to work together to unravel the details of basic geological processes that may turn into catastrophic events.
Geoconservation and scientific rock sampling: Call for geoethical education strategies
NASA Astrophysics Data System (ADS)
Druguet, Elena; Passchier, Cees W.; Pennacchioni, Giorgio; Carreras, Jordi
2013-04-01
Some geological outcrops have a special scientific or educational value, represent a geological type locality and/or have a considerable aesthetical/photographic value. Such important outcrops require appropriate management to safeguard them from potentially damaging and destructive activities. Damage done to such rock exposures can include drill sampling by geologist undertaken in the name of scientific advancement. In order to illustrate the serious damage scientific sampling can do, we give some examples of outcrops from Western Europe, North America and South Africa, important to structural geology and petrology, where sampling was undertaken by means of drilling methods without any protective measures. After the rock coring, the aesthetic and photographic value of these delicate outcrops has decreased considerably. Unfortunately, regulation and protection mechanisms and codes of conduct can be ineffective. The many resources of geological information available to the geoscientist community (e.g. via Internet, such as outcrops stored in websites like "Outcropedia") promote access to sites of geological interest, but can also have a negative effect on their conservation. Geoethical education on rock sampling is therefore critical for conservation of the geological heritage. Geoethical principles and educational actions are aimed to be promoted at different levels to improve geological sciences development and to enhance conservation of important geological sites. Ethical protocols and codes of conduct should include geoconservation issues, being explicit about responsible sampling. Guided and inspired by the UK Geologists's Association "Code of Conduct for Rock Coring" (MacFadyen, 2010), we present a tentative outline requesting responsible behaviour: » Drill sampling is particularly threatening because it has a negative visual impact, whilst it is often unnecessary. Before sampling, geologists should think about the question "is drill sampling necessary for the study being carried on?" » Do not take samples from the centre of a geological type locality or a site of especial scientific, didactic interest or aesthetical/photographic value. If an outcrop is spectacular enough to be photographed, then you should not core or sample the rock face that has been recorded. The same applies to outstanding outcrops stored in websites. » Sample other parts of the same or a neighbouring outcrop where there is less impact. Core samples must be discrete in location; take cores from the least exposed, least spectacular part of an outcrop and try to plug the holes using the outer end of the core, if possible. » Before sampling ask experts and authorities (e.g. Natural Reserve or National Park managers if the area is protected) for advise and permission. References: MacFadyen, C.C.J., 2010. The vandalizing effects of irresponsible core sampling: a call for a new code of conduct: Geology Today 26, 146-151. Outcropedia: http://www.outcropedia.org/
Shipboard Analytical Capabilities on the Renovated JOIDES Resolution, IODP Riserless Drilling Vessel
NASA Astrophysics Data System (ADS)
Blum, P.; Foster, P.; Houpt, D.; Bennight, C.; Brandt, L.; Cobine, T.; Crawford, W.; Fackler, D.; Fujine, K.; Hastedt, M.; Hornbacher, D.; Mateo, Z.; Moortgat, E.; Vasilyev, M.; Vasilyeva, Y.; Zeliadt, S.; Zhao, J.
2008-12-01
The JOIDES Resolution (JR) has conducted 121 scientific drilling expeditions during the Ocean Drilling Program (ODP) and the first phase of the Integrated Ocean Drilling Program (IODP) (1983-2006). The vessel and scientific systems have just completed an NSF-sponsored renovation (2005-2008). Shipboard analytical systems have been upgraded, within funding constraints imposed by market driven vessel conversion cost increases, to include: (1) enhanced shipboard analytical services including instruments and software for sampling and the capture of chemistry, physical properties, and geological data; (2) new data management capabilities built around a laboratory information management system (LIMS), digital asset management system, and web services; (3) operations data services with enhanced access to navigation and rig instrumentation data; and (4) a combination of commercial and home-made user applications for workflow- specific data extractions, generic and customized data reporting, and data visualization within a shipboard production environment. The instrumented data capture systems include a new set of core loggers for rapid and non-destructive acquisition of images and other physical properties data from drill cores. Line-scan imaging and natural gamma ray loggers capture data at unprecedented quality due to new and innovative designs. Many instruments used to characterize chemical compounds of rocks, sediments, and interstitial fluids were upgraded with the latest technology. The shipboard analytical environment features a new and innovative framework (DESCinfo) and application (DESClogik) for capturing descriptive and interpretive data from geological sub-domains such as sedimentology, petrology, paleontology, structural geology, stratigraphy, etc. This system fills a long-standing gap by providing a global database, controlled vocabularies and taxa name lists with version control, a highly configurable spreadsheet environment for data capture, and visualization of context data collected with the shipboard core loggers and other instruments.
Jaworowski, Cheryl; Susong, David; Heasler, Henry; Mencin, David; Johnson, Wade; Conrey, Rick; Von Stauffenberg, Jennipher
2016-06-01
After drilling the seven PBO boreholes, cuttings were examined and selected for preparation of grain mounts, thin sections, and geochemical analysis. Major ions and trace elements (including rare earth elements) of selected cuttings were determined by x-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS); the ICP-MS provided more precise trace-element analysis than XRF. A preliminary interpretation of the results of geochemical analyses generally shows a correlation between borehole cuttings and previously mapped geology. The geochemical data and borehole stratigraphy presented in this report provide a foundation for future petrologic, geochemical, and geophysical studies.
Unsupervised learning on scientific ocean drilling datasets from the South China Sea
NASA Astrophysics Data System (ADS)
Tse, Kevin C.; Chiu, Hon-Chim; Tsang, Man-Yin; Li, Yiliang; Lam, Edmund Y.
2018-06-01
Unsupervised learning methods were applied to explore data patterns in multivariate geophysical datasets collected from ocean floor sediment core samples coming from scientific ocean drilling in the South China Sea. Compared to studies on similar datasets, but using supervised learning methods which are designed to make predictions based on sample training data, unsupervised learning methods require no a priori information and focus only on the input data. In this study, popular unsupervised learning methods including K-means, self-organizing maps, hierarchical clustering and random forest were coupled with different distance metrics to form exploratory data clusters. The resulting data clusters were externally validated with lithologic units and geologic time scales assigned to the datasets by conventional methods. Compact and connected data clusters displayed varying degrees of correspondence with existing classification by lithologic units and geologic time scales. K-means and self-organizing maps were observed to perform better with lithologic units while random forest corresponded best with geologic time scales. This study sets a pioneering example of how unsupervised machine learning methods can be used as an automatic processing tool for the increasingly high volume of scientific ocean drilling data.
Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants
NASA Astrophysics Data System (ADS)
Siddique, Shohel; Kwoffie, Lorraine; Addae-Afoakwa, Kofi; Yates, Kyari; Njuguna, James
2017-05-01
Operational discharges of spent drilling fluid, produced water, and accumulated drill cuttings from oil and gas industry are a continuous point source of environmental pollution. To meet the strict environmental standard for waste disposal, oil and gas industry is facing a numerous challenges in technological development to ensure a clean and safe environment. Oil and gas industry generates a large amount of spent drilling fluid, produced water, and drill cuttings, which are very different in every drilling operation in terms of composition and characterisation. This review article highlights the knowledge gap in identifying the different sources of waste streams in combined drilling waste. This paper also emphasises how different chemicals turn into environmentally significant pollutants after serving great performance in oil and gas drilling operations. For instance, oil based drilling fluid performs excellent in deeper drilling and drilling in the harsh geological conditions, but ended with (produces) a significant amount of persistent toxic pollutants in the environment. This review paper provides an overview on the basic concepts of drilling fluids and their functions, sources and characterisation of drilling wastes, and highlights some environmentally significant elements including different minerals present in drilling waste stream.
Subsurface multidisciplinary research results at ICTJA-CSIC downhole lab and test site
NASA Astrophysics Data System (ADS)
Jurado, Maria Jose; Crespo, Jose; Salvany, Josep Maria; Teixidó, Teresa
2017-04-01
Two scientific boreholes, Almera-1 and Almera-2 were drilled in the Barcelona University campus area in 2011. The main purpose for this drilling was to create a new geophysical logging and downhole monitoring research facility and infrastructure. We present results obtained in the frame of multidisciplinary studies and experiments carried out since 2011 at the ICTJA "Borehole Geophysical Logging Lab - Scientific Boreholes Almera" downhole lab facilities. First results obtained from the scientific drilling, coring and logging allowed us to characterize the urban subsurface geology and hydrology adjacent to the Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) in Barcelona. The subsurface geology and structural picture has been completed with recent geophysical studies and monitoring results. The upper section of Almera-1 214m deep hole was cased with PVC after drilling and after the logging operations. An open hole interval was left from 112m to TD (Paleozoic section). Almera-2 drilling reached 46m and was cased also with PVC to 44m. Since completion of the drilling in 2011, both Almera-1 and Almera-2 have been extensively used for research purposes, tests, training, hydrological and geophysical monitoring. A complete set of geophysical logging measurements and borehole oriented images were acquired in open hole mode of the entire Almera-1 section. Open hole measurements included acoustic and optical imaging, spectral natural gamma ray, full wave acoustic logging, magnetic susceptibility, hydrochemical-temperature logs and fluid sampling. Through casing (PVC casing) measurements included spectral gamma ray logging, full wave sonic and acoustic televiewer. A Quaternary to Paleozoic section was characterized based on the geophysical logging and borehole images interpretation and also on the complete set of (wireline) cores of the entire section. Sample availability was intended for geological macro and micro-facies detailed characterization, mineralogical and petrophysical tests and analyses. The interpretation of the geophysical logging data and borehole oriented images, and core data allowed us to define the stratigraphy, structures and petrophysical properties in the subsurface. Quaternary sediments overlie unconformably weathered, deformed and partially metamorphosed Paleozoic rocks. A gap of the Tertiary rocks at the drillsite was detected. Structures at intensely fractured and faulted sections were measured and have yielded valuable data to understand the subsurface geology, hydrology and geological evolution in that area. Logging, borehole imaging and monitoring carried out in the scientific boreholes Almera-1 and Almera-2 has allowed also to identify three preferential groundwater flow paths in the subsurface. Geophysical logging data combined with groundwater monitoring allowed us to identify three zones of high permeability in the subsurface. Logging data combined with core analysis were used to characterize the aquifers lithology and their respective petrophysical properties. We also analyzed the aquifer dynamics and potential relationships between the variations in groundwater levels and the rainfalls by comparing the groundwater monitoring results and the rainfall. A seismic survey was carried out to outline the geological structures beyond Almera-1 borehole, a vertical reverse pseudo-3D (2.5D) seismic tomography experiment. The results allowed us to define the geological structure beyond the borehole wall and also a correlation between the different geological units in the borehole and their geometry and spatial geophysical and seismic image.
Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology
NASA Technical Reports Server (NTRS)
Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.
2006-01-01
This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, M.D.; Waddell, S.J.; Vick, G.S.
1986-12-31
Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). Thesemore » formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression.« less
Dillon, William P.
1981-01-01
This report summarizes our general knowledge of the geology and petroleum potential, as well as potential problems and hazards associated with development of petroleum resources, of the area proposed for nominations for lease sale number 78. This area includes the U.S. eastern continental margin from the mouth of Chesapeake Bay to approximately Cape Canaveral, Florida, including the upper Continental Slope and inner Blake Plateau. The area for possible sales and the previous areas leased are shown in figure 1; physiographic features of the region are shown in figure 2. Six exploration wells have been drilled within the proposed lease area (figs. 3 and 4) but no commercial discoveries have been made. All six wells were drilled on the Continental Shelf in the Southeast Georgia Embayment. No commercial production has been obtained onshore in the region. The areas already drilled have thin sedimentary sections, and the deeper rocks are dominantly continental facies. Petroleum formation may have been hindered by a lack of organic material and sufficient burial for thermal maturation. Analysis of drill and seismic profiling data presented here, however, indicates that a much thicker sedimentary rock section containing a much higher proportion of marine deposits exists seaward of the exploratory wells on the Continental Shelf. These geologic conditions imply that the offshore basins may be more favorable environments for generating petroleum.
Dillon, William P.
1983-01-01
This report summarizes our general knowledge of the geology and petroleum potential, as well as potential problems and hazards associated with development of petroleum resources, within the area proposed for nominations for lease sale number 90. This area includes the U.S. eastern continental margin from Raleigh Bay, just south of Cape Hatteras, to southern Florida, including the upper Continental Slope and inner Blake Plateau. The area for possible sales for lease sale number 90, as well as the area for lease sale number 78 and the previous areas leased are shown in figure 1; physiographic features of the region are shown in figure 2. Six exploration wells have been drilled within the proposed lease area (figs. 3 and 4), but no commercial discoveries have been made. All six wells were drilled on the Continental Shelf. No commercial production has been obtained onshore in the region. The areas already drilled have thin sedimentary rock sections, and the deeper strata are dominantly of continental facies. Petroleum formation may have been hindered by a lack of organic material and lack of sufficient burial for thermal maturation. However, analyses of drilling and seismic profiling data presented here indicate that a much thicker section of sedimentary rocks containing a much higher proportion of marine deposits, exists seaward of the Continental Shelf. These geologic conditions imply that the basins farther offshore may be more favorable environments for generating petroleum.
Oil and gas in offshore tracts: estimates before and after drilling.
Uman, M F; James, W R; Tomlinson, H R
1979-08-03
Estimates of volumes of recoverable hydrocarbons underlying offshore tracts are made by the U.S. Geological Survey prior to the sale of leases and after drilling on those leases. Comparisons of these estimates show a moderate positive correlation and no evidence for relative bias, although the precision of the predictions is quite limnited.
Oil and gas in offshore tracts: Estimates before and after drilling
Uman, M.F.; James, W.R.; Tomlinson, H.R.
1979-01-01
Estimates of volumes of recoverable hydrocarbons underlying offshore tracts are made by the U.S. Geological Survey prior to the sale of leases and after drilling on those leases. Comparisons of these estimates show a moderate positive correlation and no evidence for relative bias, although the precision of the predictions is quite limited. Copyright ?? 1979 AAAS.
NASA Astrophysics Data System (ADS)
DeBlois, Elisabeth M.; Kiceniuk, Joe W.; Paine, Michael D.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Gregory Janes, G.
2014-12-01
This paper presents results of analyses of body burdens of metals and hydrocarbons, and taste tests for taint, in Iceland scallop and American plaice performed as part of the Environmental Effects Monitoring (EEM) program for the Terra Nova offshore oil development (Grand Banks of Newfoundland, Canada). Scallop and plaice were collected in a Study Area located within approximately 1 km of drill centres at Terra Nova and in a Reference Area located approximately 20 km from the development. Samples were collected in 1997 to establish a baseline, and from 2000 to 2010, during drilling periods. Scallop adductor muscle tissue was contaminated with >C10-C21 aliphatic hydrocarbons resembling the drilling fluid in the synthetic drilling mud (SBM) used at Terra Nova in 2000, 2002 and 2004, but contamination of adductor muscle was not noted in 2006, 2008 and 2010. The maximum concentration in muscle was 28 mg/kg wet weight, noted in 2002. Scallop viscera was contaminated with hydrocarbons resembling drilling fluid in SBMs near drill centres in all EEM years except 2010. Viscera contamination with >C10-C21 hydrocarbons gradually decreased from a maximum of 150 mg/kg in 2000, to a maximum of 27 mg/kg in 2008; all values were below the laboratory reporting detection limit of 15 mg/kg in 2010. Therefore, evidence from both muscle and viscera indicates a decrease in tissue hydrocarbon contamination in recent years. Barium, another major constituent in drilling muds, has not been noted in scallop adductor muscles at concentrations above the reporting detection limit, but barium was detected in viscera in baseline and EEM years. The maximum concentration of barium in viscera during baseline sampling was 8 mg/kg. The maximum concentration in EEM years (29 mg/kg) was noted in 2000. The maximum concentration in 2010 was 25 mg/kg. The concentration of metals other than barium in scallop tissues was similar between the Terra Nova Study Area and the Reference Area. Hydrocarbons resembling the fluid in SBMs were noted in one American plaice liver sample collected near drill centres in 2000. Otherwise, there has been no evidence of project-related metals or hydrocarbon contamination in plaice liver or fillet samples. There has been no evidence of taint (off-taste) for scallop adductor muscle and plaice fillet tissue in baseline or EEM years. Combined with a parallel study on fish bioindicators at Terra Nova that showed that fish health at Terra Nova was similar to that at the Reference Area (Mathieu et al., 2011), these results indicate little to no detectable biological effects on Iceland scallop and American plaice as a result of Terra Nova activities.
Pennsylvanian Tyler stratigraphic seismic concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, C.E.; Archer, R.J.
Recent drilling in the Rattler Butte area of central Montana has renewed interest in the Pennsylvanian Tyler Formation as a drilling objective. New production in this area, coupled with the surrounding well density, provides an ideal situation for further development of Tyler stratigraphic-seismic exploration concepts and methods. Both geologic and geophysical Tyler thickness maps have proven to be useful tools in delineating eroded Heath and subsequent lower Tyler deposition. Seismic modeling has revealed a series of possible Tyler-Heath erosional edge characteristics, providing another tool for Tyler-Heath boundary definition. In modeling specific seismic sand signatures, it was found that seismic charactermore » and amplitude are dependent upon both formation thickness and lithology. Detailed mapping of the study area also revealed a new environmental interpretation of the Tyler. Unlike the fluvial system to the north, the Tyler regime in the Rattler Butte area appears to have fluctuated among fluvial, deltaic, and marine systems. Two hydrocarbon occurrence patterns have been noted within the Tyler: (1) although reservoir quality sands are present throughout the Tyler, those within the lower Tyler are more likely to contain hydrocarbons, and (2) close proximity to the Tyler-Heath erosional edge increases the chances of discovering oil-filled Tyler sands. Combined use of these exploration tools should greatly enhance the chances for successful lower Tyler exploration.« less
43 CFR 3482.3 - Mining operations maps.
Code of Federal Regulations, 2012 CFR
2012-10-01
... and up-to-date maps of the mine, drawn to scales acceptable to the authorized officer. Before a mine... boundary lines; surface buildings; dip of the coal bed(s); true north; map scale; map explanation; location...; geologic conditions as determined from outcrops, drill holes, exploration, or mining; any unusual geologic...
43 CFR 3482.3 - Mining operations maps.
Code of Federal Regulations, 2013 CFR
2013-10-01
... and up-to-date maps of the mine, drawn to scales acceptable to the authorized officer. Before a mine... boundary lines; surface buildings; dip of the coal bed(s); true north; map scale; map explanation; location...; geologic conditions as determined from outcrops, drill holes, exploration, or mining; any unusual geologic...
43 CFR 3482.3 - Mining operations maps.
Code of Federal Regulations, 2014 CFR
2014-10-01
... and up-to-date maps of the mine, drawn to scales acceptable to the authorized officer. Before a mine... boundary lines; surface buildings; dip of the coal bed(s); true north; map scale; map explanation; location...; geologic conditions as determined from outcrops, drill holes, exploration, or mining; any unusual geologic...
Publications - GMC 389 | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska DGGS GMC 389 Publication Details Title: Core photographs, assay results, and 1988 drill logs from the Cominco DDH-1 through DDH-4 boreholes, Shadow Prospect, Tyonek Quadrangle, Alaska Authors: Millrock
Preliminary geologic map of the Wadi As Sirhan Quadrangle, sheet 30C, Kingdom of Saudi Arabia
Meissner, C.R.; Griffin, M.B.; Riddler, G.P.; Van Eck, Marcel; Aspinall, N.C.; Farasani, A.M.; Dini, S.M.
1990-01-01
Several deep drill holes in the Wadi as Sirhan depression have penetrated thick sequences of marine rocks that are potential sources of oil and gas. Geological and geophysical conditions are favorable for the accumulation of hydrocarbons, and additional exploration is recommended.
Compendium of Arab exploratory wells and petroleum fields, 1985 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book provides a compilation of primary and secondary information giving well name and province, operating company, completion date, exploration technique, bottom home formation, total depth, producing formations, lithology, geologic age, drilling results, and geologic, petrophysical, and production data. It covers all the Arab countries in a new format.
Antolino, Dominick J.; Chapman, Melinda J.
2017-01-06
The U.S. Geological Survey South Atlantic Water Science Center collected borehole geophysical logs and images and continuous water-level data near the GMH Electronics National Priorities List Superfund site near Roxboro, North Carolina, during December 2012 through July 2015. Previous work by the U.S. Geological Survey South Atlantic Water Science Center at the site involved the collection of borehole geophysical log data in 15 wells, in addition to surface geologic mapping and passive diffusion bag sampling. In a continued effort to assist the U.S. Environmental Protection Agency in developing a conceptual groundwater model to assess current contaminant distribution and future migration of contaminants, more than 900 subsurface features (primarily fracture orientations) in 10 open borehole wells were delineated and continuous water-level data information from 14 monitoring wells within close proximity of the initially drilled boreholes was collected to observe any induced water-level fluctuations during drilling operations
The behavior of enclosed-type connection of drill pipes during percussive drilling
NASA Astrophysics Data System (ADS)
Shadrina, A.; Saruev, L.
2015-11-01
Percussion drilling is the efficient method to drill small holes (≥ 70 mm) in medium- hard and harder rocks. The existing types of drill strings for geological explorations are not intended for strain wave energy transfer. The description of the improved design of the drill string having enclosed-type nipple connections is given in this paper presents. This nipple connection is designed to be used in drilling small exploration wells with formation sampling. Experimental findings prove the effectiveness of the enclosed nipple connection in relation to the load distribution in operation. The paper presents research results of the connection behavior under quasistatic loading (compression-tension). Loop diagrams are constructed and analyzed in force-displacement coordinates. Research results are obtained for shear stresses occurred in the nipple connection. A mechanism of shear stress distribution is described for the wave strain propagation over the connecting element. It is shown that in the course of operation the drill pipe tightening reduces the shear stress three times.
Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.
2014-01-01
For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth. Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data. Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes. Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes. In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient. Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.
PRELIMINARY DRILLING IN THE POWDER RIVER BASIN, CONVERSE, CAMPBELL, AND JOHNSON COUNTRIES, WYOMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geslin, H.E.; Bromley, C.P.
1957-06-01
On July 16, 1953, a diamond core-drilling program was begun in the pumpkin Buttes area to secure geologic information. Drilling was terminated March 11, 1964, after 12 holes had been completed for a total of 5,813 feet. An investigational rotary noncore-drilling project was conducted from June l4, to September 17, 1954, in the southern part of the Powder River Basin, Campbell, Johnson, and Converse Counties, Wyoming. Drilling was done in the Pumpkin Buttes area and the Converse County area. A total of 52,267 feet was drilled and the average depth of hole was 75.3 feet. Forty-one anomalous areas in themore » Powder River Basin were drilled; of these, three in Converse County were found to contain possible commercial ore bodies. All of the drilling was done in the Wasatch formation of Eocene age except one locality, which was in the Fort Union formation of Paleocene age. (auth)« less
Drilling side holes from a borehole
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr.
1980-01-01
Machine takes long horizontal stratum samples from confines of 21 cm bore hole. Stacked interlocking half cylindrical shells mate to form rigid thrust tube. Drive shaft and core storage device is flexible and retractable. Entire machine fits in 10 meter length of steel tube. Machine could drill drainage or ventilation holes in coal mines, or provide important information for geological, oil, and geothermal surveys.
Application of drilling, coring, and sampling techniques to test holes and wells
Shuter, Eugene; Teasdale, Warren E.
1989-01-01
The purpose of this manual is to provide ground-water hydrologists with a working knowledge of the techniques of test drilling, auger drilling, coring and sampling, and the related drilling and sampling equipment. For the most part, the techniques discussed deal with drilling, sampling, and completion of test holes in unconsolidated sediments because a hydrologist is interested primarily in shallow-aquifer data in this type of lithology. Successful drilling and coring of these materials usually is difficult, and published research information on the subject is not readily available. The authors emphasize in-situ sampling of unconsolidated sediments to obtain virtually undisturbed samples. Particular attention is given to auger drilling and hydraulic-rotary methods of drilling because these are the principal means of test drilling performed by the U.S. Geological Survey during hydrologic studies. Techniques for sampling areas contaminated by solid or liquid waste are discussed. Basic concepts of well development and a detailed discussion of drilling muds, as related to hole conditioning, also are included in the report. The information contained in this manual is intended to help ground-water hydrologists obtain useful subsurface data and samples from their drilling programs.
Research on high speed drilling technology and economic integration evaluation in Oilfield
NASA Astrophysics Data System (ADS)
Wang, Kun; Ni, Hongjian; Cheng, Na; Song, Jingbo
2018-01-01
The carbonate reservoir in the oilfield mainly formed in Ordovician System and Carboniferous System. The geology here is very complicated, with high heterogeneity. It gets much more difficult to control the well deflection in Permian system so that high accident ratio could be expected. The buried depth of the reservoir is large, normally 4600-6600m deep. The temperature of the layer is higher than 132 and the pressure is greater than 62MPa. The reservoir is with a high fluid properties, mainly including thin oil, heavy oil, condensate oil, gas and so on; the ground is very hard to drill, so we can foresee low drilling speed, long drilling period and high drilling cost, which will surely restrict the employing progress of the reservoir.
Drilling and completion specifications for CA series multilevel piezometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clawson, T.S.
1986-08-01
CX Series multilevel piezometer boreholes will provide information on hydraulic heads in the Rosalia, Sentinel Gap, Ginkgo, Rocky Coulee, Cohassett, Birkett, and Umtanum flow tops. The borehole sites will be located adjacent to the reference repository location. In addition, information from the boreholes will provide input data used to determine horizontal and vertical flow rates, and identify possible geologic structures. This specification includes details for drilling, piezometer design, hydrologic testing, and hydrochemical sampling of the boreholes. It includes drilling requirements, design, and installation procedures for the series piezometer nests, intervals selected for head monitoring and schedules for drilling and piezometermore » installation. Specific drilling and piezometer installation specifications for boreholes DC-24CX and DC-25CX are also included. 27 refs., 5 figs., 3 tabs.« less
Publications - GMC 390 | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska DGGS GMC 390 Publication Details Title: Drill logs (1987) from the Cominco Upper Discovery DDH-1 and Lower Discovery DDH-1 through DDH-5 boreholes, Mt. Estelle Prospect, Tyonek Quadrangle, Alaska Authors
An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits
Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.
2006-01-01
This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning aerial extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.
An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits
Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.
2007-01-01
This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning areal extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.
NASA Astrophysics Data System (ADS)
Gobert, J.; Toto, E.; Wild, S. C.; Dordevic, M. M.; De Paor, D. G.
2013-12-01
A hindrance to migrating undergraduate geoscience courses online is the challenge of giving students a quasi-authentic field experience. As part of an NSF TUES Type 2 project (# NSF-DUE 1022755), we addressed this challenge by designing a Google Earth (GE) mapping game centered on Puerto Rico, a place we chose in order to connect with underrepresented minorities but also because its simple geologic divisions minimized map complexity. The game invites student groups to explore the island and draw a geological map with these divisions: Rugged Volcanic Terrain, Limestone Karst Topography, and Surficial Sands & Gravels. Students, represented as avatars via COLLADA models and the GE browser plugin, can move about, text fellow students, and click a 'drill here' button that tells them what lies underground. They need to learn to read the topography because the number of holes they can drill is limited to 30. Then using the GE Polygon tool, they create a map, aided by a custom 'snapping' algorithm that stitches adjacent contacts, preventing gaps and overlaps, and they submit this map for evaluation by their instructor, an evaluation we purposefully did not automate. Initially we assigned students to groups of 4 and gave each group a field vehicle avatar with a designated driver, however students hated the experience unless they were the designated driver, so we revised the game to allow all students to roam independently, however we retained the mutual texting feature amongst students in groups. We implemented the activity with undergraduates from a university in South East USA. All student movements and actions on the GE terrain were logged. We wrote algorithms to evaluate student learning processes via log files, including, but not limited to, number of places drilled and their locations. Pre-post gains were examined, as well as correlations between data from log files and pre-post data. There was a small but statistically significant post-pre gain including a positive correlation between diagram-based post-test questions and: 1) total number of drills; 2) number of correct within-polygon identifications (Evidently those who did more drilling inside polygons and drew boundaries accordingly, learn more. Drills 'mistakingly' plotted outside formation polygons were negatively correlated with extra post-test questions but this was not statistically significant --likely due to low statistical power because there were few students who did this); and 3) average distance between drills (Students whose drill holes were further apart, learn more. This makes sense since more information can be gleaned this way and this may also be indicative of a skilled learning strategy because there is little point to doing close/overlapping drills when the permitted number is small and the region is large.) No significant correlation between pre-test score and diagram-based post-test questions was found; this suggests that prior knowledge is not accounting for above correlations. Data will be discussed with respect to GE's utility to convey geoscience principles to geology undergraduates, as well as the affordances for analyzing students' log files in order to better understand their learning processes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... water supply. A system, including facilities for collection, treatment, storage and distribution, that... extraction of gaseous hydrocarbons from low permeability geologic formations utilizing enhanced drilling...
Code of Federal Regulations, 2013 CFR
2013-04-01
... water supply. A system, including facilities for collection, treatment, storage and distribution, that... extraction of gaseous hydrocarbons from low permeability geologic formations utilizing enhanced drilling...
Code of Federal Regulations, 2012 CFR
2012-04-01
... water supply. A system, including facilities for collection, treatment, storage and distribution, that... extraction of gaseous hydrocarbons from low permeability geologic formations utilizing enhanced drilling...
Abeyta, Cynthia G.; Frenzel, P.F.
1999-01-01
Geologic and hydrologic data for the Municipal Solid Waste Landfill Facility on the U.S. Army Air Defense Artillery Center and Fort Bliss in El Paso County, Texas, were collected by the U.S. Geological Survey in cooperation with the U.S. Department of the Army. The 106.03-acre landfill has been in operation since January 1974. The landfill contains household refuse, Post solid wastes, bulky items, grass and tree trimmings from family housing, refuse from litter cans, construction debris, classified waste (dry), dead animals, asbestos, and empty oil cans. The depth of the filled areas is about 30 feet and the cover, consisting of locally derived material, is 2 to 3 feet thick. Geologic and hydrologic data were collected at or adjacent to the landfill during (1) drilling of 10 30- to 31-foot boreholes that were completed with gas-monitoring probes, (2) drilling of a 59-foot borehole, (3) drilling of a 355-foot borehole that was completed as a ground-water monitoring well, and (4) in situ measurements made on the landfill cover. After completion, the gas- monitoring probes were monitored on a quarterly basis (1 year total) for gases generated by the landfill. Water samples were collected from the ground-water monitoring well for chemical analysis. Data collection is divided into two elements: geologic data and hydrologic data. Geologic data include lithologic descriptions of cores and cuttings, geophysical logs, soil- gas and ambient-air analyses, and chemical analyses of soil. Hydrologic data include physical properties, total organic carbon, and pH of soil and sediment samples; soil-water chloride and soil-moisture analyses; physical properties of the landfill cover; measurements of depth to ground water; and ground-water chemical analyses. Interpretation of data is not included in this report.
NASA Astrophysics Data System (ADS)
Paine, Michael D.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Pocklington, Patricia; Crowley, Roger D.; Williams, Urban P.; Gregory Janes, G.
2014-12-01
This paper describes effects of drilling with water and synthetic-based drilling muds on benthic macro-invertebrates over 10 years at the Terra Nova offshore oil development. As such, the paper provides insight on the effects of relatively new synthetic-based drilling muds (SBMs), and makes an important contribution to our understanding of the long-term chronic effects of drilling on benthic communities. The Terra Nova Field is located approximately 350 km offshore on the Grand Banks of Newfoundland (Canada). Sediment and invertebrate samples were collected in 1997 (baseline) prior to drilling, and subsequently in 2000, 2001, 2002, 2004, 2006, 2008 and 2010. Approximately 50 stations were sampled in each year at distances of less than 1 to approximately 20 km from drill centres. Summary benthic invertebrate community measures examined were total abundance, biomass, richness, diversity and multivariate measures of community composition based on non-Metric Dimensional Scaling (nMDS). Decreases in abundance, biomass and richness were noted at one station located nearest (0.14 km) to a drill centre in some environmental effects monitoring (EEM) years. These decreases coincided with higher levels of tracers of drill muds in sediments (barium and >C10-C21 hydrocarbons). Abundances of selected individual taxa were also examined to help interpret responses when project-related effects on summary measures occurred. Enrichment effects on some tolerant taxa (e.g., the polychaete family Phyllodocidae and the bivalve family Tellinidae) and decreased abundances of sensitive taxa (e.g., the polychaete families Orbiniidae and Paraonidae) were detected to within approximately 1-2 km from discharge source. Lagged responses three to five years after drilling started were noted for Phyllodocidae and Tellinidae, suggesting chronic or indirect effects. Overall, results of benthic community analyses at Terra Nova indicate that effects on summary measures of community composition were spatially limited but, as seen elsewhere, some taxa were more sensitive to drilling discharges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibbett, B.S.; Nielson, D.L.; Adams, M.C.
This technical report on the Phase II geothermal exploration of Ascension Island documents the data collected during thermal gradient drilling and the subsequent thermal and fluid chemical investigations. It also documents the completion of the Phase II exploration strategy which was proposed at the end of the Phase I--Preliminary Examination of Ascension Island. The thermal gradient drilling resulted in seven holes which range from 206 to 1750 ft (53-533 m) deep, with a cumulative footage of 6563 ft (2000 m). The drilling procedure and the problems encountered during the drilling have been explained in detail to provide information valuable formore » any subsequent drilling program on the island. In addition, the subsurface geology encountered in the holes has been documented and, where possible, correlated with other holes or the geology mapped on the surface of the island. Temperatures measured in the holes reach a maximum of 130 F (54.4 C) at 1285 ft (391.7 m) in hole GH-6. When the temperatures of all holes are plotted against elevation, the holes can be classed into three distinct groups, those which have no thermal manifestations, those with definite geothermal affinities, and one hole which is intermediate between the other two. From consideration of this information, it is clear that the highest geothermal potential on the island is in the Donkey Flat area extending beneath Middleton Ridge, and in the Cricket Valley area. Because of the greater drilling depths and the remote nature of the Cricket Valley area, it is recommended that future exploration concentrate in the area around Middleton Ridge.« less
Impacts on seafloor geology of drilling disturbance in shallow waters.
Corrêa, Iran C S; Toldo, Elírio E; Toledo, Felipe A L
2010-08-01
This paper describes the effects of drilling disturbance on the seafloor of the upper continental slope of the Campos Basin, Brazil, as a result of the project Environmental Monitoring of Offshore Drilling for Petroleum Exploration--MAPEM. Field sampling was carried out surrounding wells, operated by the company PETROBRAS, to compare sediment properties of the seafloor, including grain-size distribution, total organic carbon, and clay mineral composition, prior to drilling with samples obtained 3 and 22 months after drilling. The sampling grid used had 74 stations, 68 of which were located along 7 radials from the well up to a distance of 500 m. The other 6 stations were used as reference, and were located 2,500 m from the well. The results show no significant sedimentological variation in the area affected by drilling activity. The observed sedimentological changes include a fining of grain size, increase in total organic carbon, an increase in gibbsite, illite, and smectite, and a decrease in kaolinite after drilling took place.
Key Technologies and Applications of Gas Drainage in Underground Coal Mine
NASA Astrophysics Data System (ADS)
Zhou, Bo; Xue, Sheng; Cheng, Jiansheng; Li, Wenquan; Xiao, Jiaping
2018-02-01
It is the basis for the long-drilling directional drilling, precise control of the drilling trajectory and ensuring the effective extension of the drilling trajectory in the target layer. The technology can be used to complete the multi-branch hole construction and increase the effective extraction distance of the coal seam. The gas drainage and the bottom grouting reinforcement in the advanced area are realized, and the geological structure of the coal seam can be proved accurately. It is the main technical scheme for the efficient drainage of gas at home and abroad, and it is applied to the field of geological structure exploration and water exploration and other areas. At present, the data transmission method is relatively mature in the technology and application, including the mud pulse and the electromagnetic wave. Compared with the mud pulse transmission mode, the electromagnetic wave transmission mode has obvious potential in the data transmission rate and drilling fluid, and it is suitable for the coal mine. In this paper, the key technologies of the electromagnetic wave transmission mode are analyzed, including the attenuation characteristics of the electromagnetic transmission channel, the digital modulation scheme, the channel coding method and the weak signal processing technology. A coal mine under the electromagnetic wave drilling prototype is developed, and the ground transmission experiments and down hole transmission test are carried out. The main work includes the following aspects. First, the equivalent transmission line method is used to establish the electromagnetic transmission channel model of coal mine drilling while drilling, and the attenuation of the electromagnetic signal is measured when the electromagnetic channel measured. Second, the coal mine EM-MWD digital modulation method is developed. Third, the optimal linear block code which suitable for EM-MWD communication channel in coal mine is proposed. Fourth, the noise characteristics of well near horizontal directional drilling are analyzed, and the multi-stage filter method is proposed to suppress the natural potential and strong frequency interference signal. And the weak electromagnetic communication signal is extracted from the received signal. Finally, the detailed design of the electromagnetic wave while drilling is given.
An Inexpensive Way of Teaching Uncertainty and Mineral Exploration Drilling in the Classroom
NASA Astrophysics Data System (ADS)
Aquino, J. S.
2014-12-01
This presentation is all about inexpensive ways of teaching uncertainty and mineral exploration drilling in the classroom. These labs were developed as an off-shoot of my years of mineral industry experience before I transitioned to geoscience education. I have developed several classroom lab exercises that relate to the role of modeling, uncertainty and prediction in mineral exploration. These lessons are mostly less expensive ($<5/group) hands-on activities that can be differentiated across grade levels. Early in the semester, modeling is explored through the cube and toilet paper roll puzzle lab. This is then immediately followed by the penny experiment that gives a physical meaning to the concept of uncertainty. However, it is the end-of-semester shoebox drilling lab that serves as the culminating activity for modeling, uncertainty and prediction. An object (orebody) is hidden inside a shoebox and the students are challenged to design a drilling program to predict the location and topology of a "mineral deposit". The students' decision on the location of the first few drill holes will be based on how they analyze, synthesize and evaluate simple surface topographic, geologic and geochemical +/- geophysical data overlain on top of the box. Before drilling, students are required to construct several geologic sections that will "model" the shape of the hidden orebody. Using bamboo skewers as their drilling equipment, students then commence their drilling and along the way learn the importance of drill spacing in decreasing uncertainty or increasing confidence. Lastly, the mineral separation lab gives them an opportunity to design another experiment that mimics mineral processing and learns a valuable lesson on the difficulties in recovery and how it relates to entropy (no such thing as 100% recoverability). The last two labs can be further enhanced with economic analysis through incorporation of drilling and processing costs. Students further appreciate the world of of mineral exploration with several YouTube videos on the use of 3D and 4D GIS mine modeling softwares. However at the same time, I forewarn them about the dangers on the dependence to these visually attractive computer-generated products without field verification or the fidelity to the ground-based and drillcore-based observations.
Results of exploration at the Old Leyden coal mine, Jefferson County, Colorado
Gude, A.J.; McKeown, F.A.
1953-01-01
Six diamond core holes totaling 2, 201 feet were drilled by the. U, S. Bureau of Mines under contract to the U. S. Atomic Energy Commission at the Old Leyden coal mine, Jefferson County, Colo. The holes were spotted on the basis of geologic mapping by the U. S. Geological survey and were drilled to explore the lateral and downward extent of a uranium-bearing coal and the associated carnotite deposits in the adjacent sandstone° The data obtained from the diamond-core holes helped to explain the geology and structural control of the deposit. The uranium is most abundant in a coal bed that in places has been brecciated by shearing. and then altered to a hard, dense, and silicified rock. The uraniferous coal is in the nearly vertical beds of the Laramie formation of Upper Cretaceous age. Small lenticular bodies of uraniferous material, 50 feet long, 25 to 30 feet wide, and 2 to 4 feet thick, occur at intervals in the coal and silicified coal over a strike length of about 800 feet. These bodies contain 0.10 to 0.50 percent uranium. Data obtained from the drilling indicate a discontinuous radioactive zone between these higher-grade bodies; assays of samples from the cores range from 0.001 to 0.10 percent uranium. All drill holes were probed by Survey and A. E. C. logging equipment and showed anomalies where the core assayed more than 0.005 percent uranium. Material of ore grade--0.10 percent uranium--was found in one core; the rock in the other five holes was of lower grade. The presence of the radioactive zone in all holes suggests, however, that uranium is distributed irregularly in a southerly plunging deposit which is exposed in the adit, on the outcrop, and in other diamond-drill holes that were put down by the lessee.
NASA Astrophysics Data System (ADS)
Boswell, R. M.; Collett, T. S.; Frye, M.; McConnell, D.; Shedd, W.; Shelander, D.; Dai, J.; Mrozewski, S.; Guerin, G.; Cook, A.; Dufrene, R.; Godfriaux, P. D.; Roy, R.; Jones, E.
2009-12-01
The Gulf of Mexico gas hydrates Joint Industry Project (the JIP), a cooperative research program between the US Department of Energy and an international industrial consortium under the leadership of Chevron, conducted its “Leg II” logging-while-drilling operations in April and May of 2009. JIP Leg II was intended to expand the existing JIP work from previous emphasis on fine-grained sedimentary systems to the direct evaluation of gas hydrate in sand-dominated reservoirs. The selection of the locations for the JIP Leg II drilling were the result of a geological and geophysical prospecting approach that integrated direct geophysical evidence of gas hydrate-bearing strata with evidence of gas sourcing and migration and occurrence of sand reservoirs within the gas hydrate stability zone. Logging-while-drilling operations included the drilling of seven wells at three sites. The expedition experienced minimal operational problems with the advanced LWD tool string, and successfully managed a number of shallow drilling challenges, including borehole breakouts, and shallow gas and water flows. Two wells drilled in Walker Ridge block 313 (WR-313) confirmed the pre-drill predictions by discovering gas hydrates at high saturations in multiple sand horizons with reservoir thicknesses up to 50 ft. In addition, drilling in WR-313 discovered a thick, strata-bound interval of grain-displacing gas hydrate in shallow fine-grained sediments. Two of three wells drilled in Green Canyon block 955 (GC-955) confirmed the pre-drill prediction of extensive sand occurrence with gas hydrate fill along the crest of a structure with positive indications of gas source and migration. In particular, well GC955-H discovered ~100 ft of gas hydrate in sand at high saturations. Two wells drilled in Alaminos Canyon block 21 (AC-21) confirmed the pre-drill prediction of potential extensive occurrence of gas hydrates in shallow sand reservoirs at low to moderate saturations; however, further data collection and analyses at AC-21 will be needed to better understand the nature of the pore filling material. JIP Leg II fully met its scientific objectives with the collection of abundant high-quality data from gas hydrate bearing sands in the Gulf of Mexico. Ongoing work within the JIP will enable further validation of the geophysical and geological methods used to predict the occurrence of gas hydrate. Expedition results will also support the selection of locations for future JIP drilling, logging and coring operations.
A geological assessment: What`s ahead for Louisiana Austin chalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloy, W.T.
1997-06-02
Both noteworthy and recent, the extension of the Austin chalk horizontal drilling play into Louisiana has been as closely watched as it has been controversial. The play has been controversial for the critics who claim the Louisiana chalk boom is simply the latest chapter in the chalk`s boom and bust history. The play is closely watched by chalk enthusiasts who have seen Louisiana horizontal wells yield as much as 80,000 bbl of oil and 250 MMcf of gas in a single month. Who is right? How will the play develop? This article presents a geological assessment of the play andmore » offers some insights into the future of horizontal drilling in Louisiana.« less
Outokumpu Deep Drill Hole: Window to the Precambrian bedrock
NASA Astrophysics Data System (ADS)
Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo
2017-04-01
Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a strong reflector. This fracture, as well as other fractures penetrated by the drill hole, contains saline water and gases, mainly methane, nitrogen, hydrogen and helium. Salinity of water in the deeper part (>1000 m) of the drill hole has continuously increased since the drilling. Gas-rich water slowly seeps upward and bubble out at the water table. In total, five different water types have been discerned along the drill hole by geochemical and isotopic methods and residence times up to 58 Ma indicated by the accumulation of noble gases. Microbiological studies in the Outokumpu Deep Drill Hole show that not only do different fracture zones act as places for shift in groundwater chemistry but also in the microbial communities. After a decade of research, Outokumpu drill hole site is geologically well known and thus provides a good environment to test new tools developed for exploration, microbiological or hydrogeological purposes, for example. Geological Survey of Finland is open for new research collaboration projects related to the drill site.
Successful new anti-sloughing drilling fluid application, Yanchang gas field, China
NASA Astrophysics Data System (ADS)
He, Peng; Liu, Hanmei; Du, Sen; He, Chenghai
2017-10-01
Borehole collapse had always been encountered when drilling the Shiqianfeng and Shihezi formations in Yan Chang gas field. By analyzing the reasons for the collapse can be obtained, "double layer of stone" brittle strong, pore development, water sensitivity and high mineral content filling skeleton particles, water lock effect and stress sensitivity is a potential factor in inducing strong wall collapse. According to the characteristics of the geological structure developed anti-sloughing drilling fluid system "double layer of stone," "complex fluid loss - dual inhibition - materialized block" multiple cooperative mechanism to achieve the purpose of anti-collapse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca L, H.L.; de la Pena L, A.; Puente C, I.
This study concerns the possible extension of the Cerro Prieto field and identification of other zones in the Mexicali Valley with geothermal development potential by assessing the structural geologic conditions in relation to the regional tectonic framework and the integration of geologic and geophysical surveys carried out at Cerro Prieto. This study is based on data obtained from the wells drilled to date and the available geological and geophysical information. With this information, a geologic model of the field is developed as a general description of the geometry of what might be the geothermal reservoir of the Cerro Prieto field.more » In areas with geothermal potential within the Mexicali Valley, the location of irrigation wells with anomalous temperatures was taken as a point of departure for subsequent studies. Based on this initial information, gravity and magnetic surveys were made, followed by seismic reflection and refraction surveys and the drilling of 1200-m-deep multiple-use wells. Based on the results of the final integration of these studies with the geology of the region, it is suggested that the following areas should be explored further: east of Cerro Prieto, Tulecheck, Riito, Aeropuerto-Algodones, and San Luis Rio Colorado, Sonora.« less
Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico
Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.
2011-01-01
This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.
Conger, Randall W.
1999-01-01
Between March and April 1998, the U.S. Navy contracted Tetra Tech NUS Inc., to drill two monitor wells in the Stockton Formation at the Willow Grove Naval Air Station Joint Reserve Base, Horsham Township, Montgomery County, Pa. The wells MG-1634 and MG-1635 were installed to monitor water levels and sample contaminants in the shallow, intermediate, and deep water-producing zones of the fractured bedrock. Chemical analyses of the samples will help determine the horizontal and vertical distribution of any contaminated ground water migrating from known contaminant sources. Wells were drilled near the Fire Training Area (Site 5). Depths of all boreholes range from 69 to 149 feet below land surface. The U.S. Geological Survey conducted borehole geophysical logging and video surveys to identify water-producing zones in newly drilled monitor wells MG-1634 and MG-1635 and in wells MG-1675 and MG-1676. The logging was conducted from March 5, 1998, to April 16, 1998. This work is a continuation of the Phase I work. Caliper logs and video surveys were used to locate fractures; inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-producing fractures. Heatpulse-flowmeter measurements were used to verify the locations of water-producing or water-receiving zones and to measure rates of flow between water-bearing fractures. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller's notes, wells MG-1634 and MG-1635 were screened such that water-levels fluctuations could be monitored and discrete water samples collected from one or more water-producing zones in each borehole.
1991-06-28
Interviewed [TRUD 21 Jun] 4 Ecoglasnost Clarifies Its Character [DEMOKRÄTSIYA 21 Jun] 5 UK Cluff Company To Drill for Oil [BTA] 5 Financial...really independent, not involved with the executive power, and always in opposition, they said in conclusion. UK Cluff Company To Drill for Oil ...prospect oil on Bulgaria’s territory under a contract which was signed today by Prof. Vasil Balinov, chairman of the Committee on Geology and Mineral
JPRS Report, Science & Technology, USSR: Science & Technology Policy.
1987-07-10
gas exploration are being increased by 1.7-fold, while the amount of deep drilling is being increased by 1.5-fold. Such imposing tasks require new...territory based on geotraverses, ultradeep drilling , and space geological research has been introduced, a number of geodynamic models, including...cooperation of the ministry with the academy. The gauge of success of our cooperation is the implementation of these programs with the attainment of specific
Oil-shale data, cores, and samples collected by the U.S. geological survey through 1989
Dyni, John R.; Gay, Frances; Michalski, Thomas C.; ,
1990-01-01
The U.S. Geological Survey has acquired a large collection of geotechnical data, drill cores, and crushed samples of oil shale from the Eocene Green River Formation in Colorado, Wyoming, and Utah. The data include about 250,000 shale-oil analyses from about 600 core holes. Most of the data is from Colorado where the thickest and highest-grade oil shales of the Green River Formation are found in the Piceance Creek basin. Other data on file but not yet in the computer database include hundreds of lithologic core descriptions, geophysical well logs, and mineralogical and geochemical analyses. The shale-oil analyses are being prepared for release on floppy disks for use on microcomputers. About 173,000 lineal feet of drill core of oil shale and associated rocks, as well as 100,000 crushed samples of oil shale, are stored at the Core Research Center, U.S. Geological Survey, Lakewood, Colo. These materials are available to the public for research.
Results from Coalbed Methane Drilling in Winn Parish, Louisiana
Hackley, Paul C.; Warwick, Peter D.; Breland, F. Clayton; Richard, Troy E.; Ross, Kirk
2007-01-01
A coalbed methane (CBM) well in Winn Parish, Louisiana, named CZ Fee A No. 114, was drilled by Vintage Petroleum, Inc., in January 2004. The CZ Fee A No. 114 CBM well was drilled to a total depth of 3,114 ft and perforated at 2,730-2,734 ft in a Wilcox Group (Paleocene-Eocene) coal bed. Analytical data from the drilling project have been released by Vintage Petroleum, Inc., and by the current well operator, Hilcorp Energy Corporation (see Appendix) to the Louisiana Geological Survey (LGS) and the U.S. Geological Survey (USGS) for publication. General information about the CZ Fee A No. 114 CBM well is compiled in Table 1, and analytical data from the well are included in following sections. The CZ Fee A No. 114 well is located in eastern Winn Parish, approximately 30 mi east of where Wilcox Group strata crop out on the Sabine Uplift (fig. 1). In the CZ Fee A No. 114 well, lower Wilcox Paleocene coal beds targeted for CBM production occur at depths of 2,600-3,000 ft (fig. 2). Average monthly gas production for the reporting period August 1, 2004, through May 1, 2005, was 450 thousand cubic feet (Mcf) (Louisiana Department of Natural Resources, 2005).
Spengler, Richard W.; Muller, D.C.; Livermore, R.B.
1979-01-01
A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five fault zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members, restricted log coverage to the lower half of the drill hole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, R.W.
The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within onemore » mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.« less
Coalbed natural gas exploration, drilling activities, and geologic test results, 2007-2010
Clark, Arthur C.
2014-01-01
The U.S. Geological Survey, in partnership with the U.S. Bureau of Land Management, the North Slope Borough, and the Arctic Slope Regional Corporation conducted a four-year study designed to identify, define, and delineate a shallow coalbed natural gas (CBNG) resource with the potential to provide locally produced, affordable power to the community of Wainwright, Alaska. From 2007 through 2010, drilling and testing activities conducted at three sites in or near Wainwright, identified and evaluated an approximately 7.5-ft-thick, laterally continuous coalbed that contained significant quantities of CBNG. This coalbed, subsequently named the Wainwright coalbed, was penetrated at depths ranging from 1,167 ft to 1,300 ft below land surface. Core samples were collected from the Wainwright coalbed at all three drill locations and desorbed-gas measurements were taken from seventeen 1-ft-thick sections of the core. These measurements indicate that the Wainwright coalbed contains enough CBNG to serve as a long-term energy supply for the community. Although attempts to produce viable quantities of CBNG from the Wainwright coalbed proved unsuccessful, it seems likely that with proper well-field design and by utilizing currently available drilling and reservoir stimulation techniques, this CBNG resource could be developed as a long-term economically viable energy source for Wainwright.
Valin, Zenon C.; Collett, Timothy S.
1992-01-01
Gas hydrates, which are crystalline substances of water molecules that encase gas molecules, have the potential for being a significant source of natural gas. World-wide estimates for the amount of gas contained in hydrates range from 1.1 x 105 to 2.7 x 108 trillion cubic feet. Gas hydrates exist in many Arctic regions, including the North Slope of Alaska. The two primary objectives of the U.S. Geological Survey Gas Hydrate Research Project are (1) to map the distribution of in-situ gas hydrates on the North Slope of Alaska, and (2) to evaluate the geologic parameters that control the distribution of these gas hydrates. To aid in this study, British Petroleum Exploration, ARCO Alaska, Exxon Company USA, and the Continental Oil Company allowed the U.S. Geological Survey to collect geochemical samples from drilling North Slope production wells. Molecular analysis of gaseous drill cutting and free-flowing gas samples from 10 production wells drilled in the Prudhoe Bay, Kuparuk River, and Milne Point oil fields indicates that methane is the primary hydrocarbon gas in the gas hydrate-bearing stratigraphic units. Isotopic data for several of these rock units indicate that the methane within the inferred gas hydrate occurences originated from both microbial and thermogenic processes.
Collett, Timothy S.; Lee, Myung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.
2012-01-01
One of the objectives of the Gulf of MexicoGasHydrateJointIndustryProjectLegII (GOM JIP LegII) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gashydrates under various geologic conditions and to understand the geologic controls on the occurrence of gashydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gashydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gashydrate in nature: From using electrical resistivity and acoustic logs to identify gashydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gashydrate reservoirs and the distribution and concentration of gashydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gashydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gashydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP LegII effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.
NASA Astrophysics Data System (ADS)
Hickman, A.
2004-12-01
The Archean Biosphere Drilling Project (ABDP) is a collaborative international research project conducting systematic (bio)geochemical investigations to improve our understanding of the biosphere of the early Earth. The Pilbara Craton of Western Australia, which includes exceptionally well preserved 3.52 to 2.70 Ga sedimentary sequences, was selected for an innovative sampling program commencing in 2003. To avoid near-surface alteration and contamination effects, sampling was by diamond drilling to depths of between 150 and 300 m, and was located at sites where the target lithologies were least deformed and had lowest metamorphic grade (below 300°C). The first of five successful drilling sites (Jasper Deposit) targeted red, white and black chert in the 3.46 Ga Marble Bar Chert Member. This chert marks the top of a thick mafic-felsic volcanic cycle, the third of four such cycles formed by mantle plumes between 3.52 and 3.43 Ga. The geological setting was a volcanic plateau founded on 3.72 to 3.60 Ga sialic crust (isotopic evidence). The second hole (Salgash) was sited on the basal section of the fourth cycle, and sampled sulfidic (Cu-Zn-Fe), carbon-rich shale and sandstone units separated by flows of peridotite. The third hole (Eastern Creek) was sited on the margin of a moderately deep-water rift basin, the 2.95 to 2.91 Ga Mosquito Creek Basin. This is dominated by turbidites, but the sandstones and carbon-rich shales intersected at the drilling site were deposited in shallower water. The fourth and fifth holes, located 300 km apart, sampled 2.77 to 2.76 Ga continental formations of the Fortescue Group; both holes included black shales.
Lane, Michael
2013-06-28
Preliminary locations for intermediate depth temperature gradient holes and/or resource confirmation wells based on compilation of geological, geophysical and geochemical data prior to carrying out the DOE-funded reflection seismic survey.
Swezey, Christopher S.; Seefelt, Ellen L.; Parker, Mercer
2018-03-09
Fort Pulaski National Monument is located on Cockspur Island in Chatham County, Georgia, within the Atlantic Coastal Plain province. The island lies near the mouth of the Savannah River, and consists of small mounds (hummocks), salt marshes, and sediment dredged from the river. A 1,017-foot (ft) (310-meter [m])-deep core drilled at Cockspur Island in 2010 by the U.S. Geological Survey revealed several sedimentary units ranging in age from 43 million years old to present. Sand and mud are present at drilling depths from 0 to 182 ft (56 m), limestone is present at depths from 182 ft (56 m) to 965 ft (295 m), and glauconitic sand is present at depths from 965 ft (295 m) to 1,017 ft (310 m). The limestone and the water within the limestone are referred to collectively as the Floridan aquifer system, which is the primary source of drinking water for the City of Savannah and surrounding communities. In addition to details of the subsurface geology, this fact sheet identifies the following geologic materials used in the construction of Fort Pulaski: (1) granite, (2) bricks, (3) sandstone, and (4) lime mud with oyster shells.
Soil properties affecting wheat yields following drilling-fluid application.
Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D
2005-01-01
Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.
Drill hole data for coal beds in the Powder River Basin, Montana and Wyoming
Haacke, Jon E.; Scott, David C.
2013-01-01
This report by the U.S. Geological Survey (USGS) of the Powder River Basin (PRB) of Montana and Wyoming is part of the U.S. Coal Resources and Reserves Assessment Project. Essential to that project was the creation of a comprehensive drill hole database that was used for coal bed correlation and for coal resource and reserve assessments in the PRB. This drill hole database was assembled using data from the USGS National Coal Resources Data System, several other Federal and State agencies, and selected mining companies. Additionally, USGS personnel manually entered lithologic picks into the database from geophysical logs of coalbed methane, oil, and gas wells. Of the 29,928 drill holes processed, records of 21,393 are in the public domain and are included in this report. The database contains location information, lithology, and coal bed names for each drill hole.
Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.; Dulong, Frank T.; Nichols, Douglas J.; Karlsen, Alexander W.; Bustin, R. Marc; Barker, Charles E.; Willett, Jason C.; Trippi, Michael H.
2006-01-01
In 2001, and 2002, the U.S. Geological Survey (USGS) and the Louisiana Geological Survey (LGS), through a Cooperative Research and Development Agreement (CRADA) with Devon SFS Operating, Inc. (Devon), participated in an exploratory drilling and coring program for coal-bed methane in north-central Louisiana. The USGS and LGS collected 25 coal core and cuttings samples from two coal-bed methane test wells that were drilled in west-central Caldwell Parish, Louisiana. The purpose of this report is to provide the results of the analytical program conducted on the USGS/LGS samples. The data generated from this project are summarized in various topical sections that include: 1. molecular and isotopic data from coal gas samples; 2. results of low-temperature ashing and X-ray analysis; 3. palynological data; 4. down-hole temperature data; 5. detailed core descriptions and selected core photographs; 6. coal physical and chemical analytical data; 7. coal gas desorption results; 8. methane and carbon dioxide coal sorption data; 9. coal petrographic results; and 10. geophysical logs.
A discontinuous melt sheet in the Manson impact structure
NASA Technical Reports Server (NTRS)
Izett, G. A.; Reynolds, R. L.; Rosenbaum, J. G.; Nishi, J. M.
1993-01-01
Petrologic studies of the core recovered from holes drilled in the Manson, Iowa, buried impact structure may unravel the thermal history of the crater-fill debris. We made a cursory examination of about 200 m of core recovered from the M-1 bore hole. The M-1 bore hole was the first of 12 holes drilled as part of a cooperative drilling program between the U.S. Geological Survey and the Iowa Geological Survey Bureau. The M-1 core hole is about 6 km northeast of the center of the impact structure, apparently on the flank of its central peak. We developed a working hypothesis that a 30-m-thick breccia unit within a 53-m-thick unit previously termed the 'crystalline clast breccia with glassy matrix' is part of a discontinuous melt sheet in the crater-fill impact debris. The 30-m-thick breccia unit reached temperatures sufficient to partially melt some small breccia clasts and convert the fine-grained breccia matrix into a silicate melt that cooled to a greenish-black, flinty, microcrystalline rock. The results of the investigation of this unit are presented.
Publications - GMC 429 | Alaska Division of Geological & Geophysical
DGGS GMC 429 Publication Details Title: Quantitative Fluorescence Technology - Dual Wavelength (QFT2 Bibliographic Reference Canrig Drilling Technology Ltd., 2014, Quantitative Fluorescence Technology - Dual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trexler, D.T.; Flynn, T.; Koenig, B.A.
1982-01-01
Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, andmore » temperature gradient drilling.« less
Multi-Sensory Exercises: An Approach to Communicative Practice. 1975-1979.
ERIC Educational Resources Information Center
Kalivoda, Theodore B.
A reprint of a 1975 article on multi-sensory exercises for communicative second language learning is presented. The article begins by noting that the use of drills as a language learning and practice technique had been lost in the trend toward communicative language teaching, but that drills can provide a means of gaining functional control of…
1978-08-01
12°±30’ 1180±2° OPTIONAL .0005 IN./IN. BACK TAPER 015 RAD LIPS TO BE WITHIN .002 OF TRUE ANGULAR POSITION NOTES: 1. LAND WIDTH: 28% ± .005... horoscope and dye-penetrant requirements. 79 PHASE 1 PHASE II PHASE III PHASE IV CUTTING DRILLING MACHINING NONDESTRUCTIVE EVALUATION METHOD MATERIAL
Collins, Donley S.
1983-01-01
A preliminary core study from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming, revealed that the upper portion of the core had been baked by a fire confined to the underlying Monarch coal bed. The baked (clinkered) sediment above the Monarch coal bed was determined to have higher point-load strength values (greater than 2 MPa) than the sediment under the burned coal
The Isotope Geochemistry of Abyssal Peridotites and Related Rocks
1993-06-01
object of several cruises, including a combined geophysics and petrology cruise (R/V Robert Conrad 27-09: Dick, et al., 1991) and an ocean drilling ...al. (1991) Proceed- ings of the Ocean Drilling Program, Scientific Results Vol. 118. Snow, J., Hart, S.R. and Dick, H.J.B. (1991) "Os isotopic...the geology, petrology , and geochemistry of mantle rocks, as well as their physical and acoustic properties. The first indications that the oceanic
JPRS Report, Science & Technology Europe.
1988-07-01
up the order gap that is foreseeable for the next few years. An MBB manager believes himself already able to gauge the consequences if Daimler...connection with financing, one problem is that the major part of the capital expenditures—namely those for the drillings , which can total as much as 50...percent or more of the total costs—are capital expenditures that carry a geological risk. The costs for a single drilling that is to be developed
Scientific drilling projects in ancient lakes: Integrating geological and biological histories
NASA Astrophysics Data System (ADS)
Wilke, Thomas; Wagner, Bernd; Van Bocxlaer, Bert; Albrecht, Christian; Ariztegui, Daniel; Delicado, Diana; Francke, Alexander; Harzhauser, Mathias; Hauffe, Torsten; Holtvoeth, Jens; Just, Janna; Leng, Melanie J.; Levkov, Zlatko; Penkman, Kirsty; Sadori, Laura; Skinner, Alister; Stelbrink, Björn; Vogel, Hendrik; Wesselingh, Frank; Wonik, Thomas
2016-08-01
Sedimentary sequences in ancient or long-lived lakes can reach several thousands of meters in thickness and often provide an unrivalled perspective of the lake's regional climatic, environmental, and biological history. Over the last few years, deep-drilling projects in ancient lakes became increasingly multi- and interdisciplinary, as, among others, seismological, sedimentological, biogeochemical, climatic, environmental, paleontological, and evolutionary information can be obtained from sediment cores. However, these multi- and interdisciplinary projects pose several challenges. The scientists involved typically approach problems from different scientific perspectives and backgrounds, and setting up the program requires clear communication and the alignment of interests. One of the most challenging tasks, besides the actual drilling operation, is to link diverse datasets with varying resolution, data quality, and age uncertainties to answer interdisciplinary questions synthetically and coherently. These problems are especially relevant when secondary data, i.e., datasets obtained independently of the drilling operation, are incorporated in analyses. Nonetheless, the inclusion of secondary information, such as isotopic data from fossils found in outcrops or genetic data from extant species, may help to achieve synthetic answers. Recent technological and methodological advances in paleolimnology are likely to increase the possibilities of integrating secondary information. Some of the new approaches have started to revolutionize scientific drilling in ancient lakes, but at the same time, they also add a new layer of complexity to the generation and analysis of sediment-core data. The enhanced opportunities presented by new scientific approaches to study the paleolimnological history of these lakes, therefore, come at the expense of higher logistic, communication, and analytical efforts. Here we review types of data that can be obtained in ancient lake drilling projects and the analytical approaches that can be applied to empirically and statistically link diverse datasets to create an integrative perspective on geological and biological data. In doing so, we highlight strengths and potential weaknesses of new methods and analyses, and provide recommendations for future interdisciplinary deep-drilling projects.
NASA Astrophysics Data System (ADS)
Goodge, J. W.; Severinghaus, J. P.
2014-12-01
The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.
Publications - IC 49 | Alaska Division of Geological & Geophysical Surveys
Survey; Antimony; Arsenic; Base Metals; Bismuth; Chromium; Coal; Copper; Diamonds; Drilling; Economic Sampling; Stibnite; Sulfides; Tantalum; Tin; True North; Ultramafic; Volcanogenic Massive Sulfide; Wulik
How to Access and Sample the Deep Subsurface of Mars
NASA Technical Reports Server (NTRS)
Briggs, G.; Blacic, J.; Dreesen, D.; Mockler, T.
2000-01-01
We are developing a technology roadmap to support a series of Mars lander missions aimed at successively deeper and more comprehensive explorations of the Martian subsurface. The proposed mission sequence is outlined. Key to this approach is development of a drilling and sampling technology robust and flexible enough to successfully penetrate the presently unknown subsurface geology and structure. Martian environmental conditions, mission constraints of power and mass and a requirement for a high degree of automation all limit applicability of many proven terrestrial drilling technologies. Planetary protection and bioscience objectives further complicate selection of candidate systems. Nevertheless, recent advances in drilling technologies for the oil & gas, mining, underground utility and other specialty drilling industries convinces us that it will be possible to meet science and operational objectives of Mars subsurface exploration.
HYDROTHERMAL MINERALOGY OF RESEARCH DRILL HOLE Y-3, YELLOWSTONE NATIONAL PARK, WYOMING.
Bargar, Keith E.; Beeson, Melvin H.
1984-01-01
The approximate paragenetic sequence of hydrothermal minerals in the Y-3 U. S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, is: hydrothermal chalcedony, hematite, pyrite, quartz, clay minerals (smectite and mixed-layer illite-smectite), calcite, chlorite, fluorite, pyrite, quartz, zeolite minerals (analcime, dachiardite, laumontite, stilbite, and yugawaralite), and clay minerals (smectite and mixed-layer illite-smectite). A few hydrothermal minerals that were identified in drill core Y-3 (lepidolite, aegirine, pectolite, and truscottite) are rarely found in modern geothermal areas. The alteration minerals occur primarily as vug and fracture fillings that were deposited from cooling thermal water. Refs.
NASA Astrophysics Data System (ADS)
Lofi, Johanna; Smith, Dave; Delahunty, Chris; Le Ber, Erwan; Mellet, Claire; Brun, Laurent; Henry, Gilles; Paris, Jehanne
2017-04-01
Expedition 364 was a joint IODP/ICDP mission specific platform expedition to explore the Chicxulub impact crater buried below the Yucatán continental shelf. In April and May 2016, our Expedition drilled a single borehole at Site M0077A into the crater's peak ring. It allowed recovering 303 excellent quality cores from 505.7 to 1334.7 meters below sea floor and acquiring more than 5.8 km of high resolution open hole logs. Downhole logs are rapidly collected, continuous with depth, and measured in situ; these data are classically interpreted in terms of stratigraphy, lithology, porosity, fluid content, geochemical composition and structure of the formation drilled. Downhole logs also allow assessing borehole quality (eg. shape and trajectory), and can provide assistance for decision support during drilling operations. In this work, Expedition 364 downhole logs are used to improve our understanding of the drilling/coring operation history. Differentiating between natural geological features and borehole artifacts are also critical for data quality assessment. The set of downhole geophysical tools used during Expedition 364 was constrained by the scientific objectives, drilling/coring technique, hole conditions and temperature at the drill site. Wireline logging data were acquired with slimline tools in three logging phases at intervals 0-503, 506-699 and 700-1334 mbsf. Logs were recorded either with standalone logging tools or, for the first time in IODP, with stackable slimline tools. Log data included total gamma radiation, sonic velocity, acoustic and optical borehole images, resistivity, conductivity, magnetic susceptibility, caliper and borehole fluid parameters. The majority of measurements were performed in open borehole conditions. During the drilling operations some problems were encountered directly linked to the geology of the drilled formation. For example, two zones of mud circulation losses correlate in depth with the presence of karst cavities or open faults, as evidenced from borehole wall images. Both form conduits probably open at a large scale as suggested by associated anomalies in the borehole fluid temperature profiles. When coring the basement, pieces of metal trapped outside the drill bit apparently led to an increase of the borehole tilt as well as to an enlargement of the hole, although this later remained sub-circular. In the post impact carbonates, 6-7 m long apparent cyclic oscillations in the magnetic field coupled to a spiral shape trajectory of the same wavelength suggest drilling induced artifacts and formation re-magnetization. Acknowledgements: Expedition 364 was funded by IODP with co-funding from ICDP and implemented by ECORD, with contributions and logistical support from the Yucatán state government and Universidad Nacional Autónoma de México. Drilling Services were provided by DOSECC Exploration Services. The downhole logging program was coordinated by EPC, as part of ESO. Expedition 364 Scientists: S. Gulick, J.V. Morgan, E. Chenot, G. Christeson, P. Claeys, C. Cockell, M.J. L. Coolen, L. Ferrière, C. Gebhardt, K. Goto, H. Jones, D.A. Kring, J. Lofi, X. Long, C. Lowery, C. Mellett, R. Ocampo-Torres, L. Perez-Cruz, A. Pickersgill, M. Poelchau, A. Rae, C. Rasmussen, M. Rebolledo-Vieyra, U. Riller, H. Sato, J. Smit, S. Tikoo, N. Tomioka, M. Whalen, A. Wittmann, J. Urrutia-Fucugauchi, K.E. Yamaguchi, W. Zylberman.
NASA Astrophysics Data System (ADS)
Klump, J. F.; Huber, R.; Robertson, J.; Cox, S. J. D.; Woodcock, R.
2014-12-01
Despite the recent explosion of quantitative geological data, geology remains a fundamentally qualitative science. Numerical data only constitute a certain part of data collection in the geosciences. In many cases, geological observations are compiled as text into reports and annotations on drill cores, thin sections or drawings of outcrops. The observations are classified into concepts such as lithology, stratigraphy, geological structure, etc. These descriptions are semantically rich and are generally supported by more quantitative observations using geochemical analyses, XRD, hyperspectral scanning, etc, but the goal is geological semantics. In practice it has been difficult to bring the different observations together due to differing perception or granularity of classification in human observation, or the partial observation of only some characteristics using quantitative sensors. In the past years many geological classification schemas have been transferred into ontologies and vocabularies, formalized using RDF and OWL, and published through SPARQL endpoints. Several lithological ontologies were compiled by stratigraphy.net and published through a SPARQL endpoint. This work is complemented by the development of a Python API to integrate this vocabulary into Python-based text mining applications. The applications for the lithological vocabulary and Python API are automated semantic tagging of geochemical data and descriptions of drill cores, machine learning of geochemical compositions that are diagnostic for lithological classifications, and text mining for lithological concepts in reports and geological literature. This combination of applications can be used to identify anomalies in databases, where composition and lithological classification do not match. It can also be used to identify lithological concepts in the literature and infer quantitative values. The resulting semantic tagging opens new possibilities for linking these diverse sources of data.
Deep drilling in the Chesapeake Bay impact structure - An overview
Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.
2009-01-01
The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a granite megablock (275 m); and sediment blocks and boulders, polymict, sediment-clast-dominated sedimentary breccias, and a thin upper section of stratified sediments (652 m). The cored postimpact sediments provide insight into the effects of a large continental-margin impact on subsequent coastal-plain sedimentation. This volume contains the first results of multidisciplinary studies of the Eyreville cores and related topics. The volume is divided into these sections: geologic column; borehole geophysical studies; regional geophysical studies; crystalline rocks, impactites, and impact models; sedimentary breccias; postimpact sediments; hydrologic and geothermal studies; and microbiologic studies. ?? 2009 The Geological Society of America.
Cressman, Earle Rupert; Noger, Martin C.
1981-01-01
In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs. Paleontologists and stratigraphers of the U.S. Geological Survey cooperated closely with the program. Paleontologic studies were concentrated in the Ordovician of central Kentucky, the Pennsylvanian of eastern and western Kentucky, and the Mesozoic and Cenozoic of westernmost Kentucky. In addition to financial support, the Kentucky Geological Survey provided economic data, stratigraphic support, and drillhole records to the field offices. Geologists of the State Survey made subsurface structural interpretations, constructed bedrock topography maps, and mapped several quadrangles. Some of the problems encountered were the inadequacy of much of the existing stratigraphic nomenclature, the uneven quality of some of the mapping, and the effects of relative isolation on the professional development of some of the geologists. The program cost a total of $20,927,500. In terms of 1960 dollars, it cost $16,035,000; this compares with an original estimate of $12,000,000. Although it is difficult to place a monetary value on the geologic mapping, the program has contributed to newly discovered mineral wealth, jobs, and money saved by government and industry. The maps are used widely in the exploration for coal, oil and gas, fluorspar, limestone, and clay. The maps are also used in planning highways and locations of dams, in evaluating foundation and excavation conditions, in preparing environmental impact statements, and in land-use planning.
New Proposed Drilling at Surtsey Volcano, Iceland
NASA Astrophysics Data System (ADS)
Jackson, Marie D.
2014-12-01
Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.
Publications - GMC 403 | Alaska Division of Geological & Geophysical
mining district, Alaska Authors: Full Metal Minerals, and Calista Corporation Publication Date: Aug 2012 Reference Full Metal Minerals, and Calista Corporation, 2012, Borehole inventory, assay results, drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, M.A.; Osorio, M.; Sharp, A.
LASMO started exploration in the Espinal Block within the Upper Magdalena Valley of Colombia in 1987. Since then six exploration wells have been drilled within the block which have resulted in four New Field Wildcat successes. Two of these successes have been in subthrust configurations. This presentation shall describe the exploration and appraisal techniques used to delimit the Venganza Field which was the first subthrust field discovery made in Colombia. The first stages of our exploration for the subthrust trap were conventional seismic surveying, and structural modelling using the excellent geological outcrop data. These led to the formulation of themore » Venganza prospect which comprised tilted Late Cretaceous Guadalupe sandstones overthrusted by stratigraphically older Villeta shales. The Venganza Prospect was drilled in 1991 and encountered the reservoir as expected directly beneath the thrust plane, and produced oil at 5800 barrels/day on test. Subsequent to the Venganza-1 discovery, further seismic data were acquired and processed using pre-stack depth migration. These new data {open_quotes}verified{close_quotes} the Venganza geological model, and formed the basis for appraisal drilling. The Venganza-2 appraisal well, drilled 4 km to the north of the successful exploration well, was dry and indicated that the subthrust trap configuration was much more subtle than first anticipated. The presentation shall then demonstrate the evolution of our understanding of the subthrust trap configuration and the evolution of our search techniques for it.« less
Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada
Whitfield, M.S.; Thordarson, William; Eshom, E.P.
1984-01-01
Data are presented on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the U.S. Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1,219 meters. Depth to water below land surface was 519 meters or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. (USGS)
Eppinger, Robert G.; Kelley, Karen D.; Fey, David L.; Giles, Stuart A.; Minsley, Burke J.; Smith, Steven M.
2010-01-01
From 2007 through 2010, scientists in the U.S. Geological Survey (USGS) have been conducting exploration-oriented geochemical and geophysical studies in the region surrounding the giant Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The Cretaceous Pebble deposit is concealed under tundra, glacial till, and Tertiary cover rocks, and is undisturbed except for numerous exploration drill holes. These USGS studies are part of a nation-wide research project on evaluating and detecting concealed mineral resources. This report focuses on exploration geochemistry and comprises illustrations and associated notes that were presented as a case study in a workshop on this topic. The workshop, organized by L.G. Closs and R. Glanzman, is called 'Geochemistry in Mineral Exploration and Development,' presented by the Society of Economic Geologists at a technical conference entitled 'The Challenge of Finding New Mineral Resources: Global Metallogeny, Integrative Exploration and New Discoveries,' held at Keystone, Colorado, October 2-5, 2010.
Geological notes, Boory field, Cameron County, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, W.L.
1981-12-01
The gas fields of the Lower Miocene sands of Cameron County have gained enough maturity in their production experience to afford a consideration of their performance and characteristics. The Holy Beach field in the Laguna Madre has produced over 100 billion cu ft of gas, and others have produced over 25 billion; several are smaller. The characteristics of these fields include the modest cost of drilling in the range of pays 3000 ft to 7500 ft depth, and the small area of production, with several pay sands, usually a few feet thick but being very porous (over 30%) and permeablemore » (streaks of over 800 md). A fairly dry gas is produced with normal pressures. The Boory field may be singled out as a small but interesting field in this trend. It was found in 1973 and produced 4-1/2 billion cu ft of gas from a 310-acre area with 8 pay sands in depths 4750 to 6200 ft depth. The field was abandoned in 1980.« less
Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data
Faulds, James E.
2013-12-31
Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.
Precambrian basement geology of North and South Dakota.
Klasner, J.S.; King, E.R.
1986-01-01
Combined analysis of drill-hole, gravity and magnetic data indicates that the Precambrian rocks in the basement of the Dakotas may be divided into a series of lithotectonic terrains. On the basis of an analysis of geological and geophysical data in the Dakotas and from the surrounding states and Canada, it is shown how the exposed Precambrian rocks of the adjacent shield areas project into the study area. Brief comments are made on the tectonic implications of this study. Geological and geophysical characteristics of 11 terrains are tabulated. -P.Br.
State-of-the-art in coalbed methane drilling fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltoiu, L.V.; Warren, B.K.; Natras, T.A.
2008-09-15
The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impactmore » on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.« less
Estimation of bioavailability of metals from drilling mud barite.
Neff, Jerry M
2008-04-01
Drilling mud and associated drill cuttings are the largest volume wastes associated with drilling of oil and gas wells and often are discharged to the ocean from offshore drilling platforms. Barite (BaSO4) often is added as a weighting agent to drilling muds to counteract pressure in the geologic formations being drilled, preventing a blowout. Some commercial drilling mud barites contain elevated (compared to marine sediments) concentrations of several metals. The metals, if bioavailable, may harm the local marine ecosystem. The bioavailable fraction of metals is the fraction that dissolves from the nearly insoluble, solid barite into seawater or sediment porewater. Barite-seawater and barite-porewater distribution coefficients (Kd) were calculated for determining the predicted environmental concentration (PEC; the bioavailable fraction) of metals from drilling mud barite in the water column and sediments, respectively. Values for Kdbarite-seawater and Kdbarite-porewater were calculated for barium, cadmium, chromium, copper, mercury, lead, and zinc in different grades of barite. Log Kdbarite-seawater values were higher (solubility was lower) for metals in the produced water plume than log Kdbarite-porewater values for metals in sediments. The most soluble metals were cadmium and zinc and the least soluble were mercury and copper. Log Kd values can be used with data on concentrations of metals in barite and of barite in the drilling mud-cuttings plume and in bottom sediments to calculate PECseawater and PECsediment.
Lecons speciales Hausa (Hausa Special Lessons).
ERIC Educational Resources Information Center
Peace Corps, Niger (Nigeria).
Teachers' instructional notes for a Hausa course designed for Peace Corps volunteer language and cultural training contains lesson translations, questions for classroom use in several tenses, stories, readings, and summaries, lists of idioms and verbs, pattern drills, and notes on classroom technique. The information is intended to accompany a set…
Publications - GMC 407 | Alaska Division of Geological & Geophysical
locations, and archive inventory for 32 near-shore marine sediment Vibracore samples, West Dock Causeway , Drilling procedures, sample descriptions, boring logs, borehole locations, and archive inventory for 32
Features of the marketing strategy of oil and gas companies in exploration drilling
NASA Astrophysics Data System (ADS)
Sharf, I.; Malanina, V.; Kamynina, L.
2014-08-01
The implementation of national and regional programs for the development of new oil and gas provinces of Eastern Siberia poses the challenge of increasing geological exploration. The current drilling service companies' market structure, as well as the strategic task of search and exploration effectiveness requires qualitatively new approaches for choosing a contractor. The proposed strategy to select a contractor based on comprehensive analysis of certain groups of industrial, financial, infrastructural criteria allows not only to optimize the costs of exploration activities, but also to minimize preventively the risks of a poor geological exploration. The authors' SWOT- analysis of the marketing strategy of "Gazprom neft" for choosing a contractor outlined the problem of imperfection of the Russian legislation in the sphere of activities of service companies in the oil and gas sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, R.B.; Trusdell, F.A.
1993-08-01
This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailedmore » geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.« less
Pierce, H.A.; Murray, J.B.
2009-01-01
The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.
Gas in the Uinta Basin, Utah - Resources in continuous accumulations
Schmoker, J.W.; Fouch, T.D.; Charpentier, R.R.
1996-01-01
Continuous-type gas plays can be envisioned as large areas within which the reservoir rock is everywhere charged with gas. As part of its 1995 National Assessment of oil and gas resources, the U.S. Geological Survey identified four continuous-type gas plays in the Uinta Basin. These occur in sandstone reservoirs of the lower Tertiary Wasatch Formation (two plays) and the underlying Upper Cretaceous Mesaverde Group (two plays). Only the play representing the eastern part of the Wasatch Formation continuous accumulation (Natural Buttes area) has been the target of appreciable drilling activity to date. The volume of undiscovered gas estimated to be recoverable from these four plays using existing technology and development practices ranges between 3.7 trillion cubic feet of gas (TCFG) (95th fractile) and 11.9 TCFG (5th fractile), and averages 7.0 TCFG. However, these are geologically based resource estimates, made without direct reference to economic viability. Economic analysis indicates that only a fraction of this assessed resource could be economically found and produced at prices less than $2.00 per thousand cubic feet of gas (MCFG), based on costs that prevailed at the beginning of 1993. Production characteristics of continuous-type gas plays vary significantly from well to well. Difficulty in identifying locations with poor production characteristics in advance of drilling contributes to the unfavorable economics of some plays. The need exists for improvements in technology and geologic understanding that increase the chances of selectively drilling the more productive locations within a continuous-type play.
Moore, R.B.; Trusdell, F.A.
1993-01-01
This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.
An Ultrasonic Compactor for Oil and Gas Exploration
NASA Astrophysics Data System (ADS)
Feeney, Andrew; Sikaneta, Sakalima; Harkness, Patrick; Lucas, Margaret
The Badger Explorer is a rig-less oil and gas exploration tool which drills into the subsea environment to collect geological data. Drill spoil is transported from the front end of the system to the rear, where the material is compacted. Motivated by the need to develop a highly efficient compaction system, an ultrasonic compactor for application with granular geological materials encountered in subsea environments is designed and fabricated as part of this study. The finite element method is used to design a compactor configuration suitable for subsea exploration, consisting of a vibrating ultrasonic horn called a resonant compactor head, which operates in a longitudinal mode at 20 kHz, driven by a Langevin piezoelectric transducer. A simplified version of the compactor is also designed, due to its ease of incorporating in a lab-based experimental rig, in order to demonstrate enhanced compaction using ultrasonics. Numerical analysis of this simplified compactor system is supported with experimental characterisation using laser Doppler vibrometry. Compaction testing is then conducted on granular geological material, showing that compaction can be enhanced through the use of an ultrasonic compactor.
NASA Astrophysics Data System (ADS)
Al-Fares, Walid
2016-06-01
The present study is aimed at characterizing the subsurface geological and tectonic structure in Deir El-Adas area, by using Vertical Electrical Sounding survey (VES) and hydrogeological investigations, in order to determine the causes of the failure for the majority of the wells drilled in the area. The survey data was treated in three different approaches including direct VES inversion, pseudo-2D method and horizontal profiling, in order to maximize the reliability of the data interpretation. The results revealed the presence of a local faulted anticline structure at the top of the Paleogene formation, underneath the basaltic outcrops where Deir El-Adas village is situated. The appearance of this subsurface anticline structure has complicated the local hydro-geological situation, and most likely led to limitation of the groundwater recharge in the area. Moreover, the performed piezometric and discharge maps indicated the presence of a notable groundwater watershed, in addition to feeble water productivity of the wells drilled adjacent to Deir El-Adas, mostly related to the subsurface geological and tectonic settings in the area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattler, A.R.
1996-06-01
Six boreholes were drilled during the geologic characterization and diagnostics of the Weeks Island sinkhole that is over the two-tiered salt mine which was converted for oil storage by the U.S. Strategic Petroleum Reserve. These holes were drilled to provide for geologic characterization of the Weeks Island Salt Dome and its overburden in the immediate vicinity of the sinkhole (mainly through logs and core); to establish a crosswell configuration for seismic tomography; to establish locations for hydrocarbon detection and tracer injection; and to provide direct observations of sinkhole geometry and material properties. Specific objectives of the logging program were to:more » (1) identify the top of and the physical state of the salt dome; (2) identify the water table; (3) obtain a relative salinity profile in the aquifer within the alluvium, which ranges from the water table directly to the top of the Weeks Island salt dome; and (4) identify a reflecting horizon seen on seismic profiles over this salt dome. Natural gamma, neutron, density, sonic, resistivity and caliper logs were run.« less
Real Time Seismic Prediction while Drilling
NASA Astrophysics Data System (ADS)
Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.
2009-12-01
Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling operation. First experiments indicate that parts of the ISIS system can be used for smaller diameters e.g. in vertical drilling. In unconsolidated rocks S-waves are strongly attenuated. For the Sonic Softground Probing (SSP) system P-waves are used. A vibration-seismic correlation positioning system was developed. One transmitter and several receiver are placed within the cutting wheel. During drilling, a specially coded transmitter signal is sent directly from the cutterhead via the face support medium in the direction of tunneling. With this geometry, boulders can be detected 50 m ahead of the working face. Fracture zones and other discontinuities can be localized, and the physical properties of the upcoming rocks can be partly determined nearly in real time, while using sound velocity and attenuation as indicators. All evaluation is based on real time 3D velocity models which are determined during the drilling operation. Different technologies allow a seismic prediction while drilling in various rock types and geologies. Seismic prediction during vertical drilling will significantly profit from the lesson learned from state of the art tunneling systems.
Chemical Effect on Wellbore Instability of Nahr Umr Shale
Nie, Zhen
2013-01-01
Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable. PMID:24282391
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacific Operators Offshore, Inc.
The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a seriesmore » of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.« less
Chemical effect on wellbore instability of Nahr Umr Shale.
Yu, Baohua; Yan, Chuanliang; Nie, Zhen
2013-01-01
Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable.
NASA Astrophysics Data System (ADS)
Cronkite-Ratcliff, C.; Phelps, G. A.; Boucher, A.
2011-12-01
In many geologic settings, the pathways of groundwater flow are controlled by geologic heterogeneities which have complex geometries. Models of these geologic heterogeneities, and consequently, their effects on the simulated pathways of groundwater flow, are characterized by uncertainty. Multiple-point geostatistics, which uses a training image to represent complex geometric descriptions of geologic heterogeneity, provides a stochastic approach to the analysis of geologic uncertainty. Incorporating multiple-point geostatistics into numerical models provides a way to extend this analysis to the effects of geologic uncertainty on the results of flow simulations. We present two case studies to demonstrate the application of multiple-point geostatistics to numerical flow simulation in complex geologic settings with both static and dynamic conditioning data. Both cases involve the development of a training image from a complex geometric description of the geologic environment. Geologic heterogeneity is modeled stochastically by generating multiple equally-probable realizations, all consistent with the training image. Numerical flow simulation for each stochastic realization provides the basis for analyzing the effects of geologic uncertainty on simulated hydraulic response. The first case study is a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. The SNESIM algorithm is used to stochastically model geologic heterogeneity conditioned to the mapped surface geology as well as vertical drill-hole data. Numerical simulation of groundwater flow and contaminant transport through geologic models produces a distribution of hydraulic responses and contaminant concentration results. From this distribution of results, the probability of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary. The second case study considers a characteristic lava-flow aquifer system in Pahute Mesa, Nevada. A 3D training image is developed by using object-based simulation of parametric shapes to represent the key morphologic features of rhyolite lava flows embedded within ash-flow tuffs. In addition to vertical drill-hole data, transient pressure head data from aquifer tests can be used to constrain the stochastic model outcomes. The use of both static and dynamic conditioning data allows the identification of potential geologic structures that control hydraulic response. These case studies demonstrate the flexibility of the multiple-point geostatistics approach for considering multiple types of data and for developing sophisticated models of geologic heterogeneities that can be incorporated into numerical flow simulations.
DOLUS LAKES ROADLESS AREA, MONTANA.
Elliott, James E.; Avery, Dale W.
1984-01-01
A mineral survey of the Dolus Lakes Roadless Area in southwestern Montana, was conducted. Much of the roadless area has probable and substantiated potential for resources of gold, silver, molybdenum, and tungsten. The nature of the geologic terrain indicates that there is little promise for the occurrence of coal, oil, gas, or geothermal resources. Detailed geologic and geochemical studies are suggested to delineate exploration targets that could be tested by drilling.
Quantitative assessment of mineral resources with an application to petroleum geology
Harff, Jan; Davis, J.C.; Olea, R.A.
1992-01-01
The probability of occurrence of natural resources, such as petroleum deposits, can be assessed by a combination of multivariate statistical and geostatistical techniques. The area of study is partitioned into regions that are as homogeneous as possible internally while simultaneously as distinct as possible. Fisher's discriminant criterion is used to select geological variables that best distinguish productive from nonproductive localities, based on a sample of previously drilled exploratory wells. On the basis of these geological variables, each wildcat well is assigned to the production class (dry or producer in the two-class case) for which the Mahalanobis' distance from the observation to the class centroid is a minimum. Universal kriging is used to interpolate values of the Mahalanobis' distances to all locations not yet drilled. The probability that an undrilled locality belongs to the productive class can be found, using the kriging estimation variances to assess the probability of misclassification. Finally, Bayes' relationship can be used to determine the probability that an undrilled location will be a discovery, regardless of the production class in which it is placed. The method is illustrated with a study of oil prospects in the Lansing/Kansas City interval of western Kansas, using geological variables derived from well logs. ?? 1992 Oxford University Press.
Wellbore stability analysis and its application in the Fergana basin, central Asia
NASA Astrophysics Data System (ADS)
Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han
2014-02-01
Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.
Geology of the surficial aquifer system, Dade County, Florida; lithologic logs
Causaras, C.R.
1986-01-01
The geologic framework of the surficial aquifer system in Dade County, Florida, was investigated as part of a longterm study by the USGS in cooperation with the South Florida Water Management District, to describe the geology, hydrologic characteristics, and groundwater quality of the surficial aquifer system. Thirty-three test wells were drilled completely through the surficial aquifer system and into the underlying, relatively impermeable units of the Tamiami and Hawthorn Formations. Detailed lithologic logs were made from microscopic examination of rock cuttings and cores obtained from these wells. The logs were used to prepare geologic sections that show the lithologic variations, thickness of the lithologic units, and different geologic formations that comprise the aquifers system. (Author 's abstract)
Experimental Study on Longmaxi Shale Breaking Mechanism with Micro-PDC Bit
NASA Astrophysics Data System (ADS)
Wang, Teng; Xiao, Xiaohua; Zhu, Haiyan; Zhao, Jingying; Li, Yuheng; Lu, Ming
2017-10-01
China has abundant shale gas resource, but its geological conditions are complicated. This work sought to find the shale breaking mechanism with the polycrystalline diamond compact (PDC) bit when drilling the shale that is rich in stratification. Therefore, a laboratory-scale drilling device based on a drilling machine is developed. The influences of Longmaxi shale stratification on drilling parameters in the drilling process with micro-PDC bit are investigated. Six groups of drilling experiments with six inclination angles ( β = 0°, 15°, 30°, 45°, 60° and 90°), total thirty-six groups, are carried out. The weight on bit reaches the maximum value at β = 30° and reaches the minimum value at β = 0°. The biggest torque value is at β = 30°, and the smaller torque values are at β = 15°, β = 45° and β = 60°. When the inclination angle is between 30° and 60°, the shale fragmentation volume is larger. The inclination angle β = 0° is beneficial, and β = 15° and β = 60° are detrimental to controlling the drilling direction in the Longmaxi shale gas formation.
Horizontal technology helps spark Louisiana`s Austin chalk trend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koen, A.D.
1996-04-29
A handful of companies paced by some of the most active operators in the US are pressing the limits of horizontal technology to ramp up Cretaceous Austin chalk exploration and development (E and D) across Louisiana. Companies find applications in Louisiana for lessons learned drilling horizontal wells to produce chalk intervals in Texas in Giddings, Pearsall, and Brookeland fields. Continuing advances in horizontal well technology are helping operators deal with deeper, hotter reservoirs in more complex geological settings that typify the chalk in Louisiana. Better horizontal drilling, completion, formation evaluation, and stimulation techniques have enabled operators to produce oil andmore » gas from formations previously thought to be uneconomical. Most of the improved capabilities stem from better horizontal tools. Horizontal drilling breakthroughs include dual powered mud motors and retrievable whipstocks, key links in the ability to drill wells with more than one horizontal lateral. Better geosteering tools have enabled operators to maintain horizontal wellbores in desired intervals by signaling bit positions downhole while drilling. This paper reviews the technology and provides a historical perspective on the various drilling programs which have been completed in this trend. It also makes predictions on future drilling successes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrave, J.A.; Goff, F.; Shevenell, L.
1989-02-01
This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.
Merrill, Matthew D.; Covault, Jacob A.; Craddock, William H.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2012-01-01
The 2007 Energy Independence and Security Act (Public Law 110-140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used for the national CO2 assessment is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rock within the Hanna, Laramie, and Shirley Basins of Wyoming. It focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included herein will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data in a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.
Geologic map and structure sections of the Clear Lake Volcanics, Northern California
Hearn, B.C.; Donnelly-Nolan, J. M.; Goff, F.E.
1995-01-01
The Clear Lake Volcanics are located in the California Coast Ranges about 150 km north of San Francisco. This Quaternary volcanic field has erupted intermittently since 2.1 million years ago. This volcanic field is considered a high-threat volcanic system (Ewert and others, 2005) The adjacent Geysers geothermal field, largest power-producing geothermal field in the world, is powered by the magmatic heat source for the volcanic field. This report consists of three sheets that include the geologic map, one table, two figures, three cross sections, description of map units, charts of standard and diagrammatic correlation of map units, and references. This map supersedes U.S. Geological Survey Open-File Report 76-751. Descriptions of map units are grouped by geographic area. Summaries of the evolution, chemistry, structure, and tectonic setting of the Clear Lake Volcanics are given in Hearn and others (1981) and Donnelly-Nolan and others (1981). The geology of parts of the area underlain by the Cache Formation is based on mapping by Rymer (1981); the geology of parts of the areas underlain by the Sonoma Volcanics, Franciscan assemblage, and Great Valley sequence is based on mapping by McLaughlin (1978). Volcanic compositional map units are basalt, basaltic andesite, andesite, dacite, rhyodacite, and rhyolite, based on SiO2 content. Included in this report are maps showing the distribution of volcanic rocks through time and a chart showing erupted volumes of different lava types through time. A table gives petrographic data for each map unit by mineral type, abundance, and size. Most ages are potassium-argon (K/Ar) ages determined for whole-rock samples and mineral separates by Donnelly-Nolan and others (1981), unless otherwise noted. A few ages are carbon-14 ages or were estimated from geologic relationships. Magnetic polarities are from Mankinen and others (1978; 1981) or were determined in the field by B.C. Hearn, Jr., using a portable fluxgate magnetometer. Thickness for most units is estimated from topographic relief except where drill-hole data were available.
Vega is first offshore development for Montedison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-10-01
Montedison's Vega field, 15 miles off the southern tip of Sicily, has recoverable oil reserves of 400 million bbl. This is Montedison's first offshore development venture, although the operator has considerable onshore experience. It will be followed by a second field, the smaller Mila floating production system, also off Sicily. One platform will be placed on a template installed in 1983 with up to 18 pre-drilled wells in water depths of 480 ft. The field may hold up to 1 billion bbl of 16/sup 0/ crude, but geology is complex and heavily fractured. The template has 30 available drilling slots,more » and water injection is being considered. The Vega discovery well was drilled in 1980, with 5000 b/d tested from 1000-ft oil column in Strep-penosa shales. Subsequently five wells were drilled by the Glomar Biscay I semi. These wells were drilled to a depth of just over 8000 ft with a total deviation of 60/sup 0/. The template is the first in the Mediterranean.« less
Monroe, Utah, Hydrothermal System: Results from Drilling of Test Wells MC1 and MC2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, D.S.; Harrison, Roger
1978-10-01
Following detailed geological (Parry et al., 1976; Miller, 1976) and geophysical (Mase, Chapman, and Ward, 1978; Kilty, Mase, and Chapman, 1978) studies of the Monroe, Utah hydrothermal system, a program of drilling two intermediate depth test wells was undertaken. The objectives of the test well drilling were three-fold: (1) to obtain structural information bearing on the poorly known dip of the Sevier Fault, (2) to obtain temperature information below the shallow depths (approximately 300 ft.) sampled in the first phase of exploration, and (3) to provide cased wells which could act as monitor wells during the production phase of themore » project. The test well drilling was seen to be vital to the selection of a site for a production well. This report describes the results from the drilling of the two test wells, designated MC1 and MC2, and offers interpretation of the hydrothermal system which may be used as a basis for selecting production wells.« less
43 CFR 3262.13 - May BLM require me to follow a well spacing program?
Code of Federal Regulations, 2011 CFR
2011-10-01
... RESOURCE LEASING Conducting Drilling Operations § 3262.13 May BLM require me to follow a well spacing... spacing: (a) Hydrologic, geologic, and reservoir characteristics of the field, minimizing well...
Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
David O. Ogbe; Shirish L. Patil; Doug Reynolds
2005-06-30
The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out themore » pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.« less
Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey
Poppe, Lawrence J.; Poppe, Lawrence J.
1981-01-01
In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.
Korean Basic Course. Volume Two.
ERIC Educational Resources Information Center
Park, B. Nam
Volume Two of the Korean Basic Course contains Units 29 through 47. Most units consist of (1) a basic dialog, (2) notes on the basic dialog, (3) additional vocabulary and phrases, (4) grammar notes, (5) drills, (6) a supplementary dialog for comprehension, (7) a narrative for comprehension and reading, and (8) exercises. Two of the last units…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sippel, M.; Luff, K.D.; Hendricks, M.L.
1998-07-01
This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout themore » cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.« less
Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.
2012-01-01
One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.
NASA Astrophysics Data System (ADS)
Hahne, B.; Thomas, R.
2012-04-01
The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport in different (fractured) media. gebo is funded by the Ministry of Science and Culture of Lower Saxony, Germany and the industry partner Baker Hughes, Celle, Germany.
Prospects of oil field development in Tomsk region
NASA Astrophysics Data System (ADS)
Il'ina, M. N.; Il'ina, G. F.
2017-12-01
The article describes the geologic structure of the formation located not far from Strezhevoy, Tomsk Oblast. The formation has been poorly studied by seismic methods. The reserves categories C1 and C2 as well as hydrocarbon potential are presented. 4 exploratory and 39 production wells are designed to be drilled depending on geologic knowledge and formation conditions. The article deals with the investment plan including development, oil export expenditures and implementing cost calculation.
Bikini scientific resurvey. Volume II. Report of the technical director. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1947-12-01
Contents: Island and Reef Geology; Submarine Geology; Drilling Operations; Radiobiology Studies; Reef and Lagoon Fishes; Pelagic Fishes; Taxonomy and Teratology of Fishes; Invertebrate Embryology; Vertebrate Embryology; Reef and Lagoon Algae; Chemical Effects of Organisms Upon Sea Water; The Insect Population; Marine Invertebrates; Land Animals; Plankton Studies; Counter-Room Activities; Radiochemical Analyses; Soils Chemistry; Low-Level Radiation Studies; Army Engineering Studies; Aerological Data; Bacteriological Investigations; Radiological Safety; Radiological Health; Technical Director's Summary.
Publications - GMC 306 | Alaska Division of Geological & Geophysical
the Old Dog Prospect of Treasure Creek of the Fairbanks mining district, Alaska Authors: Duncan, Bill Exploration 1996 drill and geochemical results from the Old Dog Prospect of Treasure Creek of the Fairbanks
Ground-water areas and well logs, central Sevier Valley, Utah
Young, Richard A.
1960-01-01
Between September 1959 and June 1960 the United States Geological Survey and the Utah State Engineer, with financial assistance from Garfield, Millard, Piute, Sanpete, and Sevier Counties and from local water-users’ associations, cooperated in an investigation to determine the structural framework of the central Sevier Valley and to evaluate the valley’s ground-water potential. An important aspect of the study was the drilling of 22 test holes under private contract. These data and other data collected during the course of the larger ground-water investigation of which the test drilling was a part will be evaluated in a report on the geology and ground-water resources of the central Sevier Valley. The present report has been prepared to make available the logs of test holes and to describe in general terms the availability of ground water in the different areas of the valley.
Geologic applications of ERTS images on the Colorado Plateau, Arizona
NASA Technical Reports Server (NTRS)
Goetz, A. F. H.; Billingsley, F. C.; Elston, D. P.; Lucchitta, I.; Shoemaker, E. M.
1974-01-01
Three areas in central and northern Arizona centered on the (1) Verde Valley, (2) Coconino Plateau, and (3) Shivwits Plateau were studied using ERTS photography. Useful applications results include: (1) upgrading of the existing state geologic map of the Verde Valley region; (2) detection of long NW trending lineaments in the basalt cap SE of Flagstaff which may be favorable locations for drilling for new water supplies; (3) tracing of the Bright Angel and Butte faults to twice their previously known length and correlating the extensions with modern seismic events, showing these faults to be present-day earthquake hazards; (4) discovering and successfully drilling perched sandstone aquifers in the Kaibab Limestone on the Coconino Plateau; and (5) determining the relationship between the Shivwits lavas and the formation of the lower Grand Canyon and showing that the lavas should be an excellent aquifer, as yet untapped.
Lorenz, Ralph D
2012-08-01
Thermal drilling has been applied to studies of glaciers on Earth and proposed for study of the martian ice caps and the crust of Europa. Additionally, inadvertent thermal drilling by radioisotope sources released from the breakup of a space vehicle is of astrobiological concern in that this process may form a downward-propagating "warm little pond" that could convey terrestrial biota to a habitable environment. A simple analytic solution to the asymptotic slow-speed case of thermal drilling is noted and used to show that the high thermal conductivity of the low-temperature ice on Europa and Titan makes thermal drilling qualitatively more difficult than at Mars. It is shown that an isolated General Purpose Heat Source (GPHS) "brick" can drill effectively on Earth or Mars, whereas on Titan or Europa with ice at 100 K, the source would stall and become stuck in the ice with a surface temperature of <200 K.
Horizontal wells in the Java Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, S.L.; Lyon, R.
1988-05-01
The utilization of the Navigation Drilling System in recent drilling activity has established that: Continuous build rates as high as 6.75 degrees/100 ft are achievable (with a .74 degree DTU), making possible the tapping of near platform reserves. The system provides the flexibility necessary to drill a continuous curve or an irregular path without bottomhole assembly changes. The system provides the flexibility for sidetracks to the ''low side'' of the well bore without coming out of the hole for bottomhole assembly changes or a cement plug. Geological objectives can be reached with a high degree of accuracy. The system greatlymore » reduces the costly learning curve associated with rotary bottomhole assemblies and substantially increases the confidence of the operator. Significant drilling cost reductions resulted from the use of the system. The cost per foot was further reduced as additional familiarity with the equipment was gained.« less
Forecasting petroleum discoveries in sparsely drilled areas: Nigeria and the North Sea
Attanasi, E.D.; Root, D.H.
1988-01-01
Decline function methods for projecting future discoveries generally capture the crowding effects of wildcat wells on the discovery rate. However, these methods do not accommodate easily situations where exploration areas and horizons are expanding. In this paper, a method is presented that uses a mapping algorithm for separating these often countervailing influences. The method is applied to Nigeria and the North Sea. For an amount of future drilling equivalent to past drilling (825 wildcat wells), future discoveries (in resources found) for Nigeria are expected to decline by 68% per well but still amount to 8.5 billion barrels of oil equivalent (BOE). Similarly, for the total North Sea for an equivalent amount and mix among areas of past drilling (1322 wildcat wells), future discoveries are expected to amount to 17.9 billion BOE, whereas the average discovery rate per well is expected to decline by 71%. ?? 1988 International Association for Mathematical Geology.
Sweetkind, Donald S.; Drake II, Ronald M.
2007-01-01
Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill-hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin such as alluvial fan, channel, basin axis, and playa deposits.
Sweetkind, Donald S.; Drake II, Ronald M.
2007-01-01
Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.
Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, M.S. Jr.; Thordarson, W.; Eshom, E.P.
This report presents data on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the US Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1219 meters. Depthmore » to water below land surface was 519 meters, or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member of the Crater Flat Tuff (Tertiary age) was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member of the Crater Flat Tuff, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. 7 references, 26 figures, 9 tables.« less
Continuous chain bit with downhole cycling capability
Ritter, Don F.; St. Clair, Jack A.; Togami, Henry K.
1983-01-01
A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.
Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.P. McGrail; E. C. Sullivan; F. A. Spane
2009-12-01
The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir zones and 3 flow-interior/caprock intervals were performed during drilling and immediately following reaching the final borehole drilling depth (i.e., 4,110 ft). In addition, six of the 12 basalt interflow zones were selected for detailed hydrochemical characterization. Results from the detailed hydrologic test characterization program provided the primary information on basalt interflow zone transmissivity/injectivity, and caprock permeability characteristics.« less
Interior Department Suggests Improvements for Offshore Arctic Oil and Gas Drilling
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-03-01
Shell's "difficulties" during its 2012 program to drill offshore oil and natural gas exploration wells in the Alaskan Arctic Ocean "have raised serious questions regarding its ability to operate safely and responsibly in the challenging and unpredictable conditions offshore Alaska," according to the report "Review of Shell's 2012 Alaska Offshore Oil and Gas Exploration Program," issued by the U.S. Department of the Interior (DOI) on 8 March. Noting the company's lack of adequate preparation for drilling in the Arctic, its failure to deploy a specialized Arctic Containment System, and the grounding of the Kulluk drilling rig near Kodiak Island last December, the report recommends that Shell develop a comprehensive and integrated plan describing its future drilling program and related operations and that it commission a third-party audit of its management systems, including its safety and environmental management systems program.
BACA Project: geothermal demonstration power plant. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-12-01
The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area ismore » within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.« less
Ocean Drilling: Forty Years of International Collaboration
NASA Astrophysics Data System (ADS)
Smith, Deborah K.; Exon, Neville; Barriga, Fernando J. A. S.; Tatsumi, Yoshiyuki
2010-10-01
International cooperation is an essential component of modern scientific research and societal advancement [see Ismail-Zadeh and Beer, 2009], and scientific ocean drilling represents one of Earth science's longest-running and most successful international collaborations. The strength of this collaboration and its continued success result from the realization that scientific ocean drilling provides a unique and powerful tool to study the critical processes of both short-term change and the long-term evolution of Earth systems. A record of Earth's changing tectonics, climate, ocean circulation, and biota is preserved in marine sedimentary deposits and the underlying basement rocks. And because the ocean floor is the natural site for accumulation and preservation of geological materials, it may preserve a continuous record of these processes.
Independent focuses Philippines exploration on Visayan basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rillera, F.G.
1995-08-21
Cophil Exploration Corp., a Filipino public company, spearheaded 1995 Philippine oil and gas exploration activity with the start of its gas delineation drilling operations in Libertad, northern Cebu. Cophil and its Australian partners, Coplex Resources NL and PacRim Energy NL, have set out to complete a seven well onshore drilling program within this block this year. The companies are testing two modest shallow gas plays, Libertad and Dalingding, and a small oil play, Maya, all in northern Cebu about 500 km southeast of Manila. Following a short discussion on the geology and exploration history of the Visayan basin, this articlemore » briefly summarizes Cophil`s ongoing Cebu onshore drilling program. Afterwards, discussion focuses on identified exploration opportunities in the basin`s offshore sector.« less
Geologic Materials Center - General Information | Alaska Division of
effective November 9, 2017. Set by DGGS Director's Order, the fees will help offset operational costs and -effective alternative to the tremendous expense of core drilling and resampling in the field. One foot of
Testing New Techniques for Mars Rover Rock-Drilling
2017-10-23
In the summer and fall of 2017, the team operating NASA's Curiosity Mars rover conducted tests in the "Mars Yard" at NASA's Jet Propulsion Laboratory, Pasadena, California, to develop techniques that Curiosity might be able to use to resume drilling into rocks on Mars. JPL robotics engineer Vladimir Arutyunov, in this June 29, 2017, photo, checks the test rover's drill bit at its contact point with a rock. Note that the stabilizer post visible to the right of the bit is not in contact with the rock, unlike the positioning used and photographed by Curiosity when drilling into rocks on Mars in 2013 to 2016. In late 2016, after Curiosity's drill had collected sample material from 15 Martian rocks, the drill's feed mechanism ceased working reliably. That motorized mechanism moved the bit forward or back with relation to the stabilizer posts on either side of the bit. In normal drilling by Curiosity, the stabilizers were positioned on the target rock first, and then the feed mechanism extended the rotation-percussion bit into the rock. In the alternative technique seen here, called "feed-extended drilling," the test rover's stabilizers are not used to touch the rock. The bit is advanced into the rock by motion of the robotic arm rather than the drill's feed mechanism. https://photojournal.jpl.nasa.gov/catalog/PIA22061
NASA Astrophysics Data System (ADS)
Tulaczyk, S. M.; Anandakrishnan, S.; Behar, A. E.; Christner, B. C.; Fisher, A. T.; Fricker, H. A.; Holland, D. M.; Jacobel, R. W.; Mikucki, J.; Mitchell, A. C.; Powell, R. D.; Priscu, J. C.; Scherer, R. P.; Severinghaus, J. P.
2009-12-01
The WISSARD project is a large, NSF-funded, interdisciplinary initiative focused on scientific drilling, exploration, and investigation of Antarctic subglacial aquatic environments. The project consists of three interrelated components: (1) LISSARD - Lake and Ice Stream Subglacial Access Research Drilling, (2) RAGES - Robotic Access to Grounding-zones for Exploration and Science, and (3) GBASE - GeomicroBiology of Antarctic Subglacial Environments). A number of previous studies in West Antarctica highlighted the importance of understanding ice sheet interactions with water, either at the basal boundary where ice streams come in contact with active subglacial hydrologic and geological systems or at the marine margin where the ice sheet is exposed to forcing from the global ocean and sedimentation. Recent biological investigations of Antarctic subglacial environments show that they provide a significant habitat for life and source of bacterial carbon in a setting that was previously thought to be inhospitable. Subglacial microbial ecosystems also enhance biogeochemical weathering, mobilizing elements from long term geological storage. The overarching scientific objective of WISSARD is to examine the subglacial hydrological system of West Antarctica in glaciological, geological, microbiological, geochemical, and oceanographic contexts. Direct sampling will yield seminal information on these systems and test the overarching hypothesis that active hydrological systems connect various subglacial environments and exert major control on ice sheet dynamics, subglacial sediment transfer, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations and geological records of ice sheet history. Technological advances during WISSARD will provide the US-science community with a capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and it will be available for future use. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments.
Drill Holes and Predation Traces versus Abrasion-Induced Artifacts Revealed by Tumbling Experiments
Gorzelak, Przemysław; Salamon, Mariusz A.; Trzęsiok, Dawid; Niedźwiedzki, Robert
2013-01-01
Drill holes made by predators in prey shells are widely considered to be the most unambiguous bodies of evidence of predator-prey interactions in the fossil record. However, recognition of traces of predatory origin from those formed by abiotic factors still waits for a rigorous evaluation as a prerequisite to ascertain predation intensity through geologic time and to test macroevolutionary patterns. New experimental data from tumbling various extant shells demonstrate that abrasion may leave holes strongly resembling the traces produced by drilling predators. They typically represent singular, circular to oval penetrations perpendicular to the shell surface. These data provide an alternative explanation to the drilling predation hypothesis for the origin of holes recorded in fossil shells. Although various non-morphological criteria (evaluation of holes for non-random distribution) and morphometric studies (quantification of the drill hole shape) have been employed to separate biological from abiotic traces, these are probably insufficient to exclude abrasion artifacts, consequently leading to overestimate predation intensity. As a result, from now on, we must adopt more rigorous criteria to appropriately distinguish abrasion artifacts from drill holes, such as microstructural identification of micro-rasping traces. PMID:23505530
Caine, Jonathan S.; Manning, Andrew H.; Verplanck, Philip L.; Bove, Dana J.; Kahn, Katherine Gurley; Ge, Shemin
2006-01-01
Integrated, multidisciplinary studies of the Handcart Gulch alpine watershed provide a unique opportunity to study and characterize the geology and hydrology of an alpine watershed along the Continental Divide. The study area arose out of the donation of four abandoned, deep mineral exploration boreholes to the U.S. Geological Survey for research purposes by Mineral Systems Inc. These holes were supplemented with nine additional shallow holes drilled by the U.S. Geological Survey along the Handcart Gulch trunk stream. All of the holes were converted into observation wells, and a variety of data and samples were measured and collected from each. This open-file report contains: (1) An overview of the research conducted to date in Handcart Gulch; (2) well location, construction, lithologic log, and water level data from the research boreholes; and (3) a brief synopsis of preliminary results. The primary purpose of this report is to provide a research overview as well as raw data from the boreholes. Interpretation of the data will be reported in future publications. The drill hole data were tabulated into a spreadsheet included with this digital open-file report.
Hicks, Joshua; Adrian, Betty
2009-01-01
The Core Research Center (CRC) of the U.S. Geological Survey (USGS), located at the Denver Federal Center in Lakewood, Colo., currently houses rock core from more than 8,500 boreholes representing about 1.7 million feet of rock core from 35 States and cuttings from 54,000 boreholes representing 238 million feet of drilling in 28 States. Although most of the boreholes are located in the Rocky Mountain region, the geologic and geographic diversity of samples have helped the CRC become one of the largest and most heavily used public core repositories in the United States. Many of the boreholes represented in the collection were drilled for energy and mineral exploration, and many of the cores and cuttings were donated to the CRC by private companies in these industries. Some cores and cuttings were collected by the USGS along with other government agencies. Approximately one-half of the cores are slabbed and photographed. More than 18,000 thin sections and a large volume of analytical data from the cores and cuttings are also accessible. A growing collection of digital images of the cores are also becoming available on the CRC Web site Internet http://geology.cr.usgs.gov/crc/.
Geologic Analysis of Priority Basins for Exploration and Drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, H.B.; Reeves, T.K.
1999-04-27
There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generallymore » unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.« less
Historical methane hydrate project review
Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta
2013-01-01
In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-‐lattice holds gas molecules in a cage-‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated effort, the U.S. Congress enacted Public Law 106-‐193, the Methane Hydrate Research and Development Act of 2000. This Act called for the Secretary of Energy to begin a methane hydrate research and development program in consultation with other U.S. federal agencies. At the same time a new methane hydrate research program had been launched in Japan by the Ministry of International Trade and Industry to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. Since this early start we have seen other countries including India, China, Canada, and the Republic of Korea establish large gas hydrate research and development programs. These national led efforts have also included the investment in a long list of important scientific research drilling expeditions and production test studies that have provided a wealth of information on the occurrence of methane hydrate in nature. The most notable expeditions and projects have including the following:-‐Ocean Drilling Program Leg 164 (1995)-‐Japan Nankai Trough Project (1999-‐2000)-‐Ocean Drilling Program Leg 204 (2004)-‐Japan Tokai-‐oki to Kumano-‐nada Project (2004)-‐Gulf of Mexico JIP Leg I (2005)-‐Integrated Ocean Drilling Program Expedition 311 (2005)-‐Malaysia Gumusut-‐Kakap Project (2006)-‐India NGHP Expedition 01 (2006)-‐China GMGS Expedition 01 (2007)-‐Republic of Korea UBGH Expedition 01 (2007)-‐Gulf of Mexico JIP Leg II (2009)-‐Republic of Korea UBGH Expedition 02 (2010)-‐MH-‐21 Nankai Trough Pre-‐Production Expedition (2012-‐2013)-‐Mallik Gas Hydrate Testing Projects (1998/2002/2007-‐2008)-‐Alaska Mount Elbert Stratigraphic Test Well (2007)-‐Alaska Iġnik Sikumi Methane Hydrate Production Test Well (2011-‐2012)Research coring and seismic programs carried out by the Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP), starting with the ODP Leg 164 drilling of the Blake Ridge in the Atlantic Ocean in 1995, have also contributed greatly to our understanding of the geologic controls on the formation, occurrence, and stability of gas hydrates in marine environments. For the most part methane hydrate research expeditions carried out by the ODP and IODP provided the foundation for our scientific understanding of gas hydrates. The methane hydrate research efforts under ODP-‐IODP have mostly dealt with the assessment of the geologic controls on the occurrence of gas hydrate, with a specific goal to study the role methane hydrates may play in the global carbon cycle.Over the last 10 years, national led methane hydrate research programs, along with industry interest have led to the development and execution of major methane hydrate production field test programs. Two of the most important production field testing programs have been conducted at the Mallik site in the Mackenzie River Delta of Canada and in the Eileen methane hydrate accumulation on the North Slope of Alaska. Most recently we have also seen the completion of the world’s first marine methane hydrate production test in the Nankai Trough in the offshore of Japan. Industry interest in gas hydrates has also included important projects that have dealt with the assessment of geologic hazards associated with the presence of hydrates.The scientific drilling and associated coring, logging, and borehole monitoring technologies developed in the long list of methane hydrate related field studies are one of the most important developments and contributions associated with methane hydrate research and development activities. Methane hydrate drilling has been conducted from advanced scientific drilling platforms like the JOIDES Resolution and the D/V Chikyu, which feature highly advanced integrated core laboratories and borehole logging capabilities. Hydrate research drilling has also included the use of a wide array of industry, geotechnical and multi-‐service ships. All of which have been effectively used to collect invaluable geologic and engineering data on the occurrence of methane hydrates throughout the world. Technologies designed specifically for the collection and analysis of undisturbed methane hydrate samples have included the development of a host of pressure core systems and associated specialty laboratory apparatus. The study and use of both wireline conveyed and logging-‐while-‐drilling technologies have also contributed greatly to our understanding of the in-‐situ nature of hydrate-‐bearing sediments. Recent developments in borehole instrumentation specifically designed to monitor changes associated with hydrates in nature through time or to evaluate the response of hydrate accumulations to production have also contributed greatly to our understanding of the complex nature and evolution of methane hydrate systems.Our understanding of how methane hydrates occur and behave in nature is still growing and evolving – we do not yet know if methane hydrates can be economically produced, nor do we know fully the role of hydrates as an agent of climate change or as a geologic hazard. But it is known for certain that scientific drilling has contributed greatly to our understanding of hydrates in nature and will continue to be a critical source of the information to advance our understanding of methane hydrates.
The Role of Data and Feedback Error in Inference and Prediction
1998-06-01
O’Connor Bowling Green State University Research and Advanced Concepts Office Michael Drillings, Chief This Document Contains Missing Page/s...Bowling Green State University Technical Review by Michael Drillings, ARI NOTICES DISTRIBUTION: This Research Note has been cleared for release to...0601102A 2O161102B74F TA 1012 WU C06 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Bowling Green State University , 120 Mcfall Center, Research
Publications - SR 61 | Alaska Division of Geological & Geophysical Surveys
Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey K) Keywords Admiralty Island; Aeromagnetic Data; Aeromagnetic Survey; Airborne Geophysical Survey Dome; Conductivity Survey; Construction Materials; Copper; Core Drilling; Council; Crushed Gravel
NASA Astrophysics Data System (ADS)
Inverno, Carlos; Matos, João Xavier; Rosa, Carlos; Mário Castelo-Branco, José; Granado, Isabel; Carvalho, João; João Baptista, Maria; Represas, Patrícia; Pereira, Zélia; Oliveira, Tomás; Araujo, Vitor
2013-04-01
The Iberian Pyrite Belt (IPB) hosts one of the largest concentrations of massive sulfides in the Earth's crust. This highly productive VMS belt contains more than 85 massive sulfide deposits, totalling an estimate of 1600 Mt of massive ore and about 250 Mt of stockwork ore (Leistel et al., 1998; Oliveira et al., 2005; Tornos, 2006). Included in the South Portuguese Zone the IPB is represented by the Phyllite-Quartzite Group (PQG) composed of shales and quartzites of late Devonian age followed by the Volcanic-Sedimentary Complex (VSC) a submarine succession of sediments and felsic and basic volcanic rocks (late Famennian-late Viséan age). Above the IPB a turbidite sedimentary unit occurs being represented by the Baixo Alentejo Flysch Group (BAFG). The ore deposits are hosted by felsic volcanic rocks and sediments that are dominant in the lower part of the VSC succession. The Neves Corvo (ProMine, EU FP7) project area is focused on the Neves Corvo deposit, an active copper mine. The project area is located between the Messejana Fault and the Portuguese/Spanish border which has been selected for the 3D geological and geophysical modelling study, based on high exploration potential of the Neves Corvo area (Oliveira et al. 2006, Relvas et al. 2006, Pereira et al. 2008, Rosa et al. 2008, Matos et al. 2011, Oliveira et al. 2013). In this study existing LNEG and AGC geological, geophysical and geochemistry databases were considered. New surveys were done: i) - A physical volcanology and palynostratigraphic age data study and log of the Cotovio drill-hole core (1,888 m, drilled by AGC). ii) - Interpretation of 280 km of Squid TEM performed by AGC. Based on the TEM data, significant conductors have been identified related with: shallow conductive cover, graphitic shale, black shale and sulphide mineralizations. The most important TEM conductors are related with the Neves Corvo massive sulphides lenses (1-10 Ωm). iii) - Ground and residual gravimetry studies including superficial directional derivatives to obtain the various directions of the late-Variscan faults, the main overthrusts and lithological structures. iv) - Detailed palynological sediment dating; v) - A seismic survey was conducted in the vicinities of the Neves Corvo mine totalling 82 km of profiles with target depth of over 10 km. A 3D regional model has been constructed for the selected IPB area using GoCAD, integrating the most critical information of the follow geological units: the lower unit BAFG Mértola Formation, the VSC, the Neves Corvo ores and the PQG. It incorporated surface regional geological maps, 168 drill-hole geological logs throughout the area, structural and tectonic data, former seismic sections, where available, and a digital terrain model. Chemical data from 42 selected drill-holes in order to outline in 3D the Cu distribution in the area. The results have already indicated new important guidelines for VHMS exploration and new regional correlations with the Neves Corvo mining area. The 3D modelling study was essential to the detail understanding of the complex IPB geological structures observed in the south of Portugal.
Valentine, Brett J.; Dennen, Kristin O.
2012-01-01
Coal exploration drill-hole data from over 24,000 wells in 10 States are discussed by State in the chapters of this report, and the data are provided in an accompanying spreadsheet. The drill holes were drilled between 1962 and 1984 by Phillips Coal Company, a division of Phillips Petroleum Company (Phillips). The data were donated to the U.S. Geological Survey (USGS) in 2001 by the North American Coal Corporation, which purchased the Phillips assets as part of a larger dataset. Under the terms of the agreement with North American Coal Corporation, the data were deemed proprietary until February 2011, a period of 10 years after the donation (Appendix of Chapter A). Now that the required period of confidentiality has passed, the data have been digitized from tabulated data files to create unified and spatially consistent coal exploration drill-hole maps and reports for the States of Alabama, Georgia, Kentucky, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, Tennessee, and Texas. The data are made publically available by this report.
Drilling Rig Operation Mode Recognition by an Artificial Neuronet
NASA Astrophysics Data System (ADS)
Abu-Abed, Fares; Borisov, Nikolay
2017-11-01
The article proposes a way to develop a drilling rig operation mode classifier specialized to recognize pre-emergency situations appearable in commercial oil-and-gas well drilling. The classifier is based on the theory of image recognition and artificial neuronet taught on real geological and technological information obtained while drilling. To teach the neuronet, a modified backpropagation algorithm that can teach to reach the global extremum of a target function has been proposed. The target function was a relative recognition error to minimize in the teaching. Two approaches to form the drilling rig pre-emergency situation classifier based on a taught neuronet have been considered. The first one involves forming an output classifier of N different signals, each of which corresponds to a single recognizable situation and, and can be formed on the basis of the analysis of M indications, that is using a uniform indication vocabulary for all recognized situations. The second way implements a universal classifier comprising N specialized ones, each of which can recognize a single pre-emergency situation and having a single output.
Covault, Jacob A.; Buursink, Mark L.; Craddock, William H.; Merrill, Matthew D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Warwick, Peter D.; Corum, Margo D.
2012-01-01
This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rocks within the Bighorn Basin of Wyoming and Montana and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology of earlier work, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Wells sharing the same well borehole are treated as a single penetration. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.
Williams, Lester J.; Kath, Randy L.; Crawford, Thomas J.; Chapman, Melinda J.
2005-01-01
Obtaining large quantities of ground water needed for municipal and industrial supply in the Piedmont and Blue Ridge physiographic provinces can be challenging because of the complex geology and the typically low primary permeability of igneous and metamorphic rocks. Areas of enhanced secondary permeability in the bedrock do occur, however, and 'high-yield' wells are not uncommon, particularly where careful site-selection techniques are used prior to test drilling. The U.S. Geological Survey - in cooperation with the City of Lawrenceville, Georgia - conducted this study from 2000 to 2002 to learn more about how different geologic settings influence the availability of ground water in igneous and metamorphic bedrock with the expectation that this knowledge could be used to help identify additional water resources in the area. In compositionally layered-rock settings, wells derive water almost exclusively from lithologically and structurally controlled water-bearing zones formed parallel to foliation and compositional layering. These high-permeability, water-bearing zones - termed foliation-parallel parting systems -combined with high-angle joint systems, are the primary control for the high-yield wells drilled in the Lawrenceville area; yields range from 100 to several hundred gallons per minute (gal/min). Near Lawrenceville, areas with high ground-water yield are present in sequences of amphibolite, biotite gneiss, and button schist where the structural attitude of the rocks is gently dipping, in areas characterized by abundant jointing, and in topographic settings with a continuous source of recharge along these structures. In massive-rock settings, wells derive water mostly from joint systems, although foliation-parallel parting systems also may be important. Wells deriving water primarily from steeply-dipping joint systems typically have low yields ranging from 1 to 5 gal/min. Joint systems in massive-rock settings can be identified and characterized by using many of the methods described in this report. Geologic mapping was the primary method used to determine the distribution, variability, and relative concentrations (intensity) of joint systems. In the subsurface, joints were characterized by taking orientation measurements in the open boreholes of wells using acoustic and/or optical televiewers. In this investigation, the only practical approach found for locating areas of high ground-water potential was first through detailed geologic mapping followed by test drilling, borehole geophysical logging, and aquifer testing. Geologic methods help characterize both large- and small-scale structures and other lithologic and stratigraphic features that influence development of increased secondary permeability in the bedrock. The rock types, discontinuities, depth of weathering, topographic position, and recharge potential - which were the principal factors assessed through detailed geologic mapping - must be evaluated carefully, in relation to one another, to assess the ground-water potential in a given area.
Planetary Geology: A Teacher's Guide with Activities in Physical and Earth Sciences.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This educator's guide discusses planetary geology. Exercises are grouped into five units: (1) introduction to geologic processes; (2) impact cratering activities; (3) planetary atmospheres; (4) planetary surfaces; and (5) geologic mapping. Suggested introductory exercises are noted at the beginning of each exercise. Each activity includes an…
Issues and Concerns in Robotic Drilling
NASA Technical Reports Server (NTRS)
Glass, Brian
2003-01-01
Exploration of the Martian subsurface will be essential in the search for life and water, given the desiccated and highly oxidized conditions on the surface. Discovery of these, at least in non-fossil form, is unlikely without drilling or other physical access to the subsurface. Hence subsurface access will be critical for both future in-situ science and Mars sample return. Drilling applications present many new challenges for diagnosis and control technology. Traditionally, diagnosis has concentrated on determining the internal state of a system, and detecting failures of system components. In the case of drilling applications, an additional challenge is to diagnose the interactions between the drill and its environment. This is necessary because particular observations of the drilling operation may be consistent with a number of possible problems, including faults in the equipment, but also changes in the material being drilled (for example, from rock to ice). The diagnosis of a particular observation may also depend on knowledge of geological formations previously encountered during drilling, and different remedial actions may be required for each diagnosis. Current 2009 Mars mission scenarios call for no more than 33 sols to be spent drilling. Yet they also call for a baseline of two 2m-deep holes in each of three target areas, for a total of six drilling operations. Using current levels of automation, it is estimated that 15-16 sols would be required to drill each hole. As a result of this, either the drilling part of the mission plan will need to be severely downscoped to no more than two holes total, or on-board automation and robotics must be increased in order to reduce the number of sols required per hole by removing ground control from the drilling control loop. This lecture will discuss salient issues and concerns of robotic drilling automation compares with other applications, and implementation constraints.
Assessing Automatic Aid as an Emergency Response Model
2013-12-01
children, Nicholas, Spencer , Kayla, and Krista: I appreciate your patience and understanding. I hope that I am a role model to you, proving that you...noted by all interview subjects and provides for the closest resource “without regard to the name on the door” as noted by Battalion Chief Matt Herbert ...states that he “expects to go to Alexandria or Fairfax everyday,”96 and Herbert expands on the close interaction by noting, “crews have dinner, drill
Code of Federal Regulations, 2010 CFR
2010-10-01
..., Drills, and Inspections § 97.15-1 Application. (a) Except as specifically noted, the provisions of this... reasonable and practicable with the exception that the logging of information is not required. ...
Möhlhenrich, S C; Abouridouane, M; Heussen, N; Hölzle, F; Klocke, F; Modabber, A
2016-11-01
The aim of this study was to investigate the influence of bone density and drilling protocol on heat generation during implant bed preparation. Ten single and 10 gradual implant sites with diameters of 2.8, 3.5, and 4.2mm were prepared in four artificial bone blocks (density types I-IV; D1-D4). Drilling was done at constant speed (1500rpm) and with external irrigation (50ml/min); vertical speed was set at 2mm/s. An infrared camera was used for temperature measurements. Significantly higher temperatures for single drilling were found between 2.8-mm drills in D1 (P=0.0014) and D4 (P<0.0001) and between 3.5-mm drills in D3 (P=0.0087) and D4 (P<0.0001), as well as between 4.2-mm drills in D1 (P<0.0001) and D4 (P=0.0014). Low bone density led to a thermal decrease after single drilling and a thermal increase after gradual drilling. Burs with a large diameter always showed a higher temperature generation. In comparisons between 2.8- and 4.2-mm diameters for both single and gradual drills, significant differences (P<0.001) were noted for bone types II, III, and IV. Single drilling could generate more heat than traditional sequential drilling, and bone density, as well as drill diameter, influenced thermal increases. Particularly in lower-density bone, conventional sequential drilling seems to raise the temperature less. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.
2002-07-24
This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterizemore » and grade each field's potential for drilling horizontal laterals from existing development wells.« less
Answers from deep inside the Earth; Continental Scientific Drilling at Cajon Pass, California
Russ, D.P.
1989-01-01
Drilling of a 12,000-foot-deep scientific well has been completed at Cajon Pass in southern California to measure crustal properties, to determine crustal structure, and to better understanding the generation of earthquakes along the San Andreas fault. A joint effort of the National Science Foundation (NFS) and the U.S Geological Survey (USGS), the well was begun in November 1986, and is one of the first projects to be undertaken in the new national Continental Scientific Drilling Program. This program aims to enchance our knowledge of the compostiion, sturcture, dynamics, and evolution of the continental crust and of how these factors affect the origin and distribution of mineral and energy resources and natural phenomena such as volcanic eruptions and earthquakes.
Exploration Criteria for Low Permeability Geothermal Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, D
1977-03-01
The decision to drill deep holes in a prospective geothermal system implies that geothermal energy resources exist at depth. The drill hole location and budget result from hypothesis regarding the location and depth of the resource within the overall system. Although operational decisions normally dictate the practicality of drilling, the characteristics, we must first understand how unique various surface or shallow subsurface data are in assessing the nature of the resource. The following progress report summarizes the results of numerical simulations of heat and mass transport around igneous plutons and the synthesis of geologic data. To date, the results ofmore » the study describe the transient nature of thermal resources and the ambiguities which must be accounted for in using current technology to assess the nation's geothermal resources. [DJE-2005]« less
Publications - IC 50 | Alaska Division of Geological & Geophysical Surveys
Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ic050.pdf (999.0 K) Keywords Aeromagnetic; Aeromagnetic Map; Aeromagnetic Survey; Alaska Peninsula ; Coal; Conductivity Survey; Construction Materials; Copper; Cretaceous; Delta River; Diamonds; Drilling
Exploring the Geological Structure of the Continental Crust.
ERIC Educational Resources Information Center
Oliver, Jack
1983-01-01
Discusses exploration and mapping of the continental basement using the seismic reflection profiling technique as well as drilling methods. Also discusses computer analysis of gravity and magnetic fields. Points out the need for data that can be correlated to surface information. (JM)
28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS ...
28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS STAND FOR DETERMINING CORE'S FIELD ORIENTATION; INSECTICIDE DISPENSER MODIFIED TO LUBRICATE CORE DRILLING PROCESS. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA
Publications - GMC 408 | Alaska Division of Geological & Geophysical
locations, and sampling report for the Picnic Creek/Hot (boreholes 1, 2, and 7) and Sun (boreholes 2, 3, 4 , drill collar locations, and sampling report for the Picnic Creek/Hot (boreholes 1, 2, and 7) and Sun
Folger, David W.; Needell, Sally W.
1983-01-01
Mineral and energy resources of the continental margins of the United States arc important to the Nation's commodity independence and to its balance of payments. These resources are being studied along the continental margins of the Atlantic Ocean and the Gulf of Mexico in keeping with the mission of the U.S. Geological Survey to survey the geologic structures, mineral resources, and products of the national domain.'(Organic Act of 1879). An essential corollary to these resource studies is the study of potential geologic hazards that may be associated with offshore resource exploration and exploitation. In cooperation with the U.S. Bureau of Land Management, the Geological Survey, through its Atlantic-Gulf of Mexico Marine Geology Program, carries out extensive research to evaluate hazards from sediment mobility, shallow gas, and slumping and to acquire information on the distribution and concentration of trace metals and biogenic and petroleum-derived hydrocarbons in sea-floor sediments. All these studies arc providing needed background information, including information on pollutant dispersal, on the nearshore, estuarine, and lacustrine areas that may be near pipeline and nuclear powerplant sites. Users of these data include the Congress, many Federal agencies, the coastal States, private industry, academia, and the concerned public. The results of the regional structural, stratigraphic, and resource studies carried out under the Atlantic-Gulf of Mexico Marine Geology Program have been used by the Geological Survey and the Bureau of Land Management to select areas for future leasing and to aid in the evaluation of tracts nominated for leasing. Resource studies have concentrated mostly on the Atlantic Outer Continental Shelf frontier areas. Geologic detailing of five major basins along the U.S. Atlantic margin, where sediments are as much as 14 km thick, have been revealed by 25,000 km of 24-and 48-channel common-depth-point seismic data, 187,000 km of acromagnetic data, and 39,000 km of gravity data, plus 10,000 samples and logs obtained from U.S. Geological Survey and industry drilling (for example, coreholes of the Atlantic Slope Program, Joint Oceanographic Institutions Deep Earth Sampling, Continental Offshore Stratigraphic Tests, and the Atlantic Margin Coring Program). A sedimentary section of Jurassic and Cretaceous age grades from terrigenous clastic rocks nearshore to carbonate rocks offshore; this section is part of an extensive buried bank-platform complex that could contain large reserves of natural gas and oil. The volume of sediment deposited offshore far exceeds the volume deposited onshore where extensive accumulations of oil, gas, and minerals have been found. Commercial exploratory drilling offshore thus far has been limited to the Baltimore Canyon Trough area off New Jersey, where at least two holes have found gas; leasing has taken place in the Southeast Georgia Embayment, where drilling was scheduled to begin in 1979, and is imminent in the Georges Bank area off New England. In addition, hydrogeologic and hydrochemical data obtained from the drilling studies have delineated freshwater-bearing submarine extensions of land aquifers that are important coastal ground-water resources. Hazards in the Georges Bank area include sand mobility associated with strong currents and storm-driven waves; high concentrations of suspended sediment in the water column that, when mixed with spilled oil, may sink to the bottom; and slumping along the upper slope. In the Baltimore Canyon, high sediment mobility accompanies major winter storms, and slumped material may cover as much as 20 percent of the upper slope. Potentially unstable slope areas are being studied in great detail to provide data on timing, triggering mechanisms, and rates of sediment movement. In the Southeast Georgia Embayment and Blake Plateau Basin, strong Gulf Stream flow poses a major problem to all offshore operations. In the Gulf o
Eye and tentacle abnormalities in embryos of the atlantic oyster drill, Urosalpinx cinerea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhart, K.; Myers, T.D.
1975-12-01
Multiple development of eyes and cephalic tentacles was observed in developing embryos of the Atlantic oyster drill, Urosalpinx cinerea. These abnormalities were found in 2.7 percent of embryos previously exposed to 0.01 ppM mercuric chloride and in 0.4 percent of control animals. Animals were noted with one to three tentacles and one to six eyes. The most prevalent combination of abnormalities observed was three eyes and two tentacles per animal.
Parliman, D.J.
2000-01-01
In February and March 2000, the U.S. Geological Survey Western Regional Research Drilling Operation constructed replacement monitoring wells MW 3–2, MW 6–2, MW 7–2, and MW 11–2 as part of a regional ground-water monitor- ing network for the Mountain Home Air Force Base, Elmore County, Idaho. Total well depths ranged from 435.5 to 456.5 feet, and initial depth-to-water measurements ranged from about 350 to 375 feet below land surface. After completion, wells were pumped and onsite measurements were made of water temperature, specific conductance, pH, and dissolved oxygen. At each well, natural gamma, spontaneous potential, resistivity, caliper, and temperature logs were obtained from instruments placed in open boreholes. A three- dimensional borehole flow analysis was completed for MW 3–2 and MW 11–2, and a video log was obtained for MW 11–2 to annotate lithology and note wet zones in the borehole above saturated rock.
Evaluation of selected wells in Pennsylvania's observation-well program as of 1993
Conger, R.W.
1997-01-01
In 1993, the U.S. Geological Survey operated 62 observation wells in 60 of Pennsylvania's 67 counties in cooperation with the Pennsylvania Department of Environmental Resources. These wells attempt to monitor an aerial extent of 45,000 square miles and penetrate 39 geologic formations or water-bearing units of 14 physiographic provinces. Some wells were drilled specifically for the observation-well program, some were drilled for other U.S. Geological Survey projects, and some were drilled for other purposes and were no longer used. Approximately 3 percent of the network wells have less than 5 years of record, 5 percent have 5 to 15 years of record, and 92 percent have greater than 15 years of record. The older the observation well, the greater the possibility of water levels being affected by physical deterioration of the borehole. Therefore, it is necessary to periodically conduct a series of physical, chemical, and hydraulic tests to determine changes in the physical condition of the well and local land-use practices that may affect water-level response. Nineteen wells were selected for evaluation on the basis of past questionable water-level responses. These wells were evaluated for functionality by analyzing historical water-level fluctuations, geophysical logs, single-well aquifer tests, and water-quality analyses. These parameters indicated that well Je-23 (Jefferson County) is affected by coal-mine pumpage, well Bt-311 (Butler County) is periodically affected by strip mine activities, well Gr-118 (Greene County) and Mc-110 (McKean County exhibit unexplained fluctuations not desirable for an observation well, and 15 wells show no obvious problems or degradation that would affect their functionality to monitor natural water-level fluctuations.
Conger, R.W.
1997-01-01
Between April and June 1997, the U.S. Navy contracted Brown and Root Environmental, Inc., to drill 20 monitor wells at the Willow Grove Naval Air Station in Horsham Township, Montgomery County, Pa. The wells were installed to monitor water levels and allow collection of water samples from shallow, intermediate, and deep water-bearing zones. Analysis of the samples will determine the horizontal and vertical distribution of any contaminated ground water migrating from known contaminant sources. Eight wells were drilled near the Fire Training Area (Site 5), five wells near the 9th Street Landfill (Site 3), four wells at the Antenna Field Landfill (Site 2), and three wells near Privet Road Compound (Site 1). Depths range from 73 to 167 feet below land surface. The U.S. Geological Survey conducted borehole-geophysical and borehole-video logging to identify water-bearing zones so that appropriate intervals could be screened in each monitor well. Geophysical logs were run on the 20 monitor wells and 1 existing well. Video logs were run on 16 wells. Caliper and video logs were used to locate fractures, inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video logs, and driller's notes, all wells were screened such that water-level fluctuations could be monitored and discrete water samples collected from one or more shallow and intermediate water-bearing zones in each borehole.
Geologic report on the Sand Wash Drilling Project, Moffat and Routt Counties, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, T.E.; Wayland, T.E.
1981-09-01
The Sand Wash Basin Drilling Project comprises twenty-seven (27) drill holes located in Moffat and Routt Counties, northwest Colorado, having an aggregate depth of 26,107.5 feet (7957.6 m). The holes penetrate the Browns Park Formation of Miocene age, which is a tuffaceous continental sandstone deposited in fluvial, eolian, and lacustrine environments. Partly based on project drilling results, uranium potential resource estimates for this formation in the $50/lb U/sub 3/O/sub 8/ forward-cost category have been increased by 34,476 tons U/sub 3/O/sub 8/ (35,036 metric tons). Three areas between Maybell and Craig, Colorado, considered favorable for uranium occurrences were verified as favorablemore » by project drilling, and a fourth favorable area northwest of Maybell has been expanded. In addition, project drilling results indicate two new favorable areas, one north and northwest and one south of Steamboat Springs, Colorado. Anomalous radioactivity was detected in drill holes in all six study areas of the project. The most important factor in concentrating significant amounts of uranium in the target formation appears to be the availability of gaseous or liquid hydrocarbons and/or hydrogen sulfide gas as reductants. Where subjacent formations supply these reductants to the Browns Park Formation, project drilling encountered 0.05 percent to 0.01 percent uranium concentrations. Potential, though unproven, sources of these reductants are believed to underlie parts of all six project study areas.« less
An assessment of the mechanical stability of wells offshore Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowrey, J.P.; Ottesen, S.
In 1991 lost time due to stuck pipe related drilling problems accounted for approximately 18% of total drilling time in Mobil Producing Nigeria Ultd.`s (MPN) offshore operations. The primary cause of stuck pipe was identified as mechanical wellbore instability. This paper presents an assessment of the mechanical stability of MPN`s wells offshore Nigeria. The objectives of the study were to: (1) determine the magnitude of the in-situ principal stresses and material properties of the troublesome Intra-Biafra and Qua Iboe shale sequences; (2) quantify the drilling fluid densities required to drill mechanically stable wells through these formations; (3) review and recommendmore » well planning and operational parameters which aid in minimizing wellbore stability-related drilling problems. The well-bore stability assessment was carried out with the aid of a 3-dimensional wellbore stability model using field derived data from the study area to corroborate the results. The collection and analysis of drilling data (borehole geometry and density logs, pore pressure, leak-off tests, local geology and other relevant well records) to determine the magnitude of the in-situ principal stresses, together with compressive strength tests on formation cores are discussed. Minimum safe drilling fluid densities to promote wellbore stability as a function of well geometry and depth are presented for the most troublesome shales drilled in the study area. Implementation of the results reduced wellbore stability related problems and associated trouble time to less than 5% in 1992.« less
Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface
NASA Astrophysics Data System (ADS)
Gou, J.; Zhou, W.; Wu, L.
2016-10-01
Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.
Geothermal Exploration of Newberry Volcano, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waibel, Albert F.; Frone, Zachary S.; Blackwell, David D.
Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three yearsmore » have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.« less
San Andreas drilling sites selected
NASA Astrophysics Data System (ADS)
Ellsworth, Bill; Zoback, Mark
A new initiative for drilling and coring directly into the San Andreas fault at depths up to 10 km is being proposed by an international team of scientists led by Mark Zoback, Stanford University; Steve Hickman and Bill Ellsworth, U.S. Geological Survey; and Lee Younker, Lawrence Livermore Laboratory. In addition to exhuming samples of fault rock and fluids from seismogenic depths, the hole will be used to make a wide range of geophysical measurements within the fault zone and to monitor the fault zone over time. Four areas along the San Andreas have been selected as candidates for deep drilling: the Mojave segment of the San Andreas between Leona Valley and Big Pine, the Carrizo Plain, the San Francisco Peninsula between Los Altos and Daly City, and the Northern Gabilan Range between the Cienga winery and Melendy Ranch. These sites were chosen from an initial list compiled at the International Fault Zone Drilling Workshop held in Asilomar, Calif., in December 1992 and at meetings held this winter and spring in Menlo Park, Calif.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen
The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-basedmore » drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.« less
Ridenour, James; Stotelmeyer, Ronald B.; Kuntz, Mel A.; Mabey, Don R.; Champion, Duane E.; Lefebvre, Richard H.; Stanley, W.D.
1983-01-01
Locating speculative resources (uraniferous sediment, auriferous gravel, and geothermal reservoirs) and hypothetical resources (oil and gas) that may underlie the geologically young lava flows of the study area would require extensive geophysical exploration and drilling.
Soda Lake Well Lithology Data and Geologic Cross-Sections
Faulds, James E.
2013-12-31
Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross‐sections in Adobe Illustrator format.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Geophysicist, born in New York City, professor of geology at Princeton, led Project Mohole, the first expedition to drill through the Earth's oceanic crust to the mantle beneath, theorized that spreading of mid-ocean ridges was the source of new mantle-derived continental material. Also a lunar geologist....
Subsurface gas hydrates in the northern Gulf of Mexico
Boswell, Ray; Collett, Timothy S.; Frye, Matthew; Shedd, William; McConnell, Daniel R.; Shelander, Dianna
2012-01-01
The northernGulf of Mexico (GoM) has long been a focus area for the study of gashydrates. Throughout the 1980s and 1990s, work focused on massive gashydrates deposits that were found to form at and near the seafloor in association with hydrocarbon seeps. However, as global scientific and industrial interest in assessment of the drilling hazards and resource implications of gashydrate accelerated, focus shifted to understanding the nature and abundance of "buried" gashydrates. Through 2005, despite the drilling of more than 1200 oil and gas industry wells through the gashydrate stability zone, published evidence of significant sub-seafloor gashydrate in the GoM was lacking. A 2005 drilling program by the GoM GasHydrate Joint Industry Project (the JIP) provided an initial confirmation of the occurrence of gashydrates below the GoM seafloor. In 2006, release of data from a 2003 industry well in Alaminos Canyon 818 provided initial documentation of gashydrate occurrence at high concentrations in sand reservoirs in the GoM. From 2006 to 2008, the JIP facilitated the integration of geophysical and geological data to identify sites prospective for gashydrate-bearing sands, culminating in the recommendation of numerous drilling targets within four sites spanning a range of typical deepwater settings. Concurrent with, but independent of, the JIP prospecting effort, the Bureau of Ocean Energy Management (BOEM) conducted a preliminary assessment of the GoM gashydratepetroleum system, resulting in an estimate of 607 trillion cubic meters (21,444 trillion cubic feet) gas-in-place of which roughly one-third occurs at expected high concentrations in sand reservoirs. In 2009, the JIP drilled seven wells at three sites, discovering gashydrate at high saturation in sand reservoirs in four wells and suspected gashydrate at low to moderate saturations in two other wells. These results provide an initial confirmation of the complex nature and occurrence of gashydrate-bearing sands in the GoM, the efficacy of the integrated geological/geophysical prospecting approach used to identify the JIP drilling sites, and the relevance of the 2008 BOEM assessment.
NASA Technical Reports Server (NTRS)
Anderson, R. R.; Witzke, B. J.; Hartung, J. B.; Shoemaker, E. M.; Roddy, D. J.
1993-01-01
A core drilling program initiated by the Iowa Geological Survey Bureau and U.S. Geological Survey in 1991 and 1992 collected 12 cores totalling over 1200 m from the Manson Impact Structure, a probable K-T boundary structure located in north-central Iowa. Cores were recovered from each of the major structural terranes, with 2 cores (M-3 and M-4) from the Terrace Terrane, 4 cores (M-2, M-2A, M-6, and M-9) from the Crater Moat, and 6 cores (M-1, M-5, M-7, M-8, M-10, and M-11) from the Central Peak. These supplemented 2 central peak cores (1-A and 2-A) drilled in 1953. The cores penetrated five major impact lithologies: (1) sedimentary clast breccia; (2) impact ejecta; (3) central peak crystallite rocks; (4) crystalline clast breccia with sandy matrix; and (5) crystallite clast breccia with a melt matrix. Descriptions and preliminary interpretations of these cores are presented.
Durand, C.T.; Edwards, L.E.; Malinconico, M.L.; Powars, D.S.
2009-01-01
During 2005-2006, the International Continental Scientific Drilling Program and the U.S. Geological Survey drilled three continuous core holes into the Chesapeake Bay impact structure to a total depth of 1766.3 m. A collection of supplemental materials that presents a record of the core recovery and measurement data for the Eyreville cores is available on CD-ROM at the end of this volume and in the GSA Data Repository. The supplemental materials on the CD-ROM include digital photographs of each core box from the three core holes, tables of the three coring-run logs, as recorded on site, and a set of depth-conversion programs. In this chapter, the contents, purposes, and basic applications of the supplemental materials are briefly described. With this information, users can quickly decide if the materials will apply to their specific research needs. ?? 2009 The Geological Society of America.
Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.
2009-01-01
In the summer of 2007, the U.S. Geological Survey (USGS) began an exploration geochemical research study over the Pebble porphyry copper-gold-molybdenum deposit. This report presents the analytical data collected in 2008. The Pebble deposit is world class in size, and is almost entirely concealed by tundra, glacial deposits, and post-Cretaceous volcanic rocks. The Pebble deposit was chosen for this study because it is concealed by surficial cover rocks, is relatively undisturbed (except for exploration company drill holes), is a large mineral system, and is fairly well-constrained at depth by the drill hole geology and geochemistry. The goals of this study are to 1) determine whether the concealed deposit can be detected with surface samples, 2) better understand the processes of metal migration from the deposit to the surface, and 3) test and develop methods for assessing mineral resources in similar concealed terrains. The analytical data are presented as an integrated Microsoft Access 2003 database and as separate Excel files.
NASA Astrophysics Data System (ADS)
Hamilton, Warren
The discovery well for the Prudhoe Bay field, the largest oil accumulatn yet found in the United States, was drilled on the Arctic coast of Alaska by ARCO and Exxon in 1968. A decade of exploratory geology and increasingly detailed geophysical surveys, mostly by Sinclair and British Petroleum in the early years, but then by a number of companies, preceded the discovery. Systematic U.S. Geological Survey (USGS) reconnaissance of the Brooks Range—the great mountain system of northern Alaska—had begun in the 1940s and was accelerated after the discovery, as was industry work. In the last decade, scientists from the Alaska Division of Geology and Geophysics and from various universities have become increasingly involved. This modestly priced two-volume work presents hitherto unavailable summaries of much of this modern work.
Groundwater Exploration for Rural Communities in Ghana, West Africa
NASA Astrophysics Data System (ADS)
McKay, W. A.
2001-05-01
Exploration for potable water in developing countries continues to be a major activity, as there are more than one billion people without access to safe drinking water. Exploration for groundwater becomes more critical in regions where groundwater movement and occurrence is controlled by secondary features such as fractures and faults. Drilling success rates in such geological settings are generally very low, but can be improved by integrating geological, hydrogeological, aerial photo interpretation with land-based geophysical technology in the selection of drilling sites. To help alleviate water supply problems in West Africa, the Conrad N. Hilton Foundation and other donors, since 1990, have funded the World Vision Ghana Rural Water Project (GRWP) to drill wells for potable water supplies in the Greater Afram Plains (GAP) of Ghana. During the first two years of the program, drilling success rates using traditional methods ranged from 35 to 80 percent, depending on the area. The average drilling success rate for the program was approximately 50 percent. In an effort to increase the efficiency of drilling operations, the Desert Research Institute evaluated and developed techniques for application to well-siting strategies in the GAP area of Ghana. A critical project element was developing technical capabilities of in-country staff to independently implement the new strategies. Simple cost-benefit relationships were then used to evaluate the economic advantages of developing water resources using advanced siting methods. The application of advanced methods in the GAP area reveal an increase of 10 to 15 percent in the success rate over traditional methods. Aerial photography has been found to be the most useful of the imagery products covering the GAP area. An effective approach to geophysical exploration for groundwater has been the combined use of EM and resistivity methods. Economic analyses showed that the use of advanced methods is cost-effective when success rates with traditional methods are less than 70 to 90 percent. Finally, with the focus of GRWP activities shifting to Ghana's northern regions, new challenges in drilling success rates are being encountered. In certain districts, success rates as low as 35 percent are observed, raising questions about the efficacy of existing well-siting strategies in the current physical setting, and the validity of traditional cost-benefit analyses for assessing the economic aspects of water exploration in drought-stricken areas.
NASA Astrophysics Data System (ADS)
Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias
2010-05-01
In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not more than 2000 meters are planned. The prototype must be modified and adapted to the conditions in deep boreholes with respect to pressure and temperature. This project is funded by the German Federal Environment Ministry.
Hodges, Mary K.V.; Davis, Linda C.; Bartholomay, Roy C.
2018-01-30
In 1990, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy Idaho Operations Office, established the Lithologic Core Storage Library at the Idaho National Laboratory (INL). The facility was established to consolidate, catalog, and permanently store nonradioactive drill cores and cuttings from subsurface investigations conducted at the INL, and to provide a location for researchers to examine, sample, and test these materials.The facility is open by appointment to researchers for examination, sampling, and testing of cores and cuttings. This report describes the facility and cores and cuttings stored at the facility. Descriptions of cores and cuttings include the corehole names, corehole locations, and depth intervals available.Most cores and cuttings stored at the facility were drilled at or near the INL, on the eastern Snake River Plain; however, two cores drilled on the western Snake River Plain are stored for comparative studies. Basalt, rhyolite, sedimentary interbeds, and surficial sediments compose most cores and cuttings, most of which are continuous from land surface to their total depth. The deepest continuously drilled core stored at the facility was drilled to 5,000 feet below land surface. This report describes procedures and researchers' responsibilities for access to the facility and for examination, sampling, and return of materials.
Geologic Carbon Sequestration in a Lightly Explored Basin: the Puget-Willamette Lowland
NASA Astrophysics Data System (ADS)
Jackson, J. S.
2007-12-01
The Puget-Willamette Lowland is located between the Cascade Range and Olympic Mountains-Coast Range. Exploration for oil and gas there commenced in 1890. Over 700 wells subsequently drilled yield one commercial gas discovery. Eocene sediments deposited west of an ancestral Cascade Range include a coal-bearing sequence covering much of the Puget-Willamette Lowland. The terrestrial deposits pass into marine deposits to the west. Syn- depositional normal faulting and strike-slip faulting are evident in several sub-basins. In the southern Lowland, normal faults were modified by episodes of late Eocene and Miocene transpression, which resulted in mild inversion of older normal faults Preserved sediments indicate that local subsidence continued into Miocene- Pliocene time, and was followed in the northern Lowland by extensive Pleistocene glaciation. In the northern Lowland, Holocene faulting is recognized in outcrop and is interpreted on seismic data acquired in Puget Sound. Structures formed by early Miocene or earlier events may have trapped migrating hydrocarbons. Structures formed or modified by Holocene faulting very probably post-date hydrocarbon generation and migration. The region appears to host potential geologic sequestration targets, including coals, sandstones, and vesicular basalt flows. The size and location of potential traps is poorly constrained by present data. Experience in better explored fore arc basins suggests 10 to 30 percent of the basin may be deformed into suitable trapping geometries. Modern seismic data is required to identify potential sequestration traps. More than one well will be required to confirm the presence and size of these traps. The present boom in oil and gas drilling has created a robust environment for seismic and drilling companies, who command unprecedented rates for their services. Only one seismic crew is presently active on the West Coast, and only a few exploration drilling rigs are available. If this environment persists, then sequestration efforts will compete directly with the hydrocarbon industry for these services, leading to higher service company prices as well as delayed schedules. Carbon sequestration policy thus entails financial incentives that allow geologic sequestration projects to compete for exploration services.
Site Report for USGS Test Holes Drilled at Cape Charles, Northampton County, Virginia, in 2004
Gohn, Gregory S.; Sanford, Ward E.; Powars, David S.; Horton, J. Wright; Edwards, Lucy E.; Morin, Roger H.; Self-Trail, Jean M.
2007-01-01
The U.S. Geological Survey drilled two test holes near Cape Charles, Virginia, during May and June 2004, as part of an investigation of the buried, late Eocene Chesapeake Bay impact structure. The first hole is designated as the USGS-Sustainable Technology Park test hole #1 (USGS-STP1). This test hole was abandoned at a depth of 300 ft; cuttings samples were collected, but no cores or geophysical logs were acquired. The second hole is designated as the USGS-Sustainable Technology Park test hole #2 (USGS-STP2). This test hole was drilled to a depth of 2,699 ft. Cores were collected between depths of 1,401.7 ft and 1,420.7 ft and between 2,440.0 ft and 2,699.0 ft. Cuttings samples were collected from the uncored intervals below 280-ft depth. Interim sets of geophysical logs were acquired during the drilling operation, and one final set was acquired at the end of drilling. Two wells were installed in the USGS-STP2 test hole. The deep well (designated 62G-24) was screened between 2,260 ft and 2,280 ft, and the shallow well (designated 62G-25) was screened between 1,360 ft and 1,380 ft. Ground-water salinities stabilized at 40 parts per thousand for the deep well and 20 parts per thousand for the shallow well. The geologic section encountered in the test holes consists of three main units: (1) Eocene, Oligocene, Miocene, Pliocene, and Pleistocene sands and clays are present between land surface and a depth of 1,163 ft; (2) sediment-clast breccias of the impact structure are present between depths of 1,163 ft and 2,150 ft; and (3) crystalline-clast breccias and cataclastic gneiss of the impact structure are present between depths of 2,150 ft and 2,699 ft.
Constraining the Antarctic contribution to global sea-level change: ANDRILL and beyond
NASA Astrophysics Data System (ADS)
Naish, Timothy
2016-04-01
Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1 to 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the scientific challenges, some potential sub-glacial sedimentary targets, and a strategy for future drilling of sub-glacial sedimentary basins.
Constraining the Antarctic contribution to interglacial sea-level rise
NASA Astrophysics Data System (ADS)
Naish, T.; Mckay, R. M.; Barrett, P. J.; Levy, R. H.; Golledge, N. R.; Deconto, R. M.; Horgan, H. J.; Dunbar, G. B.
2015-12-01
Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1- 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the scientific challenges, some potential sub-glacial sedimentary targets, and a strategy for future drilling of sub-glacial sedimentary basins.
Smellie, John A.T.; Stuckless, John S.
1985-01-01
The pervasive alteration and the more recent mobilisation of U are evident to a depth of at least 600 m. The effects are most prevalent along major fracture zones and within the upper 250–300 m of one drill-hole where a high frequency of crush zones has been noted. Higher Fe oxidation ratios, higher Rb contents, lower U contents and correspondingly higher Th/U ratios, all characterise this zone.
Hickman, Stephen H.; Hsieh, Paul A.; Mooney, Walter D.; Enomoto, Catherine B.; Nelson, Philip H.; Flemings, Peter; Mayer, Larry; Moran, Kathryn; Weber, Thomas; McNutt, Marcia K.; Rice, James R.
2012-01-01
As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic profiles, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement.
Vail, W.B. III.
1991-08-27
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.
Vail, W.B. III.
1989-11-21
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.
Vail, III, William B.
1991-01-01
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.
Vail, III, William B.
1989-01-01
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.
Ultrasonic/Sonic Rotary-Hammer Drills
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve
2010-01-01
Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for removal of cuttings in the same manner as that of a twist drill: An USRoHD includes a USDC and a motor with gearhead (see figure). The USDC provides the bit hammering and the motor provides the bit rotation. Like a twist drill bit, the shank of the tool bit of the USRoHD is fluted. As in the operation of a twist drill, the rotation of the fluted drill bit removes cuttings from the drilled hole. The USRoHD tool bit is tipped with a replaceable crown having cutting teeth on its front surface. The teeth are shaped to promote fracturing of the rock face through a combination of hammering and rotation of the tool bit. Helical channels on the outer cylindrical surface of the crown serve as a continuation of the fluted surface of the shank, helping to remove cuttings. In the event of a failure of the USDC, the USRoHD can continue to operate with reduced efficiency as a twist drill. Similarly, in the event of a failure of the gearmotor, the USRoHD can continue to operate with reduced efficiency as a USDC.
Haines, Seth S.; Cook, Troy; Thamke, Joanna N.; Davis, Kyle W.; Long, Andrew J.; Healy, Richard W.; Hawkins, Sarah J.; Engle, Mark A.
2014-01-01
The U.S. Geological Survey is developing approaches for the quantitative assessment of water and proppant involved with possible future production of continuous petroleum deposits. The assessment approach is an extension of existing U.S. Geological Survey petroleum-assessment methods, and it aims to provide objective information that helps decision makers understand the tradeoffs inherent in resource-development decisions. This fact sheet provides an overview of U.S. Geological Survey assessments for quantities of water and proppant required for drilling and hydraulic fracturing and for flowback water extracted with petroleum; the report also presents the form of the intended assessment output information.
Assessment of geothermal resources at Newcastle, Utah
Blackett, Robert E.; Shubat, Michael A.; Chapman, David S.; Forster, Craig B.; Schlinger, Charles M.
1989-01-01
Integrated geology, geophysics, and geochemistry studies in the Newcastle area of southwest Utah are used to develop a conceptual geologic model of a blind, moderate-temperature hydrothermal system. Studies using 12 existing and 12 new, thermal gradient test holes, in addition to geologic mapping, gravity surveys, and other investigations have helped define the thermal regime. Preliminary results indicate that the up-flow region is located near the west-facing escarpment of an adjacent mountain range, probably related to the bounding range-front fault. Chemical geothermometers suggest equilibration temperatures ranging from 140??C to 170??C. The highest temperature recorded in the system is 130??C from an exploration well drilled by the Unocal Corporation.
Horton, J. Wright; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.
2009-01-01
The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.
Code of Federal Regulations, 2012 CFR
2012-01-01
... neutron generator tube to produce neutrons for use in well logging applications. Uranium sinker bar means a weight containing depleted uranium used to pull a logging tool toward the bottom of a well. Well... drilled holes for the purpose of oil, gas, mineral, groundwater, or geological exploration. Well logging...
Code of Federal Regulations, 2013 CFR
2013-01-01
... neutron generator tube to produce neutrons for use in well logging applications. Uranium sinker bar means a weight containing depleted uranium used to pull a logging tool toward the bottom of a well. Well... drilled holes for the purpose of oil, gas, mineral, groundwater, or geological exploration. Well logging...
Code of Federal Regulations, 2014 CFR
2014-01-01
... neutron generator tube to produce neutrons for use in well logging applications. Uranium sinker bar means a weight containing depleted uranium used to pull a logging tool toward the bottom of a well. Well... drilled holes for the purpose of oil, gas, mineral, groundwater, or geological exploration. Well logging...
Code of Federal Regulations, 2010 CFR
2010-01-01
... neutron generator tube to produce neutrons for use in well logging applications. Uranium sinker bar means a weight containing depleted uranium used to pull a logging tool toward the bottom of a well. Well... drilled holes for the purpose of oil, gas, mineral, groundwater, or geological exploration. Well logging...
Code of Federal Regulations, 2011 CFR
2011-01-01
... neutron generator tube to produce neutrons for use in well logging applications. Uranium sinker bar means a weight containing depleted uranium used to pull a logging tool toward the bottom of a well. Well... drilled holes for the purpose of oil, gas, mineral, groundwater, or geological exploration. Well logging...
30 CFR 1220.011 - Schedule of allowable direct and allocable joint costs and credits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Volume or wells. Source water wells and supply systems Volume. Roads Wells. Production/drilling platform..., installing, operating, repairing and maintaining communication systems, including radio, microwave facilities... contributions made to obtain information about the structure or other characteristics of the geology underlying...
Western Newfoundland's oil; Gas hopes lie with carbonate platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, N.R.
1991-12-30
This paper reports on the presence of hydrocarbons onshore western Newfoundland that was known through numerous occurrences of oil and gas seeps and bituminous residues since early 1800s, when local residents first used it as a treatment for rheumatism. The first exploratory well was drilled in 1867, and since then a total of 60 wells have been drilled in the area. Despite the fact that most of these wells were relatively shallow, average 300--500 m, and have been drilled with limited geological control and no seismic mapping, more than half the wells encountered minor amounts of hydrocarbons with a totalmore » cumulative production of about 6,000 bbl in the early 1900s. Issuance and administration of petroleum exploration rights off Newfoundland is the responsibility of the Canada- Newfoundland Offshore Petroleum Board.« less
A proven record in changing attitudes about MWD logs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, L.; Paxson, K.B.; Keyser, W.L.
1993-07-01
Measurement while drilling (MWD) logs for quantitative reservoir characterization were evaluated during drilling of Gulf of Mexico flexure trend projects, Kilauea (Green Canyon Blocks 6 and 50) and Tick (Garden Banks Block 189). Comparisons confirmed that MWD can be used as an accurate replacement for wireline logging when borehole size is not a limiting factor. Texaco MWD experience evolved from last resort' to primary formation evaluation logging, which resulted in rigtime and associated cost savings. Difficult wells are now drilled and evaluated with confidence, geopressure is safely monitored, conventional core interval tops are selected, and geologic interpretations and operational decisionsmore » are made before wells TD. This paper reviews the performance, accuracy, and limitations of the MWD systems and compares the results to standard geophysical well logging techniques. Four case histories are presented.« less
Taming a wild geothermal research well in yellowstone national park
Fournier, Robert O.; Pisto, Larry M.; Howell, Bruce B.; Hutchnson, Roderick A.; ,
1993-01-01
In November 1992 the valve at the top of a U.S. Geological Survey drill hole in Yellowstone National Park parted from the casting as a result of corrosion. This allowed uncontrolled venting of boiling water and steam from the well at an estimated liquid flow rate of about 25-50 gallons per minute. A flow diverter assembly was designed, fabricated and installed on the well within 16 days, which allowed drill rods to be safely stripped into the well through on annular Blow-Out Preventer. Once this was accomplished it was a relatively routine matter to set a packer in the casting and cement the well shut permanently. The drill hole was brought under control and cemented shut within 18 days of the wellhead failure at a total cost of $47,066, which was about $5,000 less than anticipated.
A study on directional resistivity logging-while-drilling based on self-adaptive hp-FEM
NASA Astrophysics Data System (ADS)
Liu, Dejun; Li, Hui; Zhang, Yingying; Zhu, Gengxue; Ai, Qinghui
2014-12-01
Numerical simulation of resistivity logging-while-drilling (LWD) tool response provides guidance for designing novel logging instruments and interpreting real-time logging data. In this paper, based on self-adaptive hp-finite element method (hp-FEM) algorithm, we analyze LWD tool response against model parameters and briefly illustrate geosteering capabilities of directional resistivity LWD. Numerical simulation results indicate that the change of source spacing is of obvious influence on the investigation depth and detecting precision of resistivity LWD tool; the change of frequency can improve the resolution of low-resistivity formation and high-resistivity formation. The simulation results also indicate that the self-adaptive hp-FEM algorithm has good convergence speed and calculation accuracy to guide the geologic steering drilling and it is suitable to simulate the response of resistivity LWD tools.
Geodatabase of Wyoming statewide oil and gas drilling activity to 2010
Biewick, Laura
2011-01-01
The U.S. Geological Survey (USGS) compiled a geographic information system (GIS) of Wyoming statewide historical oil and gas drilling activity for the Wyoming Landscape Conservation Initiative (WLCI). The WLCI is representative of the partnerships being formed by the USGS with other Department of the Interior bureaus, State and local agencies, industry, academia, and private landowners that are committed to maintaining healthy landscapes, sustaining wildlife, and preserving recreational and grazing uses as energy resources development progresses in southwestern Wyoming. This product complements the 2009 USGS publication on oil and gas development in southwestern Wyoming http://pubs.usgs.gov/ds/437/) by approximating, based on database attributes, the time frame of drilling activity for each well (start and stop dates). This GIS product also adds current oil and gas drilling activity not only in the area encompassing the WLCI, but also statewide. Oil and gas data, documentation, and spatial data processing capabilities are available and can be downloaded from the USGS website. These data originated from the Wyoming Oil and Gas Conservation Commission (WOGCC), represent decades of oil and gas drilling (1900 to 2010), and will facilitate a landscape-level approach to integrated science-based assessments, resource management and land-use decision making.
NASA Astrophysics Data System (ADS)
Kurtz, N.; Marks, N.; Cooper, S. K.
2014-12-01
Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.
NASA Technical Reports Server (NTRS)
Goetz, A. F. H. (Principal Investigator); Billingsley, F. C.; Elston, D. P.; Lucchita, I.; Shoemaker, E. M.
1974-01-01
The author has identified the following significant results. In the course of the ERTS investigation in the Cataract Creek Basin of the Coconino Plateau it was recognized that shallow perched ground water associated with the Kaibab Limestone could be discovered by means of drilling guided by geologic mapping aided by the use of ERTS imagery. At the Globe Ranch, the perched water table is only 5 meters beneath the surface at the site of the original, hand dug well. Recharge occurs from local runoff and from direct precipitation on the outcrop belt of the sandstone. This well provides water for the ranch at the rate of about 1,000 gallons a week. In order to explore the possibility of further developing this aquifer, unit 5 was mapped over an area of about 50 square miles in the vicinity of the hand-dug well, with negative results. A new location was then picked for drilling based on the occurrence of unit 5 in a favorable structural setting. This location was along a normal fault, and it was anticipated that water might be structurally trapped within the down-dropped block of the fault. Four shallow testholes were drilled and all encountered water. These four water-bearing holes are currently being monitored and will be tested to determine potential production of water from the local sandstone aquifer.
The Toa Baja Drilling Project and current studies in Puerto Rican geology: Introduction and summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larue, D.K.
1991-03-01
This volume concerns information learned by drilling the Toa Baja well on the north coast of Puerto Rico, and current studies of Puerto Rican geology and tectonics. The Toa Baja Drillsite is located in the North Coast basin of Puerto Rico about 10 km west of San Juan. The hole was spudded on August 23, 1989, and plugged and abandoned on November 7, 1989 at a total depth of 2,704m. Two lithologies were encountered during drilling: an upper series consisting of Oligocene-Miocene shallow-water limestone and sandstone facies, and a lower series consisting of Eocene deep-water volcaniclastic strata, including some lavamore » flows or shallow intrusions, pelagic marls, and altered igneous rocks or coarse-grained sandstones. Principal findings made during drilling include: (1) the important unconformity separating the upper and lower series at about 579 m; (2) 8 faults defined clearly by dipmeter log; (3) changes in rock type probably associated with reflection events in seismic reflection profiles crossing the drillsite; (4) confirmation of overall low geothermal gradients and heat flow, but presence of a thermal anomaly near 2683 m; (5) documentation of high paleogeothermal gradients using petrographic, isotopic, X-Ray diffraction and electron microprobe studies; (6) presence of fractures indicating a current extensional tectonic setting. Current studies in the Puerto Rico region include: (1) paleomagnetic evidence for late Miocene counterclockwise rotation; (2) geochemical evolution of Cretaceous and Eocene igneous rocks; (3) evidence of transtension in the northeast Caribbean plate boundary zone; (4) results of studies of ancient fault zones on Puerto Rico; and (5) stratigraphic studies of the Tertiary of Puerto Rico.« less
Optimal experimental design for placement of boreholes
NASA Astrophysics Data System (ADS)
Padalkina, Kateryna; Bücker, H. Martin; Seidler, Ralf; Rath, Volker; Marquart, Gabriele; Niederau, Jan; Herty, Michael
2014-05-01
Drilling for deep resources is an expensive endeavor. Among the many problems finding the optimal drilling location for boreholes is one of the challenging questions. We contribute to this discussion by using a simulation based assessment of possible future borehole locations. We study the problem of finding a new borehole location in a given geothermal reservoir in terms of a numerical optimization problem. In a geothermal reservoir the temporal and spatial distribution of temperature and hydraulic pressure may be simulated using the coupled differential equations for heat transport and mass and momentum conservation for Darcy flow. Within this model the permeability and thermal conductivity are dependent on the geological layers present in the subsurface model of the reservoir. In general, those values involve some uncertainty making it difficult to predict actual heat source in the ground. Within optimal experimental the question is which location and to which depth to drill the borehole in order to estimate conductivity and permeability with minimal uncertainty. We introduce a measure for computing the uncertainty based on simulations of the coupled differential equations. The measure is based on the Fisher information matrix of temperature data obtained through the simulations. We assume that the temperature data is available within the full borehole. A minimization of the measure representing the uncertainty in the unknown permeability and conductivity parameters is performed to determine the optimal borehole location. We present the theoretical framework as well as numerical results for several 2d subsurface models including up to six geological layers. Also, the effect of unknown layers on the introduced measure is studied. Finally, to obtain a more realistic estimate of optimal borehole locations, we couple the optimization to a cost model for deep drilling problems.
Buursink, Marc L.; Merrill, Matthew D.; Craddock, William H.; Roberts-Ashby, Tina L.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2014-01-01
Figures in this report show the study area boundaries along with the SAU extent and cell maps of well penetrations through sealing units into the top of the storage formations. The USGS does not necessarily know the location of all wells and cannot guarantee the full extent of drilling through specific formations in any given cell shown on the cell maps.
> Exploring the Scandinavian Mountain Belt by Deep Drilling (COSC)
NASA Astrophysics Data System (ADS)
Juhlin, C.; Gee, D. G.; Lorenz, H.; Pascal, C.; Pedersen, K.; Tsang, C.-F.
2012-04-01
The Collisional Orogeny in the Scandinavian Caledonides (COSC) project proposes to drill two fully cored scientific boreholes, both to c. 2.5 km depth, in the Swedish Caledonides, one near the town of Åre (COSC 1) and the other further east (COSC 2). Together they will provide a c. 5 km deep high-resolution mid-crustal section through this major mid-Palaeozoic orogen. Main project objectives include (i) improved understanding of mountain building processes (orogeny), (ii) investigation of the geothermal gradient and its response to palaeoclimatic influences, (iii) the hydrogeological-hydrochemical state of the mountain belt, (iv) the deep biosphere in the metamorphic rocks and crystalline basement, and (v) calibration of surface geophysics and geology. The Caledonide Orogen is comparable in size and many other respects to today's Himalayan mountain belt. Silurian collision with underthrusting of the paleo-continent Baltica below Laurentia resulted in widespread formation of eclogite. Major allochthons were transported many hundreds of kilometers onto the Baltoscandian Platform, including high-grade metamorphic rocks and migmatites which were generated during continental margin subduction and emplaced ductilely at mid-crustal levels. COSC will provide detailed insight into mid-Palaeozoic mountain building processes and further our understanding of past, present and future orogen dynamics. Located in a key-area for Caledonian geology, it is close to a major geophysical transect across the mountain belt which has been complemented recently with high-resolution reflection seismics and aerogeophysics for site-selection. The COSC research program is being developed by five working groups, geology, geophysics, geothermics, hydrogeology and microbiology. It has direct relevance for society by improving our understanding of mountain building processes, hydrological-hydrochemical regimes in mountain areas and Precambrian shields, deep subsurface conditions for underground engineering, ore genesis and assessment of geothermal potential. After a general scientific workshop supported by ICDP in 2010, the hydrogeological aspects of deep drilling were the topic of a separate workshop last year; orogen dynamics will provide a focus at EGU; and geothermics research will be addressed at a workshop in Autumn 2012. The geothermics workshop will be announced on the ICDP homepage. Partial funding for the drilling has been achieved through national sources and ICDP. Additional funding (c. 500000€) is being sought to allow drilling to commence in 2013. Scientific and financial partners, both from academia and industry, are welcome to the project. The presentation will review the current status of the COSC project and the research leading up to the site selection for COSC 1.
Investigating the Environment: Investigating Resource Acquisition and Use.
ERIC Educational Resources Information Center
Sheridan, Jack
This unit provides the student with a simulated experience in the development of decision making skills. The acquisition of petroleum resources in a hypothetical republic provides the basic scenario around which the simulation develops. Students are supplied with specific information about petroleum geology, finances, and drilling. With this…
Ocean Prospects: A High School Teacher's Guide to Ocean-Related Topics.
ERIC Educational Resources Information Center
Plummer, C. M.
Provided in this guide are resources for these 11 topics: the physical/geological ocean; the chemical/biological ocean; the ocean's coasts; fishing and aquaculture; tourism, recreation, and development; mining and drilling; research and exploration; maritime and military; ocean technology; pollution; and resource management. These resources…
30 CFR 250.490 - Hydrogen sulfide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...
30 CFR 250.490 - Hydrogen sulfide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...
30 CFR 250.490 - Hydrogen sulfide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...
Publications - GMC 391 | Alaska Division of Geological & Geophysical
DGGS GMC 391 Publication Details Title: Core descriptions, photographs and thin section photomicro , Inc., 2010, Core descriptions, photographs and thin section photomicro-graphs from the Humble Oil DDH DVD. Keywords Core Drilling; Thin Section Top of Page Department of Natural Resources, Division of
30 CFR 250.203 - Where can wells be located under an EP, DPP, or DOCD?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information General... reservoir management; (e) Location of drilling units and platforms; (f) Extent and thickness of the reservoir; (g) Geologic and other reservoir characteristics; (h) Minimizing environmental risk; (i...
43 CFR 3262.13 - May BLM require me to follow a well spacing program?
Code of Federal Regulations, 2013 CFR
2013-10-01
... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting Drilling Operations § 3262.13 May BLM require me to follow a well spacing... spacing: (a) Hydrologic, geologic, and reservoir characteristics of the field, minimizing well...
43 CFR 3262.13 - May BLM require me to follow a well spacing program?
Code of Federal Regulations, 2014 CFR
2014-10-01
... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting Drilling Operations § 3262.13 May BLM require me to follow a well spacing... spacing: (a) Hydrologic, geologic, and reservoir characteristics of the field, minimizing well...
43 CFR 3262.13 - May BLM require me to follow a well spacing program?
Code of Federal Regulations, 2012 CFR
2012-10-01
... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting Drilling Operations § 3262.13 May BLM require me to follow a well spacing... spacing: (a) Hydrologic, geologic, and reservoir characteristics of the field, minimizing well...
Bargar, Keith E.; Beeson, Melvin H.
1985-01-01
Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.
NASA Astrophysics Data System (ADS)
Wilke, Thomas; Wagner, Bernd; Albrecht, Christian; Levkov, Zlatko; Francke, Alexander; Hauffe, Torsten; Cvetkoska, Aleksandra; Jovanovska, Elena; Zhang, Xiaosen; Reed, Jane M.; Wagner-Cremer, Friederike; Stelbrink, Björn; Viehberg, Finn
2015-04-01
Ancient Lake Ohrid on the Balkan Peninsula constitutes the oldest and most biodiverse lake in Europe. The processes generating this extraordinary species richness with a high share of endemic taxa, however, are poorly understood. In order to unravel the geological and biological history of the lake and to study, among others, the influence of major geological and environmental events on the evolution of endemic taxa, an international research initiative - the SCOPSCO project - was launched. The project combines sedimentological, tephro-stratigraphical, seismic and paleontological (diatoms, mollusks, ostracods) studies of lake sediment cores with molecular-dating and empirical modelling approaches applied to extant taxa. Preliminary analyses of sediment core and borehole logging data from drill sites with a maximum penetration depth of 569 m below lake floor and an overall recovery of > 95 % indicate that Lake Ohrid is roughly 1.3 to 1.5 My old. Intriguingly, these data fully reinforce the results of molecular clock analyses conducted prior to the drilling operation. Moreover, the combined geological and biological studies suggest that the extraordinary biodiversity in Lake Ohrid is largely driven by 1) the long and continuous existence of the lake, 2) the lack of catastrophic events (e.g., desiccation, full glaciation or salinization) during its lifetime potentially causing massive extinctions, 3) the high buffer capacity of the lake to environmental change and/or the high resilience of its taxa, and 4) distinct turnovers in species composition over time promoting frequency dependent selection. The cumulative effect of these factors, in turn, resulted in overall low extinction rates and continuous speciation and radiation events. These findings not only shed new light on patterns and processes of evolution in Europe's oldest lake, they also show that data from sediment cores can contribute to a better understanding of the driving forces of biotic evolution. Moreover, Lake Ohrid appears to be a first class example for studying the link between geological and biological evolution in highly isolated ecosystems over comparatively long time scales.
Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core
NASA Astrophysics Data System (ADS)
Blacklock, Natalie Erin
During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of Young's modulus. This indicated that the test procedure will require modifications to improve coupling of the transducers to the core surface. In order to assess whether laboratory testing can be an alternative to borehole surveys, laboratory velocity testing must be directly assessed with results from acoustic borehole logging. There is also potential for the laboratory velocity program to be used to assess small scale stiffness changes, differences in mineral composition and the degree of fracturing of drill core.
Pedraza, Diana E.; Shah, Sachin D.
2010-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, developed a geodatabase of geologic and hydrogeologic information for selected wells penetrating the Austin Group in central Bexar County, Texas. The Austin Group functions as an upper confining unit to the Edwards aquifer and is the thickest and most permeable of the Edwards aquifer confining units. The geologic and hydrogeologic information pertains to a 377-square-mile study area that encompasses central Bexar County. Data were compiled primarily from drillers' and borehole geophysical logs from federal, State, and local agencies and published reports. Austin Group characteristics compiled for 523 unique wells are documented (if known), including year drilled, well depth, altitude of top and base of the Austin Group, and thickness of the Austin Group.
Covault, Jacob A.; Blondes, Madalyn S.; Cahan, Steven M.; DeVera, Christina A.; Freeman, P.A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2013-01-01
The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Eocene and Oligocene sedimentary rocks within the Columbia, Puget, Willapa, Astoria, Nehalem, and Willamette Basins of Oregon, Washington, and Idaho, and focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are provided to illustrate geologic factors critical to the assessment. The designated sealing unit in the Columbia Basin is tentatively chosen to be the ubiquitous and thick Miocene Columbia River Basalt Group. As a result of uncertainties regarding the seal integrity of the Columbia River Basalt Group, the SAUs were not quantitatively assessed. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on the cell maps.
McCafferty, Anne E.; Cordell, Lindrith E.
1992-01-01
This report is an analysis of regional gravity and aeromagnetic data that was carried out as part of a Conterminuous United States Mineral Assessment Program (CUSMAP) study of the Joplin 1° X 2° quadrangle, Kansas and Missouri. It is one in a series of reports representing a cooperative effort between the U.S. Geological Survey, Kansas Geological Survey, and Missouri Department of Natural Resources, Division of Geology and Land Survey. The work presented here is part of a larger project whose goal is to assess the mineral resource potential of the Paleozoic sedimentary section and crystalline basement within the quadrangle. Reports discussing geochemical, geological, and various other aspects of the study area are included in this Miscellaneous Field Studies Map series as MF-2125-A through MF-2125-E. Geophysical interpretation of Precambrian crystalline basement lithology and structure is the focus of this report. The study of the crystalline basement is complicated by the lack of exposures due to the presence of a thick sequence of Phanerozoic sedimentary cover. In areas where there are no outcrops, the geologist must turn to other indirect methods to assist in an understanding of the basement. Previous investigations of the buried basement in this region used available drill hole data, isotope age information, and regional geophysical data (Sims, 1990; Denison and others, 1984; Bickford and others, 1986). These studies were regional in scope and were presented at state and multistate scales. The work documented here used recently collected detailed gravity and aeromagnetic data to enhance the regional geologic knowledge of the area. Terrace-density and terrace-magnetization maps were calculated from the gravity and aeromagnetic data, leading directly to inferred physical-property (density and magnetization) maps. Once these maps were produced, the known geology and drill-hole data were reconciled with the physical-property maps to form a refined structural and lithologic map of the crystalline basement.
Dead Sea deep cores: A window into past climate and seismicity
NASA Astrophysics Data System (ADS)
Stein, Mordechai; Ben-Avraham, Zvi; Goldstein, Steven L.
2011-12-01
The area surrounding the Dead Sea was the locus of humankind's migration out of Africa and thus has been the home of peoples since the Stone Age. For this reason, understanding the climate and tectonic history of the region provides valuable insight into archaeology and studies of human history and helps to gain a better picture of future climate and tectonic scenarios. The deposits at the bottom of the Dead Sea are a geological archive of the environmental conditions (e.g., rains, floods, dust storms, droughts) during ice ages and warm ages, as well as of seismic activity in this key region. An International Continental Scientific Drilling Program (ICDP) deep drilling project was performed in the Dead Sea between November 2010 and March 2011. The project was funded by the ICDP and agencies in Israel, Germany, Japan, Norway, Switzerland, and the United States. Drilling was conducted using the new Large Lake Drilling Facility (Figure 1), a barge with a drilling rig run by DOSECC, Inc. (Drilling, Observation and Sampling of the Earth's Continental Crust), a nonprofit corporation dedicated to advancing scientific drilling worldwide. The main purpose of the project was to recover a long, continuous core to provide a high resolution record of the paleoclimate, paleoenvironment, paleoseismicity, and paleomagnetism of the Dead Sea Basin. With this, scientists are beginning to piece together a record of the climate and seismic history of the Middle East during the past several hundred thousand years in millennial to decadal to annual time resolution.
Coal test drilling for the DE-NA-Zin Bisti Area, San Juan County, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R.W.; Jentgen, R.W.
1980-01-01
From October 1978 to June 1979, the US Geological Survey (USGS) drilled 51 test holes, and cored 9 holes, in the vicinity of the Bisti Trading Post in the southwestern part of the San Juan Basin, San Juan County, New Mexico. The drilling was done in response to expressions of interest received by the Bureau of Land Management concerning coal leasing and, in some places, badlands preservation. The object of the drilling was to determine the depth, thickness, extent, and quality of the coal in the Upper Cretaceous Fruitland Formation in northwest New Mexico. The holes were geophysically logged immediatelymore » after drilling. Resistivity spontaneous-potential, and natural gamma logs were run in all of the holes. A high-resolution density log was also run in all holes drilled before January 13, when a logging unit from the USGS in Albuquerque was available. After January 13, the holes were logged by a USGS unit from Casper, Wyoming that lacked density logging capabilities. At nine locations a second hole was drilled, about 20 ft from the first hole, down to selected coal-bearing intervals and the coal beds were cored. A detailed description of each of the cores is given on the page(s) following the logs for each hole. From these coal cores, 32 intervals were selected and submitted to the Department of Energy in Pittsburgh, Pennsylvania, for analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Pacheco, Rafael A., E-mail: pachecor@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu
2016-02-15
BackgroundA novel coaxial biopsy system powered by a handheld drill has recently been introduced for percutaneous bone biopsy. This technical note describes our initial experience performing fluoroscopy-guided vertebral body biopsies with this system, compares the yield of drill-assisted biopsy specimens with those obtained using a manual technique, and assesses the histologic adequacy of specimens obtained with drill assistance.MethodsMedical records of all single-level, fluoroscopy-guided vertebral body biopsies were reviewed. Procedural complications were documented according to the Society of Interventional Radiology classification. The total length of bone core obtained from drill-assisted biopsies was compared with that of matched manual biopsies. Pathology reportsmore » were reviewed to determine the histologic adequacy of specimens obtained with drill assistance.ResultsTwenty eight drill-assisted percutaneous vertebral body biopsies met study inclusion criteria. No acute complications were reported. Of the 86 % (24/28) of patients with clinical follow-up, no delayed complications were reported (median follow-up, 28 weeks; range 5–115 weeks). The median total length of bone core obtained from drill-assisted biopsies was 28 mm (range 8–120 mm). This was longer than that obtained from manual biopsies (median, 20 mm; range 5–45 mm; P = 0.03). Crush artifact was present in 11 % (3/28) of drill-assisted biopsy specimens, which in one case (3.6 %; 1/28) precluded definitive diagnosis.ConclusionsA drill-assisted, coaxial biopsy system can be used to safely obtain vertebral body core specimens under fluoroscopic guidance. The higher bone core yield obtained with drill assistance may be offset by the presence of crush artifact.« less
Using DSDP/ODP/IODP core photographs and digital images in the classroom
NASA Astrophysics Data System (ADS)
Pereira, Hélder; Berenguer, Jean-Luc
2017-04-01
Since the late 1960's, several scientific ocean drilling programmes have been uncovering the history of the Earth hidden beneath the seafloor. The adventure began in 1968 with the Deep Sea Drilling Project (DSDP) and its special drill ship, the Glomar Challenger. The next stage was the Ocean Drilling Program (ODP) launched in 1985 with a new drill ship, the JOIDES Resolution. The exploration of the ocean seafloor continued, between 2003 and 2013, through the Integrated Ocean Drilling Program (IODP). During that time, in addition to the JOIDES Resolution, operated by the US, the scientists had at their service the Chikyu, operated by Japan, and Mission-Specific-Platforms, funded and implemented by the European Consortium for Ocean Research Drilling. Currently, scientific ocean drilling continues through the collaboration of scientists from 25 nations within the International Ocean Discovery Program (IODP). Over the last 50 years, the scientific ocean drilling expeditions conducted by these programmes have drilled and cored more than 3500 holes. The numerous sediment and rock samples recovered from the ocean floor have provided important insight on the active biological, chemical, and geological processes that have shaped the Earth over millions of years. During an expedition, once the 9.5-meter long cores arrive from the seafloor, the technicians label and cut them into 1.5-meter sections. Next, the shipboard scientists perform several analysis using non-destructive methods. Afterward, the technicians split the cores into two halves, the "working half", which scientists sample and use aboard the drilling platform, and the "archive half", which is kept in untouched condition after being visually described and photographed with a digital imaging system. The shipboard photographer also takes several close-up pictures of the archive-half core sections. This work presents some examples of how teachers can use DSDP/ODP/IODP core photographs and digital images, available through the Janus and LIMS online databases, to develop inquiry-based learning activities for secondary level students.
NASA Technical Reports Server (NTRS)
Scibbe, H. W.; Munson, H. E.
1973-01-01
Seven 150-mm bore ball bearings were run under 8900 Newton (2000 lb) thrust load at speeds from 6670 to 20,000 rpm (1 to 3 million DN). Four of the bearings had conventional solid balls and three bearing had drilled (cylindrically hollow) balls with 50 percent mass reduction. The bearings were under-race cooled and slot-lubricated with Type 2 ester oil at flow rates from 4.35 to 5.80 liters per minute (1.15 to 1.57 gal min). Friction torque and temperatures were measured on all bearings. No significant difference in torque was noted, between the solid and drilled ball bearings. One bearing of each type was rerun at 17,800 Newtons (4000 lb) thrust load. The solid ball bearings performed satisfactorily at 3 million DN. However, at about 2 million DN the drilled ball bearing experienced a broken ball and cracks appeared in two other balls as the result of flexure fatigue. Metallurgical examination of the cracked balls indicated a brittle structure in the bore of the drilled balls.
NASA Astrophysics Data System (ADS)
Pound, K. S.; St. John, K.; Krissek, L. A.; Jones, M. H.; Leckie, R. M.; Pyle, E. J.
2008-12-01
That the ocean basins provide a record of past global climate changes through their sediment cores is often a surprise or novel idea for students. Equally surprising to many students is the fact that current research is being undertaken in remote polar regions, even though sedimentary records already exist from the low and mid latitude regions. Students are often also perplexed about how decisions are made regarding the selection of drill sites in the polar regions. Using an inquiry-based approach we are developing a series of simple exercises that are scaffolded to build student understanding around the question "Why Drill Here?" The exercises are based on IODP Expedition 302 (ACEX) in the Arctic, and on the Antarctic Geological Drilling (ANDRILL) program, which are used as case studies. The "Why Drill Here?" question is addressed at multiple levels so students can formulate a scientific rationale behind selection of sites for seafloor drilling in the Arctic and Antarctic regions. Technological challenges and solutions to doing field-based science in polar regions are explored. Finally, a subset of research results are investigated and compared with the current scientific paradigm on Cenozoic climate evolution to demonstrate that science is an evolving process. These exercises can be adapted for use in a variety of Introductory Earth Science classes.
Erste Erkenntnisse zur Prospektion und Charakterisierung des Aquifers der Aroser Dolomiten, Schweiz
NASA Astrophysics Data System (ADS)
Regli, Christian; Kleboth, Peter; Eichenberger, Urs; Schmassmann, Silvia; Nyfeler, Peter; Bolay, Stephan
2014-03-01
In urban areas of the Swiss Alps the use of geothermal energy from several hundred meters depth becomes increasingly important. For this mainly open systems have priority. This work presents the first insights in the prospection and characterisation of the so far unexplored, utilizable, and abundant Aquifer of the Arosa Dolomites. Besides the use of established methods and techniques, such as seismic measurements, an exploration drilling, borehole geophysical measurements, and pumping tests, the application of the KARSYS-approach for geological and conceptual hydrogeological 3D-modelling of the aquifer is illustrated. In addition, the development of a viewer for 3D-visualization of drillings is documented. The hydrogeological and metrological approaches allow a lithological facies differentiation of the Arosa Dolomites, and a differentiation of the fractured and karstified areas within the aquifer. The results represent the basis for advanced findings optimizing and risks minimising exploration and drilling planning, and for sustainable utilization planning.
Stratigraphy and depositional history of the Apollo 17 drill core
NASA Technical Reports Server (NTRS)
Taylor, G. J.; Warner, R. D.; Keil, K.
1979-01-01
Lithologic abundances obtained from modal analyses of a continuous string of polished thin sections indicate that the Apollo 17 deep drill core can be divided into three main zones: An upper zone (0-19 cm depth) characterized by high abundances of agglutinates (30%) and a high ratio of mare to non-mare lithic fragments (less than 0.8); a coarse-grained layer (24-56 cm) rich in fragments of high-Ti mare basalts and mineral fragments derived from them, and poor in agglutinates (6%); and a lower zone (56-285 cm) characterized by variable but generally high agglutinate abundances (25%) and a low ratio of mare to nonmare lithic fragments (0.6). Using observations of the geology of the landing site, the principles of cratering dynamics, and the vast amount of data collected on the core, the following depositional history for the section of regolith sampled by the Apollo 17 drill core: was devised.
Reconnaissance report on geology of Eklutna Lake dam site and conduit route near Anchorage, Alaska
Bateman, A.F.
1947-01-01
C. A foundation exploration program is recommended that includes deepening test pit No. 1 and drill hole No. 2, and drilling 11 new holes. It is suggested that one drill hold near the center of the valley be taken to bedrock to give a complete picture of the fill materials underlying the foundation. 3. Delivery of water from the forebay of the reservoir to the powerhouse eight miles downvalley by means of a conduit is regarded as infeasible because: difficult terrain of the route will require earthwork more extensive than the volume of the dam; the route is subject to land slides, and will require expensive maintenance; it is more or less completely exposed to adverse winter conditions that may engender icing conditions; and it is easily subject to sabotage. It is recommended that the water be taken to the powerhouse through a rock tunnel.
1991-01-01
FILES FOR COMPOUNDS OF POTENTIAL CONCERN Vol. 7 APPENDIX 0 - HUMAN HEALTH RISK CALCULATIONS Vol. 7 APPENDIX P - INVENTORY OF SITE SPECIES Vol. 7...Driing Mud 0" 0 3 am 01 99 5 .Annula space seal:- GnmuldBsuryoni 0 33 Lbs/gal mud weight ... Benuar-siid shiny 3 33 16. Driling addives used 13 yesLbs...CONSTRUCTION REPORT / 5 WISCONSIN STATE BOARD OF HEALTH WELL DRILLING DIVISION JUL 11 |W Note: Section 32 of the Wisconsin Well Drilling Sanitary Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siler, Drew L; Faulds, James E; Mayhew, Brett
2013-04-16
Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundarymore » between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.« less
Townsend, D.R.; Baldwin, M.J.; Carroll, R.D.; Ellis, W.L.; Magner, J.E.
1982-01-01
The Hybla Gold experiment was conducted in the U12e.20 drifts of the E-tunnel complex beneath the surface of Rainier Mesa at the Nevada Test Site. Though the proximity of the Hybla Gold working point to the chimney of the Dining Car event was important to the experiment, the observable geologic effects from Dining Car on the Hybla Gold site were minor. Overburden above the working point is approximately 385 m (1,263 ft). The pre-Tertiary surface, probably quartzite, lies approximately 254 m (833 ft) below the working point. The drifts are mined in zeolitized ash-fall tuffs of tunnel bed 4, subunits K and J, all of Miocene age. The working point is in subunit 4J. Geologic structure in the region around the working point is not complex. The U12e.20 main drift follows the axis of a shallow depositional syncline. A northeast-dipping fault with displacement of approximately 3 m (10 ft) passes within 15.2 m (50 ft) of the Hybla Gold working point. Three faults of smaller displacement pass within 183-290 m (600-950 ft) of the working point, and are antithetic to the 3-m (10-ft) fault. Three exploratory holes were drilled to investigate the chimney of the nearby Dining Car event. Four horizontal holes were drilled during the construction of the U12e.20 drifts to investigate the geology of the Hybla Gold working point.
Mansue, Lawrence J.; Mills, Patrick C.
1991-01-01
The U.S. Geological Survey conducted hydrogeologic studies at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976 through 1987. During that period, 108 observation wells were installed in the vicinity of the disposal site in glacial and post-glacial deposits of Quaternary age and bedrock of Pennsylvanian age. Data in this report include the location of each well, the date each well was drilled, the geologic units penetrated by each well, the physical measurements of each well, the elevations of the top (measuring point) of each well and geologic-unit contacts at each well, and the highest and lowest recorded water levels in each well.
Application of Laser Scanning for Creating Geological Documentation
NASA Astrophysics Data System (ADS)
Buczek, Michał; Paszek, Martyna; Szafarczyk, Anna
2018-03-01
A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR) can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud) in combination with the photographs. The results were compared with the geological cross-section.
25 CFR 215.23 - Cooperation between superintendent and district mining supervisor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... notices, reports, drill logs, maps, and records, and all other information relating to mining operations required by said regulations to be submitted by lessees, and shall maintain a file thereof for the superintendent. (b) The files of the Geological Survey supervisor relating to lead and zinc leases of Quapaw...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grissom, M.C.
This bibliography includes 4715 citations arranged in the broad subject categories: reserves and exploration; site geology and hydrology; drilling, fracturing, and mining; oil production, recovery, and refining; properties and composition; direct uses and by-products; health and safety; marketing and economics; waste research and management; environmental aspects; regulations; and general. There are corporate, author, subject, contract number, and report number indexes.
NASA Technical Reports Server (NTRS)
Gohn, G. S.; Bruce, T. S.; Catchings, R. D.; Emry, S. R.; Johnson, G. H.; Levine, J. S.; McFarland, E. R.; Poag, C. W.; Powars, D. S.
2001-01-01
The Chesapeake Bay impact structure is the focus of an ongoing federal-state-local research program. Recent core drilling and geophysical surveys address the formative processes and hydrogeologic properties of this major "wet-target" impact. Additional information is contained in the original extended abstract.
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2012 CFR
2012-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2011 CFR
2011-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2013 CFR
2013-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2014 CFR
2014-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
Exploration and development of hydrocarbon resources in Pacific basins of Ecuador--summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrin, A.
1976-01-01
The Pacific basins of Ecuador have excellent geologic characteristics for the accumulation of hydrocarbons. Geologic, seismic, gravity, and magnetic surveys provided a basis for exploratory drilling in the provinces of Esmeraldas, Manabi, and Guayas. Exploratory drilling in the Santa Elena Peninsula has resulted in the discovery of the Ancon, Petropolis, Santa Paula, Concepcion, Certeza, and other oil fields. In 1970, the Amistad gas field was discovered in the Gulf of Guayaquil. Shows of gas and oil were obtained in stratigraphic units penetrated in wildcats elsewhere in Guays Province. The best petroleum prospects of the Ecuadorian littoral zone are placed offshoremore » in the Gulf of Guayaquil. Important gas accumulations are present at depths between 9,000 and 14,000 ft (2,740 to 4,270 m), principally in the Miocene Subibaja Formation. Cumulative production of oil in this area to June 1974 was 106,300,000 bbl. Although data on gas reserves are scarce, proved reserves in the Gulf of Guayaquil are estimated at 145,111 MMcf, and probable reserves at 373,536 MMcf.« less
Geohydrology of Monitoring Wells Drilled in Oasis Valley near Beatty, Nye County, Nevada, 1997
Robledo, Armando R.; Ryder, Philip L.; Fenelon, Joseph M.; Paillet, Frederick L.
1999-01-01
Twelve monitoring wells were installed in 1997 at seven sites in and near Oasis Valley, Nevada. The wells, ranging in depth from 65 to 642 feet, were installed to measure water levels and to collect water-quality samples. Well-construction data and geologic and geophysical logs are presented in this report. Seven geologic units were identified and described from samples collected during the drilling: (1) Ammonia Tanks Tuff; (2) Tuff of Cutoff Road; (3) tuffs, not formally named but informally referred to in this report as the 'tuff of Oasis Valley'; (4) lavas informally named the 'rhyolitic lavas of Colson Pond'; (5) Tertiary colluvial and alluvial gravelly deposits; (6) Tertiary and Quaternary colluvium; and (7) Quaternary alluvium. Water levels in the wells were measured in October 1997 and February 1998 and ranged from about 18 to 350 feet below land surface. Transmissive zones in one of the boreholes penetrating volcanic rock were identified using flowmeter data. Zones with the highest transmissivity are at depths of about 205 feet in the 'rhyolitic lavas of Colson Pond' and 340 feet within the 'tuff of Oasis Valley.'
CarbonSAFE Illinois - Macon County
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittaker, Steve
CarbonSAFE Illinois is a a Feasibility study to develop an established geologic storage complex in Macon County, Illinois, for commercial-scale storage of industrially sourced CO2. Feasibility activities are focused on the Mt. Simon Storage Complex; a step-out well will be drilled near existing storage sites (i.e., the Midwest Geological Sequestration Consortium’s Illinois Basin – Decatur Project and the Illinois Industrial Carbon Capture and Storage Project) to further establish commercial viability of this complex and to evaluate EOR potential in a co-located oil-field trend. The Archer Daniels Midland facility (ethanol plant), City Water, Light, and Power in Springfield, Illinois (coal-fired powermore » station), and other regional industries are potential sources of anthropogenic CO2 for storage at this complex. Site feasibility will be evaluated through drilling results, static and dynamic modeling, and quantitative risk assessment. Both studies will entail stakeholder engagement, consideration of infrastructure requirements, existing policy, and business models. Project data will help calibrate the National Risk Assessment Partnership (NRAP) Toolkit to better understand the risks of commercial-scale carbon storage.« less
Gibbs, S.J.; Bralower, T.J.; Bown, Paul R.; Zachos, J.C.; Bybell, L.M.
2006-01-01
Abrupt global warming and profound perturbation of the carbon cycle during the Paleocene-Eocene Thermal Maximum (PETM, ca. 55 Ma) have been linked to a massive release of carbon into the ocean-atmosphere system. Increased phytoplankton productivity has been invoked to cause subsequent CO2 drawdown, cooling, and environmental recovery. However, interpretations of geochemical and biotic data differ on when and where this increased productivity occurred. Here we present high-resolution nannofossil assemblage data from a shelf section (the U.S. Geological Survey [USGS] drill hole at Wilson Lake, New Jersey) and an open-ocean location (Ocean Drilling Program [ODP] Site 1209, paleoequatorial Pacific). These data combined with published biotic records indicate a transient steepening of shelf-offshelf trophic gradients across the PETM onset and peak, with a decrease in open-ocean productivity coeval with increased nutrient availability in shelf areas. Productivity levels recovered in the open ocean during the later stages of the event, which, coupled with intensified continental weathering rates, may have played an important role in carbon sequestration and CO2 drawdown. ?? 2006 Geological Society of America.
NASA Astrophysics Data System (ADS)
Bertermann, David; Müller, Johannes; Galgaro, Antonio; Cultrera, Matteo; Bernardi, Adriana; Di Sipio, Eloisa
2016-04-01
The success and widespread diffusion of new sustainable technologies are always strictly related to their affordability. Nowadays the energy price fluctuations and the economic crisis are jeopardizing the development and diffusion of renewable technologies and sources. With the aim of both reduce the overall costs of shallow geothermal systems and improve their installation safety, an European project has took place recently, under the Horizon 2020 EU Framework Programme for Research and Innovation. The acronym of this project is Cheap-GSHPs, meaning "cheap and efficient application of reliable ground source heat exchangers and pumps"; the CHEAP-GSHPs project involves 17 partners among 9 European countries such Belgium, France, Germany, Greece, Ireland, Italy, Romania, Spain, Switzerland. In order to achieve the planned targets, an holistic approach is adopted, where all involved elements that take part of shallow geothermal activities are here integrated. In order to reduce the drilling specific costs and for a solid planning basis the INSPIRE-conformal ESDAC data set PAR-MAT-DOM ("parent material dominant") was analysed and reinterpreted regarding the opportunities for cost reductions. Different ESDAC classification codes were analysed lithologically and sedimentologically in order to receive the most suitable drilling technique within different formations. Together with drilling companies this geological data set was translated into a geotechnical map which allows drilling companies the usage of the most efficient drilling within a certain type of underground. The scale of the created map is 1: 100,000 for all over Europe. This leads to cost reductions for the final consumers. Further there will be the definition of different heat conductivity classes based on the reinterpreted PAR-MAT-DOM data set which will provide underground information. These values will be reached by sampling data all over Europe and literature data. The samples will be measured by several different laboratory instruments in variable states of saturation. Literature data are then also compared to the resulting laboratory measurements. All in all this new data set will provide the development of more efficient cost planning tools. It provides detailed underground information on an European-wide level and the dimensioning of a spatial geothermal installation can be optimised. In order to provide a new drilling cost estimation, a new parameter called "drillability" is here suggested; the drillability is based on the drilling time for different type of rocks/sediments. The results are cost reductions which makes geothermal energy solution more attractive for end consumers especially on residential levels.
An Analysis of the Published Mineral Resource Estimates of the Haji-Gak Iron Deposit, Afghanistan
Sutphin, D.M.; Renaud, K.M.; Drew, L.J.
2011-01-01
The Haji-Gak iron deposit of eastern Bamyan Province, eastern Afghanistan, was studied extensively and resource calculations were made in the 1960s by Afghan and Russian geologists. Recalculation of the resource estimates verifies the original estimates for categories A (in-place resources known in detail), B (in-place resources known in moderate detail), and C 1 (in-place resources estimated on sparse data), totaling 110. 8 Mt, or about 6% of the resources as being supportable for the methods used in the 1960s. C 2 (based on a loose exploration grid with little data) resources are based on one ore grade from one drill hole, and P 2 (prognosis) resources are based on field observations, field measurements, and an ore grade derived from averaging grades from three better sampled ore bodies. C 2 and P 2 resources are 1,659. 1 Mt or about 94% of the total resources in the deposit. The vast P 2 resources have not been drilled or sampled to confirm their extent or quality. The purpose of this article is to independently evaluate the resources of the Haji-Gak iron deposit by using the available geologic and mineral resource information including geologic maps and cross sections, sampling data, and the analog-estimating techniques of the 1960s to determine the size and tenor of the deposit. ?? 2011 International Association for Mathematical Geology (outside the USA).
Fisk, Gregory G.; Ferguson, S.A.; Rankin, D.R.; Wirt, Laurie
1994-01-01
In June 1988, The U.S. Geological Survey began a 4-year study of the occurrence and movement of radionuclides and other chemical constituents in ground water and surface water in the Little Colorado River basin in Arizona and New Mexico. Radionuclides and other chemical constituents occur naturally in water, rock, and sediment throughout the region; however, discharge of mine--dewatering effluents released by mining operations increased the quantity of radionuclides and other chemical contaminants. Additionally, in 1979, the failure of a tailings-pond dike resulted in the largest known single release of water contaminated by uranium tailings in the United States. Ground-water data and surface-water data were collected from July 1988 through September 1991. Sixty-nine wells were sampled, and collected data include well- construction information, lithologic logs, water levels and chemical analysis of water samples. The wells include 31 wells drilled by the U.S. Geological Survey, 7 wells drilled by the New Mexico Environment Department, 11 private wells, and 20 temporary drive-point wells; in addition, 1 spring was sampled. Data from nine continual-record and five partial-record stxeamflow-gaging stations include daily mean discharge, daily mean suspended-sediment concentration and discharge, and chemical analysis for discrete water and sediment samples. Precipitation data also were collected at the nine continual-record stations.
NASA Astrophysics Data System (ADS)
Butler, D. K.
1982-03-01
This report reviews the scope of a research effort initiated in 1974 at the U.S. Army Engineer Waterways Experiment Station with the objectives of (a) assessing the state of the art in geophysical cavity detection and delineation methodology and (b) developing new methods and improving or adapting old methods for application to cavity detection and delineation. Two field test sites were selected: (a) the Medford Cave site with a relatively shallow (10- to 50-ft-deep) air-filled cavity system and (b) the Manatee Springs site with a deeper (approximately 100-ft-deep) water-filled cavity system. Results of field studies at the Medford Cave site are presented in this report: (a) the site geology, (b) the site topographic survey, (c) the site drilling program (boreholes for geophysical tests, for determination of a detailed geological cross section, and for verification of geophysical anomalies), (d) details of magnetic and microgravimetric surveys, and (e) correlation of geophysical results with known site geology. Qualitative interpretation guidelines using complementary geophysical techniques for site investigations in karst regions are presented. Including the results of electrical resistivity surveys conducted at the Medford Cave site, the qualitative guidelines are applied to four profile lines, and drilling locations are indicated on the profile plots of gravity, magnetic, and electrical resistivity data. Borehole logs are then presented for comparison with the predictions of the qualitative interpretation guidelines.
NASA Astrophysics Data System (ADS)
Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang
2014-05-01
SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud treatment and high temperature resistant cementing materials, and bionic bits,that is coupling bionic PDC tooth bit and diamond-impregnated bit for hard rock.All parts of CRUST-1 were successfully assembled along with the derrick and base lift and transported about 3456 kilometers from manufacture,GuangHan city in southwest China's Sichuan province,to the well site of SK-2 in end of 2013.SK-2 will be finished during next 4 years.
NASA Astrophysics Data System (ADS)
Sumintadireja, Prihadi; Irawan, Diky
2017-06-01
Mud volcano remnants are identified in Surabaya and adjacent areas. The people in East Java based on historical report are custom and able to adjust with the natural phenomena within their areas. Sidoarjo mud volcano phenomena which coincident with drilling activity in 29 May 2006 is making people and government anxious for development a new infrastructure such as high rise building, toll road etc. An understanding of a geological hazard which can be single, sequential or combined events in their origin is the main key importance in subsurface imaging. Geological hazard can be identified by geophysical, geological, geotechnical method. The prompt selection of geophysical method to reveal subsurface condition is very important factor instead of survey design and field data acquisition. Revealing subsurface condition is very important information for site investigation consists of geological, geophysical and geotechnical data, whereas data analysis will help civil engineer design and calculate the construction safety.
NASA Astrophysics Data System (ADS)
Cohen, Andrew S.; Salzburger, Walter
2017-05-01
We report on the outcomes of a workshop held to discuss evolutionary biology, paleobiology and paleoecology questions that could be addressed by a scientific drilling project at Lake Tanganyika, the largest, deepest and oldest of the African Rift Valley lakes. Lake Tanganyika is of special significance to evolutionary biologists as it harbors one of the most spectacular endemic faunas of any lake on earth, with hundreds of unique species of fish, molluscs, crustaceans and other organisms that have evolved over the lake's long history. Most of these groups of organisms are known from fossils in short cores from the lake, raising the possibility that both body fossil and ancient DNA records might be recovered from long drill cores. The lake's sedimentary record could also provide a record of African terrestrial ecosystem history since the late Miocene. This 3-day workshop brought together biological and geological specialists on the lake and its surroundings to prioritize paleobiological, ecological and microbiological objectives that could ultimately be incorporated into an overall drilling plan for Lake Tanganyika and to consider how biological objectives can effectively be integrated into the paleoclimate and tectonics objectives of a Lake Tanganyika drilling project already considered in prior workshops.
Towards a distributed infrastructure for research drilling in Europe
NASA Astrophysics Data System (ADS)
Mevel, C.; Gatliff, R.; Ludden, J.; Camoin, G.; Horsfield, B.; Kopf, A.
2012-04-01
The EC-funded project "Deep Sea and Sub-Seafloor Frontier" (DS3F) aims at developing seafloor and sub seafloor sampling strategies for enhanced understanding of deep-sea and sub seafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. DS3F has identified access to sub seafloor sampling and instrumentation as a key element of this approach. There is a strong expertise in Europe concerning direct access to the sub seafloor. Within the international program IODP (Integrated Ocean Drilling Program), ECORD (European Consortium for Ocean Research Drilling) has successfully developed the concept of mission specific platforms (MSPs), contracted on a project basis to drill in ice covered and shallow water areas. The ECORD Science Operator, lead by the British Geological Survey (BGS) has build a internationally recognized expertise in scientific ocean drilling, from coring in challenging environment, through down hole measurements and laboratory analysis to core curation and data management. MARUM, at the Bremen University in Germany, is one of the three IODP core repositories. Europe is also at the forefront of scientific seabed drills, with the MeBo developed by MARUM as well as the BGS seabed rocks drills. Europe also plays a important role in continental scientific drilling and the European component of ICDP (International Continental Scientific Drilling Program) is strengthening, with the recent addition of France and foreseen addition of UK. Oceanic and continental drilling have very similar scientific objectives. Moreover, they share not only common technologies, but also common data handling systems. To develop an integrated approach to technology development and usage, a move towards a a distributed infrastructure for research drilling in Europe has been initiated by these different groups. Built on existing research & operational groups across Europe, it will facilitate the sharing of technological and scientific expertise for the benefit of the science community. It will link with other relevant infrastructure initiatives such as EMSO (European Marine Seafloor Observatories). It will raise the profile of scientific drilling in Europe and hopefully lead to better funding opportunities.
46 CFR 169.829 - Emergency lighting and power systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 169.829 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations Tests, Drills, and Inspections § 169.829 Emergency lighting and power systems... and performance of the apparatus must be noted in the official logbook. ...
NASA Technical Reports Server (NTRS)
Scibbe, H. W.; Munson, H. E.
1974-01-01
Seven 150-millimeter-bore ball bearings were run under 8900-newton (2000-lbf) thrust load at speeds from 6670 to 20,000 rpm (1 million to 3 million DN). Four of the bearings had conventional solid balls, and three bearings had drilled (cylindrically hollow) balls with 50-percent mass reduction. The bearings were under-race cooled and slot lubricated with a type 2 ester oil at flow rates from 4.35 x 0.001 to 5.94 x 0.001 cubic meter/min (1.15 to 1.57 gal/min). Friction torque and temperature were measured on all bearings. While there was considerable spread in the temperature data, the drilled ball bearings tended to run slightly cooler than the solid ball bearings at higher speeds. No significant difference in torque was noted, however, between the solid and drilled ball bearings. One bearing of each type was rerun at 17,800-newton (4000-lbf) thrust load. The solid ball bearings performed satisfactorily at 3 million DN. However, at about 2 million DN the drilled ball bearing experienced a broken ball, and cracks appeared in other balls as a result of flexure fatigue. Metallurgical examination of the cracked balls indicated a brittle structure in the bore of the drilled balls.
The superdeep well of the Kola Peninsula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovsky, Y.A.
1986-01-01
The structure of continental crusts is a subject of ever increasing importance in the geological sciences. Over 15 years ago, Soviet scientist began drilling a superdeep well on the Kola Peninsula near Murmansk. The well has reached a depth of 12 km and is thereby the deepest well in the world, yielding a vast amount of information on the structure of the continental crust. The geological, geophysical and technological data from the Kola well were initially published in a monographic account entitled ''Kol'skaja sverchglubokaja''. This English translation makes the results available to non-Soviet scientists as well.
Applications of aerospace technology to petroleum exploration. Volume 1: Efforts and results
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1976-01-01
The feasibility of applying aerospace techniques to help solve significant problems in petroleum exploration is studied. Through contacts with petroleum industry and petroleum service industry, important petroleum exploration problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified where possible. Topics selected for investigation include: seismic reflection systems; down-hole acoustic techniques; identification of geological analogies; drilling methods; remote geological sensing; and sea floor imaging and mapping. Specific areas of aerospace technology are applied to 21 concepts formulated from the topics of concern.
Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana
Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.
2015-01-01
The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.
Cone penetration test for facies study: a review
NASA Astrophysics Data System (ADS)
Satriyo, N. A.; Soebowo, E.
2018-02-01
Engineering geology investigation through Cone Penetration Test (with pore-pressure measurements) approach is one of the most effective methods to find out sub surface layer. This method is generally used in Late Quaternary and typical deposit and can also be used for sedimentological purposes. CPTu and drilling core for high-resolution stratigraphy sub surface have been done in many research. These combined data can also be used to detail correlations of sub surface stratigraphy, to identify facies change and to determine the interpretation of sequence stratigraphy. The determination facies distribution research based on CPTu profile, which was included in quantitative data, is rarely done especially in Indonesia which has a different climate. Whereas drilling core description using grain size analysis will provide information on validation about physical lithology characteristics which are developed in research area. The interpretation is given using CPTu curve pattern and cone resistance parameter of CPTu’s data correlated with physical characteristics of drilling core. The cone resistance will provide the strength of the sediment layer which also gives the range of data between clay and sand. Finally, the review will show that each of developing facies characteristic provides a specific curve pattern and every sediment deposit facies can be determined by the transformation of CPTu curve profile. Despite the fact that the research using those methods are quite comprehensive, a review is presented on each of these methods related with the chronologic factor seen by the geological time and different characteristics sediment of different location.
The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta
NASA Astrophysics Data System (ADS)
Ivarsson, Magnus; Lindgren, Paula
2010-07-01
On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.
Geologic features of dam sites in the Nehalem, Rogue, and Willamette River basins, Oregon, 1935-37
Piper, A.M.
1947-01-01
The present report comprises brief descriptions of geologic features at 19 potential dam sites in the Nehalem, Rogue, and Willamette River basins in western Oregon. The topography of these site and of the corresponding reservoir site was mapped in 1934-36 under an allocation of funds, by the Public Works Administration for river-utilization surveys by the Conservation Branch of the United States Geological Survey. The field program in Oregon has been under the immediate charge of R. O. Helland. The 19 dam sites are distributed as follows: three on the Nehalem River, on the west or Pacific slope of the Oregon Coast range; four on Little Butte Creek and two on Evans Creek, tributaries of the Rogue River in the eastern part of the Klamath Mountains; four on the South and Middle Santiam Rivers, tributaries of the Willamette River from the west slope of the Cascade mountains; and six on tributaries of the Willamette River from the east slope of the Coast Range. Except in the Evans Creek basin, all the rocks in the districts that were studied are of comparatively late geological age. They include volcanic rocks, crystalline rocks of several types, marine and nonmarine sedimentary rocks, and recent stream deposits. The study of geologic features has sought to estimate the bearing power and water-tightness of the rocks at each dam site, also to place rather broad limits on the type of dam for which the respective sites seem best suited. It was not considered necessary to study the corresponding reservoir sites in detail for excessive leakage appears to be unlikely. Except at three of the four site in the Santiam River basin, no test pits have been dug nor exploratory holes drilled, so that geologic features have been interpreted wholly from natural outcrops and from highway and railroad cuts. Because these outcrops and cuts are few, many problems related to the construction and maintenance of dams can not be answered at the this time and all critical features of the sites should be thoroughly explored by test pits and drilled holes before any dam is designed. This applied especially to sites in the Nehalem and Willamette River basins where commonly the cover of timber and brush is dense and the rocks are rather deeply weathered. On the Middle Santiam and South Santiam Rivers, the Cascadia, Greenpeter, and Sweet Home sits have been studies intensively by the United States Engineer Department, whose work included exploration by diamond-drill holes and test pits. Their conclusions as to geologic features are given in a report by McKitrick and have been reviewed by the writer. Data from this source have been used freely in the discussion of the respective sites in this report. The probability of destructive earthquakes in the region appears to be small but is not negligible. Prudence suggests that any high dam should embody features to assure stability against moderately strong earth motions.
Mars, John L.; Garrity, Christopher P.; Houseknecht, David W.; Amoroso, Lee; Meares, Donald C.
2007-01-01
Introduction The northeastern part of the National Petroleum Reserve in Alaska (NPRA) has become an area of active petroleum exploration during the past five years. Recent leasing and exploration drilling in the NPRA requires the U.S. Bureau of Land Management (BLM) to manage and monitor a variety of surface activities that include seismic surveying, exploration drilling, oil-field development drilling, construction of oil-production facilities, and construction of pipelines and access roads. BLM evaluates a variety of permit applications, environmental impact studies, and other documents that require rapid compilation and analysis of data pertaining to surface and subsurface geology, hydrology, and biology. In addition, BLM must monitor these activities and assess their impacts on the natural environment. Timely and accurate completion of these land-management tasks requires elevation, hydrologic, geologic, petroleum-activity, and cadastral data, all integrated in digital formats at a higher resolution than is currently available in nondigital (paper) formats. To support these land-management tasks, a series of maps was generated from remotely sensed data in an area of high petroleum-industry activity (fig. 1). The maps cover an area from approximately latitude 70?00' N. to 70?30' N. and from longitude 151?00' W. to 153?10' W. The area includes the Alpine oil field in the east, the Husky Inigok exploration well (site of a landing strip) in the west, many of the exploration wells drilled in NPRA since 2000, and the route of a proposed pipeline to carry oil from discovery wells in NPRA to the Alpine oil field. This map area is referred to as the 'Fish Creek area' after a creek that flows through the region. The map series includes (1) a color shaded-relief map based on 5-m-resolution data (sheet 1), (2) a surface-classification map based on 30-m-resolution data (sheet 2), and (3) a 5-m-resolution shaded relief-surface classification map that combines the shaded-relief and surface-classification data (sheet 3). Remote sensing datasets that were used to compile the maps include Landsat 7 Enhanced Thematic Mapper+ (ETM+), and interferometric synthetic aperture radar (IFSAR) data. In addition, a 1:250,000-scale geologic map of the Harrison Bay quadrangle, Alaska (Carter and Galloway, 1985, 2005) was used in conjunction with ETM+ and IFSAR data.
NASA Astrophysics Data System (ADS)
Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.
2012-12-01
Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com
A seismic reflection velocity study of a Mississippian mud-mound in the Illinois basin
NASA Astrophysics Data System (ADS)
Ranaweera, Chamila Kumari
Two mud-mounds have been reported in the Ullin limestone near, but not in, the Aden oil field in Hamilton County, Illinois. One mud-mound is in the Broughton oil field of Hamilton County 25 miles to the south of Aden. The second mud-mound is in the Johnsonville oil field in Wayne County 20 miles to the north of Aden. Seismic reflection profiles were shot in 2012 adjacent to the Aden oil field to evaluate the oil prospects and to investigate the possibility of detecting Mississippian mud-mounds near the Aden field. A feature on one of the seismic profiles was interpreted to be a mud-mound or carbonate buildup. A well drilled at the location of this interpreted structure provided digital geophysical logs and geological logs used to refine the interpretation of the seismic profiles. Geological data from the new well at Aden, in the form of drill cuttings, have been used to essentially confirm the existence of a mud-mound in the Ullin limestone at a depth of 4300 feet. Geophysical well logs from the new well near Aden were used to create 1-D computer models and synthetic seismograms for comparison to the seismic data. The reflection seismic method is widely used to aid interpreting subsurface geology. Processing seismic data is an important step in the method as a properly processed seismic section can give a better image of the subsurface geology whereas a poorly processed section could mislead the interpretation. Seismic reflections will be more accurately depicted with careful determination of seismic velocities and by carefully choosing the processing steps and parameters. Various data processing steps have been applied and parameters refined to produce improved stacked seismic records. The resulting seismic records from the Aden field area indicate a seismic response similar to what is expected from a carbonate mud-mound. One-dimensional synthetic seismograms were created using the available sonic and density logs from the well drilled near the Aden seismic lines. The 1-D synthetics were used by Cory Cantrell of Royal Drilling and Producing Company to identify various reflections on the seismic records. Seismic data was compared with the modeled synthetic seismograms to identify what appears to be a carbonate mud-mound within the Aden study area. No mud-mounds have been previously found in the Aden oil field. Average and interval velocities obtained from the geophysical logs from the wells drilled in the Aden area was compared with the same type of well velocities from the Broughton known mud-mound area to observe the significance of velocity variation related to the un-known mud-mound in the Aden study area. The results of the velocity study shows a similar trends in the wells from both areas and are higher at the bottom of the wells. Another approach was used to observe the variation of root mean square velocities calculated from the sonic log from the well velocity from the Aden area and the stacking velocities obtained from the seismic data adjacent to the well.
The ICDP Information Network and the Chinese Continental Scientific Drilling CCSD
NASA Astrophysics Data System (ADS)
Conze, R.; Su, D.
2002-12-01
ICDP is an international program investigating the 'System Earth' in multidisciplinary co-operation. Funded drilling projects are characterized by detailed fieldwork at world-class geological sites on the continents and by the global scope of research objectives. During project work, partnering researchers from all over the world work together at remote drill sites and in laboratories at their institutions. Researchers apply a range of highly diverse scientific methodologies, thereby acquiring huge data sets. Multinational co-operation and increasing amounts of scientific data require completely new concepts and practices for scientific work, and place heavy demands on information and communications management. This is achieved by means of the ICDP Information Network. Scientists working on ICDP related data need a central long-term data archive with powerful tools for navigation, data modeling and analysis. The Chinese Continental Scientific Drilling CCSD is a national key scientific and engineering project of the PR China supported by ICDP. The current drill site of CCSD is located in Donghai, Jiangsu Province, the eastern part of the Dabie-Sulu UHP metamorphic belt, which possesses global geological significance. From the spud on June 25, 2001 to April 6, 2002, the 2000m pilot hole was finished with a total core recovery of 88.7% and an average inclination angle of 3-4 degrees. The pilot hole has been transformed to the main hole by hole opening. Deepening and coring of the CCSD-1 main hole is currently in progress. Most of the basic scientific documentation and measurements are done in a large field laboratory directly beside the drill rig, which was set up using the standard of the former German Continental Scientific Drilling (KTB). It includes a powerful infrastructure for computing and electronic communication as well as a comprehensive twofold data and information management: 1. The CCSD-DMIS is a special Data Management Information System for the chinese project management, which is used for internal controlling and decision making. 2. The CCSD-DIS is the specifically designed on-site Drilling Information System, which is used for documentation and archiving of all kinds of scientific and technical information. Both are used in a local Intranet within the field lab, but they also provide certain information via secured Internet services. The CCSD-DIS feeds day-by-day the current reports and new recordings to the CCSD Web portal within the ICDP Information Network (http://www.icdp-online.org/html/sites/donghai/news/news.html). This portal provides chinese and english news and information for the public as well as scientific and technical stuff which is only available for the international CCSD Science Team. Using the example of the CCSD project, a poster and an on-line presentation will show the main components and value-added services of the ICDP Information Network like: ú the common portal for and dissemination of project information by the ICDP Clearinghouse, ú capture of scientific drilling data using individual On-Site Drilling Information Systems (DIS), ú virtual global field laboratories based on eXtended DIS, ú integrated evaluation and analysis of data supported by the ICDP Data Webhouse.
Degnan, James R.; Walsh, Gregory J.; Flanagan, Sarah M.; Burruss, Robert A.
2008-01-01
In August 2004, a commercial drill rig was destroyed by ignition of an explosive gas released during the drilling of a domestic well in granitic bedrock in Tyngsborough, MA. This accident prompted the Massachusetts Department of Environmental Protection (MassDEP) to sample the well water for dissolved methane - a possible explosive fuel. Water samples collected from the Tyngsborough domestic well in 2004 by the MassDEP contained low levels of methane gas (Pierce and others, 2007). When the U.S. Geological Survey (USGS) sampled this well in 2006, there was no measurable amount of methane remaining in the well water (Pierce and others, 2007). Other deep water wells in nearby south-central New Hampshire have been determined to have high concentrations of naturally occurring methane (David Wunsch, New Hampshire State Geologist, 2004, written commun.). Studying additional wells in New England crystalline bedrock aquifers that produce methane may help to understand the origin of methane in crystalline bedrock. Domestic well NH-WRW-37 was chosen for this study because it is a relatively deep well completed in crystalline bedrock, it is not affected by known anthropogenic sources of methane, and it had the highest known natural methane concentration (15.5 mg/L, U.S. Geological Survey, 2007) measured in a study described by Robinson and others (2004). This well has been in use since it was drilled in 1997, and it was originally selected for study in 2000 as part of a 30 well network, major-aquifer study by the USGS' New England Coastal Basins (NECB) study unit of the National Water-Quality Assessment (NAWQA) Program. Dissolved methane in drinking water is not considered an ingestion health hazard, although the occurrence in ground water is a concern because, as a gas, its buildup in confined spaces can cause asphyxiation, fire, or explosion hazards (Mathes and White, 2006). Methane occurrence in the fractured crystalline bedrock is not widely reported or well understood. Borehole-geophysical surveys, bedrock outcrop observations, and water-quality analyses were used to define the geologic and hydrologic characteristics of NH-WRW-37. Collection of additional information on the hydraulic and geologic characteristics of the fractured bedrock and on water quality was initiated in an attempt to understand the setting where methane gas occurs in the bedrock ground water. The origin of dissolved methane in this and other wells in New Hampshire is the subject of ongoing investigations by the State of New Hampshire, the New Hampshire Geological Survey and the USGS.
Day, Warren C.; O'Neill, J. Michael
2008-01-01
The U.S. Geological Survey, in cooperation with the Alaska Department of Natural Resources Division of Mining, Land, and Water, has released a geologic map of the Big Delta B-1 quadrangle of east-central Alaska (Day and others, 2007). This companion report presents the major element oxide and trace element geochemical analyses, including those for gold, silver, and base metals, for representative rock units and for grab samples from quartz veins and mineralized zones within the quadrangle. Also included are field station locations, field notes, structural data, and field photographs based primarily on observations by W.C. Day with additions by J.M. O'Neill and B.M. Gamble, all of the U.S. Geological Survey. The data are provided in both Microsoft Excel spread sheet format and as a Microsoft Access database.
Geologic framework for the national assessment of carbon dioxide storage resources
Warwick, Peter D.; Corum, Margo D.
2012-01-01
The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) and to consult with other Federal and State agencies to locate the pertinent geological data needed for the assessment. The geologic sequestration of CO2 is one possible way to mitigate its effects on climate change. The methodology used for the national CO2 assessment (Open-File Report 2010-1127; http://pubs.usgs.gov/of/2010/1127/) is based on previous USGS probabilistic oil and gas assessment methodologies. The methodology is non-economic and intended to be used at regional to subbasinal scales. The operational unit of the assessment is a storage assessment unit (SAU), composed of a porous storage formation with fluid flow and an overlying sealing unit with low permeability. Assessments are conducted at the SAU level and are aggregated to basinal and regional results. This report identifies and contains geologic descriptions of SAUs in separate packages of sedimentary rocks within the assessed basin and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Wells sharing the same well borehole are treated as a single penetration. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.
Buursink, Marc L.; Craddock, William H.; Blondes, Madalyn S.; Freeman, Phillip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.
2013-01-01
2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Upper Cambrian to Mississippian sedimentary rocks within the Arkoma Basin study area, and two SAUs in Upper Cambrian to Mississippian sedimentary rocks within the Kansas Basins study area. The Arkoma Basin and Kansas Basins are adjacent with very similar geologic units; although the Kansas Basins area is larger, the Arkoma Basin is more structurally complex. The report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are usually provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information herein was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. The Midcontinent Rift Basin study area was not assessed, because no suitable storage formations meeting our size, depth, reservoir quality, and regional seal guidelines were found. Figures in this report show study area boundaries along with the SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one-square mile and are derived from interpretations of incompletely attributed well data and from a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on the cell maps.
New approaches to subglacial bedrock drilling technology
NASA Astrophysics Data System (ADS)
Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail
2013-04-01
Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical ice core drill is designed and tested. The expected average daily production of ice drilling would be not less than 25 m/day. The lower part of the drill is adapted for coring bed-rock using special tooth diamond bit. Deep ice coring requires a drilling fluid in the borehole during operation in order to keep the hole open and to compensate the hydrostatic pressures acting to close it. At present there are no ideal low-temperature drilling fluids as all of them are environmental and health hazardous substances. The new approaches of subglacial bedrock drilling technology are connected with utilization of environmental friendly, low-toxic materials, e.g. low-molecular dimethyl siloxane oils or aliphatic synthetic ester of ESTISOL™ 140 type. They have suitable density-viscosity properties, and can be consider as a viable alternative for drilling in glaciers and subglacial bedrock.
Trace-element analyses of core samples from the 1967-1988 drillings of Kilauea Iki lava lake, Hawaii
Helz, Rosalind Tuthill
2012-01-01
This report presents previously unpublished analyses of trace elements in drill core samples from Kilauea Iki lava lake and from the 1959 eruption that fed the lava lake. The two types of data presented were obtained by instrumental neutron-activation analysis (INAA) and energy-dispersive X-ray fluorescence analysis (EDXRF). The analyses were performed in U.S. Geological Survey (USGS) laboratories from 1989 to 1994. This report contains 93 INAA analyses on 84 samples and 68 EDXRF analyses on 68 samples. The purpose of the study was to document trace-element variation during chemical differentiation, especially during the closed-system differentiation of Kilauea Iki lava lake.
Wood, David B.
2018-03-14
Rock samples have been collected, analyzed, and interpreted from drilling and mining operations at the Nevada National Security Site for over one-half of a century. Records containing geologic and hydrologic analyses and interpretations have been compiled into a series of databases. Rock samples have been photographed and thin sections scanned. Records and images are preserved and available for public viewing and downloading at the U.S. Geological Survey ScienceBase, Mercury Core Library and Data Center Web site at https://www.sciencebase.gov/mercury/ and documented in U.S. Geological Survey Data Series 297. Example applications of these data and images are provided in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis
2004-07-01
This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2004 through June 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 4Q 2004 or later. Smith International's hammer was tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek re-tested the ''optimized'' fluid hammermore » provided by Smith International during April 2004. Many improvements in mud hammer rates of penetration were noted over Phase 1 benchmark testing from November 2002. (2) Shell Exploration and Production in The Hague was briefed on various drilling performance projects including Task 8 ''Cutter Impact Testing''. Shell interest and willingness to assist in the test matrix as an Industry Advisor is appreciated. (3) TerraTek participated in a DOE/NETL Review meeting at Morgantown on April 15, 2004. The discussions were very helpful and a program related to the Mud Hammer optimization project was noted--Terralog modeling work on percussion tools. (4) Terralog's Dr. Gang Han witnessed some of the full-scale optimization testing of the Smith International hammer in order to familiarize him with downhole tools. TerraTek recommends that modeling first start with single cutters/inserts and progress in complexity. (5) The final equipment problem on the impact testing task was resolved through the acquisition of a high data rate laser based displacement instrument. (6) TerraTek provided Novatek much engineering support for the future re-testing of their optimized tool. Work was conducted on slip ring [electrical] specifications and tool collar sealing in the testing vessel with a reconfigured flow system on Novatek's collar.« less
NASA Astrophysics Data System (ADS)
Omura, K.; Yamashita, F.; Yamada, R.; Matsuda, T.; Fukuyama, E.; Kubo, A.; Takai, K.; Ikeda, R.; Mizuochi, Y.
2004-12-01
Drilling is an effective method to investigate the structure and physical state in and around the active fault zone, such as, stress and strength distribution, geological structure and materials properties. In particular, the structure in the fault zone is important to understand where and how the stress accumulates during the earthquake cycle. In previous studies, we did integrate investigation on active faults in central Japan by drilling and geophysical prospecting. Those faults are estimated to be at different stage in the earthquake cycle, i.e., Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), the Neodani fault which appeared by the 1891 Nobi earth-quake (M=8.0), the Atera fault, of which some parts have seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), and Gofukuji Fault that is considered to have activated about 1200 years ago. Each faults showed characteristic features of fracture zone structure according to their geological and geophysical situations. In a present study, we did core recovery and down hole measurements at the Atotsugawa fault, central Japan, that is considered to have activated at 1858 Hida earthquake (M=7.0). The Atotsugawa fault is characterized by active seismicity along the fault. But, at the same time, the shallow region in the central segment of the fault seems to have low seismicity. The high seismicity segment and low seismicity segments may have different mechanical, physical and material properties. A 350m depth borehole was drilled vertically beside the surface trace of the fault in the low seismicity segment. Recovered cores were overall heavily fractured and altered rocks. In the cores, we observed many shear planes holding fault gouge. Logging data showed that the apparent resistance was about 100 - 600 ohm-m, density was about 2.0 - 2.5g/cm3, P wave velocity was approximately 3.0 - 4.0 km/sec, neutron porosity was 20 - 40 %. Results of physical logging show features of fault fracture zone that were the same as the fault fracture zones of other active faults that we have drilled previously. By the BHTV logging, we detected many fractures of which the strikes are not only parallel to the fault trace bur also oblique to the fault trace. The observations of cores and logging data indicate that the borehole passed in the fracture zone down to the bottom, and that the fracture zone has complicate internal structure including foliation not parallel to the fault trace. The core samples are significant for further investigation on material properties in the fracture zone. And we need data of geophysical prospecting to infer the deeper structure of the fracture zone.
ERIC Educational Resources Information Center
Maddison, Tasha; Beneteau, Donna; Sokoloski, Brandy
2014-01-01
This case study describes the use of flipped teaching for information literacy instruction in a new course, "Drill, Blast, and Excavate GeoE 498," within the mining option for geological engineering (GeoE) students. These students will enter the mining industry with less discipline-specific knowledge than a student that graduated with a…
NASA Astrophysics Data System (ADS)
Freudenthal, Tim; Bergenthal, Markus; Bohrmann, Gerhard; Pape, Thomas; Kopf, Achim; Huhn-Frehers, Katrin; Gohl, Karsten; Wefer, Gerold
2017-04-01
The MARUM-MeBo (abbreviation for Meeresboden-Bohrgerät, the German expression for seafloor drill rig) is a robotic drilling system that is developed since 2004 at the MARUM Center for Marine Environmental Sciences at the University of Bremen in close cooperation with Bauer Maschinen GmbH and other industry partners. The MARUM-MeBo drill rigs can be deployed from multipurpose research vessel like, RV MARIA S. MERIAN, RV METEOR, RV SONNE and RV POLARSTERN and are used for getting long cores both in soft sediments as well as hard rocks in the deep sea. The first generation drill rig, the MARUM-MeBo70 is dedicated for a drilling depth of more than 70 m (Freudenthal and Wefer, 2013). Between 2005 and 2016 it was deployed on 17 research expeditions and drilled about 3 km into different types of geology including carbonate and crystalline rocks, gas hydrates, glacial tills, sands and gravel, glacial till and hemipelagic mud with an average recovery rate of about 70 %. We used the development and operational experiences of MARUM-MeBo70 for the development of a second generation drill rig MARUM-MeBo200. This drill rig is dedicated for conducting core drilling down to 200 m below sea floor. After successful sea trials in the North Sea in October 2014 the MeBo200 was used on a scientific expedition on the research vessel RV SONNE (SO247) in March/April 2016. During 12 deployments we drilled altogether 514 m in hemipelagic sediments with volcanic ashes as well as in muddy and sandy slide deposits off New Zealand. The average core recovery was about 54%. The maximum drilling depth was 105 m below sea floor. Developments for the MeBo drilling technology include the development of a pressure core barrel that was successfully deployed on two research expeditions so far. Bore hole logging adds to the coring capacity. Several autonomous logging probes have been developed in the last years for a deployment with MeBo in the logging while tripping mode - a sonic probe measuring in situ p-wave velocity being the latest development. Various bore hole monitoring systems where developed and deployed with the MeBo system. They allow for long-term monitoring of pressure variability within the sealed bore holes. References: Freudenthal, T and Wefer, G (2013) Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo. Geoscientific Instrumentation, Methods and Data Systems, 2(2). 329-337. doi:10.5194/gi-2-329-2013
Earth's Archean Impact Record In The ICDP Drilling "Barberton Mountain Land".
NASA Astrophysics Data System (ADS)
Fritz, Jörg; Schmitt, Ralf-Thomas; Reimold, Uwe; Koeberl, Christian; Mc Donald, Ian; Hofmann, Axel; Luais, Beatrice
2013-04-01
The marine meta-sedimentary successions in the "Barberton Mountain Land" are formed by Archean volcanic and sedimentary rocks including the oldest known impact ejecta layers on Earth. The chemical signature (high iridium concentrations, chromium isotopic ratios) of some of these up to tens of cm thick Archean spherule layers advocate that these ejecta deposits represent mainly extraterrestrial material [1]. These ejecta layers contain millimetre sized spherules that are larger and accumulated thicker layers compared to any impact ejecta layer known from Phanerozoic sediments, including the global ejecta layer of the Chicxulub impact catering event terminating the Mesozoic era of Earth's history [2]. The Archean spherule layers are interpreted as products of large impacts by 20 to >100 km diameter objects [3, 4]. Identifying traces of mega-impacts in Earth's ancient history could be of relevance for the evolution of atmosphere, biosphere, and parts of the Earth's crust during that time. In addition, recognizing global stratigraphic marker horizons is highly valuable for inter-correlating sedimentary successions between Archean cratons [5]. However estimates regarding size of the impact event and correlations between the different outcrops in the Barberton mountain land are complicated by post depositional alterations of the tectonically deformed sediments [6, 7]. The relatively fresh samples recovered from below the water table during the 2011-2012 ICDP drilling "Barberton Mountain Land" are promising samples to investigate and to discriminate primary and secondary features of these rare rocks. We plan to conduct 1) petrographic, micro-chemical and mineralogical characterization of the impact ejecta layers, 2) bulk chemical analyses of major and trace elements, and 3) LAICP- MS elemental mapping of platinum group element (PGE) distributions. and elemental analyses of moderately siderophile elements. This aims at 1) characterization of the ejecta layers, 2) identification of the phases hosting the extraterrestrial PGE signature, 3) discrimination of the primary geological evidence of the impact event from those characteristics that resulted from syn- and post-sedimentary alteration. Acknowledgement: Financial support by the DFG - RE 528/14-1. References: [1] Lowe D. R. et al. (2003) Astrobiology 3, 7-47. [2] Simonson B. M. and Harnik P. (2000) Geology 28, 975-978. [3] Lowe D. R. and Byerly G. R. (1986) Geology 14, 83-86. [4] Melosh H. J. and Vickery A. M. (1991) Nature 350, 494-497. [5] Byerly G. R. et al. (2002) Science 297, 1325-1327. [6] Reimold W. U. et al. (2000) Impacts and the Early Earth. Eds.: Gilmour I., Koeberl C. Lecture Notes in Earth Sciences 91, Springer-Verlag, Berlin, pp.117-180. [7] Hofmann A. et al. (2006) GSA Special Paper 405, 33 - 56.
Curiosity Self-Portrait at Okoruso Drill Hole
2016-06-13
This self-portrait of NASA's Curiosity Mars rover shows the vehicle at a drilled sample site called "Okoruso," on the "Naukluft Plateau" of lower Mount Sharp. The scene combines multiple images taken with the rover's Mars Hand Lens Imager (MAHLI) on May 11, 2016, during the 1,338th Martian day, or sol, of the rover's work on Mars. In front of the rover is the hole, surrounded by grayish drill cuttings, created by using Curiosity's drill to collect sample rock powder at Okoruo, plus a patch of powder dumped onto the ground after delivery of a portion to the rover's internal Chemistry and Mineralogy (CheMin) laboratory instrument. The rover team compared the rock powder from drilling at Okoruso to material from the nearby "Lubango" drilling site, which is visible behind the rover, just to the left of the mast. The Lubango site was selected within a pale zone, or "halo," beside a fracture in the area's sandstone bedrock. Okoruso is in less-altered bedrock farther from any fractures. Note that the Okoruso drill cuttings appear darker than the Lubango drill cuttings. The Lubango sample was found to be enriched in silica and sulfates, relative to Okoruso. To the left of the rover, in this scene, several broken rocks reveal grayish interiors. Here, Curiosity was driven over the rocks in a fracture-associated halo, so that freshly exposed surfaces could be examined with MAHLI, Mast Camera (Mastcam) and Chemistry and Camera (ChemCam) instruments. An upper portion of Mount Sharp is prominent on the horizon. http://photojournal.jpl.nasa.gov/catalog/PIA20602
Tingey, B.E.; McBride, J.H.; Thompson, T.J.; Stephenson, W.J.; South, J.V.; Bushman, M.
2007-01-01
An integration of geological and geophysical techniques characterizes the internal and basal structure of a landslide along the western margin of the Wasatch Mountains in northern Utah, USA. The study area is within a region of planned and continuing residential development. The Little Valley Landslide is a prehistoric landslide as old as 13??ka B.P. Drilling and trenching at the site indicate that the landslide consists of chaotic and disturbed weathered volcanic material derived from Tertiary age volcanic rocks that comprise a great portion of the Wasatch Range. Five short high-resolution common mid-point seismic reflection profiles over selected portions of the site examine the feasibility of using seismic reflection to study prehistoric landslides in the Wasatch Mountain region. Due to the expected complexity of the near-surface geology, we have pursued an experimental approach in the data processing, examining the effects of muting first arrivals, frequency filtering, model-based static corrections, and seismic migration. The results provide a framework for understanding the overall configuration of the landslide, its basal (failure) surface, and the structure immediately underlying this surface. A glide surface or de??collement is interpreted to underlie the landslide suggesting a large mass movement. The interpretation of a glide surface is based on the onset of coherent reflectivity, calibrated by information from a borehole located along one of the seismic profiles. The glide surface is deepest in the center portion of the landslide and shallows up slope, suggesting a trough-like feature. This study shows that seismic reflection techniques can be successfully used in complex alpine landslide regions to (1) provide a framework in which to link geological data and (2) reduce the need for an extensive trenching and drilling program. ?? 2007 Elsevier B.V. All rights reserved.
Progress and challenges associated with digitizing and serving up Hawaii's geothermal data
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Lautze, N. C.; Abdullah, M.
2012-12-01
This presentation will report on the status of our effort to digitize and serve up Hawaii's geothermal information, an undertaking that commenced in 2011 and will continue through at least 2013. This work is part of national project that is funded by the Department of Energy and managed by the Arizona State Geology Survey (AZGS). The data submitted to AZGS is being entered into the National Geothermal Data System (see http://www.stategeothermaldata.org/overview). We are also planning to host the information locally. Main facets of this project are to: - digitize and generate metadata for non-published geothermal documents relevant to the State of Hawaii - digitize ~100 years of paper records relevant to well permitting and water resources development and serve up information on the ~4500 water wells in the state - digitize, organize, and serve up information on research and geothermal exploratory drilling conducted from the 1980s to the present. - work with AZGS and OneGeology to contribute a geologic map for Hawaii that integrates geologic and geothermal resource data. By December 2012, we anticipate that the majority of the digitization will be complete, the geologic map will be approved, and that over 1000 documents will be hosted online through the University of Hawaii's library system (in the "Geothermal Collection" within the "Scholar Space" repository, see http://scholarspace.manoa.hawaii.edu/handle/10125/21320). Developing a 'user-friendly' web interface for the water well and drilling data will be a main task in the coming year. Challenges we have faced and anticipate include: 1) ensuring that no personally identifiable information (e.g. SSN, private telephone numbers, bank or credit account) is contained in the geothermal documents and well files; 2) Homeland Security regulations regarding release of information on critical infrastructure related to municipal water supply systems; 3) maintenance of the well database as future well data are developed with the state's expanding inventory of wells to meet private and public needs. Feedback is welcome.
Astrobiology Drilling Program of the NASA Astrobiology Institute
NASA Astrophysics Data System (ADS)
Runnegar, B.
2004-12-01
Access to unweathered and uncontaminated samples of the least altered, oldest, sedimentary rocks is essential for understanding the early history of life on Earth and the environments in which it may have existed. For this reason, the NASA Astrobiology Institute (NAI) has embarked on two international programs, a series of Field Workshops aimed at making the most important surface samples available to investigators, and the Astrobiology Drilling Program (ADP), which serves to provide access to fresh subsurface samples when the scientific objectives require them. The Astrobiology Drilling Program commenced in Western Australia in 2003 with the initiation of its first project, the Archean Biosphere Drilling Project (ABDP). Funding for the ABDP came mainly from the Japanese Government through Kagoshima University and from NASA through the NAI Team at Pennsylvania State University, but significant technical and logistic support was provided by the Geological of Western Australia and, to a lesser extent, by the University of Western Australia. Six diamond drill cores totalling 1.4 km were obtained from astrobiologically important successions in the 3.3-3.5 Ga-old Pilbara Craton of northern Western Australia. Drilling in 2004 also occurred in Western Australia. The Deep Time Drilling Project (DTDP), a spin-off from the NAI's Mission to Early Earth Focus Group, completed one long hole, aimed mainly at fossil biomolecules (biomarkers) and other geochemical indicators of early life. The DTDP and the ABDP also jointly drilled two other important holes 2004, one through the oldest known erosion surface (and possible soil profile). The other intersected well-preserved middle Archean sediments. These efforts parallel other drilling initiatives within the wider astrobiological community that are taking place in Western Australia, South Africa, Spain, and arctic Canada. The ADP is managed by the NAI through a Steering Committee appointed by the NAI Director. Samples of cores obtained through ADP projects are available to the whole community, following a one year embargo, upon application to project PIs and the ADP Steering Committee.
NASA Astrophysics Data System (ADS)
Soreghan, G. S.; Cohen, A. S.
2013-11-01
A US National Science Foundation-funded workshop occurred 17-19 May 2013 at the University of Oklahoma to stimulate research using continental scientific drilling to explore earth's sedimentary, paleobiological and biogeochemical record. Participants submitted 3-page "pre-proposals" to highlight projects that envisioned using drill-core studies to address scientific issues in paleobiology, paleoclimatology, stratigraphy and biogeochemistry, and to identify locations where key questions can best be addressed. The workshop was also intended to encourage US scientists to take advantage of the exceptional capacity of unweathered, continuous core records to answer important questions in the history of earth's sedimentary, biogeochemical and paleobiologic systems. Introductory talks on drilling and coring methods, plus best practices in core handling and curation, opened the workshop to enable all to understand the opportunities and challenges presented by scientific drilling. Participants worked in thematic breakout sessions to consider questions to be addressed using drill cores related to glacial-interglacial and icehouse-greenhouse transitions, records of evolutionary events and extinctions, records of major biogeochemical events in the oceans, reorganization of earth's atmosphere, Lagerstätte and exceptional fossil biota, records of vegetation-landscape change, and special sampling requirements, contamination, and coring tool concerns for paleobiology, geochemistry, geochronology, and stratigraphy-sedimentology studies. Closing discussions at the workshop focused on the role drilling can play in studying overarching science questions about the evolution of the earth system. The key theme, holding the most impact in terms of societal relevance, is understanding how climate transitions have driven biotic change, and the role of pristine, stratigraphically continuous cores in advancing our understanding of this linkage. Scientific drilling, and particularly drilling applied to continental targets, provides unique opportunities to obtain continuous and unaltered material for increasingly sophisticated analyses, tapping the entire geologic record (extending through the Archean), and probing the full dynamic range of climate change and its impact on biotic history.
1989-08-01
remove by gravity -washed out 585.8 i -- 89. 2 gneiss from inner - ibarrel Bottom of hole 89.2’ Tape depth 89.0’ 90 -0 I-Note: 6-7-84 water level after...barrel and5 _-_89.3 washed all meterial Bottom of hole 89.3’ left in outer barrel- 90 out of barrel befor- drilling for pull I Tape depth 89.0’ Note
NASA Astrophysics Data System (ADS)
Loupasakis, Constantinos; Tsangaratos, Paraskevas; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonis; Steiakakis, Emanouil; Agioutantis, Zacharias; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Ioannis; Papadopoulos, Nikos; Sarris, Apostolos; Mangriotis, Maria-Dafni; Dikmen, Unal
2015-04-01
The near surface ground conditions are highly important for the design of civil constructions. These conditions determine primarily the ability of the foundation formations to bear loads, the stress - strain relations and the corresponding deformations, as well as the soil amplification and corresponding peak ground motion in case of dynamic loading. The static and dynamic geotechnical parameters as well as the ground-type/soil-category can be determined by combining geotechnical and geophysical methods, such as engineering geological surface mapping, geotechnical drilling, in situ and laboratory testing and geophysical investigations. The above mentioned methods were combined for the site characterization in selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island. The combination of the geotechnical and geophysical methods in thirteen (13) sites provided sufficient information about their limitations, setting up the minimum tests requirements in relation to the type of the geological formations. The reduced accuracy of the surface mapping in urban sites, the uncertainties introduced by the geophysical survey in sites with complex geology and the 1-D data provided by the geotechnical drills are some of the causes affecting the right order and the quantity of the necessary investigation methods. Through this study the gradual improvement on the accuracy of the site characterization data in regards to the applied investigation techniques is presented by providing characteristic examples from the total number of thirteen sites. As an example of the gradual improvement of the knowledge about the ground conditions the case of AGN1 strong motion station, located at Agios Nikolaos city (Eastern Crete), is briefly presented. According to the medium scale geological map of IGME the station was supposed to be founded over limestone. The detailed geological mapping reveled that a few meters of loose alluvial deposits occupy the area, expected to lay over the Neogene marly formations and the Mesozoic limestone, identified at the surrounding area. This changes the ground type to E instead of A, based on the EC8 classification. According the geophysical survey the Neogene formations extend down several meters and the mean Vs30 is 476m/s, increasing the rank of the ground type to B. Finally, the geotechnical drill reviled that the loose alluvial deposits extend down 13m containing two clearly identified layers of liquefiable loose sand. Below the alluvial deposits a thin layer (1,5m thick) of Neogene marly formations and the karstified limestone was located, as expected. So finally it was proved that the ground type category at the site is S2, setting up the geotechnical drills as the determinant investigation technique for this site. Besides the above described case, all selected examples present sufficiently the ability, the limitations and the right order of the investigation methods aiming to the site characterization. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.
Abrasive wear of Hilong BoTN hardfacings
NASA Astrophysics Data System (ADS)
Fedorova, L.; Fedorov, S.; Sadovnikov, A.; Ivanova, Y.; Voronina, M.
2018-02-01
The spread of steels, which are used to produce locks of steel drill pipes, adversely affects their wear resistance, which, in combination with low hardness of HV 2400 ... 2800 MPa as well as of the thread of screw, results in low wear resistance and the need for their reconstruction at the pipe control shop. An efficient way of improving the quality of drill pipe jonts is to hard-face them by the outside diameter with wear-resistant materials (hardbanding). One of the companies engaged in the development of hardfacing materials and hardbanding is Hilong (China) with weld seams of the brand BoTn. According to the results of the studies the following conclusion can be made: hardfacing increases the durability of the hardware, contributing to an increase in wear resistance of locks of DP under the conditions of abrasive action of aggressive geological formations; the usage of DP without wear-resistant weld seams is impermissible, because their further operation, as part of the drill-stem, can lead to emergency consequences; application of the pipes with the hardfacing collars together with the collars without hardfacing, due to varying degree of wear of jonts in the drill-stem, is also impermissible.
Study of the Martian Subsurface with a Fiber Optics Spectrometer: the Ma_Miss Experiment
NASA Astrophysics Data System (ADS)
Coradini, A.; de Sanctis, M. C.; Ammannito, E.; Boccaccini, A.; Battistelli, E.; Capanni, A.
2009-04-01
In this presentation is described the investigation that we intend to do with a small imaging spectrometer that will be inserted in the drill of the Exomars- Pasteur rover. This spectrometer is named Ma_miss (Mars Multispectral Imager for Subsurface Studies ). The Ma_Miss experiment is located in the drill ,that will be able to make a hole in the Mars soil and rock up to 2 m. Ma_Miss includes the optical head of the spectrometer, a lamp to illuminate the borehole walls, and the optical fiber that brings the signal to the spectrometer. The multispectral images are acquired by means of a sapphire window placed on the lateral wall of the drill tool, as close as possible to the drill head. The images are gathered by means of an optical fibre system and analyzed using the spectrometer. The Ma_Miss gathered light containing the scientific information is transferred to the array detector and electronics of the instrument by means of an optical rotary joint implemented in the roto-translation group of the drill, as shown in the next pictures In the figure is schematically represented the Ma_Miss- Dibs architecture. This experiment will be extremely valuable since it will allow, for the first time, to have an idea of the mineralogical composition of the Martian subsurface and to study freshly cut rocks. The study of surface and subsurface mineralogy of Martian soil and rocks is the key for understanding the chemico-physical processes that led to the formation and evolution of the Red Planet. The history of the water and other volatiles, as well as the signatures of weathering processes are important to understand present and past environmental conditions associated with the possibility of life. Surface samples are highly influenced by exogenous processes (weathering, erosion, sedimentation, impact) that alter their original properties. So, the analyses of uncontaminated samples by means of instrumented drills and in situ analytic stations are the key for unambiguous interpretation of the original environment that leading to the formation of rocks. Analysis of subsurface layers is the only approach that warranties measurements on samples close to their original composition. The upper few meters of the surface materials on Mars play a crucial role in its history, providing important constraints geologic, hydrologic, and climatic to the history of the planet. Drilling into the near-surface crust will provide an opportunity to assess variations in composition, texture, stratification, unconformities, etc. that will help define its lithology and structure, and provide important clues regarding its origin and subsequent evolution. The subsurface material can give information on the evolution of surface sediments (erosion, transport, deposition), on the relation between sediments and bedrock, on the relation between environmental conditions and surface processes permitting to "investigate planetary processes that influence habitability." Investigation of mineralogical composition of near-surface geological materials is needed to fully characterize the geology of the regions that will be visited by the Rover at all appropriate spatial scales, and to interpret the processes that have formed and modified rocks and regolith. Subsurface access, sampling material below the oxidized layer, can be the key to "assess the biological potential of the target environment (past or present)". To date, we have direct observations relative only to the Martian surface. Little is known about the characteristics of the first subsurface layers. The possibility to sample subsurface materials to be delivered to other instruments, and to record the context of the sampled soil doing in situ borehole mineralogical analysis, is fundamental to search for traces of past or present life on Mars. The spectrometer observes a single point target, having 0.1 mm diameter, on the borehole wall surface. Depending on the surface features we are interested in, the observation window can scan the borehole's surface by means of drill tip rotation or translation. When the drill is translated, a "Column Image" is acquired. This translation step can be equal to the observation spot (0.1 mm). The "Ring Image" can be obtained by rotation of the drill tip; a rotation step of about 0.5Ë (corresponding to 720 acquisitions in the ring) is sufficient to assure the full coverage of the ring.
Western USA groundwater drilling
NASA Astrophysics Data System (ADS)
Jasechko, S.; Perrone, D.
2016-12-01
Groundwater in the western US supplies 40% of the water used for irrigated agriculture, and provides drinking water to individuals living in rural regions distal to perennial rivers. Unfortunately, current groundwater use is not sustainable in a number of key food producing regions. While substantial attention has been devoted to mapping groundwater depletion rates across the western US, the response of groundwater users via well drilling to changing land uses, water demands, pump and drilling technologies, pollution vulnerabilities, and economic conditions remains unknown. Here we analyze millions of recorded groundwater drilling events in the western US that span years 1850 to 2015. We show that groundwater wells are being drilled deeper in some, but not all, regions where groundwater levels are declining. Groundwater wells are generally deeper in arid and mountainous regions characterized by deep water tables (e.g., unconfined alluvial and fractured bedrock aquifers), and in regions that have productive aquifers with high water quality deep under the ground (e.g., confined sedimentary aquifers). Further, we relate water quality and groundwater drilling depths in 40 major aquifer systems across the western US. We show that there is substantial room for improvement to the existing 2-D continental-scale assessments of domestic well water vulnerability to pollution if one considers the depth that the domestic well is screened in addition to pollutant loading, surficial geology, and vertical groundwater flow rates. These new continental-scale maps can be used to (i) better assess economic, water quality, and water balance limitations to groundwater usage, (ii) steer domestic well drilling into productive strata bearing clean and protected groundwater resources, and (iii) assess groundwater management schemes across the western US.
Factors related to well yield in the fractured-bedrock aquifer of New Hampshire
Moore, Richard Bridge; Schwartz, Gregory E.; Clark, Stewart F.; Walsh, Gregory J.; Degnan, James R.
2002-01-01
The New Hampshire Bedrock Aquifer Assessment was designed to provide information that can be used by communities, industry, professional consultants, and other interests to evaluate the ground-water development potential of the fractured-bedrock aquifer in the State. The assessment was done at statewide, regional, and well field scales to identify relations that potentially could increase the success in locating high-yield water supplies in the fractured-bedrock aquifer. statewide, data were collected for well construction and yield information, bedrock lithology, surficial geology, lineaments, topography, and various derivatives of these basic data sets. Regionally, geologic, fracture, and lineament data were collected for the Pinardville and Windham quadrangles in New Hampshire. The regional scale of the study examined the degree to which predictive well-yield relations, developed as part of the statewide reconnaissance investigation, could be improved by use of quadrangle-scale geologic mapping. Beginning in 1984, water-well contractors in the State were required to report detailed information on newly constructed wells to the New Hampshire Department of Environmental Services (NHDES). The reports contain basic data on well construction, including six characteristics used in this study?well yield, well depth, well use, method of construction, date drilled, and depth to bedrock (or length of casing). The NHDES has determined accurate georeferenced locations for more than 20,000 wells reported since 1984. The availability of this large data set provided an opportunity for a statistical analysis of bedrock-well yields. Well yields in the database ranged from zero to greater than 500 gallons per minute (gal/min). Multivariate regression was used as the primary statistical method of analysis because it is the most efficient tool for predicting a single variable with many potentially independent variables. The dependent variable that was explored in this study was the natural logarithm (ln) of the reported well yield. One complication with using well yield as a dependent variable is that yield also is a function of demand. An innovative statistical technique that involves the use of instrumental variables was implemented to compensate for the effect of demand on well yield. Results of the multivariate-regression model show that a variety of factors are either positively or negatively related to well yields. Using instrumental variables, well depth is positively related to total well yield. Other factors that were found to be positively related to well yield include (1) distance to the nearest waterbody; (2) size of the drainage area upgradient of a well; (3) well location in swales or valley bottoms in the Massabesic Gneiss Complex and Breakfast Hill Granite; (4) well proximity to lineaments, identified using high-altitude (1:80,000-scale) aerial photography, which are correlated with the primary fracture direction (regional analysis); (5) use of a cable tool rig for well drilling; and (6) wells drilled for commercial or public supply. Factors negatively related to well yields include sites underlain by foliated plutons, sites on steep slopes sites at high elevations, and sites on hilltops. Additionally, seven detailed geologic map units, identified during the detailed geologic mapping of the Pinardville and Windham quadrangles, were found to be positively or negatively related to well yields. Twenty-four geologic map units, depicted on the Bedrock Geologic Map of New Hampshire, also were found to be positively or negatively related to well yields. Maps or geographic information system (GIS) data sets identifying areas of various yield probabilities clearly display model results. Probability criteria developed in this investigation can be used to select areas where other techniques, such as geophysical techniques, can be applied to more closely identify potential drilling sites for high-yielding
NASA Astrophysics Data System (ADS)
Jackson, M. D.; Gudmundsson, M. T.; Bach, W.; Cappelletti, P.; Coleman, N. J.; Ivarsson, M.; Jónasson, K.; Jørgensen, S. L.; Marteinsson, V.; McPhie, J.; Moore, J. G.; Nielson, D.; Rhodes, J. M.; Rispoli, C.; Schiffman, P.; Stefánsson, A.; Türke, A.; Vanorio, T.; Weisenberger, T. B.; White, J. D. L.; Zierenberg, R.; Zimanowski, B.
2015-12-01
A new International Continental Drilling Program (ICDP) project will drill through the 50-year-old edifice of Surtsey Volcano, the youngest of the Vestmannaeyjar Islands along the south coast of Iceland, to perform interdisciplinary time-lapse investigations of hydrothermal and microbial interactions with basaltic tephra. The volcano, created in 1963-1967 by submarine and subaerial basaltic eruptions, was first drilled in 1979. In October 2014, a workshop funded by the ICDP convened 24 scientists from 10 countries for 3 and a half days on Heimaey Island to develop scientific objectives, site the drill holes, and organize logistical support. Representatives of the Surtsey Research Society and Environment Agency of Iceland also participated. Scientific themes focus on further determinations of the structure and eruptive processes of the type locality of Surtseyan volcanism, descriptions of changes in fluid geochemistry and microbial colonization of the subterrestrial deposits since drilling 35 years ago, and monitoring the evolution of hydrothermal and biological processes within the tephra deposits far into the future through the installation of a Surtsey subsurface observatory. The tephra deposits provide a geologic analog for developing specialty concretes with pyroclastic rock and evaluating their long-term performance under diverse hydrothermal conditions. Abstracts of research projects are posted at http://surtsey.icdp-online.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials.more » Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Plumlee, Geoff; Lowers, Heather; Ludington, Steve; Koenig, Alan; Briggs, Paul
2005-01-01
This report is one in a series presenting results of an interdisciplinary U.S. Geological Survey (USGS) study of ground-water quality in the lower Red River watershed prior to open-pit and underground molybdenite mining at Molycorp's Questa mine. The stretch of the Red River watershed that extends from just upstream of the town of Red River to just above the town of Questa includes several mineralized areas in addition to the one mined by Molycorp. Natural erosion and weathering of pyrite-rich rocks in the mineralized areas has created a series of erosional scars along this stretch of the Red River that contribute acidic waters, as well as mineralized alluvial material and sediments, to the river. The overall goal of the USGS study is to infer the pre-mining ground-water quality at the Molycorp mine site. An integrated geologic, hydrologic, and geochemical model for ground water in the mineralized but unmined Straight Creek drainage is being used as an analogue for the geologic, geochemical, and hydrologic conditions that influenced ground-water quality and quantity at the mine site prior to mining. This report summarizes results of reconnaissance mineralogical and chemical characterization studies of rock samples collected from the various scars and the Molycorp open pit, and of drill cuttings or drill core from bedrock beneath the scars and adjacent debris fans.
Analysis of Geothermal Pathway in the Metamorphic Area, Northeastern Taiwan
NASA Astrophysics Data System (ADS)
Wang, C.; Wu, M. Y.; Song, S. R.; Lo, W.
2016-12-01
A quantitative measure by play fairway analysis in geothermal energy development is an important tool that can present the probability map of potential resources through the uncertainty studies in geology for early phase decision making purpose in the related industries. While source, pathway, and fluid are the three main geologic factors in traditional geothermal systems, identifying the heat paths is critical to reduce drilling cost. Taiwan is in East Asia and the western edge of Pacific Ocean, locating on the convergent boundary of Eurasian Plate and Philippine Sea Plate with many earthquake activities. This study chooses a metamorphic area in the western corner of Yi-Lan plain in northeastern Taiwan with high geothermal potential and several existing exploration sites. Having high subsurface temperature gradient from the mountain belts, and plenty hydrologic systems through thousands of millimeters annual precipitation that would bring up heats closer to the surface, current geothermal conceptual model indicates the importance of pathway distribution which affects the possible concentration of extractable heat location. The study conducts surface lineation analysis using analytic hierarchy process to determine weights among various fracture types for their roles in geothermal pathways, based on the information of remote sensing data, published geologic maps and field work measurements, to produce regional fracture distribution probability map. The results display how the spatial distribution of pathways through various fractures could affect geothermal systems, identify the geothermal plays using statistical data analysis, and compare against the existing drilling data.
Finn, C.
1994-01-01
Marine magnetic and gravity data from the northeast Japan forearc offer insight to the subsurface structure, density and magnetization from which geologic interpretations and tectonic reconstructions can be made. Positive marine magnetic anomalies, on-land geology, drill hole data, and 2-1/2-dimensional models reveal that Kitakami plutons and possibly their associated volcanic rocks constitute part of the modern forearc basement and lie 100-150 km further east than previously thought. A method to create magnetization and density contrast maps was employed to produce a three-dimensional picture of the forearc basement rock properties averaged over a 14-km thickness. -Author
Newly discovered sediment rock-hosted disseminated gold deposits in the People's Republic of China
Cunningham, Charles G.; Ashley, Roger P.; Chou, I. -Ming; Huang, Zushu; Chaoyuan, Wan; Li, Wenkang
1988-01-01
Five deposits discovered in Guizhou Province, Yata, Getang, Sanchahe, Ceyang, and Banqi are described for the first time in Western literature. The deposits have geologic features and geochemical signatures that are remarkably similar to those of sedimentary rock-hosted precious metal deposits in the United States. The sizes of the deposits are as yet undetermined, but they each contain significant reserves at average grades of 4 to 5 g of gold per metric ton. Exploration and drilling are in progress at all of the deposits, and other areas where the geologic setting and geochemical anomalies are similar are being tested.
Thakar, Alok; Hota, Ashutosh; Bhalla, Ashu Seth; Gupta, Siddharth Datta; Sarkar, Chitra; Kumar, Rakesh
2016-04-01
Postexcision residual disease in the vidian canal is speculated to contribute to recurrence in juvenile angiofibroma. We composed a prospective cohort of 16 consecutive patients with juvenile angiofibroma (stages IIA-IIIB). The presurgical vidian canal assessment was done by contrast-enhanced CT (1.2 mm collimation). At surgery after complete tumor excision, the vidian canal tissue was sampled for histology. Postexcision drilling of the vidian canal was done in 8 of 15 patients to remove microscopic residual disease, with a 24 to 48 month follow-up period. Presurgical radiology indicated ipsilateral vidian canal enlargement (≥3 mm)/destruction in 13 of 16 patients. Radiologically occult involvement was documented only by histology in another 1 of 16 patients. Postexcision sampling of the vidian canal noted microscopic residual tumor in 3 of 15 patients. No recurrences were noted in 8 cases (0 of 8) with postexcision drilling of the vidian canal and 2 recurrences in 7 cases (2 of 7) with no drilling (p = .20). Vidian canal involvement in juvenile angiofibroma is almost universal (14 of 16) and may be occult to CT evaluation. The site may harbor microscopic residual tumor after seemingly complete excision. Surgical attention toward it may reduce recurrences. © 2015 Wiley Periodicals, Inc. Head Neck 38: E421-425, 2016. © 2015 Wiley Periodicals, Inc.
Ground-water data, Sevier Desert, Utah
Mower, Reed W.; Feltis, Richard D.
1964-01-01
This report is intended to serve two purposes: (1) to make available to the public basic ground-water data useful in planning and studying development of water resources, and (2) to supplement an interpretive report that will be published later.Records were collected during the period 1935-64 by the U.S. Geological survey in cooperation with the Utah State Engineer as part of the investigation of ground-water conditions in the Sevier Desert, in Juab and Millard Counties, Utah. The interpretive material will be published in a companion report by R. W. Mower and R. D. Feltis.This report is most useful in predicting conditions likely to be found in areas that are being considered as well sites. The person considering the new well can spot the proposed site on plate 1 and examine the records of nearby wells as shown in the tables and figures. From table 1 he can note such things as depth, diameter, water level, yield, use of water, temperature of water, and depth of perforations. By comparing the depth of perforations with the drillers' logs in table 3 he can note the type of material that yields water to the wells. Table 2 and figure 2 show the historic fluctuations and trends of water levels in the vicinity. From table 4 he can note the chemical quality of the water from wells in the vicinity. Table 5 shows the amount of water discharged during 1951-63 from the pumped irrigation, public supply, and industrial wells. If the reader decides from his examination that conditions are favorable, he can place an application to drill a well with the state Engineer. If the State Engineer believes unappropriated water is available, the application may be approved after minimum statutory requirements have been satisfied.The report is also useful when planning large-scale developments of water supply. This and other uses of the report will be helped by use of the interpretive report upon its release.
Infrared Spectroscopy for Rapid Characterization of Drill Core and Cutting Mineralogy
NASA Astrophysics Data System (ADS)
Calvin, W. M.; Kratt, C.; Kruse, F. A.
2009-12-01
Water geochemistry can vary with depth and location within a geothermal reservoir, owing to natural factors such as changing rock type, gas content, fluid source and temperature. The interaction of these variable fluids with the host rock will cause well known changes in alteration mineral assemblages that are commonly factored into the exploration of hydrothermal systems for economic metals, but are less utilized with regard to mapping borehole geology for geothermal energy production. Chemistry of geothermal fluids and rock alteration products can impact production factors such as pipeline corrosion and scaling and early studies explored the use of both silica and chlorites as geothermometers. Infrared spectroscopy is particularly good at identifying a wide variety of alteration minerals, especially in discrimination among clay minerals, with no sample preparation. The technique has been extensively used in the remote identification of materials, but is not commonly used on drill core or chips. We have performed several promising pilot studies that suggest the power of the technique to sample continuously and provide mineral logs akin to geophysical ones. We have surveyed a variety of samples, including drill chip boards, boxed core, and drill cuttings from envelopes, sample bottles and chip trays. This work has demonstrated that core and drill chips can be rapidly surveyed, acquiring spectra every few to tens of cm of section, or the vertical resolution of the chip tray (typically 10 feet). Depending on the sample type we can acquire spectral data over thousands of feet depth at high vertical resolution in a fraction of the time that is needed for traditional analytical methods such as XRD or TEM with better accuracy than traditional geologic drill or chip logging that uses visual inspection alone. We have successfully identified layered silicates such as illite, kaolinite, montmorillonite chlorite and prehnite, zeolites, opal, calcite, jarosite and iron oxides and hydroxides in geothermal drill samples. We are currently developing automated analysis techniques to convert this detailed spectral logging data into high-vertical-resolution mineral depth profiles that can be linked to lithology, stratigraphy, fracture zones and potential for geothermal production. Also in development are metrics that would link mapped mineralogy to known geothermometers such as Na-K, Mg depletion, discrimination among illite, montmorillonite, and beidellite, and kaolinite crystallinity. Identification of amorphous and crystalline silica components (chalcedony, crystobalite and quartz) can also constrain silica geothermometry. The degree of alteration and some mineral types have been shown to be a proxy for host rock permeability, natural circulation, and the potential for reservoir sealing. Analysis of alteration intensity is also under way. We will present a synthesis of results to date.
Drilling and Testing the DOI041A Coalbed Methane Well, Fort Yukon, Alaska
Clark, Arthur; Barker, Charles E.; Weeks, Edwin P.
2009-01-01
The need for affordable energy sources is acute in rural communities of Alaska where costly diesel fuel must be delivered by barge or plane for power generation. Additionally, the transport, transfer, and storage of fuel pose great difficulty in these regions. Although small-scale energy development in remote Arctic locations presents unique challenges, identifying and developing economic, local sources of energy remains a high priority for state and local government. Many areas in rural Alaska contain widespread coal resources that may contain significant amounts of coalbed methane (CBM) that, when extracted, could be used for power generation. However, in many of these areas, little is known concerning the properties that control CBM occurrence and production, including coal bed geometry, coalbed gas content and saturation, reservoir permeability and pressure, and water chemistry. Therefore, drilling and testing to collect these data are required to accurately assess the viability of CBM as a potential energy source in most locations. In 2004, the U.S. Geological Survey (USGS) and Bureau of Land Management (BLM), in cooperation with the U.S. Department of Energy (DOE), the Alaska Department of Geological and Geophysical Surveys (DGGS), the University of Alaska Fairbanks (UAF), the Doyon Native Corporation, and the village of Fort Yukon, organized and funded the drilling of a well at Fort Yukon, Alaska to test coal beds for CBM developmental potential. Fort Yukon is a town of about 600 people and is composed mostly of Gwich'in Athabascan Native Americans. It is located near the center of the Yukon Flats Basin, approximately 145 mi northeast of Fairbanks.
Rolling-Tooth Core Breakoff and Retention Mechanism
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Bickler, Donald B.; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Hudson, Nicolas H.
2011-01-01
Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale that is robust and versatile enough to be used for a variety of core samples. This design consists of a set of tubes (a drill tube and an inner tube) and a rolling element (rolling tooth). An additional tube can be used as a sample tube. The drill tube and the inner tube have longitudinal holes with the axes offset from the axis of each tube. The two eccentricities are equal. The inner tube fits inside the drill tube, and the sample tube fits inside the inner tube. While drilling, the two tubes are positioned relative to each other such that the sample tube is aligned with the drill tube axis and core. The drill tube includes teeth and flutes for cuttings removal. The inner tube includes, at the base, the rolling element implemented as a wheel on a shaft in an eccentric slot. An additional slot in the inner tube and a pin in the drill tube limit the relative motion of the two tubes. While drilling, the drill assembly rotates relative to the core and forces the rolling tooth to stay hidden in the slot along the inner tube wall. When the drilling depth has been reached, the drill bit assembly is rotated in the opposite direction, and the rolling tooth is engaged and penetrates into the core. Depending on the strength of the created core, the rolling tooth can score, lock the inner tube relative to the core, start the eccentric motion of the inner tube, and break the core. The tooth and the relative position of the two tubes can act as a core catcher or core-retention mechanism as well. The design was made to fit the core and hole parameters produced by an existing bit; the parts were fabricated and a series of demonstration tests were performed. This invention is potentially applicable to sample return and in situ missions to planets such as Mars and Venus, to moons such as Titan and Europa, and to comets. It is also applicable to terrestrial applications like forensic sampling and geological sampling in the field.
NASA Astrophysics Data System (ADS)
Meier, D. B.; Waber, H. N.; Gimmi, T.; Eichinger, F.; Diamond, L. W.
2015-12-01
Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12-20 cm long, 5 cm diameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium-iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2-6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, in which iodide enrichment was up to 180 mg/kgwater, compared to 0.5 mg/kgwater in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties.
Meier, D B; Waber, H N; Gimmi, T; Eichinger, F; Diamond, L W
2015-12-01
Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12-20 cm long, 5 cm diameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium-iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2-6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, in which iodide enrichment was up to 180 mg/kg water, compared to 0.5 mg/kg water in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
An, Zhiguo; Di, Qingyun
2016-12-01
The Alxa area in Inner Mongolia has been selected as a possible site for geological disposal of high-level radioactive waste (HLRW). Based on results of a previous study on crustal stability, the Tamusu rock mass has been chosen as the target. To determine the geological structure of this rock mass, aeromagnetic and gravity data are collected and inverted. Three-dimensional (3D) inversion horizontal slices show that the internal density of the rock mass and the distribution of magnetic properties are not uniform, with fractures and fragmentation being present. To confirm this result, the controlled source audio-frequency magnetotelluric method (CSAMT) was applied to explore the geological structures, the typical CSAMT sounding curve was analyzed, and the response characteristics of the geological structure and surrounding rock are distinguished. The original data were processed and interpreted in combination with data from surface geology and drilling and logging data. It is found that the CSAMT results were consistent with those from 3D inversion of the gravity and magnetic data, confirming the existence of fractures and fragmentation in the exploration area.
The installation of a sub sea floor observatory using the sea floor drill rig MeBo
NASA Astrophysics Data System (ADS)
Wefer, G.; Freudenthal, T.; Kopf, A.
2012-04-01
Sea floor drill rigs that can be deployed from standard research vessels are bridging the gap between dedicated drill ships that are used for deep drillings in the range of several hundred meters below sea floor and conventional sampling tools like gravity corers, piston corer or dredges that only scratch the surface of the sea floor. A major advantage of such robotic drill rigs is that the drilling action is conducted from a stable platform at the sea bed independent of any ship movements due to waves, wind or currents. At the MARUM Center for Marine Environmental Sciences at the University of Bremen we developed the sea bed drill rig MeBo that can be deployed from standard research vessels. The drill rig is deployed on the sea floor and controlled from the vessel. Drilling tools for coring the sea floor down to 70 m can be stored on two magazines on the rig. A steel-armoured umbilical is used for lowering the rig to the sea bed in water depths up to 2000 m in the present system configuration. It was successfully operated on ten expeditions since 2005 and drilled more than 1000 m in different types of geology including hemipelagic mud, glacial till as well as sedimentary and crystalline rocks. MeBo boreholes be equipped with sensors and used for long term monitoring are planned. Depending on the scientific demands, a MeBoCORK monitoring system will allow in situ measurements of eg. temperature and pressure. The "MeBoCORK" will be equipped with data loggers and data transmission interface for reading out the collected data from the vessel. By additional payload installation on the MeBoCORK with an ROV it will be possible to increase the energy capacity as well as to conduct fluid sampling in the bore hole for geochemical analyses. It is planned to install a prototype of this additional payload with the MARUM ROV QUEST4000M during the following R/V SONNE cruise in July 2012.
Geothermal resources assessed in Honduras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
The investigation of the Platanares geothermal site is part of a joint Honduras (Empresa Nacional de Energia Electrica)/US (Los Alamos National Laboratory and US Geological Survey) assessment of the nationwide geothermal resource potential of Honduras. Platanares was selected as one of the initial sites for detailed study on the basis of previous geothermal reconnaissance work. The results of the geologic studies indicate that Platarnares' potential for development as an electrical power source is extremely good. This preliminary conclusion must be substantiated and refined through additional studies. Geophysical investigations are needed to further define the subsurface geology and fracture system. Severalmore » wells should be drilled to a depth of several hundred meters to measure thermal gradients. This will allow the calculation of the geothermal potential of the Platanares site and will indicate whether further development of the site is warranted.« less
Paulson, Q.F.; Zimmerman, Tom V.; Langford, Russell H.
1965-01-01
The Two Medicine Irrigation Unit, on the Blackfeet Indian Reservation of northern Montana, is irrigated by water diverted from Two Medicine Creek. Waterlogging because of overapplication of water and locally inadequate subsurface drainage is a serious problem. This study was undertaken by the U.S. Geological Survey in cooperation with the U.S. Bureau of Indian Affairs to evaluate the problem and to suggest remedies. For this study, the geology was mapped, and data concerning 129 wells and test holes were gathered. The water level in 63 wells was measured periodically. Three test holes were drilled and 4 single-well and 1 multiple-well pump tests were made. Nineteen samples of ground water were collected and analyzed chemically, and applied irrigation water was analyzed periodically.
U.s. Geological survey core drilling on the atlantic shelf.
Hathaway, J C; Poag, C W; Valentine, P C; Manheim, F T; Kohout, F A; Bothner, M H; Miller, R E; Schultz, D M; Sangrey, D A
1979-11-02
The first broad program of scientific shallow drilling on the U.S. Atlantic continental shelf has delineated rocks of Pleistocene to Late Cretaceous age, including phosphoritic Miocene strata, widespread Eocene carbonate deposits that serve as reflective seismic markers, and several regional unconformities. Two sites, off Maryland and New Jersey, showed light hydrocarbon gases having affinity to mature petroleum. Pore fluid studies showed that relatively fresh to brackish water occurs beneath much of the Atlantic continental shelf, whereas increases in salinity off Georgla and beneath the Florida-Hatteras slope suggest buried evaporitic strata. The sediment cores showed engineering properties that range from good foundation strength to a potential for severe loss of strength through interaction between sediments and man-made structures.
Gaswirth, Stephanie B.
2017-03-06
The U.S. Geological Survey completed a geology-based assessment of undiscovered, technically recoverable continuous petroleum resources in the Wolfcamp shale in the Midland Basin part of the Permian Basin Province of west Texas. This is the first U.S. Geological Survey evaluation of continuous resources in the Wolfcamp shale in the Midland Basin. Since the 1980s, the Wolfcamp shale in the Midland Basin has been part of the “Wolfberry” play. This play has traditionally been developed using vertical wells that are completed and stimulated in multiple productive stratigraphic intervals that include the Wolfcamp shale and overlying Spraberry Formation. Since the shift to horizontal wells targeting the organic-rich shale of the Wolfcamp, more than 3,000 horizontal wells have been drilled and completed in the Midland Basin Wolfcamp section. The U.S. Geological Survey assessed technically recoverable mean resources of 20 billion barrels of oil and 16 trillion cubic feet of associated gas in the Wolfcamp shale in the Midland Basin.
Phelps, G.A.; Halford, K.J.
2011-01-01
In Yucca Flat, on the Nevada National Security Site in southern Nevada, the migration of radionuclides from tests located in the alluvial deposits into the Paleozoic carbonate aquifer involves passage through a thick, heterogeneous section of late Tertiary and Quaternary alluvial sediments. An understanding of the lateral and vertical changes in the material properties of the alluvial sediments will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating groundwater flow in the Yucca Flat area. Previously published geologic models for the alluvial sediments within Yucca Flat are based on extensive examination and categorization of drill-hole data, combined with a simple, data-driven interpolation scheme. The U.S. Geological Survey, in collaboration with Stanford University, is researching improvements to the modeling of the alluvial section, incorporating prior knowledge of geologic structure into the interpolation method and estimating the uncertainty of the modeled hydrogeologic units.
Ellefsen, K.J.; Burton, B.L.; Lucius, J.E.; Haines, S.S.; Fitterman, D.V.; Witty, J.A.; Carlson, D.; Milburn, B.; Langer, W.H.
2007-01-01
Personnel from the U.S. Geological Survey and Martin Marietta Aggregates, Inc., conducted field demonstrations of five different geophysical methods to show how these methods could be used to characterize deposits of alluvial aggregate. The methods were time-domain electromagnetic sounding, electrical resistivity profiling, S-wave reflection profiling, S-wave refraction profiling, and P-wave refraction profiling. All demonstrations were conducted at one site within a river valley in central Indiana, where the stratigraphy consisted of 1 to 2 meters of clay-rich soil, 20 to 35 meters of alluvial sand and gravel, 1 to 6 meters of clay, and multiple layers of limestone and dolomite bedrock. All geophysical methods, except time-domain electromagnetic sounding, provided information about the alluvial aggregate that was consistent with the known geology. Although time-domain electromagnetic sounding did not work well at this site, it has worked well at other sites with different geology. All of these geophysical methods complement traditional methods of geologic characterization such as drilling.
NASA Astrophysics Data System (ADS)
Liu, Wenpeng; Rostami, Jamal; Elsworth, Derek; Ray, Asok
2018-03-01
Roof bolts are the dominant method of ground support in mining and tunneling applications, and the concept of using drilling parameters from the bolter for ground characterization has been studied for a few decades. This refers to the use of drilling data to identify geological features in the ground including joints and voids, as well as rock classification. Rock mass properties, including distribution of joints/voids and strengths of rock layers, are critical factors for proper design of ground support to avoid instability. The goal of this research was to improve the capability and sensitivity of joint detection programs based on the updated pattern recognition algorithms in sensing joints with smaller than 3.175 mm (0.125 in.) aperture while reducing the number of false alarms, and discriminating rock layers with different strengths. A set of concrete blocks with different strengths were used to simulate various rock layers, where the gap between the blocks would represent the joints in laboratory tests. Data obtained from drilling through these blocks were analyzed to improve the reliability and precision of joint detection systems. While drilling parameters can be used to detect the gaps, due to low accuracy of the results, new composite indices have been introduced and used in the analysis to improve the detection rates. This paper briefly discusses ongoing research on joint detection by using drilling parameters collected from a roof bolter in a controlled environment. The performances of the new algorithms for joint detection are also examined by comparing their ability to identify existing joints and reducing false alarms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-12-31
The Continental Scientific Drilling Program (CSDP) is a national effort supported by the Department of Energy, the US Geological Survey, and the National Science Foundation. One of the projects proposed for the CSDP consists of drilling a series of holes in Katmai National Park in Alaska to give a third dimension to the model of the 1912 eruption of Novarupta, and to investigate the processes of explosive volcanism and hydrothermal transport of metals (Eichelberger et al., 1988). The proposal for research drilling at Katmai states that ``the size, youth, elevated temperature, and simplicity of the Novarupta vent make it amore » truly unique scientific target.`` The National Park Service (NPS), which has jurisdiction, is sympathetic to aims of the study. However, NPS wishes to know whether Katmai is indeed uniquely suited to the research, and has asked the Interagency Coordinating Group to support an independent assessment of this claim. NPS suggested the National Academy of Sciences as an appropriate organization to conduct the assessment. In response, the National Research Council -- the working arm of the Academy -- established, under the aegis of its US Geodynamics Committee, a panel whose specific charge states: ``The proposed investigation at Katmai has been extensively reviewed for scientific merit by the three sponsoring and participating agencies. Thus, the scientific merit of the proposed drilling at Katmai is not at issue. The panel will review the proposal for scientific drilling at Katmai and prepare a short report addressing the specific question of the degree to which it is essential that the drilling be conducted at Katmai as opposed to volcanic areas elsewhere in the world.``« less
Soller, David R.
1996-01-01
This report summarizes a technical review of USGS Open-File Report 95-525, 'Cartographic and Digital Standard for Geologic Map Information' and OFR 95-526 (diskettes containing digital representations of the standard symbols). If you are considering the purchase or use of those documents, you should read this report first. For some purposes, OFR 95-525 (the printed document) will prove to be an excellent resource. However, technical review identified significant problems with the two documents that will be addressed by various Federal and State committees composed of geologists and cartographers, as noted below. Therefore, the 2-year review period noted in OFR 95-525 is no longer applicable. Until those problems are resolved and formal standards are issued, you may consult the following World-Wide Web (WWW) site which contains information about development of geologic map standards: URL: http://ncgmp.usgs.gov/ngmdbproject/home.html
Student Perceptions of the Advantages and Disadvantages of Geologic Note-taking with iPads
NASA Astrophysics Data System (ADS)
Dohaney, J. A.; Kennedy, B.; Gravley, D. M.
2015-12-01
During fieldwork, students and professionals record information and hypotheses into their geologic notebook. In a pilot study, students on an upper-level volcanology field trip were given iPads, with an open-source geology note-taking application (GeoFieldBook) and volunteered to record notes at two sites (i.e., Tongariro Volcanic Complex and Orakei Korako) in New Zealand. A group of students (n=9) were interviewed several weeks after fieldwork to reflect on using this technology. We aimed to characterise their experiences, strategies and examine the perceived benefits and challenges of hardcopy and digital note-taking. Students reported having a diverse range of strategies when taking notes but the most common strategies mentioned were: a) looking for/describing the differences, b) supporting note-taking with sketches, c) writing everything down, and d) focusing first on structure, texture and then composition of an outcrop. Additionally, students said they that the strategies they used were context-dependent (i.e., bedrock mapping versus detailed outcrop descriptions). When using the iPad, students reported that they specifically used different strategies: varying the length of text (from more to less), increasing the number of sites described (i.e., preferring to describe sites in more spatial detail rather than summarising several features in close proximity), and taking advantage of the 'editability' of iPad notes (abandoning rigid, systematic approaches). Overall, the reported advantages to iPad note-taking included allowing the user to be more efficient, organised and using the GPS mapping function to help them make observations and interpretations in real-time. Students also reported a range of disadvantages, but focused predominantly on the inability to annotate/draw sketches with the iPad in the same manner as pen and paper methods. These differences likely encourage different overall approaches to note-taking and cognition in the field environment, and we suggest to instructors that using pen and paper note-taking first, and then introducing new technology may encourage both systematic and efficient evaluation of field areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-07-01
The East Texas Area Characterization Report (ACR) is a compilation of data gathered during the Area Characterization phase of the Department of Energy's National Waste Terminal Storage program in salt. The characterization of Gulf Coast Salt Domes as a potential site for storage of nuclear waste is an ongoing process. This report summarizes investigations covering an area of approximately 2590 km/sup 2/ (1000 mi/sup 2/). Data on Oakwood, Keechi, and Palestine Domes are given. Subsequent phases of the program will focus on smaller land areas and fewer specific salt domes, with progressively more detailed investigations, possibly culminating with a licensemore » application to the Nuclear Regulatory Commission. The data in this report are a result of drilling and sampling, geophysical and geologic field work, and intensive literature review. The ACR contains text discussing data usage, interpretations, results and conclusions based on available geologic and hydrologic data, and figures including diagrams showing data point locations, geologic and hydrologic maps, geologic cross sections, and other geologic and hydrologic information. An appendix contains raw data gathered during this phase of the project and used in the preparation of these reports.« less
ERIC Educational Resources Information Center
Davis, Donald W.
1990-01-01
Compares differences in resource exploitation and energy development in Louisiana and western mineral-producing states. Identifies socioeconomic impacts of Louisiana's offshore drilling and western coal, oil, and natural gas mining, noting the boom and bust cycles and "hyperurbanization" that attends both. Stresses the necessity of…
Notes on the uwainat oil rim development, Maydan Mahzam and Bul Hanine Fields, offshore Qatar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamam, K.A.
As a result of reservoir simulation studies of the Uwainat reservoirs (Maydan Mahzam and Bul Hanine Fields), drilling to the Uwainat oil rim target became very ''tight'' with a very limited vertical tolerance. To achieve drilling to the tight target requires a precise position of the well at the top of the Lower Arab IV reservoir (a reliable marker) and an accurate isochore of the Lower Arab IV - Uwainat. The discussion shows that the level of accuracy needed in determining both the actual subsea well position and in constructing the depth contours of the reservoirs is extremely high.
Analysis of petroleum potential of Philippine sedimentary basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saldivar-Sali, A.; Harrison, J.; Flower, L.
1986-07-01
An extensive reevaluation of the petroleum potential of all sedimentary basins in the Philippine Archipelago was recently completed using World Bank funds. The study was conducted jointly by the technical staff of the Bureau of Energy Development (BED)/Philippine National Oil Company (PNOC) and senior consultants from Robertson Research, and Flower, Doery, Buchan Pty. Ltd., from 1983 to 1986. The joint team spent 2 1/2 years on the study and produced detailed reports and atlases, which constitute the most comprehensive basin analysis and petroleum potential assessment of the 13 major basins in the Philippines. Voluminous data available at the start ofmore » the project were supplemented by a countrywide aeromagnetic survey (216,000 km) and 9200 km of new marine seismic in 15 different areas. These surveys were also funded by the World Bank. The integration of all relevant geoscientific disciplines resulted in a better understanding of the geologic evolution of each basin and its bearing on the generation, migration, and entrapment of hydrocarbons. Many similarities and common characteristics were noted in the evolution and sedimentation of some basins. Play concepts have been developed and proposed for each basin, many of which are new plays that were not the objectives of previous exploration. The degree of exploration in these basins varies, and clearly, exploration activity has not reached a mature stage in any basin. Even where wells are numerous, many of them are old and shallow and of limited geologic value. Elsewhere, particularly offshore, there are large areas where no wells have been drilled. In conclusion, the bilateral cooperation between the Philippine government and the World Bank, particularly when exploration activity in the private sector was at a low level, proved most timely and beneficial.« less
NASA Astrophysics Data System (ADS)
Wenning, Quinn; Almquist, Bjarne; Ask, Maria; Schmitt, Douglas R.; Zappone, Alba
2015-04-01
The Caledonian orogeny, preserved in Scandinavia and Greenland, began with the closure of the Iapetus Ocean and culminated in the collision of Baltica and Laurentia cratons during the middle Paleozoic. The COSC scientific drilling project aims at understanding the crustal structure and composition of the Scandinavian Caledonides. The first well of the dual phase drilling program, completed in Summer of 2014, drilled through ~2.5 km of the Seve Nappe Complex near the town of Åre, Sweden. Newly acquired drill core and borehole logs provide fresh core material for physical rock property measurements and in-situ stress determination. This contribution presents preliminary data on compressional and shear wave ultrasonic velocities (Vp, Vs) determined from laboratory measurements on drill cores, together with in-situ stress orientation analysis using image logs from the first borehole of the Collisional Orogeny in the Scandinavian Caledonides project (COSC-1). An hydrostatically oil pressurized apparatus is used to test the ultrasonic Vp and Vs on three orthogonally cut samples of amphibolite, calcium bearing and felsic gneiss, meta-gabbro, and mylonitic schist from drill core. We measure directional anisotropy variability for each lithology using one sample cut perpendicular to the foliation and two additional plugs cut parallel to the foliation with one parallel to the lineation and the other perpendicular. Measurements are performed using the pulse transmission technique on samples subjected to hydrostatic pressure from 1-350 MPa at dry conditions. We present preliminary results relating Vp and Vs anisotropy to geologic units and degree of deformation. Additionally, we use acoustic borehole televiewer logs to estimate the horizontal stress orientation making use of well developed techniques for observed borehole breakouts (compressive failure) and drilling induced fractures (tensile failure). Preliminary observations show that very few drilling-induced tensile fractures are produced, and that borehole breakouts are episodic and suggests a NE-SW minimum horizontal stress direction
Recent Developments and Adaptations in Diamond Wireline Core Drilling Technology
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Nielson, D. L.; Howell, B. B.; Pardey, M.
2001-05-01
Scientific drilling using diamond wireline technology is presently undergoing a significant expansion and extension of activities that has allowed us to recover geologic samples that have heretofore been technically or financially unattainable. Under the direction and management of DOSECC, a high-capacity hybrid core drilling system was designed and fabricated for the Hawaii Scientific Drilling Project (HSDP) in 1998. This system, the DOSECC Hybrid Coring System (DHCS), has the capacity to recover H-sized core from depths of more than 6 km. In 1999, the DHCS completed the first phase of the HSDP to a depth of 3100 m at a substantially lower cost per foot than any previous scientific borehole to comparable depths and, in the process, established a new depth record for recovery of H-sized wireline core. This system has been offered for use in the Unzen Scientific Drilling Project, the Chicxulub (impact crater) Scientific Drilling Project, and the Geysers Deep Geothermal Reservoir Project. More recently, DOSECC has developed a smaller barge-mounted wireline core drilling system, the GLAD800, that is capable of recovering P-sized sediment core to depths of up to 800 m. The GLAD800 has been successfully deployed on Great Salt Lake and Bear Lake in Utah and is presently being mobilized to Lake Titicaca in South America for an extensive core recovery effort there. The coring capabilities of the GLAD800 system will be available to the global lakes drilling community for acquisition of sediment cores from many of the world's deep lakes for use in calibrating and refining global climate models. Presently under development by DOSECC is a heave-compensation system that will allow us to expand the capabilities of the moderate depth coring system to allow us to collect sediment and bottom core from the shallow marine environment. The design and capabilities of these coring systems will be presented along with a discussion of their potential applications for addressing a range of earth sciences questions.
The geological thought process: A help in developing business instincts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, S.A.
1995-09-01
Since the beginning of modern-day geology it has been understood that the present is the key to the past. However, when attempting to apply current geological models one discovers that there are no exact look-alikes. Thus, the geological discipline inherently accepts modifications, omissions, and relatively large margins of error compared with engineering. Geologists are comfortable in a world of non-unique solutions. Thus the experience in working with numerous geological settings is extremely critical in selecting the most reasonable geological interpretations, often by using a composite of specific models. One can not simply replace a dynamic geologist`s life-time of experiences andmore » geologic instinct with simply a book-smart young upstart. Petroleum corporations accept geologic risk and manage it by drilling numerous wells in various geological provenances. Oil corporations have attempted to quantify and manage risk by using Monte Carlo simulations, thus invoking a formal discipline of risk. The acceptance of risk, results in an asset allocation approach to investing. Asset allocators attempt to reduce volatility and risk, inherently understanding that in any specific time interval anything can happen. Dollar cost averaging significantly reduces market risk over time, however it requires discipline and commitment. The single most important ingredient to a successful investing plan is to assign a reasonable holding period. Historically, a majority of the investment community demands instant gratification causing unneeded anxiety and failure. As in geology nothing can replace experience.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koperna, George J.; Pashin, Jack; Walsh, Peter
The Commercial Scale Project is a US DOE/NETL funded initiative aimed at enhancing the knowledge-base and industry’s ability to geologically store vast quantities of anthropogenic carbon. In support of this goal, a large-scale, stacked reservoir geologic model was developed for Gulf Coast sediments centered on the Citronelle Dome in southwest Alabama, the site of the SECARB Phase III Anthropogenic Test. Characterization of regional geology to construct the model consists of an assessment of the entire stratigraphic continuum at Citronelle Dome, from surface to the depth of the Donovan oil-bearing formation. This project utilizes all available geologic data available, which includes:more » modern geophysical well logs from three new wells drilled for SECARB’s Anthropogenic Test; vintage logs from the Citronelle oilfield wells; porosity and permeability data from whole core and sidewall cores obtained from the injection and observation wells drilled for the Anthropogenic Test; core data obtained from the SECARB Phase II saline aquifer injection test; regional core data for relevant formations from the Geological Survey of Alabama archives. Cross sections, isopach maps, and structure maps were developed to validate the geometry and architecture of the Citronelle Dome for building the model, and assuring that no major structural defects exist in the area. A synthetic neural network approach was used to predict porosity using the available SP and resistivity log data for the storage reservoir formations. These data are validated and applied to extrapolate porosity data over the study area wells, and to interpolate permeability amongst these data points. Geostatistical assessments were conducted over the study area. In addition to geologic characterization of the region, a suite of core analyses was conducted to construct a depositional model and constrain caprock integrity. Petrographic assessment of core was conducted by OSU and analyzed to build a depositional framework for the region and provide modern day analogues. Stability of the caprock over several test parameters was conducted by UAB to yield comprehensive measurements on long term stability of caprocks. The detailed geologic model of the full earth volume from surface thru the Donovan oil reservoir is incorporated into a state-of-the-art reservoir simulation conducted by the University of Alabama at Birmingham (UAB) to explore optimization of CO 2 injection and storage under different characterizations of reservoir flow properties. The application of a scaled up geologic modeling and reservoir simulation provides a proof of concept for the large scale volumetric modeling of CO 2 injection and storage the subsurface.« less
Engineering geology studies in the National Petroleum Reserve, Alaska
Kachadoorian, Reuben; Crory, F.E.
1984-01-01
Engineering geology studies were conducted in direct support of the exploration program in the National Petroleum Reserve, Alaska. The studies included laboratory and field tests and observations to address design and construction problems of airfields, roads, drill pads and foundations, and to evaluate their actual performance. Permafrost containing large amounts of near surface ground ice as wedges, masses, and intergranular ice, required that all construction activity not disturb the thermal regime of the ground surface, which could lead to thaw of permafrost and ground subsidence. Summer activity, therefore was not allowable, yet the winter climate was so harsh that winter work was slow and inefficient. To allow summer operations at well sites planned for all year activity, it was necessary to adapt existing techniques for arctic construction and to devise new ones. The design and construction of facilities at the deep exploration wells at Inigok, Tunalik, and Lisburne posed the greatest challenge. These sites, requiring a year or more to drill, could only be attempted if continuous access to drilling and logistic supplies could be assured throughout the year, including the possibility of bringing in another drill rig, in the event of a blowout. Thus all-seasons airstrips were required at these wells. Sufficient quantities of local gravel were not readily available at the Inigok and Tunalik sites to construct the airstrips with the required 6 feet or more of gravel to prevent the underlying permafrost from thawing. Therefore, insulation was used to maintain the subbase of local sands in a continuously frozen state, which in turn was overlain by 15 inches of gravel or sandy gravel. Tests at the U.S. Army Waterways Experimental Station defined the minimum thickness of gravel required above the insulation to provide the desired bearing capacity for the C-130 type aircraft without crushing the insulation. Field testing also included the evaluation of another design option, using military landing mat underlain by insulation. Temperature recording devices were installed beneath the landing mat test sections, insulated runways, roads, drill pads, and reserve pits, to monitor the actual conditions and confirm the design assumptions. Investigations of thaw-settlement, erosion, and revegetation of all areas affected by construction were also conducted in anticipation of abandoning the sites, or, upgrading the facilities in the event the design life was extended.
NASA Astrophysics Data System (ADS)
Jiménez Berrocoso, Álvaro; MacLeod, Kenneth G.; Huber, Brian T.; Lees, Jacqueline A.; Wendler, Ines; Bown, Paul R.; Mweneinda, Amina K.; Isaza Londoño, Carolina; Singano, Joyce M.
2010-04-01
The 2007 drilling season by the Tanzania drilling project (TDP) reveals a much more expanded Upper Cretaceous sequence than was recognized previously in the Lindi region of southern Tanzania. This TDP expedition targeted recovery of excellently preserved microfossils (foraminifera and calcareous nannofossils) for Late Cretaceous paleoclimatic, paleoceanographic and biostratigraphic studies. A total of 501.17 m of core was drilled at six Upper Cretaceous sites (TDP Sites 21, 22, 23, 24, 24B and 26) and a thin Miocene-Pleistocene section (TDP Site 25). Microfossil preservation at all these sites is good to excellent, with foraminifera often showing glassy shells and consistently good preservation of small and delicate nannofossil taxa. In addition to adding to our knowledge of the subsurface geology, new surface exposures were mapped and the geological map of the region is revised herein. TDP Sites 24, 24B and 26 collectively span the upper Albian to lower-middle Turonian (planktonic foraminiferal Planomalina buxtorfi- Whiteinella archaeocretacea Zones and calcareous nannofossil zones UC0a-UC8a). The bottom of TDP Site 21 is barren, but the rest of the section represents the uppermost Cenomanian-Coniacian ( W. archaeocretacea- Dicarinella concavata Zones and nannofossil zones UC5c-UC10). Bulk organic δ 13C data suggest recovery of part of Ocean Anoxic Event 2 (OAE2) from these four sites. In the upper part of this interval, the lower Turonian nannofossil zones UC6a-7 are characterized by a low-diversity nannoflora that may be related to OAE2 surface-water conditions. TDP Site 22 presents a 122-m-thick, lower-middle Turonian ( W. archaeocretacea- Helvetoglobotruncana helvetica Zones) sequence that includes the nannofossil zones UC6a(-7?), but invariable isotopic curves. Further, a lower to upper Campanian ( Globotruncana ventricosa- Radotruncana calcarata Zones and nannofossil subzones UC15b TP-UC15d TP) succession was drilled at TDP Site 23. Lithologies of the new sites include thin units of gray, medium to coarse sandstones, separating much thicker intervals of dark claystones with organic-rich laminated parts, irregular silty to fine sandstone partings, and rare inoceramid and ammonite debris. These lithofacies are interpreted to have been deposited in outer shelf and upper slope settings and indicate relatively stable sedimentary conditions during most of the Late Cretaceous on the Tanzanian margin.
Cruz, Aristides I; Lakomkin, Nikita; Fabricant, Peter D; Lawrence, J Todd R
2016-06-01
Most studies examining the safety and efficacy of transphyseal anterior cruciate ligament (ACL) reconstruction for skeletally immature patients utilize transtibial drilling. Independent femoral tunnel drilling may impart a different pattern of distal femoral physeal involvement. To radiographically assess differences in distal femoral physeal disruption between transtibial and independent femoral tunnel drilling. We hypothesized that more oblique tunnels associated with independent drilling involve a significantly larger area of physeal disruption compared with vertically oriented tunnels. Cross-sectional study; Level of evidence, 3. We analyzed skeletally immature patients aged between 10 and 15 years who underwent transphyseal ACL reconstruction utilizing an independent femoral tunnel drilling technique between January 1, 2008, and March 31, 2011. These patients were matched with a transtibial technique cohort based on age and sex. Radiographic measurements were recorded from preoperative magnetic resonance imaging and postoperative radiographs. Ten patients in each group were analyzed. There were significant differences between independent drilling and transtibial drilling cohorts in the estimated area of physeal disruption (1.64 vs 0.74 cm(2); P < .001), femoral tunnel angles (32.1° vs 72.8°; P < .001), and medial/lateral location of the femoral tunnel (24.2 vs 36.1 mm from lateral cortex; P = .001), respectively. There was a significant inverse correlation between femoral tunnel angle and estimated area of distal femoral physeal disruption (r = -0.8255, P = .003). Femoral tunnels created with an independent tunnel drilling technique disrupt a larger area of the distal femoral physis and create more eccentric tunnels compared with a transtibial technique. As most studies noting the safety of transphyseal ACL reconstruction have utilized a central, vertical femoral tunnel, surgeons should be aware that if an independent femoral tunnel technique is utilized during transphyseal ACL reconstruction, more physeal tissue is at risk and tunnels are more eccentrically placed across the physis when drilling at more horizontal angles. Prior studies have shown that greater physeal involvement and eccentric tunnels may increase the risk of growth disturbance.
Idaho still attractive to industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1984-01-01
Idaho continues to attract operators willing to gamble millions in the hope of establishing the first commercial production in the state. Low well density compounds the complexity of Idaho's geology. Projections are that at least three wildcats will be drilled in the Bear Lake County this year. Plans are to continue infill seismic work on the Overthrust acreage, where significant amount of reconnaissance lines has been shot.
East Europe Report, Economic and Industrial Affairs, No. 2409
1983-06-09
technologically unsophisticated or because they do not correspond to the necessity for locating facilities rationally in terms of the natural and...Geological explorations and drilling in search of ore and nonmetalliferous min- eral deposits, cooperation in technology , extraction and processing...agreed to lend support and to encourage cooperation in the production of and trade in ready-to-wear clothing, knitwear , shoes, leather goods etc. 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jochen, J.E.; Hopkins, C.W.
1993-12-31
;Contents: Naturally fractured reservoir description; Geologic considerations; Shale-specific log model; Stress profiles; Berea reasearch; Benefits analysis; Summary of technologies; Novel well test methods; Natural fracture identification; Reverse drilling; Production data analysis; Fracture treatment quality control; Novel core analysis methods; and Shale well cleanouts.
Italy seeks geothermal renaissance
NASA Astrophysics Data System (ADS)
Cartlidge, Edwin
2009-03-01
Scientists in Italy are hoping to once again put their country at the forefront of geothermal energy research, by extracting power from one of the Earth's most explosive volcanic areas. Later this year they will drill a well 4 km deep into Campi Flegrei, a geological formation lying just to the west of Naples known as a caldera, which formed from the collapse of several volcanoes over thousands of years.
BOX-DEATH HOLLOW ROADLESS AREA, UTAH.
Weir, Gordon W.; Lane, Michael
1984-01-01
Geologic mapping, geochemical sampling, and a search for prospects and mineralized rock in the Box-Death Hollow Roadless Area, Utah indicate that there is little promise for the occurrence of mineral or energy resources in the area. Additional exploratory drilling by industry seems warranted if wells elsewhere in the region find oil or gas in strata as yet untested in the Box-Death Hollow Roadless Area.
NASA Astrophysics Data System (ADS)
Hickman, S.; Mooney, W. D.; Hsieh, P. A.; Enomoto, C.; Nelson, P. H.; McNutt, M.
2010-12-01
Scientists, engineers and managers from BP, other private companies, universities, government research labs and a broad spectrum of federal agencies have formed a unique cooperative working relationship in responding to the Macondo oil well (Deepwater Horizon) blowout. Among the many activities performed during this effort, U.S. Geological Survey personnel evaluated the potential geologic hazard of shutting in the Macondo well at the sea floor, and collectively decided, with others, the conditions under which it could be safely undertaken. These hazards included the possible loss of wellbore integrity under the anticipated high shut-in pressures, potentially leading to new pathways for hydrocarbon release to the Gulf of Mexico through upward hydraulic fracture propagation and/or soft sediment erosion initiating at possible leak points in the cemented casing. This hazard evaluation required analysis of 2D and 3D seismic surveys, seafloor bathymetry, pressure transient tests, geophysical well logs, in-situ stress (“leak-off”) tests and drilling data (e.g., mud logs) to assess the geological, hydrological and geomechanical conditions at and around the Macondo well. After the well was successfully capped and shut in by BP on July 15, a variety of monitoring practices were put into place to guard against further leaks into the Gulf. These monitoring activities included acquisition of wellhead pressure data, marine multi-channel seismic profiles, sea-floor and sea-surface sonar surveys (the latter using the NOAA RV/Pisces), and wellhead visual/acoustic monitoring. Scientists and engineers from BP, outside consultants, government agencies and the university community then worked together to continuously evaluate these data to ensure that the well remained safely shut in until reservoir pressures were suppressed (“killed”) with heavy drilling mud and the well was sealed with cement. This effort to shut in and then permanently seal the blown-out Macondo well has involved an unprecedented level of interaction, collaboration and coordination among scientists, engineers, managers and emergency response officials, and will hopefully lead to improved methodologies and approaches to assessing and then mitigating hazards posed by deepwater drilling.
Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013.
Casey, Joan A; Ogburn, Elizabeth L; Rasmussen, Sara G; Irving, Jennifer K; Pollak, Jonathan; Locke, Paul A; Schwartz, Brian S
2015-11-01
Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). We evaluated predictors of indoor radon concentrations. Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167-679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52-178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = -0.323, 95% CI: -0.333, -0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon concentrations. Future studies should include direct environmental measurement of radon, as well as building features unavailable for this analysis. Casey JA, Ogburn EL, Rasmussen SG, Irving JK, Pollak J, Locke PA, Schwartz BS. 2015. Predictors of indoor radon concentrations in Pennsylvania, 1989-2013. Environ Health Perspect 123:1130-1137; http://dx.doi.org/10.1289/ehp.1409014.
Predictors of Indoor Radon Concentrations in Pennsylvania, 1989–2013
Casey, Joan A.; Ogburn, Elizabeth L.; Rasmussen, Sara G.; Irving, Jennifer K.; Pollak, Jonathan; Locke, Paul A.
2015-01-01
Background Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). Objectives We evaluated predictors of indoor radon concentrations. Methods Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Results Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167–679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52–178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = –0.323, 95% CI: –0.333, –0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Conclusions Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon concentrations. Future studies should include direct environmental measurement of radon, as well as building features unavailable for this analysis. Citation Casey JA, Ogburn EL, Rasmussen SG, Irving JK, Pollak J, Locke PA, Schwartz BS. 2015. Predictors of indoor radon concentrations in Pennsylvania, 1989–2013. Environ Health Perspect 123:1130–1137; http://dx.doi.org/10.1289/ehp.1409014 PMID:25856050
Planning and design considerations in karst terrain
NASA Astrophysics Data System (ADS)
Fischer, J. A.; Greene, R. W.; Ottoson, R. S.; Graham, T. C.
1988-10-01
This article discusses the various steps that the authors feel are necessary to the successful progression of an engineered project sited in karst terrain. The procedures require a multidisciplined approach with liaison and cooperation among the various parties to the project. Initially, the prospective owner must have sufficient understanding of the potential engineering problems to incorporate the engineering geologist into the early stages of any planned acquisition. The first step in an investigation should include a review of the available geologic information, aerial photo interpretation, consultation with the State Geological Survey, and a geologic reconnaissance of the prospective site and surrounding area. A go-no-go decision as to purchase can often been made at an early time. Although, in some instances, more study is needed for a particularly intriguing property. The second stage should consider the various planning alternatives that are feasible based upon the limited available information. At this stage planning/purchase decisions can be made as to purchasing options, value of the property, design constraints, and the possible economic penalties that could be associated with the potential site construction. Various planning and construction alternatives should be considered in this phase of the work. The third stage should include a site investigation program of moderate size, consisting of test pits and/or exploratory borings. The borings should be drilled using water as the drilling fluid, with an experienced crew and qualified technical inspection. The authors find the use of geophysical techniques can be extremely misleading unless used in conjunction with exploratory drilling. Successful evaluations using geophysical procedures occur only under ideal conditions. The geotechnical viability of the plan and preliminary design should be investigated in the fourth phase. Additionally, the physical parameters required for the design of structures founded atop cavities can be obtained at this time. Several support schemes which incorporate cavity roof thickness, rock strength, and cavity space are discussed. Possible construction procedures include excavation and dental concrete, grouting, piers or piles to sound rock, or moving to another area. The relative economies of these procedures are discussed in relation to the size and depth of the soil or rock cavity, possible future cavity formation, magnitude of loading and acceptable safety factors.
Gravity and magnetic data across the Ghost Dance Fault in WT-2 Wash, Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, H.W.; Sikora, R.F.
1994-12-31
Detailed gravity and ground magnetic data were obtained in September 1993 along a 4,650 ft-long profile across the Ghost Dance Fault system in WT-2 Wash. Gravity stations were established every 150 feet along the profile. Total-field magnetic measurements made initially every 50 ft along the profile, then remade every 20 ft through the fault zone. These new data are part of a geologic and geophysical study of the Ghost Dance Fault (GDF) which includes detailed geologic mapping, seismic reflection, and some drilling including geologic and geophysical logging. The Ghost Dance Fault is the only through-going fault that has been identifiedmore » within the potential repository for high-level radioactive waste at Yucca Mountain, Nevada. Preliminary gravity results show a distinct decrease of 0.1 to 0.2 mGal over a 600-ft-wide zone to the east of and including the mapped fault. The gravity decrease probably marks a zone of brecciation. Another fault-offset located about 2,000 ft to the east of the GDF was detected by seismic reflection data and is also marked by a distinct gravity low. The ground magnetic data show a 200-ft-wide magnetic low of about 400 nT centered about 100 ft east of the Ghost Dance Fault. The magnetic low probably marks a zone of brecciation within the normally polarized Topopah Spring Tuff, the top of which is about 170 ft below the surface, and which is known from drilling to extend to a depth of about 1,700 ft. Three-component magnetometer logging in drill hole WT-2 located about 2,700 ft east of the Ghost Dance Fault shows that the Topopah Spring Tuff is strongly polarized magnetically in this area, so that fault brecciation of a vertical zone within the Tuff could provide an average negative magnetic contrast of the 4 Am{sup {minus}1} needed to produce the 400 nT low observed at the surface.« less