Sample records for drilling temperature gradient

  1. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    USGS Publications Warehouse

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth.  Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data.  Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes.  Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes.  In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient.  Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.

  2. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...

  3. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...

  4. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...

  5. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...

  6. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  7. Results of temperature gradient and heat flow in Santiam Pass Area, Oregon, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, B.L.; Gardner, M.C.; Koenig, J.B.

    The conclusions of this report are: (1) There is a weakly defined thermal anomaly within the area examined by temperature-gradient holes in the Santiam Pass area. This is a relict anomaly showing differences in permeability between the High Cascades and Western Cascades areas, more than a fundamental difference in shallow crustal temperatures. (2) The anomaly as defined by the 60 F isotherms at 400 feet follows a north-south trend immediately westward of the Cascade axis in the boundary region. It is clear that all holes spudded into High Cascades rocks result in isothermal and reversal gradients. Holes spudded in Westernmore » Cascades rocks result in positive gradients. (3) Cold groundwater flow influences and masks temperature gradients in the High Cascades to a depth of at least 700 feet, especially eastward from the major north-south trending faults. Pleistocene and Holocene rocks are very permeable aquifers. (4) Shallow gradient drilling in the lowlands westward of the faults provides more interpretable information than shallow drilling in the cold-water recharge zones. Topographic and climatological effects can be filtered out of the temperature gradient results. (5) The thermal anomaly seems to have 2 centers: one in the Belknap-Foley area, and one northward in the Sand Mountain area. The anomalies may or may not be connected along a north-south trend. (6) A geothermal effect is seen in holes downslope of the Western-High Cascade boundary. Mixing with cold waters is a powerful influence on temperature gradient data. (7) The temperature-gradient program has not yet examined and defined the geothermal resources potential of the area eastward of the Western Cascades-High Cascades boundary. Holes to 1500-2000 feet in depth are required to penetrate the high permeability-cold groundwater regime. (8) Drilling conditions are unfavorable. There are very few accessible level drill sites. Seasonal access problems and environmental restrictions together with frequent lost circulation results in very high costs per foot drilled.« less

  8. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  9. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  10. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  11. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, J.A.

    During the summer of 1975, the Department of Geology and Geophysics drilled nine drill thermal gradient/heat flow holes. Total footage drilled was 2125 feet. Seven holes were drilled with a Mayhew 1000 drill using various combinations of down the hole hammer drilling, rotary drilling, and NX diamond core drilling. Three of these were heat flow holes--one in the Mineral Range, one in the Tushar Range near Beaver, Utah, and one near Monroe, Utah. Two were alteration study holes in the Roosevelt KGRA and two were temperature gradient holes, in alluvium in the Roosevelt KGRA. The average depth of the holesmore » drilled with the Mayhew 1000 drill was 247 feet. Holes ranged from 135 feet to 492 feet. Cost per foot averaged $18.53. Two holes were core drilled with a Joy 12, BX-size drill. One was to 75 feet, in perlite. This hole was abandoned. The other was to 323 feet in granite.« less

  13. 43 CFR 3207.11 - What work am I required to perform during the first 10 years of my lease for BLM to grant the...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... geologic or reservoir information, such as: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production...

  14. 43 CFR 3207.11 - What work am I required to perform during the first 10 years of my lease for BLM to grant the...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... geologic or reservoir information, such as: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production...

  15. 43 CFR 3207.11 - What work am I required to perform during the first 10 years of my lease for BLM to grant the...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... geologic or reservoir information, such as: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production...

  16. Numerical Simulations of Thermo-Mechanical Processes during Thermal Spallation Drilling for Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.

    2017-12-01

    Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.

  17. 43 CFR 3207.12 - What work am I required to perform each year for BLM to continue the initial and additional...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production or injection wells; (6) Reservoir... lease at the end of that year unless you qualify for a drilling extension under § 3207.13. (i) Every...

  18. 43 CFR 3207.12 - What work am I required to perform each year for BLM to continue the initial and additional...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production or injection wells; (6) Reservoir... lease at the end of that year unless you qualify for a drilling extension under § 3207.13. (i) Every...

  19. 43 CFR 3207.12 - What work am I required to perform each year for BLM to continue the initial and additional...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production or injection wells; (6) Reservoir... lease at the end of that year unless you qualify for a drilling extension under § 3207.13. (i) Every...

  20. 43 CFR 3207.12 - What work am I required to perform each year for BLM to continue the initial and additional...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: (1) Geologic investigation and analysis; (2) Drilling temperature gradient wells; (3) Core drilling; (4) Geochemical or geophysical surveys; (5) Drilling production or injection wells; (6) Reservoir... lease at the end of that year unless you qualify for a drilling extension under § 3207.13. (i) Every...

  1. Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results

    USGS Publications Warehouse

    Goff, S.J.; Goff, F.; Janik, C.J.

    1992-01-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro geothermal site, Guatemala, indicate that there is a substantial shallow heat source beneath the area of youngest volcanism. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 300??C. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, fracturing, hydrothermal alteration, and hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro Volcano complex. The hole is located 300 m south of a 300m-diameter phreatic crater. Laguna Ixpaco, dated at 2910 years. TCB-1 temperature logs do not indicate isothermal conditions at depth and the calculated thermal gradient from 500-800 m is 230??C/km. Bottom hole temperature is close to 240??C. Calculated heat flow values are around 350-400 mW/m2. Fluid-inclusion and secondary-alteration studies indicate that veins and secondary minerals were formed at temperatures equal to or slightly less than present temperatures; thus, the Tecuamburro geothermal system may still be heating up. The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for geothermal resource development. ?? 1992.

  2. Preliminary map of temperature gradients in the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guffanti, M.; Nathenson, M.

    1980-09-01

    Temperature gradients have been determined from temperature/depth measurements made in drill holes deeper than 600 m and used in the construction of a temperature-gradient map of the conterminous United States. The map displays temperature gradients (in /sup 0/C/km) that can be expected to exist regionally in a conductive thermal regime to a depth of 2 km. The major difference between this map and the AAPG-USGS temperature-gradient map is in the midcontinental region where the AAPG-USGS map does not demarcate a division between colder eastern and warmer western thermal regimes. A comparison with the heat-flow map of Sass et al. (1980)more » indicates that temperature gradients commonly reflect regional heat flow, and the gross east-west division of the United States on the basis of heat flow is also expressed by temperature gradient.« less

  3. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trexler, D.T.; Flynn, T.; Koenig, B.A.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, andmore » temperature gradient drilling.« less

  4. Borehole Stability in High-Temperature Formations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  5. 43 CFR 3253.11 - Must I notify BLM when I have completed my exploration operations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL...) Complete any geophysical exploration operations; (b) Complete the drilling of temperature gradient well(s... gradient well; and (d) Plug shot holes and reclaim all exploration sites. ...

  6. Preliminary Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Preliminary locations for intermediate depth temperature gradient holes and/or resource confirmation wells based on compilation of geological, geophysical and geochemical data prior to carrying out the DOE-funded reflection seismic survey.

  7. Deep thermal disturbances related to the sub-surface groundwater flow (Western Alps, France)

    NASA Astrophysics Data System (ADS)

    Mommessin, Grégoire; Dzikowski, Marc; Menard, Gilles; Monin, Nathalie

    2013-04-01

    In mountain area, the bedrock of the valley side is affected by a thickness of decompressed rock in subsurface (decompressed zone). Groundwater flowing in this zone disrupts the depth geothermal gradients. The evolution of thermal gradients under the decompressed zone depends of groundwater temperature changes into the decompressed zone. In this study, the phenomenon is studied from data acquired in exploration drilling prior to the construction of the France - Italy transalpine tunnel (High Speed Line project between Lyon and Turin). The study area is located in the Vanoise siliceous series between Modane and Avrieux (Western Alps, France). Of 31 boreholes, we selected 14 wells showing a natural thermal disturbance (not due to the drilling) linked to the groundwater flow in decompressed zone. The drill holes have a length between 200 and 1380m and well logs were carried out (gamma log, acoustic log, temperature log, flowmeter log). The rocks are constituted mainly by quartzite with high thermal conductivity or by schist and gneiss with low thermal conductivity. The decompressed zone concerns the quartzite with thicknesses ranging from 50m to 750m where groundwater flow imposes a constant temperature throughout the rock thickness. In the very low permeability rocks under the decompressed zone, the thermal gradient shows variations with depth. These variations suggest a water temperature change in the decompressed zone probably due to a paleoclimate event. We used the derived of the equation describing the propagation of a temperature in a 1D semi-infinite, in response to a sudden temperature disturbance at the boundary of the medium, to estimate the age and the amplitude of temperature change in the decompressed zone. The medium under the decompressed zone is supposed to be initially in a steady state and only conductive. Numerical tests assess that the 1D model is applicable in the slope context. The results obtained from 13 wells data show a few warming degrees (1 to 4°K) of the decompressed zone occurring about two to four centuries BP. The latest high altitude drilling shows about two degrees cooling of the decompressed zone two centuries ago. The groundwater temperature warming can be due to a type of recharge change with a reduction of the snowmelt contribution or it can be provided by an increase of atmospheric and rainfall temperature. The observed cooling in the latest drilling can be interpreted as a groundwater flow change caused by the permafrost melting. The temperature change occurs during the end of Little Ice Age.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibbett, B.S.; Nielson, D.L.; Adams, M.C.

    This technical report on the Phase II geothermal exploration of Ascension Island documents the data collected during thermal gradient drilling and the subsequent thermal and fluid chemical investigations. It also documents the completion of the Phase II exploration strategy which was proposed at the end of the Phase I--Preliminary Examination of Ascension Island. The thermal gradient drilling resulted in seven holes which range from 206 to 1750 ft (53-533 m) deep, with a cumulative footage of 6563 ft (2000 m). The drilling procedure and the problems encountered during the drilling have been explained in detail to provide information valuable formore » any subsequent drilling program on the island. In addition, the subsurface geology encountered in the holes has been documented and, where possible, correlated with other holes or the geology mapped on the surface of the island. Temperatures measured in the holes reach a maximum of 130 F (54.4 C) at 1285 ft (391.7 m) in hole GH-6. When the temperatures of all holes are plotted against elevation, the holes can be classed into three distinct groups, those which have no thermal manifestations, those with definite geothermal affinities, and one hole which is intermediate between the other two. From consideration of this information, it is clear that the highest geothermal potential on the island is in the Donkey Flat area extending beneath Middleton Ridge, and in the Cricket Valley area. Because of the greater drilling depths and the remote nature of the Cricket Valley area, it is recommended that future exploration concentrate in the area around Middleton Ridge.« less

  9. Temperature gradients in a portion of Michigan: a review of the usefulness of data from the AAPG geothermal survey of North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaught, T.L.

    1980-08-01

    Temperature gradient data derived from drill holes in an east-west zone through the center of the southern peninsula of Michigan are analyzed. The purpose of this work is to investigate possible problems in utilizing the American Association of Petroleum Geologists data base. Michigan was chosen because a review of that State's geothermal potential shows inconsistencies between gradients from shallow wells and nearby deeper wells and because the geology of the State is relativey simple. The structure and stratigraphy are discussed because an understanding of Michigan basin geology makes it easier to predict the influence of lithology on the basin's geothermalmore » gradients. Explanations for elevated gradients are reviewed. (MHR)« less

  10. Regional geothermal exploration in Egypt

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Boulos, F. K.; Swanberg, C. A.

    1983-01-01

    A study is presented of the evaluation of the potential geothermal resources of Egypt using a thermal gradient/heat flow technique and a groundwater temperature/chemistry technique. Existing oil well bottom-hole temperature data, as well as subsurface temperature measurements in existing boreholes, were employed for the thermal gradient/heat flow investigation before special thermal gradient holes were drilled. The geographic range of the direct subsurface thermal measurements was extended by employing groundwater temperature and chemistry data. Results show the presence of a regional thermal high along the eastern margin of Egypt with a local thermal anomaly in this zone. It is suggested that the sandstones of the Nubian Formation may be a suitable reservoir for geothermal fluids. These findings indicate that temperatures of 150 C or higher may be found in this reservoir in the Gulf of Suez and Red Sea coastal zones where it lies at a depth of 4 km and deeper.

  11. 43 CFR 3281.15 - What is the minimum initial unit obligation a unit agreement must contain?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (3000) GEOTHERMAL RESOURCES UNIT AGREEMENTS Application, Review, and Approval of a Unit Agreement § 3281... drilling temperature gradient wells. (d) BLM will not consider any work done prior to unit approval for the...

  12. The geothermal gradient map of Central Tunisia: Comparison with structural, gravimetric and petroleum data

    NASA Astrophysics Data System (ADS)

    Dhia, Hamed Ben

    1987-10-01

    Five hundred and fifty temperature values, initially measured as either bottom-hole temperatures (BHT) or drill-stem tests (DST), from 98 selected petroleum exploration wells form the basis of a geothermal gradient map of central Tunisia. A "global-statistical" method was employed to correct the BHT measurements, using the DST as references. The geothermal gradient ranges from 23° to 49°C/km. Comparison of the geothermal gradient with structural, gravimetric and petroleum data indicates that: (1) the general trend of the geothermal gradient curves reflects the main structural directions of the region, (2) zones of low and high geothermal gradient are correlated with zones of negative and positive Bouguer anomalies and (3) the five most important oil fields of central Tunisia are located near the geothermal gradient curve of 40° C/km. Such associations could have practical importance in petroleum exploration, but their significance must first be established through further investigation and additional data.

  13. McGee Mountain Shallow (2m) Temperature Survey, Humboldt County, Nevada 2009

    DOE Data Explorer

    Richard Zehner

    2009-01-01

    This shapefile contains location and attribute data for a shallow (2 meter) temperature survey conducted by Geothermal Technical Partners, Inc. during late 2008 and early 2009. Temperatures at 2m depth were measured at 192 separate points as outlined by Coolbaugh et al., 2007. The purpose of the survey was to try and detect a shallow thermal anomaly associated with the McGee Mountain geothermal area as discovered by Phillips Petroleum and Earth Power Resources in the late 1970’s. Drilling identified ~120oC temperatures at ~100m depth. This 2-meter survey delineated what was interpreted as a steam-heated fault zone centered along a range front fault in the vicinity of the drilled holes and fumaroles. Coolbaugh, M.F., Sladek, C., Faulds, J.E., Zehner, R.E., and Oppliger, G.L., 2007, Use of rapid temperature measurements at a 2-meter depth to augment deeper temperature gradient drilling: Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Jan. 22-24, 2007, p. 109-116. Zehner, R., Tullar, K., and Rutledge, E., 2012, Effectiveness of 2-Meter and geoprobe shallow temperature surveys in early stage geothermal exploration: Geothermal Resources Council Transactions, v. 36, in press.

  14. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at glass buttes, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Patrick; Fercho, Steven; Perkin, Doug

    2015-06-01

    The engineering and studies phase of the Glass Buttes project was aimed at reducing risk during the early stages of geothermal project development. The project’s inclusion of high resolution geophysical and geochemical surveys allowed Ormat to evaluate the value of these surveys both independently and in combination to quantify the most valuable course of action for exploration in an area where structure, permeability, and temperature are the most pressing questions. The sizes of the thermal anomalies at Glass Buttes are unusually large. Over the course of Phase I Ormat acquired high resolution LIDAR data to accurately map fault manifestations atmore » the surface and collected detailed gravity and aeromagnetic surveys to map subsurface structural features. In addition, Ormat collected airborne hyperspectral data to assist with mapping the rock petrology and mineral alteration assemblages along Glass Buttes faults and magnetotelluric (MT) survey to try to better constrain the structures at depth. Direct and indirect identification of alteration assemblages reveal not only the geochemical character and temperature of the causative hydrothermal fluids but can also constrain areas of upflow along specific fault segments. All five datasets were merged along with subsurface lithologies and temperatures to predict the most likely locations for high permeability and hot fluids. The Glass Buttes temperature anomalies include 2 areas, totaling 60 km2 (23 mi2) of measured temperature gradients over 165° C/km (10° F/100ft). The Midnight Point temperature anomaly includes the Strat-1 well with 90°C (194 °F) at 603 m (1981 ft) with a 164 °C/km (10°F/100ft) temperature gradient at bottom hole and the GB-18 well with 71°C (160 °F) at 396 m (1300 ft) with a 182°C/km (11°F/100ft) gradient. The primary area of alteration and elevated temperature occurs near major fault intersections associated with Brothers Fault Zone and Basin and Range systems. Evidence for faulting is observed in each data set as follows. Field observations include fault plane orientations, complicated fault intersections, and hydrothermal alteration apparently pre-dating basalt flows. Geophysical anomalies include large, linear gradients in gravity and aeromagnetic data with magnetic lows possibly associated with alteration. Resistivity low anomalies also appear to have offsets associated with faulting. Hyperspectral and XRF identified alteration and individual volcanic flow units, respectively. When incorporated into a 3D geologic model, the fault intersections near the highest proven temperature and geophysical anomalies provide the first priority targets at Midnight Point. Ormat geologists selected the Midnight Point 52-33 drilling target based on a combination of pre-existing drilling data, geologic field work, geophysical interpretation, and geochemical analysis. Deep temperatures of well 52-33 was lower than anticipated. Temperature gradients in the well mirrored those found in historical drilling, but they decreased below 1500 ft and were isothermal below 2000 ft.« less

  15. Field-scale permeability and temperature of volcanic crust from borehole data: Campi Flegrei, southern Italy

    NASA Astrophysics Data System (ADS)

    Carlino, Stefano; Piochi, Monica; Tramelli, Anna; Mormone, Angela; Montanaro, Cristian; Scheu, Bettina; Klaus, Mayer

    2018-05-01

    We report combined measurements of petrophysical and geophysical parameters for a 501-m deep borehole located on the eastern side of the active Campi Flegrei caldera (Southern Italy), namely (i) in situ permeability by pumping tests, (ii) laboratory-determined permeability of the drill core, and (iii) thermal gradients by distributed fiber optic and thermocouple sensors. The borehole was drilled during the Campi Flegrei Deep Drilling Project (in the framework of the International Continental Scientific Drilling Program) and gives information on the least explored caldera sector down to pre-caldera deposits. The results allow comparative assessment of permeability obtained from both borehole (at depth between 422 a 501 m) and laboratory tests (on a core sampled at the same depth) for permeability values of 10-13 m2 (borehole test) and 10-15 m2 (laboratory test) confirm the scale-dependency of permeability at this site. Additional geochemical and petrophysical determinations (porosity, density, chemistry, mineralogy and texture), together with gas flow measurements, corroborate the hypothesis that discrepancies in the permeability values are likely related to in-situ fracturing. The continuous distributed temperature profile points to a thermal gradient of about 200 °C km-1. Our findings (i) indicate that scale-dependency of permeability has to be carefully considered in modelling of the hydrothermal system at Campi Flegrei, and (ii) improve the understanding of caldera dynamics for monitoring and mitigation of this very high volcanic risk area.

  16. Multi-gradient drilling method and system

    DOEpatents

    Maurer, William C.; Medley, Jr., George H.; McDonald, William J.

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  17. Investigations of Very High Enthalpy Geothermal Resources in Iceland.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.

    2012-12-01

    The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal reservoir, without increasing its environmental foot print. If these efforts are successful, in future such very high enthalpy geothermal systems worldwide could become significant energy resources, where ever suitable young volcanic rocks occur, such as in the western USA, Hawaii, and Alaska.

  18. In situ determination of heat flow in unconsolidated sediments

    USGS Publications Warehouse

    Sass, J.H.; Kennelly, J.P.; Wendt, W.E.; Moses, T.H.; Ziagos, J.P.

    1979-01-01

    Subsurface thermal measurements are the most effective, least ambiguous tools for identifying and delineating possible geothernml resources. Measurements of thermal gradient in the upper few tens of meters generally are sufficient to outline the major anomalies, but it is always desirable to combine these gradients with reliable estimates of thermal conductivity to provide data on the energy flux and to constrain models for the heat sources responsible for the observed, near-surface thermal anomalies. The major problems associated with heat-flow measurements in the geothermal exploration mode are concerned with the economics of casing and/or grouting holes, the repeated site visits necessary to obtain equilibrium temperature values, the possible legal liability associated with the disturbance of underground aquifers, the surface hazards presented by pipes protruding from the ground, and the security problems associated with leaving cased holes open for periods of weeks to months. We have developed a technique which provides reliable 'real-time' determinations of temperature, thermal conductivity, and hence, of heat flow during the drilling operation in unconsolidated sediments. A combined temperature, gradient, and thermal conductivity experiment can be carried out, by driving a thin probe through the bit about 1.5 meters into the formation in the time that would otherwise be required for a coring trip. Two or three such experiments over the depth range of, say, 50 to 150 meters provide a high-quality heat-flow determination at costs comparable to those associated with a standard cased 'gradient hole' to comparable depths. The hole can be backfilled and abandoned upon cessation of drilling, thereby eliminating the need for casing, grouting, or repeated site visits.

  19. Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

    2014-05-01

    SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud treatment and high temperature resistant cementing materials, and bionic bits,that is coupling bionic PDC tooth bit and diamond-impregnated bit for hard rock.All parts of CRUST-1 were successfully assembled along with the derrick and base lift and transported about 3456 kilometers from manufacture,GuangHan city in southwest China's Sichuan province,to the well site of SK-2 in end of 2013.SK-2 will be finished during next 4 years.

  20. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbank, Brian D.; Smith, Nicole

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2more » drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag, seismic, and gravity data sets are in good agreement, illustrating two or more major range-bounding faults and buried northwest trending faults. The intersections of these fault systems provide the primary targets for drilling.« less

  1. Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy

    NASA Astrophysics Data System (ADS)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2013-05-01

    Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.

  2. Observed correlation between the depth to base and top of gas hydrate occurrence from review of global drilling data

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Collett, T. S.

    2017-07-01

    A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.

  3. Observed correlation between the depth to base and top of gas hydrate occurrence from review of global drilling data

    USGS Publications Warehouse

    Riedel, Michael; Collett, Timothy S.

    2017-01-01

    A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.

  4. Volcanotectonic history of Crater Flat, southwestern Nevada, as suggested by new evidence from drill hole USW-VH-1 and vicinity

    USGS Publications Warehouse

    Carr, W.J.

    1982-01-01

    New evidence for a possible resurgent dome in the caldera related to eruption of the Bullfrog Member of the Crater Flat Tuff has been provided by recent drilling of a 762-meter (2,501-foot) hole in central Crater Flat. Although no new volcanic units were penetrated by the drill hole (USW-VH-1), the positive aeromagnetic anomaly in the vicinity of the drill hole appears to result in part from the unusually thick, densely welded tuff of the Bullfrog. Major units penetrated include alluvium, basalt of Crater Flat, Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, and Prow Pass and Bullfrog Members of the Crater Flat Tuff. In addition, the drill hole provided the first subsurface hydrologic information for the area. The water table in the hole is at about 180 meters (600 feet), and the temperature gradient appears slightly higher than normal for the region.

  5. The snake geothermal drilling project. Innovative approaches to geothermal exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shervais, John W.; Evans, James P.; Liberty, Lee M.

    2014-02-21

    The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution,more » and new thermal gradient measurements.« less

  6. Subsurface temperature data in Jemez Mountains, New Mexico. Circular 151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, M.; Weidman, C.; Edwards, C.L.

    1976-01-01

    Temperature data taken in 13 drill tests around the Valles Caldera are presented. Seven of these tests were shallow auger holes (less than approximately 30m), 4 were rotary holes of intermediate depth (140 m to 170 m), and 2 were relatively deep tests (350 m and 730 m). Heat-flow measurements were obtained in the 4 intermediate drill tests whereas only geothermal gradients were measured in the remaining tests. Potential ground-water movement, lack of good thermal conductivity control, and the shallow depth of many of the drill tests makes the heat-flow pattern in the area uncertain. Two trends appear likely: highermore » heat flows are to the western side of the Valles Caldera (as opposed to the eastern side) and heat flows increase rapidly in approaching the margin of the Valles Caldera from the west. Both observations suggest a relatively shallow heat source located beneath the western part of the Valles Caldera.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohse, Alan

    On December 8, 1977, Gruy Federal, Inc. took over the C.D. Hopkins et al. No. 2 well, located near Jesup in Wayne County, Georgia, to be deepened and used for geothermal temperature-gradient measurements. The well was drilled from 4,009 to 4,341 feet, then diamond cored to 4,371 feet, 28 feet of core being obtained for analysis. After logging by the USGS District Groundwater Office in Atlanta, the well was terminated with 3 1/2 inch tubing to 4,386 feet. Scientists from Virginia Polytechnic Institute determined the bottom-hole temperature to be 60 C (140 F) at 1,331 meters (4,365 feet). Over themore » interval 47-1,331 meters (154-4,365 feet) the least-squares temperature gradient was 29.3 {+-} 0.14 C/km (1.61 {+-} 0.25 F/100 ft).« less

  8. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less

  9. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coringmore » operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.« less

  10. Determination of In-situ Rock Thermal Properties from Geophysical Log Data of SK-2 East Borehole, Continental Scientific Drilling Project of Songliao Basin, NE China

    NASA Astrophysics Data System (ADS)

    Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.

    2017-12-01

    Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China Geological Survey Projects (NO. 12120113017600).

  11. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport in different (fractured) media. gebo is funded by the Ministry of Science and Culture of Lower Saxony, Germany and the industry partner Baker Hughes, Celle, Germany.

  12. THE EFFECT OF GAS HYDRATES DISSOCIATION AND DRILLING FLUIDS INVASION UPON BOREHOLE STABILITY IN OCEANIC GAS HYDRATES-BEARING SEDIMENT

    NASA Astrophysics Data System (ADS)

    Ning, F.; Wu, N.; Jiang, G.; Zhang, L.

    2009-12-01

    Under the condition of over-pressure drilling, the solid-phase and liquid-phase in drilling fluids immediately penetrate into the oceanic gas hydrates-bearing sediment, which causes the water content surrounding the borehole to increase largely. At the same time, the hydrates surrounding borehole maybe quickly decompose into water and gas because of the rapid change of temperature and pressure. The drilling practices prove that this two factors may change the rock characteristics of wellbore, such as rock strength, pore pressure, resistivity, etc., and then affect the logging response and evaluation, wellbore stability and well safty. The invasion of filtrate can lower the angle of friction and weaken the cohesion of hydrates-bearing sediment,which is same to the effect of invading into conventional oil and gas formation on borehole mechnical properties. The difference is that temperature isn’t considered in the invasion process of conventional formations while in hydrates-bearing sediments, it is a factor that can not be ignored. Temperature changes can result in hydrates dissociating, which has a great effect on mechanical properties of borehole. With the application of numerical simulation method, we studied the changes of pore pressure and variation of water content in the gas hydrates-bearing sediment caused by drilling fluid invasion under pressure differential and gas hydrate dissociation under temperature differential and analyzed their influence on borehole stability.The result of simulation indicated that the temperature near borehole increased quickly and changed hardly any after 6 min later. About 1m away from the borehole, the temperature of formation wasn’t affected by the temperature change of borehole. At the place near borehole, as gas hydrate dissociated dramatically and drilling fluid invaded quickly, the pore pressure increased promptly. The degree of increase depends on the permeability and speed of temperature rise of formation around bohole. If the formation has a low permeability and is heated quickly, the dissociated gas and water couldn’t flow away in time, which is likely to bring a hazard of excess pore pressure. Especially in the area near the wall of borehole, the increase degree of pore pressure is high than other area because the dissociation of gas hydrates is relatively violent and hydraulic gradient is bigger. We also studied the distribution of water saturation around borehole after 10min, 30min and 60min respectively. It revealed that along with the invasion of drilling fluid and dissociation of gas hydrate, the degree of water saturation increased gradually. The effect of gas hydrate dissociation and drilling fluids invasion on borehole stability is to weaken mechanical properties of wellbore and change the pore pressure, then changes the effective stress of gas hydrates-bearing sediment. So temperature, pressure in the borehole and filter loss of drilling fluids should be controlled strictly to prevent gas hydrates from decomposing largely and in order to keep the borehole stability in the gas hydrates-bearing formations.

  13. Hydrothermal Alteration of Open Fractures in Prospective Geothermal Drill Cores, Akutan Island, Alaska

    NASA Astrophysics Data System (ADS)

    Kent, T.

    2011-12-01

    The goal of this study is to constrain the most recent thermal alteration of two drill cores (HSB2/HSB4) from the Island of Akutan in the Aleutian Islands of Alaska. These cores are characterized by identifying mineralogy using x-ray diffraction spectra, energy dispersive spectroscopy with a scanning electron microscope and optical mineralogy. This is then compared with the coincident thermal data gathered on site in order to help constrain the most recent thermal activity of this dynamic resource. Using multiple temperature diagnostic minerals and their paragenesis, a relative thermal history is produced of expansive propylitic alteration. When combined with the wireline temperature gradients of the cores a model of downward migration emerges. Shallow occurrences of high temperature minerals that lie above the boiling point to depth curve indicate higher hydrostatic pressures in the past which can be attributed to a combination of glacial effects, including a significant amount of glacial erosion that is recognized due to a lack of significant clay cap to the geothermal resource.

  14. Air and ground temperatures along elevation and continentality gradients in Southern Norway

    NASA Astrophysics Data System (ADS)

    Farbrot, Herman; Hipp, Tobias; Etzelmüller, Bernd; Humlum, Ole; Isaksen, Ketil; Strand Ødegârd, Rune

    2010-05-01

    The modern southern boundary for Scandinavian permafrost is located in the mountains of Southern Norway. Permafrost and seasonal frost are considered key components of the cryosphere, and the climate-permafrost relation has acquired added importance with the increasing awareness and concern of rising air temperatures. The three-year research project CRYOLINK ("Permafrost and seasonal frost in southern Norway") aims at improving knowledge on past and present ground temperatures, seasonal frost, and distribution of mountain permafrost in Southern Norway by addressing the fundamental problem of heat transfer between the atmosphere and the ground surface. Hence, several shallow boreholes have been drilled, and a monitoring program to measure air and ground temperatures was started August 2008. The borehole areas (Juvvass, Jetta and Tron) are situated along a west-east transect and, hence, a continentality gradient, and each area provides boreholes at different elevations. Here we present the first year of air and ground temperatures from these sites and discuss the influence of air temperature and ground surface charcteristics (snow conditions, sediments/bedrock, vegetation) on ground temperatures.

  15. Penrose Well Temperatures

    DOE Data Explorer

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  16. In Situ Temperature Measurements at the Svalbard Continental Margin: Implications for Gas Hydrate Dynamics

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Wallmann, K.; Berndt, C.; Pape, T.; Freudenthal, T.; Bergenthal, M.; Bünz, S.; Bohrmann, G.

    2018-04-01

    During expedition MARIA S. MERIAN MSM57/2 to the Svalbard margin offshore Prins Karls Forland, the seafloor drill rig MARUM-MeBo70 was used to assess the landward termination of the gas hydrate system in water depths between 340 and 446 m. The study region shows abundant seafloor gas vents, clustered at a water depth of ˜400 m. The sedimentary environment within the upper 100 m below seafloor (mbsf) is dominated by ice-berg scours and glacial unconformities. Sediments cored included glacial diamictons and sheet-sands interbedded with mud. Seismic data show a bottom simulating reflector terminating ˜30 km seaward in ˜760 m water depth before it reaches the theoretical limit of the gas hydrate stability zone (GHSZ) at the drilling transect. We present results of the first in situ temperature measurements conducted with MeBo70 down to 28 mbsf. The data yield temperature gradients between ˜38°C km-1 at the deepest site (446 m) and ˜41°C km-1 at a shallower drill site (390 m). These data constrain combined with in situ pore-fluid data, sediment porosities, and thermal conductivities the dynamic evolution of the GHSZ during the past 70 years for which bottom water temperature records exist. Gas hydrate is not stable in the sediments at sites shallower than 390 m water depth at the time of acquisition (August 2016). Only at the drill site in 446 m water depth, favorable gas hydrate stability conditions are met (maximum vertical extent of ˜60 mbsf); however, coring did not encounter any gas hydrates.

  17. Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world

    NASA Astrophysics Data System (ADS)

    Thomas, Deborah J.; Korty, Robert; Huber, Matthew; Schubert, Jessica A.; Haines, Brian

    2014-05-01

    The oceanic meridional overturning circulation (MOC) is a crucial component of the climate system, impacting heat and nutrient transport, and global carbon cycling. Past greenhouse climate intervals present a paradox because their weak equator-to-pole temperature gradients imply a weaker MOC, yet increased poleward oceanic heat transport appears to be required to maintain these weak gradients. To investigate the mode of MOC that operated during the early Cenozoic, we compare new Nd isotope data with Nd tracer-enabled numerical ocean circulation and coupled climate model simulations. Assimilation of new Nd isotope data from South Pacific Deep Sea Drilling Project and Ocean Drilling Program Sites 323, 463, 596, 865, and 869 with previously published data confirm the hypothesized MOC characterized by vigorous sinking in the South and North Pacific 70 to 30 Ma. Compilation of all Pacific Nd isotope data indicates vigorous, distinct, and separate overturning circulations in each basin until 40 Ma. Simulations consistently reproduce South Pacific and North Pacific deep convection over a broad range of conditions, but cases using strong deep ocean vertical mixing produced the best data-model match. Strong mixing, potentially resulting from enhanced abyssal tidal dissipation, greater interaction of wind-driven internal wave activity with submarine plateaus, or higher than modern values of the geothermal heat flux enable models to achieve enhanced MOC circulation rates with resulting Nd isotope distributions consistent with the proxy data. The consequent poleward heat transport may resolve the paradox of warmer worlds with reduced temperature gradients.

  18. Quantitative Analysis of Thermal Anomalies in the DFDP-2B Borehole, New Zealand

    NASA Astrophysics Data System (ADS)

    Janků-Čápová, Lucie; Sutherland, Rupert; Townend, John

    2017-04-01

    The DFDP-2B borehole, which was drilled in the Whataroa Valley, South Island, New Zealand in late 2014, provides a unique opportunity to study the conditions in the hanging wall of a plate boundary fault, the Alpine Fault, which is late in its seismic cycle. High geothermal gradient of > 125°C/km encountered in the borehole drew attention to the thermal structure of the valley, as well as of the Alpine Fault's hanging wall as a whole. A detailed analysis of temperature logs measured during drilling of the DFDP-2B borehole, reveals two distinct portions of the signal containing information on different processes. The long-wavelength portion of the temperature signal, i.e. the overall trend (hundreds of metres), reflects the response of the rock environment to the disturbance caused by drilling and permits an estimation of the thermal diffusivity of the rock based on the rate of temperature recovery. The short-wavelength (tens of metres to tens of centimetres) signal represents the local anomalies caused by lithological variations or, more importantly, by fluid flow into or out of the borehole along fractures. By analysing these distinct features, we can identify anomalous zones that manifest in other wireline data (resistivity, BHTV) and are likely attributable to permeable fractures. Here we present a novel method of quantitative analysis of the short-wavelength temperature anomalies. This method provides a precise and objective way to determine the position, width and amplitude of temperature anomalies and facilitates the interpretation of temperature logs, which is of a particular importance in estimation of flow in a fractured aquifer.

  19. Thermal regime of the State 2-14 well, Salton Sea Scientific Drilling Project

    USGS Publications Warehouse

    Sass, J.H.; Priest, S.S.; Duda, L.E.; Carson, C.C.; Hendricks, J.D.; Robison, L.C.

    1988-01-01

    Temperature logs were made repeatedly during breaks in drilling and both during and after flow tests in the Salton Sea Scientific Drilling Project well (State 2-14). The purpose of these logs was to assist in identifying zones of fluid loss or gain and to characterize reservoir temperatures. At the conclusion of the active phase of the project, a series of logs was begun in an attempt to establish the equilibrium temperature profile. Thermal gradients decrease from about 250 mK m-1 in the upper few hundred meters to just below 200 mK m-1 near the base of the conductive cap. Using one interpretation, thermal conductivities increase with depth (mainly because of decreasing porosity), resulting in component heat flows that agree reasonably well with the mean of about 450 mW m-2. This value agrees well with heat flow data from the shallow wells within the Salton Sea geothermal field. A second interpretation, in which measured temperature coefficients of quartz- and carbonate-rich rocks are used to correct thermal conductivity, results in lower mean conductivities that are roughly constant with depth and, consequently, systematically decreasing heat flux averaging about 350 mW m-2 below 300 m. This interpretation is consistent with the inference (from fluid inclusion studies) that the rocks in this part of the field were once several tens of degrees Celsius hotter than they are now. The age of this possible disturbance is estimated at a few thousand years. -from Authors

  20. A cadaveric study of bone tissue temperature during pin site drilling utilizing fluoroptic thermography.

    PubMed

    Muffly, Matthew; Winegar, Corbett; Miller, Mark Carl; Altman, Gregory

    2018-05-03

    Using fluoroptic thermography, temperature was measured during pin site drilling of intact cortical human cadaver bone with a combination of one-step drilling, graduated drilling, and one-step drilling with irrigation of 5.0 mm Schanz pins. A 1440 rpm constant force drilling was used to on tibial diaphyses while a sensor probe placed 0.5 mm adjacent to the drill hole measured temperature. Four drilling techniques on each of the tibial segments were performed: 3.5mm drill bit, 5.0mm Schanz pin, 5.0 mm Schanz pin in 3.5 mm pre-drilled entry site, 5.0 mm Schanz pin utilizing irrigation. One-step drilling using a 5.0 mm Schanz pin without irrigation produced a temperature that exceeded the threshold temperature for heat-induced injury in 5 of the 8 trials. With the other three drilling techniques, only one in24 trials produced a temperature that would result in thermal injury. This difference was found to be statistically significant (p = 0.003). The use of irrigation significantly reduced the maximum bone tissue temperature in one-step drilling of a 5.0 mm Schanz pin (p = 0.02). One-step drilling with a 3.5 mm drill bit achieved maximum temperature significantly faster than graduated drilling and drilling with irrigation using a 5.0 mm Schanz pin (p <0.01). One-step drilling with a 5.0 mm Schanz pin into cortical bone can produce temperatures that can lead to heat-induced injury. Irrigation alone can reduce the temperatures sufficiently to avoid damage. Pre-drilling can increase temperatures significantly but the extent of any injury should be small.

  1. Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galbraith, R.M.

    1978-05-01

    The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characcterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the accoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less

  2. Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galbraith, R.M.

    1978-05-01

    The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the acoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less

  3. Subsurface fluid pressures from drill-stem tests, Uinta Basin, Utah

    USGS Publications Warehouse

    Nelson, P.H.

    2002-01-01

    High fluid pressures are known to be associated with oil and gas fields in the Uinta Basin, Utah. Shut-in pressure measurements from drill-stem tests show how pressure varies with depth and by area within the basin. The data base used in this report incorporates over 2,000 pressure measurements from drill-stem tests in wells completed prior to 1985. However, the number of useful pressure measurements is considerably less, because many drill-stem tests fail to stabilize at the actual formation pressure if the permeability is low. By extracting the maximum pressure measurements recorded in a collection of wells within an area, the trend of formation pressure within that area can be approximated. Areal compilations of pressures from drill-stem tests show that overpressured rock formations occur throughout much of the northern and eastern areas of the Uinta Basin. In particular, significant overpressuring (0.5 < pressure gradient < 0.8 psi/ft) is found throughout much of the Altamont-Bluebell field at depths ranging from 10,000 to 13,000 ft, equivalent to 5,000 to 8,000 ft below sea level. Limited data indicate that the pressure gradient declines at depths greater than 13,000 ft. An underpressured zone appears to exist in the Altamont-Bluebell field at depths shallower than 5,000 ft. Throughout the eastern Uinta Basin, moderately overpressured zones (0.46 < pressure gradient < 0.5 psi/ft) are common, with local evidence of significantly overpressured zones, but pressure gradients greater than 0.6 psi/ft are rare.

  4. Ages and stable-isotope compositions of secondary calcite and opal in drill cores from Tertiary volcanic rocks of the Yucca Mountain area, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Kyser, T.K.

    1990-01-01

    Stable-isotope compositions of fracture- and cavity-filling calcite from the unsaturated zone of three drill cores at Yucca Mountain Tertiary volcanic complex indicate that the water from which the minerals precipitated was probably meteoric in origin. A decrease in 18O in the calcite with depth is interpreted as being due to the increase in temperature in drill holes corresponding to an estimated average geothermal gradient of 34?? per kilometer. A few of the calcite samples and all of the opal samples yielded uranium-series ages older than 400 000 yr, although most of the calcite samples yielded ages between 26 000 and 310 000 yr. The stable-isotope and uranium-series dates from precipitated calcite and opal of this reconnaissance study suggest a complex history of fluid movement through the volcanic pile, and episodes of fracture filling predominantly from meteoric water during at least the past 400 000 yr. -Authors

  5. Mount Hood exploration, Oregon: a case history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, R.G.

    1981-05-01

    An assessment program of Mount Hood is giving information useful for geothermal development in the area and is expected to characterize and aid in exploration of other Cascade volcanoes. These studies have shown the presence of thermal waters coming to the surface around the south flank of the mountain and subsurface flow in other areas. Geothermal gradient drilling shows the average heat flow in the area to be about two times normal increasing toward the summit. Two commercial exploration programs resulting in drilling are underway; Northwest Natural Gas is exploring the west side for direct utilization in the Portland area,more » and Wy'East is exploring near Timberline Lodge on the south flank. On the west side adequate temperatures have been found but the wells have not found enough permeability to be useful. At Timberline Lodge a 4000' well appears to have sufficient temperature, but it has not yet been tested. Further exploration and testing will continue this summer.« less

  6. Geothermal energy prospectivity of the Torrens Hinge Zone: evidence from new heat flow data

    NASA Astrophysics Data System (ADS)

    Matthews, Chris

    2009-09-01

    The Torrens Hinge Zone is a long but narrow (up to 40km wide) geological transition zone between the relatively stable Eastern Gawler Craton `Olympic Domain' to the west, and the sedimentary basin known as the Adelaide Geosyncline to the east. The author hypothesised from first principles that the Torrens Hinge Zone should be prospective for high geothermal gradients due to the likely presence of high heat flow and insulating cover rocks. A method to test this hypothesis was devised, which involved the determination of surface heat flow on a pattern grid using purpose-drilled wells, precision temperature logging and detailed thermal conductivity measurements. The results of this structured test have validated the hypothesis, with heat flow values over 90mW/m2 recorded in five of six wells drilled. With several kilometres thickness of moderate conductivity sediments overlying the crystalline basement in this region, predicted temperature at 5000m ranges between 200 and 300°C.

  7. Assessment of geothermal resources at Newcastle, Utah

    USGS Publications Warehouse

    Blackett, Robert E.; Shubat, Michael A.; Chapman, David S.; Forster, Craig B.; Schlinger, Charles M.

    1989-01-01

    Integrated geology, geophysics, and geochemistry studies in the Newcastle area of southwest Utah are used to develop a conceptual geologic model of a blind, moderate-temperature hydrothermal system. Studies using 12 existing and 12 new, thermal gradient test holes, in addition to geologic mapping, gravity surveys, and other investigations have helped define the thermal regime. Preliminary results indicate that the up-flow region is located near the west-facing escarpment of an adjacent mountain range, probably related to the bounding range-front fault. Chemical geothermometers suggest equilibration temperatures ranging from 140??C to 170??C. The highest temperature recorded in the system is 130??C from an exploration well drilled by the Unocal Corporation.

  8. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.

    PubMed

    Alam, Khurshid

    2016-05-12

    Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.

  9. Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331).

    PubMed

    Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2014-10-01

    The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Microbial Community Stratification Controlled by the Subseafloor Fluid Flow and Geothermal Gradient at the Iheya North Hydrothermal Field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331)

    PubMed Central

    Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2014-01-01

    The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. PMID:25063666

  11. Drilling force and temperature of bone under dry and physiological drilling conditions

    NASA Astrophysics Data System (ADS)

    Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong

    2014-11-01

    Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.

  12. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    PubMed

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Effect of pre-drilling on intraosseous temperature during self-drilling mini-implant placement in a porcine mandible model.

    PubMed

    Gurdán, Zsuzsanna; Vajta, László; Tóth, Ákos; Lempel, Edina; Joób-Fancsaly, Árpád; Szalma, József

    2017-03-31

    This in vitro study investigated intraos seous heat production during insertion, with and without pre-drilling, of a self-drilling orthodontic mini-implant. To measure temperature changes and drilling times in pig ribs, a special testing apparatus was used to examine new and worn pre-drills at different speeds. Temperatures were measured during mini-implant placement with and without pre-drilling. The average intraosseous temperature increase during manual mini-implant insertion was similar with and without pre-drilling (11.8 ± 2.1°C vs. 11.3 ± 2.4°C, respectively; P = 0.707). During pre-drilling the mean temperature increase for new drills was 2.1°C at 100 rpm, 2.3°C at 200 rpm, and 7.6°C at 1,200 rpm. Temperature increases were significantly higher for worn drills at the same speeds (2.98°C, 3.0°C, and 12.3°C, respectively), while bone temperatures at 100 and 200 rpm were similar for new and worn drills (P = 0.345 and 0.736, respectively). Baseline bone temperature was approximated within 30 s after drilling in most specimens. Drilling time at 100 rpm was 2.1 ± 0.9 s, but was significantly shorter at 200 rpm (1.1 ± 0.2 s) and 1,200 rpm (0.1 ± 0.03 s). Pre-drilling did not decrease intraosseous temperatures. In patients for whom pre-drilling is indicated, speeds of 100 or 200 rpm are recommended, at least 30 s after pilot drilling.

  14. Study on the influence of parameters of medical drill on bone drilling temperature

    NASA Astrophysics Data System (ADS)

    XU, Xianchun; Hu, Yahui; Han, Jingwang; Yue, Lin; Jiang, Wangbiao

    2018-03-01

    During surgical interventions, the temperature generated during cortical bone drilling can affect the activity of bone material, which may lead to necrosis. In this paper, with the purpose of reducing the temperature during cortical bone drilling, the influence of the parameters of medical drill were analyzed. The finite element model of the drilling process was established based on the parametric design of the dril. The relationship between the drill bit diameter, the point angle, and the helix angle to the drilling temperature was studied by the center composite experiment. The results showed that the drilling temperature is increased with the increase of drill diameter, vertex angle and helix angle in the range of certain research.

  15. Greenhouse to Icehouse Antarctic Paleoclimate and Ice History from George V Land and Adélie Land Shelf Sediments

    NASA Astrophysics Data System (ADS)

    Williams, T.; Escutia, C.; De Santis, L.; O'Brien, P.; Pekar, S. F.; Brinkhuis, H.; Domack, E. W.

    2013-12-01

    Along the George V and Adélie Land continental shelf of East Antarctica, shallowly-buried strata contain a record of Antarctica's climate and ice history from the lush forests of the Eocene greenhouse to the dynamic ice sheet margins of the Neogene. Short piston cores and dredges have recovered Early Cretaceous and Eocene organic-rich sediment at the seabed, and in 2010, IODP Expedition 318 recovered earliest Oligocene and early Pliocene subglacial and proglacial diamictites. However, challenging ice and drilling conditions from the JOIDES Resolution on the shelf resulted in poor core recovery and sites had to be abandoned before the stratigraphic targets could be reached. Therefore, in a new IODP drilling proposal submitted earlier this year, we propose to use the MeBo sea bed drill for improved core recovery and easier access to the shelf, and drill a stratigraphic transect of shallow (~80m) holes. To investigate the evolution of the Antarctic ice sheet in this sector, we target strata above and below regional erosional and downlap surfaces to date and characterize major episodes of ice sheet advance and retreat. These direct records of ice extent on the shelf can be set in the context of Southern Ocean records of temperature, ice-rafted debris (IRD) and latitudinal fluctuations of the opal belt, and hence we can relate ice sheet evolution to paleoclimate conditions. Targets include possible late Eocene precursor glaciations, the Eocene/Oligocene boundary erosion surface, Oligocene and Miocene ice extents, and ice margin fluctuations in the Pliocene. At the Cretaceous and Eocene proposed sites, marine and terrestrial temperature proxies and palynological records will provide information on high-latitude paleoenvironments and pole-equator temperature gradients. Here we present existing data from the area and the proposed new drill sites. The ice and climate history of the George V and Adélie Land margin can provide warm-world scenarios to help understand ice sheet instability in analogous future warm climates.

  16. Determination of spatial distribution of increase in bone temperature during drilling by infrared thermography: preliminary report.

    PubMed

    Augustin, Goran; Davila, Slavko; Udiljak, Toma; Vedrina, Denis Stjepan; Bagatin, Dinko

    2009-05-01

    During the drilling of the bone, the temperature could increase above 47 degrees C and cause irreversible osteonecrosis. The spatial distribution of increase in bone temperature could only be presumed using several thermocouples around the drilling site. The aim of this study was to use infrared thermographic camera for determination of spatial distribution of increase in bone temperature during drilling. One combination of drill parameters was used (drill diameter 4.5 mm; drill speed 1,820 rpm; feed-rate 84 mm/min; drill point angle 100 degrees) without external irrigation on room temperature of 26 degrees C. The increase in bone temperature during drilling was analyzed with infrared thermographic camera in two perpendicular planes. Thermographic pictures were taken before drilling, during drilling with measurement of maximal temperature values and after extraction of the drill from the bone. The thermographic picture shows that the increase in bone temperature has irregular shape with maximal increase along cortical bone, which is the most compact component of the bone. The width of this area with the temperature above critical level is three times broader than the width of cortical bone. From the front, the distribution of increase in bone temperature follows the form of the cortical bone (segment of a ring), which is the most compact part and causes the highest resistance to drilling and subsequent friction. Thermography showed that increase in bone temperature spreads through cortical bone, which is the most compact and dense part, and generates highest frictional heat during drilling. The medullar cavity, because of its gelatinous structure, contributes only to thermal dissipation.

  17. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.

    PubMed

    Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun

    2017-11-01

    A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

  18. Effects of bone drilling on local temperature and bone regeneration: an in vivo study.

    PubMed

    Karaca, Faruk; Aksakal, Bünyamin; Köm, Mustafa

    2014-01-01

    The aim of this study was to examine the influence of bone drilling on local bone temperature and bone regeneration and determine optimal drilling speed and pressure in an animal model. The study included 12 skeletally mature New Zealand white rabbits, weighing between 2.8 to 3.2 kg. Rabbits were divided into 2 groups and euthanized at the end of Day 21 (Group A) and Day 42 (Group B). The same drilling protocol was used in both groups. Three drill holes with different pressure (5, 10 and 20 N) were made in each rabbit tibias using 3 different rotational drill speeds (230, 370 and 570 rpm). During drilling, local temperature was recorded. Rabbit tibia underwent histopathological exam for bone regeneration. Bone temperature was affected by drilling time and depth. Lower drill speeds reduced the bone temperature and revealed better bone regeneration when compared to the drilled bones at higher drill speeds. Titanium boron nitride coating on the drill bits had no significant effects on bone temperature and structure. Bone regeneration was superior in Group B rabbits that had drilling at 230 rpm and 20 N. Our results suggested that lower drilling speed with higher pressure is necessary for better bone regeneration. The optimal drilling speed is 230 rpm and optimal drilling pressure 20 N.

  19. Effects of a drill diameter on the temperature rise in a bone during implant site preparation under clinical conditions.

    PubMed

    Bogovič, Valerija; Svete, Andrej; Bajsić, Ivan

    2016-10-01

    Heat, generated during the drilling of a dental implant site preparation, leads to a temperature rise and consequently to a thermal injury of the bone tissue surrounding the implant site, which can cause the subsequent implant failure. In this article, we present new findings related to the temperature rise during implant site drilling under real conditions on a bovine rib bone specimen. The experiments were designed with the help of a full-factorial design in randomized complete blocks, where the main effects of the drill diameter in combination with the drilling force and the drilling speed, and their interactions, on the temperature rise were determined. The temperature rise in the bone under real conditions was measured as the implant site was being prepared by a dentist using intermittent, graduated drilling and external irrigation. Results show that the drill diameter has statistically significant effect, independent of the drilling procedure used. Among the examined drilling parameters, the drill diameter has the greatest effect, where an increase in the drill diameter first causes a decrease in the temperature rise and further increase in the drill diameter causes its increase. During the continuous and one-step drilling, the temperatures of the bones were up to 40.5 °C and during the drilling under actual conditions up to 30.11 °C. © IMechE 2016.

  20. Estimating Hardness from the USDC Tool-Bit Temperature Rise

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2008-01-01

    A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.

  1. A new thermal model for bone drilling with applications to orthopaedic surgery.

    PubMed

    Lee, JuEun; Rabin, Yoed; Ozdoganlar, O Burak

    2011-12-01

    This paper presents a new thermal model for bone drilling with applications to orthopaedic surgery. The new model combines a unique heat-balance equation for the system of the drill bit and the chip stream, an ordinary heat diffusion equation for the bone, and heat generation at the drill tip, arising from the cutting process and friction. Modeling of the drill bit-chip stream system assumes an axial temperature distribution and a lumped heat capacity effect in the transverse cross-section. The new model is solved numerically using a tailor-made finite-difference scheme for the drill bit-chip stream system, coupled with a classic finite-difference method for the bone. The theoretical investigation addresses the significance of heat transfer between the drill bit and the bone, heat convection from the drill bit to the surroundings, and the effect of the initial temperature of the drill bit on the developing thermal field. Using the new model, a parametric study on the effects of machining conditions and drill-bit geometries on the resulting temperature field in the bone and the drill bit is presented. Results of this study indicate that: (1) the maximum temperature in the bone decreases with increased chip flow; (2) the transient temperature distribution is strongly influenced by the initial temperature; (3) the continued cooling (irrigation) of the drill bit reduces the maximum temperature even when the tip is distant from the cooled portion of the drill bit; and (4) the maximum temperature increases with increasing spindle speed, increasing feed rate, decreasing drill-bit diameter, increasing point angle, and decreasing helix angle. The model is expected to be useful in determination of optimum drilling conditions and drill-bit geometries. Copyright © 2011. Published by Elsevier Ltd.

  2. Effects of drilling parameters in numerical simulation to the bone temperature elevation

    NASA Astrophysics Data System (ADS)

    Akhbar, Mohd Faizal Ali; Malik, Mukhtar; Yusoff, Ahmad Razlan

    2018-04-01

    Drilling into the bone can produce significant amount of heat which can cause bone necrosis. Understanding the drilling parameters influence to the heat generation is necessary to prevent thermal necrosis to the bone. The aim of this study is to investigate the influence of drilling parameters on bone temperature elevation. Drilling simulations of various combinations of drill bit diameter, rotational speed and feed rate were performed using finite element software DEFORM-3D. Full-factorial design of experiments (DOE) and two way analysis of variance (ANOVA) were utilised to examine the effect of drilling parameters and their interaction influence on the bone temperature. The maximum bone temperature elevation of 58% was demonstrated within the range in this study. Feed rate was found to be the main parameter to influence the bone temperature elevation during the drilling process followed by drill diameter and rotational speed. The interaction between drill bit diameter and feed rate was found to be significantly influence the bone temperature. It is discovered that the use of low rotational speed, small drill bit diameter and high feed rate are able to minimize the elevation of bone temperature for safer surgical operations.

  3. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography.

    PubMed

    Alam, K; Silberschmidt, Vadim V

    2014-01-01

    Bone drilling is widely used in orthopaedics, dental and neurosurgeries for repair and fixation purposes. One of the major concerns in drilling of bone is thermal necrosis that may seriously affect healing at interfaces with fixtures and implants. Ultrasonically-assisted drilling (UAD) is recently introduced as alternative to conventional drilling (CD) to minimize invasiveness of the procedure. This paper studies temperature rise in bovine cortical bone drilled with CD and UAD techniques and their comparison using infrared thermography. A parametric investigation was carried out to evaluate effects of drilling conditions (drilling speed and feed rate) and parameters of ultrasonic vibration (frequency and amplitude) on the temperature elevation in bone. Higher levels of the drilling speed and feed rate were found responsible for generating temperatures above a thermal threshold level in both types of drilling. UAD with frequency below 20 kHz resulted in lower temperature compared to CD with the same drilling parameters. The temperatures generated in cases with vibration frequency exceeding 20 kHz were significantly higher than those in CD for the range of drilling speeds and feed rates. The amplitude of vibration was found to have no significant effect on bone temperature. UAD may be investigated further to explore its benefits over the existing CD techniques.

  4. 30 CFR 250.1617 - Application for permit to drill.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...

  5. 30 CFR 250.1617 - Application for permit to drill.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...

  6. 30 CFR 250.1617 - Application for permit to drill.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...

  7. Restoration of the Apollo Heat Flow Experiments Metadata

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Stephens, M. K.; Taylor, P. T.; Williams, D. R.; Hills, H. K.; Nakamura, Y.

    2015-01-01

    Geothermal heat flow probes were deployed on the Apollo 15 and 17 missions as part of the Apollo Lunar Surface Experiments Package (ALSEP). At each landing site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The holes were 1- and 1.5-m deep at the Apollo 15 site and 2.5-m deep at the Apollo 17 sites. The probes monitored surface temperature and subsurface temperatures at different depths. At the Apollo 15 site, the monitoring continued from July 1971 to January 1977. At the Apollo 17 site, it did from December 1972 to September 1977. Based on the observations made through December 1974, Marcus Langseth, the principal investigator of the heat flow experiments (HFE), determined the thermal conductivity of the lunar regolith by mathematically modeling how the seasonal temperature fluctuation propagated down through the regolith. He also determined the temperature unaffected by diurnal and seasonal thermal waves of the regolith at different depths, which yielded the geothermal gradient. By multiplying the thermal gradient and the thermal conductivity, Langseth obtained the endogenic heat flow of the Moon as 21 mW/m(exp 2) at Site 15 and 16 mW/m(exp 2) at Site 17.

  8. Aerated drilling cutting transport analysis in geothermal well

    NASA Astrophysics Data System (ADS)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  9. Evaluation of hydrothermal resources of North Dakota. Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, K.L.; Howell, F.L.; Winczewski, L.M.

    1981-06-01

    The Phase II activities dealt with three main topical areas: geothermal gradient and heat-flow studies, stratigraphic studies, and water quality studies. Efforts were concentrated on Mesozoic and Cenozoic rocks. The geothermal gradient and heat-flow studies involved running temperature logs in groundwater observation holes in areas of interest, and locating, obtaining access to, and casing holes of convenience to be used as heat-flow determination sites. The stratigraphic and water quality studies involved two main efforts: updating and expanding WELLFILE and assembling a computer library system (WELLCAT) for all water wells drilled in the state. WATERCAT combines data from the United Statesmore » Geological Survey Water Resources Division's WATSTOR and GWST computer libraries; and includes physical, stratigraphic, and water quality data. Goals, methods, and results are presented.« less

  10. Milford, Utah FORGE Temperature Contours at 200 m

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe Moore

    The individual shapefiles in this dataset delineate estimated temperature contours (20, 40, 60, and 80) at a depth of 200 m in the Milford, Utah FORGE area. Contours were derived from 86 geothermal, gradient, and other wells drilled in the area since the mid-1970s with depths greater than 50 m. Conductive temperature profiles for wells less than 200 m were extrapolated to determine the temperature at the desired depth. Because 11 wells in the eastern section of the study area (in and around the Mineral Mountains) are at higher elevations compared to those closer to the center of the basin,more » temperature profiles were extrapolated to a constant elevation of 200 m below the 1830 m (6000 ft) a.s.l. datum (approximate elevation of alluvial fans at the base of the Mineral Mountains) to smooth the contours across the ridges and valleys.« less

  11. Temperature changes and chondrocyte death during drilling in a bovine cartilage model and chondroprotection by modified irrigation solutions.

    PubMed

    Farhan-Alanie, Muhamed M H; Hall, Andrew C

    2014-11-01

    Drilling into cartilage/bone is often required for orthopaedic surgery. While drilling into bone has been studied, the response of cartilage has received little attention. We have measured cartilage and drill bit temperatures during drilling and quantified the zone of chondrocyte death (ZCD) around the hole in the presence/absence of irrigation solutions. Drilling was performed using a 1.5-mm orthopaedic drill bit applied to bovine metatarsophalangeal joints and temperatures recorded by infrared camera. Osteochondral explants were then incubated with 5-chloromethylfluorescein diacetate (CMFDA) and propidium iodide (PI) to label living/dead chondrocytes respectively. The width of the ZCD was quantified by confocal laser scanning microscopy (CLSM) and image analysis. Without irrigation, the ZCD following drilling for two seconds was 135 ± 15 μm and this increased (>fourfold, P < 0.001) with five seconds of drilling. Irrigation reduced the ZCD following drilling for both two and five seconds (P < 0.05, P < 0.001 respectively) to the same level (approx. 60 μm). Without irrigation, drill bit and cartilage temperature increased rapidly to >265 and 119 °C respectively, whereas the camera saturated at >282 °C during drilling for five seconds. With irrigation, the drill bit temperature was significantly reduced during drilling for two and five seconds (approx. 90 °C) with negligible change in cartilage temperature. Drilling while irrigating with hyperosmotic saline (600 mOsm) reduced (P < 0.01) the ZCD compared to saline, whereas chondrocyte death was increased (P < 0.01) by Ca(2+) saline (5 mM). Reducing temperature during drilling by irrigation markedly suppressed, but did not abolish chondrocyte death. Optimising the irrigation solution by raising osmolarity and reducing Ca(2+) content significantly reduced chondrocyte death during drilling and may be clinically beneficial.

  12. Reducing temperature elevation of robotic bone drilling.

    PubMed

    Feldmann, Arne; Wandel, Jasmin; Zysset, Philippe

    2016-12-01

    This research work aims at reducing temperature elevation of bone drilling. An extensive experimental study was conducted which focused on the investigation of three main measures to reduce the temperature elevation as used in industry: irrigation, interval drilling and drill bit designs. Different external irrigation rates (0 ml/min, 15 ml/min, 30 ml/min), continuously drilled interval lengths (2 mm, 1 mm, 0.5 mm) as well as two drill bit designs were tested. A custom single flute drill bit was designed with a higher rake angle and smaller chisel edge to generate less heat compared to a standard surgical drill bit. A new experimental setup was developed to measure drilling forces and torques as well as the 2D temperature field at any depth using a high resolution thermal camera. The results show that external irrigation is a main factor to reduce temperature elevation due not primarily to its effect on cooling but rather due to the prevention of drill bit clogging. During drilling, the build up of bone material in the drill bit flutes result in excessive temperatures due to an increase in thrust forces and torques. Drilling in intervals allows the removal of bone chips and cleaning of flutes when the drill bit is extracted as well as cooling of the bone in-between intervals which limits the accumulation of heat. However, reducing the length of the drilled interval was found only to be beneficial for temperature reduction using the newly designed drill bit due to the improved cutting geometry. To evaluate possible tissue damage caused by the generated heat increase, cumulative equivalent minutes (CEM43) were calculated and it was found that the combination of small interval length (0.5 mm), high irrigation rate (30 ml/min) and the newly designed drill bit was the only parameter combination which allowed drilling below the time-thermal threshold for tissue damage. In conclusion, an optimized drilling method has been found which might also enable drilling in more delicate procedures such as that performed during minimally invasive robotic cochlear implantation. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Permafrost, heat flow, and the geothermal regime at Prudhoe Bay, Alaska.

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.; Marshall, B.V.; Moses, T.H.

    1982-01-01

    Temperature measurements through permafrost in the oil field at Prudhoe Bay, Alaska, combined with laboratory measurements of the thermal conductivity of drill cutting permit an evaluation of in situ thermal properties and an understanding of the general factors that control the geothermal regime. A sharp contrast in temperatire gradient at c600m represents a contrast in thermal conductivity caused by the downward change from interstitial ice to interstitial water at the base of permafrost under near steady state conditions. These results yield a heat flow of c1.3HFU, which is similar to other values on the Alaskan Arctic Coast: the anomalously deep permafrost is a result of the anomalously high conductivity of the siliceous ice-rich sediments. With confirmation of the permafrost configuration by offshore drilling, heat conduction models can yield reliable new information on the chronology of arctic shoreline. -from Authors

  14. Measurement of temperature induced in bone during drilling in minimally invasive foot surgery.

    PubMed

    Omar, Noor Azzizah; McKinley, John C

    2018-02-19

    There has been growing interest in minimally invasive foot surgery due to the benefits it delivers in post-operative outcomes in comparison to conventional open methods of surgery. One of the major factors determining the protocol in minimally invasive surgery is to prevent iatrogenic thermal osteonecrosis. The aim of the study is to look at various drilling parameters in a minimally invasive surgery setting that would reduce the risk of iatrogenic thermal osteonecrosis. Sixteen fresh-frozen tarsal bones and two metatarsal bones were retrieved from three individuals and drilled using various settings. The parameters considered were drilling speed, drill diameter, and inter-individual cortical variability. Temperature measurements of heat generated at the drilling site were collected using two methods; thermocouple probe and infrared thermography. The data obtained were quantitatively analysed. There was a significant difference in the temperatures generated with different drilling speeds (p<0.05). However, there was no significant difference in temperatures recorded between the bones of different individuals and in bones drilled using different drill diameters. Thermocouple showed significantly more sensitive tool in measuring temperature compared to infrared thermography. Drilling at an optimal speed significantly reduced the risk of iatrogenic thermal osteonecrosis by maintaining temperature below the threshold level. Although different drilling diameters did not produce significant differences in temperature generation, there is a need for further study on the mechanical impact of using different drill diameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Extreme hydrothermal conditions at an active plate-bounding fault.

    PubMed

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  16. Extreme hydrothermal conditions at an active plate-bounding fault

    NASA Astrophysics Data System (ADS)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  17. Effect of irrigation and stainless steel drills on dental implant bed heat generation.

    PubMed

    Bullon, B; Bueno, E F; Herrero, M; Fernandez-Palacin, A; Rios, J V; Bullon, P; Gil, F J

    2015-02-01

    The objective of this study is assessing the influence of the use of different drill types and external irrigation on heat generation in the bone. In-vitro study to compare two different sequences for implant-bed preparation by means of two stainless steels: precipitation-hardening stainless steel (AISI 420B) (K drills), and martensitic stainless steel (AISI 440) (S drills). Besides, the drilled sequences were realized without irrigation, and with external irrigation by means of normal saline solution at room temperature. The study was realized on bovine ribs using: K without irrigation (KSI) and with irrigation (KCI) and S without irrigation (SSI) and with irrigation (SCI) with five drills for each system. Each drill was used 100 times. Bone temperature was measured with a thermocouple immediately after drilled. Average bone temperature with irrigation was for K drills 17.58±3.32 °C and for S drills 16.66±1.30 °C. Average bone temperature without irrigation was for K drills 23.58±2.94 °C and for S drills 19.41±2.27 °C. Statistically significant differences were found between K without irrigation versus S with irrigation and K with irrigation (p<0.05, Bonferroni correction). Lower temperature variation coefficient throughout the 50 measurements was observed in irrigated groups (K=5.6%, S=5.1% vs. without irrigation groups K=9.4%, S=9.3%). The first K drill generated more heat than the remaining drills. No significant differences were detected among temperature values in any of the analyzed drill groups. Unlike irrigation, drill use and type were observed to have no significant impact on heat generation. The stainless steel AISI 420B presents better mechanical properties and corrosion resistance than AISI440.

  18. Real-time positioning technology in horizontal directional drilling based on magnetic gradient tensor measurement

    NASA Astrophysics Data System (ADS)

    Deng, Guoqing; Yao, Aiguo

    2017-04-01

    Horizontal directional drilling (HDD) technology has been widely used in Civil Engineering. The dynamic position of the drill bit during construction is one of significant facts determining the accuracy of the trajectory of HDD. A new method now has been proposed to detecting the position of drill bit by measuring the magnetic gradient tensor of the ground solenoid magnetic beacon. Compared with traditional HDD positioning technologies, this new model is much easier to apply with lower request for construction sites and higher positioning efficiency. A direct current (DC) solenoid as a magnetic dipole is placed on ground near the drill bit, and related sensors array which contains four Micro-electromechanical Systems (MEMS ) tri-axial magnetometers, one MEMS tri-axial accelerometer and one MEMS tri-axial gyroscope is set up for measuring the magnetic gradient tensor of the magnetic dipole. The related HDD positioning model has been established and simulation experiments have been carried out to verify the feasibility and reliability of the proposed method. The experiments show that this method has good positioning accuracy in horizontal and vertical direction, and totally avoid the impact of the environmental magnetic field. It can be found that the posture of the magnetic beacon will impact the remote positioning precision within valid positioning range, and the positioning accuracy is higher with longer baseline for limited space in drilling tools. The results prove that the relative error can be limited in 2% by adjusting position of the magnetic beacon, the layers of the enameled coil, the sensitive of magnetometers and the baseline distance. Conclusion can be made that this new method can be applied in HDD positioning with better effect and wider application range than traditional method.

  19. A feasibility investigation for modeling and optimization of temperature in bone drilling using fuzzy logic and Taguchi optimization methodology.

    PubMed

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2014-11-01

    Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.

  20. Calculated in situ rock density from gravity observations, UA-1 (Cannikin) emplacement hole, Amchitka Island, Alaska

    USGS Publications Warehouse

    Healey, D.L.

    1971-01-01

    Gravity observations were made on the ground surface and at a depth of 5,854 feet in drill hole UA-1. Two attempts to measure the free-air gradient utilizing the headframe over the drill hole were unsuccessful owing to mechanical vibrations in the structure. Because of the uncertainty in the measured free-air gradients these values were discarded and the average value (0.09406 mgal/ft) was used in the calculations. The calculated in situ bulk density is 2.36 g/cc. The weighted average bulk density determined from 47 core samples taken in the adjacent UAE-1 drill hole is also 2.36 g/cc. An analysis of selected portions of density logs provides an in situ bulk density of 2.37 g/cc.

  1. Heat accumulation during sequential cortical bone drilling.

    PubMed

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from <0.5 °C to nearly 13 °C. The difference between drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Thermal regime of permafrost at Prudhoe Bay, Alaska

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.; Marshall, B.V.; Moses, T.H.

    1982-01-01

    Temperature measurements through permafrost in the oil field at Prudhoe Bay, Alaska, combined with laboratory measurements of the thermal conductivity of drill cuttings permit an evaluation of in situ thermal properties and an understanding of the general factors that control the geothermal regime. A sharp contrast in temperature gradient at ~600 m represents a contrast in thermal conductivity caused by the downward change from interstitial ice to interstitial water at the base of permafrost under near steady-state conditions. Interpretation of the gradient contrast in terms of a simple model for the conductivity of an aggregate yields the mean ice content and thermal conductivities for the frozen and thawed sections (8.1 and 4.7 mcal/cm sec ?C, respectively). These results yield a heat flow of ~1.3 HFU which is similar to other values on the Alaskan Arctic Coast; the anomalously deep permafrost is a result of the anomalously high conductivity of the siliceous ice-rich sediments. Curvature in the upper 160 m of the temperature profiles represents a warming of ~1.8?C of the mean surface temperature, and a net accumulation of 5-6 kcal/cm 2 by the solid earth surface during the last 100 years or so. Rising sea level and thawing sea cliffs probably caused the shoreline to advance tens of kilometers in the last 20,000 years, inundating a portion of the continental shelf that is presently the target of intensive oil exploration. A simple conduction model suggests that this recently inundated region is underlain by near-melting ice-rich permafrost to depths of 300-500 m; its presence is important to seismic interpretations in oil exploration and to engineering considerations in oil production. With confirmation of the permafrost configuration by offshore drilling, heat-conduction models can yield reliable new information on the chronology of arctic shorelines.

  3. External cooling efficiently controls intraosseous temperature rise caused by drilling in a drilling guide system: an in vitro study.

    PubMed

    Boa, Kristof; Varga, Endre; Pinter, Gabor; Csonka, Akos; Gargyan, Istvan; Varga, Endre

    2015-12-01

    The purpose of this study was to measure the rise in intraosseous temperature caused by drilling through a drilling guide system. We compared the rise in temperature generated, and the number of increases of more than 10 °C, between drills that had been cooled with saline at room temperature (25 °C) and those that had not been cooled, for every step of the drilling sequence. Cortical layers of bovine ribs were used as specimens, and they were drilled through 3-dimensional printed surgical guides. Heat was measured with an infrared thermometer. The significance of differences was assessed with either a two-sample t test or Welch's test, depending on the variances. The mean rises (number of times that the temperature rose above 10 °C) for each group of measurements were: for the 2mm drill, 4.8 °C (0/48) when cooled and 7.0 °C (8/48) when not cooled; with the 2.5mm drill, 5.2 °C (1/48) when cooled and 8.5 °C (17/48) when not cooled (2 mm canal); with the 3 mm drill, 3.3 °C when cooled (0/48) and 8.5 °C (18/24) when not cooled (2.5 mm canal); and with the 3.5 mm drill, 4.8 °C when cooled (0/24) and 9.4 °C when not cooled (10/23) (3 mm canal). The temperature rose significantly less with cooling at every step of the drilling sequence (p<0.001). We conclude that external cooling can maintain the intraosseous temperature within the safe range while drilling through an implant guide system, whereas drilling without irrigation can lead to temperatures that exceed the acceptable limit. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Temperature Rise in Kirschner Wires Inserted Using Two Drilling Methods: Forward and Oscillation.

    PubMed

    Anderson, Scott Richard; Inceoglu, Serkan; Wongworawat, Montri D

    2017-05-01

    Kirschner wires (K-wires) are commonly used in orthopedic surgery. However, the loosening of the pins can lead to delayed or improper healing or infection. Wire loosening can occur by thermal necrosis that occurs due to heat produced during wire insertion. Although the parameters that affect temperature rise in cortical bone during wire insertion and drilling have been studied, the effect of drilling mode (oscillation versus forward) is unknown. The purpose of this study was to compare the temperature changes occurring in cortical bone during wire insertions by oscillating and forward drills. Our hypothesis is that oscillation drilling would produce less heat compared with forward drilling in K-wire insertion with 2 commonly used wire diameters. We drilled K-wires in a pig metacarpal model and measured the temperature rise between forward and oscillation drilling modes using diamond-tipped 0.062- and 0.045-inch-diameter K-wires. There were 20 holes drilled for each group (n = 20). The average temperature rise using the 0.062-inch K-wire under forward and oscillation insertion was 14.0 ± 5.5°C and 8.8 ± 2.6°C, respectively. For the 0.045-inch K-wire, under forward and oscillation insertion, the average temperature rise was 11.4 ± 2.6°C and 7.1 ± 1.9°C, respectively. The effects of the drilling mode and wire diameter on temperature rise were significant ( P < .05). In conclusion, the oscillation of K-wires during insertion causes a lower temperature rise when compared with forward drilling.

  5. Drilling in bone: modeling heat generation and temperature distribution.

    PubMed

    Davidson, Sean R; James, David F

    2003-06-01

    Thermo-mechanical equations were developed from machining theory to predict heat generation due to drilling and were coupled with a heat transfer FEM simulation to predict the temperature rise and thermal injury in bone during a drilling operation. The rotational speed, feed rate, drill geometry and bone material properties were varied in a parametric analysis to determine the importance of each on temperature rise and therefore on thermal damage. It was found that drill speed, feed rate and drill diameter had the most significant thermal impact while changes in drill helix angle, point angle and bone thermal properties had relatively little effect.

  6. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  7. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for the hot spring area only, was presented by GeothermEx Inc. (2004), which projected that power generation capacities for the Pumpernickel Valley site are 10 MW-30yrs minimum (probablility of >90%), and most likely 13 MW-30yrs.« less

  8. Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque.

    PubMed

    Mihali, Sorin G; Canjau, Silvana; Cernescu, Anghel; Bortun, Cristina M; Wang, Hom-Lay; Bratu, Emanuel

    2018-02-01

    To establish a protocol for reducing the drilling sequence during implant site preparation based on temperature and insertion torque. The traditional conventional drilling sequence (used several drills with 0.6-mm increment each time) was compared with the proposed short drilling protocol (only used 2 drills: initial and final drill). One hundred drilling osteotomies were performed in bovine and porcine bones. Sets of 2 osteotomy sites were created in 5 bone densities using 2 types of drilling protocols. Thermographic pictures were captured throughout all drilling procedures and analyzed using ThermaCAM Researcher Professional 2.10. Torque values were determined during drilling by measuring electrical input and drill speed. There were statistically significant differences in bone temperature between the conventional and short drilling protocols during implant site preparation (analysis of variance P = 0.0008). However, there were no significant differences between the 2 types of drilling protocols for both implant diameters. Implant site preparation time was significantly reduced when using the short drilling protocol compared with the conventional drilling protocol (P < 0.001). Within the limitations of the study, the short drilling protocol proposed herein may represent a safe approach for implant site preparation.

  9. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.

    PubMed

    Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah

    2018-01-01

    Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.

  10. The Effect of Insertion Technique on Temperatures for Standard and Self-Drilling External Fixation Pins.

    PubMed

    Manoogian, Sarah; Lee, Adam K; Widmaier, James C

    2017-08-01

    No studies have assessed the effects of parameters associated with insertion temperature in modern self-drilling external fixation pins. The current study assessed how varying the presence of irrigation, insertion speed, and force impacted the insertion temperatures of 2 types of standard and self-drilling external fixation half pins. Seventy tests were conducted with 10 trials for 4 conditions on self-drilling pins, and 3 conditions for standard pins. Each test used a thermocouple inside the pin to measure temperature rise during insertion. Adding irrigation to the standard pin insertion significantly lowered the maximum temperature (P <0.001). Lowering the applied force for the standard pin did not have a significant change in temperature rise. Applying irrigation during the self-drilling pin tests dropped average rise in temperature from 151.3 ± 21.6°C to 124.1 ± 15.3°C (P = 0.005). When the self-drilling pin insertion was decreased considerably from 360 to 60 rpm, the temperature decreased significantly from 151.3 ± 21.6°C to 109.6 ± 14.0°C (P <0.001). When the force applied increased significantly, the corresponding self-drilling pin temperature increase was not significant. The standard pin had lower peak temperatures than the self-drilling pin for all conditions. Moreover, slowing down the insertion speed and adding irrigation helped mitigate the temperature increase of both pin types during insertion.

  11. Paleothermal structure of the Nankai inner accretionary wedge estimated from vitrinite reflectance of cuttings

    NASA Astrophysics Data System (ADS)

    Fukuchi, Rina; Yamaguchi, Asuka; Yamamoto, Yuzuru; Ashi, Juichiro

    2017-08-01

    The paleothermal structure and tectonic evolution of an accretionary prism is basic information for understanding subduction zone seismogenesis. To evaluate the entire paleotemperature profile of the Integrated Ocean Drilling Program (IODP) Site C0002 located in the off-Kumano region of the Nankai Trough and penetrate the inner accretionary wedge down to 3058.5 m below the seafloor (mbsf), we performed a vitrinite reflectance analysis for cuttings and core samples during IODP expeditions 338 and 348: Nankai Trough seismogenic zone experiment. Although vitrinite reflectance values (Ro) tend to increase with depth, two reversals of these values suggested the existence of thrust fault zones with sufficient displacements to offset the paleothermal structure. The estimated maximum paleotemperatures are 42-70°C at 1200-1300 mbsf, 44-100°C at 1600-2400 mbsf, and 56-115°C at 2600-3000 mbsf, respectively. These temperatures roughly coincide with estimated modern temperatures; however, at a smaller scale, the reconstructed partial paleogeothermal gradient (˜60-150°C/km) recorded at the hanging- and footwall of the presumed thrust fault zone is higher than the modern geothermal gradient (˜30-40°C/km). This high paleogeothermal gradient was possibly obtained prior to subduction, reflecting the large heat flow of the young Philippine Sea Plate.

  12. Design and performance study of an orthopaedic surgery robotized module for automatic bone drilling.

    PubMed

    Boiadjiev, George; Kastelov, Rumen; Boiadjiev, Tony; Kotev, Vladimir; Delchev, Kamen; Zagurski, Kazimir; Vitkov, Vladimir

    2013-12-01

    Many orthopaedic operations involve drilling and tapping before the insertion of screws into a bone. This drilling is usually performed manually, thus introducing many problems. These include attaining a specific drilling accuracy, preventing blood vessels from breaking, and minimizing drill oscillations that would widen the hole. Bone overheating is the most important problem. To avoid such problems and reduce the subjective factor, automated drilling is recommended. Because numerous parameters influence the drilling process, this study examined some experimental methods. These concerned the experimental identification of technical drilling parameters, including the bone resistance force and temperature in the drilling process. During the drilling process, the following parameters were monitored: time, linear velocity, angular velocity, resistance force, penetration depth, and temperature. Specific drilling effects were revealed during the experiments. The accuracy was improved at the starting point of the drilling, and the error for the entire process was less than 0.2 mm. The temperature deviations were kept within tolerable limits. The results of various experiments with different drilling velocities, drill bit diameters, and penetration depths are presented in tables, as well as the curves of the resistance force and temperature with respect to time. Real-time digital indications of the progress of the drilling process are shown. Automatic bone drilling could entirely solve the problems that usually arise during manual drilling. An experimental setup was designed to identify bone drilling parameters such as the resistance force arising from variable bone density, appropriate mechanical drilling torque, linear speed of the drill, and electromechanical characteristics of the motors, drives, and corresponding controllers. Automatic drilling guarantees greater safety for the patient. Moreover, the robot presented is user-friendly because it is simple to set robot tasks, and process data are collected in real time. Copyright © 2013 John Wiley & Sons, Ltd.

  13. High Temperature 300°C Directional Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°Cmore » capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100 hours.« less

  14. Temperature and volume estimation of under-seafloor fluid from the logging-while-drilling data beneath an active hydrothermal field

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Saito, S.; Sanada, Y.; Masaki, Y.; Moe, K.; Kido, Y. N.; Kumagai, H.; Takai, K.; Suzuki, K.

    2015-12-01

    In July of 2014, offshore drillings on Iheya-North Knoll, Okinawa Trough, was executed as part of Next-generation technology for ocean resources survey, which is a research program in Cross-ministerial Strategic Innovation Promotion Program (SIP). In this expedition, logging-while- drilling (LWD) and measuring-while-drilling (MWD) were inserted into 6 holes (C9011 - C9016) to investigate spatial distribution of hydrothermal deposit and geothermal fluid reservoir. Both of these tools included annular pressure-while-drilling (APWD). Annular pressure and temperature were monitored by the APWD to detect possible exceedingly-high-temperature geofluid. In addition, drilling fluid was continuously circulated at sufficient flow rate to protect LWD tools against high temperature (non-stop driller system). At C9012 and C9016, the LWD tool clearly detected pressure and temperature anomaly at 234 meter below the seafloor (mbsf) and 80 mbsf, respectively. Annular pressure and temperature quickly increases at that depth and it would reflect the injection of high-temperature fluid. During the drilling, however, drilling water was continuously circulated at high flow-rate (2600L/min) and the measured temperature is not exactly in-situ temperature. To investigate the detail of the heat source, such as in-situ temperature and quantity of heat, we performed numerical analyses of thermal fluid and energy-balance assuming injection of high-temperature fluid. We combined pressure loss theory of double cylinders and temperature equation to replicate the fluid flow and its temperature between borehole wall and drilling pipe during the thermofluid injection. As the result, we estimated the temperature and the volume of injected fluid to be 115oC~ and 17.3 m3, respectively (at C9012) from the calculation. This temperature is lower than that of a hydrothermall vent which had been found near the hole (300oC).

  15. Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling

    NASA Astrophysics Data System (ADS)

    Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting

    2018-02-01

    Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep-water drilling through hydrate formation, the drilling fluid with low temperatures should be given priority. The drilling process should be kept under balanced pressures, and the drilling time should be shortened.

  16. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study.

    PubMed

    Delgado-Ruiz, R A; Velasco Ortega, E; Romanos, G E; Gerhke, S; Newen, I; Calvo-Guirado, J L

    2018-01-01

    To evaluate the real-time bone temperature changes during the preparation of the implant bed with a single-drill protocol with different drill designs and different slow drilling speeds in artificial type IV bone. For this experimental in vitro study, 600 implant bed preparations were performed in 10 bovine bone disks using three test slow drilling speeds (50/150/300 rpm) and a control drilling speed (1200 rpm). The temperature at crestal and apical areas and time variations produced during drilling with three different drill designs with similar diameter and length but different geometry were recorded with real-life thermographic analysis. Statistical analysis was performed by two-way analysis of variance. Multiple comparisons of temperatures and time with the different drill designs and speeds were performed with the Tukey's test. T Max values for the control drilling speed with all the drill designs (D1 + 1200; D2 + 1200; D3 + 1200) were higher compared to those for the controls for 11 ± 1.32 °C (p < 0.05). The comparison of T Max within the test groups showed that drilling at 50 rpm resulted in the lowest temperature increment (22.11 ± 0.8 °C) compared to the other slow drilling speeds of 150 (24.752 ± 1.1 °C) and 300 rpm (25.977 ± 1.2 °C) (p < 0.042). Temperature behavior at crestal and apical areas was similar being lower for slow drilling speeds compared to that for the control drilling speed. Slow drilling speeds required significantly more time to finish the preparation of the implant bed shown as follows: 50 rpm > 150 rpm > 300 rpm > control (p < 0.05). A single-drill protocol with slow drilling speeds (50, 150, and 300 rpm) without irrigation in type IV bone increases the temperature at the coronal and apical levels but is below the critical threshold of 47 °C. The drill design in single-drill protocols using slow speeds (50, 150, and 300 rpm) does not have an influence on the thermal variations. The time to accomplish the implant bed preparation with a single-drill protocol in type IV bone is influenced by the drilling speed and not by the drill design. As the speed decreases, then more time is required.

  17. Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling.

    PubMed

    Gupta, Vishal; Pandey, Pulak M

    2016-11-01

    Thermal necrosis is one of the major problems associated with the bone drilling process in orthopedic/trauma surgical operations. To overcome this problem a new bone drilling method has been introduced recently. Studies have been carried out with rotary ultrasonic drilling (RUD) on pig bones using diamond coated abrasive hollow tools. In the present work, influence of process parameters (rotational speed, feed rate, drill diameter and vibrational amplitude) on change in the temperature was studied using design of experiment technique i.e., response surface methodology (RSM) and data analysis was carried out using analysis of variance (ANOVA). Temperature was recorded and measured by using embedded thermocouple technique at a distance of 0.5mm, 1.0mm, 1.5mm and 2.0mm from the drill site. Statistical model was developed to predict the maximum temperature at the drill tool and bone interface. It was observed that temperature increased with increase in the rotational speed, feed rate and drill diameter and decreased with increase in the vibrational amplitude. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Mechanical Alteration And Contamination Issues In Automated Subsurface Sample Acquisition And Handling

    NASA Astrophysics Data System (ADS)

    Glass, B. J.; Cannon, H.; Bonaccorsi, R.; Zacny, K.

    2006-12-01

    The Drilling Automation for Mars Exploration (DAME) project's purpose is to develop and field-test drilling automation and robotics technologies for projected use in missions in the 2011-15 period. DAME includes control of the drilling hardware, and state estimation of both the hardware and the lithography being drilled and the state of the hole. A sister drill was constructed for the Mars Analog Río Tinto Experiment (MARTE) project and demonstrated automated core handling and string changeout in 2005 drilling tests at Rio Tinto, Spain. DAME focused instead on the problem of drill control while actively drilling while not getting stuck. Together, the DAME and MARTE projects demonstrate a fully automated robotic drilling capability, including hands-off drilling, adjustment to different strata and downhole conditions, recovery from drilling faults (binding, choking, etc.), drill string changeouts, core acquisition and removal, and sample handling and conveyance to in-situ instruments. The 2006 top-level goal of DAME drilling in-situ tests was to verify and demonstrate a capability for hands-off automated drilling, at an Arctic Mars-analog site. There were three sets of 2006 test goals, all of which were exceeded during the July 2006 field season. The first was to demonstrate the recognition, while drilling, of at least three of the six known major fault modes for the DAME planetary-prototype drill, and to employ the correct recovery or safing procedure in response. The second set of 2006 goals was to operate for three or more hours autonomously, hands-off. And the third 2006 goal was to exceed 3m depth into the frozen breccia and permafrost with the DAME drill (it had not gone further than 2.2m previously). Five of six faults were detected and corrected, there were 43 hours of hands-off drilling (including a 4 hour sequence with no human presence nearby), and 3.2m was the total depth. And ground truth drilling used small commercial drilling equipment in parallel in order to obtain cores and ice profiles at the drilling site. In the course of DAME drilling automation testing, the drilling-induced temperature gradients and their effects on encountered subsurface permafrost and ice layers were observed while drilling in frozen impact breccia at Haughton Crater. In repeated tests of robotic core removal processing and handling in the MARTE project, including field tests, cross-contamination issues arose between successive cores and samples, and procedures and metrics were developed for minimizing the cross-contamination. The MARTE core processing cross-contamination aspects were tested by analyzing a set of pristine samples (those stratigraphically known) vs. cuttings (loose clays) or artifacts from the robotic drilling (indurated clay layers). MARTE ground truth drilling, in parallel with the automated tests, provided control information on the discontinuity/continuity of the stratigraphic record (i.e., texture, color and structure of loose and consolidated materials).

  19. Thermal regime of a continental permafrost associated gas hydrate occurrence a continuous temperature profile record after drilling

    NASA Astrophysics Data System (ADS)

    Henninges, J.; Huenges, E.; Mallik Working Group

    2003-04-01

    Both the size and the distribution of natural methane hydrate occurrences, as well as the release of gaseous methane through the dissociation of methane hydrate, are affected by the subsurface pressure and temperature conditions. During a field experiment, which was carried out in the Mackenzie Delta, NWT, Canada, within the framework of the Mallik 2002 Production Research Well Program*, the variation of temperature within three 40 m spaced, 1200 m deep wells was measured deploying the Distributed Temperature Sensing (DTS) technology. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions. A special feature is the placement of the fibre-optic sensor cable inside the cement annulus between the casing and the wall of the borehole. Temperature profiles were recorded with a sampling interval of 0.25 m and 5 min, and temperatures can be determined with a resolution of 0.3 °C. The observed variation of temperature over time shows the decay of the thermal disturbances caused by the drilling and construction of the wells. An excellent indicator for the location of the base of the ice-bonded permafrost layer, which stands out as a result of the latent heat of the frozen pore fluid, is a sharp rise in temperature at 604 m depth during the period of equilibration. A similar effect can be detected in the depth interval between 1105 m and 1110 m, which is interpreted as an indicator for the depth to the base of the methane hydrate stability zone. Nine months after the completion of the wells the measured borehole temperatures are close to equilibrium. The mean temperature gradient rises from 9.4 K/km inside the permafrost to 25.4 K/km in the ice-free sediment layers underneath. The zone of the gas hydrate occurrences between 900 m and 1100 m shows distinct variations of the geothermal gradient, which locally rises up to 40 K/km. At the lower boundary of the methane hydrate stability zone a temperature of 12.2 °C was measured. (*) The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group.

  20. The effect of low-speed drilling without irrigation on heat generation: an experimental study.

    PubMed

    Oh, Ji-Hyeon; Fang, Yiqin; Jeong, Seung-Mi; Choi, Byung-Ho

    2016-02-01

    In this study we evaluated heat generation during the low-speed drilling procedure without irrigation. Ten artificial bone blocks that were similar to human D1 bone were used in this study. The baseline temperature was 37.0℃. We drilled into 5 artificial bone blocks 60 times at the speed of 50 rpm without irrigation. As a control group, we drilled into an additional 5 artificial bone blocks 60 times at the speed of 1,500 rpm with irrigation. The temperature changes during diameter 2 mm drilling were measured using thermocouples. The mean maximum temperatures during drilling were 40.9℃ in the test group and 39.7℃ in the control group. Even though a statistically significant difference existed between the two groups, the low-speed drilling did not produce overheating. These findings suggest that low-speed drilling without irrigation may not lead to overheating during drilling.

  1. Temperature Prediction Model for Bone Drilling Based on Density Distribution and In Vivo Experiments for Minimally Invasive Robotic Cochlear Implantation.

    PubMed

    Feldmann, Arne; Anso, Juan; Bell, Brett; Williamson, Tom; Gavaghan, Kate; Gerber, Nicolas; Rohrbach, Helene; Weber, Stefan; Zysset, Philippe

    2016-05-01

    Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.

  2. Alterations in bottom sediment physical and chemical characteristics at the Terra Nova offshore oil development over ten years of drilling on the grand banks of Newfoundland, Canada

    NASA Astrophysics Data System (ADS)

    DeBlois, Elisabeth M.; Paine, Michael D.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory

    2014-12-01

    This paper describes sediment composition at the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland, Canada, at an approximate water depth of 100 m. Surface sediment samples (upper 3 cm) were collected for chemical and particle size analyses at the site pre-development (1997) and in 2000-2002, 2004, 2006, 2008 and 2010. Approximately 50 stations have been sampled in each program year, with stations extending from less than 1 km to a maximum of 20 km from source (drill centres) along five gradients, extending to the southeast, southwest, northeast, northwest and east of Terra Nova. Results show that Terra Nova sediments were contaminated with >C10-C21 hydrocarbons and barium-the two main constituents of synthetic-based drilling muds used at the site. Highest levels of contamination occurred within 1 to 2 km from source, consistent with predictions from drill cuttings dispersion modelling. The strength of distance gradients for >C10-C21 hydrocarbons and barium, and overall levels, generally increased as drilling progressed but decreased from 2006 to 2010, coincident with a reduction in drilling. As seen at other offshore oil development sites, metals other than barium, sulphur and sulphide levels were elevated and sediment fines content was higher in the immediate vicinity (less than 0.5 km) of drill centres in some sampling years; but there was no strong evidence of project-related alterations of these variables. Overall, sediment contamination at Terra Nova was spatially limited and only the two major constituents of synthetic-based drilling muds used at the site, >C10-C21 hydrocarbons and barium, showed clear evidence of project-related alternations.

  3. Different thermal conductivity in drilling of cemented compared with cementless hip prostheses in the treatment of periprosthetic fractures of the proximal femur: an experimental biomechanical analysis.

    PubMed

    Brand, Stephan; Klotz, Johannes; Hassel, Thomas; Petri, Maximilian; Ettinger, Max; Krettek, Christian; Goesling, Thomas; Bach, Friedrich-Wilhelm

    2013-10-01

    The purpose of this study was to evaluate the different temperature levels whilst drilling cemented and cementless hip prostheses implanted in bovine femora, and to evaluate the insulating function of the cement layer. Standard hip prostheses were implanted in bovine donor diaphyses, with or without a cement layer. Drilling was then performed using high-performance-cutting drills with a reinforced core, a drilling diameter of 5.5 mm and cooling channels through the tip of the drill for constantly applied internal cooling solution. An open type cooling model was used in this setup. Temperature was continuously measured by seven thermocouples placed around the borehole. Thermographic scans were also performed during drilling. At the cemented implant surface, the temperature never surpassed 24.7 °C when constantly applied internal cooling was used. Without the insulating cement layer (i.e. during drilling of the cementless bone-prosthesis construct), the temperature increased to 47 °C. Constantly applied internal cooling can avoid structural bone and soft tissue damage during drilling procedures. With a cement layer, the temperatures only increased to non-damaging levels. The results could be useful in the treatment of periprosthetic fractures with intraprosthetic implant fixation.

  4. Assessment of New Approaches in Geothermal Exploration Decision Making: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, S.; Young, K. R.

    Geothermal exploration projects have significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Understanding when and how to proceed in an exploration program, and when to walk away from a site, are two of the largest challenges for increased geothermal deployment. Current methodologies for exploration decision making is left to subjective by subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a givenmore » location, including go-no-go decision points to help developers and investors decide when to give up on a location. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of a particular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basic geothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This second approach was determined to be less subjective, since it requires less subjectivity in the input values.« less

  5. Geothermal Exploration and Resource Assessment | Geothermal Technologies |

    Science.gov Websites

    , drilling, and resource assessments and the widespread adoption of under-utilized low-temperature resources -temperature geothermal resource technologies. Drilling The drilling of wells to find and develop geothermal low-temperature, sedimentary, co-produced, and enhanced geothermal system resources. We also work to

  6. A new drilling method-Earthworm-like vibration drilling.

    PubMed

    Wang, Peng; Ni, Hongjian; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.

  7. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  8. Turning up the Heat on the Antarctic Ice Sheet (From Below): Challenges and Near-Term Opportunities for Measuring Antarctic Geothermal Fluxes (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Hossainzadeh, S.

    2010-12-01

    Antarctic heat flow plays an important role in determining the rate of meltwater production at the base of the Antarctic ice sheet. Basal meltwater represents a key control on ice sheet mass balance, Antarctic geochemical fluxes into the Southern Ocean, and subglacial microbial habitats. However, direct measurements of heat flow are difficult in glaciated terrains. Vertical temperature profiles determined in ice boreholes are influenced by thermal energy fluxes associated with basal melting/freezing and have to be used with caution when calculating geothermal flux rates. Two published continent-wide geophysical estimates of Antarctic geothermal fluxes provide valuable databases but are not fully consistent with each other and need to be verified by direct subglacial measurements. Planned drilling into Antarctic subglacial environments will offer the opportunity to perform such measurements. Determination of temperature gradients in sedimentary sequences resting at the bottom of subglacial lakes will offer particularly useful insights. Temperature profiles in such environments will not be thermally or mechanically disturbed as it may be the case in till layers proximal to a sliding ice base. We will review plans for making such measurements as part of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) project, which is scheduled to penetrate the West Antarctic ice sheet in 2012-13 and 2013-14.

  9. A Blind Hydrothermal System in an Ocean Island Environment: Humu'ula Saddle, Hawaii Island

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Wallin, E.; Lautze, N. C.; Lienert, B. R.; Pierce, H. A.

    2014-12-01

    A recently drilled groundwater investigation borehole, drilled to a depth of 1760 m in the Humu'ula Saddle of Hawaii Island, encountered an unexpectedly high temperature gradient of more than 160 ̊C/km. Although prior MT surveys across the region identified conductive formations of modest extent in the region, there were few surface manifestations of geologic structures likely to host a geothermal system and no evidence of an active, extensive hydrothermal system. Cores recovered from the borehole showed the presence of intrusive formations and moderate hydrothermal alteration at depth with progressive infilling of fractures and vesicles with depth and temperature. Independent modeling of gravity data (Flinders et al., 2013) suggests the presence of a broad intrusive complex within the region that is consistent with the borehole's confirmation of a high-elevation (~1400 m amsl) regional water table. A subsequent MT survey covering much of the western Saddle region has confirmed the presence of highly conductive conditions, consistent with thermal activity, to depths of 4 km and greater. Light stable isotope data for the borehole fluids indicate that the regional water table is derived from recharge from the upper elevations of Mauna Kea; major element chemistry indicates that formation temperatures exceed 200 ̊C. A conceptual model of the hydrothermal system, along with isotopic and fluid chemistry of the thermal fluids will be presented.

  10. Heat Flow and Hydrologic Characteristics at the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica

    USGS Publications Warehouse

    Morin, Roger H.; Williams, Trevor; Henry, Stuart; ,; Hansaraj, Dhiresh

    2010-01-01

    The Antarctic Drilling Program (ANDRILL) successfully drilled and cored a borehole, AND-1B, beneath the McMurdo Ice Shelf and into a flexural moat basin that surrounds Ross Island. Total drilling depth reached 1285 m below seafloor (mbsf) with 98 percent core recovery for the detailed study of glacier dynamics. With the goal of obtaining complementary information regarding heat flow and permeability, which is vital to understanding the nature of marine hydrogeologic systems, a succession of three temperature logs was recorded over a five-day span to monitor the gradual thermal recovery toward equilibrium conditions. These data were extrapolated to true, undisturbed temperatures, and they define a linear geothermal gradient of 76.7 K/km from the seafloor to 647 mbsf. Bulk thermal conductivities of the sedimentary rocks were derived from empirical mixing models and density measurements performed on core, and an average value of 1.5 W/mK ± 10 percent was determined. The corresponding estimate of heat flow at this site is 115 mW/m2. This value is relatively high but is consistent with other elevated heat-flow data associated with the Erebus Volcanic Province. Information regarding the origin and frequency of pathways for subsurface fluid flow is gleaned from drillers' records, complementary geophysical logs, and core descriptions. Only two prominent permeable zones are identified and these correspond to two markedly different features within the rift basin; one is a distinct lithostratigraphic subunit consisting of a thin lava flow and the other is a heavily fractured interval within a single thick subunit.

  11. Intraosseous Heat Generation During Osteotomy Performed Freehand and Through Template With an Integrated Metal Guide Sleeve: An In Vitro Study.

    PubMed

    Barrak, Ibrahim; Joób-Fancsaly, Árpád; Braunitzer, Gábor; Varga, Endre; Boa, Kristóf; Piffkó, József

    2018-06-01

    To investigate drill wear and consequent intraosseous temperature elevation during freehand and guided bone drilling, with attention to the effect of metal-on-metal contact during guided drilling. Osteotomies were performed on bovine ribs, with 2.0 mm diameter stainless steel drill bits of the SMART Guide System, under 3 sterilization protocols, at 800, 1200, 1500, and 2000 rpm. Sterilization was performed after every 3 drilling. Temperature was measured after every 30 drilling. The studied contributing factors had a cumulative effect, and each contributed significantly to temperature elevation. Whether guide use led to a near-necrotic (47°C) temperature increment depended largely on the applied sterilization protocol. The metal sleeve is a significant contributing factor to heat generation during guided osteotomy, but its effect can be offset by keeping the other studied factors under control.

  12. Overpressure Prediction From Seismic Data: Implications on Drilling Safety

    NASA Astrophysics Data System (ADS)

    Osinowo, O. O.; Oladunjoye, M. A.; Olayinka, A. I.

    2007-12-01

    High rate of sediment influx into the Niger Delta via river Niger coupled with high rate of basin subsidence, very thick clayey members of Agbada and Akata Formations as well as prevailing presence of growth faults had been identified as the main factors responsible for overpressure generation and preservation in the Niger Delta basin. Analysis of porosity dependent parameters such as interval transit times and interval velocities derived from the seismic records of a field in the Western Niger Delta revealed the presence of overpressured formation at depth of 8670 feet, which is the top of the overpressured zone. The plot of interval transit times against depth gave a positive deflection from normal at the region of overpressure while interval velocity plot gave negative deflection; the ratio of this deviation in both cases is as high as 1.52. Pressure gradient in the upper, normally pressured part of the field was determined to be 0.465 psi/ft., which is within the established normal pressure gradient range in Niger Delta, while the abnormal formation pressure gradient in the overpressured region was determined to be 0.96 psi/ft., and this is also within the published abnormal pressure gradient range of 0.71 to 1.1 psi/ft. in Niger Delta. Formation fracture pressure gradients were determined from the formation pressure information to be 0.66psi/ft. in the upper part of the field and 1.2psi/ft. in the overpressured horizon. Mud weight window (MWW); mud density range necessary to prevent formation kick without initiating hydraulic fracturing was determined to be 10.2 to 12.5lbm/gal in the upper part of the field and 22.1 to 22.63lbm/gal in the overpressured horizon. MWW is indispensable for the selection of the mud pump type, capacity, pumping rate and mud densities at different formation pressure regimes. Overpressure prediction is also requisite for drilling program design, casing design as well as rig capacity choice before spudding. It is necessary to reduce well construction risk, save drilling hour as well as cut down drilling cost. If adequate predictions are not taken however, drilling hazards known as blowout may occur. Blowout, an uncontrollable flow of formation fluid into the well has made oil exploration and exploitation activities in Niger Delta, Southern Nigeria, a curse for the people rather than a blessing because considerable numbers of wells blew out during well construction activities, hence the characteristic oil spill which had degraded the environment, making fishing operation, a source of livelihood of the people difficult. Therefore the need for overpressure prediction as a guide for safe drilling, especially in unfamiliar exploration environments.

  13. How PEMEX engineered a deep well completion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antimo A., J.C.

    1971-09-01

    Completion and testing of Petroleos Mexicano's W. Reynosa Well No. 1 in the NE. Frontier District south of the Texas border required engineering innovation to combat the 375/sup 0/F temperatures and pressures near 18,000 psi. Drilled to nearly 18,000 ft, the well was completed and tested below 17,000 ft. Completion plans were designed to determine the economic importance of the reservoir and to provide information and experience in planning future completions to 20,000 ft and deeper. Interval selection was based in part on data acquired during drilling, including lithology, geologic age, rock characteristics, and sensitivity to damage caused by drillingmore » fluids. A set of logs was obtained and evaluated by computer in correlation with mud-log and pressure data. The logs also were correlated with logs from other wells in the area. Pressure gradients in the Reynosa field indicated the possibility of pressures on the order of 10,000 psi, and required the use of specially designed valves rated to 20,000 psi, in conjunction with a casinghead that would permit drilling to the projected depth. A choke manifold consisted of an interchangeable, manually operated positive choke and a set of automatic adjustable chokes. Well conditioning, including cementing, perforating, and well plugging are described.« less

  14. Thermal evaluation by infrared measurement of implant site preparation between single and gradual drilling in artificial bone blocks of different densities.

    PubMed

    Möhlhenrich, S C; Abouridouane, M; Heussen, N; Hölzle, F; Klocke, F; Modabber, A

    2016-11-01

    The aim of this study was to investigate the influence of bone density and drilling protocol on heat generation during implant bed preparation. Ten single and 10 gradual implant sites with diameters of 2.8, 3.5, and 4.2mm were prepared in four artificial bone blocks (density types I-IV; D1-D4). Drilling was done at constant speed (1500rpm) and with external irrigation (50ml/min); vertical speed was set at 2mm/s. An infrared camera was used for temperature measurements. Significantly higher temperatures for single drilling were found between 2.8-mm drills in D1 (P=0.0014) and D4 (P<0.0001) and between 3.5-mm drills in D3 (P=0.0087) and D4 (P<0.0001), as well as between 4.2-mm drills in D1 (P<0.0001) and D4 (P=0.0014). Low bone density led to a thermal decrease after single drilling and a thermal increase after gradual drilling. Burs with a large diameter always showed a higher temperature generation. In comparisons between 2.8- and 4.2-mm diameters for both single and gradual drills, significant differences (P<0.001) were noted for bone types II, III, and IV. Single drilling could generate more heat than traditional sequential drilling, and bone density, as well as drill diameter, influenced thermal increases. Particularly in lower-density bone, conventional sequential drilling seems to raise the temperature less. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Design for a Simple and Inexpensive Cylinder-within-a-Cylinder Gradient Maker for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Sims, Paul A.; O'Mealey, Gary B.; Khan, Nabeel A.; Larabee, Chelsea M.

    2011-01-01

    A design for a simple and inexpensive gradient maker is described. The gradient maker is assembled by (i) cutting the tops off two plastic bottles of differing diameters to produce two cylinders with intact bottoms; (ii) drilling a small hole toward the bottom of the smaller diameter cylinder and plugging the hole with a size 00 cork stopper; and…

  16. Thermal regime of the deep carbonate reservoir of the Po Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2012-04-01

    Italy is one of the most important countries in the world with regard to high-medium enthalpy geothermal resources, a large part of which is already extracted at relatively low cost. High temperatures at shallow to medium depth occur within a wide belt, several hundred kilometre long, west of the Apennines mountain chain. This belt, affected by recent lithosphere extension, includes several geothermal fields, which are largely exploited for electricity generation. Between the Alps and Apennines ranges, the deeper aquifer, occurring in carbonate rocks of the Po Plain, can host medium enthalpy fluids, which are exploited for district heating. Such a general picture of the available geothermal resources has been well established through several geophysical investigations and drillings. Nevertheless, additional studies are necessary to evaluate future developments, especially with reference to the deep carbonate aquifer of the Po Plain. In this paper, we focus on the eastern sector of the plain and try to gain a better understanding of the thermal regime by using synergically geothermal methodologies and geological information. The analysis of the temperatures recorded to about 6 km depth in hydrocarbon wells supplies basic constraints to outline the thermal regime of the sedimentary basin and to investigate the occurrence and importance of hydrothermal processes in the carbonate layer. After correction for drilling disturbance, temperatures were analysed, together with geological information, through an inversion technique based on a laterally constant thermal gradient model. The inferred thermal gradient changes with depth; it is quite low within the carbonate layer, while is larger in the overlying, practically impermeable formations. As the thermal conductivity variation does not justify such a thermal gradient difference, the vertical change can be interpreted as due to convective processes occurring in the carbonate layer, acting as thermal reservoir. The hydrogeological characteristics hardly permit forced convection in the deep aquifer. Thus, we argue that thermal convection could be the driving mechanism of water flow in the carbonate reservoir. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. A relatively low permeability is required for thermal convection to occur. The carbonate reservoir can be thus envisaged as a hydrothermal convection system of large thickness and extension having a large over-heat ratio. Lateral variation of hydrothermal regime was also tested by using temperature data representing the reservoir thermal conditions. We found that thermal convection is of variable intensity and may more likely occur at an area (Ferrara structural high) where widespread fracturing due to tectonism is expected yielding a local increase in permeability.

  17. Graphene nanoplatelets as high-performance filtration control material in water-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal

    2018-05-01

    The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.

  18. Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal.

    PubMed

    Feldmann, Arne; Gavaghan, Kate; Stebinger, Manuel; Williamson, Tom; Weber, Stefan; Zysset, Philippe

    2017-09-01

    Bone drilling is a surgical procedure commonly required in many surgical fields, particularly orthopedics, dentistry and head and neck surgeries. While the long-term effects of thermal bone necrosis are unknown, the thermal damage to nerves in spinal or otolaryngological surgeries might lead to partial paralysis. Previous models to predict the temperature elevation have been suggested, but were not validated or have the disadvantages of computation time and complexity which does not allow real time predictions. Within this study, an analytical temperature prediction model is proposed which uses the torque signal of the drilling process to model the heat production of the drill bit. A simple Green's disk source function is used to solve the three dimensional heat equation along the drilling axis. Additionally, an extensive experimental study was carried out to validate the model. A custom CNC-setup with a load cell and a thermal camera was used to measure the axial drilling torque and force as well as temperature elevations. Bones with different sets of bone volume fraction were drilled with two drill bits ([Formula: see text]1.8 mm and [Formula: see text]2.5 mm) and repeated eight times. The model was calibrated with 5 of 40 measurements and successfully validated with the rest of the data ([Formula: see text]C). It was also found that the temperature elevation can be predicted using only the torque signal of the drilling process. In the future, the model could be used to monitor and control the drilling process of surgeries close to vulnerable structures.

  19. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone.

    PubMed

    Gupta, Vishal; Pandey, Pulak M; Gupta, Ravi K; Mridha, Asit R

    2017-03-01

    Bone drilling is common in orthopedic procedures and the heat produced during conventional experimental drilling often exceeds critical temperature of 47 °C and induces thermal osteonecrosis. The osteonecrosis may be the reason for impaired healing, early loosening and implant failure. This study was undertaken to control the temperature rise by interrupted cutting and reduced friction effects at the interface of drill tool and the bone surface. In this work, rotary ultrasonic drilling technique with diamond abrasive particles coated on the hollow drill tool without any internal or external cooling assistance was used. Experiments were performed at room temperature on the mid-diaphysis sections of fresh pig bones, which were harvested immediately after sacrifice of the animal. Both rotary ultrasonic drilling on bone and conventional surgical drilling on bone were performed in a five set of experiments on each process using identical constant process parameters. The maximum temperature of each trial was recorded by K-type thermocouple device. Ethylenediaminetetraacetic acid decalcification was done for microscopic examination of bone. In this comparative procedure, rotary ultrasonic drilling on bone produced much lower temperature, that is, 40.2 °C ± 0.4 °C and 40.3 °C ± 0.2 °C as compared to that of conventional surgical drilling on bone, that is, 74.9 °C ± 0.8 °C and 74.9 °C ± 0.6 °C with respect to thermocouples fixed at first and second position, respectively. The conventional surgical drilling on bone specimens revealed gross tissue burn, microscopic evidence of thermal osteonecrosis and tissue injury in the form of cracks due to the generated force during drilling. But our novel technique showed no such features. Rotary ultrasonic drilling on bone technique is robust and superior to other methods for drilling as it induces no thermal osteonecrosis and does not damage the bone by generating undue forces during drilling.

  20. A new drilling method—Earthworm-like vibration drilling

    PubMed Central

    Wang, Peng; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed “earthworm-like drilling” is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a “soft-string” model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling. PMID:29641615

  1. High-pressure high-temperature rheological studies of colloidal suspensions with carbon nanotube

    NASA Astrophysics Data System (ADS)

    Baby, Anoop; Sadr, Reza; Yarc, Rommel; Amani, Mahmood

    2017-11-01

    Selection of the drilling fluid, drilling mud, is vital in minimizing the cost and time required for the drilling in oil fields. Drilling mud aids in cooling, lubricating drilling bit, removing the debries from the drill bore and maintaining the wellbore stability. Owing to the enhanced thermo-physical properties and stable nature, suspensions of nanoparticles have been suggested for drilling fluids. High-pressure and high-temperature rheology of a nanomud suspension (nano particles suspended in a mud solution) is studied here. The nanomud is prepared by dispersing a water-based drilling mud suspension (water with 1% Bentonite and 7% Barite particles) with multi-walled carbon nanotubes, MWCNT. The effect of pressure, temperature, and shear rate are independently studied for the various particle loading of the nanoparticles. Viscosity values are measured at a maximum pressure of 170MPa with temperatures ranging from ambient to 180oC. The effect of MWCNT concentration and variation in shear rate are also investigated A shear thinning non-Newtonian behavior is observed for the basemud and the nanomud samples for all cases. The basemud showed an increase in viscosity with an increase in pressure. However, with MWCNT particle addition, this trend is observed to have reversed.

  2. Effect of Simplifying Drilling Technique on Heat Generation During Osteotomy Preparation for Dental Implant.

    PubMed

    El-Kholey, Khalid E; Ramasamy, Saravanan; Kumar R, Sheetal; Elkomy, Aamna

    2017-12-01

    To test the hypothesis that there would be no difference in heat production by reducing the number of drills during the implant site preparation relative to conventional drilling sequence. A total of 120 implant site preparations with 3 different diameters (3.6, 4.3, and 4.6 mm) were performed on bovine ribs. Within the same diameter group, half of the preparations were performed by a simplified drilling procedure (pilot drill + final diameter drill) and other half using the conventional drilling protocol (pilot drill followed by graduated series of drills to widen the site). Heat production by different drilling techniques was evaluated by measuring the bone temperature using k-type thermocouple and a sensitive thermometer before and after each drill. Mean for maximum temperature increase during site preparation of the 3.6, 4.3, and 4.6-mm implants was 2.45, 2.60, and 2.95° when the site was prepared by the simplified procedure, whereas it was 2.85, 3.10, and 3.60° for the sites prepared by the conventional technique, respectively. No significant difference in temperature increase was found when implants of the 3 different diameters were prepared either by the conventional or simplified drilling procedure. The simplified drilling technique produced similar amount of heat comparable to the conventional technique that proved the initial hypothesis.

  3. A Green's function approach for assessing the thermal disturbance caused by drilling deep boreholes in rock or ice

    USGS Publications Warehouse

    Clow, Gary D.

    2015-01-01

    A knowledge of subsurface temperatures in sedimentary basins, fault zones, volcanic environments and polar ice sheets is of interest for a wide variety of geophysical applications. However, the process of drilling deep boreholes in these environments to provide access for temperature and other measurements invariably disturbs the temperature field around a newly created borehole. Although this disturbance dissipates over time, most temperature measurements are made while the temperature field is still disturbed. Thus, the measurements must be ‘corrected’ for the drilling-disturbance effect if the undisturbed temperature field is to be determined. This paper provides compact analytical solutions for the thermal drilling disturbance based on 1-D (radial) and 2-D (radial and depth) Green's functions (GFs) in cylindrical coordinates. Solutions are developed for three types of boundary conditions (BCs) at the borehole wall: (1) prescribed temperature, (2) prescribed heat flux and (3) a prescribed convective condition. The BC at the borehole wall is allowed to vary both with depth and time. Inclusion of the depth dimension in the 2-D solution allows vertical heat-transfer effects to be quantified in situations where they are potentially important, that is, near the earth's surface, at the bottom of a well and when considering finite-drilling rates. The 2-D solution also includes a radial- and time-dependent BC at the earth's surface to assess the impact of drilling-related infrastructure (drilling pads, mud pits, permanent shelters) on the subsurface temperature field. Latent-heat effects due to the melting and subsequent refreezing of interstitial ice while drilling a borehole through ice-rich permafrost can be included in the GF solution as a moving-plane heat source (or sink) located at the solid–liquid interface. Synthetic examples are provided illustrating the 1-D and 2-D GF solutions. The flexibility of the approach allows the investigation of thermal drilling effects in rock or ice for a wide variety of drilling technologies. Numerical values for the required radial GFs GR are available through the Advanced Cooperative Arctic Data and Information Service at doi:10.5065/D64F1NS6.

  4. Intraosseous generation of heat during guided surgical drilling: an ex vivo study of the effect of the temperature of the irrigating fluid.

    PubMed

    Boa, Kristof; Barrak, Ibrahim; Varga, Endre; Joob-Fancsaly, Arpad; Varga, Endre; Piffko, Jozsef

    2016-10-01

    We measured the rise in the intraosseous temperature caused by freehand drilling or drilling through a surgical guide, by comparing different temperatures of irrigation fluid (10°C, 15°C, and 20°C), for every step of the drilling sequence (diameters 2.0, 2.5, 3.0, and 3.5mm) and using a constant drilling speed of 1200rpm. The axial load was controlled at 2.0kg. Bovine ribs were used as test models. In the guided group we used 3-dimensional printed surgical guides and temperature was measured with a thermocouple. The significance of differences was assessed with the Kruskal-Wallis analysis of variance. Guided drilling with 10°C irrigation yielded a significantly lower increment in temperature than the 20°C-guided group. When compared with the 20°C freehand group, the reduction in temperature in the 10°C guided group was significantly more pronounced at all diameters except 3.5mm. Finally, when the 10°C-guided group was compared with the 15°C groups, the temperature rise was significantly less at 2.5 and 3.0mm than with the guided technique, and at 3.0mm compared with the freehand technique. We suggest that the use of 10°C pre-cooled irrigation fluid is superior to warmer fluid for keeping temperature down, and this reduces the difference between guided and freehand drilling. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Notched K-wire for low thermal damage bone drilling.

    PubMed

    Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert

    2017-07-01

    The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Effect of the Drilling Technique on Heat Generation During Osteotomy Preparation for Wide-Diameter Implants.

    PubMed

    El-Kholey, Khalid E; Elkomy, Aamna

    2016-12-01

    To test the hypothesis that there would be no difference in heat generation by reducing the number of drills during the implant site preparation relative to conventional drilling sequence. A total of 80 implant site preparations with 2 different diameters (5.6 and 6.2 mm) were performed on bovine ribs. Within the same diameter group, half of the preparations were performed by a simplified drilling procedure (pilot drill + final diameter drill) and the other half using the conventional drilling protocol, where multiple drills of increasing diameter were utilized. Heat production by different drilling techniques was evaluated by measuring the bone temperature using K-type thermocouple and a sensitive thermometer before and after each drill. Mean for maximum temperature increase during site preparation of the 5.6- and 6.2-mm implants was 2.20°C, and it was 2.55°C when the site was prepared by the simplified procedure, whereas it was 2.80°C and 2.95°C for the sites prepared by the conventional technique, respectively. No significant difference in temperature increase was found when implants of the 2 chosen diameters were prepared either by the conventional or simplified drilling procedure. The simplified drilling protocol produces similar amount of heat comparable to the conventional technique, which proved the initial hypothesis.

  7. Application of Formation Testing While Drilling (GeoTap) for acquiring formation pressure data from the Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    A new technology to acquire wireline quality pressure tests using a Logging While Drilling approach has been successfully implemented few years ago in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic. The Formation Tester While Drilling tool (GeoTap) uses a testing sequence similar to wireline tools. A single probe is extended to the borehole wall and a small pretest volume withdrawn from the formation. The resulting pressure transient is then analyzed for formation pressure, formation permeability and mobility information. Up-link and down-link capabilities have been added to achieve test control and quality feedback. An efficient downlink algorithm is used downhole to analyze the data. The parameters and pressure data are transmitted to the surface in real-time for continuous monitoring of the test. More detailed pressure data is recorded and retrieved after returning to surface. Use of a quartz gauge allows excellent accuracy. Azeri, Chirag and Guneshli fields consist of layered sand reservoirs alternation with shale sequences and detailed pressure data is acquired on a high percentage of wells in order to understand lateral and vertical continuity of different flow units. The formation tester can be utilized with the 'triple combo' Logging While Drilling string which eliminates the need to rig up wireline on many wells. Wireline formation tester runs are time consuming - particularly if high deviation or high overbalance conditions are encountered requiring pipe conveyed techniques. Non-Productive Time is high when the wireline tools are stuck and fishing operations are required. The Sperry Drilling GeoTap formation pressure tester service provides real-time formation pressure measurements. It bridges the critical gap between drilling safety and optimization, by providing early and reliable measurements of key reservoir properties, while improving reservoir understanding and completion design in real time. The GeoTap tester obtains direct pore-pressure measurements as the well is being drilled, with accuracy and precision comparable to that of wireline testers. The GeoTap service can eliminate the time, risk, and cost associated with running pipe-conveyed wireline test tools. It also measures annular and bore pressure while drilling, providing accurate, continuous, real-time hydrostatic pressure, and equivalent circulating density (ECD) information. This aids in determining and maintaining optimal mud weight, reduces formation damage, increases the rate of penetration, and increases operational safety. GeoTap benefits can be improvement of formation evaluation, real-time fluid gradients and fluid mobility (permeability/viscosity indicator), identification of fluid contact points, determination of reservoir connectivity/compartmentalization and depletion, increase safety of operation, determination of optimal mud weight and manage of ECD. We can also continuously monitor wellbore stability for assessments in order to reduce formation damage which in turns will help to increase drilling effectiveness (determine precise overbalance for maximizing ROP and continuously monitor hole-cleaning effectiveness with pressure-while-drilling, while reducing formation damage due to swab/surge). Save time and money by reducing rig down time associated with wireline testing. GeoTap Tool capable of performing more than 150 pressure tests per run and optional orientation of pressure measurement is available (top, right, bottom or left). GeoTap testing has been completed with encouraging results in many wells up to circa 3000m deep. Data has been acquired successfully both in a "Drill-Test-Drill' mode and a "Post-Drill-Test" mode. GeoTap tests have spanned wide ranges of borehole temperature, pressure, mobility as well as formation permeability and overbalance conditions. GeoTap tests in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic have proved that a logging while drilling approach can be successfully employed to acquire formation pressure data in open hole (which is also very useful for fluid gradient analysis, oil water and gas oil contacts delineation/identification).

  8. Investigating Created Properties of Nanoparticles Based Drilling Mud

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Mirzaee, Mojtaba; Aghayari, Reza; Maddah, Heydar

    2018-05-01

    The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. Due to unique characteristics of nanoparticles such as their size and high surface area to volume ratio, they play an effective role in solving problems associated with the drilling fluid. In this study, we investigate the effect of adding Al2O3 and TiO2 nanoparticles into the drilling mud. Al2O3 and TiO2 nanoparticles were used in 20 and 60 nm of size and 0.05 wt% in concentration. Investigating the effects of temperature and pressure has shown that an increase in temperature can reduce the drilling mud rheological properties such as plastic viscosity, while an increase in pressure can enhance these properties. Also, the effects of pressure in high temperatures were less than those in low temperatures. Studying the effects of adding nanoparticles has shown that they can reduce the drilling mud rheological properties. Moreover, they can increase gel strength, reduce capillary suction time and decrease formation damage.

  9. Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry

    NASA Astrophysics Data System (ADS)

    Lear, Caroline H.; Coxall, Helen K.; Foster, Gavin L.; Lunt, Daniel J.; Mawbey, Elaine M.; Rosenthal, Yair; Sosdian, Sindia M.; Thomas, Ellen; Wilson, Paul A.

    2015-11-01

    Antarctic continental-scale glaciation is generally assumed to have initiated at the Eocene-Oligocene Transition, yet its subsequent evolution is poorly constrained. We reconstruct changes in bottom water temperature and global ice volume from 0 to 17 Ma using δ18O in conjunction with Mg/Ca records of the infaunal benthic foraminifer, O. umbonatus from Ocean Drilling Program (ODP) Site 806 (equatorial Pacific; ~2500 m). Considering uncertainties in core top calibrations and sensitivity to seawater Mg/Ca (Mg/Ca)sw, we produce a range of Mg/Ca-temperature-Mg/Casw calibrations. Our favored exponential temperature calibration is Mg/Ca = 0.66 ± 0.08 × Mg/Casw0.27±0.06 × e(0.114±0.02 × BWT) and our favored linear temperature calibration is Mg/Ca = (1.21 ± 0.04 + 0.12 ± 0.004 × BWT (bottom water temperature)) × (Mg/Casw-0.003±0.02) (stated errors are 2 s.e.). The equations are obtained by comparing O. umbonatus Mg/Ca for a Paleocene-Eocene section from Ocean Drilling Program (ODP) Site 690 (Weddell Sea) to δ18O temperatures, calculated assuming ice-free conditions during this peak warmth period of the Cenozoic. This procedure suggests negligible effect of Mg/Casw on the Mg distribution coefficient (DMg). Application of the new equations to the Site 806 record leads to the suggestion that global ice volume was greater than today after the Middle Miocene Climate Transition (~14 Ma). ODP Site 806 bottom waters cooled and freshened as the Pacific zonal sea surface temperature gradient increased, and climate cooled through the Pliocene, prior to the Plio-Pleistocene glaciation of the Northern Hemisphere. The records indicate a decoupling of deep water temperatures and global ice volume, demonstrating the importance of thresholds in the evolution of the Antarctic ice sheet.

  10. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.

    PubMed

    Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba

    2017-11-01

    The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the aforementioned parameters. This optimization yielded a set of data that can considerably improve orthopedic osteosynthesis outcomes.

  11. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska

    USGS Publications Warehouse

    Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.

    1992-01-01

    Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors

  12. Fluid-inclusion evidence for previous higher temperatures in the SUNEDCO 58-28 drill hole near Breitenbush hot springs, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.; ,

    1993-01-01

    The SUNEDCO 58-28 geothermal exploration drill hole was completed in 1981 to a depth of 2, 457 m near Breitenbush Hot Springs in the Western Cascade Mountains of northern Oregon. One hundred thirteen liquid-rich fluid inclusions (mostly secondary) were analyzed from drill cuttings samples of hydrothermal quartz, calcite, and anhydrite, as well as primary quartz phenocrysts. Except for one hydrothermal quartz specimen, minimum homogenization temperature (Th) measurements of fluid inclusions plot very close to the present measured temperatures for the drill hole. Fluid-inclusion data from near the bottom of the drill hole suggest that these rocks were altered by water of significantly greater salinity than Breitenbush Hot Springs water.

  13. Indirect Effects of Energy Development in Grasslands

    NASA Astrophysics Data System (ADS)

    Duquette, Cameron Albert

    Grassland landscapes in North America are undergoing rapid industrialization due to energy development facilitated by the growing popularity of fracking and horizontal drilling technology. Each year over 3 million hectares are lost from grassland and shrubland habitats to well infrastructure. Direct footprints from energy infrastructure cause impacts to vegetation cover, available cattle forage, carbon sequestration potential, and usable space for wildlife. However, legacy effects from well construction and noise pollution, light pollution, and altered viewsheds have the potential to impact areas beyond this direct footprint, causing additive and persistent changes to nearby grassland function. While these additional areas may be small on a well pad basis, they may have substantial cumulative impacts over time. To investigate these effects via a diversity of mechanisms, we studied the seasonal habitat selection of northern bobwhite (Colinus virginianus, hereafter bobwhite) in an energy-producing landscape to evaluate space use patterns relative to energy infrastructure. Habitat selection was modeled in the breeding and nonbreeding season using resource Utilization functions (RUFs). We then investigated patterns of vegetation, arthropod, and soil characteristics surrounding well pads to assess small scale environmental gradients extending away from drilling pads via a combination of multivariate and univariate techniques (i.e., Nonmetric dimensional scaling and ANOVA). We found minimal avoidance of energy structures by quail, suggesting a tolerance of moderate development levels. All small-scale effects studied except for soil moisture were impacted at the pad itself (P < 0.01). Off-pad impacts to arthropod abundance and biomass were spatially limited to areas close to pads, while vegetation cover was typically lower than the surrounding habitat beyond 10 m of pads. Soil surface temperature was higher at distances close to well pads, and soil moisture was not different between areas close to and far from well pads. Small-scale gradient results indicate vegetation effects around active drilling pads, potentially increasing erosion and decreasing nesting cover, decreasing carbon sequestration potential, and decreasing forage. Collectively, this research highlights the complexity and importance of impact thresholds in landscape fragmentation.

  14. Rod gripper, changer, and storage system

    NASA Technical Reports Server (NTRS)

    Benson, Mark; Demi, Todd; Mcneill, Robert; Waldo, Keith; Afghan, Alex; Oliver, Jim

    1989-01-01

    A rod changer and storage design is presented for the lunar deep drill apparatus to be used in conjunction with the Skitter walking platform. The design must take into account all of the lunar environment and working conditions. Some of these are: (1) the moon has one sixth the gravity of earth; (2) temperature gradients can range from about -170 to 265 C; (3) because of the high transportation costs, the design must be as light as possible; and (4) the process must be remotely operated (from earth or satellite) and must be automated. Because of Skitter's multiple degree of freedom movement, the design will utilize Skitter's movement to locate an implement and transport it from the rack to the drill string. The implement will be gripped by a thumb and two finger device, identified through an electronic sensing device on the thumb, and transported from the rack to the footplate and back from the footplate to the rack. The major designs discussed in this report have been broken down into three major areas: (1) gripper design (linear transport mechanism); (2) indexing system; and (3) rack design.

  15. Present heat flow and paleo-geothermal regime in the Canadian Arctic margin: analysis of industrial thermal data and coalification gradients

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Embry, Ashton F.

    1998-06-01

    Calculations of the present geothermal gradient and terrestrial heat flow were made on 156 deep wells of the Canadian Arctic Archipelago. Corrected bottom hole temperature (BHT) data and drill stem test (DST) temperatures were used to determine the thermal gradients for sites for which the quality of data was sufficient. Thermal gradients evaluated for depths below the base of permafrost for the onshore wells and below sea bottom for the offshore wells were combined with the estimates of effective thermal conductivity to approximate heat flow for these sites. The present geothermal gradient is in the 15-50 mK/m range (mean = 31 ± 7 mK/m). Present heat flow is mainly in the 35-90 mW/m 2 range (mean = 53 ± 12 mW/m 2). Maps of the present geothermal gradient and present heat flow have been constructed for the basin. The analysis of vitrinite reflectance profiles and the calculation of logarithmic coalification gradients for 101 boreholes in the Sverdrup Basin showed large variations related in many cases to regional variations of present terrestrial heat flow. Paleo-geothermal gradients estimated from these data are mostly in the range of 15-50 mK/m (mean = 28 ± 9 mK/m) and paleo-heat flow is in the 40-90 mW/m 2 range (mean = 57 ± 18 mW/m 2) related to the time of maximum burial in the Early Tertiary. Mean values of the present heat flow and paleo-heat flow for the Sverdrup Basin are almost identical considering the uncertainties of the methods used (53 ± 12 versus 57 ± 18 mW/m 2, respectively). Present geothermal gradients and paleo-geothermal gradients are also close when means are compared (31 ± 7 versus 28 ± 9 mK/m respectively). A zone of high present heat flow and a paleo-heat flow zone coincide in places with the northeastern-southwestern incipient rift landward of the Arctic margin first described by Balkwill and Fox (1982). Correlation between present heat flow and paleo-heat flow for the time of maximum burial in the earliest Tertiary suggests that the high heat flow zone has prevailed since that time.

  16. Optimal parameters to avoid thermal necrosis during bone drilling: A finite element analysis.

    PubMed

    Mediouni, Mohamed; Schlatterer, Daniel R; Khoury, Amal; Von Bergen, Tobias; Shetty, Sunil H; Arora, Manit; Dhond, Amit; Vaughan, Neil; Volosnikov, Alexander

    2017-11-01

    The drilling bone may potentially cause excessive frictional heat, which can lead to local bone necrosis. This heat generation and local necrosis has been suggested to contribute to the resorption of bone around the placed screws, ending in loss of screw purchase in the bone and inadvertent loosening and/or the bone-implant construct. In vivo studies on this subject have inherent obstacles not the least of which is controlling the variables and real time bone temperature data acquisition. Theoretical models can be generated using computer software and the inclusion of known constants for the mechanical properties of metal and bone. These known Data points for the variables (drill bit and bone) enables finite element analysis of various bone drilling scenarios. An elastic-plastic three-dimensional (3D) acetabular bone mode was developed and finite element model analysis (FEA) was applied to various simulated drilling procedures. The FEA results clearly indicate that the depth of drilling and the drill speed both have a significant effect on the temperature during drilling procedures. The reduction of the feeding speed leads to a reduction in bone temperature. Our data suggests that reducing the feeding speed regardless of RPMs and pressure applied could be a simple useful and effective way to reduce drilling temperatures. This study is the first step in helping any surgeon who drills bone and places screws to better understand the ideal pressure to apply and drill speed to employ and advance rate to avoid osteonecrosis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2386-2391, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  18. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  19. Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Teplow, W. J.; Marsh, B. D.; Hulen, J.; Spielman, P.; Kaleikini, M.; Fitch, D. C.; Rickard, W.

    2008-12-01

    A dacite melt was encountered during routine commercial drilling operations of injection well KS-13 at the Puna Geothermal Venture wellfield, Big Island of Hawaii. The KS-13 drill hole, drilled in 2005, is located along a segment of the Kilauea Lower East Rift Zone which erupted basalt flows from rift-parallel fissures in 1955. During the drilling of KS-13 a 75-meter interval of microdiorite containing brown glass inclusions was penetrated at a depth of 2415 m. At a depth of 2488 m a melt of dacitic composition was encountered. The melt flowed up the wellbore and was repeatedly redrilled over a depth interval of ~8 m, producing several kilograms of clear, colorless vitric cuttings at the surface. The drill bit, when recovered at the surface, was missing several carbide insert teeth. Presumably the inserts were plucked cleanly from their sintered cone sockets due to differential thermal expansion under extreme heat conditions. The dacitic glass cuttings have a perlitic texture, a silica content of 67 wgt.%, are enriched in alkalis and nearly devoid of mafic minerals with the exception of rare pyroxene phenocrysts and minor euhedral to amorphous magnetite. The melt zone is overlain by an interval of strong greenschist facies metamorphism in basaltic and dioritic dike rock. The occurrence of an anhydrous dacite melt indicates a rock temperature of approximately 1050° (1922°F) and sufficient residence time of underlying basaltic magma to generate a significant volume of differentiated material. The dacite, with an inferred temperature of 1050 °C, is separated by 526 m of rock from the deepest overlying permeable zone in KS-13 at a temperature of 356 °C. The thermal gradient through this impermeable rock section is ~700°C/526 m = 1.331 °C/m. The calculated conductive heat flux from the magma upward into the deepest zone of hydrothermal circulation is given by k×(dT/dZ)=2.9 × 1.33 = 3.83 W/m2 = 3830 mW/m2 (thermal conductivity k=2.9 W m-1 °C-1 for basalt). This heat flux is an order of magnitude greater than the average of 270-290 mW/ m2 typical for the mid-ocean ridges. The high heat flux is sufficient to power the overlying commercial geothermal wellfield which has been producing 28 MW of net electrical power continuously since 1993.

  20. Geothermal resources of the northern gulf of Mexico basin

    USGS Publications Warehouse

    Jones, P.H.

    1970-01-01

    Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.

  1. Temperature Changes in Cortical Bone after Implant Site Preparation Using a Single Bur versus Multiple Drilling Steps: An In Vitro Investigation.

    PubMed

    Gehrke, Sergio Alexandre; Bettach, Raphaél; Taschieri, Silvio; Boukhris, Gilles; Corbella, Stefano; Del Fabbro, Massimo

    2015-08-01

    The study aims to test the hypothesis of no differences in temperature variation by using a single bur for implant site preparation as compared with conventional drilling sequence using multiple burs with incremental diameter. Synthetic blocks of bone (type I density) were used for drilling procedures. Group 1 and Group 2 - drilling with three consecutive burs for a 4.1 mm cylindrical implant and for a 4.3 mm conical implant, respectively; Group 3 - drilling with a single bur for a 4.2 mm conical implant. For each group, 20 drilling procedures were performed without irrigation and 20 with external irrigation. The temperature in the cortical bone during osteotomy for implant site preparation was measured through a thermocouple. The mean temperatures and standard deviations for the drilling without irrigation were: 25.5 ± 1.24°C for Group 1; 28.1 ± 1.76°C for Group 2; 26.5 ± 1.79°C for Group 3. Considering the drilling with irrigation, the mean values and standard deviations were: 20.4 ± 1.17°C for Group 1; 22.2 ± 1.38°C for Group 2; 20.2 ± 0.83°C for Group 3. Groups 1 and 3 yielded similar results, while Group 2 displayed significantly higher temperature increase than the other two groups. The single bur drilling protocol did not produce greater bone heating than the conventional protocol and may be considered a safe procedure. © 2013 Wiley Periodicals, Inc.

  2. Geothermal regime of Tarim basin, NW China: insights from borehole temperature logging

    NASA Astrophysics Data System (ADS)

    Liu, S.; Lei, X.

    2013-12-01

    Geothermal regime of sedimentary basin is vital for understanding basin (de)formation process, hydrocarbon generation status and assessing the resource potential. Located at the Precambrian craton block, the Tarim basin is the largest intermountain basin in China, which is also the ongoing target of oil and gas exploration. Previous knowledge of thermal regime of this basin is from limited oil exploration borehole testing temperature, the inherent deficiency of data of this type makes accurate understanding of its thermal regime impossible. Here we reported our latest steady temperature logging results in this basin and analyze its thermal regime as well. In this study, 10 temperature loggings are conducted in the northern Tarim basin where the major oil and gas fields are discovered. All the boreholes for temperature logging are non-production wells and are shut in at least more than 2~3 years, ensuring the temperature equilibrium after drilling. The derived geothermal gradient varies from 20.2 to 26.1 degree/km, with a mean of 22.0 degree/km. However, some previous reported gradients in this area are obviously lower than our results; for example, the previous gradient of THN2 well is 13.2 degree/km but 23.2 degree/km in this study, and not enough equilibrium time in previous logging accounts for this discrepancy. More important, it is found that high gradients usually occur in the gas field and the gradients of the gas fields are larger than those in other oil fields, indicating higher thermal regime in gas field. The cause of this phenomenon is unclear, and the upward migration of hot fluid along fault conduit is speculated as the possible mechanism for this high geothermal anomaly in the oil and gas fields. Combined with measured thermal conductivity data, 10 new heat flow values are also achieved, and the heat flow of the Tarim basin is between 38mW/m2 and 52mW/m2, with a mean of 43 mW/m2. This relatively low heat flow is coincident with that of typical Precambrian craton basin in the world, considering that the Tarim basin has not experienced obvious Meso-Cenozoic tectono-thermal events after its formation. The heat flow distribution of the Tarim basin is characterized by large values in the uplift areas and low in the depressions, showing the influence of lateral contrast in thermal properties within the basin on present-day geothermal regime.

  3. Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone.

    PubMed

    Shakouri, Ehsan; Sadeghi, Mohammad H; Maerefat, Mehdi; Shajari, Shaghayegh

    2014-04-01

    Bone loss due to thermo necrosis may weaken the purchase of surgically placed screws and pins, causing them to loosen postoperatively. The heat generated during the bone drilling is proportional to cutting speed and force and may be partially dissipated by the blood and tissue fluids, and somehow carried away by the chips formed. Increasing cutting speed will reduce cutting force and machining time. Therefore, it is of interest to study the effects of the increasing cutting speed on bone drilling characteristics. In this article, the effects of the increasing cutting speed ranging from 500 up to 18,000 r/min on the thrust force and the temperature rise are studied for bovine femur bone. The results of this study reveal that the high-speed drilling of 6000-7000 r/min may effectively reduce the two parameters of maximum cortical temperature and duration of exposure at temperatures above the allowable levels, which in turn reduce the probability of thermal necrosis in the drill site. This is due to the reduction of the cutting force and the increase in the chip disposal speed. However, more increases in the drill bit rotational speed result in an increase in the amount of temperature elevation, not because of sensible change in drilling force but a considerable increase in friction among the chips, drill bit and the hole walls.

  4. Reducing Subjectivity in Geothermal Exploration Decision Making (Presentation); NREL(National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, S.; Young, K.

    Geothermal exploration projects have a significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Two of the largest challenges for increased geothermal deployment are 1) understanding when and how to proceed in an exploration program, and 2) when to walk away from a site. Current methodologies for exploration decision-making are formulatedby subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a given location,more » including go/no-go decision points to help developers and investors decide when to give up on alocation. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of aparticular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basicgeothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This secondapproach was determined to be less subjective, since numerical inputs come from the collected data. And it helps to facilitate communication between project managers and exploration geologists in making objective go/no-go decisions throughout the different project phases.« less

  5. Spectroscopic detection and analysis of atomic emissions during industrial pulsed laser-drilling of structural aerospace alloys

    NASA Astrophysics Data System (ADS)

    Bright, Robin Michael

    The ability to adequately cool internal gas-turbine engine components in next-generation commercial and military aircraft is of extreme importance to the aerospace industry as the demand for high-efficiency engines continues to push operating temperatures higher. Pulsed laser-drilling is rapidly becoming the preferred method of creating cooling holes in high temperature components due a variety of manufacturing advantages of laser-drilling over conventional hole-drilling techniques. As cooling requirements become more demanding, the impact of drilling conditions on material removal behavior and subsequent effects on hole quality becomes critical. In this work, the development of emission spectroscopy as a method to probe the laser-drilling process is presented and subsequently applied to the study of material behavior of various structural aerospace materials during drilling. Specifically, emitted photons associated with energy level transitions within excited neutral atoms in material ejected during drilling were detected and analyzed. Systematic spectroscopic studies indicated that electron energy level populations and calculated electron temperatures within ejected material are dependent on both laser pulse energy and duration. Local thermal conditions detected by the developed method were related to the characteristics of ejected material during drilling and to final hole quality. Finally, methods of utilizing the observed relationships for spectroscopic process monitoring and control were demonstrated.

  6. Geothermal state and fluid flow within ODP Hole 843B: results from wireline logging

    NASA Astrophysics Data System (ADS)

    Wiggins, Sean M.; Hildebrand, John A.; Gieskes, Joris M.

    2002-02-01

    Borehole fluid temperatures were measured with a wireline re-entry system in Ocean Drilling Program Hole 843B, the site of the Ocean Seismic Network Pilot Experiment. These temperature data, recorded more than 7 years after drilling, are compared to temperature data logged during Leg 136, approximately 1 day after drilling had ceased. Qualitative interpretations of the temperature data suggest that fluid flowed slowly downward in the borehole immediately following drilling, and flowed slowly upward 7 years after drilling. Quantitative analysis suggests that the upward fluid flow rate in the borehole is approximately 1 m/h. Slow fluid flow interpreted from temperature data only, however, requires estimates of other unmeasured physical properties. If fluid flows upward in Hole 843B, it may have led to undesirable noise for the borehole seismometer emplaced in this hole as part of the Ocean Seismic Network Pilot Experiment. Estimates of conductive heat flow from ODP Hole 843B are 51 mW/m 2 for the sediment and the basalt. These values are lower than the most recent Hawaiian Arch seafloor heat flow studies.

  7. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore,more » the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  8. 30 CFR 250.1617 - Application for permit to drill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... well and for well control, including the following: (i) Pore pressure; (ii) Formation fracture..., fracture gradients of the exposed formations, casing setting depths, and cementing intervals, total well...

  9. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone.

    PubMed

    Wang, Yu; Cao, Meng; Zhao, Xiangrui; Zhu, Gang; McClean, Colin; Zhao, Yuanyuan; Fan, Yubo

    2014-11-01

    Heat generated during bone drilling could cause irreversible thermal damage, which can lead to bone necrosis or even osteomyelitis. In this study, vibrational drilling was applied to fresh bovine bones to investigate the cutting heat in comparison with conventional drilling through experimental investigation and finite element analysis (FEA). The influence of vibrational frequency and amplitude on cutting heat generation and conduction were studied. The experimental results showed that, compared with the conventional drilling, vibrational drilling could significantly reduce the cutting temperature in drilling of cortical bone (P<0.05): the cutting temperature tended to decrease with increasing vibrational frequency and amplitude. The FEA results also showed that the vibrational amplitude holds a significant effect on the cutting heat conduction. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Numerical analysis of thermal drilling technique on titanium sheet metal

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Thermal drilling is a technique used in drilling of sheet metal for various applications. It involves rotating conical tool with high speed in order to drill the sheet metal and formed a hole with bush below the surface of sheet metal. This article investigates the finite element analysis of thermal drilling on Ti6Al4Valloy sheet metal. This analysis was carried out by means of DEFORM-3D simulation software to simulate the performance characteristics of thermal drilling technique. Due to the contribution of high temperature deformation in this technique, the output performances which are difficult to measure by the experimental approach, can be successfully achieved by finite element method. Therefore, the modeling and simulation of thermal drilling is an essential tool to predict the strain rate, stress distribution and temperature of the workpiece.

  11. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range–South (UTTR–S)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01

    Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north ofmore » Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.« less

  12. Summary: High Temperature Downhole Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, David W.

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at themore » surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.« less

  13. Experimental Analysis of Temperature Differences During Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique.

    PubMed

    Di Fiore, Adolfo; Sivolella, Stefano; Stocco, Elena; Favero, Vittorio; Stellini, Edoardo

    2018-02-01

    Implant site preparation through drilling procedures may cause bone thermonecrosis. The aim of this in vitro study was to evaluate, using a thermal probe, overheating at implant sites during osteotomies through 2 different drilling methods (continuous drilling technique versus intermittent drilling technique) using irrigation at different temperatures. Five implant sites 13 mm in length were performed on 16 blocks (fresh bovine ribs), for a total of 80 implant sites. The PT-100 thermal probe was positioned 5 mm from each site. Two physiological refrigerant solutions were used: one at 23.7°C and one at 6.0°C. Four experimental groups were considered: group A (continuous drilling with physiological solution at 23.7°C), group B (intermittent drilling with physiological solution at 23.7°C), group C (continuous drilling with physiological solution at 6.0°C), and group D (intermittent drilling with physiological solution at 6.0°C). The Wilcoxon rank-sum test (2-tailed) was used to compare groups. While there was no difference between group A and group B (W = 86; P = .45), statistically significant differences were observed between experimental groups A and C (W = 0; P =.0001), B and D (W = 45; P =.0005), and C and D (W = 41; P = .003). Implant site preparation did not affect the overheating of the bone. Statistically significant differences were found with the refrigerant solutions. Using both irrigating solutions, bone temperature did not exceed 47°C.

  14. Bedrock Geology of the DFDP-2 Drill-Site

    NASA Astrophysics Data System (ADS)

    Toy, V.; Sutherland, R.; Townend, J.

    2015-12-01

    Bedrock was encountered in DFDP-2B at drilled depths (MD) of 238.50-893.18 m (vertical depths of 238.40-818.00 m). Continuous sampling of cuttings revealed the bedrock is composed predominantly of ductilely sheared mylonite-series lithologies exhumed from the roots of the Alpine Fault zone. The protolith is interpreted to be amphibolite facies metasediments classified as part of the Aspiring Subdivision of the Torlesse Supergroup. Onsite description of whole cuttings and thin sections made within a few hours of sample recovery allowed identification of progressive structural changes. Fabrics were schistose in the upper part of the hole, but at greater depths we observed increasing indications that the rocks had been subjected to simple shear deformation. These macro-and micro-structural features are consistent with those that typify the Alpine Fault mylonite sequence previously described, and were used as input to drilling decisions. The structural features found to be the most useful indicators of ductile simple shear strain accommodated by the recovered rocks were the occurrence of shear bands; changes in mean quartz grain size; changes in maximum mica grain size; and redistribution of or changes in microstructural setting of accessory phases (e.g. graphite). The quartz:mica ratio based on mass was also determined but the extent to which this reflects true lithologic variations is unclear, as washing and winnowing of the samples (both by circulating drill fluids and during the sample collection process) probably modified bulk mineralogy in different particle size domains. Nevertheless, the quartz:mica dataset suggests a dramatic change in mineralogy at 730 m MD (vertical depth of 695 m). This coincides with a pronounced step in the temperature gradient, possibly related to large changes in hydrogeology.

  15. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    NASA Astrophysics Data System (ADS)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  16. iTOUGH2-EOS1SC. Multiphase Reservoir Simulator for Water under Sub- and Supercritical Conditions. User's Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnusdottir, Lilja; Finsterle, Stefan

    2015-03-01

    Supercritical fluids exist near magmatic heat sources in geothermal reservoirs, and the high enthalpy fluid is becoming more desirable for energy production with advancing technology. In geothermal modeling, the roots of the geothermal systems are normally avoided but in order to accurately predict the thermal behavior when wells are drilled close to magmatic intrusions, it is necessary to incorporate the heat sources into the modeling scheme. Modeling supercritical conditions poses a variety of challenges due to the large gradients in fluid properties near the critical zone. This work focused on using the iTOUGH2 simulator to model the extreme temperature andmore » pressure conditions in magmatic geothermal systems.« less

  17. Collateral damage: heat transfer as a possible mechanism of optic nerve injury during neurosurgical intervention.

    PubMed

    Shaw, My Le; Kelley, Brian; Camarata, Paul; Sokol, Jason A

    2012-01-01

    To determine factors associated with increased heat transfer during neurosurgical drilling as a mechanism for optic nerve injury. On a nonembalmed cadaver, the optic canal was exposed through a standard craniotomy and optic nerve sparing exenteration. The temperature was measured with a thermocoupler during each 30-second continuous drill session using 2 types of neurosurgical drills. The location of the probe, drill site, drill power, and irrigation rate were varied. A <1 °C change was measured in the optic canal at all test distances with the Cavitron Ultrasonic Surgical Aspirator and diamond drill. The use of manual irrigation decreased the mean change in temperature (ΔT) in the sphenoid bone from 4.7 °C without irrigation to 1.3 °C with irrigation. Increasing Cavitron Ultrasonic Surgical Aspirator power from 50% to 80% at an irrigation rate of 4 ml/minute more than doubled ΔT in sphenoid bone from 3.2 °C at 50% to 8.1 °C at 80%. Increasing irrigation from 2 to 4 ml/minute decreased mean ΔT by -1.1 °C (3.2 °C at 2 ml/minute versus 2.1 °C at 4 ml/minute) at Cavitron Ultrasonic Surgical Aspirator power of 50%, but at Cavitron Ultrasonic Surgical Aspirator power of 80%, increasing irrigation increased mean ΔT by 3.0 °C (3.7 °C at 2 ml/minute versus 6.8 °C at 4 ml/minute). Care must be taken during neurosurgical procedures to decrease heat transfer during drilling to nearby structures. With increase in drill power, there is a noticeable increase in temperature change from baseline. These temperature changes can be mediated by irrigation, although the effect of increasing irrigation rate to suppress the raise in temperature decreases with increasing drill power.

  18. Comparison of early exploration at Platanares (Honduras) and Wairakei (New Zealand)

    USGS Publications Warehouse

    Truesdell, A.H.; Glover, R.B.; Janik, C.J.; Brown, K.L.; Goff, F.

    1989-01-01

    Early exploration at Wairakei, New Zealand, is compared with the present state of exploration of Platanares, Honduras. In retrospect, geothermometer temperatures favor Platanares (e.g., 220 vs. 190??C for Na-K-Ca), but two 600-m drill holes encountered lower temperatures (160??C). Wairakei, explored before the advent of chemical geothermometry, also had disappointing early drilling results (but better than Platanares; one of the first six holes hit T > 180??C). The Wairakei drilling program was nevertheless continued at full speed and by well 20 a successful drilling strategy was discovered.

  19. An Internal Coaxil Cable Seal System

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-23

    The invention is a seal system for a coaxial cable more specifically an internal seal system placed within the coaxial cable and its constituent components. A series of seal stacks including flexible rigid rings and elastomeric rings are placed on load bearing members within the coaxial cable. The current invention is adapted to seal the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. During oil and gas exploration, a drill string can see a range of pressures and temperatures thus resulting in multiple combinations of temperature and pressure and increasing the difficulty of creating a robust seal for all combinations. The seal system can be used in a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  20. Optimization of bone drilling parameters using Taguchi method based on finite element analysis

    NASA Astrophysics Data System (ADS)

    Rosidi, Ayip; Lenggo Ginta, Turnad; Rani, Ahmad Majdi Bin Abdul

    2017-05-01

    Thermal necrosis results fracture problems and implant failure if temperature exceeds 47 °C for one minute during bone drilling. To solve this problem, this work studied a new thermal model by using three drilling parameters: drill diameter, feed rate and spindle speed. Effects of those parameters to heat generation were studied. The drill diameters were 4 mm, 6 mm and 6 mm; the feed rates were 80 mm/min, 100 mm/min and 120 mm/min whereas the spindle speeds were 400 rpm, 500 rpm and 600 rpm then an optimization was done by Taguchi method to which combination parameter can be used to prevent thermal necrosis during bone drilling. The results showed that all the combination of parameters produce confidence results which were below 47 °C and finite element analysis combined with Taguchi method can be used for predicting temperature generation and optimizing bone drilling parameters prior to clinical bone drilling. All of the combination parameters can be used for surgeon to achieve sustainable orthopaedic surgery.

  1. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  2. Ultrasonic/Sonic Drill for High Temperature Application

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Scott, James; Sherrit, Stewart; Widholm, Scott; Badescu, Mircea; Shrout, Tom; Jones, Beth

    2010-01-01

    Venus is one of the many significant scientific targets for NASA. New rock sampling tools with the ability to be operated at high temperatures of the order of 460 deg C are required for surface in-situ sampling/analysis missions. Piezoelectric materials such as LiNbO? crystals and Bismuth Titanate are potentially operational at the temperature range found on the surface of Venus. A study of the feasibility of producing piezoelectric drills for a temperature up to 500 deg C was conducted. The study includes investigation of the high temperature properties of piezoelectric crystals and ceramics with different formulas and doping. Several prototypes of Ultrasonic/Sonic Drill/Corers (USDC) driven by transducers using the high temperate piezoelectric ceramics and single LiNbO? crystal were fabricated. The transducers were analyzed by scanning the impedance at room temperature and 500 deg C under both low and high voltages. The drilling performances were tested at temperature up to 500 deg C. Preliminary results were previously reported [Bao et al, 2009]. In this paper, the progress is presented and the future works for performance improvements are discussed.

  3. Geochemical exploration of a promissory Enhanced Geothermal System (EGS): the Acoculco caldera, Mexico.

    NASA Astrophysics Data System (ADS)

    Peiffer, Loic; Romero, Ruben Bernard; Pérez-Zarate, Daniel; Guevara, Mirna; Santoyo Gutiérrez, Edgar

    2014-05-01

    The Acoculco caldera (Puebla, Mexico) has been identified by the Mexican Federal Electricity Company (in Spanish 'Comisión Federal de Electricidad', CFE) as a potential Enhanced Geothermal System (EGS) candidate. Two exploration wells were drilled and promising temperatures of ~300° C have been measured at a depth of 2000 m with a geothermal gradient of 11oC/100m, which is three times higher than the baseline gradient measured within the Trans-Mexican Volcanic Belt. As usually observed in Hot Dry Rock systems, thermal manifestations in surface are scarce and consist in low-temperature bubbling springs and soil degassing. The goals of this study were to identify the origin of these fluids, to estimate the soil degassing rate and to explore new areas for a future detailed exploration and drilling activities. Water and gas samples were collected for chemical and isotopic analysis (δ18O, δD, 3He/4He, 13C, 15N) and a multi-gas (CO2, CH4, H2S) soil survey was carried out using the accumulation chamber method. Springs' compositions indicate a meteoric origin and the dissolution of CO2 and H2S-rich gases, while gas compositions reveal a MORB-type origin mixed with some arc-type contribution. Gas geothermometry results are similar to temperatures measured during well drilling (260° C-300° C). Amongst all measured CO2 fluxes, only 5% (mean: 5543 g m-2 day-1) show typical geothermal values, while the remaining fluxes are low and correspond to biogenic degassing (mean: 18 g m-2 day-1). The low degassing rate of the geothermal system is a consequence of the intense hydrothermal alteration observed in the upper 800 m of the system which acts as an impermeable caprock. Highest measured CO2 fluxes (above > 600 g m-2 day-1) have corresponding CH4/CO2 flux ratios similar to mass ratios of sampled gases, which suggest an advective fluid transport. To represent field conditions, a numerical model was also applied to simulate the migration of CO2 towards the surface through a shallow aquifer under fully saturated conditions. By changing some of the aquifer properties (i.e., depth, permeability and porosity), it was found how geothermal CO2 fluxes can show values similar to a biogenic background flux. Future field work at Acoculco will include δ13C analysis together with soil flux measurements for a better discrimination of the degassing origin, and a thinner flux measurement grid will be defined for a better detection of any possible gas flux anomaly.

  4. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: Implications for carbon sequestration and enhanced coalbed methane recovery

    USGS Publications Warehouse

    Pashin, J.C.; McIntyre, M.R.

    2003-01-01

    Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs equilibrate toward a normal hydrostatic pressure gradient after abandonment. Coal can hold large quantities of carbon dioxide under supercritical conditions, and supercritical isotherms indicate non-Langmiur conditions under which some carbon dioxide may remain mobile in coal or may react with formation fluids or minerals. Hence, carbon sequestration and enhanced coalbed methane recovery show great promise in subcritical reservoirs, and additional research is required to assess the behavior of carbon dioxide in coal under supercritical conditions where additional sequestration capacity may exist. ?? 2003 Elsevier Science B.V. All rights reserved.

  5. Paleogeothermal record of the Emeishan mantle plume: evidences from borehole Ro data in the Sichuan basin, SW China

    NASA Astrophysics Data System (ADS)

    Hu, S.

    2013-12-01

    The Emeishan basalt province located in the southwest of China is widely accepted to be a result of the eruption of a mantle plume at the time of middle-late Permian. If it was a mantle plume, the ambient sedimentary rocks must be heated up during the development of the mantle plume and this thermal effect must be recorded by some geothermometers in the country rocks. The vitrinite reflectance (Ro) data as a maximum paleotemperature recorder from boreholes in Sichuan basin was employed to expose the thermal regime related to the proposed Emeishan mantle plume. The Ro profiles from boreholes which drilled close to the Emeishan basalts shows a ';dog-leg' (break) style at the unconformity between the middle and the upper Permian, and the Ro profiles in the lower subsection (pre-middle Permian) shows a significantly higher slopes (gradients) than those in the upper subsection. In contrast, those Ro profiles from boreholes far away from the center of the basalt province have no break at the uncomformity. Based on the chemical kinetic model of Ro, the paleo-temperature gradients for the upper and the lower subsections in different boreholes, as well as the erosion at the unconformity between the middle and the upper Permian, were reconstructed to reveal the variations of the temperature gradients and erosion thickness with geological time and space. Both the thermal regime and the erosion thickness together with their spatial variation (structure) provide strong geothermal evidence for the existence of the Emeishan mantle plume in the middle-late Permian.

  6. Effects of bur wear during implant site preparation: an in vitro study.

    PubMed

    Scarano, A; Carinci, F; Quaranta, A; Di Iorio, D; Assenza, B; Piattelli, A

    2007-01-01

    Few studies have investigated the influence of drilling on bone healing. After the drilling of bone and placement of dental implants a sequence begins of cellular and molecular events which represents a combined response of wound healing. The bone healing around dental implants is a complex phenomenon and influences the proliferation and differentiation of pre-osteoblasts into osteoblasts, together with the activation of periosteal and endosteal lining cells, and initiates the production and mineralization of osteoid matrix followed by the organization of the bone-implant interface. The objective of this study is to quantify the temperature changes in cortical bone and marrow spaces during implant site preparation in bovine rib bone. A total 10 harvested bovine ribs and 6 10.5 x 3.5 new drills for implant insertion with external irrigation (Bone System, Milano, Italy) were used in this study. The implant sites were prepared with 10 mm long drills at 500 rpm under abundant external irrigation with saline solution at 37 degrees C. Each drill was used for 10, 30, 60, 90 and 120 implant site preparations; each drill was then observed under SEM for evaluation of the damage of the cutting edge after 10, 30, 60, 90 and 120 preparations. There was an higher and statistically significant increase in the temperature in the cortical bone; this increase in temperature increases with the number of the times of drill use. The drill wear seemed to play a major role in heat production and could explain the observed increased temperature of the bone.

  7. Study of temperature rises and forces on drilling bone

    NASA Astrophysics Data System (ADS)

    Srikanth Venkataraman, Ananya

    Many different approaches have been used to prepare, store and test bone samples in order to determine its physical properties. The need to establish a standard method of specimen preparation and storage prior to experimental testing, contributed greatly to the primary part of this study. When mechanized cutting tools such as saws and drills are used, heat is produced and this raises the temperature of both the tool and the material being cut. In orthopedic and dental practices, high-speed tools are often applied to bones and teeth, and heat from these operations may result in thermal necrosis [1]. Since this can have a negative impact on the outcome of an orthopedic procedure, temperatures must be kept below the threshold that results in bone necrosis. The initial set of experiments was performed to determine the conditions under which the mechanical properties of the bone changed so as to establish the most suitable testing conditions. The hardness variation of the bone samples, under different annealing treatment conditions was used as the indicating parameter for evaluation of the change in the mechanical properties. Establishing the most appropriate section of the metacarpal sample for testing, by studying the anisotropy of the bone was another determining parameter. The second step was to examine the effects of conventional drilling as well as modulation assisted drilling on the temperature rise generated in the bone during these machining processes. In addition to this, a set of experiments were performed to ascertain how lubrication affected the temperature rise during drilling. The dynamic portions of the torque and thrust traces as well as the specific energies were compared for the different drilling conditions. Modulation showed no significant effect on the mean torque, thrust, specific energies of cutting, or temperature rise. Lubrication (flooding and misting) in both the modulation and no modulation cases drastically reduced the temperature rise during cutting, as expected. In addition to this the characteristics of the chips produced by both the methods of drilling were compared. The modulation process produced more consistent chips at the lower speed (360 rpm) and as the speed was increased to 3000 rpm the chip formation was similar to the no modulation drilling condition at the same feed rates. A brief study on the histological changes due to drilling was also performed.

  8. Rapid ice drilling with continual air transport of cuttings and cores: General concept

    NASA Astrophysics Data System (ADS)

    Wang, Rusheng; An, Liu; Cao, Pinlu; Chen, Baoyi; Sysoev, Mikhail; Fan, Dayou; Talalay, Pavel G.

    2017-12-01

    This article describes the investigation of the feasibility of rapid drilling in ice sheets and glaciers to depths of up to 600 m, with cuttings and cores continually transported by air reverse circulation. The method employs dual wall drill rods. The inner tubes provide a continuous pathway for the chips and cores from the drill bit face to the surface. To modify air reverse circulation drilling technology according to the conditions of a specific glacier, original cutter drill bits and air processing devices (air-cooled aftercoolers, air receivers, coalescing filters, desiccant dryers) should be used. The airflow velocity for conveying a 60-mm diameter and 200-mm long ice core should not be lower than 22.5 m/s, and the minimal airflow rate for continual chip and cores transport is 6.8 m3/min at 2.3-2.6 MPa. Drilling of a 600-m deep hole can be accomplished within 1.5 days in the case of 24 h drilling operations. However, to avoid sticking while drilling through ice, the drilling depth should to be limited to 540 m at a temperature of -20 °C and to 418 m at a temperature of -10 °C.

  9. An experimental investigation on thermal exposure during bone drilling.

    PubMed

    Lee, Jueun; Ozdoganlar, O Burak; Rabin, Yoed

    2012-12-01

    This study presents an experimental investigation of the effects of spindle speed, feed rate, and depth of drilling on the temperature distribution during drilling of the cortical section of the bovine femur. In an effort to reduce measurement uncertainties, a new approach for temperature measurements during bone drilling is presented in this study. The new approach is based on a setup for precise positioning of multiple thermocouples, automated data logging system, and a computer numerically controlled (CNC) machining system. A battery of experiments that has been performed to assess the uncertainty and repeatability of the new approach displayed adequate results. Subsequently, a parametric study was conducted to determine the effects of spindle speed, feed rate, hole depth, and thermocouple location on the measured bone temperature. This study suggests that the exposure time during bone drilling far exceeds the commonly accepted threshold for thermal injury, which may prevail at significant distances from the drilled hole. Results of this study suggest that the correlation of the thermal exposure threshold for bone injury and viability should be further explored. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Effect of drilling fluid systems and temperature on oil mist and vapour levels generated from shale shaker.

    PubMed

    Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie

    2011-05-01

    Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40°C against the Norwegian oil vapour OEL is questioned since these base oils are very similar to white spirit. To reduce exposures, relevant technical control measures in this area are to cool the drilling fluid <50°C before it enters the shale shaker units, enclose shale shakers and related equipment, in addition to careful consideration of which fluid system to use.

  11. Spatial analysis of temperature (BHT/DST) data and consequences for heat-flow determination in sedimentary basins

    USGS Publications Warehouse

    Forster, A.; Merriam, D.F.; Davis, J.C.

    1997-01-01

    Large numbers of bottom-hole temperatures (BHTs) and temperatures measured during drill-stem tests (DSTs) are available in areas explored for hydrocarbons, but their usefulness for estimating geothermal gradients and heat-flow density is limited. We investigated a large data set of BHT and DST measurements taken in boreholes in the American Midcontinent, a geologically uniform stable cratonic area, and propose an empirical correction for BHTs based on relationships between BHTs, DSTs, and thermal logs. This empirical correction is compared with similar approaches determined for other areas. The data were analyzed by multivariate statistics prior to the BHT correction to identify anomalous measurements and quantify external influences. Spatial patterns in temperature measurements for major stratigraphic units outline relations to regional structure. Comparision of temperature and structure trend-surface residuals reveals a relationship between temperature highs and local structure highs. The anticlines, developed by continuous but intermittent movement of basement fault blocks in the Late Paleozoic, are subtle features having closures of 10-30 m and contain relatively small hydrocarbon reservoirs. The temperature anomalies of the order of 5-7 ??C may reflect fluids moving upward along fractures and faults, rather than changes in thermal conductivity resulting from different pore fluids. ?? Springer-Verlag 1997.

  12. Spatial analysis of temperature (BHT/DST) data and consequences for heat-flow determination in sedimentary basins

    USGS Publications Warehouse

    Forster, A.; Merriam, D.F.; Davis, J.C.

    1997-01-01

    Large numbers of bottom-hole temperatures (BHTs) and temperatures measured during drill-stem tests (DSTs) are available in areas explored for hydrocarbons, but their usefulness for estimating geothermal gradients and heat-flow density is limited. We investigated a large data set of BHT and DST measurements taken in boreholes in the American Midcontinent, a geologically uniform stable cratonic area, and propose an empirical correction for BHTs based on relationships between BHTs, DSTs, and thermal logs. This empirical correction is compared with similar approaches determined for other areas. The data were analyzed by multivariate statistics prior to the BHT correction to identify anomalous measurements and quantify external influences. Spatial patterns in temperature measurements for major stratigraphic units outline relations to regional structure. Comparision of temperature and structure trend-surface residuals reveals a relationship between temperature highs and local structure highs. The anticlines, developed by continuous but intermittent movement of basement fault blocks in the Late Paleozoic, are subtle features having closures of 10-30 m and contain relatively small hydrocarbon reservoirs. The temperature anomalies of the order of 5-7??C may reflect fluids moving upward along fractures and faults, rather than changes in thermal conductivity resulting from different pore fluids.

  13. Advantages and limitations of remotely operated sea floor drill rigs

    NASA Astrophysics Data System (ADS)

    Freudenthal, T.; Smith, D. J.; Wefer, G.

    2009-04-01

    A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional drilling. It has the advantage that the drill string stays in the drilled hole during the entire drilling process and prevents the drilled hole from collapsing while the inner core barrels comprising the drilled core sections are hooked up inside the drill string using a wire.

  14. Characteristics of basal ice and subglacial water at Dome Fuji, Antarctica ice sheet

    NASA Astrophysics Data System (ADS)

    Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.

    2008-12-01

    (Introduction): The second deep ice coring project at Dome Fuji, Antarctica reached a depth of 3035.22 m during the austral summer season in 2006/2007. The recovered ice cores contain records of global environmental changes going back about 720,000 years. (Estimation of basal ice melt): The borehole measurement was carried out on January 2nd in 2007 when the temperature disturbance in the borehole calmed down by the rest of drilling for 2 days. Temperature measurement was performed after 0 C thermometer test was done in the ground. The temperature sensor of pt100 installed in the skate-like anti-torque was used. We did not have the enough time until the temperature of thermometer was matched with the temperature of ice sheet. Some error was included in ice temperature data. The resistance of pt100 sensor was converted to temperature in the borehole measurement machine. But we used only two electrical lines for pt100 sensor. Rate of heat flow in the ice sheet was calculated using the vertical temperature gradient of the ice sheet and rate of heat conductivity of ice. The deepest part of heat flux using temperatures at 3000m and 3030m was about 45mW/m2. We assumed that this value was the heat flux from the bedrock in the ice sheet. Heat flux to the bedrock surface in the ground was assumed 54.6mW/m2 adopted by ice sheet model (P. Huybrechts, 2006). Then the heat flux for basal ice melt was about 10mW/m2. This value was equaled to melting of 1.1mm of ice thickness per year. On the other hand, the annual layer thickness under 2500m was not changed so much and its average was 1.3mm of ice thickness. So the annual layer thickness and melting rate of basal ice was the same in ordering way. Or ice equivalent in annual layer is melting every year. The age of the deepest part of ice core is guessed at 720,000 years old and the ice older than basal ice has melted away. (The state of basal ice): When the ice core drilling depth passed 3031.44m, amount of ice chip more abundant than the cutting chips has been collected. When the drilling passed 3033.46m, the amount of ice chip was decreased. But the amount of ice chip collected increase again from 3034.59m and many large ices have taken the upper part of ice core. The temperature of ice sheet near the bedrock is the pressure melting point. So the liquid water can exist easy there. The water like groundwater infiltrated into the borehole and froze in drilling liquid from 3031.44m to 3033.46m. Under 3034.59m, the subglacial water infiltrated into the borehole and froze in drilling liquid. The existence of water channel in the ice core was found. We think that the liquid water has been flowing through the boundary of ice crystal. (Characteristics of chemical constituents): The melted ice was analyzed every 10cm per 50cm from 2400m to 3028m and continuously every 10cm from 3028m to 3034m. The analytical items were water isotopes (d18O and dD), micro particles (dust) and major ion components. The variations of water isotope and dust in ice near the bedrock have no conspicuous change. But, the concentrations of Cl- and Na+ ions had interesting behavior. The concentration of Cl- ion increased and Na+ ion was decreased deeper than 3020m. Further the concentrations of all ions were decreased suddenly deeper than 3034m. The concentration of ions will be decrease in turn according to the solubility of the ion. home/

  15. Improved Dental Implant Drill Durability and Performance Using Heat and Wear Resistant Protective Coatings.

    PubMed

    Er, Nilay; Alkan, Alper; Ilday, Serim; Bengu, Erman

    2018-06-01

    The dental implant drilling procedure is an essential step for implant surgery, and frictional heat in bone during drilling is a key factor affecting the success of an implant. The aim of this study was to increase the dental implant drill lifetime and performance by using heat- and wear-resistant protective coatings to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling was performed on bovine femoral cortical bone under the conditions mimicking clinical practice. Tests were performed under water-assisted cooling and under the conditions when no cooling was applied. Coated drill performances and durabilities were compared with those of three commonly used commercial drills with surfaces made from zirconia, black diamond. and stainless steel. Protective coatings with boron nitride, titanium boron nitride, and diamond-like carbon have significantly improved drill performance and durability. In particular, boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even when no cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat- and wear-resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can improve the surgical procedure and the postsurgical healing period. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  16. Auto Indexer Auto-Indexer for Percussive Hammers: Vane Motor Dynamometer Testing

    DOE Data Explorer

    Su, Jiann

    2012-01-01

    Objectives Options associated with geothermal drilling operations are generally limited by factors such as formation temperature and rock strength. The objective of the research is to expand the "tool box" available to the geothermal driller by furthering the development of a high-temperature drilling motor that can be used in directional drilling applications for drilling high temperature geothermal formations. The motor is specifically designed to operate in conjunction with a pneumatic down-the-hole-hammer. It provides a more compact design compared to traditional drilling motors such as PDMs (positive displacement motors). The packaging can help to enhance directional drilling capabilities. It uses no elastomeric components, which enables it to operate in higher temperatures ( >250 °F). Current work on the motor has shown that is a capable of operating under pneumatic power with a down-the-hole-hammer. Further development work will include continued testing and refining motor components and evaluating motor capabilities. Targets/Milestones Complete testing current motor - 12/31/2010 Make final material and design decisions - 01/31/2011 Build and test final prototype - 04/31/2011 Final demonstration - 07/31/2011 Impacts The development of the motor will help to achieve program technical objectives by improving well construction capabilities. This includes enabling high-temperature drilling as well as enhancing directional drilling. A key component in the auto indexer is the drive motor. It is an air-driven vane motor that converts the energy stored in the compressed air to mechanical energy. The motor is attached to hammer-like components which impart an impulsive load onto the drive shaft. The impulsive force on the drive shaft in turn creates an indexing action. A controlled test was performed to characterize the performance of the the vane motor for a given pressure. The Sandia dynamometer test station was used to determine the performance of the motor for a given input pressure.

  17. Combining conventional and thermal drilling in order to increase speed and reduce costs of drilling operations to access deep geothermal resources

    NASA Astrophysics Data System (ADS)

    Rossi, Edoardo; Kant, Michael A.; von Rohr, Philipp Rudolf; Saar, Martin O.

    2017-04-01

    The exploitation of deep geothermal resources for energy production relies on finding cost effective solutions to increase the drilling performance in hard rocks. Conventional rotary drilling techniques, based on mechanical rock exportation, result in high rates of drilling tool wearing, causing significant costs. Additionally, rotary drilling results in low drilling speeds in the typically hard crystalline basement rocks targeted for enhanced geothermal energy utilization technologies. Furthermore, even lower overall drilling rates result, when considering tripping times required to exchange worn drill tools. Therefore, alternative drilling techniques, such as hammering, thermal drilling, plasma drilling, and jetting processes are widely investigated in order to provide cost-effective alternatives to conventional drilling methods. A promising approach, that combines conventional rotary and thermal drilling techniques, is investigated in the present work. Here, the rock material is thermally weakened before being exported by conventional cutters. Heat is locally provided by a flame, which moves over the rock surface, heat-treating the material. Besides reducing the rock strength, an in-depth smoothening effect of the mechanical rock properties is observed due to the thermal treatment. This results in reduced rates of drill bit wearing and higher rates of penetration, which in turn decreases drilling costs significantly, particularly for deep-drilling projects. Due to the high heating rates, rock-hardening, commonly observed at moderate temperatures, can be avoided. The flame action can be modelled as a localized, high heat transfer coefficient flame treatment, which results in orders of magnitude higher heating rates than conventional oven treatments. Therefore, we analyse rock strength variations after different maximum temperatures, flame-based heating rates, and rock confinement pressures. The results show that flame treatments lead to a monotonous decrease of rock strength with temperature. This is different from oven treatments, where an initial increase of strength is typically observed, followed by a steep decrease upon further (slow) oven-heating. Thus, the weakening of sandstone and granite samples due to flame treatments indicates the feasibility of a combined mechanical-thermal drilling system. These results suggest that the new combined method enables improved rates of penetration in hard rocks while reducing the rate of drill tool wear. We also present possible implementations of this combined drilling system in the field. From field test results, advantages and limitations of the proposed new technology are presented, with an emphasis on accessing geothermal energy resources in crystalline basement rocks.

  18. The Springhill Formation (Jurassic-Cretaceous) as a potential low enthalpy geothermal reservoir in the Cerro Sombrero area, Magallanes Basin, Chile.

    NASA Astrophysics Data System (ADS)

    Lagarrigue, S. C.; Elgueta, S.; Arancibia, G.; Morata, D.; Sanchez, J.; Rojas, L.

    2017-12-01

    Low enthalpy geothermal energy technologies are being developed around the world as part of policies to replace the use of conventional sources of energy by renewable ones. The reuse of abandoned oil and gas wells in sedimentary basins, whose reservoirs are saturated with water at temperatures above 120°C, is of increasing interest due to the low initial cost.In Chile, interest in applying this technology is focused on the Magallanes Basin (Austral Basin in Argentina) in the extreme south of the country, where important hydrocarbon deposits have been exploited for more than six decades with more than 3,500 wells drilled to depths of over 4,000m. Hydrocarbons have been extracted mainly from the Upper Jurassic to lowermost Cretaceous Springhill Formation, which includes sandstone lithofacies with porosities of 12% to 19% and permeability of 10mD and 1100mD. This formation has been drilled mainly at depths of 1500m to 3000m, the estimated geothermal gradient in the zone is 4.9 °C/100m with well bottom temperature measurements oscillating between 60° and 170°C, sufficient for district heating, and even, electricity generation by means of ORC technologies.To understand in detail the behavior and distribution of the different lithofacies of the Springhill Formation in the Sombrero Oil and Gas Field, sedimentological and geological 3D models have been generated from existing well logs and seismic data. To comprehend the quality of the reservoirs on the other hand, many petrophysical studies of drill core samples representative of the different lithofacies, complemented by electric well log interpretations, were carried out. Results confirm the existence of at least two quartz-rich sandstone lithofacies as potential geothermal reservoirs. In the principal settlement in this area, Cerro Sombrero township (1,800 population), the annual average temperature is 6.4°C, requiring constant domestic heating which, at present comes exclusively from natural gas. The study shows the feasibility of obtaining low enthalpy geothermal energy from currently abandoned oil wells that reach 2000 m depth.This work is a contribution to the FONDAP-CONICYT 15090013 Project.

  19. Drilling of bone: A comprehensive review

    PubMed Central

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  20. Testing of the Prototype Mars Drill and Sample Acquisition System in the Mars Analog Site of the Antarctica's Dry Valleys

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; McKay, C.; Glass, B. J.; Marinova, M.; Davila, A. F.; Pollard, W. H.; Jackson, A.

    2011-12-01

    We report on the testing of the one meter class prototype Mars drill and cuttings sampling system, called the IceBreaker in the Dry Valleys of Antarctica. The drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sampling station for moving the augered ice shavings or soil cuttings into a sample cup. In November/December of 2010, the IceBreaker drill was tested in the Uni-versity Valley (within the Beacon Valley region of the Antarctic Dry Valleys). University Valley is a good analog to the Northern Polar Regions of Mars because a layer of dry soil lies on top of either ice-cemeted ground or massive ice (depending on the location within the valley). That is exactly what the 2007 Phoenix mission discovered on Mars. The drill demonstrated drilling in ice-cemented ground and in massive ice at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This corresponds to an average energy of 100 Whr. At the same time, the bit temperature measured by the bit thermocouple did not exceed more than 10 °C above the formation temperature. The temperature also never exceeded freezing, which minimizes chances of getting stuck and also of altering the materials that are being sampled and analyzed. The samples in the forms of cuttings were acquired every 10 cm intervals into sterile bags. These tests have shown that drilling on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in discrete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.

  1. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials.

    PubMed

    Cseke, Akos; Heinemann, Robert

    2018-01-01

    The research presented in this paper investigated the effects of spindle speed and feed rate on the resultant cutting forces (thrust force and torque) and temperatures while drilling SawBones ® biomechanical test materials and cadaveric cortical bone (bovine and porcine femur) specimens. It also investigated cortical bone anisotropy on the cutting forces, when drilling in axial and radial directions. The cutting forces are only affected by the feed rate, whereas the cutting temperature in contrast is affected by both spindle speed and feed rate. The temperature distribution indicates friction as the primary heat source, which is caused by the rubbing of the tool margins and the already cut chips over the borehole wall. Cutting forces were considerably higher when drilling animal cortical bone, in comparison to cortical test material. Drilling direction, and therewith anisotropy, appears to have a negligible effect on the cutting forces. The results suggest that this can be attributed to the osteons being cut at an angle rather than in purely axial or radial direction, as a result of a twist drill's point angle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Impact of Drilling Operations on Lunar Volatiles Capture: Thermal Vacuum Tests

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie E.; Paulsen, Gale; Zacny, Kris; Smith, Jim

    2015-01-01

    In Situ Resource Utilization (ISRU) enables future planetary exploration by using local resources to supply mission consumables. This idea of 'living off the land' has the potential to reduce mission cost and risk. On the moon, water has been identified as a potential resource (for life support or propellant) at the lunar poles, where it exists as ice in the subsurface. However, the depth and content of this resource has yet to be confirmed on the ground; only remote detection data exists. The upcoming Resource Prospector mission (RP) will 'ground-truth' the water using a rover, drill, and the RESOLVE science package. As the 2020 planned mission date nears, component level hardware is being tested in relevant lunar conditions (thermal vacuum). In August 2014 a series of drilling tests were performed using the Honeybee Robotics Lunar Prospecting Drill inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The drill used a unique auger design to capture and retain the lunar regolith simulant. The goal of these tests was to investigate volatiles (water) loss during drilling and sample transfer to a sample crucible in order to validate this regolith sampling method. Twelve soil samples were captured over the course of two tests at pressures of 10(exp-5) Torr and ambient temperatures between -80C to -20C. Each sample was obtained from a depth of 40 cm to 50 cm within a cryogenically frozen bed of NU-LHT-3M lunar regolith simulant doped with 5 wt% water. Upon acquisition, each sample was transferred and hermetically sealed inside a crucible. The samples were later baked out to determine water wt% and in turn volatile loss by following ASTM standard practices. Of the twelve tests, four sealed properly and lost an average of 30% of their available water during drilling and transfer. The variability in the results correlated well with ambient temperature (lower the temperature lower volatiles loss) and the trend agreed with the sublimation rates for the same temperature. Moisture retention also correlated with quantity of sample: a larger amount of material resulted in less water loss. The drilling process took an average of 10 minutes to capture and transfer each sample. The drilling power was approximately 20 Watt with a Weight on Bit of approximately 30 N. The bit temperature indicated little heat input into formation during the drilling process.

  3. Leak-off mechanism and pressure prediction for shallow sediments in deepwater drilling

    NASA Astrophysics Data System (ADS)

    Tan, Qiang; Deng, Jingen; Sun, Jin; Liu, Wei; Yu, Baohua

    2018-02-01

    Deepwater sediments are prone to loss circulation in drilling due to a low overburden gradient. How to predict the magnitude of leak-off pressure more accurately is an important issue in the protection of drilling safety and the reduction of drilling cost in deep water. Starting from the mechanical properties of a shallow formation and based on the basic theory of rock-soil mechanics, the stress distribution around a borehole was analyzed. It was found that the rock or soil on a borehole is in the plastic yield state before the effective tensile stress is generated, and the effective tangential and vertical stresses increase as the drilling fluid density increases; thus, tensile failure will not occur on the borehole wall. Based on the results of stress calculation, two mechanisms and leak-off pressure prediction models for shallow sediments in deepwater drilling were put forward, and the calculated values of these models were compared with the measured value of shallow leak-off pressure in actual drilling. The results show that the MHPS (minimum horizontal principle stress) model and the FIF (fracturing in formation) model can predict the lower and upper limits of leak-off pressure. The PLC (permeable lost circulation) model can comprehensively analyze the factors influencing permeable leakage and provide a theoretical basis for leak-off prevention and plugging in deepwater drilling.

  4. Microwave drying remediation of petroleum-contaminated drill cuttings.

    PubMed

    Júnior, Irineu Petri; Martins, André Leibsohn; Ataíde, Carlos H; Duarte, Cláudio R

    2017-07-01

    The oil reservoir drilling phase generates contaminated cuttings with oil formation itself. These cuttings must be subjected to a decontamination process before being disposed of in the environment. Several technologies are cited in literature for the remediation of soil contaminated with oil or diesel, but none have been reported to remedy drill cuttings contaminated with oil from reservoir. The reservoir drill cuttings are a problem because its discharge is not allowed. The drying technology using microwave has shown promise in the decontamination of cuttings with non-aqueous base drilling fluid, conciliating good robustness and high removal efficiency. Considering the aspects mentioned previously, the application of heating and drying technology using microwave in the remediation of oil contaminated cuttings from well drill was studied. The influence of temperature, specific energy and initial content of water in the drying operation of the reservoir cuttings and of the drilling cuttings artificially contaminated with oil were analyzed. The results showed an influence of temperature in the drying of the cuttings, being necessary to reach the boiling temperature of heavier hydrocarbons to reach an efficient removal in the operation. The specific energy has a strong influence, reaching a total decontamination using 2.67 kWh/kg. The initial water content was effective in removing oil, reducing the residual level of oil with the increase of initial content of water. It also modifies the temperature profiles of the kinetic-warming of the contaminated cuttings. Both the technology and the equipment used proved effective for obtaining total decontamination of oil from the cuttings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    NASA Technical Reports Server (NTRS)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature increase during the heating. By stopping during the excavation, it is possible to measure thermal conductivities at different depths. The gas jets are turned off when the penetrating cone reaches the target depth. Then, the stem pushes the needle sensor into the undisturbed soil at the bottom of the hole and carries out a thermal conductivity measurement. When the measurement is complete, the system resumes excavation. RTDs, placed along the stem at short (approx 30 cm) intervals, will monitor long-term temperature stability of the subsurface. Temperature in the shallow subsurface would fluctuate with the diurnal, annual, and precession cycles of the Moon. These thermal waves penetrate to different depths into the regolith. Longterm monitoring of the subsurface temperature would allow us to accurately delineate these cyclic signals and separate them from the signal associated with the outward flow of the Moon s endogenic heat. Further, temperature toward bottom of the 3-m hole should be fairly stable after the heat generated during the excavation dissipates into the surrounding soil. The geothermal gradient may be determined reliably from temperature measurements at the RTDs near the bottom. In order to minimize the heat conduction along the stem from affecting the geothermal gradient measurements, we plan to use low-conductive materials for the stem and develop a mechanism to achieve close coupling between the RTDs and the wall of the excavated hole.

  6. Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.

    PubMed

    Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee

    2017-02-01

    Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P < 0.0001. No significant difference was identified comparing the first 5 cortices drilled to the last 5 cortices drilled for each bit. The P-values are as follows: Bosch (P = 0.73), Emerge (P = 0.09), Smith & Nephew (P = 0.08), Stryker (P = 0.086), and Synthes (P = 0.16). The industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.

  7. Low temperature barrier wellbores formed using water flushing

    DOEpatents

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  8. Development of a high-temperature diagnostics-while-drilling tool.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavira, David J.; Huey, David; Hetmaniak, Chris

    2009-01-01

    The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picturemore » of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has been fielded in cost-sharing efforts with an industrial partner to support the development of new generation hard-rock drag bits. Following the demonstrated success of the POC DWD system, efforts were initiated in FY05 to design, fabricate and test a high-temperature (HT) capable version of the DWD system. The design temperature for the HT DWD system was 225 C. Programmatic requirements dictated that a HT DWD tool be developed during FY05 and that a working system be demonstrated before the end of FY05. During initial design discussions regarding a high-temperature system it was decided that, to the extent possible, the HT DWD system would maintain functionality similar to the low temperature system, that is, the HT DWD system would also be designed to provide the driller with real-time information on bit and bottom-hole-assembly (BHA) dynamics while drilling. Additionally, because of time and fiscal constraints associated with the HT system development, the design of the HT DWD tool would follow that of the LT tool. The downhole electronics package would be contained in a concentrically located pressure barrel and the use of externally applied strain gages with thru-tool connectors would also be used in the new design. Also, in order to maximize the potential wells available for the HT DWD system and to allow better comparison with the low-temperature design, the diameter of the tool was maintained at 7-inches. This report discusses the efforts associated with the development of a DWD system capable of sustained operation at 225 C. This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. Background on prior phases of the project can be found in SAND2003-2069 and SAND2000-0239.« less

  9. Bone heat generated using conventional implant drills versus piezosurgery unit during apical cortical plate perforation.

    PubMed

    Lajolo, Carlo; Valente, Nicola Alberto; Romandini, William Giuseppe; Petruzzi, Massimo; Verdugo, Fernando; D'Addona, Antonio

    2018-03-09

    The apical portion of the implant osteotomy receives less irrigation and cooling during surgical preparation. High bone temperatures, above the critical 10°C threshold, may impair osseointegration, particularly, around dense cortical bone. The aim of this study is to evaluate the apical cortical plate temperature increase with two different devices and pressure loads in a porcine rib ex-vivo model. Twenty-four implant sites were prepared on porcine ribs divided into 4 groups of 6 samples each according to the device used (conventional drill system or piezosurgery) and pressure load applied (1000 g or 1500 g). A rubber dam was used to isolate the apical cortical plate from the cooling effect of irrigation. Temperature variation measurements were taken using an infrared thermometer. The piezosurgery unit was 2 times more likely to increase the osteotomy temperature by 10.0°C (OR = 2; 95% CI = 1.136-3.522; p < 0.05). The average temperature increase was 0.07°C (SD = 0.10) for group 1 (drill system-1,000 g), 0.22°C (SD = 0.26) for group 2 (drill system-1,500 g), 9.18°C (SD = 4.51) for group 3 (piezosurgery-1000 g) and 8.17°C (SD = 6.12) for group 4 (piezosurgery-1,500 g). The piezosurgery site preparation caused significantly higher temperature increase than conventional drills (p < 0.05). There was no statistically significant difference in temperature change between the two pressure loads applied (p = 0.78). Temperature increases exceeded the critical 10°C threshold in half of the samples prepared with the piezoelectric device. Bone overheating using a piezosurgery unit is a potential risk during implant site preparation. The piezosurgical device reached significantly higher temperatures than conventional drilling at the apical cortical portion of the osteotomy. The temperature increase is often higher than the critical 10°C threshold. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Hawaii Geothermal Project. Phase II: final report on well HGP-A extension to Contract E(04-3)-1093

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shupe, J.W.

    1976-07-01

    Drilling was completed on HGP-A to a depth of 6445 feet on April 27, 1976. A final core was taken; a series of logging runs performed, both with Gearhart-Owen equipment and with the Kuster temperature gauge; and the drill stem was withdrawn and laid down on the side adjacent to the rig - as a safety measure against possible volcanic tremors. A maximum temperature to date of 288/sup 0/C (550/sup 0/F) was recorded on May 13 at 4500 feet. The weighted temperature probe would penetrate no deeper into the drilling mud, which apparently is stiffening. The temperature depth relationship developedmore » in HGP-A is illustrated.« less

  11. Direct application of geothermal energy at the L'eggs Product Plant, Las Cruces, New Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-02-01

    The study program to determine the feasibility of interfacing a potential geothermal resource of Dona Ana County, New Mexico L'eggs Product industrial process is discussed in this final report. Five separate sites were evaluated initially as to geothermal potential and technical feasibility. Preliminary analysis revealed that three sites were considered normal, but that two sites (about three miles from the L'eggs Plant) had very high shallow subsurface temperature gradients (up to 14.85/sup 0/F/100 ft). An initial engineering analysis showed that to meet the L'eggs plant temperature and energy requirements a geothermal fluid temperature of about 250/sup 0/F and 200 gpmmore » flow rate would be necessary. A brief economic comparison indicated that the L'eggs plant site and a geothermal site approximately four miles from the plant did merit further investigation. Detailed engineering and economic design and analysis of these two sites (including the drilling of an 1873 feet deep temperature gradient test hole at the L'eggs Plant) showed that development of the four mile distant site was technically feasible and was the more economic option. It was determined that a single-stage flash system interface design would be most appropriate for the L'eggs Plant. Approximately 39 billion Btu/yr of fossil fuel could be replaced with geothermal energy at the L'eggs facility for a total installed system cost of slightly over $2 million. The projected economic payback period was calculated to be 9.2 years before taxes. This payback was not considered acceptable by L'eggs Products, Inc., to merit additional design or construction work at this time.« less

  12. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill atmore » the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.« less

  13. Role of Geomechanics in Assessing the Feasibility of CO2 Sequestration in Depleted Hydrocarbon Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Khaksar, Abbas

    2013-05-01

    Carbon dioxide (CO2) sequestration in depleted sandstone hydrocarbon reservoirs could be complicated by a number of geomechanical problems associated with well drilling, completions, and CO2 injection. The initial production of hydrocarbons (gas or oil) and the resulting pressure depletion as well as associated reduction in horizontal stresses (e.g., fracture gradient) narrow the operational drilling mud weight window, which could exacerbate wellbore instabilities while infill drilling. Well completions (casing, liners, etc.) may experience solids flowback to the injector wells when injection is interrupted due to CO2 supply or during required system maintenance. CO2 injection alters the pressure and temperature in the near wellbore region, which could cause fault reactivation or thermal fracturing. In addition, the injection pressure may exceed the maximum sustainable storage pressure, and cause fracturing and fault reactivation within the reservoirs or bounding formations. A systematic approach has been developed for geomechanical assessments for CO2 storage in depleted reservoirs. The approach requires a robust field geomechanical model with its components derived from drilling and production data as well as from wireline logs of historical wells. This approach is described in detail in this paper together with a recent study on a depleted gas field in the North Sea considered for CO2 sequestration. The particular case study shows that there is a limitation on maximum allowable well inclinations, 45° if aligning with the maximum horizontal stress direction and 65° if aligning with the minimum horizontal stress direction, beyond which wellbore failure would become critical while drilling. Evaluation of sanding risks indicates no sand control installations would be needed for injector wells. Fracturing and faulting assessments confirm that the fracturing pressure of caprock is significantly higher than the planned CO2 injection and storage pressures for an ideal case, in which the total field horizontal stresses increase with the reservoir re-pressurization in a manner opposite to their reduction with the reservoir depletion. However, as the most pessimistic case of assuming the total horizontal stresses staying the same over the CO2 injection, faulting could be reactivated on a fault with the least favorable geometry once the reservoir pressure reaches approximately 7.7 MPa. In addition, the initial CO2 injection could lead to a high risk that a fault with a cohesion of less than 5.1 MPa could be activated due to the significant effect of reduced temperature on the field stresses around the injection site.

  14. New Clues on the Source of the Central Magnetic Anomaly at Haughton Impact Structure, Canada

    NASA Astrophysics Data System (ADS)

    Quesnel, Y.; Rochette, P.; Gattacceca, J.; Osinski, G. R.

    2013-12-01

    The 23 km-diameter Haughton impact structure, located on Devon Island, Nunavut, Canada, is one of the best-preserved medium-size complex impact structures on Earth. The impact occurred ~39 Ma ago into a target formation composed of an ~2-km thick sequence of Lower Paleozoic sedimentary rocks of the Arctic Platform overlying Precambrian metamorphic basement of the Canadian Shield (Osinski et al., 2005). Clast-rich carbonate impact melt rocks fill the crater and impact-generated hydrothermal activity took place, but since then no significant geological event has affected the area. A 900 nT-amplitude magnetic anomaly with a wavelength of about 3 km is observed at the center of the crater (Pohl et al., 1988). Using high-resolution ground magnetic survey and magnetic property measurements on rock samples from inside and outside the structure, Quesnel et al. (2013) concluded that the source for this anomaly may correspond to uplifted and hydrothermally-aletered basement rocks. Hydrothermal activity can increase rock magnetization intensity by crystallization of magnetic minerals, such as magnetite and/or pyrrhotite. Here, we present the results of a new ground magnetic survey and electrical resistivity soundings conducted around the maximum of the magnetic anomaly. Drilling, with depths ranging from 5 m to 13 m was also conducted at three locations in the same area to ground truth the interpretation of geophysical data. The maximum of the magnetic anomaly is characterized by a ~50 m2 area of strong vertical magnetic gradient and low electrical resistivity, while the surroundings show weak gradient and large resistivity. Two drill holes into this localized area show about 6 m of sandy material with some more magnetic layers at about 5 m depth overlying a greenish impact melt breccia with very abundant and large clasts. Recovery in the first 9 meters is very poor, but down hole magnetic gradient measurement confirms the near 6 meter magnetic layer. A third hole was drilled outside the local area with strong magnetic gradients and shows, starting at 2 m depth a porous gray clast-rich impact melt rock that is very similar to the impact melt rock extensively cropping out in the crater. Therefore, the three drill holes confirm that the geophysical contrast at the crater center corresponds to a geological contrast and suggest a link with hydrothermal activity. The results of laboratory measurements (magnetic properties in particular) made on the drill cores will also be presented. References : Osinski, G. R. et al. 2005. MPS, 40:1759-1776 ; Pohl, J. et al. 1988. Meteoritics, 23:235-238 ; Quesnel, Y. et al. 2013. EPSL, 367:116-122.

  15. Geothermal surveys in the oceanic volcanic island of Mauritius

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio

    2017-04-01

    Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked to occur in the hotspot area thus seems to yield no particular thermal signature.

  16. Hydrothermal mineralogy of core from geothermal drill holes at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.; Keith, Terry E.

    1999-01-01

    Hydrothermal mineralogy studies of specimens collected from nine geothermal drill holes suggest that, at the locations and depths drilled, past temperatures have been hottest (exceeding 300?C) near ring fractures on the south and west sides of Newberry Volcano.

  17. Pre-operative Screening and Manual Drilling Strategies to Reduce the Risk of Thermal Injury During Minimally Invasive Cochlear Implantation Surgery.

    PubMed

    Dillon, Neal P; Fichera, Loris; Kesler, Kyle; Zuniga, M Geraldine; Mitchell, Jason E; Webster, Robert J; Labadie, Robert F

    2017-09-01

    This article presents the development and experimental validation of a methodology to reduce the risk of thermal injury to the facial nerve during minimally invasive cochlear implantation surgery. The first step in this methodology is a pre-operative screening process, in which medical imaging is used to identify those patients that present a significant risk of developing high temperatures at the facial nerve during the drilling phase of the procedure. Such a risk is calculated based on the density of the bone along the drilling path and the thermal conductance between the drilling path and the nerve, and provides a criterion to exclude high-risk patients from receiving the minimally invasive procedure. The second component of the methodology is a drilling strategy for manually-guided drilling near the facial nerve. The strategy utilizes interval drilling and mechanical constraints to enable better control over the procedure and the resulting generation of heat. The approach is tested in fresh cadaver temporal bones using a thermal camera to monitor temperature near the facial nerve. Results indicate that pre-operative screening may successfully exclude high-risk patients and that the proposed drilling strategy enables safe drilling for low-to-moderate risk patients.

  18. An interactive drilling simulator for teaching and research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, G.A.; Cooper, A.G.; Bihn, G.

    1995-12-31

    An interactive program has been constructed that allows a student or engineer to simulate the drilling of an oil well, and to optimize the drilling process by comparing different drilling plans. The program operates in a very user-friendly way, with emphasis on menu and button-driven commands. The simulator may be run either as a training program, with exercises that illustrate various features of the drilling process, as a game, in which a student is set a challenge to drill a well with minimum cost or time under constraints set by an instructor, or as a simulator of a real situationmore » to investigate the merit of different drilling strategies. It has three main parts, a Lithology Editor, a Settings Editor and the simulation program itself. The Lithology Editor allows the student, instructor or engineer to build a real or imaginary sequence of rock layers, each characterized by its mineralogy, drilling and log responses. The Settings Editor allows the definition of all the operational parameters, ranging from the drilling and wear rates of particular bits in specified rocks to the costs of different procedures. The simulator itself contains an algorithm that determines rate of penetration and rate of wear of the bit as drilling continues. It also determines whether the well kicks or fractures, and assigns various other {open_quotes}accident{close_quotes} conditions. During operation, a depth vs. time curve is displayed, together with a {open_quotes}mud log{close_quotes} showing the rock layers penetrated. If desired, the well may be {open_quotes}logged{close_quotes} casings may be set and pore and fracture pressure gradients may be displayed. During drilling, the total time and cost are shown, together with cost per foot in total and for the current bit run.« less

  19. GIS Well Temperature Data from the Roosevelt Hot Springs, Utah FORGE Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwynn, Mark; Hill, Jay; Allis, Rick

    This is a GIS point feature shapefile representing wells, and their temperatures, that are located in the general Utah FORGE area near Milford, Utah. There are also fields that represent interpolated temperature values at depths of 200 m, 1000 m, 2000 m, 3000 m, and 4000 m. in degrees Fahrenheit. The temperature values at specific depths as mentioned above were derived as follows. In cases where the well reached a given depth (200 m and 1, 2, 3, or 4 km), the temperature is the measured temperature. For the shallower wells (and at deeper depths in the wells reaching onemore » or more of the target depths), temperatures were extrapolated from the temperature-depth profiles that appeared to have stable (re-equilibrated after drilling) and linear profiles within the conductive regime (i.e. below the water table or other convective influences such as shallow hydrothermal outflow from the Roosevelt Hydrothermal System). Measured temperatures/gradients from deeper wells (when available and reasonably close to a given well) were used to help constrain the extrapolation to greater depths. Most of the field names in the attribute table are intuitive, however HF = heat flow, intercept = the temperature at the surface (x-axis of the temperature-depth plots) based on the linear segment of the plot that was used to extrapolate the temperature profiles to greater depths, and depth_m is the total well depth. This information is also present in the shapefile metadata.« less

  20. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, W. C.; Wang, R.; Xu, Z. J.

    2014-05-28

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scalemore » array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.« less

  1. Thermal drilling in planetary ices: an analytic solution with application to planetary protection problems of radioisotope power sources.

    PubMed

    Lorenz, Ralph D

    2012-08-01

    Thermal drilling has been applied to studies of glaciers on Earth and proposed for study of the martian ice caps and the crust of Europa. Additionally, inadvertent thermal drilling by radioisotope sources released from the breakup of a space vehicle is of astrobiological concern in that this process may form a downward-propagating "warm little pond" that could convey terrestrial biota to a habitable environment. A simple analytic solution to the asymptotic slow-speed case of thermal drilling is noted and used to show that the high thermal conductivity of the low-temperature ice on Europa and Titan makes thermal drilling qualitatively more difficult than at Mars. It is shown that an isolated General Purpose Heat Source (GPHS) "brick" can drill effectively on Earth or Mars, whereas on Titan or Europa with ice at 100 K, the source would stall and become stuck in the ice with a surface temperature of <200 K.

  2. Thermal Changes During Guided Flapless Implant Site Preparation: A Comparative Study.

    PubMed

    Sannino, Gianpaolo; Gherlone, Enrico F

    To compare intrabony thermal changes induced by two different protocols for guided implant surgery during the whole drilling procedure. Two protocols for guided implant placement were evaluated in vitro using artificial bone cylinders. The control protocol provided traditional metal sleeves and a standard drilling sequence composed of four cylindrical triflute drills (cutting surface length = 16 mm). The test protocol provided a three-slot polyurethane sleeve and two cylindrical drills (second drill cutting surface length = 4 mm). Forty automated intermittent and graduated osteotomies (depth = 14 mm) were performed under external irrigation. Temperatures were measured in real time by three sensors at different depths (2, 8, and 13 mm). The temperature changes generated by the final drill of each protocol during the shearing and withdrawing processes were recorded as experimental results and subjected to the Student t test. Maximum temperature increases were recorded during the process of withdrawing in both protocols. In the control group, the mean thermal changes were 10.18°C, 8.61°C, and 5.78°C at depths of 2, 8, and 13 mm, respectively. In the test group, the mean thermal changes were 1.44°C, 4.46°C, and 3.58°C at depths of 2, 8, and 13 mm, respectively. The control group revealed statistically significantly (P < .0001) higher thermal changes than the test group, both in the superficial and deeper bone areas. An appropriate irrigation system could be crucial for thermal lowering during a guided implant osteotomy mainly in the coronal and middle third of the implant site. Copious irrigation should be provided during the withdrawing process since greater thermal increases could be expected. Lower temperature increases could be achieved, reducing drill-to-bone contact, ie, cutting surface length, due to short frictional force exposure.

  3. Influence of the Drilling Mud Formulation Process on the Bacterial Communities in Thermogenic Natural Gas Wells of the Barnett Shale▿†

    PubMed Central

    Struchtemeyer, Christopher G.; Davis, James P.; Elshahed, Mostafa S.

    2011-01-01

    The Barnett Shale in north central Texas contains natural gas generated by high temperatures (120 to 150°C) during the Mississippian Period (300 to 350 million years ago). In spite of the thermogenic origin of this gas, biogenic sulfide production and microbiologically induced corrosion have been observed at several natural gas wells in this formation. It was hypothesized that microorganisms in drilling muds were responsible for these deleterious effects. Here we collected drilling water and drilling mud samples from seven wells in the Barnett Shale during the drilling process. Using quantitative real-time PCR and microbial enumerations, we show that the addition of mud components to drilling water increased total bacterial numbers, as well as the numbers of culturable aerobic heterotrophs, acid producers, and sulfate reducers. The addition of sterile drilling muds to microcosms that contained drilling water stimulated sulfide production. Pyrosequencing-based phylogenetic surveys of the microbial communities in drilling waters and drilling muds showed a marked transition from typical freshwater communities to less diverse communities dominated by Firmicutes and Gammaproteobacteria. The community shifts observed reflected changes in temperature, pH, oxygen availability, and concentrations of sulfate, sulfonate, and carbon additives associated with the mud formulation process. Finally, several of the phylotypes observed in drilling muds belonged to lineages that were thought to be indigenous to marine and terrestrial fossil fuel formations. Our results suggest a possible alternative exogenous origin of such phylotypes via enrichment and introduction to oil and natural gas reservoirs during the drilling process. PMID:21602366

  4. Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale.

    PubMed

    Struchtemeyer, Christopher G; Davis, James P; Elshahed, Mostafa S

    2011-07-01

    The Barnett Shale in north central Texas contains natural gas generated by high temperatures (120 to 150°C) during the Mississippian Period (300 to 350 million years ago). In spite of the thermogenic origin of this gas, biogenic sulfide production and microbiologically induced corrosion have been observed at several natural gas wells in this formation. It was hypothesized that microorganisms in drilling muds were responsible for these deleterious effects. Here we collected drilling water and drilling mud samples from seven wells in the Barnett Shale during the drilling process. Using quantitative real-time PCR and microbial enumerations, we show that the addition of mud components to drilling water increased total bacterial numbers, as well as the numbers of culturable aerobic heterotrophs, acid producers, and sulfate reducers. The addition of sterile drilling muds to microcosms that contained drilling water stimulated sulfide production. Pyrosequencing-based phylogenetic surveys of the microbial communities in drilling waters and drilling muds showed a marked transition from typical freshwater communities to less diverse communities dominated by Firmicutes and Gammaproteobacteria. The community shifts observed reflected changes in temperature, pH, oxygen availability, and concentrations of sulfate, sulfonate, and carbon additives associated with the mud formulation process. Finally, several of the phylotypes observed in drilling muds belonged to lineages that were thought to be indigenous to marine and terrestrial fossil fuel formations. Our results suggest a possible alternative exogenous origin of such phylotypes via enrichment and introduction to oil and natural gas reservoirs during the drilling process.

  5. Temperature Change When Drilling Near the Distal Femoral Physis in a Skeletally Immature Ovine Model.

    PubMed

    Tenfelde, Allison M; Esquivel, Amanda O; Cracchiolo, Allison M; Lemos, Stephen E

    2016-01-01

    The possibility of physeal injury during anterior cruciate ligament reconstruction in the pediatric population is a concern. The purpose of this study was to determine whether drilling at or near the physis could cause a temperature increase that could trigger chondrolysis. Skeletally immature cadaveric lamb distal femurs were used for this study and randomly placed in 1 of 6 groups (n=10 in each group). We examined the 8 and 10 mm Flipcutter at a distance of 0.5 mm from the physis and an 8 and 10 mm acorn-tipped reamer at a distance of 0.5 and 3.0 mm from the physis. During drilling, temperature change at the distal femoral physis was continuously measured until the temperature decreased to the original value. An interreamer comparison yielded a significant difference when drilling 0.5 mm from the physis (P=0.001). Pair-wise Mann-Whitney post hoc tests were performed to further evaluate the differences among the groups. The 8 mm FlipCutter had a significantly higher maximum temperature (39.8±1.4°C) compared with the 10 mm FlipCutter (38.0±0.6°C, P=0.001), 8 mm acorn-tipped reamer (38.1±0.9°C, P=0.007), and 10 mm acorn-tipped reamer (37.5±0.3°C, P<0.001). The risk of thermal-induced injury to the physis is low with an all epiphyseal drilling technique, when a traditional acorn-tipped reamer over a guidepin is utilized, even if the drilling occurs very close to the physis. In addition, the risk of drilling with a FlipCutter is low, but may be greater than a traditional reamer. Thermal-induced necrosis is a realistic concern, due to the characteristics of the distal femoral physis, and the propensity for this physis to respond poorly to injury. Our study supports that drilling near the physis can be done safely, although smaller reamers and nontraditional designs may generate higher heat. Level I-basic science.

  6. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    NASA Astrophysics Data System (ADS)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical algorithm, and the validation and application results are outlined in this work.

  7. AN EXPERIMENTAL STUDY OF CUTTING FLUID EFFECTS IN DRILLING. (R825370C057)

    EPA Science Inventory

    Experiments were designed and conducted on aluminum alloys and gray cast iron to determine the function of cutting fluid in drilling. The variables examined included speed, feed, hole depth, tool and workpiece material, cutting fluid condition, workpiece temperatures and drill...

  8. Frictional properties of DFDP-1 Alpine Fault rocks under hydrothermal conditions and high shear strain

    NASA Astrophysics Data System (ADS)

    Niemeijer, André R.; Boulton, Carolyn; Toy, Virginia; Townend, John; Sutherland, Rupert

    2015-04-01

    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Paleoseismic evidence of large-displacement surface-rupturing events, as well as an absence of measurable contemporary surface deformation, indicates that the fault slips mostly in quasi-periodic large-magnitude earthquakes (< Mw 8.0). To understand the mechanics of earthquakes, it is important to study the evolution of frictional properties of the fault rocks under conditions representative of the potential hypocentral depth. Here, we present data obtained on drill core samples of rocks that surround the principal slip zone(s) (PSZ) of the Alpine Fault and the PSZ itself. The drill core samples were obtained during phase 1 of the Deep Fault Drilling Project (DFDP-1) in 2011 at relatively shallow depths (down to ~150 m). Simulated fault gouges were sheared under elevated pressure and temperature conditions in a hydrothermal ring shear apparatus. We performed experiments at temperatures of 25, 150, 300, 450 ° C, and 600 oC. Using the shallow geothermal gradient of 63 ° C/km determined in DFDP-1, our highest temperature corresponds to a depth of ~7 km (Sutherland et al. 2012); it would correspond to 10 km depth using a more moderate geotherm of 45 oC/km (Toy et al. 2010). All samples show a transition from velocity-strengthening behavior, i.e. a positive value of (a-b), to velocity-weakening behavior, i.e. a negative value of (a-b) at a temperature of 150 ° C. The transition depends on the absolute value of sliding velocity, with velocity-weakening dominating at lower sliding velocities. At 600 oC, velocity-strengthening dominates at low sliding velocity, whereas the high-velocity steps are all velocity-weakening. Moreover, shear stress depends linearly on effective normal stress at 600 oC, indicating that shearing is essentially frictional and that no transition to ductile (normal stress independent) flow has occurred. Thus, depending on the background (nucleation) strain rate, our data indicate that the Alpine Fault should be able to generate earthquakes at all temperatures above room temperature. However, at the highest temperature investigated (600 oC), the transition to velocity-weakening is postponed to slip rates above 10 mm/s (strain rate ~10-2 s-1). This observation, combined with the absence of strength recovery after long holds, suggests that seismic slip may propagate into regions of the fault unlikely to nucleate earthquakes. We propose that in our porous gouges, thermally activated processes operate simultaneously with granular flow, postponing ductile flow to higher temperatures or lower strain rates. Sutherland, R., V.G. Toy, J. Townend, S.C. Cox, J.D. Eccles, D.R. Faulkner, D.J. Prior, R.J.Norris, E. Mariani, C. Boulton, B.M. Carpenter, C.D. Menzies, T.A. Little, M. Hasting, G.De Pascale, R.M. Langridge, H.R. Scott, Z. Reid-Lindroos, B. Fleming (2012), Drilling reveals fluid control on architecture and rupture of the Alpine Fault, New Zealand, Geology,40, 1143-1146, doi:10.1130/G33614.1. Toy, V.G., Craw, D., Cooper, A.F., and R.J. Norris (2010), Thermal regime in the central Alpine Fault zone, New Zealand: Constraints from microstructures, biotite chemistry and fluid inclusion data, Tectonophysics, doi:10.1016/j.tecto.2009.12.013

  9. While drilling system and method

    DOEpatents

    Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward

    2007-02-20

    A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.

  10. Formation of ore minerals in metamorphic rocks of the German continental deep drilling site (KTB)

    NASA Astrophysics Data System (ADS)

    Kontny, A.; Friedrich, G.; Behr, H. J.; de Wall, H.; Horn, E. E.; Möller, P.; Zulauf, G.

    1997-08-01

    The German Continental Deep Drilling Program (KTB) drilled a 9.1 km deep profile through amphibolite facies metamorphic rocks and reached in situ temperatures of 265°C. Each lithologic unit is characterized by typical ore mineral assemblages related to the regional metamorphic conditions. Paragneisses contain pyrrhotite + rutile + ilmenite ± graphite, metabasic units bear ilmenite + rutile + pyrrhotite ± pyrite, and additionally, the so-called variegated units yield pyrrhotite + titanite assemblages. In the latter unit, magnetite + ilmenite + rutile + titanite assemblages related to the lower amphibolite facies breakdown of ilmenite-hematite solid solution also occur locally. Retrograde hydrothermal mineralization which commenced during Upper Carboniferous times is characterized by the following geochemical conditions: (1) low saline Na-K-Mg-Cl fluids with sulfur and oxygen fugacities at the pyrite-pyrrhotite buffer and temperatures of 400-500°C, (2) fluids with CO2, CH4±N2, andpH, Eh, sulfur, and oxygen fugacity in the stability field of graphite + pyrite at temperatures of 280-350° and (3) moderate to high saline Ca-Na-Cl fluids with CH4+ N2; sulfur and oxygen fugacity are in the stability field of pyrrhotite at temperatures <300°C. The latter environment is confirmed by in situ conditions found at the bottom of the deep drilling. Monoclinic, ferrimagnetic pyrrhotite is the main carrier of magnetization which disappears below about 8.6 km, corresponding to in situ temperatures of about 250°C. Below this depth, hexagonal antiferromagnetic pyrrhotite with a Curie temperature of 260°C is the stable phase. Temperature-dependent transformation of pyrrhotite and the reaching of its Curie isotherm within the Earth crust are one of the striking results of the KTB deep drilling project.

  11. The scale of hydrothermal circulation of the Iheya-North field inferred from intensive heat flow measurements and ocean drilling

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Kinoshita, M.; Yamamoto, H.; Nakajima, R.; Kumagai, H.; Takai, K.

    2014-12-01

    Iheya-North hydrothermal field situated in the middle Okinawa trough backarc basin is one of the largest ongoing Kuroko deposits in the world. Active chimneys as well as diffuse ventings (maximum fluid temperature 311 °C) have been located and studied in detail through various geological and geophysical surveys. To clarify the spatial scale of the hydrothermal circulation system, intensive heat flow measurements were carried out and ~100 heat flow data in and around the field from 2002 to 2014. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 was carried out, and subbottom temperature data were obtained around the hydrothermal sites. During the JAMSTEC R/V Kaiyo cruise, KY14-01 in 2014, Iheya-North "Natsu" and "Aki" hydrothermal fields were newly found. The Iheya-Noth "Natsu" and "Aki" sites are located 1.2 km and 2.6 km south from the Iheya-North original site, respectively, and the maximum venting fluid temperature was 317 °C. We obtained one heat flow data at the "Aki" site. The value was 17 W/m2. Currently, the relationship between these hydrothermal sites are not well known. Three distinct zones are identified by heat flow values within 3 km from the active hydrothermal field. They are high-heat flow zone (>1 W/m2; HHZ), moderate-heat-flow zone (1-0.1 W/m2; MHZ); and low-heat-flow zone (<0.1 W/m2; LHZ). With increasing distance east of the HHZ, heat flow gradually decreases towards MHZ and LHZ. In the LHZ, temperature at 37m below the seafloor (mbsf) was 6 °C, that is consistent with the surface low heat flow suggesting the recharge of seawater. However, between 70 and 90 mbsf, the coarser sediments were cored, and temperature increased from 25 °C to 40°C. The temperature was 905°C at 151 mbsf, which was measured with thermoseal strips. The low thermal gradient in the upper 40 m suggests downward fluid flow. We infer that a hydrothermal circulation in the scale of ~1.5 km horizontal vs. ~a few hundred meters vertical.

  12. CHIP MORPHOLOGY AND HOLE SURFACE TEXTURE IN THE DRILLING OF CAST ALUMINUM ALLOYS. (R825370C057)

    EPA Science Inventory

    The effects of cutting fluid and other process variables on chip morphology when drilling cast aluminium alloys are investigated. The effects of workpiece material, speed, feed, hole depth, cutting-fluid presence and percentage oil concentration, workpiece temperature, drill t...

  13. Investigations related to scientific deep drilling to study reservoir-triggered earthquakes at Koyna, India

    NASA Astrophysics Data System (ADS)

    Gupta, Harsh; Purnachandra Rao, N.; Roy, Sukanta; Arora, Kusumita; Tiwari, V. M.; Patro, Prasanta K.; Satyanarayana, H. V. S.; Shashidhar, D.; Mallika, K.; Akkiraju, Vyasulu V.; Goswami, Deepjyoti; Vyas, Digant; Ravi, G.; Srinivas, K. N. S. S. S.; Srihari, M.; Mishra, S.; Dubey, C. P.; Raju, D. Ch. V.; Borah, Ujjal; Chinna Reddy, K.; Babu, Narendra; Rohilla, Sunil; Dhar, Upasana; Sen, Mrinal; Bhaskar Rao, Y. J.; Bansal, B. K.; Nayak, Shailesh

    2015-09-01

    Artificial water reservoir-triggered earthquakes have continued at Koyna in the Deccan Traps province, India, since the impoundment of the Shivaji Sagar reservoir in 1962. Existing models, to comprehend the genesis of triggered earthquakes, suffer from lack of observations in the near field. To investigate further, scientific deep drilling and setting up a fault zone observatory at depth of 5-7 km is planned in the Koyna area. Prior to undertaking deep drilling, an exploratory phase of investigations has been launched to constrain subsurface geology, structure and heat flow regime in the area that provide critical inputs for the design of the deep borehole observatory. Two core boreholes drilled to depths of 1,522 and 1,196 m have penetrated the Deccan Traps and sampled the granitic basement in the region for the first time. Studies on cores provide new and direct information regarding the thickness of the Deccan Traps, the absence of infra-Trappean sediments and the nature of the underlying basement rocks. Temperatures estimated at a depth of 6 km in the area, made on the basis of heat flow and thermal properties data sets, do not exceed 150 °C. Low-elevation airborne gravity gradient and magnetic data sets covering 5,012 line km, together with high-quality magnetotelluric data at 100 stations, provide both regional information about the thickness of the Deccan Traps and the occurrence of localized density heterogeneities and anomalous conductive zones in the vicinity of the hypocentral zone. Acquisition of airborne LiDAR data to obtain a high-resolution topographic model of the region has been completed over an area of 1,064 km2 centred on the Koyna seismic zone. Seismometers have been deployed in the granitic basement inside two boreholes and are planned in another set of six boreholes to obtain accurate hypocentral locations and constrain the disposition of fault zones.

  14. Hawaii Scientific Drilling Project: Objectives, Successes, Surprises and Frustrations

    NASA Astrophysics Data System (ADS)

    Depaolo, D. J.; Stolper, E.; Thomas, D. M.

    2008-12-01

    The Hawaii Scientific Drilling Project (HSDP) is a long-running project undertaken with the objective of studying a mantle plume by drilling an extended sequence of lavas from a single Hawaiian volcano. The project originated with a proposal to NSF in late 1986 with the idea of drilling to the Moho under Hilo; the target depth was estimated at 12km, commensurate with the depth reached by the drilling program then being pursued by the USSR and that proposed in the U.S. for the southern Appalachians, and in line with the aspirations of the nascent DOSECC program. Subsequently, due to limitations in funding and reorganization of the drilling program into what later became the NSF Continental Dynamics Program, HSDP was re-scoped with the objective of drilling deeply enough (ca. 4.5km) to recover most of the eruptive history of a single volcano. The project first went to a pilot stage, which resulted in coring to a depth of 1.1km in late 1993. The pilot stage was relatively inexpensive (1M including science) and productive. Funding was then obtained from NSF and ICDP in 1995 (ca. 12M) with the objective of drilling to 4.5km. Drilling was originally planned for a five-year period, in two campaigns. The first campaign, in 1999, resulted in efficient coring to a depth of 3.1km over a period of 6 months; it used about 40 percent of the funds and was also highly productive. Deepening the hole below 3.1km turned out to be both difficult and expensive, although for interesting reasons. To facilitate deeper drilling the hole needed to be reamed to a larger diameter; but when this was done the well unexpectedly started to flow. We now know that there are several deep pressurized aquifers, with varying salt content, but these hydrological phenomena were totally unanticipated. A key finding, also unanticipated, is that cold seawater circulates through the volcanic pile in volumes sufficient to refrigerate the entire section below 700m depth to temperatures about 25 degrees below a normal geothermal gradient. In early 1999 when the first drilling campaign was organized, the price of oil was 10 USD (rigs and drilling crews were available and reasonably priced); in early 2003 when hole opening was being arranged, the price of oil was 30 USD, and for the coring campaigns in 2005 and 2007 it was 50 to 70 USD. For these reasons, and because trip times were longer and deeply buried pillow basalts more difficult to drill, the remainder of the project funds (and then some) were needed to deepen the hole from 3.1 to 3.5km. Nevertheless, the project obtained a nearly continuous, and virtually unweathered, core consisting of lava flows, hyaloclastite, minor intrusives and sediment from a 3260m section of the Mauna Kea volcano, covering an age range from 200 to over 600 ka. It also recovered a 250m and a 280m section of the Mauna Loa volcano. A wealth of geological, volcanological, petrological, geochemical, geomagnetic, geodynamic, hydrological, and geobiological data have come from the core and the well, and more are coming in. The unprecedented geochemical-petrological data sets are a major success, as is the fact that geochemists can work together, but the hoped-for detailed geochronology for the core has proven difficult to obtain.

  15. Optimization of multiple quality characteristics in bone drilling using grey relational analysis

    PubMed Central

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2014-01-01

    Purpose Drilling of bone is common during bone fracture treatment to fix the fractured parts with screws wires or plates. Minimally invasive drilling of the bone has a great demand as it helps in better fixation and quick healing of the broken bones. The purpose of the present investigation is to determine the optimum cutting condition for the minimization of the temperature, force and surface roughness simultaneously during bone drilling. Method In this study, drilling experiments have been performed on bovine bone with different conditions of feed rate and drill rotational speed using full factorial design. Optimal level of the drilling parameters is determined by the grey relational grade (GRG) obtained from the GRA as the performance index of multiple quality characteristics. The effect of each drilling parameter on GRG is determined using analysis of variance (ANOVA) and the results obtained are validated by confirmation experiment. Results Grey relational analysis showed that the investigation with feed rate of 40 mm/min and spindle speed of 500 rpm has the highest grey relational grade and is recommended setting for minimum temperature, force and surface roughness simultaneously during bone drilling. Feed rate has the highest contribution (59.49%) on the multiple performance characteristics followed by the spindle speed (37.69%) as obtained from ANOVA analysis. Conclusions The use of grey relational analysis will simplify the complex process of optimization of the multi response characteristics in bone drilling by converting them into a single grey relational grade. The use of the above suggested methodology can greatly minimize the bone tissue injury during drilling. PMID:25829751

  16. Optimization of multiple quality characteristics in bone drilling using grey relational analysis.

    PubMed

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2015-03-01

    Drilling of bone is common during bone fracture treatment to fix the fractured parts with screws wires or plates. Minimally invasive drilling of the bone has a great demand as it helps in better fixation and quick healing of the broken bones. The purpose of the present investigation is to determine the optimum cutting condition for the minimization of the temperature, force and surface roughness simultaneously during bone drilling. In this study, drilling experiments have been performed on bovine bone with different conditions of feed rate and drill rotational speed using full factorial design. Optimal level of the drilling parameters is determined by the grey relational grade (GRG) obtained from the GRA as the performance index of multiple quality characteristics. The effect of each drilling parameter on GRG is determined using analysis of variance (ANOVA) and the results obtained are validated by confirmation experiment. Grey relational analysis showed that the investigation with feed rate of 40 mm/min and spindle speed of 500 rpm has the highest grey relational grade and is recommended setting for minimum temperature, force and surface roughness simultaneously during bone drilling. Feed rate has the highest contribution (59.49%) on the multiple performance characteristics followed by the spindle speed (37.69%) as obtained from ANOVA analysis. The use of grey relational analysis will simplify the complex process of optimization of the multi response characteristics in bone drilling by converting them into a single grey relational grade. The use of the above suggested methodology can greatly minimize the bone tissue injury during drilling.

  17. Drilling, construction, geophysical log data, and lithologic log for boreholes USGS 142 and USGS 142A, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Hodges, Mary K.V.; Schusler, Kyle; Mudge, Christopher

    2017-07-27

    Starting in 2014, the U.S. Geological Survey in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 142 and USGS 142A for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 142 initially was cored to collect rock and sediment core, then re-drilled to complete construction as a screened water-level monitoring well. Borehole USGS 142A was drilled and constructed as a monitoring well after construction problems with borehole USGS 142 prevented access to upper 100 feet (ft) of the aquifer. Boreholes USGS 142 and USGS 142A are separated by about 30 ft and have similar geology and hydrologic characteristics. Groundwater was first measured near 530 feet below land surface (ft BLS) at both borehole locations. Water levels measured through piezometers, separated by almost 1,200 ft, in borehole USGS 142 indicate upward hydraulic gradients at this location. Following construction and data collection, screened water-level access lines were placed in boreholes USGS 142 and USGS 142A to allow for recurring water level measurements.Borehole USGS 142 was cored continuously, starting at the first basalt contact (about 4.9 ft BLS) to a depth of 1,880 ft BLS. Excluding surface sediment, recovery of basalt, rhyolite, and sediment core at borehole USGS 142 was approximately 89 percent or 1,666 ft of total core recovered. Based on visual inspection of core and geophysical data, material examined from 4.9 to 1,880 ft BLS in borehole USGS 142 consists of approximately 45 basalt flows, 16 significant sediment and (or) sedimentary rock layers, and rhyolite welded tuff. Rhyolite was encountered at approximately 1,396 ft BLS. Sediment layers comprise a large percentage of the borehole between 739 and 1,396 ft BLS with grain sizes ranging from clay and silt to cobble size. Sedimentary rock layers had calcite cement. Basalt flows ranged in thickness from about 2 to 100 ft and varied from highly fractured to dense, and ranged from massive to diktytaxitic to scoriaceous, in texture.Geophysical logs were collected on completion of drilling at boreholes USGS 142 and USGS 142A. Geophysical logs were examined with available core material to describe basalt, sediment and sedimentary rock layers, and rhyolite. Natural gamma logs were used to confirm sediment layer thickness and location; neutron logs were used to examine basalt flow units and changes in hydrogen content; gamma-gamma density logs were used to describe general changes in rock properties; and temperature logs were used to understand hydraulic gradients for deeper sections of borehole USGS 142. Gyroscopic deviation was measured to record deviation from true vertical at all depths in boreholes USGS 142 and USGS 142A.

  18. Fluid inclusions and preliminary studies of hydrothermal alteration in core hole PLTG-1, Platanares geothermal area, Honduras

    USGS Publications Warehouse

    Bargar, K.E.

    1991-01-01

    The Platanares geothermal area in western Honduras consists of more than 100 hot springs that issue from numerous hot-spring groups along the banks or within the streambed of the Quebrada de Agua Caliente (brook of hot water). Evaluation of this geothermal area included drilling a 650-m deep PLTG-1 drill hole which penetrated a surface mantling of stream terrace deposits, about 550 m of Tertiary andesitic lava flows, and Cretaceous to lower Tertiary sedimentary rocks in the lower 90 m of the drill core. Fractures and cavities in the drill core are partly to completely filled by hydrothermal minerals that include quartz, kaolinite, mixed-layer illite-smectite, barite, fluorite, chlorite, calcite, laumontite, biotite, hematite, marcasite, pyrite, arsenopyrite, stibnite, and sphalerite; the most common open-space fillings are calcite and quartz. Biotite from 138.9-m depth, dated at 37.41 Ma by replicate 40Ar/39 Ar analyses using a continuous laser system, is the earliest hydrothermal mineral deposited in the PLTG-1 drill core. This mid-Tertiary age indicates that at least some of the hydrothermal alteration encountered in the PLTG-1 drill core occured in the distant past and is unrelated to the present geothermal system. Furthermore, homogenization temperatures (Th) and melting-point temperatures (Tm) for fluid inclusions in two of the later-formed hydrothermal minerals, calcite and barite, suggest that the temperatures and concentration of dissolved solids of the fluids present at the time these fluid inclusions formed were very different from the present temperatures and fluid chemistry measured in the drill hole. Liquid-rich secondary fluid inclusions in barite and caicite from drill hole PLTG-1 have Th values that range from about 20??C less than the present measured temperature curve at 590.1-m depth to as much as 90??C higher than the temperature curve at 46.75-m depth. Many of the barite Th measurements (ranging between 114?? and 265??C) plot above the reference surface boiling-point curve for pure water assuming hydrostatic conditions; however, the absence of evidence for boiling in the fluid inclusions indicates that at the time the minerals formed, the ground surface must have been at least 80 m higher than at present and underwent stream erosion to the current elevation. Near-surface mixed-layer illite-smectite is closely associated with barite and appears to have formed at about the same temperature range (about 120?? to 200??C) as the fluid-inclusion Th values for barite. Fluid-inclusion Th values for calcite range between about 136?? and 213??C. Several of the calcite Th values are significantly lower than the present measured temperature curve. The melting-point temperatures (Tm) of fluid-inclusion ice yield calculated salinities, ranging from near zero to as much as 5.4 wt. % NaCl equivalent, which suggest that much of the barite and calcite precipitated from fluids of significantly greater salinity than the present low salinity Platanares hot-spring water or water produced from the drill hole. ?? 1991.

  19. Tectonic significance of precambrian apatite fission-track ages from the midcontinent United States

    USGS Publications Warehouse

    Crowley, K.D.; Naeser, C.W.; Babel, C.A.

    1986-01-01

    Apparent apatite fission-track ages from drill core penetrating basement on the flank of the Transcontinental Arch in northwestern Iowa range from 934 ?? 86 to 641 ?? 90 Ma. These ages, the oldest reported in North America, record at least two thermal events. The 934 Ma age, which is synchronous with KAr ages in the Grenville Province and many KAr whole-rock and RbSr isochron ages from the Lake Superior region, may document basement cooling caused by regional uplift and erosion of the crust. The remaining fission-track ages are products of a more recent thermal event, relative to the age of the samples, which raised temperatures into the zone of partial annealing. Heating may have occurred between the Middle Ordovician and Middle Cretaceous by burial of the basement with additional sediment. It is estimated that burial raised temperatures in the part of the basement sampled by the core to between 50 and 75??C. These temperature estimates imply paleogeothermal gradients of about 20??C/km, approximately two and one-half times present-day values, and burial of the basement by an additional 2-3 km of sediment. ?? 1986.

  20. Sensors Increase Productivity in Harsh Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    California's San Juan Capistrano-based Endevco Corporation licensed three patents covering high-temperature, harsh-environment silicon carbide (Si-C) pressure sensors from Glenn Research Center. The company is exploring their use in government markets, as well as in commercial markets, including commercial jet testing, deep well drilling applications where pressure and temperature increase with drilling depth, and in automobile combustion chambers.

  1. Microhole Test Data

    DOE Data Explorer

    Su, Jiann

    2016-05-23

    Drilling results from the microhole project at the Sandia High Operating Temperature test facility. The project is seeking to help reduce the cost of exploration and monitoring of geothermal wells and formations by drilling smaller holes. The tests were part of a control algorithm development to optimize the weight-on-bit (WOB) used during drilling with a percussive hammer.

  2. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.

    2018-01-01

    A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.

  3. Range-Wide Latitudinal and Elevational Temperature Gradients for the World's Terrestrial Birds: Implications under Global Climate Change

    PubMed Central

    La Sorte, Frank A.; Butchart, Stuart H. M.; Jetz, Walter; Böhning-Gaese, Katrin

    2014-01-01

    Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity of species to utilize these gradients under climate change. PMID:24852009

  4. Engineering parameters used in geopressured geothermal Fairway evaluation and test-well site location, Frio formation, Texas Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, A.R.; Meriwether, J.

    1977-01-01

    Adequate deliverability of fluids from reservoirs with temperatures higher than 300/sup 0/F is a key factor in evaluating geopressured geothermal resources. In the Austin Bayou Prospect, Brazoria County, Texas, permeability is difficult to evaluate before wells are drilled and tested. However, this report discusses how reservoir pressure decline and high temperature reduce permeability. The history of gas-condensate production from geopressured reservoirs in the Chocolate Bayou field, located near the Austin Bayou Prospect, shows that deliverability of hydrocarbons is high in the early life of the reservoirs but drops sharply as pressure declines. Average geothermal gradient is 1.8/sup 0/F per hundredmore » feet and reservoir pressure gradients lie between 0.465 and 0.98 psia per foot for depths below 10,000 feet. Salinities vary from 40,000 to 80,000 ppM and methane content may range from 25 to 45 cubic feet per barrel for formation waters commonly found in the Chocolate Bayou field. The effective gas permeabilities determined from production flow tests are estimated to range from 1 to 6 millidarcys and absolute permeabilities lie between 2 and 10 millidarcys. More than 10 billion barrels of water inferred to occur in place in the prospective sandstone reservoirs of the Austin Bayou prospect contain potentially 1,733 MW-years of electrical energy and 400 billion cubic feet of methane in solution.« less

  5. Wellbore heat flow from the Toa Baja scientific drillhole, Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.N.; Larue, D.K.

    1991-03-01

    Heat flow values, determined from temperature logs and estimates of thermal conductivity from geophysical logs range from 23 to 37 mW/m{sup 2} from 800 to 2,500 m depth in the Toa Baja scientific drillhole on the north, central coast of Puerto Rico. Near the target seismic reflector at the base of the well, an active hydrothermal system was encountered in which heat flow of up to 90 mW/m{sup 2} was found in a mineralized zone beneath a volcanic sill or flow. The heat flow then dropped to 50 mW/m{sub 2} beneath this subhorizontal flow zone. The mining of heat frommore » downdip is proposed to account for this thermal anomaly, as well as the scatter in the heat flow determined from the few other wells drilled into Puerto Rico. The time-temperature history of the well indicates that Eocene volcaniclastics of the lower 2 km were deposited into a geothermal gradient of 60C/km north of an active arc (heat flow estimated to have been 120-180 mW/m{sup 2}). Uplift, erosion and cooling occurred between 40 and 30 Ma. Reburial and deposition of Oligocene-Miocene Limestones produced the present-day geothermal gradient of 15C/km (heat flow of 30-50 mW/m{sup 2}). Based upon comparisons with slab cooling models, the crustal thickness beneath Puerto Rico is estimated to be closer to continental then oceanic.« less

  6. High temperature annealing of fission tracks in fluorapatite, Santa Fe Springs oil field, Los Angeles Basin, California

    USGS Publications Warehouse

    Naeser, Nancy D.; Crowley, Kevin D.; McCulloh, Thane H.; Reaves, Chris M.; ,

    1990-01-01

    Annealing of fission tracks is a kinetic process dependent primarily on temperature and to a laser extent on time. Several kinetic models of apatite annealing have been proposed. The predictive capabilities of these models for long-term geologic annealing have been limited to qualitative or semiquantitative at best, because of uncertainties associated with (1) the extrapolation of laboratory observations to geologic conditions, (2) the thermal histories of field samples, and (3) to some extent, the effect of apatite composition on reported annealing temperatures. Thermal history in the Santa Fe Springs oil field, Los Angeles Basin, California, is constrained by an exceptionally well known burial history and present-day temperature gradient. Sediment burial histories are continuous and tightly constrained from about 9 Ma to present, with an important tie at 3.4 Ma. No surface erosion and virtually no uplift were recorded during or since deposition of these sediments, so the burial history is simple and uniquely defined. Temperature gradient (???40??C km-1) is well established from oil-field operations. Fission-track data from the Santa Fe Springs area should thus provide one critical field test of kinetic annealing models for apatite. Fission-track analysis has been performed on apatites from sandstones of Pliocene to Miocene age from a deep drill hole at Santa Fe Springs. Apatite composition, determined by electron microprobe, is fluorapatite [average composition (F1.78Cl0.01OH0.21)] with very low chlorine content [less than Durango apatite; sample means range from 0.0 to 0.04 Cl atoms, calculated on the basis of 26(O, F, Cl, OH)], suggesting that the apatite is not unusually resistant to annealing. Fission tracks are preserved in these apatites at exceptionally high present-day temperatures. Track loss is not complete until temperatures reach the extreme of 167-178??C (at 3795-4090 m depth). The temperature-time annealing relationships indicated by the new data from Santa Fe Springs conflict with predictions based on previously published, commonly used, kinetic annealing models for apatite. Work is proceeding on samples from another area of the basin that may resolve this discrepancy.

  7. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlick, Skip; Walsh, Patrick; Rhodes, Greg

    2015-06-30

    Ormat sited 2 full-size exploration wells based on 3D seismic interpretation of fractures, prior drilling results, and temperature anomaly. The wells indicated commercial temperatures (>300 F), but almost no permeability, despite one of the wells being drilled within 820 ft of an older exploration well with reported indications of permeability. Following completion of the second well in 2012, Ormat undertook a lengthy program to 1) evaluate the lack of observed permeability, 2) estimate the likelihood of finding permeability with additional drilling, and 3) estimate resource size based on an anticipated extent of permeability.

  8. Intracanal temperature changes during bone preparations close to and penetrating the inferior alveolar canal: Drills versus piezosurgery.

    PubMed

    Szalma, József; Vajta, László; Lempel, Edina; Tóth, Ákos; Jeges, Sára; Olasz, Lajos

    2017-10-01

    The aim of this in vitro study was to investigate temperature increases in the inferior alveolar canal (IAC), when different bone preparation methods approximate and penetrate the IAC. In pig mandible, buccal bone removals were performed until the neurovascular bundle became visible. Temperatures were registered with thermocouple probes and with infrared thermometer. Preparations were performed with diamond drills (DD), tungsten carbide drills (TCD), piezoelectric diamond sphere (PT_D) and saw (PT_S) tips, and a combined preparation method was also performed whereby the superficial three-fourths of the bone was removed with TCD and the deepest one-fourth of the bone with PT_D (TCD + PT_D_7 °C) or PT_S (TCD + PT_S_7 °C), using cooled irrigation (7 °C). Preparations using room temperature irrigation caused significantly less heat on the bone surface than in the IAC. Piezosurgery in the IAC produced significantly higher temperatures (>13 °C) than the drills (<4 °C). Heat productions of the piezoelectric tips were reduced significantly by applying the combined bone removal methods. The speed of PT_S and TCD + PT_S_7 °C were comparable to the speed of TCD, whereas TCD + PT_D_7 °C was found to be significantly slower. The speed of piezosurgery is comparable to that of the drills; however, it produces the highest, potentially nerve-harming temperatures. To eliminate the heat consequences during piezosurgery in the IAC, the use of cooled irrigation at 7 °C and predrilling is recommended. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. The Toa Baja Drilling Project and current studies in Puerto Rican geology: Introduction and summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larue, D.K.

    1991-03-01

    This volume concerns information learned by drilling the Toa Baja well on the north coast of Puerto Rico, and current studies of Puerto Rican geology and tectonics. The Toa Baja Drillsite is located in the North Coast basin of Puerto Rico about 10 km west of San Juan. The hole was spudded on August 23, 1989, and plugged and abandoned on November 7, 1989 at a total depth of 2,704m. Two lithologies were encountered during drilling: an upper series consisting of Oligocene-Miocene shallow-water limestone and sandstone facies, and a lower series consisting of Eocene deep-water volcaniclastic strata, including some lavamore » flows or shallow intrusions, pelagic marls, and altered igneous rocks or coarse-grained sandstones. Principal findings made during drilling include: (1) the important unconformity separating the upper and lower series at about 579 m; (2) 8 faults defined clearly by dipmeter log; (3) changes in rock type probably associated with reflection events in seismic reflection profiles crossing the drillsite; (4) confirmation of overall low geothermal gradients and heat flow, but presence of a thermal anomaly near 2683 m; (5) documentation of high paleogeothermal gradients using petrographic, isotopic, X-Ray diffraction and electron microprobe studies; (6) presence of fractures indicating a current extensional tectonic setting. Current studies in the Puerto Rico region include: (1) paleomagnetic evidence for late Miocene counterclockwise rotation; (2) geochemical evolution of Cretaceous and Eocene igneous rocks; (3) evidence of transtension in the northeast Caribbean plate boundary zone; (4) results of studies of ancient fault zones on Puerto Rico; and (5) stratigraphic studies of the Tertiary of Puerto Rico.« less

  10. Hotspot: the Snake River Geothermal Drilling Project--initial report

    USGS Publications Warehouse

    Shervais, J.W.; Nielson, D.; Lachmar, T.; Christiansen, E.H.; Morgan, L.; Shanks, Wayne C.; Delahunty, C.; Schmitt, D.R.; Liberty, L.M.; Blackwell, D.D.; Glen, J.M.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; Freeman, T.

    2012-01-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The primary goal of this project is to evaluate geothermal potential in three distinct settings: (1) Kimama site: inferred high sub-aquifer geothermal gradient associated with the intrusion of mafic magmas, (2) Kimberly site: a valley-margin setting where surface heat flow may be driven by the up-flow of hot fluids along buried caldera ringfault complexes, and (3) Mountain Home site: a more traditional fault-bounded basin with thick sedimentary cover. The Kimama hole, on the axial volcanic zone, penetrated 1912 m of basalt with minor intercalated sediment; no rhyolite basement was encountered. Temperatures are isothermal through the aquifer (to 960 m), then rise steeply on a super-conductive gradient to an estimated bottom hole temperature of ~98°C. The Kimberly hole is on the inferred margin of a buried rhyolite eruptive center, penetrated rhyolite with intercalated basalt and sediment to a TD of 1958 m. Temperatures are isothermal at 55-60°C below 400 m, suggesting an immense passive geothermal resource. The Mountain Home hole is located above the margin of a buried gravity high in the western SRP. It penetrates a thick section of basalt and lacustrine sediment overlying altered basalt flows, hyaloclastites, and volcanic sediments, with a TD of 1821 m. Artesian flow of geothermal water from 1745 m depth documents a power-grade resource that is now being explored in more detail. In-depth studies continue at all three sites, complemented by high-resolution gravity, magnetic, and seismic surveys, and by downhole geophysical logging.

  11. Southwest Alaska Regional Geothermal Energy Projec

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdmann, Gwen

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  12. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.

    2017-12-01

    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work has suggested that the Reykjanes geothermal system has been active since the last glaciation, 10ka. No shallow melt bodies have been detected on the Reykjanes Peninsula suggesting that hydrothermal circulation typical of black smoker systems can be sustained with out a magmatic heat source.

  13. Numerical simulation of temperature at drilling micro-hole on moving CO2 laser irradiated sticking plaster

    NASA Astrophysics Data System (ADS)

    Rao, Zhiming; He, Zhifang; Du, Jianqiang; Zhang, Xinyou; Ai, Guoping; Zhang, Chunqiang; Wu, Tao

    2012-03-01

    This paper applied numerical simulation of temperature by using finite element analysis software Ansys to study a model of drilling on sticking plaster. The continuous CO2 laser doing uniform linear motion and doing uniform circular motion irradiated sticking plaster to vaporize. The sticking plaster material was chosen as the thermal conductivity, the heat capacity and the density. For temperatures above 450 °C, sticking plaster would be vaporized. Based on the mathematical model of heat transfer, the process of drilling sticking plaster by laser beams could be simulated by Ansys. The simulation results showed the distribution of the temperature at the surface of the sticking plaster with the time of vaporizing at CO2 laser to do uniform linear motion and to do uniform circular motion. The temperature of sticking plaster CO2 laser to do uniform linear motion was higher than CO2 laser to do uniform circular motion in the same condition.

  14. Fluid-inclusion evidence for previous higher temperatures in the miravalles geothermal field, Costa Rica

    USGS Publications Warehouse

    Bargar, K.E.; Fournier, R.O.

    1988-01-01

    Heating and freezing data were obtained for liquid-rich secondary fluid inclusions in magmatic quartz, hydrothermal calcite and hydrothermal quartz crystals from 19 sampled depths in eight production drill holes (PGM-1, 2, 3, 5, 10, 11, 12 and 15) of the Miravalles geothermal field in northwestern Costa Rica. Homogenization temperatures for 386 fluid inclusions range from near the present measured temperatures to as much as 70??C higher than the maximum measured well temperature of about 240??C. Melting-point temperature measurements for 76 fluid inclusions suggest a calculated salinity range of about 0.2-1.9 wt% NaCl equivalent. Calculated salinities as high as 3.1-4.0 wt% NaCl equivalent for 20 fluid inclusions from the lower part of drill hole PGM-15 (the deepest drill hole) indicate that higher salinity water probably was present in the deeper part of the Miravalles geothermal field at the time these fluid inclusions were formed. ?? 1988.

  15. Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.

    PubMed

    Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua

    2013-09-28

    We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.

  16. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth; Woskov, Paul; Einstein, Herbert

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system wasmore » designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650°C, even exceeding 3000°C, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.« less

  17. Evaluation of geophysical logs, phase I, for Crossley Farms Superfund Site, Berks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1998-01-01

    Twenty-one wells were drilled at Crossley Farms Superfund Site between December 15, 1987, and May 1, 1988, to define and monitor the horizontal and vertical distribution of ground-water contamination emanating from a suspected contaminant source area (Blackhead Hill). Eight well clusters were drilled on or near the Crossley Site and three well clusters were drilled at locations hydrologically down gradient from the site. Depths of wells range from 21 to 299 feet below land surface. These wells were installed in saprolite in shallow, intermediate, and deep water-producing zones of the fractured bedrock aquifer. Borehole-geophysical and video logging were conducted between April 24, 1997, and May 8, 1997, to determine the water-producing zones, water-receiving zones, zones of vertical flow, borehole depth, and casing integrity in each well. This data and interpretation will be used to determine the location of the well intake for the existing open-hole wells, which will be retrofitted to isolate and monitor water-producing zones and prevent further cross-contamination within each open borehole, and identify wells that may need rehabilitation or replacement. Caliper and video logs were used to locate fractures, inflections on fluid-temperature and fluidresistivity logs indicated possible fluid-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video logs, and driller?s notes, all wells will be constructed so that water-level fluctuations can be monitored and discrete water samples collected from shallow, intermediate, and deep water-bearing zones in each well. Geophysical logs were run on seven bedrock and two deep bedrock wells. Gamma logs were run on 10 bedrock wells. Twenty-two wells were inspected visually with the borehole video camera for casing integrity.

  18. Comparison of Fracture Gradient Methods for the FutureGen 2.0 Carbon Storage Site, Ill., USA.

    NASA Astrophysics Data System (ADS)

    Appriou, D.; Spane, F.; Wurstner White, S.; Kelley, M. E.; Sullivan, E. C.; Bonneville, A.; Gilmore, T. J.

    2014-12-01

    As part of a first-of-its-kind carbon dioxide storage project, FutureGen Industrial Alliance is planning to inject 1.1 MMt/yr of supercritical CO2 over a 20-year period within a 1240 m deep saline aquifer (Mount Simon Sandstone) located in Morgan County, Illinois, USA. Numerous aspects of the design and operational activities of the CO2 storage site are dependent on the geomechanical properties of the targeted reservoir zone, as well as of the overlying confining zone and the underlying crystalline Precambrian basement. Detailed determination of the state-of-stress within the subsurface is of paramount importance in successfully designing well drilling/completion aspects, as well as assessing the risk of induced seismicity and the potential for creating and/or reopening pre-existing fractures; all of which help ensure the safe long-term storage of injected CO2. The quantitative determination of the subsurface fracture gradient is one of the key geomechanical parameters for the site injection design and operational limits (e.g., maximum safe injection pressure). A characterization well drilled in 2011 provides subsurface geomechanical characterization information for the FutureGen 2.0 site, and includes: 1) continuous elastic properties inferred from sonic/acoustic wireline logs 2) discrete depth geomechanical laboratory core measurements and 3) results obtained from hydraulic fracturing tests of selected borehole/depth-intervals. In this paper, the precise fracture gradients derived from borehole geomechanical test results are compared with semi-empirical, fracture gradient calculation/relationships based on elastic property wireline surveys and laboratory geomechanical core test results. Implications for using various fracture-gradients obtained from the different methods are assessed using PNNL's subsurface multiphase flow and transport simulator STOMP-CO2. The implications for operational activities at the site (based on using different fracture gradients) are also discussed.

  19. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

    NASA Astrophysics Data System (ADS)

    Nicolas-Lopez, Ruben

    2005-11-01

    In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

  20. Thermal indicator for wells

    DOEpatents

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  1. Climatic teleconnections between the subtropical and polar North Atlantic during the Last Interglacial period (MIS5e)

    NASA Astrophysics Data System (ADS)

    Bauch, H. A.; Zhuravleva, A.

    2017-12-01

    Meridional gradients in sea surface temperature (SST) control ocean-atmosphere circulation patterns and, thus, regulate the global climate. Here we reconstruct variability of these gradients in the course of the Last Interglacial (MIS5e), by using sediment records from the low and high latitude North Atlantic which are linked via the Gulf Stream.In the Nordic Seas, i.e., at the northern end of the Gulf Stream extension, strong post-Saalian meltwater discharge reduced northward-directed transport of surface oceanic heat until the mid-MIS5e, resulting in a late and rather weak SST peak. To decipher the corresponding climatic changes in the area of the Gulf Stream origin, we employ stable isotopes data, planktic foraminifera assemblages as well as a new alkenone paleotemperature record from core drilled on the upper northern slope of the Little Bahama Bank. In addition, chemical composition of sediments (XRF data) was used to asses past sea level fluctuations and sedimentation regimes on this shallow-water carbonate bank. Significant variations in Sr/Ca ratios point to a two-fold structure of the Last Interglacial. Stabilized Sr/Ca values were reached only during the second phase of MIS5e, possibly representing the interval of maximum bank-top flooding after the northern hemisphere deglaciation terminated. Faunal-based proxies as well as oxygen isotopic gradients between surface and bottom-dwelling foraminifera corroborate existence of the two major climatic phases within the Last Interglacial, in agreement with the respective development in the polar region. This further suggests a strong climatic coupling between the subtropical and high-latitude North Atlantic with important implications for meridional SST gradients during the Last Interglacial.

  2. Advanced Geothermal Turbodrill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of largemore » diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.« less

  3. Recovery Act Validation of Innovative Exploration Techniques Pilgrim Hot Springs, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdmann, Gwen

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  4. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.

    PubMed

    Gritti, Fabrice

    2016-11-18

    An new class of gradient liquid chromatography (GLC) is proposed and its performance is analyzed from a theoretical viewpoint. During the course of such gradients, both the solvent strength and the column temperature are simultaneously changed in time and space. The solvent and temperature gradients propagate along the chromatographic column at their own and independent linear velocity. This class of gradient is called combined solvent- and temperature-programmed gradient liquid chromatography (CST-GLC). The general expressions of the retention time, retention factor, and of the temporal peak width of the analytes at elution in CST-GLC are derived for linear solvent strength (LSS) retention models, modified van't Hoff retention behavior, linear and non-distorted solvent gradients, and for linear temperature gradients. In these conditions, the theory predicts that CST-GLC is equivalent to a unique and apparent dynamic solvent gradient. The apparent solvent gradient steepness is the sum of the solvent and temperature steepness. The apparent solvent linear velocity is the reciprocal of the steepness-averaged sum of the reciprocal of the actual solvent and temperature linear velocities. The advantage of CST-GLC over conventional GLC is demonstrated for the resolution of protein digests (peptide mapping) when applying smooth, retained, and linear acetonitrile gradients in combination with a linear temperature gradient (from 20°C to 90°C) using 300μm×150mm capillary columns packed with sub-2 μm particles. The benefit of CST-GLC is demonstrated when the temperature gradient propagates at the same velocity as the chromatographic speed. The experimental proof-of-concept for the realization of temperature ramps propagating at a finite and constant linear velocity is also briefly described. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Radtke; David Glowka; Man Mohan Rai

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hardmore » and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.« less

  6. The Campi Flegrei caldera-hosted high-temperature and high-saline geothermal system in the Southern Italy: the implication of the geothermal resource as derived by the present state of the knowledge through 70 years of volcanological, structural, petrolog

    NASA Astrophysics Data System (ADS)

    Piochi, M.; Di Vito, M. A.; Mormone, A.; De Natale, G.; Tramelli, A.; Troise, C.; Carlino, S.

    2012-04-01

    The Campi Flegrei caldera (Italy) hosts a geothermal system characterized by: i) high thermal gradient (temperature up to 420°C at 3050 m b.s.l.), ii) high temperature (up to ~90-150°C at very shallow depth) fumaroles, iii) multiple meteoric to brine (TDS up to 33 g•l-1; temperature up to 95 °C) aquifers and iv) at least 1500 tonnes per day of CO2 emissions. This area is highly urbanized despite the repeated occurrence of ground deformation phenomena accompanied by seismicity with volcano-tectonic and long-period micro-earthquakes. The caldera has been widely studied by geologist and geophysicists. In particular, since '40s, the caldera has drawn scientific interest for its geothermal capability inducing the companies AGIP (Azienda Geologica Italiana Petroli) and SAFEN (Società Anonima Forze Endogene Napoletane) to drill more than one hundred 80-to-3100 m deep wells. However this experience did not reach the exploitation phase due to technological and communication problems. The geothermal potential (thermal and electric) is evaluated of about 6 GWy. The recent Campi Flegrei Deep Drilling Project [De Natale and Troise, 2011], sponsored by the International Continental Scientific Drilling Program, foresees the realization of medium-to-deep wells in the caldera with the ambition of stimulating interest in geothermal energy exploitation and technology development and, in addition of installing downhole monitoring systems. The geological knowledge of the area is the benchmark for the drilling sites selection. We reconstructed a multi-disciplinary conceptual model updated on the basis of the most recent scientific results and findings. In particular, the constrains (the most important are listed in brackets) comes from: i) boreholes (litho-stratigraphy, aquifer location, depth-related temperature), ii) fieldwork (stratigraphy, location of structural fractures and eruption vents), iii) petrology and melt inclusions (pressure and temperature of magma with implications regarding the magma reservoir location and arrest levels of ascending magma), iv) hydrothermal facies distribution (mainly at depths affected by thermo-metamorphism), v) elastic parameters (mainly Vp and Vp/Vs) of cored rocks measured in laboratory; vi) surface fluid emissions (as the surface expression of faults and fractures), vii) hydrogeology (location of thermal aquifers and general water circulation), and viii) seismology (location of main geophysical discontinuity and of seismic wave anomaly, seismogenetic and attenuation volumes). Our model evidences the lack of information from deep layers in the eastern caldera sector, i.e., the Bagnoli Plain and in the Pozzuoli Gulf. Investigations of these sites would add important information to our present knowledge of the geothermal system, as well as of the caldera structure and related magma-system behavior. Furthermore, the Bagnoli Plain is one of the largest Italian dismantled industrial areas, affected by metal contamination and undergoing to reclamation. It is, presently, a sparsely inhabited zone within the city of Naples, which therefore allows deep volcanological and geothermal investigations as well as requalification in terms of clean and renewable resource use, in contrast with the other peripherals areas where the high-population density poses strong limitations to the research and to the possibility to plan new rational use of the land and of its resources.

  7. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Canet, Carles; Trillaud, Frederic; Prol-Ledesma, Rosa María; González-Hernández, Galia; Peláez, Berenice; Hernández-Cruz, Berenice; Sánchez-Córdova, María M.

    2015-10-01

    Acoculco is a geothermal prospective area hosted by a volcanic caldera complex in the eastern Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of gas discharges (CO2-rich) and acid-sulfate springs of low temperature, whereas hydrothermal explosive activity is profusely manifested by meter-scale craters and mounds of hydrothermal debris and breccias. Silicic alteration extends for several square kilometers around the zone with gas manifestations and explosive features, affecting surficial volcanic rocks, primarily tuffs and breccias. In the subsurface, an argillic alteration zone (ammonium illite) extends down to a depth of ∼ 600 m, and underneath it a propylitic zone (epidote-calcite-chlorite) occurs down to ∼ 1000 m. Thermal logs from an exploratory borehole (EAC-1, drilled in 1995 down to 1810 m) showed a conductive heat transfer regime under high geothermal gradient (∼ 140 °C/1000 m). In contrast, the thermal profile established from temperatures of homogenization of fluid inclusions-measured on core samples from the same drill hole-suggests that convection occurred in the past through the upper ~ 1400 m of the geothermal system. A drop in permeability due to the precipitation of alteration minerals would have triggered the cessation of the convective heat transfer regime to give place to a conductive one. With the purpose of determining when the transition of heat transfer regime occurred, we developed a 1D model that simulates the time-depth distribution of temperature. According to our numerical simulations, this transition happened ca. 7000 years ago; this date is very recent compared to the lifespan of the geothermal system. In addition, radiocarbon chronology indicates that the hydrothermal explosive activity postdates the end of the convective heat transfer regime, having dated at least three explosive events, at 4867-5295, 1049-1417 and 543-709 y cal. BP. Therefore, hydrothermal explosions arise from the self-sealing of the Acoculco geothermal system, involving a natural hazard that could affect future geothermal-power infrastructure.

  8. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene thermal maximum: Implications for global productivity gradients

    USGS Publications Warehouse

    Gibbs, S.J.; Bralower, T.J.; Bown, Paul R.; Zachos, J.C.; Bybell, L.M.

    2006-01-01

    Abrupt global warming and profound perturbation of the carbon cycle during the Paleocene-Eocene Thermal Maximum (PETM, ca. 55 Ma) have been linked to a massive release of carbon into the ocean-atmosphere system. Increased phytoplankton productivity has been invoked to cause subsequent CO2 drawdown, cooling, and environmental recovery. However, interpretations of geochemical and biotic data differ on when and where this increased productivity occurred. Here we present high-resolution nannofossil assemblage data from a shelf section (the U.S. Geological Survey [USGS] drill hole at Wilson Lake, New Jersey) and an open-ocean location (Ocean Drilling Program [ODP] Site 1209, paleoequatorial Pacific). These data combined with published biotic records indicate a transient steepening of shelf-offshelf trophic gradients across the PETM onset and peak, with a decrease in open-ocean productivity coeval with increased nutrient availability in shelf areas. Productivity levels recovered in the open ocean during the later stages of the event, which, coupled with intensified continental weathering rates, may have played an important role in carbon sequestration and CO2 drawdown. ?? 2006 Geological Society of America.

  9. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075.

    PubMed

    Ghasemi, Amir Hossein; Khorasani, Amir Mahyar; Gibson, Ian

    2018-01-16

    Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5-8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.

  10. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075

    PubMed Central

    Ghasemi, Amir Hossein; Khorasani, Amir Mahyar

    2018-01-01

    Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5–8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy. PMID:29337858

  11. A Compendium of Arctic Environmental Information

    DTIC Science & Technology

    1986-03-01

    warn- ing of possible future ice invasions during petroleum drill - ing operations in open-water conditions. Development of sea ice Several basic...tubes, triple beam balance snow temperature thermistor and bridge ice ttiicl^ness hand auger, electric drill with auger, tape with toggle ice...fluids, 8 quarts daily. Acidify urine by drink- ing cranberry juice, taking Vitamin C, etc. Machines All machinery in the Arctic (engines, drills

  12. Phase 1 drilling operations at the Magma Energy Exploratory Well (LVF 51-20)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finger, J.T.; Jacobson, R.D.

    1990-12-01

    This report describes the Phase 1 drilling operations for the Magma Energy Exploratory Well near Mammoth Lakes, California. An important part of the Department of Energy's Magma Energy Program, this well is designed to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degree}C, whichever comes first. There will be four drilling phases, at least a year apart, with scientific investigations in the borehole between the drilling intervals. Phase 1 of this project resulted in a 20 inch cased hole to 2558 feet, with 185 feet of coring beyond that. This document comprises a narrative of themore » daily activities, copies of the daily mud and lithologic reports, time breakdowns of rig activities, inventories of lost circulation materials, temperature logs of the cored hole, and a strip chart mud log. 2 figs.« less

  13. Comments on some of the drilling and completion problems in Cerro Prieto geothermal wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez A, B.; Sanchez G, G.

    From 1960 to the present, 85 wells with a total drilling length exceeding 160,000 m have been constructed at Cerro Prieto, a modest figure compared to an oil field. This activity took place in five stages, each characterized by changes and modifications required by various drilling and well-completion problems. Initially, the technical procedures followed were similar to those used in the oil industry. However, several problems emerged as a result of the relatively high temperatures found in the geothermal reservoir. The various problems that have been encountered can be considered to be related to drilling fluids, cements and cementing operations,more » lithology, geothermal fluid characteristics, and casings and their accessories. As the importance of high temperatures and the characteristics of the geothermal reservoir fluids were better understood, the criteria were modified to optimize well-completion operations, and satisfactory results have been achieved to date.« less

  14. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  15. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  16. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  17. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...

  18. Geochemical and Mineralogical Profiles Across the Listvenite- Metamorphic Transition in the Basal Megathrust of the Oman Ophiolite: First Results from Drilling at Oman Drilling Project Hole BT1B

    NASA Astrophysics Data System (ADS)

    Godard, M.; Bennett, E.; Carter, E.; Kourim, F.; Lafay, R.; Noël, J.; Kelemen, P. B.; Michibayashi, K.; Harris, M.

    2017-12-01

    The transition from the base of the Oman ophiolite to the underlying metamorphic sole was drilled at Hole BT1B (Sumail Massif) during Phase 1 of Oman Drilling Project (Winter 2016-2017). 74 samples were collected from the 300m of recovered cores for whole rock geochemical and XRD analyses. 55 listvenites, ophicarbonates and serpentinites, and 19 schists and greenstones were analyzed for major and minor elements (XRF) and for CO2 and S concentrations (CHNS) aboard DV Chikyu (ChikyuOman, Summer 2017). Analyses for trace elements (ICP-MS) at the University of Montpellier are in progress. The composition of listvenites, ophicalcites and serpentinites recovered at Hole BT1B record extensive interactions between CO2-rich fluids and the serpentinized peridotites. These reactions involved addition of SiO2 and formation of carbonates at the expense of the serpentinized peridotite protolith. All samples recovered from the mantle section are enriched in fluid mobile and incompatible trace elements compared to the mean composition of the Oman mantle. These enrichments are up to 103 times the Oman mantle for Rb and Ba. They mimic the pattern of the samples from the metamorphic sole. This suggests that the composition of the listvenites in these elements is controlled by that of contaminating fluids that may have originated in the same lithologies as those drilled at the base of Hole BT1B. Listvenites, ophicalcites and serpentinites also show notable downhole chemical variations, with listvenites showing marked variations in Al2O3 and TiO2. Occurrence of lherzolites and cpx-harzburgites has been reported at the base of the Oman dominantly harzburgitic mantle section. The observed variations in the listvenites (Al2O3 and TiO2) could be related to the composition of their protolith, the deepest having more fertile compositions. Alternatively, the observed downhole changes in the composition of listvenites may relate to the progressive equilibration of the reacting ultramafic-rocks and/or listvenite with the fluids originating in the subducting metamorphic sole; these variations could be related to heterogeneous reaction kinetics (temperature, reactive surfaces, chemical gradients) and/or to transport (e.g. local variations in permeability) within the listvenite units.

  19. Oman Drilling Project GT3 site survey: dynamics at the roof of an oceanic magma chamber

    NASA Astrophysics Data System (ADS)

    France, L.; Nicollet, C.; Debret, B.; Lombard, M.; Berthod, C.; Ildefonse, B.; Koepke, J.

    2017-12-01

    Oman Drilling Project (OmanDP) aims at bringing new constraints on oceanic crust accretion and evolution by drilling Holes in the whole ophiolite section (mantle and crust). Among those, operations at GT3 in the Sumail massif drilled 400 m to sample the dike - gabbro transition that corresponds to the top (gabbros) and roof (dikes) of the axial magma chamber, an interface where hydrothermal and magmatic system interacts. Previous studies based on oceanic crust formed at present day fast-spreading ridges and preserved in ophiolites have highlighted that this interface is a dynamic horizon where the axial melt lens that top the main magma chamber can intrude, reheat, and partially assimilate previously hydrothermally altered roof rocks. Here we present the preliminary results obtained in GT3 area that have allowed the community to choose the drilling site. We provide a geological and structural map of the area, together with new petrographic and chemical constraints on the dynamics of the dike - gabbro transition. Our new results allow us to quantify the dynamic processes, and to propose that 1/ the intrusive contact of the varitextured gabbro within the dikes highlights the intrusion of the melt lens top in the dike rooting zone, 2/ both dikes and previously crystallized gabbros are reheated, and recrystallized by underlying melt lens dynamics (up to 1050°C, largely above the hydrous solidus temperature of altered dikes and gabbros), 3/ the reheating range can be > 200°C, 4/ the melt lens depth variations for a given ridge position is > 200m, 5/ the reheating stage and associated recrystallization within the dikes occurred under hydrous conditions, 6/ the reheating stage is recorded at the root zone of the sheeted dike complex by one of the highest stable conductive thermal gradient ever recorded on Earth ( 3°C/m), 7/ local chemical variations in recrystallized dikes and gabbros are highlighted and used to quantify crystallization and anatectic processes, and the presence of trapped melt, 8/ melt lens cannibalism is attested by numerous assimilation figures close its roof. Besides providing a general context for future studies at OmanDP GT3 site, those new results allow us to quantify the dynamic processes that govern the layer 2 - layer 3 transition in ocean lithosphere.

  20. Designing gradient coils with reduced hot spot temperatures.

    PubMed

    While, Peter T; Forbes, Larry K; Crozier, Stuart

    2010-03-01

    Gradient coil temperature is an important concern in the design and construction of MRI scanners. Closely spaced gradient coil windings cause temperature hot spots within the system as a result of Ohmic heating associated with large current being driven through resistive material, and can strongly affect the performance of the coils. In this paper, a model is presented for predicting the spatial temperature distribution of a gradient coil, including the location and extent of temperature hot spots. Subsequently, a method is described for designing gradient coils with improved temperature distributions and reduced hot spot temperatures. Maximum temperature represents a non-linear constraint and a relaxed fixed point iteration routine is proposed to adjust coil windings iteratively to minimise this coil feature. Several examples are considered that assume different thermal material properties and cooling mechanisms for the gradient system. Coil winding solutions are obtained for all cases considered that display a considerable drop in hot spot temperature (>20%) when compared to standard minimum power gradient coils with equivalent gradient homogeneity, efficiency and inductance. The method is semi-analytical in nature and can be adapted easily to consider other non-linear constraints in the design of gradient coils or similar systems. Crown Copyright (c) 2009. Published by Elsevier Inc. All rights reserved.

  1. Characterization of thermotropism in primary roots of maize: dependence on temperature and temperature gradient, and interaction with gravitropism

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1991-01-01

    Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.

  2. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients.

    PubMed

    Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2011-09-28

    In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed to predict retention times for segmented-temperature gradients based on temperature-gradient input data in liquid chromatography (LC) with high accuracy. The LES model assumes that retention times for isothermal separations can be predicted based on two temperature gradients and is employed to calculate the retention factor of an analyte when changing the start temperature of the temperature gradient. In this study it was investigated whether this approach can also be employed in LC. It was shown that this approximation cannot be transferred to temperature-programmed LC where a temperature range from 60°C up to 180°C is investigated. Major relative errors up to 169.6% were observed for isothermal retention factor predictions. In order to predict retention times for temperature gradients with different start temperatures in LC, another relationship is required to describe the influence of temperature on retention. Therefore, retention times for isothermal separations based on isothermal input runs were predicted using a plot of the natural logarithm of the retention factor vs. the inverse temperature and a plot of the natural logarithm of the retention factor vs. temperature. It could be shown that a plot of lnk vs. T yields more reliable isothermal/isocratic retention time predictions than a plot of lnk vs. 1/T which is usually employed. Hence, in order to predict retention times for temperature-gradients with different start temperatures in LC, two temperature gradient and two isothermal measurements have been employed. In this case, retention times can be predicted with a maximal relative error of 5.5% (average relative error: 2.9%). In comparison, if the start temperature of the simulated temperature gradient is equal to the start temperature of the input data, only two temperature-gradient measurements are required. Under these conditions, retention times can be predicted with a maximal relative error of 4.3% (average relative error: 2.2%). As an example, the systematic method development for an isothermal as well as a temperature gradient separation of selected sulfonamides by means of the adapted LES model is demonstrated using a pure water mobile phase. Both methods are compared and it is shown that the temperature-gradient separation provides some advantages over the isothermal separation in terms of limits of detection and analysis time. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  4. Recent scientific and operational achievements of D/V Chikyu

    NASA Astrophysics Data System (ADS)

    Taira, Asahiko; Toczko, Sean; Eguchi, Nobu; Kuramoto, Shin'ichi; Kubo, Yusuke; Azuma, Wataru

    2014-12-01

    The D/V Chikyu, a scientific drilling vessel, is equipped with industry-standard riser capabilities. Riser drilling technology enables remarkable drilling and downhole logging capabilities and provides unprecedented hole-stability, enabling the shipboard team to retrieve high-quality wire-line logging data as well as well-preserved core samples. The 11 March 2011 Tohoku Oki mega-earthquake and tsunami cost over 18,000 casualties in NE Japan. Chikyu, docked in the Port of Hachinohe, was damaged by the tsunami. By April 2012, the ship was back in operation; drilling the toe of the Japan Trench fault zone where topographic surveys suggested there was up to 50 m eastward motion, the largest earthquake rupture ever recorded. During Integrated Ocean Drilling Program (IODP) Expeditions 343 and 343 T, Chikyu drilled 850 m below sea floor (mbsf) in 6,900+ m water depth and recovered core samples of a highly brecciated shear zone composed of pelagic claystone. A subseafloor observatory looking for temperature signatures caused by the fault friction during the earthquake, was installed and later successfully recovered. The recovered temperature loggers recorded data from which the level of friction during the mega-earthquake slip could be determined. Following Exp. 343, Chikyu began IODP Exp. 337, a riser drilling expedition into the Shimokita coal beds off Hachinohe, to study the deep subsurface biosphere in sedimentary units including Paleogene-Neogene coal beds. New records in scientific ocean drilling were achieved in deepest penetration (drilling reached 2,466 mbsf) and sample recovery. Currently Chikyu is conducting deep riser drilling at the Nankai Trough in the final stage of the NanTroSEIZE campaign. During the years 2011 to 2013, including drilling in the Okinawa Hydrothermal System, Chikyu's operational and scientific achievements have demonstrated that the ship's capabilities are vital for opening new frontiers in earth and biological sciences.

  5. DE-FOA-EE0005502 Advanced Percussive Drilling Technology for Geothermal Exploration and Development Phase II Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiann-Cherng; Raymond, David W.; Prasad, Somuri V.

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two- phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phasemore » I and evaluating performance of the materials and designs at high- operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for user in the driller's toolbox.« less

  6. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiann; Raymond, David; Prasad, Somuri

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phasemore » I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.« less

  7. Potential for thermal damage to the blood–brain barrier during craniotomy: implications for intracortical recording microelectrodes

    NASA Astrophysics Data System (ADS)

    Shoffstall, Andrew J.; Paiz, Jen E.; Miller, David M.; Rial, Griffin M.; Willis, Mitchell T.; Menendez, Dhariyat M.; Hostler, Stephen R.; Capadona, Jeffrey R.

    2018-06-01

    Objective. Our objective was to determine how readily disruption of the blood–brain barrier (BBB) occurred as a result of bone drilling during a craniotomy to implant microelectrodes in rat cortex. While the phenomenon of heat production during bone drilling is well known, practices to evade damage to the underlying brain tissue are inconsistently practiced and reported in the literature. Approach. We conducted a review of the intracortical microelectrode literature to summarize typical approaches to mitigate drill heating during rodent craniotomies. Post mortem skull-surface and transient brain-surface temperatures were experimentally recorded using an infrared camera and thermocouple, respectively. A number of drilling conditions were tested, including varying drill speed and continuous versus intermittent contact. In vivo BBB permeability was assayed 1 h after the craniotomy procedure using Evans blue dye. Main results. Of the reviewed papers that mentioned methods to mitigate thermal damage during craniotomy, saline irrigation was the most frequently cited (in six of seven papers). In post mortem tissues, we observed increases in skull-surface temperature ranging from  +3 °C to  +21 °C, dependent on drill speed. In vivo, pulsed-drilling (2 s-on/2 s-off) and slow-drilling speeds (1000 r.p.m.) were the most effective methods we studied to mitigate heating effects from drilling, while inconclusive results were obtained with saline irrigation. Significance. Neuroinflammation, initiated by damage to the BBB and perpetuated by the foreign body response, is thought to play a key role in premature failure of intracortical recording microelectrodes. This study demonstrates the extreme sensitivity of the BBB to overheating caused by bone drilling. To avoid damage to the BBB, the authors recommend that craniotomies be drilled with slow speeds and/or with intermittent drilling with complete removal of the drill from the skull during ‘off’ periods. While saline alone was ineffective at preventing overheating, its use is still recommended to remove bone dust from the surgical site and to augment other cooling methods.

  8. Spatial Analysis of Geothermal Resource Potential in New York and Pennsylvania: A Stratified Kriging Approach

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C. A.; Stedinger, J. R.

    2014-12-01

    Resource assessments for low-grade geothermal applications employ available well temperature measurements to determine if the resource potential is sufficient for supporting district heating opportunities. This study used a compilation of bottomhole temperature (BHT) data from recent unconventional shale oil and gas wells, along with legacy oil, gas, and storage wells, in Pennsylvania (PA) and New York (NY). Our study's goal was to predict the geothermal resource potential and associated uncertainty for the NY-PA region using kriging interpolation. The dataset was scanned for outliers, and some observations were removed. Because these wells were drilled for reasons other than geothermal resource assessment, their spatial density varied widely. An exploratory spatial statistical analysis revealed differences in the spatial structure of the geothermal gradient data (the kriging semi-variogram and its nugget variance, shape, sill, and the degree of anisotropy). As a result, a stratified kriging procedure was adopted to better capture the statistical structure of the data, to generate an interpolated surface, and to quantify the uncertainty of the computed surface. The area was stratified reflecting different physiographic provinces in NY and PA that have geologic properties likely related to variations in the value of the geothermal gradient. The kriging prediction and the variance-of-prediction were determined for each province by the generation of a semi-variogram using only the wells that were located within that province. A leave-one-out cross validation (LOOCV) was conducted as a diagnostic tool. The results of stratified kriging were compared to kriging using the whole region to determine the impact of stratification. The two approaches provided similar predictions of the geothermal gradient. However, the variance-of-prediction was different. The stratified approach is recommended because it gave a more appropriate site-specific characterization of uncertainty based upon a more realistic description of the statistical structure of the data given the geologic characteristics of each province.

  9. Conductive heat flux in VC-1 and the thermal regime of Valles caldera, Jemez Mountains, New Mexico ( USA).

    USGS Publications Warehouse

    Sass, J.H.; Morgan, P.

    1988-01-01

    Over 5% of heat in the western USA is lost through Quaternary silicic volcanic centers, including the Valles caldera in N central New Mexico. These centers are the sites of major hydrothermal activity and upper crustal metamorphism, metasomatism, and mineralization, producing associated geothermal resources. Presents new heat flow data from Valles caldera core hole 1 (VC-1), drilled in the SW margin of the Valles caldera. Thermal conductivities were measured on 55 segments of core from VC-1, waxed and wrapped to preserve fluids. These values were combined with temperature gradient data to calculate heat flow. Above 335 m, which is probably unsaturated, heat flow is 247 + or - 16 mW m-2. Inteprets the shallow thermal gradient data and the thermal regime at VC-1 to indicate a long-lived hydrothermal (and magmatic) system in the southwestern Valles caldera that has been maintained through the generation of shallow magma bodies during the long postcollapse history of the caldera. High heat flow at the VC-1 site is interpreted to result from hot water circulating below the base of the core hole, and we attribute the lower heat flow in the unsaturated zone is attributed to hydrologic recharge. -from Authors

  10. A geothermal AMTEC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuller, M.J.; LeMire, R.A.; Horner-Richardson, K.

    1995-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), with the support of ORION International Technologies, is investigating new methods of advanced thermal to electric power conversion for space and terrestrial applications. The alkali metal thermal-to-electric converter (AMTEC), manufactured primarily by Advanced Modular Power Systems (AMPS) of Ann Arbor, MI, has reached a level of technological maturity which would allow its use in a constant, unattended thermal source, such as a geothermal field. Approximately 95,000 square miles in the western United States has hot dry rock with thermal gradients of 60 C/km and higher. Several places in the United Statesmore » and the world have thermal gradients of 500 C/km. Such heat sources represent an excellent thermal source for a system of modular power units using AMTEC devices to convert the heat to electricity. AMTEC cells using sodium as a working fluid require heat input at temperatures between 500 and 1,000 C to generate power. The present state of the art is capable of 15% efficiency with 800 C heat input and has demonstrated 18% efficiency for single cells. This paper discusses the basics of AMTEC operation, current drilling technology as a cost driver, design of modular AMTEC power units, heat rejection technologies, materials considerations, and estimates of power production from a geothermal AMTEC concept.« less

  11. Quantification of the effect of temperature gradients in soils on subsurface radon signal

    NASA Astrophysics Data System (ADS)

    Haquin, Gustavo; Ilzycer, Danielle; Kamai, Tamir; Zafrir, Hovav; Weisbrod, Noam

    2017-04-01

    Temperature gradients that develop in soils due to atmospheric temperature cycles are factors of primary importance in determining the rates and directions of subsurface gas flow. Models including mechanisms of thermal convection and thermal diffusion partially explain the impact of temperature gradients on subsurface radon transport. However, the overall impact of temperature gradients on subsurface radon transport is still not well understood. A laboratory setup was designed and built to experimentally investigate the influence of temperature gradients on radon transport under well controlled conditions. A 60 cm diameter and 120 cm tall column was thermally insulated except from the atmosphere-soil interface, such that it was constructed to simulate field conditions where temperature gradients in soils are developed following atmospheric temperature cycles. The column was filled with fine grinded phosphate rock which provided the porous media with radon source. Radon in soil-air was continuously monitored using NaI gamma detectors positioned at different heights along the column. Soil temperature, differential pressure, and relative humidity were monitored along the column. Experiments based on steep and gradual stepwise changes in ambient temperature were conducted. Absolute changes on radon levels in the order of 10-30% were measured at temperature gradients of up to ±20oC/m. Results showed a non-linear correlation between the temperature gradient and the subsurface radon concentration. An asymmetric relationship between the radon concentration and the temperature gradients for ΔT>0 and ΔT<0 was also observed. Laboratory simulations of the time- and depth-dependent temperature wave functions with frequencies ranged from a daily cycle to few days were performed. In response to the harmonic temperature behaviour radon oscillations at similar frequencies were detected correspondingly. In this work a quantitative relationship between radon and temperature gradients will be presented for cases beyond the classical conditions for thermal convection and thermal diffusion.

  12. Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.

    2017-12-01

    The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a flow test and eventual production of the well. The project is co-funded by the DEEPEGS project (EU H2020), HS Orka (the field operator), Statoil, the IDDP consortium, and the ICDP. Planning is underway to drill IDDP-3 at Hellisheidi.

  13. The Newberry Deep Drilling Project (NDDP)

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.

    2017-12-01

    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  14. Novel hybrid drilling protocol: evaluation for the implant healing--thermal changes, crestal bone loss, and bone-to-implant contact.

    PubMed

    Calvo-Guirado, José Luis; Delgado-Peña, Jorge; Maté-Sánchez, Jose E; Mareque Bueno, Javier; Delgado-Ruiz, Rafael Arcesio; Romanos, Georgios E

    2015-07-01

    To evaluate a new hybrid drilling protocol, by the analysis of thermal changes in vitro, and their effects in the crestal bone loss and bone-to-implant contact in vivo. Temperature changes during simulated osteotomies with a hybrid drilling technique (biologic plus simplified) (test) versus an incremental drilling technique (control) were investigated. One hundred and twenty random osteotomies were performed (60 by group) in pig ribs up to 3.75-mm-diameter drill to a depth of 10 mm. Thermal changes and time were recorded by paired thermocouples. In a parallel experiment, bilateral mandibular premolars P2, P3, P4, and first molar M1 were extracted from six dogs. After 2-month healing, implant sites were randomly prepared using either of the drilling techniques. Forty eight implants of 3.75 mm diameter and 10 mm length were inserted. The dogs were euthanized at 30 and 90 days, and crestal bone loss (CBL) and bone-to-implant contact (BIC) were evaluated. The control group showed maximum temperatures of 35.3 °C ± 1.8 °C, ΔT of 10.4 °C, and a mean time of 100 s/procedure; meanwhile, the test group showed maximum temperatures of 36.7 °C ± 1.2 °C, ΔT of 8.1 °C, and a mean time of 240 s/procedure. After 30 days, CBL values for both groups (test: 1.168 ± 0.194 mm; control: 1.181 ± 0.113 mm) and BIC values (test: 43 ± 2.8%; control: 45 ± 1.3%) were similar, without significant differences (P > 0.05). After 90 days, CBL (test: 1.173 ± 0.187 mm; control: 1.205 ± 0.122 mm) and BIC (test: 64 ± 3.3%; control: 64 ± 2.4%) values were similar, without significant differences (P > 0.05). The BIC values were increased at 90 days in both groups compared with the 30-day period (P < 0.05). Within the limitations of this study, the new hybrid protocol for the preparation of the implant bed without irrigation, increase the temperature similarly to the incremental conventional protocol, and requires twice the time for the completion of the drilling procedure in vitro. Crestal bone loss and bone-to-implant contact in the hybrid drilling protocol are comparable with the conventional drilling protocol and do not affect the osseointegration process in vivo. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Extraction of espresso coffee by using gradient of temperature. Effect on physicochemical and sensorial characteristics of espresso.

    PubMed

    Salamanca, C Alejandra; Fiol, Núria; González, Carlos; Saez, Marc; Villaescusa, Isabel

    2017-01-01

    Espresso extraction is generally carried out at a fixed temperature within the range 85-95°C. In this work the extraction of the espressos was made in a new generation coffee machine that enables temperature profiling of the brewing water. The effect of using gradient of temperature to brew espressos on physicochemical and sensorial characteristics of the beverage has been investigated. Three different extraction temperature profiles were tested: updrawn gradient (88-93°C), downdrawn gradient (93-88°C) and fixed temperature (90°C). The coffee species investigated were Robusta, Arabica natural and Washed Arabica. Results proved that the use of gradient temperature for brewing espressos allows increasing or decreasing the extraction of some chemical compounds from coffee grounds. Moreover an appropriate gradient of temperature can highlight or hide some sensorial attributes. In conclusion, the possibility of programming gradient of temperature in the coffee machines recently introduced in the market opens new expectations in the field of espresso brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. New approaches to subglacial bedrock drilling technology

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical ice core drill is designed and tested. The expected average daily production of ice drilling would be not less than 25 m/day. The lower part of the drill is adapted for coring bed-rock using special tooth diamond bit. Deep ice coring requires a drilling fluid in the borehole during operation in order to keep the hole open and to compensate the hydrostatic pressures acting to close it. At present there are no ideal low-temperature drilling fluids as all of them are environmental and health hazardous substances. The new approaches of subglacial bedrock drilling technology are connected with utilization of environmental friendly, low-toxic materials, e.g. low-molecular dimethyl siloxane oils or aliphatic synthetic ester of ESTISOL™ 140 type. They have suitable density-viscosity properties, and can be consider as a viable alternative for drilling in glaciers and subglacial bedrock.

  17. Fluid-inclusion evidence for past temperature fluctuations in the Kilauea East Rift Zone geothermal area, Hawaii

    USGS Publications Warehouse

    Bargar, K.E.; Keith, T.E.C.; Trusdell, F.A.

    1995-01-01

    Heating and freezing data were obtained for fluid inclusions in hydrothermal quartz, calcite, and anhydrite from several depths in three scientific observation holes drilled along the lower East Rift Zone of Kilauea volcano, Hawaii. Comparison of measured drill-hole temperatures with fluid-inclusion homogenization-temperature (Th) data indicates that only about 15% of the fluid inclusions could have formed under the present thermal conditions. The majority of fluid inclusions studied must have formed during one or more times in the past when temperatures fluctuated in response to the emplacement of nearby dikes and their subsequent cooling. -from Authors

  18. Measurement of pulp temperature increase to externally applied heat (argon laser, hot water, drilling).

    PubMed

    Renneboog-Squilbin, C; Nammour, S; Coomans, D; Barel, A; Carleer, M; Dourov, N

    1989-09-01

    In order to weld cracks in tooth enamel, it is necessary to bring the surface of the tooth to the fusion temperature of the enamel (greater than 1,000 degrees C). The study investigated whether this increase in surface temperature can cause damage to the vitality of the tooth by recording, using a thermocouple, the temperature in the pulp chamber of teeth exposed to argon laser irradiation (power density after focusing: 4000 W/cm2; duration of continuous irradiation: 1-5 seconds). These pulp temperature increases were compared with those considered safe for the tooth, i.e., contact with a hot drink, drilling of cavities with air + water cooling. It was shown that punctual irradiations with an argon laser for periods of 2 or 4 seconds generated temperature increases in the pulp chamber which were less than inferior to those caused by contact with water at 54-55 degrees C for 1 or 2 seconds, and were of the same order as those caused by the drilling of class III or V cavities of 1 mm in depth and 1 mm in diameter. These results suggest that it is worth continuing research into applying the technique in the mouth.

  19. Comparison of experimental and predicted performance of 150-millimeter-bore solid and drilled ball bearings to 3 million DN

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Munson, H. E.

    1974-01-01

    Seven 150-millimeter-bore ball bearings were run under 8900-newton (2000-lbf) thrust load at speeds from 6670 to 20,000 rpm (1 million to 3 million DN). Four of the bearings had conventional solid balls, and three bearings had drilled (cylindrically hollow) balls with 50-percent mass reduction. The bearings were under-race cooled and slot lubricated with a type 2 ester oil at flow rates from 4.35 x 0.001 to 5.94 x 0.001 cubic meter/min (1.15 to 1.57 gal/min). Friction torque and temperature were measured on all bearings. While there was considerable spread in the temperature data, the drilled ball bearings tended to run slightly cooler than the solid ball bearings at higher speeds. No significant difference in torque was noted, however, between the solid and drilled ball bearings. One bearing of each type was rerun at 17,800-newton (4000-lbf) thrust load. The solid ball bearings performed satisfactorily at 3 million DN. However, at about 2 million DN the drilled ball bearing experienced a broken ball, and cracks appeared in other balls as a result of flexure fatigue. Metallurgical examination of the cracked balls indicated a brittle structure in the bore of the drilled balls.

  20. Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Berthe, L.; Fabbro, R.; Muller, M.

    2008-08-01

    Laser drilling in the percussion regime is commonly used in the aircraft industry to drill sub-millimetre holes in metallic targets. Characteristic laser intensities in the range of 10 MW cm-2 are typically employed for drilling metallic targets. With these intensities the temperature of the irradiated matter is above the vaporization temperature and the drilling process is led by hydrodynamic effects. Although the main physical processes involved are identified, this process is not correctly understood or completely controlled. A major characteristic coefficient of laser-matter interaction for this regime, which is the absorptivity of the laser on the irradiated surface, is still unknown, because of the perturbing effects due to laser beam geometrical trapping inside the drilled hole. So, by using time resolved experiments, this study deals with the direct measurement of the variation of the intrinsic absorption of aluminium, nickel and steel materials, as a function of the incident laser intensity up to 20 MW cm-2. We observe that for this incident intensity, the absorptivity can reach up to 80%. This very high and unexpected value is discussed by considering the microscopic behaviour of the heated matter near the vapour-liquid interface that undergoes possible Rayleigh-Taylor instability or volume absorption.

  1. Geothermal potential on Kirtland Air Force Base lands, Bernalillo County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, P.R. Jr.

    Extensive sampling and geochemical analysis of groundwater in and near the base disclosed no significant geothermal parameters. However, structural conditions and current hydrologic regimes strongly suggest that thermal waters would be masked by near surface, low temperature meteoric water originating as rain and snowfall in the nearby mountains. Controlled source audio-magnetotelluric (CSAMT) electromagnetic techniques, refraction seismic experiments, and gravity traverses were utilized on the base. These, together with published geohysical information that presents evidence for a shallow magma body beneath the Albuquerque Basin; favorable terrestrial heat flow, water chemistry, and shallow temperature gradient holes on the nearby mesa west ofmore » the Rio Grande; interpretation of regional gravity data; and geological data from nearby deep wells tend to confirm structural, stratigraphic, and hydrologic conditions favorable for developing an extensive intermediate to high-temperature hydrothermal regime on portions of Kirtland AFB lands where intensive land use occurs. Two possible exploration and development scenarios are presented. One involves drilling a well to a depth of 3000 to 5000 ft (914 to 1524 m) to test the possibility of encountering higher than normal water temperatures on the basinward side of the faults underlying the travertine deposits. The other is to conduct limited reflection seismograph surveys in defined areas on the base to determine the depth to basement (granite) and thickness of the overyling, unconfined, water filled, relatively unconsolidated sand and gravel aquifer.« less

  2. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers anmore » economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.« less

  3. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  4. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...

  5. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...

  6. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...

  7. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...

  8. TEMPERATURE-GRADIENT INCUBATOR FOR DETERMINING THE TEMPERATURE RANGE OF GROWTH OF MICROORGANISMS

    PubMed Central

    Elliott, R. Paul

    1963-01-01

    Elliott, R. Paul (U.S. Department of Agriculture, Albany, Calif.). Temperature-gradient incubator for determining the temperature range of growth of microorganisms. J. Bacteriol. 85:889–894. 1963.—The temperature-gradient incubator consists of an aluminum bar with troughs for media, with controlled temperatures at each end, and with insulation to prevent heat transfer. The resulting linear temperature gradient provides a means for determining minimal or maximal growth temperatures of microorganisms in any desired range and at any desired gradient. The operation of the incubator is unaffected by line-voltage variations or by ambient temperature. Media do not dehydrate seriously even during prolonged periods of operation. The incubator can be used to determine water activity of media by an adjustment to permit partial freezing. Either thermocouples or thermistors may be used to measure temperatures. Images PMID:14044959

  9. Minimizing hot spot temperature in asymmetric gradient coil design.

    PubMed

    While, Peter T; Forbes, Larry K; Crozier, Stuart

    2011-08-01

    Heating caused by gradient coils is a considerable concern in the operation of magnetic resonance imaging (MRI) scanners. Hot spots can occur in regions where the gradient coil windings are closely spaced. These problem areas are particularly common in the design of gradient coils with asymmetrically located target regions. In this paper, an extension of an existing coil design method is described, to enable the design of asymmetric gradient coils with reduced hot spot temperatures. An improved model is presented for predicting steady-state spatial temperature distributions for gradient coils. A great amount of flexibility is afforded by this model to consider a wide range of geometries and system material properties. A feature of the temperature distribution related to the temperature gradient is used in a relaxed fixed point iteration routine for successively altering coil windings to have a lower hot spot temperature. Results show that significant reductions in peak temperature are possible at little or no cost to coil performance when compared to minimum power coils of equivalent field error.

  10. Magnetoelectrets prepared by using temperature gradient method

    NASA Astrophysics Data System (ADS)

    Ojha, Pragya; Qureshi, M. S.; Malik, M. M.

    2015-05-01

    A novel Temperature Gradient method for preparation of magnetoelectret is proposed. Non uniform magnetic field and temperature gradient are expected to be the main cause for the formation of magnetoelectrets (MEs). Being bad conductors of heat, during their formation, there is a possibility for the existence of a temperature gradient along the dielectric electrode interface. In this condition, the motion of, molecules and charge carriers are dependent on Temperature Gradient in a preferred direction. To increase this temperature gradient on both sides of the sample novel method for the preparation of MEs is developed for the first time. For this method the special sample holders are designed in our laboratory. MEs are prepared in such a way that one surface is cooled and the other is heated, during the process. With the help of XRD analysis using Type-E orientation pattern and surface charge studies on magnetoelectrets, the two main causes Non uniform magnetic field and temperature gradient for the formation of magnetoelectrets (MEs), are authenticated experimentally.

  11. Roundness and taper of holes during drilling composites of various thickness by HSS drill bit under dry condition

    NASA Astrophysics Data System (ADS)

    Sakib, M. S.; Rahman, Motiur; Ferdous, M.; Dhar, N. R.

    2017-12-01

    Polymer Matrix Composites are extending a wide range of applications in aviation in recent eras because of their better economics, well established processing, high temperature properties, high resistance to corrosion and fatigue. Directional properties of composites are dependent on the fibre orientation. Composites being anisotropic in nature are difficult to drill and machining and tooling of the composites remained a great challenge over time. This paper addresses the issues of various machining problems such as delamination, fibre pull-out, cracks on varying drilling parameters like feed rate and drilling speed. Experimental drilling was carried out on Fibre Reinforced Plastic composites with HSS drill bit. Results reveal that as the number of holes increases the entry and exit diameter and tapper of holes vary and also varying composite thickness results in a difference in hole roundness and tapper. This experiment summarizes that for achieving acceptable tool life and hole quality demands a drill designed with composites.

  12. Influence of smooth temperature variation on hotspot ignition

    NASA Astrophysics Data System (ADS)

    Reinbacher, Fynn; Regele, Jonathan David

    2018-01-01

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H2-air reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. However, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.

  13. Recovery Act. Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remote Sensing and On-Site Exploration, Testing, and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, Paul; Skeehan, Kirsten; Smith, Jerome

    Report on the confirmation of Commercial Geothermal Resources in Colorado describing the on site testing and analysis to confirm remote sensing identified potential resources. A series of thermal gradient wells were drilled in the Pagosa Springs region and the data collected is analyzed within.

  14. Geothermal Data Collection and Interpretation in the State of Alabama: Early Results from the ARRA Geothermal Energy Initiative

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Osborne, T. E.; McIntyre, M. R.; Pashin, J. C.

    2011-12-01

    The Geological Survey of Alabama (GSA) is expanding its efforts to collect, develop, maintain, and analyze statewide geothermal data and to make this information widely and easily accessible to the public through the National Geothermal Data System. The online availability of this data will aid in the effective development of geothermal energy applications and reduce the risks associated with the initial stages of geothermal project development. To this end, the GSA is participating in a collaborative project that the Arizona Geological Survey is coordinating in cooperation with the Association of American State Geologists and with the support of the U.S. Department of Energy as part of the American Reinvestment and Recovery Act. Wells drilled for the exploration and production of hydrocarbons are the primary sources of geothermal data in Alabama. To date, more than 1,200 wells in coalbed methane (CBM) fields in the Black Warrior Basin (BWB) have been examined, in addition to over 500 conventional wells in the basin. Pottsville Formation (Pennsylvanian) bottom-hole temperatures (BHTs) range from less than 80°F to more than 140°F in wells reaching total depth between 1,000 and 6,000 feet (ft). Temperature and depth correlate with a coefficient of determination (r2) of 0.72, reflecting significant variation of the modern geothermal gradient. Mapping and statistical analysis confirm that geothermal gradient in the CBM fairway is typically between 6 and 12°F/1,000 ft. BHTs in the conventional wells penetrating the BWB show even greater variation, with temperature and depth correlating with an r2 of only 0.27. This variability owes to numerous factors, including stratigraphy, lithology, thermal conductivity, and geothermal gradient. Indeed, these wells reach total depth between 500 and 12,000 ft in carbonate and siliciclastic formations ranging in age from Cambrian to Mississippian. The Cambrian section is dominated by low conductivity shale, whereas the Ordovician-Mississippian section contains mainly high-conductivity carbonate. The Upper Mississippian, by contrast, includes complexly interstratified carbonate and siliciclastic rock types with variable thermal conductivity. The Gulf Coast basin of southwest Alabama contains numerous wells penetrating a Mesozoic stratigraphic section that is between 12,000 and 22,000 ft thick. Most wells reach total depth in Jurassic carbonate and sandstone or in Upper Cretaceous sandstone, and the deepest wells have BHTs greater than 400°F. Temperature readings are available at multiple depths for numerous wells, due to multiple log runs. These wells are particularly valuable owing to the availability of data from formations that are not reservoirs. Geothermal gradient is affected by geopressure, which is typically present below 10,000 ft. Gradient is further affected by a thick evaporite section, which can include more than 3,000 ft of salt in the Jurassic section. Thermal data from these wells are invaluable for characterizing petroleum systems and for identifying zones of warm water that can be used as geothermal energy sources.

  15. Thermoelectrically cooled temperature-gradient apparatus for comparative cell and virus temperature studies.

    PubMed

    Clark, H F; Kaminski, F; Karzon, D T

    1970-05-01

    Establishment of a near-linear temperature gradient in an incubator has been accomplished by the application of heat to one terminus of a conducting body, normally a metal bar, and the removal of heat from the other terminus of the conducting body. Such incubators have been complex and unwieldy because of the need for mechanical refrigeration. We have described a simplified temperature gradient incubator which uses thermoelectric module cooling coupled with electric heating. Along the gradient, 20 stations in two parallel rows of 10, each accommodating a 30-ml plastic cell culture flask, were continually monitored by an electronic thermometer, and the temperatures were recorded. By manipulation of two simple potentiometer controls, any temperature gradient between 0 and 50 C could be obtained. Minor deviations which occurred between theoretically perfect and obtained temperature gradients were reproducible and readily measured. The gradient incubator was particularly applicable to (i) simultaneously studying a given biological activity over the entire temperature range supporting the growth of a given cell, virus, or microorganism, or (ii) precisely defining the upper or lower temperature limits of a biological system by 10-point determinations. Preliminary experiments have demonstrated the usefulness of the apparatus in characterizing the temperature limits for growth in vitro of cells of reptilian cell lines. The gradient incubator was also successfully utilized for the characterization of the effect of temperature on the efficiency of plating of amphibian viruses and possible temperature variants of those viruses.

  16. Preliminary Fracture Description from Core, Lithological Logs, and Borehole Geophysical Data in Slimhole Wells Drilled for Project Hotspot: the Snake River Geothermal Drilling Project

    NASA Astrophysics Data System (ADS)

    Kessler, J. A.; Evans, J. P.; Shervais, J. W.; Schmitt, D.

    2011-12-01

    The Snake River Geothermal Drilling Project (Project Hotspot) seeks to assess the potential for geothermal energy development in the Snake River Plain (SRP), Idaho. Three deep slimhole wells are drilled at the Kimama, Kimberly, and Mountain Home sites in the central SRP. The Kimama and Kimberly wells are complete and the Mountain Home well is in progress. Total depth at Kimama is 1,912 m while total depth at Kimberly is 1,958 m. Mountain Home is expected to reach around 1,900 m. Full core is recovered and complete suites of wireline borehole geophysical data have been collected at both Kimama and Kimberly sites along with vertical seismic profiles. Part of the geothermal assessment includes evaluating the changes in the nature of fractures with depth through the study of physical core samples and analysis of the wireline geophysical data to better understand how fractures affect permeability in the zones that have the potential for geothermal fluid migration. The fracture inventory is complete for the Kimama borehole and preliminary analyses indicate that fracture zones are related to basaltic flow boundaries. The average fracture density is 17 fractures/3 m. The maximum fracture density is 110 fractures/3 m. Fracture density varies with depth and increases considerably in the bottom 200 m of the well. Initial indications are that the majority of fractures are oriented subhorizontally but a considerable number are oriented subvertically as well. We expect to statistically evaluate the distribution of fracture length and orientation as well as analyze local alteration and secondary mineralization that might indicate fluid pathways that we can use to better understand permeability at depth in the borehole. Near real-time temperature data from the Kimama borehole indicate a temperature gradient of 82°C/km below the base of the Snake River Plain aquifer at a depth of 960 m bgs. The measured temperature at around 1,400 m depth is 55°C and the projected temperature at 2,000 m depth is 102°C. The rock types at Kimama and Kimberly are primarily basalt and rhyolite, respectively, with interbedded thin sedimentary layers. We identify anomalies in the physical properties of igneous rocks using porosity logs (neutron and acoustic), lithology logs (gamma ray and magnetic susceptibility) and fracture/saturation logs (televiewer and electrical resistivity). The core will be used to constrain the geophysical data and confirm the ability to identify permeability in fracture zones and saturated zones through analysis of the wireline log data. The matrix porosity of these igneous lithologies is near zero aside from porosity from vugs and vesicles. However, open and sealed fractures indicate that mineralizing fluids form connected pathways in the rock. Core samples show a series of alteration phases, including amygdaloidal fine-grained calcite and secondary clays. The geophysical data will be used to predict anomalies in lithology and identify open fractures and saturated zones with high permeability.

  17. Electron temperature critical gradient and transport stiffness in DIII-D

    DOE PAGES

    Smith, Sterling P.; Petty, Clinton C.; White, Anne E.; ...

    2015-07-06

    The electron energy flux has been probed as a function of electron temperature gradient on the DIII-D tokamak, in a continuing effort to validate turbulent transport models. In the scan of gradient, a critical electron temperature gradient has been found in the electron heat fluxes and stiffness at various radii in L-mode plasmas. The TGLF reduced turbulent transport model [G.M. Staebler et al, Phys. Plasmas 14, 055909 (2007)] and full gyrokinetic GYRO model [J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003)] recover the general trend of increasing electron energy flux with increasing electron temperature gradient scale length,more » but they do not predict the absolute level of transport at all radii and gradients. Comparing the experimental observations of incremental (heat pulse) diffusivity and stiffness to the models’ reveals that TGLF reproduces the trends in increasing diffusivity and stiffness with increasing electron temperature gradient scale length with a critical gradient behavior. Furthermore, the critical gradient of TGLF is found to have a dependence on q 95, contrary to the independence of the experimental critical gradient from q 95.« less

  18. Directional Bleb Formation in Spherical Cells under Temperature Gradient

    PubMed Central

    Oyama, Kotaro; Arai, Tomomi; Isaka, Akira; Sekiguchi, Taku; Itoh, Hideki; Seto, Yusuke; Miyazaki, Makito; Itabashi, Takeshi; Ohki, Takashi; Suzuki, Madoka; Ishiwata, Shin'ichi

    2015-01-01

    Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm−1; 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients. PMID:26200871

  19. Infrared thermal integrity testing quality assurance test method to detect drilled shaft defects.

    DOT National Transportation Integrated Search

    2011-06-01

    Thermal integrity profiling uses the measured temperature generated in curing concrete to assess the quality of cast in place concrete foundations (i.e. drilled shafts or ACIP piles) which can include effective shaft size (diameter and length), anoma...

  20. Invasion of drilling mud into gas-hydrate-bearing sediments. Part I: effect of drilling mud properties

    NASA Astrophysics Data System (ADS)

    Ning, Fulong; Zhang, Keni; Wu, Nengyou; Zhang, Ling; Li, Gang; Jiang, Guosheng; Yu, Yibing; Liu, Li; Qin, Yinghong

    2013-06-01

    To our knowledge, this study is the first to perform a numerical simulation and analysis of the dynamic behaviour of drilling mud invasion into oceanic gas-hydrate-bearing sediment (GHBS) and to consider the effects of such an invasion on borehole stability and the reliability of well logging. As a case study, the simulation background sets up the conditions of mud temperature over hydrate equilibrium temperature and overbalanced drilling, considering the first Chinese expedition to drill gas hydrate (GMGS-1). The results show that dissociating gas may form secondary hydrates in the sediment around borehole by the combined effects of increased pore pressure (caused by mud invasion and flow resistance), endothermic cooling that accompanies hydrate dissociation compounded by the Joule-Thompson effect and the lagged effect of heat transfer in sediments. The secondary hydrate ring around the borehole may be more highly saturated than the in situ sediment. Mud invasion in GHBS is a dynamic process of thermal, fluid (mud invasion), chemical (hydrate dissociation and reformation) and mechanical couplings. All of these factors interact and influence the pore pressure, flow ability, saturation of fluid and hydrates, mechanical parameters and electrical properties of sediments around the borehole, thereby having a strong effect on borehole stability and the results of well logging. The effect is particularly clear in the borehole SH7 of GMGS-1 project. The borehole collapse and resistivity distortion were observed during practical drilling and wireline logging operations in borehole SH7 of the GMGS-1.mud density (i.e. the corresponding borehole pressure), temperature and salinity have a marked influence on the dynamics of mud invasion and on hydrate stability. Therefore, perhaps well-logging distortion caused by mud invasion, hydrate dissociation and reformation should be considered for identifying and evaluating gas hydrate reservoirs. And some suitable drilling measurements need to be adopted to reduce the risk of well-logging distortion and borehole instability.

  1. Gradient structure-induced temperature responsiveness in styrene/methyl methacrylate gradient copolymers micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2014-02-01

    In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.

    PubMed

    Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D

    2018-08-24

    By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.

  3. Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

    Treesearch

    Melissa L. Snover; Michael J. Adams; Donald T. Ashton; Jamie B. Bettaso; Hartwell H. Welsh

    2015-01-01

    Summary1. Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing...

  4. Research activities on submarine landslides in gentle continental slope

    NASA Astrophysics Data System (ADS)

    Morita, S.; Goto, S.; Miyata, Y.; Nakamura, Y.; Kitahara, Y.; Yamada, Y.

    2013-12-01

    In the north Sanrikuoki Basin off Shimokita Peninsula, NE Japan, a great number of buried large slump deposits have been identified in the Pliocene and younger formations. The basin has formed in a very gentle continental slope of less than one degree in gradient and is composed of well-stratified formations which basically parallel to the present seafloor. This indicates that the slumping have also occurred in such very gentle slope angle. The slump units and their slip surfaces have very simple and clear characteristics, such as layer-parallel slip on the gentle slope, regularly imbricated internal structure, block-supported with little matrix structure, widespread dewatering structure, and low-amplitude slip surface layer. We recognize that the large slump deposits group of layer-parallel slip in this area is an appropriate target to determine 'mechanism of submarine landslides', that is one of the subjects on the new IODP science plan for 2013 and beyond. So, we started some research activities to examine the feasibility of the future scientific drilling. The slump deposits were recognized basically by 3D seismic analysis. Further detailed seismic analysis using 2D seismic data in wider area of the basin is being performed for better understanding of geologic structure of the sedimentary basin and the slump deposits. This will be good source to extract suitable locations for drill sites. Typical seismic features and some other previous studies imply that the formation fluid in this study area is strongly related to natural gas, of which condition is strongly affected by temperature. So, detailed heat flow measurements was performed in the study area in 2013. For that purpose, a long-term water temperature monitoring system was deployed on the seafloor in October, 2012. The collected water temperature variation is applied to precise correction of heat flow values. Vitrinite reflectance analysis is also being carried out using sediments samples recovered by IODP Expedition 337, which is conducted in a part of the study area from July through September in 2012. The values of vitrinite reflectance will be available for modeling thermal history in the sedimentary basin. A science meeting and a field trip were held in Miyazaki Prefecture in September , 2012. At the field trip, we observed typical geologic structures related to slumping and dewatering in Nichinan Group, which are good onshore objects so as to share the aspects of the slump deposits in the Sanrikuoki Basin among the community. This occasion is aimed at sharing better scientific understanding on slumping and related dewatering and also at identifying the issues for planning the scientific drilling. This study uses the 3D seismic data from the METI seismic survey 'Sanrikuoki 3D' in 2008. The seismic analysis, the vitrinite reflectance analysis, and the science meeting and the field excursion in Miyazaki were supported by the foundation of feasibility studies for future IODP scientific drillings by JAMSTEC CDEX in 2012-2013.

  5. Digital archive of drilling mud weight pressures and wellbore temperatures from 49 regional cross sections of 967 well logs in Louisiana and Texas, onshore Gulf of Mexico basin

    USGS Publications Warehouse

    Burke, Lauri A.; Kinney, Scott A.; Kola-Kehinde, Temidayo B.

    2011-01-01

    This document provides the digital archive of in-situ temperature and drilling mud weight pressure data that were compiled from several historical sources. The data coverage includes the states of Texas and Louisiana in the Gulf of Mexico basin. Data are also provided graphically, for both Texas and Louisiana, as plots of temperature as a function of depth and pressure as a function of depth. The minimum, arithmetic average, and maximum values are tabulated for each 1,000-foot depth increment for temperature as well as pressure in the Texas and Louisiana data.

  6. Influence of smooth temperature variation on hotspot ignition

    DOE PAGES

    Reinbacher, Fynn; Regele, Jonathan David

    2017-10-06

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  7. Influence of smooth temperature variation on hotspot ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinbacher, Fynn; Regele, Jonathan David

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  8. Drilling of optical glass with electroplated diamond tools

    NASA Astrophysics Data System (ADS)

    Wang, A. J.; Luan, C. G.; Yu, A. B.

    2010-10-01

    K9 optical glass drilling experiments were carried out. Bright nickel electroplated diamond tools with small slots and under heat treatment in different temperature were fabricated. Scan electro microscope was applied to analyze the wear of electroplated diamond tool. The material removal rate and grinding ratio were calculated. Machining quality was observed. Bond coating hardness was measured. The experimental results show that coolant is needed for the drilling processes of optical glasses. Heat treatment temperature of diamond tool has influence on wearability of diamond tool and grinding ratio. There were two wear types of electroplated diamond tool, diamond grit wear and bond wear. With the machining processes, wear of diamond grits included fracture, blunt and pull-out, and electroplated bond was gradually worn out. High material removal rates could be obtained by using diamond tool with suitable slot numbers. Bright nickel coating bond presents smallest grains and has better mechanical properties. Bright nickel electroplated diamond tool with slot structure and heat treatment under 200°C was suitable for optical glass drilling.

  9. Real-time drilling mud gas monitoring for qualitative evaluation of hydrocarbon gas composition during deep sea drilling in the Nankai Trough Kumano Basin.

    PubMed

    Hammerschmidt, Sebastian B; Wiersberg, Thomas; Heuer, Verena B; Wendt, Jenny; Erzinger, Jörg; Kopf, Achim

    2014-01-01

    Integrated Ocean Drilling Program Expedition 338 was the second scientific expedition with D/V Chikyu during which riser drilling was conducted as part of the Nankai Trough Seismogenic Zone Experiment. Riser drilling enabled sampling and real-time monitoring of drilling mud gas with an onboard scientific drilling mud gas monitoring system ("SciGas"). A second, independent system was provided by Geoservices, a commercial mud logging service. Both systems allowed the determination of (non-) hydrocarbon gas, while the SciGas system also monitored the methane carbon isotope ratio (δ(13)CCH4). The hydrocarbon gas composition was predominated by methane (> 1%), while ethane and propane were up to two orders of magnitude lower. δ(13)CCH4 values suggested an onset of thermogenic gas not earlier than 1600 meter below seafloor. This study aims on evaluating the onboard data and subsequent geological interpretations by conducting shorebased analyses of drilling mud gas samples. During shipboard monitoring of drilling mud gas the SciGas and Geoservices systems recorded up to 8.64% and 16.4% methane, respectively. Ethane and propane concentrations reached up to 0.03 and 0.013%, respectively, in the SciGas system, but 0.09% and 0.23% in the Geoservices data. Shorebased analyses of discrete samples by gas chromatography showed a gas composition with ~0.01 to 1.04% methane, 2 - 18 ppmv ethane, and 2 - 4 ppmv propane. Quadruple mass spectrometry yielded similar results for methane (0.04 to 4.98%). With δD values between -171‰ and -164‰, the stable hydrogen isotopic composition of methane showed little downhole variability. Although the two independent mud gas monitoring systems and shorebased analysis of discrete gas sample yielded different absolute concentrations they all agree well with respect to downhole variations of hydrocarbon gases. The data point to predominantly biogenic methane sources but suggest some contribution from thermogenic sources at depth, probably due to mixing. In situ thermogenic gas production at depths shallower 2000 mbsf is unlikely based on in situ temperature estimations between 81°C and 85°C and a cumulative time-temperature index of 0.23. In conclusion, the onboard SciGas data acquisition helps to provide a preliminary, qualitative evaluation of the gas composition, the in situ temperature and the possibility of gas migration.

  10. New Methods For Interpretation Of Magnetic Gradient Tensor Data Using Eigenalysis And The Normalized Source Strength

    NASA Astrophysics Data System (ADS)

    Clark, D.

    2012-12-01

    In the future, acquisition of magnetic gradient tensor data is likely to become routine. New methods developed for analysis of magnetic gradient tensor data can also be applied to high quality conventional TMI surveys that have been processed using Fourier filtering techniques, or otherwise, to calculate magnetic vector and tensor components. This approach is, in fact, the only practical way at present to analyze vector component data, as measurements of vector components are seriously afflicted by motion noise, which is not as serious a problem for gradient components. In many circumstances, an optimal approach to extracting maximum information from magnetic surveys would be to combine analysis of measured gradient tensor data with vector components calculated from TMI measurements. New methods for inverting gradient tensor surveys to obtain source parameters have been developed for a number of elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, horizontal line current and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalized source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and is independent of magnetization direction for these sources (and only very weakly dependent on magnetization direction in general). In combination the NSS and its vector gradient enable estimation of the Euler structural index, thereby constraining source geometry, and determine source locations uniquely. NSS analysis can be extended to other useful models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the gradient tensor. Once source locations are determined, information of source magnetizations can be obtained by simple linear inversion of measured or calculated vector and/or tensor data. Inversions based on the vector gradient of the NSS over the Tallawang magnetite deposit in central New South Wales obtained good agreement between the inferred geometry of the tabular magnetite skarn body and drill hole intersections. Inverted magnetizations are consistent with magnetic property measurements on drill core samples from this deposit. Similarly, inversions of calculated tensor data over the Mount Leyshold gold-mineralized porphyry system in Queensland yield good estimates of the centroid location, total magnetic moment and magnetization direction of the magnetite-bearing potassic alteration zone that are consistent with geological and petrophysical information.

  11. Thermal effects in laser-assisted pre-embryo zona drilling

    NASA Astrophysics Data System (ADS)

    Douglas-Hamilton, Diarmaid H.; Conia, Jerome D.

    2001-04-01

    Diode lasers ((lambda) equals 1480 nm) are used with in vitro fertilization to dissect the zone pellucida (shell) of pre- embryos. A focused laser beam is applied in vitro to form a channel or trench in the zona pellucida. The procedure is used to facilitate biopsy or as a promoter of embryo hatching. We present examples and measurements of zona pellucida ablation using animal models. In using the laser it is vital not to damage pre-embryo cells, e.g., by overheating. In order to define safe regimes we have derived some thermal side effects of zona pellucida removal. The temperature profile in the beam and vicinity is predicted as function of laser pulse duration and power. In a crossed- beam experiment a HeNe laser probe is used to detect the temperature-induced change in the refractive index of an aqueous solution, and estimate local thermal gradient. We find that the diode laser beam produces superheated water approaching 200 degree(s)C on the beam axis. Thermal histories during and following the laser pulse are given for regions in the neighborhood of the beam. We conclude that an optimum regime exists with pulse duration

  12. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Intensities of drilling predation of molluscan assemblages in intertidal and subtidal soft substrates in the Persian (Arabian) Gulf

    NASA Astrophysics Data System (ADS)

    Handler, Sabine M.; Albano, Paolo G.; Bentlage, Rudolf; Drummond, Hannah; García-Ramos, Diego A.; Zuschin, Martin

    2016-04-01

    Intensities of drilling predation of molluscan assemblages in intertidal and subtidal soft substrates in the Persian (Arabian) Gulf Sabine Maria Handler1, Paolo G. Albano1, Rudolf Bentlage2, Hannah Drummond2, D.A. García-Ramos1, Martin Zuschin1 1 Department of Paleontology, University of Vienna, Austria 2 St. Lawrence University, Canton, New York 13617, USA Trace fossils left by predators in the skeleton of their prey are arguably one of the most powerful sources of direct data on predator-prey interactions available in the fossil record. Drill holes, especially those attributed to naticid and muricid gastropods, are unambiguous marks of predation and allow discriminating between successful and unsuccessful predation attempts (complete and incomplete holes, respectively). Latitude and water depth influence drilling frequency. We inspected death assemblages of an intertidal flat and of two subtidal (water depth between 6 and 20 m) sandy sites in the Persian (Arabian) Gulf, off the coast of the United Arab Emirates, to determine the patterns of predation on shelled molluscs along the depth gradient. The study is based on ~7,000 and ~60,000 shells from the intertidal and subtidal, respectively. Drilling Frequency (DF, the number of drilled individuals), Incomplete Drilling Frequency (IDF, number of incomplete drill holes), and Prey Effectiveness (ratio between the number of incomplete drill holes and the total number of drilling attempts) were used as metrics of drilling intensity. We observed major differences between the intertidal and subtidal study areas. Drilling frequencies were generally remarkably low and intertidal flats showed a much lower drilling frequency than the subtidal (1.4% and 6.7%, respectively). In the subtidal, we observed significant differences of drilling intensity among bivalve species and between the two sites. However, predation metrics did not correlate with environmental factors such as substrate type and depth, nor with species life habits such as infaunal vs. epifaunal and death assemblage indices such as diversity, abundance and evenness. The abundance of naticid and muricid predators in the living and death assemblage also did not correlate with predation intensities, with the single exception of muricid abundance in the LA at one of the two subtidal sites. The study shows that bivalve predation intensity in the studied area is highly variable among prey species and depth zones (intertidal vs subtidal), but poorly dependant upon other environmental and community structure factors. Results for gastropods are currently being analysed.

  14. Water based drilling mud additive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrary, J.L.

    1983-12-13

    A water based fluid additive useful in drilling mud used during drilling of an oil or gas well is disclosed, produced by reacting water at temperatures between 210/sup 0/-280/sup 0/ F. with a mixture comprising in percent by weight: gilsonite 25-30%, tannin 7-15%, lignite 25-35%, sulfonating compound 15-25%, water soluble base compound 5-15%, methylene-yielding compound 1-5%, and then removing substantially all of the remaining water to produce a dried product.

  15. The Third Dimension of an Active Back-arc Hydrothermal System: ODP Leg 193 at PACMANUS

    NASA Astrophysics Data System (ADS)

    Binns, R.; Barriga, F.; Miller, D.

    2001-12-01

    This first sub-seafloor examination of an active hydrothermal system hosted by felsic volcanics, at a convergent margin, obtained drill core from a high-T "smoker" site (penetrated to sim200 mbsf) and a low-T site of diffuse venting (~400mbsf). We aimed to delineate the lateral and vertical variability in mineralisation and alteration patterns, so as to understand links between volcanological, structural and hydrothermal phenomena and the sources of fluids, and to establish the nature and extent of microbial activity within the system. Technological breakthroughs included deployment of a new hard-rock re-entry system, and direct comparison in a hardrock environment of structural images obtained by wireline methods and logging-while-drilling. The PACMANUS hydrothermal site, at the 1700m-deep crest of a 500m-high layered sequence of dacitic lavas, is notable for baritic massive sulfide chimneys rich in Cu, Zn, Au and Ag. Below an extensive cap 5-40m thick of fresh dacite-rhyodacite, we found unexpectedly pervasive hydrothermal alteration of vesicular and flow-banded precursors, accompanied by variably intense fracturing and anhydrite-pyrite veining. Within what appears one major hydrothermal event affecting the entire drilled sequence, there is much overprinting and repetition of distinctly allochemical argillaceous (illite-chlorite), acid-sulfate (pyrophyllite-anhydrite) and siliceous assemblages. The alteration profiles include a transition from metastable cristobalite to quartz at depth, and are similar under low-T and high-T vent sites but are vertically condensed in a manner suggesting higher thermal gradients beneath the latter. The altered rocks are surprisingly porous (average 25%). Retention of intergranular pore spaces and open vesicles at depth implies elevated hydrothermal pressures, whereas evidence from fluid inclusions and hydrothermal brecciation denotes local or sporadic phase separation. A maximum measured temperature of 313 degC measured 8 days after drilling (360 mbsf at the diffuse venting site), if indicative of thermal gradient, suggests the presence of a very shallow ( ~1.5 km below seafloor) magmatic heat source. While isotopic characteristics of anhydrite suggest an irregularly varying component of magmatic fluid, the abundance of this mineral implies a substantial role for circulating seawater within the subsurface hydrothermal system. Other than the near-ubiquitous, fine grained disseminated pyrite in altered rocks, we found little sulfide mineralisation. Pyritic vein networks and breccias are extensive in the rapidly penetrated, but poorly recovered, interval down to 120 mbsf within our "high-T end-member" hole spudded on a mound surmounted by active (280 degC) chimneys. Anhydrite and open cavities possibly dominate this interval, from which a possible example of subhalative semi-massive sulfide containing chalcopyrite and some sphalerite was recovered near 30 mbsf. At the low-T and high-T vent sites respectively, anaerobic microbes were recorded by direct counting at depths down to 99 and 78 mbsf, and in 90 degC cultivation experiments at 69-107 and 99-129 mbsf. >http://www-odp.tamu.edu/publications/prelim/193

  16. Wellbore stability in oil and gas drilling with chemical-mechanical coupling.

    PubMed

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale.

  17. Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling

    PubMed Central

    Deng, Jingen

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430

  18. Response of Soft Continuous Structures and Topological Defects to a Temperature Gradient.

    PubMed

    Kurita, Rei; Mitsui, Shun; Tanaka, Hajime

    2017-09-08

    Thermophoresis, which is mass transport induced by a temperature gradient, has recently attracted considerable attention as a new way to transport materials. So far the study has been focused on the transport of discrete structures such as colloidal particles, proteins, and polymers in solutions. However, the response of soft continuous structures such as membranes and gels to a temperature gradient has been largely unexplored. Here we study the behavior of a lamellar phase made of stacked surfactant bilayer membranes under a temperature gradient. We find the migration of membranes towards a low-temperature region, causing the increase in the degree of membrane undulation fluctuations towards that direction. This is contrary to our intuition that the fluctuations are weaker at a lower temperature. We show that this can be explained by temperature-gradient-induced migration of membranes under the topological constraint coming from the connectivity of each membrane. We also reveal that the pattern of an edge dislocation array formed in a wedge-shaped cell can be controlled by a temperature gradient. These findings suggest that application of a temperature gradient provides a novel way to control the organization of soft continuous structures such as membranes, gels, and foams, in a manner essentially different from the other types of fields, and to manipulate topological defects.

  19. Rock melting technology and geothermal drilling

    NASA Technical Reports Server (NTRS)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  20. Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor)

    2014-01-01

    A Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill includes a horn actuator having high power piezoelectric materials and a flexure pre-stress to increase the actuators effectiveness. The drill is a low mass, low power, compact coring drill measuring 20-cm high by 7-cm diameter and having a total weight of 2 kg including drive electronics. Using an average power of 50-Watts, the drill basalt is expected to cut basalt at a rate of 0.2 cm/min down to depth of 10-cm and create cuttings and an intact core. The drill is expected to operate under different environments including Martian ambient (6 Torr and down to -50 degree C), and liquid nitrogen temperatures (77 K) and low pressure (<<1 Torr) to simulate lunar polar and Europa conditions. Materials expected to be sampled include Kaolinite, Saddleback Basalt, Limestone, Volcanic Breccia, Siltstone, ice, permafrost and layered rocks with different hardness.

  1. The Effect of Temperature on Moisture Transport in Concrete.

    PubMed

    Wang, Yao; Xi, Yunping

    2017-08-09

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter D HT , which can be determined by the present test data. The test results indicated that D HT is not a constant but increases linearly with the temperature variation. A material model was developed for D HT based on the experimental results obtained in this study.

  2. The Effect of Temperature on Moisture Transport in Concrete

    PubMed Central

    Wang, Yao; Xi, Yunping

    2017-01-01

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter DHT, which can be determined by the present test data. The test results indicated that DHT is not a constant but increases linearly with the temperature variation. A material model was developed for DHT based on the experimental results obtained in this study. PMID:28792460

  3. Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.

  4. Computer Simulation To Assess The Feasibility Of Coring Magma

    NASA Astrophysics Data System (ADS)

    Su, J.; Eichelberger, J. C.

    2017-12-01

    Lava lakes on Kilauea Volcano, Hawaii have been successfully cored many times, often with nearly complete recovery and at temperatures exceeding 1100oC. Water exiting nozzles on the diamond core bit face quenches melt to glass just ahead of the advancing bit. The bit readily cuts a clean annulus and the core, fully quenched lava, passes smoothly into the core barrel. The core remains intact after recovery, even when there are comparable amounts of glass and crystals with different coefficients of thermal expansion. The unique resulting data reveal the rate and sequence of crystal growth in cooling basaltic lava and the continuous liquid line of descent as a function of temperature from basalt to rhyolite. Now that magma bodies, rather than lava pooled at the surface, have been penetrated by geothermal drilling, the question arises as to whether similar coring could be conducted at depth, providing fundamentally new insights into behavior of magma. This situation is considerably more complex because the coring would be conducted at depths exceeding 2 km and drilling fluid pressures of 20 MPa or more. Criteria that must be satisfied include: 1) melt is quenched ahead of the bit and the core itself must be quenched before it enters the barrel; 2) circulating drilling fluid must keep the temperature of the coring assembling cooled to within operational limits; 3) the drilling fluid column must nowhere exceed the local boiling point. A fluid flow simulation was conducted to estimate the process parameters necessary to maintain workable temperatures during the coring operation. SolidWorks Flow Simulation was used to estimate the effect of process parameters on the temperature distribution of the magma immediately surrounding the borehole and of drilling fluid within the bottom-hole assembly (BHA). A solid model of the BHA was created in SolidWorks to capture the flow behavior around the BHA components. Process parameters used in the model include the fluid properties and temperature of magma, coolant flow rate, rotation speed, and rate of penetration (ROP). The modeling results indicate that there are combinations of process parameters that will provide sufficient cooling to enable the desired coring process in magma.

  5. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    NASA Astrophysics Data System (ADS)

    Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.

    2012-05-01

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  6. Analysis of Geothermal Pathway in the Metamorphic Area, Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wu, M. Y.; Song, S. R.; Lo, W.

    2016-12-01

    A quantitative measure by play fairway analysis in geothermal energy development is an important tool that can present the probability map of potential resources through the uncertainty studies in geology for early phase decision making purpose in the related industries. While source, pathway, and fluid are the three main geologic factors in traditional geothermal systems, identifying the heat paths is critical to reduce drilling cost. Taiwan is in East Asia and the western edge of Pacific Ocean, locating on the convergent boundary of Eurasian Plate and Philippine Sea Plate with many earthquake activities. This study chooses a metamorphic area in the western corner of Yi-Lan plain in northeastern Taiwan with high geothermal potential and several existing exploration sites. Having high subsurface temperature gradient from the mountain belts, and plenty hydrologic systems through thousands of millimeters annual precipitation that would bring up heats closer to the surface, current geothermal conceptual model indicates the importance of pathway distribution which affects the possible concentration of extractable heat location. The study conducts surface lineation analysis using analytic hierarchy process to determine weights among various fracture types for their roles in geothermal pathways, based on the information of remote sensing data, published geologic maps and field work measurements, to produce regional fracture distribution probability map. The results display how the spatial distribution of pathways through various fractures could affect geothermal systems, identify the geothermal plays using statistical data analysis, and compare against the existing drilling data.

  7. Historical Isotopic Temperature Record from the Vostok Ice Core (420,000 years BP-present)

    DOE Data Explorer

    Petit, J. R. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Raynaud, D. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Lorius, C. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Jouzel, J. [Laboratoire des Sciences du Climat et de l'Environnement; Delaygue, G. [Laboratoire des Sciences du Climat et de l'Environnement; Barkov, N. I. [Arctic and Antarctic Research Inst. (AARI), St. Petersburg (Russian Federation); Kotlyakov, V. M. [Institute of Geography, Russia

    2000-01-01

    Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (D) in snowfall are temperature-dependent and a strong spatial correlation exists between the annual mean temperature and the mean isotopic ratio (18O or δD) of precipitation, it is possible to derive ice-core climate records. The record presented by Jouzel et al. (1987) was the first ice core record to span a full glacial-interglacial cycle. That record was based on an ice core drilled at the Russian Vostok station in central east Antarctica. The 2083-m ice core was obtained during a series of drillings in the early 1970s and 1980s and was the result of collaboration between French and former-Soviet scientists. Drilling continued at Vostok and was completed in January 1998, reaching a depth of 3623 m, the deepest ice core ever recovered (Petit et al. 1997, 1999). The resulting core allows the ice core record of climate properties at Vostok to be extended to ~420 kyr BP.

  8. Optimizing Drilling Efficiency by PWD (Pressure-While-Drilling) Sensor in wells which were drilled in the Khazar-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2017-04-01

    Sperry Drilling Services' PWD sensor improve and support drilling efficiency by providing very important, real-time downhole pressure information that allows to make faster and better drilling decisions. The PWD service, provides accurate annular pressure, internal pressure and temperature measurements using any of well-known telemetry systems: positive mud pulse, negative mud pulse and electromagnetic. Pressure data can be transmitted in real time and recorded in downhole memory. In the pumpsoff mode, the minimum, maximum and average pressures observed during the non-circulating period are transmitted via mud pulse telemetry when circulation recommences. These measurements provide the knowledge to avoid lost circulation and detect flow/kicks before they happen. The PWD sensor also reduces the risk of problems related by unexpected fracture or collapse. Sperry's PWD sensor also helps to avoid lost circulation and flow/kick, which can lead to costly delays in drilling. Annular pressure increases often reflect ineffective cuttings removal and poor hole cleaning, both of which can lead to lost circulation. The PWD sensor detects the increase and drilling fluid parameters and operating procedures can be modified to improve hole-cleaning efficiency. On extended reach wells, real-time information helps to maintain wellbore pressures between safe operating limits and to monitor hole cleaning. The PWD sensor also provides early detection of well flows and kicks. A drop in pressure, can indicate gas, oil and water kicks. Because the sensor is making its measurement downhole, the PWD sensor makes it possible to detect such pressure drops earlier than more traditional surface measurements. The PWD sensor has high-accuracy quartz gauges and is able to record data because of its battery-powered operation. It is also extremely useful in specialized drilling environments, such as high-pressure/high-temperature, extended-reach and deepwater wells. When combined with the rig management system, surface and downhole measurements, can be compared for more accurate and extensive analysis. PWD sensor was utilized with encouraging results in many wells up to 3000-6000m subsurface reservoirs (these wells were drilled in the Khazar-Caspian region of the Azerbaijan Republic) and acquired PWD RT/RM data implemented for best drilling practices in other brand new drilled offset wells in order to help us achieve our mission to drill safe, faster, on target, optimize drilling efficiency, maximize well value and reservoir insight.

  9. Estimates of Eastern Equatorial Pacific Sea Surface Temperatures During the Pliocene From Carbonate 'Clumped Isotope' Thermometry

    NASA Astrophysics Data System (ADS)

    Thiagarajan, N.; Tripati, A.; Eiler, J.

    2007-12-01

    The early Pliocene (5 to 3 Ma) was an interval in Earth history that was globally warmer than the present; thus, study of the details of Pliocene climate can provide insights into the dynamics of warm climates. There are two competing models of the temperature structure of the tropical Pacific upper-ocean during the early Pliocene: the dynamical 'ocean thermostat' model [1,2] and the 'El Padre' (or permanent 'El Nino') model [3], each of which predict zonal temperature gradients and mean conditions in the Eastern Equatorial Pacific (EEP), and which differ markedly from one another in these predictions. The dynamical 'ocean thermostat' model predicts an increased temperature contrast between the Western Equatorial Pacific (WEP) and EEP, enhanced thermocline tilt and intensified upwelling under warmer conditions. In contrast, the 'El Padre' model postulates a collapse of the zonal temperature gradient, reduced thermocline tilt and a reduction in upwelling and/or warmer temperatures of upwelled waters. Existing reconstructions of tropical temperatures produce WEP sea surface temperatures which agree with each other, but yield very different results in the EEP [4,5]. We have reconstructed EEP sea surface temperatures at Ocean Drilling Program (ODP) Site 847 using a few samples spanning key intervals of the last 6 million years using carbonate clumped isotope thermometer [6,7,8]. This technique is based on the temperature dependence of the abundances of 13C-18O bonds in carbonate minerals. Initial measurements of planktonic foraminifera and coccoliths from ODP Site 847 indicate cool EEP sea surface temperatures, supporting models of Pliocene climate that have enhanced zonal temperature gradients, relative to modern. Analyses of Globigerinoides sacculifer (with sac) from sediments indicate calcification temperatures of 20.3°C ± 0.1°C and seawater δ18O values of -0.8‰ ± 0.1‰ from ~6.1 to 5.1 million years ago. Measurements of a mixed coccolith assemblage from the fine fraction of 5.6 Ma sediments show calcification temperatures of 20.4°C ± 2.3°C and seawater δ18O values of -1.4‰ ± 0.6‰. G. sacculifer (with sac) and mixed coccoliths from 1.4 Ma sediments yield calcification temperatures of 22.3°C ± 2.5°C and seawater δ18O values of 1.7‰ ± 0.7‰, and 19.4°C ± 1.8°C and seawater δ18O values of 0.4‰ ± 0.5‰, respectively. Our preliminary findings are consistent with the 'dynamical ocean thermostat' model. [1] Clement, A., et al., 1996, An Ocean Dynamical Thermostat, J. of Clim., 9, 2190-2196. [2] Cane, M., et al., 1997, Twentieth-Century Sea Surface Temperature Trends, Science, 957-960. [3] Fedorov, A., et al., 2006, The Pliocene Paradox (Mechanisms for a permanent El Nino), Science, 312, 1437-1443. [4] Rickaby, R. and Halloran, P., 2005, Cool La Nina during the warmth of the Pliocene?, Science, 307, 1948-1953. [5] Wara, M., et al. ,2005, Permanent El Nino-like conditions during the Pliocene Warm Period, Science, 309, 758-761. [6] Ghosh, P., et al., 2006, 13C-18O bonds in carbonate minerals: A new kind of paleothermometer, GCA, 70, 1439-1456. [7] Eiler, J. and Tripati, A., 2007, 'Clumped isotope' thermometry in benthic foraminifera and ostracods: A novel tool for reconstructing deep-ocean temperatures. Fall AGU. [8] Tripati, A., et al. 2007, 'Carbonate `clumped isotope' thermometry in planktonic foraminifera and coccoliths. Fall AGU.

  10. Research on high speed drilling technology and economic integration evaluation in Oilfield

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Ni, Hongjian; Cheng, Na; Song, Jingbo

    2018-01-01

    The carbonate reservoir in the oilfield mainly formed in Ordovician System and Carboniferous System. The geology here is very complicated, with high heterogeneity. It gets much more difficult to control the well deflection in Permian system so that high accident ratio could be expected. The buried depth of the reservoir is large, normally 4600-6600m deep. The temperature of the layer is higher than 132 and the pressure is greater than 62MPa. The reservoir is with a high fluid properties, mainly including thin oil, heavy oil, condensate oil, gas and so on; the ground is very hard to drill, so we can foresee low drilling speed, long drilling period and high drilling cost, which will surely restrict the employing progress of the reservoir.

  11. Laboratory Equipment for Investigation of Coring Under Mars-like Conditions

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Cooper, G.

    2004-12-01

    To develop a suitable drill bit and set of operating conditions for Mars sample coring applications, it is essential to make tests under conditions that match those of the mission. The goal of the laboratory test program was to determine the drilling performance of diamond-impregnated bits under simulated Martian conditions, particularly those of low pressure and low temperature in a carbon dioxide atmosphere. For this purpose, drilling tests were performed in a vacuum chamber kept at a pressure of 5 torr. Prior to drilling, a rock, soil or a clay sample was cooled down to minus 80 degrees Celsius (Zacny et al, 2004). Thus, all Martian conditions, except the low gravity were simulated in the controlled environment. Input drilling parameters of interest included the weight on bit and rotational speed. These two independent variables were controlled from a PC station. The dependent variables included the bit reaction torque, the depth of the bit inside the drilled hole and the temperatures at various positions inside the drilled sample, in the center of the core as it was being cut and at the bit itself. These were acquired every second by a data acquisition system. Additional information such as the rate of penetration and the drill power were calculated after the test was completed. The weight of the rock and the bit prior to and after the test were measured to aid in evaluating the bit performance. In addition, the water saturation of the rock was measured prior to the test. Finally, the bit was viewed under the Scanning Electron Microscope and the Stereo Optical Microscope. The extent of the bit wear and its salient features were captured photographically. The results revealed that drilling or coring under Martian conditions in a water saturated rock is different in many respects from drilling on Earth. This is mainly because the Martian atmospheric pressure is in the vicinity of the pressure at the triple point of water. Thus ice, heated by contact with the rotating bit, sublimed and released water vapor. The volumetric expansion of ice turning into a vapor was over 150 000 times. This continuously generated volume of gas effectively cleared the freeze-dried rock cuttings from the bottom of the hole. In addition, the subliming ice provided a powerful cooling effect that kept the bit cold and preserved the core in its original state. Keeping the rock core below freezing also reduced drastically the chances of cross contamination. To keep the bit cool in near vacuum conditions where convective cooling is poor, some intermittent stops would have to be made. Under virtually the same drilling conditions, coring under Martian low temperature and pressure conditions consumed only half the power while doubling the rate of penetration as compared to drilling under Earth atmospheric conditions. However, the rate of bit wear was much higher under Martian conditions (Zacny and Cooper, 2004) References Zacny, K. A., M. C. Quayle, and G. A. Cooper (2004), Laboratory drilling under Martian conditions yields unexpected results, J. Geophys. Res., 109, E07S16, doi:10.1029/2003JE002203. Zacny, K. A., and G. A. Cooper (2004), Investigation of diamond-impregnated drill bit wear while drilling under Earth and Mars conditions, J. Geophys. Res., 109, E07S10, doi:10.1029/2003JE002204. Acknowledgments The research supported by the NASA Astrobiology, Science and Technology Instrument Development (ASTID) program.

  12. Considerations, constraints and strategies for drilling on Mars

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Cooper, G.

    2006-04-01

    The effect of the environmental conditions on Mars - low temperature, low pressure, the uncertainty in the nature of the formations to be penetrated and the possibility of encountering ice - imply that a successful drilling system will have to be able to cope with a wide range of conditions. Systems using continuous drill pipe or wireline both offer attractive features and disadvantages, and the preferred choice may depend on the target depth. The drill bit will have to cope with a range of terrain, and we offer some suggestions for making a bit that will be able to drill in both hard and soft formations, and also be able to resist choking if it encounters ice or ice-bound materials. Since it will not be possible to use a liquid to remove the drilled cuttings on Mars, the cuttings removal system will probably use some form of auger, although it may be possible to use continuous or intermittent gas blasts. The sublimation of ice resulting from the heat of drilling in ice-containing formations may help in removing the cuttings, particularly as they are expected to be very fine as a result of the low power available for drilling. Drilling into ice bound soils was also found to be akin to drilling into ice-bound sandstones.

  13. A general strategy for performing temperature-programming in high performance liquid chromatography--further improvements in the accuracy of retention time predictions of segmented temperature gradients.

    PubMed

    Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2012-01-27

    In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed for systematic method development in high-temperature liquid chromatography (HT-HPLC). The ability to predict isothermal retention times based on temperature-gradient as well as isothermal input data was investigated. For a small temperature interval of ΔT=40°C, both approaches result in very similar predictions. Average relative errors of predicted retention times of 2.7% and 1.9% were observed for simulations based on isothermal and temperature-gradient measurements, respectively. Concurrently, it was investigated whether the accuracy of retention time predictions of segmented temperature gradients can be further improved by temperature dependent calculation of the parameter S(T) of the LES relationship. It was found that the accuracy of retention time predictions of multi-step temperature gradients can be improved to around 1.5%, if S(T) was also calculated temperature dependent. The adjusted experimental design making use of four temperature-gradient measurements was applied for systematic method development of selected food additives by high-temperature liquid chromatography. Method development was performed within a temperature interval from 40°C to 180°C using water as mobile phase. Two separation methods were established where selected food additives were baseline separated. In addition, a good agreement between simulation and experiment was observed, because an average relative error of predicted retention times of complex segmented temperature gradients less than 5% was observed. Finally, a schedule of recommendations to assist the practitioner during systematic method development in high-temperature liquid chromatography was established. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor

    PubMed Central

    Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2017-01-01

    Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106–198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field. PMID:27754478

  15. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor.

    PubMed

    Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-Ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2017-02-01

    Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ 13 C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.

  16. FORGE Milford Digitized Geophysical Logs from Acord 1

    DOE Data Explorer

    Jones, Clay G.; Moore, Joseph N.

    2016-03-31

    This submission includes digitalized versions of the following: McCulloch Geothermal Corp Acord 1-26 Cover Letter McCulloch Geothermal Corp Acord 1-26 Drilling Plan McCulloch Geothermal Corp Acord 1-26 Bond Documents Division of Water Rights Permission to Drill Drillers Log Geothermal Data (Mud) Log Compensated Densilog - Neutron Log Dual Induction Focused Log BHC Acoustilog Differential Temperature Log Dual Induction Focused Log Gamma Ray Neutron Log Temperature Log Caliper Temperature Log (Run 3) Densilog Gamma Ray Neutron Log Temperature Log (Run 4) Compensated Densilog Sample Log (Page 1 of 2) Report of Well Driller Stratigraphic Report (J.E. Welsh) Photographs and Negatives of Acord 1-26 Well Site (7) Petrography Report (M.J. Sweeney) Cuttings Samples (21 Boxes at Utah Core Research Center)

  17. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  18. Thermal Gradient Fining of Glass

    NASA Technical Reports Server (NTRS)

    Wilcox, W.

    1983-01-01

    Molten glass fined (cleared of bubbles) by heating with suitable temperature gradient, according to preliminary experiments. Temperature gradient produces force on gas bubbles trapped in molten glass pushing bubbles to higher temperature region where they are collected. Concept demonstrated in experiments on Earth and on rocket.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guliyev, I.A.; Aliyev, A.A.; Rahmanov, R.R.

    Azerbaijan is a classic region for the study of mud volcanism. Of the 700 mud volcanoes known in the world, 220 are in Azerbaijan. These are of great interest, not least in relation to oil and gas exploration since they give information on subsurface sediments beyond the reach of drilling. Mud volcanoes are clearly visible on satellite images. They are confined to structural lineaments and associated fractures. Changes in the morphology of some mud volcanoes post-eruption can be detected from a series of images pre-dating and post-dating eruptions. Mud volcanoes are notable for gradients of temperature that are by anmore » order of magnitude or a factor of 102 greater than the temperature gradients established elsewhere. The gases of mud volcanoes consist mainly of methane (95-100%). There are small amounts of C{sub 2-6}, CO{sub 2}, N{sub 2}, He and Ar. The isotopic composition of carbon (ICC) within the methane varies from -61.29. to -35.W{close_quotes} which is isotopically heavier than the methane from producing fields. The ICC of the CO{sub 2} has a very wide range (from -49.6% to +23.1%), indicating several sources of its formation. The isotopically superheavy CO{sub 2} (+5%) is especially interesting. Oils from mud volcanoes are typically severely biodegraded. Their ICC ranges from -24.76% to -28.2%. A relationship between {partial_derivative}{sup l3}C of oils and ages of accumulations has been established. Waters of mud volcanoes are lightly mineralised, containing chiefly bicarbonates and sodium. The hydrogen composition of the water is abnormally heavy. Ejected rocks from mud volcanoes range in age from Cretaceous - Pliocene. Their study suggests that deeply buried reservoirs maintain good poroperm characteristics because of relatively little catagenesis.« less

  20. Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.

    2001-12-01

    Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were colonized by palm worms, limpets, and snails. Four other drill holes showed no hydrothermal flow nor visible evidence of down hole recharge. Mapping with Tiburon confirmed that the extent of hydrothermal venting at NESCA decreased dramatically since 1988. Formerly extensive colonies of Ridgia had vanished leaving no trace of their presence. Although hydrothermal venting has collapsed to a single mound, the temperature and composition of the fluids remained nearly unchanged. This is curious given that sediment pore fluids analyzed on Leg 169 included both high salinity and low salinity components of phase separated hydrothermal fluids in the shallow subsurface indicating that the hydrothermal field must have had a relatively recent (relative to the rate of pore fluid diffusion) high temperature history. Hydrothermal fluids presently venting at this site must be derived from an essentially homogeneous, approximately 215\\degC fluid reservoir that has declined in its fluid output on a decadal scale, but has not undergone significant changes in temperature and composition. Venting at the seafloor does not seem to have been affected by drilling in the hydrothermal field.

  1. Biocompatible patterning of proteins on wettability gradient surface by thermo-transfer printing.

    PubMed

    Kim, Sungho; Ryu, Yong-Sang; Suh, Jeng-Hun; Keum, Chang-Min; Sohn, Youngjoo; Lee, Sin-Doo

    2014-08-01

    We develop a simple and biocompatible method of patterning proteins on a wettability gradient surface by thermo-transfer printing. The wettability gradient is produced on a poly(dimethylsiloxane) (PDMS)-modified glass substrate through the temperature gradient during thermo-transfer printing. The water contact angle on the PDMS-modified surface is found to gradually increase along the direction of the temperature gradient from a low to a high temperature region. Based on the wettability gradient, the gradual change in the adsorption and immobilization of proteins (cholera toxin B subunit) is achieved in a microfluidic cell with the PDMS-modified surface.

  2. Application of Taguchi-grey method to optimize drilling of EMS 45 steel using minimum quantity lubrication (MQL) with multiple performance characteristics

    NASA Astrophysics Data System (ADS)

    Soepangkat, Bobby O. P.; Suhardjono, Pramujati, Bambang

    2017-06-01

    Machining under minimum quantity lubrication (MQL) has drawn the attention of researchers as an alternative to the traditionally used wet and dry machining conditions with the purpose to minimize the cooling and lubricating cost, as well as to reduce cutting zone temperature, tool wear, and hole surface roughness. Drilling is one of the important operations to assemble machine components. The objective of this study was to optimize drilling parameters such as cutting feed and cutting speed, drill type and drill point angle on the thrust force, torque, hole surface roughness and tool flank wear in drilling EMS 45 tool steel using MQL. In this study, experiments were carried out as per Taguchi design of experiments while an L18 orthogonal array was used to study the influence of various combinations of drilling parameters and tool geometries on the thrust force, torque, hole surface roughness and tool flank wear. The optimum drilling parameters was determined by using grey relational grade obtained from grey relational analysis for multiple-performance characteristics. The drilling experiments were carried out by using twist drill and CNC machining center. This work is useful for optimum values selection of various drilling parameters and tool geometries that would not only minimize the thrust force and torque, but also reduce hole surface roughness and tool flank wear.

  3. Drill System Development for the Lunar Subsurface Exploration

    NASA Astrophysics Data System (ADS)

    Zacny, Kris; Davis, Kiel; Paulsen, Gale; Roberts, Dustyn; Wilson, Jack; Hernandez, Wilson

    Reaching the cold traps at the lunar poles and directly sensing the subsurface regolith is a primary goal of lunar exploration, especially as a means of prospecting for future In Situ Resource Utilization efforts. As part of the development of a lunar drill capable of reaching a depth of two meters or more, Honeybee Robotics has built a laboratory drill system with a total linear stroke of 1 meter, capability to produce as much as 45 N-m of torque at a rotational speed of 200 rpm, and a capability of delivering maximum downforce of 1000 N. Since this is a test-bed, the motors were purposely chosen to be relative large to provide ample power to the drill system (the Apollo drill was a 500 Watt drill, i.e. not small in current standards). In addition, the drill is capable of using three different drilling modes: rotary, rotary percussive and percussive. The frequency of percussive impact can be varied if needed while rotational speed can be held constant. An integral part of this test bed is a vacuum chamber that is currently being constructed. The drill test-bed is used for analyzing various drilling modes and testing different drill bit and auger systems under low pressure conditions and in lunar regolith simulant. The results of the tests are used to develop final lunar drill design as well as efficient drilling protocols. The drill was also designed to accommodate a downhole neutron spectrometer for measuring the amount of hydrated material in the area surrounding the borehole, as well as downhole temperature sensors, accelerometers, and electrical properties tester. The presentation will include history of lunar drilling, challenges of drilling on the Moon, a description of the drill and chamber as well as preliminary drilling test results conducted in the ice-bound lunar regolith simulant with a variety of drill bits and augers systems.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    William C. Maurer; William J. McDonald; Thomas E. Williams

    Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed formore » a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.« less

  5. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser

    NASA Astrophysics Data System (ADS)

    Jaeschke, Peter; Stolberg, Klaus; Bastick, Stefan; Ziolkowski, Ewa; Roehner, Markus; Suttmann, Oliver; Overmeyer, Ludger

    2014-02-01

    Continuous carbon fibre reinforced plastics (CFRP) are recognized as having a significant lightweight construction potential for a wide variety of industrial applications. However, a today`s barrier for a comprehensive dissemination of CFRP structures is the lack of economic, quick and reliable manufacture processes, e.g. the cutting and drilling steps. In this paper, the capability of using pulsed disk lasers in CFRP machining is discussed. In CFRP processing with NIR lasers, carbon fibers show excellent optical absorption and heat dissipation, contrary to the plastics matrix. Therefore heat dissipation away from the laser focus into the material is driven by heat conduction of the fibres. The matrix is heated indirectly by heat transfer from the fibres. To cut CFRP, it is required to reach the melting temperature for thermoplastic matrix materials or the disintegration temperature for thermoset systems as well as the sublimation temperature of the reinforcing fibers simultaneously. One solution for this problem is to use short pulse nanosecond lasers. We have investigated CFRP cutting and drilling with such a laser (max. 7 mJ @ 10 kHz, 30 ns). This laser offers the opportunity of wide range parameter tuning for systematic process optimization. By applying drilling and cutting operations based on galvanometer scanning techniques in multi-cycle mode, excellent surface and edge characteristics in terms of delamination-free and intact fiber-matrix interface were achieved. The results indicate that nanosecond disk laser machining could consequently be a suitable tool for the automotive and aircraft industry for cutting and drilling steps.

  6. Fully kinetic Biermann battery and associated generation of pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Schoeffler, K. M.; Loureiro, N. F.; Silva, L. O.

    2018-03-01

    The dynamical evolution of a fully kinetic, collisionless system with imposed background density and temperature gradients is investigated analytically. The temperature gradient leads to the generation of temperature anisotropy, with the temperature along the gradient becoming larger than that in the direction perpendicular to it. This causes the system to become unstable to pressure anisotropy driven instabilities, dominantly to the electron Weibel instability. When both density and temperature gradients are present and nonparallel to each other, we obtain a Biermann-like linear-in-time magnetic field growth. Accompanying particle-in-cell numerical simulations are shown to confirm our analytical results.

  7. Comparison of conventional twist drill protocol and piezosurgery for implant insertion: an ex vivo study on different bone types.

    PubMed

    Sagheb, Keyvan; Kumar, Vinay V; Azaripour, Adriano; Walter, Christian; Al-Nawas, Bilal; Kämmerer, Peer W

    2017-02-01

    The aim of this ex vivo study was to compare implant insertion procedures using piezosurgery and conventional drilling in different qualities of bone. Implant bed preparation time, generated heat, and primary implant stability were analyzed. Fresh ex vivo porcine bone block samples (cancellous, mixed, and cortical bone) were obtained. The bone quality was quantified by ultrasound transmission velocity (UTV). Each bone sample received three implants of the same diameter using each of the techniques of piezosurgery and conventional twist drills. Time for preparation was taken and the temperature while performing the osteotomy was measured using infrared spectroscopy. The primary implant stability after osteotomy was measured using resonance frequency analysis (RFA) and extrusion torque (ET). ANOVA with post hoc Tukey test was carried out to compare the values for the three different groups. The UTV values strongly correlated with the density of the bone samples. There was a significant increase in time (threefold, P < 0.05 [302 s vs. 122 s in cortical bone]) but no difference in the temperature for the piezo group (~37°C in cortical bone). Regardless of the osteotomy technique, there was a statistically significant increase in RFA and ET values in implants inserted in cancellous bone (RFA: piezo 77, drill 76; ET: piezo 22, drill 21), mixed bone (RFA: piezo 85, drill 86; ET: piezo 105, drill 61), and cortical bone (RFA: piezo 90, drill 87; ET piezo 184, drill 79) samples, respectively (P < 0.05). In between the different osteotomy groups, there was no difference in the RFA values but significant higher ET values in mixed/cortical bone samples in favor for the piezosurgery group. Piezosurgery and conventional implant bed drilling procedure do have similar mechanical outcomes regarding primary stability with high RFA values, but the preparation does need more time for piezosurgery group, so that piezosurgery might be a valuable tool in only very specific cases for implant bed preparation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Fossil Coral Records of ENSO during the Last Glacial Period

    NASA Astrophysics Data System (ADS)

    Partin, J. W.; Taylor, F. W.; Shen, C. C.; Edwards, R. L.; Quinn, T. M.; DiNezro, P.

    2017-12-01

    Only a handful of paleoclimate records exist that can resolve interannual changes, and hence El Nino/Southern Oscillation (ENSO) variability, during the last glacial period, a time of altered mean climate. The few existing data suggest reduced ENSO variability compared to the Holocene, possibly due to a weaker zonal sea surface temperature gradient across the tropical Pacific and/or a deeper thermocline in the eastern tropical Pacific. Our goal is to add crucial data to this extremely limited subset using sub-annually resolved fossil corals that grew during this time period to reconstruct ENSO. We seek to recover fossil corals from Vanuatu, SW Pacific (16°S, 167°E) with the objective of using coral δ18O to reconstruct changes in the ENSO during and near the Last Glacial Maximum (LGM). Modern δ18O coral records from Vanuatu show a high degree of skill in capturing ENSO variability, making it a suitable site for reconstructing ENSO variability. We have custom designed and are building a drill system that can rapidly core many 0-25 m holes resulting in much more meters of penetration than achieved by previous land-based reef drilling. As the new drill system is extremely portable and can be quickly relocated by workers without landing craft or vehicles, it is time and cost efficient. Because the proposed drilling sites have uplifted extremely fast, 7 mm/year, the LGM shoreline has been raised from 120-140 m depth to within a depth range of 10 below to 20 m above present sea level. This enables all the drilling to be within the time range of interest ( 15-25 ka). A last advantage is that the LGM corals either are still submersed in seawater or emerged only within the last 2000 years at the uplift rate of 7 mm/yr. This greatly reduces the chances of disruption of the original climate signal because sea water is less diagenetically damaging than meteoric water in the mixed, phreatic, or vadose zones. LGM coral records will enable us to compare the proxy variability to climate model simulations in order to elucidate the mechanisms driving the changes in ENSO. The proposed research activities will shed light on the sensitivity of ENSO to external forcings, a highly critical issue given that climate model projections used for future climate projection do not agree if ENSO will strengthen or weaken as the Earth warms.

  9. Bioremediation of oil-based drill cuttings by a halophilic consortium isolated from oil-contaminated saline soil.

    PubMed

    Rezaei Somee, Maryam; Shavandi, Mahmoud; Dastgheib, Seyed Mohammad Mehdi; Amoozegar, Mohammad Ali

    2018-05-01

    Oil-based drill cuttings are hazardous wastes containing complex hydrocarbons, heavy metals, and brine. Their remediation is a crucial step before release to the environment. In this work, we enriched a halophilic consortium, from oil-polluted saline soil, which is capable of degrading diesel as the main pollutant of oil-based drill cuttings. The degradation ability of the consortium was evaluated in microcosms using two different diluting agents (fine sand and biologically active soil). During the bioremediation process, the bacterial community dynamics of the microcosms was surveyed using PCR amplification of a fragment of 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE). The diesel degradation rates were monitored by total petroleum hydrocarbon (TPH) measurement and the total count of heterotrophic and diesel-degrading bacteria. After 3 months, the microcosm containing fine sand and drill cuttings with the ratio of 1:1 (initial TPH of 36,000 mg/kg) showed the highest TPH removal (40%) and its dominant bacterial isolates belonged to the genera Dietzia, Arthrobacter , and Halomonas . DGGE results also confirmed the role of these genera in drill cuttings remediation. DGGE analysis of the bacterial diversity showed that Propionibacterium, Salinimicrobium, Marinobacter , and Dietzia are dominant in active soil microcosm; whereas Bacillus, Salinibacillus , and Marinobacter are abundant in sand microcosm. Our results suggest that the bioaugmentation strategy would be more successful if the diluting agent does not contain a complex microbial community.

  10. Comparison of heat generation during implant drilling using stainless steel and ceramic drills.

    PubMed

    Sumer, Mahmut; Misir, A Ferhat; Telcioglu, N Tuba; Guler, Ahmet U; Yenisey, Murat

    2011-05-01

    The purpose of this study was to compare the heat generated from implant drilling using stainless steel and ceramic drills. A total of 40 fresh bovine femoral cortical bone samples were used in this study. A constant drill load of 2.0 kg was applied throughout the drilling procedures via a drilling rig at a speed of 1,500 rpm. Two different implant drill types (stainless steel and ceramic) were evaluated. Heat was measured with type K thermocouple from 3 different depths. Data were subjected to the independent-sample t test and Pearson correlation analysis. The α level was set a priori at 0.05. The mean maximum temperatures at the depths of 3 mm, 6 mm, and 9 mm with the stainless steel drill were 32.15°C, 35.94°C, and 37.05°C, respectively, and those with the ceramic drill were 34.49°C, 36.73°C, and 36.52°C, respectively. A statistically significant difference was found at the depth of 3 mm (P = .014) whereas there was no significant difference at the depths of 6 and 9 mm (P > .05) between stainless steel and ceramic drills. Within the limitations of the study, although more heat was generated in the superficial part of the drilling cavity with the ceramic drill, heat modifications seemed not to be correlated with the drill type, whether stainless steel or ceramic, in the deep aspect of the cavity. Further clinical studies are required to determine the effect of drill type on heat generation. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Comparing Geophysical Methods for Determining the Thickness of Arctic Sea Ice: Is There a Correlation Between Thickness and Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Robertson, R.; Bowman, T.; Eagle, J. L.; Fisher, L.; Mankowski, K.; McGrady, N.; Schrecongost, N.; Voll, H.; Zulfiqar, A.; Herman, R. B.

    2016-12-01

    Several small geophysical surveys were conducted on the Chukchi Sea ice just offshore from the Naval Arctic Research Laboratory near Barrow, Alaska, in March, 2016. The goal was to investigate a possible correlation between the surface temperature and the thickness of the sea ice, as well as to test a potential new method for more accurately determining ice thickness. Surveys were conducted using a capacitively coupled resistivity array, a custom built thermal sensor array sled, ground penetrating radar (GPR), and an ice drill. The thermal sensor array was based on an Arduino microcontroller. It used an infrared (IR) sensor to determine surface temperature, and thermistor-based sensors to determine vertical air temperatures at 6 evenly spaced heights up to a maximum of 1.5 meters. Surface temperature (IR) data show possible correlations with ice drill, resistivity, and GPR data. The vertical air sensors showed almost no variation for any survey line which we postulate is due to the constant wind during each survey. Ice drill data show ice thickness along one 200 meter line varied from 79-95 cm, with an average of 87 cm. The thickness appears to be inversely correlated to surface temperatures. Resistivity and IR data both showed abrupt changes when crossing from the shore to the sea ice along a 400 meter line. GPR and IR data showed similar changes along a separate 900 meter line, suggesting that surface temperature and subsurface composition are related. Resistivity data were obtained in two locations by using the array in an expanding dipole-dipole configuration with 2.5 meter dipoles. The depth to the ice/water boundary was calculated using a "cumulative resistivity" plot and matched the depths obtained via the ice drill to within 2%. This has initiated work to develop a microcontroller-based resistivity array specialized for thickness measurements of thin ice.

  12. Thermal Gradient During Vacuum-Deposition Dramatically Enhances Charge Transport in Organic Semiconductors: Toward High-Performance N-Type Organic Field-Effect Transistors.

    PubMed

    Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung

    2017-03-22

    A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm 2 V -1 s -1 , more than a factor of 2 higher than the mobility of 0.25 cm 2 V -1 s -1 submitted to conventional thermal annealing and the mobility of 0.29 cm 2 V -1 s -1 from the horizontally applied temperature gradient.

  13. Estimate of subsurface formation temperature in the Tarim basin, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2015-04-01

    Subsurface formation temperature in the Tarim basin, the largest sedimentary basin in China, is significant for its hydrocarbon generation, preservation and geothermal energy potential assessment, but till now is not well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data, drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime, and estimate the formation temperature at specific depths in the range 1000~5000 m in this basin. Results show that the heat flow of the Tarim basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5±7.6 mW/m2; geothermal gradient at the depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7±2.9 °C/km. Formation temperature at the depth of 1000 m is estimated to be between 29 °C and 41°C, with a mean of 35°C; whilst the temperature at 2000 m ranges from 46~71°C with an average of 59°C; 63~100°C is for that at the depth of 3000 m, and the mean is 82°C; the temperature at 4000 m varies from 80 to 130°C, with a mean of 105°C; 97~160°C is for the temperature at 5000 m depth. In addition, the general pattern of the subsurface formation temperatures at different depths is basically similar and is characterized by high temperatures in the uplift areas and low temperatures in the sags. Basement structure and lateral variations in thermal properties account for this pattern of the geo-temperature field in the Tarim basin.

  14. Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C

    USDA-ARS?s Scientific Manuscript database

    Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...

  15. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    PubMed

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.

  16. Degradation of titanium drillpipe from corrosion and wear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferg, T.E.; Aldrich, C.S.; Craig, B.D.

    1993-06-01

    Drilling deeper than 35,000 ft is limited by the extreme hook loads of steel drillpipe and temperature constraints of aluminum drillpipe. Titanium Alloys Ti-6Al-4V and Beta C have been proposed for use in drillpipe for wells deeper than 35,000 ft because of their high strength/weight ratios, superior high-temperature corrosion resistance, and thermal stability. Their suitability in drilling environments, however, has not been evaluated. To determine the corrosion and wear characteristics of two types of titanium-alloy drillpipe under dogleg conditions, a test cell was constructed to test titanium drillpipe joints in contact with API Spec. 5CT Grade P-110 casing in differentmore » drilling muds. Titanium-alloy pipe and Grade P-110 casing wear rates were measured, and tests showed that both titanium-alloy pipes exhibited much greater wear than did steel drillpipe in water-based mud under the same conditions. Test data showed that the total wear rate of Alloys Ti-6Al-4V and Beta C in a drilling environment is a combination of mechanical wear and corrosion.« less

  17. Cold hands, warm feet: sleep deprivation disrupts thermoregulation and its association with vigilance.

    PubMed

    Romeijn, Nico; Verweij, Ilse M; Koeleman, Anne; Mooij, Anne; Steimke, Rosa; Virkkala, Jussi; van der Werf, Ysbrand; Van Someren, Eus J W

    2012-12-01

    Vigilance is affected by induced and spontaneous skin temperature fluctuations. Whereas sleep deprivation strongly affects vigilance, no previous study examined in detail its effect on human skin temperature fluctuations and their association with vigilance. In a repeated-measures constant routine design, skin temperatures were assessed continuously from 14 locations while performance was assessed using a reaction time task, including eyes-open video monitoring, performed five times a day for 2 days, after a normal sleep or sleep deprivation night. Participants were seated in a dimly lit, temperature-controlled laboratory. Eight healthy young adults (five males, age 22.0 ± 1.8 yr (mean ± standard deviation)). One night of sleep deprivation. Mixed-effect regression models were used to evaluate the effect of sleep deprivation on skin temperature gradients of the upper (ear-mastoid), middle (hand-arm), and lower (foot-leg) body, and on the association between fluctuations in performance and in temperature gradients. Sleep deprivation induced a marked dissociation of thermoregulatory skin temperature gradients, indicative of attenuated heat loss from the hands co-occurring with enhanced heat loss from the feet. Sleep deprivation moreover attenuated the association between fluctuations in performance and temperature gradients; the association was best preserved for the upper body gradient. Sleep deprivation disrupts coordination of fluctuations in thermoregulatory skin temperature gradients. The dissociation of middle and lower body temperature gradients may therefore be evaluated as a marker for sleep debt, and the upper body gradient as a possible aid in vigilance assessment when sleep debt is unknown. Importantly, our findings suggest that sleep deprivation affects the coordination between skin blood flow fluctuations and the baroreceptor-mediated cardiovascular regulation that prevents venous pooling of blood in the lower limbs when there is the orthostatic challenge of an upright posture.

  18. RESPONSE OF HATCHLING AND YEARLING TURTLES TO THERMAL GRADIENTS: COMPARISON OF CHELYDRA SERPENTINA AND TRACHEMYS SCRIPTA

    EPA Science Inventory


    In laboratory test, young Chelydra serpentina and Trachemys scripta altered their distribution in the presence of a temperature gradient. Selection of temperatures in the gradient for hatchlings and yearlings showed that body temperature (Tbs) of C. serpentina were lower tha...

  19. Thermotropism by primary roots of maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortin, M.-C.; Poff, K.L.

    1990-05-01

    Sensing in the roots of higher plants has long been recognized to be restricted mainly to gravitropism and thigmotropism. However, root responses to temperature gradients have not been extensively studied. We have designed experiments under controlled conditions to test if and how root direction of maize can be altered by thermal gradients perpendicular to the gravity vector. Primary roots of maize grown on agar plates exhibit positive thermotropism (curvature toward the warmer temperature) when exposed to gradients of 0.5 to 4.2{degree}C cm{sup {minus}1}. The extent of thermotropism depends on the temperature gradient and the temperature at which the root ismore » placed within the gradient. The curvature cannot be accounted for by differential growth as a direct effect of temperature on each side of the root.« less

  20. Skin temperature and core-peripheral temperature gradient as markers of hemodynamic status in critically ill patients: a review.

    PubMed

    Schey, Bernadette M; Williams, David Y; Bucknall, Tracey

    2010-01-01

    To examine the evidential basis underpinning the monitoring of skin temperature and core-peripheral temperature gradient as elements of hemodynamic assessment in critically ill and adult cardiac surgical patients. Twenty-six studies examining the efficacy of skin temperature or temperature gradient as markers of hemodynamic status were selected as part of an integrative review. Evidence pertaining to the efficacy of these parameters as markers of cardiac function is equivocal and has not been well appraised in the adult cardiac surgical population. Skin temperature and systemic vascular resistance are also affected by factors other than cardiac output. Skin temperature and core-peripheral temperature gradient should not be considered in isolation from other hemodynamic parameters when assessing cardiac status until they are validated by further large-scale prospective studies. 2010. Published by Mosby, Inc.

  1. Subsurface temperatures and geothermal gradients on the north slope of Alaska

    USGS Publications Warehouse

    Collett, T.S.; Bird, K.J.; Magoon, L.B.

    1993-01-01

    On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.

  2. Cybersonics: Tapping into Technology

    NASA Technical Reports Server (NTRS)

    2001-01-01

    With the assistance of Small Business Innovation Research (SBIR) funding from NASA's Jet Propulsion Laboratory, Cybersonics, Inc., developed an ultrasonic drill with applications ranging from the medical industry to space exploration. The drill, which has the ability to take a core sample of the hardest granite or perform the most delicate diagnostic medical procedure, is a lightweight, ultrasonic device made to fit in the palm of the hand. Piezoelectric actuators, which have only two moving parts and no gears or motors, drive the components of the device, enabling it to operate in a wide range of temperatures. The most remarkable aspect of the drill is its ability to penetrate even the hardest rock with minimal force application. The ultrasonic device requires 20 to 30 times less force than standard rotating drills, allowing it to be safely guided by hand during operation. Also, the drill is operable at a level as low as three watts of power, where conventional drills require more than three times this level. Potential future applications for the ultrasonic drill include rock and soil sampling, medical procedures that involve core sampling or probing, landmine detection, building and construction, and space exploration. Cybersonics, Inc. developed an ultrasonic drill with applications ranging from the medical industry to space exploration.

  3. Influence of temperature gradients on charge transport in asymmetric nanochannels.

    PubMed

    Benneker, Anne M; Wendt, Hans David; Lammertink, Rob G H; Wood, Jeffery A

    2017-10-25

    Charge selective asymmetric nanochannels are used for a variety of applications, such as nanofluidic sensing devices and energy conversion applications. In this paper, we numerically investigate the influence of an applied temperature difference over tapered nanochannels on the resulting charge transport and flow behavior. Using a temperature-dependent formulation of the coupled Poisson-Nernst-Planck and Navier-Stokes equations, various nanochannel geometries are investigated. Temperature has a large influence on the total ion transport, as the diffusivity of ions and viscosity of the solution are strongly affected by temperature. We find that the selectivity of the nanochannels is enhanced with increasing asymmetry ratios, while the total current is reduced at higher asymmetry cases. Most interestingly, we find that applying a temperature gradient along the electric field and along the asymmetry direction of the nanochannel enhances the selectivity of the tapered channels even further, while a temperature gradient countering the electric field reduces the selectivity of the nanochannel. Current rectification is enhanced in asymmetric nanochannels if a temperature gradient is applied, independent of the direction of the temperature difference. However, the degree of rectification is dependent on the direction of the temperature gradient with respect to the channel geometry and the electric field direction. The enhanced selectivity of nanochannels due to applied temperature gradients could result in more efficient operation in energy harvesting or desalination applications, motivating experimental investigations.

  4. New Energy Villages in Taiwan and China

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Wang, S. C.

    2015-12-01

    Taiwan locates in the active tectonic subdution and collision belts, therefore, the geothermal gradient is very high and have found 128 sites of high geothermal areas; 20% of them have the temperature between 75 - 200 degree C in which they can be directly used for the electricity generation; 50% of them are in 50 - 74 degree C and the rest 30% are below 50 degree C. These areas need the deep drillings to get into higher temperature for power energy. The first 20% high temperature areas are mostly located in the coastal or mountain regions. The government is interesting to develop these areas as the "New Energy Villages" so that they can not only become self-energy sufficient sites, but also to protect themself from being the loss of electricity and water during the typhoon and earthquake hazards. The multiple usages of hot water (such as the first power generation and then the hot spring utilization) have its merits. China, in the other hand, is not within the present-day active tectonic zone. However, the recent Sino Probe Experiments (Deep Exploration in China) have mapped the Cetaceous plate boundaries in the coast of China. The heat is still possibly migrating to near the surface through the existing structures. For example, the Feng Shun Geothermal Power Station in north of Guangzhou, Guangdong Province, used the 96 degree C hot water from a well of 800 m producing a small amount of 300 KW power since 1984. The Guangdong Province is located in the edge of Mesozoic South China Plate. Further in land, the Huang Mountain, one of the world heritage sites, is located at the boundary of another Mesozoic Yangtze River Plate. There is not a geothermal power plant; however, a number of hot springs are in a booming tour business at the foot hill of the mountain. The electricity has to come from a long way of net working. If China develops the local, small, but sufficient power plants by using the modern geothermal exploration and drilling techniques. The "New Energy Villages" will be benefit to the energy and environment need.

  5. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (<7 L/s). Petrophysics and reservoir investigations based on core analysis revealed a low matrix porosity with fracture zones spatially isolated and sealed in the sandstone formations. Any stimulation operation was planned and the project was abandoned. The Soultz-sous-Forêts project, initiated in 1986, explored during more than 30 years the experimental geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were applied in order to increase the initial low permeability by reactivating and dissolving sealed fractures in basement. The productivity was considerably improved and allows geothermal exploitation at 165° C and 20 L/s. Recent studies revealed the occurrences of permeable fractures in the limestones of Muschelkalk and the sandstones of Buntsandstein also. For the ongoing project at Rittershoffen, two deep boreholes, drilled down to 2.7 km depth target a reservoir in the sandstones of Buntsandstein and in the granitic basement interface. The thermal, hydraulic and chemical stimulations of the first well lead the project to an economic profitability with a temperature of 170° C and an industrial flow rate of 70 L/s. The deep sedimentary cover and the top of the granitic basement are the main target of the geothermal project in the URG. Permeability of fractured rocks after drilling operations or stimulation operations demonstrates the viability of French industrial deep geothermal projects in the URG was also confirmed by several geothermal projects in Germany that target the similar sediments-basement interface (Landau and Insheim) or the deep Triassic sediments (Bruchsal and Brühl). In France, future geothermal projects are planned in particular in Strasbourg suburb to exploit the permeability of deep-seated fractured sediment-basement interface.

  6. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    DOE PAGES

    Diallo, A.; Groebner, R. J.; Rhodes, T. L.; ...

    2015-05-15

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. When using fast Thomson scattering measurements, we found that the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution includingmore » its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. Moreover, the saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Finally, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.« less

  7. Frequency power analyses of seismic sources on firn

    NASA Astrophysics Data System (ADS)

    Sanz, Christopher; Diez, Anja; Coen, Hofstede; Kristoffersen, Yngve; Mayer, Christoph; Lambrecht, Astrid; Miller, Heinz; Eisen, Olaf

    2013-04-01

    A great obstacle for seismic surveys on firn-covered ice masses is the ability of firn to strongly attenuate seismic energy and divert downward ray paths away from the vertical because of the velocity gradient. The standard way to overcome these limitations is the drilling of shotholes about 10-30 m deep. However, drilling of shotholes is a time and energy consuming task. Another possibility is to use vibroseismic sources at the surface and increase the signal-to-noise ratio by repeated stacking. However, compared to explosive charges, vibroseismic signals are bandlimited per se. As a third variant, we investigate the usage of ordered patterns of surface charges consisting of detonation cord. Previous applications of detonation cord only explored their general comparison to bulk explosives when deployed in a linear fashion, i.e. a single line. Our approach extends these results to other geometries, like fan- or comb-shaped patterns. These have two advantages: first, over the pattern area a locally plane wave is generated, limiting the spherical and velocity-gradient induced spreading of energy during propagation; second, the ratio between seismic wave speed of the firn and the detonation cord of typically about 1:5 causes the wave to propagate in an angle downward. When using large offsets like a snow streamer, it is possible to direct the refected energy towards the streamer, depending on offset range and reflector depth. We compare the different source types for several surveys conducted in Antarctica in terms of frequency spectra. Our results show that ordered patterns of detonation cord serve as suitable seismic surface charges, avoiding the need to drill shotholes. Moreover, an example of a short profile with patterned surface charges is presented. The technique can be of advantage for surveys in remote areas, which can only be accessed by aircrafts.

  8. Crystal growth and annealing method and apparatus

    DOEpatents

    Gianoulakis, Steven E.; Sparrow, Robert

    2001-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing. An embodiment of the present invention comprises a secondary heater incorporated into a conventional crystal growth and annealing apparatus. The secondary heater supplies heat to minimize the temperature gradients in the crystal during the annealing process. The secondary heater can mount near the bottom of the crucible to effectively maintain appropriate temperature gradients.

  9. Relating Paleoclimate Data and Past Temperature Gradients: Some Suggestive Rules

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    Understanding tropical sensitivity is perhaps the major concern confronting researchers, for both past and future climate change issues. Tropical data has been beset by contradictions, and many techniques applicable to the extratropics are either unavailable or fraught with uncertainty when applied at low latitudes. Paleoclimate data, if interpreted within the context of the latitudinal temperature gradient data they imply, can be used to estimate what happened to tropical temperatures in the past, and provide a first guess for what might happen in the future. The approach is made possible by the modeling result that atmospheric dynamical changes, and the climate impacts they produce, respond primarily to temperature gradient changes. Here we review some "rules" obtained from GCM (General Circulation Model) experiments with different sea surface temperature gradients and different forcing, that can be used to relate paleoclimate reconstructions to the likely temperature gradient changes they suggest.

  10. Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills.

    PubMed

    Mishra, Sunil Kumar; Chowdhary, Ramesh

    2014-06-01

    Osseointegration is the more stable situation and results in a high success rate of dental implants. Heat generation during rotary cutting is one of the important factors influencing the development of osseointegration. To assess the various factors related to implant drills responsible for heat generation during osteotomy. To identify suitable literature, an electronic search was performed using Medline and Pubmed database. Articles published in between 1960 to February 2013 were searched. The search is focused on heat generated by dental implant drills during osteotomy. Various factors related to implant drill such effect of number of blades; drill design, drill fatigue, drill speed and force applied during osteotomies which were responsible for heat generation were reviewed. Titles and abstracts were screened, and literature that fulfilled the inclusion criteria was selected for a full-text reading. The initial literature search resulted in 299 articles out of which only 70 articles fulfils the inclusion criteria and were included in this systematic review. Many factors related to implant drill responsible for heat generation were found. Successful preparation of an implant cavity with minimal damage to the surrounding bone depends on the avoidance of excessive temperature generation during surgical drilling. The relationship between heat generated and implant drilling osteotomy is multifactorial in nature and its complexity has not been fully studied. Lack of scientific knowledge regarding this issue still exists. Further studies should be conducted to determine the various factors which generate less heat while osteotomy such as ideal ratio of force and speed in vivo, exact time to replace a drill, ideal drill design, irrigation system, drill-bone contact area.

  11. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  12. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE PAGES

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    2017-05-01

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  13. Temperature and deflection data from the asymmetric heating of cross-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, Michael W.; Cooper, David E.; Tompkins, S. S.; Cohen, David

    1987-01-01

    Data generated while heating several cross-ply graphite-epoxy tubes on one side, along their lengths, and cooling them on the other side are presented. This heating arrangement produces a circumferential temperature gradient, and the data show that the gradient can be represented by a cosinusoidal temperature distribution. The thermally induced bending deflections caused by the temperature gradient are also presented.

  14. Elastomers in mud motors for oil field applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrik, J.

    1997-08-01

    Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Resultsmore » of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.« less

  15. Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study.

    PubMed

    Gabrić Pandurić, Dragana; Bago, Ivona; Katanec, Davor; Zabkar, Janez; Miletić, Ivana; Anić, Ivica

    2012-11-01

    High-energy lasers have been proposed as an alternative to the conventional surgical drill in oral and maxillofacial surgery. The aims of this study were to compare thermal changes of the bone surface, procedure time, and volume of the removed bone after drilling with an erbium (Er):yttrium-aluminum-garnet (YAG) laser versus a low-speed surgical drill. The bone sections were observed under light microscopy and examined histologically. Thirty bone blocks were prepared from porcine ribs. On each block 2 holes (tunnel preparations) were performed using a low-speed, 1.0-mm-wide, surgical pilot drill and an Er:YAG laser (pulse energy, 1,000 mJ; pulse duration, 300 μs; frequency, 20 Hz). The temperature induced by the preparation techniques was measured using an infrared camera. The removed bone volume was calculated by a modified mathematical algorithm. The time required for the preparation was measured with a digital stopwatch and a time-measurement instrument integrated within the computer program. The cortical and spongiose surfaces of the specimens were examined microscopically and histologically under a light microscope with a high-resolution camera. The Er:YAG laser removed significantly more bone tissue than the drill (P < .01) in a significantly shorter time (P < .01). The temperature was statistically lower during the laser preparation (P < .01). Cavities prepared with the laser were regular with clear sharp edges and knifelike cuts. In the drill group, the preparations exhibited irregular edges full of bone fragments and fiberlike debris. Histologic examination of the laser sides showed a 30-μm-thick altered sublayer. The tissue in the drill group was covered with a smear layer without any alterations. The Er:YAG laser produced preparations with regular and sharp edges, without bone fragments and debris, in a shorter time, and with less generated heat. Thermal alterations in the treated surface were minimal. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation

    NASA Astrophysics Data System (ADS)

    Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-02-01

    Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.

  17. Alteration of Basalt and Hyaloclastite in the Project Hotspot MHC-2 Core with Some Comparison to Hyaloclastites of the Hawaii Scientific Drilling Program #2 (HSDP) Core

    NASA Astrophysics Data System (ADS)

    Walton, A. W.; Walker, J. R.

    2015-12-01

    Project Hotspot's 1821m coring operation at Mountain Home Air Force Base, Idaho (MHC), sought to examine interaction of hotspot magmas with continental crust and evaluate geothermal resources. Subsurface temperature increased at a gradient of 76˚/km. Alteration was uniform and not intense over the upper part of the core and at the bottom, but differed markedly in an anomalous zone (AZ) from 1700 to 1800m. The MHC core contains diatomite, basalt lava and minor hyaloclastite. Olivine (Ol) in lavas is more-or-less altered to iddingsite. Plagioclase (Plag) has altered to smectite along cleavage planes and fractures except in the AZ, where it is intensely altered to corrensite. Clinopyroxene (CPX, pinkish in thin section) is little altered, as are apatite and opaque minerals (probably ilmenite with magnetite or pyrite in different samples). Interstitial material is converted to smectite or, in the AZ, to corrensite. Phyllosilicate lines vesicles, and calcite, zeolite and phyllosilicate fill them. Pore-lining phillipsite is common shallow in the core, with vesicle-filling analcime and heulandite at greater depth. A fibrous zeolite, probably stilbite, is also present. Hyaloclasts are altered to concentrically layered masses of smectite. MHC hyaloclastites do not display the microbial traces and palagonite ("gel-palagonite") alteration common in Hawaii Scientific Drilling Project #2 (HSDP) samples. HSDP samples do contain pore-lining phillipsite, but pore fillings are chabazite. Calcite is absent in HSDP hyaloclastites. Neither Ol nor Plag were altered in HSDP hyaloclastites. HSPD glasses are less silicic and Ti-rich than MHC lavas, containing Ol rather than CPX as a dominant mafic. However the differences in alteration of hyaloclastites probably reflect either the fact that the HSDP core was collected at temperatures equivalent to those at the top of the MHC-2 core or HSDP samples were from beds that were in modified marine pore water, rather than continental waters.

  18. Why Gas Hydrate Occurrenced Over Topographic Highs in Shenhu Area Northern South China Sea?

    NASA Astrophysics Data System (ADS)

    Liao, J.

    2015-12-01

    Methane gas hydrate has been drilled by China Geological Survey in shenhu area northern south china sea in 2007 .Shenhu area is located in the middle-lower continental slope and 17 submarine canyons are incised into the shelf,gas hydrtae was observed in boreholes over topographic highs,but origin of the hydrate is controversial.Accumulation of gas hydrate is depending on temperature-pressure field and supply quantities of methane and some other factors,in the same depth of the shallow sediments there is the same press,so temperature field and supply quantities of methane become the most important factors.Lachenbruch(1968) calculated the topographic disturbance to geothermal gradients,in shenhu area consistent local variations were observed, notably low heat flow values over prominent topographic highs and high heat flow values over the flanks of the topographic highs. At some localities over a horizontal distance of 2.5 km, heat flow increased by as much as 50%, from typical values of 65 to 100 mW/m2 .Some vertical fractures were observed beneath topographic highs in previous studies.Based on the profile across borehole SH7,we designed four experiments:A,uniform distribution of heat flux with no vertical fractures;B,Uniform distribution of heat flux with vertical fractures beneath geographic highs;C,uneven distribution of heat flux with no vertical fractures;D,uneven distribution of heat flux with vertical fractures beneath geographic highs.According to previous studies,we restored Palaeobathymetry,abundance of organic matters, sandstone-madstone ratio ,porosity and permeability of each,and parameters of vertical fractures.The result of experiment D shows the similar distribution characteristic with the drilling result,so We believe that low heat flux and Vertical fractures are the most important factors . This work was supported by the National Science Foundation of China(grant no. 41406080).

  19. Structural and physical property characterization in the Wenchuan earthquake Fault Scientific Drilling project — hole 1 (WFSD-1)

    NASA Astrophysics Data System (ADS)

    Li, Haibing; Xu, Zhiqin; Niu, Yixiong; Kong, Guangsheng; Huang, Yao; Wang, Huan; Si, Jialiang; Sun, Zhiming; Pei, Junling; Gong, Zheng; Chevalier, Marie-Luce; Liu, Dongliang

    2014-04-01

    The Wenchuan earthquake Fault Scientific Drilling project (WFSD) started right after the 2008 Mw 7.9 Wenchuan earthquake to investigate its faulting mechanism. Hole 1 (WFSD-1) reached the Yingxiu-Beichuan fault (YBF), and core samples were recovered from 32 to 1201.15 m-depth. Core investigation and a suite of geophysical downhole logs (including P-wave velocity, natural gamma ray, self-potential, resistivity, density, porosity, temperature, magnetic susceptibility and ultrasound borehole images) were acquired in WFSD-1. Integrated studies of cores and logs facilitate qualitative and quantitative comparison of the structures and physical properties of rocks. Logging data revealed that the geothermal gradient of the volcanic Pengguan complex (above 585.75 m) is 1.85 °C/100 m, while that of the sedimentary Xujiahe Formation (below 585.75 m) is 2.15 °C/100 m. In general, natural gamma ray, resistivity, density, porosity, P-wave velocity and magnetic susceptibility primarily depend on the rock lithology. All major fault zones are characterized by high magnetic susceptibility, low density and high porosity, with mostly low resistivity, high natural gamma ray and sound wave velocity. The high magnetic susceptibility values most likely result from the transformation of magnetic minerals by frictional heating due to the earthquake. The YBF exposed in WFSD-1 can be subdivided into five different parts based on different logging responses, each of them corresponding to certain fault-rocks. The high gamma radiation, porosity and P-wave velocity, as well as low resistivity and temperature anomalies indicate that the Wenchuan earthquake fault zone is located at 585.75-594.5 m-depth, with an average inclination and dip angle of N305° and 71°, respectively. The fact that the fracture directions in the hanging wall and footwall are different suggests that their stress field direction is completely different, implying that the upper Pengguan complex may not be local.

  20. Sound control by temperature gradients

    NASA Astrophysics Data System (ADS)

    Sánchez-Dehesa, José; Angelov, Mitko I.; Cervera, Francisco; Cai, Liang-Wu

    2009-11-01

    This work reports experiments showing that airborne sound propagation can be controlled by temperature gradients. A system of two heated tubes is here used to demonstrate the collimation and focusing of an ultrasonic beam by the refractive index profile created by the temperature gradients existing around the tubes. Numerical simulations supporting the experimental findings are also reported.

  1. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  2. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  3. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  4. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  5. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  6. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  7. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  8. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  9. Generation of Hot Water from Hot-Dry for Heavy-Oil Recovery in Northern Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Pathak, V.; Babadagli, T.; Majorowicz, J. A.; Unsworth, M. J.

    2011-12-01

    The focus of prior applications of hot-dry-rock (HDR) technology was mostly aimed at generating electricity. In northern Alberta, the thermal gradient is low and, therefore, this technology is not suitable for electricity generation. On the other hand, the cost of steam and hot water, and environmental impacts, are becoming critical issues in heavy-oil and bitumen recovery in Alberta. Surface generation of steam or hot-water accounts for six percent of Canada's natural gas consumption and about 50 million tons of CO2 emission. Lowered cost and environmental impacts are critical in the widespread use of steam (for in-situ recovery) and hot-water (for surface extraction of bitumen) in this region. This paper provides an extensive analysis of hot-water generation to be used in heavy-oil/bitumen recovery. We tested different modeling approaches used to determine the amount of energy produced during HDR by history matching to example field data. The most suitable numerical and analytical models were used to apply the data obtained from different regions containing heavy-oil/bitumen deposits in northern Alberta. The heat generation capacity of different regions was determined and the use of this energy (in the form of hot-water) for surface extraction processes was evaluated. Original temperature gradients were applied as well as realistic basement formation characteristics through an extensive hydro thermal analysis in the region including an experimental well drilled to the depth of 2,500m. Existing natural fractures and possible hydraulic fracturing scenarios were evaluated from the heat generation capacity and the economics points of view. The main problem was modeling difficulties, especially determination and representation of fracture network characteristics. A sensitivity analysis was performed for the selected high temperature gradient regions in Alberta. In this practice, the characteristics of hydraulic fractures, injection rate, depth, the distance between injection and production wells and formation thickness were used as variables and an optimization study was carried out based on these variables. The results showed that the hot water (50 C at surface) needed in Fort McMurray for extraction could be obtained at lower costs than the generation of it using natural gas.

  10. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Signorelli, Riccardo; Cooley, John

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements inmore » rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor of 10x. The electronics have demonstrated a substantially reduced design cycle time by way of process and material selection innovations and have been qualified for 250°C / 10 Grms for at least 200 hours. FastCAP has also invented a rotary inertial energy generator (RIEG) to harvest various mechanical energy sources that exist downhole. This device is flow-independent and has been demonstrated as a proof of concept to survive geothermal well temperatures under this project. The herein energy harvester has been developed to provide operational power by harvesting rotational mechanical energy that exists downhole in geothermal drilling. The energy harvester has been tested at 250°C / 10 Grms for 200 hours. Deployment of these technologies in geothermal drilling and exploration applications could have an immediate and significant impact on the effectiveness and efficiency of drilling processes, particularly with regard to use of advanced logging and monitoring techniques. The ultimate goal of this work is to reduce drilling risk to make geothermal energy more attractive and viable to the customer. Generally speaking, we aim to support the transfer of MWD techniques from oil and gas to geothermal exploration with considerations toward the practical differences between the two. One of the most significant obstacles to the deployment of advanced drilling and production techniques in the geothermal context are limitations related to the maximum operating temperatures of downhole batteries used to provide power for downhole sensors, steering tools, telemetry equipment and other MWD/LWD technologies. FastCAP’s higher temperature ultracapacitor technology will provide power solutions for similar advanced drilling and production techniques, even in the harsher environments associated with geothermal energy production. This ultracapacitor will enable downhole power solutions for the geothermal industry capable of the same reliable and safe operation our team has demonstrated in the oil and gas context. Without batteries, geothermal MWD is left without a downhole power source. Some very high temperature turbines exist but provide unsteady, intermittent power and no power when the flow is off. In high loss formations common to geothermal exploration, it will be auspicious to support air drilling in which case there is no flow to power a turbine at all. In the best case, rechargeable energy storage will help to buffer unsteady power from non-battery power sources and in the worst case it will be needed to store energy from highly intermittent sources to provide a continuously operable power source to the tool.« less

  11. New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength

    NASA Astrophysics Data System (ADS)

    Clark, David A.

    2012-09-01

    Acquisition of magnetic gradient tensor data is likely to become routine in the near future. New methods for inverting gradient tensor surveys to obtain source parameters have been developed for several elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalised source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and is independent of magnetisation direction. In combination the NSS and its vector gradient determine source locations uniquely. NSS analysis can be extended to other useful models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the gradient tensor. Inversion based on the vector gradient of the NSS over the Tallawang magnetite deposit obtained good agreement between the inferred geometry of the tabular magnetite skarn body and drill hole intersections. Besides the geological applications, the algorithms for the dipole model are readily applicable to the detection, location and characterisation (DLC) of magnetic objects, such as naval mines, unexploded ordnance, shipwrecks, archaeological artefacts, and buried drums.

  12. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    USGS Publications Warehouse

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    Maximum groundwater temperatures at the bottom of the logs were between 11.7 and 17.3 degrees Celsius. Geothermal gradients were generally higher than typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 5 of the 10 wells studied but only obscured the portion of the geothermal gradient signal where groundwater actually flowed through the well. Temperature gradients varied by mapped bedrock type but can also vary by differences in mineralogy or rock type within the wells.

  13. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial watermore » samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.« less

  14. Slim hole drilling and testing strategies

    NASA Astrophysics Data System (ADS)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin

    2017-12-01

    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  15. Hydrogeology, Chemical and Microbial Activity Measurement Through Deep Permafrost

    USGS Publications Warehouse

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with ??18O values ???5??? lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH4 was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH4 is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  16. Infrared Thermal Imaging During Ultrasonic Aspiration of Bone

    NASA Astrophysics Data System (ADS)

    Cotter, D. J.; Woodworth, G.; Gupta, S. V.; Manandhar, P.; Schwartz, T. H.

    Ultrasonic surgical aspirator tips target removal of bone in approaches to tumors or aneurysms. Low profile angled tips provide increased visualization and safety in many high risk surgical situations that commonly were approached using a high speed rotary drill. Utilization of the ultrasonic aspirator for bone removal raised questions about relative amount of local and transmitted heat energy. In the sphenoid wing of a cadaver section, ultrasonic bone aspiration yielded lower thermal rise in precision bone removal than rotary mechanical drills, with maximum temperature of 31 °C versus 69 °C for fluted and 79 °C for diamond drill bits. Mean ultrasonic fragmentation power was about 8 Watts. Statistical studies using tenacious porcine cranium yielded mean power levels of about 4.5 Watts to 11 Watts and mean temperature of less than 41.1 °C. Excessively loading the tip yielded momentary higher power; however, mean thermal rise was less than 8 °C with bone removal starting at near body temperature of about 37 °C. Precision bone removal and thermal management were possible with conditions tested for ultrasonic bone aspiration.

  17. TEMPERATURE-GRADIENT PLATES FOR GROWTH OF MICROORGANISMS

    PubMed Central

    Landman, Otto E.; Bausum, Howard T.; Matney, Thomas S.

    1962-01-01

    Landman, Otto E. (Fort Detrick, Frederick, Md.), Howard T. Bausum, and Thomas S. Matney. Temperature-gradient plates for growth of microorganisms. J. Bacteriol. 83:463–469. 1962.—Different temperature-gradient plates have been devised for the study of microbial growth on solid media through continuous temperature ranges or in liquid media at finely graded temperatures. All plates are made of heavy-gauge aluminum; heat supplied at one end is dissipated along the length of the metal so that a gradient is produced. The shape and range of the gradient depends on the amount of heat supplied, the insulation, the ambient temperature, and other factors. Differences of 0.2 C in temperature sensitivity between bacterial strains can be detected. The plates are simple to construct and operate. The dimensions of the aluminum, the mode of temperature measurement, and the method of heating may all be modified without diminishing the basic utility of the device. A sharp growth front develops at the maximal temperature of growth of bacteria. In most strains, all bacteria below the front form colonies and all bacteria above the front are killed, except for a few temperature-resistant mutants. Images PMID:14461975

  18. InSAR Time Series Analysis and Geophysical Modeling of City Uplift Associated with Geothermal Drillings in Staufen im Breisgau, Germany

    NASA Astrophysics Data System (ADS)

    Motagh, M.; Lubitz, C.

    2014-12-01

    Geothermal energy is of increasing importance as alternative, environmentally friendly technology for heat management. Direct interaction with the subsurface requires careful implementation, in particular in geological complex regions. The historical city Staufen im Breisgau, SW Germany, has attracted national attention as a case of implementation failure with severe consequences, causing debates on the applicability and security of this sustainable technique. Located at the eastern transition zone of the Upper Rhine Graben and the Schwarzwald massif, the geothermal potential is high at Staufen due to strong temperature gradients. In September 2007, seven boreholes for geothermal probes were drilled up to a depth of 140 m to provide a new heat management for the city hall. Within five years an uplift phenomenon has been observed in Staufen reaching more than 40 cm in places and 269 buildings were damaged. Hydro-chemical driven anhydrite-gypsum transformation in the subsurface was identified as the cause leading to volume increase that is observable as surface uplift. This process is associated with the geothermal drilling activities that have crossed several groundwater levels. In this work, we summarize and present the findings of spaceborne Synthetic Aperture Radar Interferometry (InSAR) analysis of the uplift in Staufen over the last five years from July 2008 through July 2013. By applying the Small Baseline Subset (SBAS) method, we find a localized elliptical-shaped deformation field in NE-SW orientation. Area of maximum uplift is located 50 m NNE of the drilling zone. At this location, we observe a cumulative uplift of approx. 13.7 cm ± 0.34 cm (mean value within an area of 30 m by 30 m) from July 2008 to July 2009, which reduced to cumulative uplift of 3 cm ± 0.25 cm from July 2012 to July 2013. The deceleration can be related to applied countermeasures as borehole sealing and groundwater pumping. The observed ground surface response was compared to regularly performed leveling measurements and shows indications of significant symmetric horizontal motions, which were further investigated by a combined analysis of SAR imagery from ascending and descending orbits. Moreover, InSAR observations were inverted using geophysical models to derive first order characteristics of deformation source at depth.

  19. ICDP drilling in the Scandinavian Caledonides: the SDDP-COSC project

    NASA Astrophysics Data System (ADS)

    Lorenz, Henning; Juhlin, Christopher; Gee, David; Pascal, Christophe; Tsang, Chin-Fu; Pedersen, Karsten; Rosberg, Jan-Erik

    2013-04-01

    The Swedish Deep Drilling Program (SDDP) Collisional Orogeny in the Scandinavian Caledonides (COSC) project is a multidisciplinary investigation of the Scandian mountain belt. Cenozoic uplift of the Scandes has exposed a lower- to middle-crustal level section through this Himalaya-type orogen, providing unique opportunities to better understand not only the Caledonides, but also on-going orogeny and the earthquake-prone environments of modern mountains belts. COSC will also contribute to our knowledge of mountain belt hydrology, provide the first information about deep thermal gradients for paleoclimate modeling and potential geothermal energy resources, contribute new information about the deep biosphere, and improve our understanding of the Cenozoic uplift history of the Scandes. The drilling program targets the far-traveled (> 400 km) allochthons of the Scandinavian Caledonides and their emplacement across the Baltoscandian foreland basin onto the platform of continent Baltica. Two 2.5 km deep holes are planned. COSC-1, to be drilled in the summer of 2013, will target the high-grade metamorphic complex of the Seve Nappes (SNC) and its contact to underlying allochthons. COSC-2 will start in the lower thrust sheets, pass through the basal décollement and investigate the character of the deformation in the underlying basement. An international science team, including expertise on Himalaya-Tibet and other young orogens, is running the science program. New high-resolution reflection seismic data provide excellent images of the upper crust. Alternative interpretations of the reflectors' origin, particularly those in the basement, will be tested. The site of COSC-1 is based on a 3D geological model, constructed from surface geology, recent and vintage regional reflection seismic profiles, regional and local gravity data, and high-resolution aeromagnetics, acquired recently by the Geological Survey of Sweden. The drilling will be carried out utilising the new Swedish scientific drilling infrastructure, located at Lund University, an Atlas Copco CT20 diamond core-drilling rig, with versatile drilling equipment (see EGU2012-7379), providing the ideal platform for core-drilling to 2.5 km depths. Existing drilling, sampling and testing techniques (e.g. triple-tube core drilling for best core quality) will need to be adapted to highly variable lithologies and new techniques will be developed, as necessary. COSC-1 drilling operations and the directly related on-site investigations are financed by ICDP and the Swedish Research Council. All drill cores will be transferred to the core repository of the Geological Survey of Sweden, and a sampling party will be announced later this year. Researchers who want to participate in COSC and contribute their expertise are encouraged to inform us of their interests.

  20. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating. Energy recovery during the first pulses was above 35 % and rising. As a side effect of the extremely good hydraulic conditions, the research well was flowing freely with 20 L/s which resulted in a significant mixing of the injected water with formation waters during production. The recovery rates for the tracers were above 60 % depending on the type of tracer.

  1. Numerical simulation of heat transfer and fluid flow in laser drilling of metals

    NASA Astrophysics Data System (ADS)

    Zhang, Tingzhong; Ni, Chenyin; Zhou, Jie; Zhang, Hongchao; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian

    2015-05-01

    Laser processing as laser drilling, laser welding and laser cutting, etc. is rather important in modern manufacture, and the interaction of laser and matter is a complex phenomenon which should be detailed studied in order to increase the manufacture efficiency and quality. In this paper, a two-dimensional transient numerical model was developed to study the temperature field and molten pool size during pulsed laser keyhole drilling. The volume-of-fluid method was employed to track free surfaces, and melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. Besides, the enthalpy-porosity technique was also applied to account for the latent heat during melting and solidification. Temperature fields and melt pool size were numerically simulated via finite element method. Moreover, the effectiveness of the developed computational procedure had been confirmed by experiments.

  2. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    PubMed

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  3. Temperature gradient effects on vapor diffusion in partially-saturated porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, S.W.

    1999-07-01

    Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used inmore » the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present results indicate that EVD is predominantly driven by concentration gradients; temperature gradients are less important. Therefore, the EVD model of Philip and deVries may need to be modified to reflect these results.« less

  4. Climatic conditions governing extensive Azolla bloom during the Middle Eocene

    NASA Astrophysics Data System (ADS)

    Dekker, Rolande; Speelman, Eveline N.; Barke, Judith; Konijnendijk, Tiuri; Sinninge Damste, Jaap S.; Reichart, Gert-Jan

    2010-05-01

    Enormous amounts of intact mega- and microspores from the free floating aquatic fern Azolla were found in sediments recovered during Integrated Ocean Drilling Program expedition 302, indicating that Azolla grew and reproduced in situ in the Eocene Arctic Ocean. In general, the Early/Middle Eocene is characterized by enhanced greenhouse conditions with elevated sea surface temperatures (SSTs) in the Arctic (~10°C), while tropical sea surface temperatures (SSTs) were only a little warmer than today (with a mean annual temperature (MAT) of 32-34 °C) (Pearson et al., 2007). The consequently reduced temperature gradient between the equator and the poles and the presence of freshwater at the North Pole as indicated by the presence of the freshwater fern Azolla (Brinkhuis et al., 2006) provide important boundary conditions for understanding the hydrological cycle and latent heat transport during this interval. Here we reconstruct variations in SST and mean annual air temperature using the TEX86 and MBT temperature proxies for the Azolla interval. Sediments from around the Arctic Basin have been analyzed, including samples from Alaska, the Mackenzie Basin, Greenland (IODP core 913b), and Denmark. Furthermore, a high resolution sea surface temperature record for the Azolla interval has been constructed from sediment samples from the Lomonosov Ridge, showing a cyclic signal. Model experiments have shown that the here confirmed low equator-to-pole temperature gradient modulated the hydrological cycle. Since the growth of Azolla is restricted to low salinity conditions, changes in the hydrological cycle are proposed to coincide with the cyclic occurrence of Azolla throughout the interval. To confirm the overlapping presence of high quantities of Azolla and increased precipitation, changes in the hydrogen cycle are reconstructed by creating a high resolution hydrogen isotope record throughout the interval. By performing compound specific analyses (δD) on terrestrial derived n-alkanes, extracted from Eocene Arctic sediment, an assessment of the δD of incoming Arctic precipitation and humidity can be made. In addition, hydrogen isotope analyses on Azolla specific biomarker (1, ω20 diols) is used to reconstruct the δD composition of the surface waters. The results from the compound specific isotope analyses are combined with the outcomes of a coupled-atmosphere-isotope model. This model shows a reconstruction of the isotopic composition of Arctic Eocene precipitation and run-off. Data-model integration will make it possible to mechanistically link Azolla occurrences and precipitation patterns.

  5. Sound beam manipulation based on temperature gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Feng; School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500; Quan, Li

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest tomore » fields such as noise control or acoustic cloaking.« less

  6. Continuous depth profile of mechanical properties in the Nankai accretionary prism based on drilling performance parameters

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Kitamura, M.; Yamada, Y.; Sanada, Y.; Moe, K.; Hirose, T.

    2016-12-01

    In-situ rock properties in/around seismogenic zone in an accretionary prism are key parameters to understand the development mechanisms of an accretionary prism, spatio-temporal variation of stress state, and so on. For the purpose of acquiring continuous-depth-profile of in-situ formation strength in an accretionary prism, here we propose the new method to evaluate the in-situ rock strength using drilling performance property. Drilling parameters are inevitably obtained by any drilling operation even in the non-coring intervals or at challenging environment where core recovery may be poor. The relationship between the rock properties and drilling parameters has been proposed by previous researches [e.g. Teale 1964]. We introduced the relationship theory of Teale [1964], and developed a converting method to estimate in-situ rock strength without depending on uncertain parameters such as weight on bit (WOB). Specifically, we first calculated equivalent specific toughness (EST) which represents gradient of the relationship between Torque energy and volume of penetration at arbitrary interval (in this study, five meters). Then the EST values were converted into strength using the drilling parameters-rock strengths correlation obtained by Karasawa et al. [2002]. This method was applied to eight drilling holes in the Site C0002 of IODP NanTroSEIZE in order to evaluate in-situ rock strength in shallow to deep accretionary prism. In the shallower part (0 - 300 mbsf), the calculated strength shows sharp increase up to 20 MPa. Then the strength has approximate constant value to 1500 mbsf without significant change even at unconformity around 1000 mbsf (boundary between forearc basin and accretionary prism). Below that depth, value of the strength gradually increases with depth up to 60 MPa at 3000 mbsf with variation between 10 and 80 MPa. Because the calculated strength is across approximately the same lithology, the increase trend can responds to the rock strength. This strength-depth curve correspond reasonably well with the strength data of core and cutting samples collected from hole C0002N and C0002P [Kitamura et al., 2016 AGU]. These results show the validity of the method evaluating in-situ strength from the drilling parameters.

  7. Pre-drilling prediction techniques on the high-temperature high-pressure hydrocarbon reservoirs offshore Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyu; Liu, Huaishan; Wu, Shiguo; Sun, Jin; Yang, Chaoqun; Xie, Yangbing; Chen, Chuanxu; Gao, Jinwei; Wang, Jiliang

    2018-02-01

    Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure (HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques (PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.

  8. Transient ElectroMagnetic and Electric Self-Potential survey in the TAG hydrothermal field in MAR

    NASA Astrophysics Data System (ADS)

    Tao, C.; Deng, X.; Wu, G.; Xi, Z.; Zhou, D.; Zuo, L.

    2012-12-01

    The TAG hydrothermal field is one of the most studied hydrothermal fields. This field covers an area of 5km×5km, which includes low-temperature Mn- and Fe-oxides and nontronites zone, relict massive sulfide mounds as well as active hydrothermal mound(TAG mound) [Thompson, 1985, Rona, 1993]. Drilling program was performed in the ODP (Ocean Drilling Program) Leg 158 in the TAG mound [Humphris, 1996]. In 1996, electrical resistivity survey in the TAG mound was conducted using innovative transient electric dipole-dipole instruments which was carried by DSV 'Alvin' [Cairns et al., 1996, Von Herzen et al., 1996]. In June 2012, the 2nd Leg of the Chinese 26th cruise was carried out in the TAG hydrothermal field at Mid Atlantic Ridge by R/V DAYANGYIHAO. Six TEM (Transient ElectroMagnetic) survey lines were deployed, with four of which across the ODP Leg 158 drilling area. Besides, two SP (Electric Self-Potential) survey lines were across the ODP drilling area. The survey results of TEM preliminary revealed the vertical structure of the TAG hydrothermal field. The survey results of both TEM and SP are consistent with the ODP drilling result, and also agree well with the temperature and water-column anomalies obtained in this leg. Preliminary results show that the TEM and SP methods are capable of revealing the horizontal and vertical distribution of the hydrothermal sulfide fields.

  9. Identification and characterization of the active hydrothermal deposits in Okinawa Trough, SW Japan: Estimates from logging-while-drilling

    NASA Astrophysics Data System (ADS)

    Saito, S.; Sanada, Y.; Moe, K.; Kido, Y. N.; Hamada, Y.; Kumagai, H.; Nozaki, T.; Takai, K.; Suzuki, K.

    2015-12-01

    A scientific drilling expedition was conducted at an active hydrothermal field on the Iheya-North Knoll by D/V Chikyu in 2014 (Expedition 907) as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program. During the expedition logging while drilling (LWD) was deployed to constrain the area of the fluid reservoir beneath seafloor followed by three coring holes down to 150 meter below the seafloor (mbsf). The LWD system is composed of arcVISION for resistivity and natural gamma ray measurement and TeleScope for real-time transmission of drilling parameters and arcVISION data. Five sites (C9011-15) at the Iheya-North Original Site and one site (C9016) at Aki Site were drilled with LWD. At C9012 and C9016, the arcVISION detected temperature anomaly up to 84℃ at 234 mbsf and up to 39℃ at 80 mbsf, respectively. The temperature quickly increases at that depth and it would reflect the existence of high-temperature heat source along borehole. Due to the continuous fluid circulation during drilling, the measured temperature does not indicate in-situ temperature, but it reflects the heat disturbed by the cold circulated water instead. High quality resistivity and natural gamma ray data were acquired at six sites. The log curves at Site C9016 show characteristic response; the natural gamma ray log exhibits extremely high radiation (>500 gAPI) at 7-13 and 23-31 mbsf (Zone A). In the underlying interval of 31-40 mbsf, the resistivity log exhibits extremely low value (<0.2 ohm-m) (Zone B). Then the resistivity log exhibits higher value (~10 ohm-m) and the natural gamma ray log shows very low radiation (<50 gAPI) at the interval of 41-48 mbsf (Zone C). The log characteristics in Zone A, B, and C can be interpreted as a series of K-rich alteration zone, sulfide zone, and low-K hard (silicified) sediments, respectively. The LWD-based lithological interpretation was confirmed by the following core description. Zones A and B can be correlated to altered clay zone and sulfide zone including sphalerite, galena, chalcopyrite, and pyrite. Our results show that LWD is a powerful tool for the identification and characterization of submarine hydrothermal deposits and LWD survey enhances the successful recovery of sulfide samples.

  10. Electrical structure of Newberry Volcano, Oregon

    USGS Publications Warehouse

    Fitterman, D.V.; Stanley, W.D.; Bisdorf, R.J.

    1988-01-01

    From the interpretation of magnetotelluric, transient electromagnetic, and Schlumberger resistivity soundings, the electrical structure of Newberry Volcano in central Oregon is found to consist of four units. From the surface downward, the geoelectrical units are 1) very resistive, young, unaltered volcanic rock, (2) a conductive layer of older volcanic material composed of altered tuffs, 3) a thick resistive layer thought to be in part intrusive rocks, and 4) a lower-crustal conductor. This model is similar to the regional geoelectrical structure found throughout the Cascade Range. Inside the caldera, the conductive second layer corresponds to the steep temperature gradient and alteration minerals observed in the USGS Newberry 2 test-hole. Drill hole information on the south and north flanks of the volcano (test holes GEO N-1 and GEO N-3, respectively) indicates that outside the caldera the conductor is due to alteration minerals (primarily smectite) and not high-temperature pore fluids. On the flanks of Newberry the conductor is generally deeper than inside the caldera, and it deepens with distance from the summit. A notable exception to this pattern is seen just west of the caldera rim, where the conductive zone is shallower than at other flank locations. The volcano sits atop a rise in the resistive layer, interpreted to be due to intrusive rocks. -from Authors

  11. Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Faculty of Transportation Systems, Kharkiv National Automobile and Highway University, 61002 Kharkiv

    2014-07-15

    The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combinedmore » ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.« less

  12. Reduction of particle deposition on substrates using temperature gradient control

    DOEpatents

    Rader, Daniel J.; Dykhuizen, Ronald C.; Geller, Anthony S.

    2000-01-01

    A method of reducing particle deposition during the fabrication of microelectronic circuitry is presented. Reduction of particle deposition is accomplished by controlling the relative temperatures of various parts of the deposition system so that a large temperature gradient near the surface on which fabrication is taking place exists. This temperature gradient acts to repel particles from that surface, thereby producing cleaner surfaces, and thus obtaining higher yields from a given microelectronic fabrication process.

  13. High-velocity frictional strength across the Tohoku-Oki megathrust determined from surface drilling torque

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Inoue, T.; Ishiwata, J.

    2015-12-01

    Frictional strength at seismic slip rates is a key to evaluate fault weakening and rupture propagation during earthquakes. The Japan Trench First Drilling Project (JFAST) drilled through the shallow plate-boundary thrust, where huge displacements of ~50 m occurred during the 2011 Tohoku-Oki earthquake. To determine the downhole frictional strength at drilled site (Site C0019), we analyzed surface drilling data. The equivalent slip rate estimated from the rotation rate and inner and outer radiuses of the drill bit ranges from 0.8 to 1.3 m/s. The measured torque includes the frictional torque between the drilling string and borehole wall, the viscous torque between the drilling string and seawater/drilling fluid, and the drilling torque between the drill bit and sediments. We subtracted the former two from the measured torque using the torque data during bottom-up rotating operations at several depths. Then, the shear stress was calculated from the drilling torque taking the configuration of the drill bit into consideration. The normal stress was estimated from the weight on bit data and the projected area of the drill bit. Assuming negligible cohesion, the frictional strength was obtained by dividing shear stress by normal stress. The results show a clear contrast in high-velocity frictional strength across the plate-boundary thrust: the friction coefficient of frontal prism sediments (hemipelagic mudstones) in hanging wall is 0.1-0.2, while that in subducting sediments (hemipelagic to pelagic mudstones and chert) in footwall increases to 0.2-0.4. The friction coefficient of smectite-rich pelagic clay in the plate-boundary thrust is ~0.1, which is consistent with that obtained from high-velocity (1.3 m/s) friction experiments and temperature measurements. We conclude that surface drilling torque provides useful data to obtain a continuous downhole frictional strength.

  14. Experimental feasibility of investigating acoustic waves in Couette flow with entropy and pressure gradients

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.

    1990-01-01

    The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.

  15. High Temperature Logging and Monitoring Instruments to Explore and Drill Deep into Hot Oceanic Crust.

    NASA Astrophysics Data System (ADS)

    Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.

    2014-12-01

    Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination) as boundary conditions for the models. In all, and with limited integration of existing tools, to deployment of high-temperature downhole tools could contribute largely to the success of the long awaited Mohole project.

  16. The Influence of Wavelength-Dependent Absorption and Temperature Gradients on Temperature Determination in Laser-Heated Diamond-Anvil Cells

    NASA Astrophysics Data System (ADS)

    Deng, J.; Lee, K. K. M.; Du, Z.; Benedetti, L. R.

    2016-12-01

    In situ temperature measurements in the laser-heated diamond-anvil cell (LHDAC) are among the most fundamental experiments undertaken in high-pressure science. Despite its importance, few efforts have been made to examine the alteration of thermal radiation spectra of hot samples by wavelength-dependent absorption of the sample itself together with temperature gradients within samples while laser heating and their influence on temperature measurement. For example, iron-bearing minerals show strong wavelength dependent absorption in the wavelength range used to determine temperature, which, together with temperature gradients can account for largely aliased apparent temperatures (e.g., 1200 K deviation for a 4000 K melting temperature) in some experiments obtained by fitting of detected thermal radiation intensities. As such, conclusions of melting temperatures, phase diagrams and partitioning behavior, may be grossly incorrect for these materials. In general, wavelength-dependent absorption and temperature gradients of samples are two key factors to consider in order to rigorously constrain temperatures, which have been largely ignored in previous LHDAC studies. A reevaluation of temperatures measured in recent high-profile papers will be reviewed.

  17. Theoretical Estimation of Thermal Effects in Drilling of Woven Carbon Fiber Composite

    PubMed Central

    Díaz-Álvarez, José; Olmedo, Alvaro; Santiuste, Carlos; Miguélez, María Henar

    2014-01-01

    Carbon Fiber Reinforced Polymer (CFRPs) composites are extensively used in structural applications due to their attractive properties. Although the components are usually made near net shape, machining processes are needed to achieve dimensional tolerance and assembly requirements. Drilling is a common operation required for further mechanical joining of the components. CFRPs are vulnerable to processing induced damage; mainly delamination, fiber pull-out, and thermal degradation, drilling induced defects being one of the main causes of component rejection during manufacturing processes. Despite the importance of analyzing thermal phenomena involved in the machining of composites, only few authors have focused their attention on this problem, most of them using an experimental approach. The temperature at the workpiece could affect surface quality of the component and its measurement during processing is difficult. The estimation of the amount of heat generated during drilling is important; however, numerical modeling of drilling processes involves a high computational cost. This paper presents a combined approach to thermal analysis of composite drilling, using both an analytical estimation of heat generated during drilling and numerical modeling for heat propagation. Promising results for indirect detection of risk of thermal damage, through the measurement of thrust force and cutting torque, are obtained. PMID:28788685

  18. Temperature gradient interaction chromatography of polymers: A molecular statistical model.

    PubMed

    Radke, Wolfgang; Lee, Sekyung; Chang, Taihyun

    2010-11-01

    A new model describing the retention in temperature gradient interaction chromatography of polymers is developed. The model predicts that polymers might elute in temperature gradient interaction chromatography in either an increasing or decreasing order or even nearly independent of molar mass, depending on the rate of the temperature increase relative to the flow rate. This is in contrast to solvent gradient elution, where polymers elute either in order of increasing molar mass or molar mass independent. The predictions of the newly developed model were verified with the literature data as well as new experimental data. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fort Bliss Geothermal Area Data: Temperature profile, logs, schematic model and cross section

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This dataset contains a variety of data about the Fort Bliss geothermal area, part of the southern portion of the Tularosa Basin, New Mexico. The dataset contains schematic models for the McGregor Geothermal System, a shallow temperature survey of the Fort Bliss geothermal area. The dataset also contains Century OH logs, a full temperature profile, and complete logs from well RMI 56-5, including resistivity and porosity data, drill logs with drill rate, depth, lithology, mineralogy, fractures, temperature, pit total, gases, and descriptions among other measurements as well as CDL, CNL, DIL, GR Caliper and Temperature files. A shallow (2 meter depth) temperature survey of the Fort Bliss geothermal area with 63 data points is also included. Two cross sections through the Fort Bliss area, also included, show well position and depth. The surface map included shows faults and well spatial distribution. Inferred and observed fault distributions from gravity surveys around the Fort Bliss geothermal area.

  20. A sandwich-designed temperature-gradient incubator for studies of microbial temperature responses.

    PubMed

    Elsgaard, Lars; Jørgensen, Leif Wagner

    2002-03-01

    A temperature-gradient incubator (TGI) is described, which produces a thermal gradient over 34 aluminium modules (15x30x5 cm) intersected by 2-mm layers of partly insulating graphite foil (SigraFlex Universal). The new, sandwich-designed TGI has 30 rows of six replicate sample wells for incubation of 28-ml test tubes. An electric plate heats one end of the TGI, and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA (Supervisory Control And Data Acquisition) software (Genesis 4.20) is applied for temperature control using three advanced control loops. The precision of the TGI temperature measurements was better than +/-0.12 degrees C, and for a 0-40 degrees C gradient, the temperature at the six replicate sample wells varied less than +/-0.04 degrees C. Temperatures measured in incubated water samples closely matched the TGI temperatures, which showed a linear relationship to the sample row number. During operation for 8 days with a gradient of 0-40 degrees C, the temperature at the cold end was stable within +/-0.02 degrees C, while the temperatures at the middle and the warm end were stable within +/-0.08 degrees C (n=2370). Using the new TGI, it was shown that the fine-scale (1 degrees C) temperature dependence of S(o) oxidation rates in agricultural soil (0-29 degrees C) could be described by the Arrhenius relationship. The apparent activation energy (E(a)) for S(o) oxidation was 79 kJ mol(-1), which corresponded to a temperature coefficient (Q(10)) of 3.1. These data demonstrated that oxidation of S(o) in soil is strongly temperature-dependent. In conclusion, the new TGI allowed a detailed study of microbial temperature responses as it produced a precise, stable, and certifiable temperature gradient by the new and combined use of sandwich-design, thermoelectric cooling, and advanced control loops. The sandwich-design alone reduced the disadvantageous thermal gradient over individual sample wells by 56%.

  1. Agricultural scene understanding

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator); Bauer, M. E.; Silva, L.; Hoffer, R. M.; Baumgardner, M. F.

    1977-01-01

    The author has identified the following significant results. The LACIE field measurement data were radiometrically calibrated. Calibration enabled valid comparisons of measurements from different dates, sensors, and/or locations. Thermal band canopy results included: (1) Wind velocity had a significant influence on the overhead radiance temperature and the effect was quantized. Biomass and soil temperatures, temperature gradient, and canopy geometry were altered. (2) Temperature gradient was a function of wind velocity. (3) Temperature gradient of the wheat canopy was relatively constant during the day. (4) The laser technique provided good quality geometric characterization.

  2. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.« less

  3. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    PubMed Central

    Reilly, John; Glisic, Branko

    2018-01-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University. PMID:29494496

  4. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    USGS Publications Warehouse

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  5. Microfludic Device for Creating Ionic Strength Gradients over DNA Microarrays for Efficient DNA Melting Studies and Assay Development

    PubMed Central

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin

    2009-01-01

    The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients. PMID:19277213

  6. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development.

    PubMed

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin

    2009-01-01

    The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Howard P.; Moore, Joseph N.; Christensen, Odin D.

    Geological, geochemical and geophysical data are presented for one of the major geothermal systems in the western United States. Regional data indicate major tectonic structures which are still active and provide the conduits for the geothermal system. Detailed geologic mapping has defined major glide blocks of Tertiary volcanics which moved down from the Tushar Mountains and locally act as a leaky cap to portions of the presently known geothermal system. Mapping and geochemical studies indicate three periods of mineralization have affected the area, two of which are unrelated to the present geothermal activity. The geologic relationships demonstrate that the majormore » structures have been opened repeatedly since the Tertiary. Gravity and magnetic data are useful in defining major structures beneath alluvium and basalt cover, and indicate the importance of the Cove Fort-Beaver graben and the Cove Creek fault in localizing the geothermal reservoir. These structures and a high level of microearthquake activity also suggest other target areas within the larger thermal anomaly. Electrical resistivity surveys and thermal gradient holes both contribute to the delineation of the known reservoir. Deep exploration wells which test the reservoir recorded maximum temperatures of 178 C and almost isothermal behavior beginning at 700 to 1000 m and continuing to a depth of 1800 m. Costly drilling, high corrosion rates and low reservoir pressure coupled with the relatively low reservoir temperatures have led to the conclusion that the reservoir is not economic for electric power production at present. Plans are underway to utilize the moderate-temperature fluids for agribusiness, and exploration continues for a deep high-temperature reservoir.« less

  8. IMPROVED TEMPERATURE GRADIENT FOR MONITORING BEHAVIORAL THERMOREGULATION IN THE RAT

    EPA Science Inventory

    Past studies have found that the laboratory rat placed In a temperature gradient prefers temperatures that are markedly below its lower critical ambient temperature (LCT), whereas other rodents (e.g., mouse, hamster, and guinea pig) generally select thermal environments associate...

  9. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 1. Field observations and possible remedies.

    PubMed

    Do, F; Rocheteau, A

    2002-06-01

    The thermal dissipation method is simple and widely used for measuring sap flow in large stems. As with several other thermal methods, natural temperature gradients are assumed to be negligible in the sapwood being measured. We studied the magnitude and variability of natural temperature gradients in sapwood of Acacia trees growing in the Sahelian zone of Senegal, analyzed their effects on sap flow measurements, and investigated possible solutions. A new measurement approach employing cyclic heating (45 minutes of heating and 15 minutes of cooling; 45/15) was also tested. Three-day measurement sequences that included 1 day without heating, a second day with continuous heating and a third day with cyclic heating were recorded during a 6.5-month period using probes installed at three azimuths in a tree trunk. Natural temperature gradients between the two probes of the sensor unit, spaced 8 to 10 cm vertically, were rarely negligible (i.e., < 0.2 degrees C): they were positive during the night and negative during the day, with an amplitude ranging from 0.3 to 3.5 degrees C depending on trunk azimuth, day and season. These temperature gradients had a direct influence on the signal from the continuously heated sensors, inducing fluctuations in the nighttime reference signal. The resulting errors in sap flow estimates can be greater than 100%. Correction protocols have been proposed in previous studies, but they were unsuitable because of the high spatial and temporal variability of the natural temperature gradients. We found that a measurement signal derived from a noncontinuous heating system could be an attractive solution because it appears to be independent of natural temperature gradients. The magnitude and variability of temperature gradients that we observed were likely exacerbated by the combination of open stand, high solar radiation and low sap flow rate. However, for all applications of the thermal dissipation method, it is wise to check regularly for natural temperature gradients by switching off the heater.

  10. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  11. Feasibility of Geothermal Energy Extraction from Non-Activated Petroleum Wells in Arun Field

    NASA Astrophysics Data System (ADS)

    Syarifudin, M.; Octavius, F.; Maurice, K.

    2016-09-01

    The big obstacle to develop geothermal is frequently came from the economical viewpoint which mostly contributed by the drilling cost. However, it potentially be tackled by converting the existing decommissioned petroleum well to be converted for geothermal purposes. In Arun Field, Aceh, there are 188 wells and 62% of them are inactive (2013). The major obstacle is that the outlet water temperature from this conversion setup will not as high as the temperature that come out from the conventional geothermal well, since it will only range from 60 to 180oC depending on several key parameters such as the values of ground temperature, geothermal gradient in current location, the flow inside of the tubes, and type of the tubes (the effect from these parameters are studied). It will just be considered as low to medium temperature, according to geothermal well classification. Several adjustments has to be made such as putting out pipes inside the well that have been used to lift the oil/gas and replacing them with a curly long coil tubing which act as a heat exchanger. It will convert the cold water from the surface to be indirectly heated by the hot rock at the bottom of the well in a closed loop system. In order to make power production, the binary cycle system is used so that the low to medium temperature fluid is able to generate electricity. Based on this study, producing geothermal energy for direct use and electricity generation in Arun Field is technically possible. In this study case, we conclude that 2900 kW of electricity could be generated. While for-direct utility, a lot of local industries in Northern Sumatera could get the benefits from this innovation.

  12. Air temperature gradient in large industrial hall

    NASA Astrophysics Data System (ADS)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  13. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    NASA Astrophysics Data System (ADS)

    Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team

    2008-07-01

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  14. Geohydrology and potential for upward movement of saline water in the Cocoa well field, East Orange County, Florida

    USGS Publications Warehouse

    Phelps, G.G.; Schiffer, D.M.

    1996-01-01

    The Floridan aquifer system, an approximately 2,000-foot thick sequence of Eocene-age limestone and dolomite, is the main source of water supply in central Florida. Hydraulic conductivity is different in strata of different lithology and is the basis for separating the aquifer system into the Upper Floridan aquifer, a middle semi- confining unit, and the Lower Floridan aquifer. The coastal city of Cocoa withdraws about 26 million gallons of water per day from the Upper Floridan aquifer from a well field in east Orange County, about 25 miles inland. About 60 million gallons per day are withdrawn from the Upper Floridan aquifer and 56 million gallons per day from the Lower Floridan aquifer in the Orlando area, about 15 miles west of the Cocoa well field. Wells drilled in the Cocoa well field from 1955-61 yielded water with chloride concentrations ranging from 25-55 milligrams per liter. Soon after the wells were put in service, chloride concentrations increased; therefore, new wells were drilled further inland. Chloride concen- trations in water from many of the new wells also have increased. Possible sources of saline water are lateral movement of relict seawater in the Upper Floridan aquifer from the east, regional upconing of saline water from the Lower Floridan aquifer or underlying older rocks, or localized upward movement of saline water through fractures. Several test wells were drilled to provide information about chloride concentration changes with depth and to monitor changes with time, including a multi-zone well drilled in 1965 (well C) and two wells drilled in the 1990's (wells R and S). Chloride concentrations have increased in the zone pumped by the supply wells (the upper 500 feet of the aquifer) and in the 1,351-1,357-foot deep zone of well C, but not in the two intervening zones. This indicates that the source of saline water is located laterally, rather than vertically, from the pumped zone in the area of well C. The potential for upward movement of saline water depends on the direction of the vertical hydraulic gradient and on the vertical hydraulic conductivity of the aquifer. A series of aquifer tests was run in 1993-94 and existing water-level and water-quality data were analyzed to evaluate the potential for upward movement of saline water in the well field. The transmissivity of the upper 500 feet of the aquifer is about 100,000 feet squared per day (the horizontal hydraulic conductivity is about 200 feet per day) and the storage coefficient is about 2x10 -4. Horizontal hydraulic conductivities determined from slug tests of the three deepest zones of well C ranged from 20-50 feet per day. Vertical hydraulic conductivities probably do not exceed 0.05 feet per day. The vertical hydraulic gradient is determined by comparing water levels in the various zones, but because of density differences, unadjusted water levels in the deepest zone investigated cannot be directly compared to water levels in the overlying freshwater zones. The difference between environmental-water heads (adjusted for density differences) in the saline-water zone of well C and the overlying freshwater zone were calculated from measured water levels for the period 1966 to 1994. During most of this time period, the gradient was downward, indicating that saline water did not move upward. Upconing of saline water probably is not taking place in the center and western part of the well field, based on the low vertical hydraulic conductivity values estimated for the middle semi-confining unit, the generally downward vertical hydraulic gradient, and the constant chloride concentrations in the intermediate zones of well C. However, there is no information about the extent of the zone of low vertical hydraulic conductivity gradient in the eastern part of the well field. Thus, increased chloride concentrations in supply wells in the eastern part of the well field could be caused either by lateral movement of saline water from the east, or by upwar

  15. Observing Ice Sublimation From Water-Doped Lunar Simulant at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Teodoro, L. F. A.; Colaprete, A.; Cook, A. M.; Elphic, R.

    2018-01-01

    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar and permanently shadowed regions. The Near-Infrared Volatile Spectrometer System (NIRVSS) observes while a drill penetrates to a maximum depth of 1 m. Any 10 cm increment of soil identified as containing water ice can be delivered to a heating crucible with the evolved gas delivered to a gas chromatograph / mass spectrometer. NIRVSS consists of two components; a spectrometer box (SB) and bracket assembly (BA), connected by two fiber optic cables. The SB contains separate short- and long-wavelength spectrometers, SW and LW respectively, that collectively span the 1600-3400 nm range. The BA contains an IR emitter (lamp), drill observation camera (DOC, 2048 x 2048 CMOS detector), 8 different wavelength LEDs, and a longwave calibration sensor (LCS) measuring the surface emissivity at four IR wavelengths. Tests of various RP sub-systems have been under-taken in a large cryo-vacuum chamber at Glenn Re-search Center. The chamber accommodates a tube (1.2 m high x 25.4 cm diameter) filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. Thermocouples are embedded at different depths, and also across the surface of the soil tube. In the chamber the tube is cooled with LN2 as the pressure is reduced to approx. 5-6x10(exp -6) Torr. For the May 2016 tests two soil tubes were prepared with initially 2.5 Wt.% water. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment. Table 1 provides a summary of experimental conditions and Figure 1 shows the nominal view of the NIRVSS components, the drill foot, and the top of the soil tube. Once the average soil temperature reached approx. 178 K, drilling commenced. During drilling activities NIRVSS was alternating between obtaining spectra and obtaining images. Here we discuss NIRVSS spectral data obtained during controlled drill percussions.

  16. Ion temperature gradient mode driven solitons and shocks

    NASA Astrophysics Data System (ADS)

    Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.

    2016-04-01

    Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.

  17. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,

    1994-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.

  18. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, S.H.; Younker, L.W.; Zoback, M.D.

    1995-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

  19. Evaluation of Workpiece Temperature during Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application.

    PubMed

    Giasin, Khaled; Ayvar-Soberanis, Sabino

    2016-07-28

    The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate.

  20. Evaluation of Workpiece Temperature during Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application

    PubMed Central

    Giasin, Khaled; Ayvar-Soberanis, Sabino

    2016-01-01

    The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate. PMID:28773757

  1. Sensitivity of idealised baroclinic waves to mean atmospheric temperature and meridional temperature gradient changes

    NASA Astrophysics Data System (ADS)

    Rantanen, Mika; Räisänen, Jouni; Sinclair, Victoria A.; Järvinen, Heikki

    2018-06-01

    The sensitivity of idealised baroclinic waves to different atmospheric temperature changes is studied. The temperature changes are based on those which are expected to occur in the Northern Hemisphere with climate change: (1) uniform temperature increase, (2) decrease of the lower level meridional temperature gradient, and (3) increase of the upper level temperature gradient. Three sets of experiments are performed, first without atmospheric moisture, thus seeking to identify the underlying adiabatic mechanisms which drive the response of extra-tropical storms to changes in the environmental temperature. Then, similar experiments are performed in a more realistic, moist environment, using fixed initial relative humidity distribution. Warming the atmosphere uniformly tends to decrease the kinetic energy of the cyclone, which is linked both to a weaker capability of the storm to exploit the available potential energy of the zonal mean flow, and less efficient production of eddy kinetic energy in the wave. Unsurprisingly, the decrease of the lower level temperature gradient weakens the resulting cyclone regardless of the presence of moisture. The increase of the temperature gradient in the upper troposphere has a more complicated influence on the storm dynamics: in the dry atmosphere the maximum eddy kinetic energy decreases, whereas in the moist case it increases. Our analysis suggests that the slightly unexpected decrease of eddy kinetic energy in the dry case with an increased upper tropospheric temperature gradient originates from the weakening of the meridional heat flux by the eddy. However, in the more realistic moist case, the diabatic heating enhances the interaction between upper- and low-level potential vorticity anomalies and hence helps the surface cyclone to exploit the increased upper level baroclinicity.

  2. Effect of temperature gradient on the optical quality of mercurous chloride crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Davies, D. K.; Gottlieb, M.; Henningsen, T.; Mazelsky, R.

    1989-01-01

    Single crystals of mercurous chloride were grown at temperature gradients of 8, 11 and 17 K/cm by the physical vapor transport method. The optical quality of these crystals was evaluated by measuring bulk scattering and inhomogeneity of refractive index by birefringence interferometry. It was observed that a high temperature gradient at the solid-vapor interface induced thermal stresses and crystals showed higher scattering and irregular fringes.

  3. Influence of the Latitudinal Temperature Gradient on Soil Dust Concentration and Deposition in Greenland

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Rind, David

    2000-01-01

    To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.

  4. Pulsed Nd:YAG laser beam drilling: A review

    NASA Astrophysics Data System (ADS)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  5. Shadowgraph Study of Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William

    2002-01-01

    A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.

  6. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  7. Data for ground-water test hole near Zamora, Central Valley Aquifer Project, California

    USGS Publications Warehouse

    French, J.J.; Page, R.W.; Bertoldi, G.L.

    1982-01-01

    Preliminary data are presented for the first of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 SE 1/4 sec. 34, T. 12 N. , R. 1 E., Yolo County, California, about 3 miles northeast of the town of Zamora. Drilled to a depth of 2,500 feet below land surface, the hole is cased to a depth of 190 feet and equipped with three piezometer tubes to depths of 947, 1,401, and 2,125 feet. A 5-foot well screen is at the bottom of each piezometer. Eighteen cores and 68 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, diatom identification, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  8. Monroe, Utah, Hydrothermal System: Results from Drilling of Test Wells MC1 and MC2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, D.S.; Harrison, Roger

    1978-10-01

    Following detailed geological (Parry et al., 1976; Miller, 1976) and geophysical (Mase, Chapman, and Ward, 1978; Kilty, Mase, and Chapman, 1978) studies of the Monroe, Utah hydrothermal system, a program of drilling two intermediate depth test wells was undertaken. The objectives of the test well drilling were three-fold: (1) to obtain structural information bearing on the poorly known dip of the Sevier Fault, (2) to obtain temperature information below the shallow depths (approximately 300 ft.) sampled in the first phase of exploration, and (3) to provide cased wells which could act as monitor wells during the production phase of themore » project. The test well drilling was seen to be vital to the selection of a site for a production well. This report describes the results from the drilling of the two test wells, designated MC1 and MC2, and offers interpretation of the hydrothermal system which may be used as a basis for selecting production wells.« less

  9. Comet sample acquisition for ROSETTA lander mission

    NASA Astrophysics Data System (ADS)

    Marchesi, M.; Campaci, R.; Magnani, P.; Mugnuolo, R.; Nista, A.; Olivier, A.; Re, E.

    2001-09-01

    ROSETTA/Lander is being developed with a combined effort of European countries, coordinated by German institutes. The commitment for such a challenging probe will provide a unique opportunity for in-situ analysis of a comet nucleus. The payload for coring, sampling and investigations of comet materials is called SD2 (Sampling Drilling and Distribution). The paper presents the drill/sampler tool and the sample transfer trough modeling, design and testing phases. Expected drilling parameters are then compared with experimental data; limited torque consumption and axial thrust on the tool constraint the operation and determine the success of tests. Qualification campaign involved the structural part and related vibration test, the auger/bit parts and drilling test, and the coring mechanism with related sampling test. Mechanical check of specimen volume is also reported, with emphasis on the measurement procedure and on the mechanical unit. The drill tool and all parts of the transfer chain were tested in the hypothetical comet environment, charcterized by frozen material at extreme low temperature and high vacuum (-160°C, 10-3 Pa).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phetteplace, D.R.; Kunze, J.F.

    The Geothermal Exploratory Well Project for the City of Alamosa, Colorado is summarized. In September, 1980, the City of Alamosa made application to the US Department of Energy for a program which, in essence, provided for the Department of Energy to insure that the City would not risk more than 10% of the total cost in the well if the well was a failure. If the well was a complete success, such as 650 gpm and 230/sup 0/F temperature, the City was responsible for 80% of the costs for drilling the well and there would be no further obligation frommore » the Department of Energy. The well was drilled in November and early December, 1981, and remedial work was done in May and June 1982. The total drilled depth was 7118 ft. The well was cased to 4182 ft., with a slotted liner to 6084 ft. The maximum down hole temperature recorded was 190/sup 0/F at 6294 ft. Testing immediately following the remedial work indicated the well had virtually no potential to produce water.« less

  11. Response of hatchling and yearling turtles to thermal gradients: Comparison of Chelydra serpentina and Trachemys scripta

    USGS Publications Warehouse

    Bury, R. Bruce; Nebeker, A.B.; Adams, Michael J.

    2000-01-01

    In laboratory tests, young Chelydra serpentina and Trachemys scripta altered their distribution in the presence of a temperature gradient. Selection of temperatures in the gradient for hatchlings and yearlings showed that body temperatures (Tbs) of C. serpentina were lower than T. scripta, but the difference was insignificant. Relatively low Tbs could allow greater activity range and reduced metabolic maintenance cost for C. serpentina, which seldom leaves water.

  12. Crystal growth and annealing for minimized residual stress

    DOEpatents

    Gianoulakis, Steven E.

    2002-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing.

  13. Method for single crystal growth of photovoltaic perovskite material and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinsong; Dong, Qingfeng

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  14. Temperature gradient measurements by using thermoelectric effect in CNTs-silicone adhesive composite.

    PubMed

    Chani, Muhammad Tariq Saeed; Karimov, Kh S; Asiri, Abdullah M; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved

    2014-01-01

    This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results.

  15. Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite

    PubMed Central

    Chani, Muhammad Tariq Saeed; Karimov, Kh. S.; Asiri, Abdullah M.; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved

    2014-01-01

    This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results. PMID:24748375

  16. Sweet lake geopressured-geothermal project, Magma Gulf-Technadril/DOE Amoco Fee. Annual report, December 1, 1979-February 27, 1981. Volume I. Drilling and completion test well and disposal well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, R.W.

    The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within onemore » mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.« less

  17. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and the Reykjanes geothermal fields during 2009-2010, and subsequently deepened. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land in southern Iceland. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. The IDDP has engendered considerable international scientific interest. The US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. In preparation for studying the data and samples that will be recovered by deep drilling research is underway on samples from existing wells in the target geothermal fields, and on exposed "fossil" geothermal systems and active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.

  18. Exposure to oil mist and oil vapour during offshore drilling in norway, 1979-2004.

    PubMed

    Steinsvåg, Kjersti; Bråtveit, Magne; Moen, Bente E

    2006-03-01

    To describe personal exposure to airborne hydrocarbon contaminants (oil mist and oil vapour) from 1979 to 2004 in the mud-handling areas of offshore drilling facilities operating on the Norwegian continental shelf when drilling with oil-based muds. Qualitative and quantitative information was gathered during visits to companies involved in offshore oil and gas production in Norway. Monitoring reports on oil mist and oil vapour exposure covered 37 drilling facilities. Exposure data were analysed using descriptive statistics and by constructing linear mixed-effects models. Samples had been taken during the use of three generations of hydrocarbon base oils, namely diesel oils (1979-1984), low-aromatic mineral oils (1985-1997) and non-aromatic mineral oils (1998-2004). Sampling done before 1984 showed high exposure to diesel vapour (arithmetic mean, AM = 1217 mg m(-3)). When low-aromatic mineral oils were used, the exposure to oil mist and oil vapour was 4.3 and 36 mg m(-3), and the respective AMs for non-aromatic mineral oils were reduced to 0.54 and 16 mg m(-3). Downward time trends were indicated for both oil mist (6% per year) and oil vapour (8% per year) when the year of monitoring was introduced as a fixed effect in a linear mixed-effects model analysis. Rig type, technical control measures and mud temperature significantly determined exposure to oil mist. Rig type, type of base oil, viscosity of the base oil, work area, mud temperature and season significantly determined exposure to oil vapour. Major decreases in variability were found for the between-rig components. Exposure to oil mist and oil vapour declined over time in the mud-handling areas of offshore drilling facilities. Exposure levels were associated with rig type, mud temperature, technical control measures, base oil, viscosity of the base oil, work area and season.

  19. Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson

    2013-03-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The teammore » identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:« less

  20. Study on Circular Complex viewed from Environmental Systems

    NASA Astrophysics Data System (ADS)

    Takeguchi, Tomoo; Adachi, Katsushige; Yoshikawa, Akira; Hiratsuka, Akira; Tsujino, Ryoji; Iguchi, Manabu

    In machining processes, cutting fluids are generally used for cooling and lubricating workpieces at the point cutting. However, these fluids frequently include chlorine, sulfur, phosphorus, or other additives. The chemicals not only become a mist affecting the health of workers engaged in the processing but also make the workshop environment worse. In particular, the chlorine becomes one of the causes of global warming by treating waste oil under high temperature conditions. It is furthermore said that huge cost beyond the purchase cost of oil occurs and dioxins (carcinogen) usually exist in the waste oil. Therefore, an environmentally-friendly cooling-air cutting system is required from the standpoint of green manufacturing. This system has been noted as a technique to solve the issues against the environment mentioned above. In the cooling-air cutting processing, the amount of CO2 emission shows a low value compared with the dry cutting one which uses oil. It is therefore thought that the cooling-air cutting system is a very important processing technique as an environmental countermeasure. At present, in strictly economic and environmental situations, the compatibility of the betterment of production efficiency with the improvement of environment is a subject in the actual spot of a cut processing. This study deals with the test results of cooling-air drilling performance from the viewpoint of taking green manufacturing into account. The workpiece made of die steel SKDll was manufactured by the cooling-air drilling performance at a revolution of 840 rpm and a temperature of -20°C with a high-speed steel drill (SKH56). The results were compared with those for the dry cutting performance. The main results obtained in this study are as follows: 1) The tool life for cooling-air drilling performance was about 6 times as long as that for the dry cutting performance. 2) The chip temperature for cooling-air drilling was 220°C lower than that for the dry cutting performance.

  1. Exploration and Resource Assessment at Mountain Home Air Force Base, Idaho Using an Integrated Team Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possiblemore » sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home AFB.« less

  2. Optical ray tracing method for simulating beam-steering effects during laser diagnostics in turbulent media.

    PubMed

    Wang, Yejun; Kulatilaka, Waruna D

    2017-04-10

    In most coherent spectroscopic methods used in gas-phase laser diagnostics, multiple laser beams are focused and crossed at a specific location in space to form the probe region. The desired signal is then generated as a result of nonlinear interactions between the beams in this overlapped region. When such diagnostic schemes are implemented in practical devices having turbulent reacting flow fields with refractive index gradients, the resulting beam steering can give rise to large measurement uncertainties. The objective of this work is to simulate beam-steering effects arising from pressure and temperature gradients in gas-phase media using an optical ray tracing approach. The ZEMAX OpticStudio software package is used to simulate the beam crossing and uncrossing effects in the presence of pressure and temperature gradients, specifically the conditions present in high-pressure, high-temperature combustion devices such as gas turbine engines. Specific cases involving two-beam and three-beam crossing configurations are simulated. The model formulation, the effects of pressure and temperature gradients, and the resulting beam-steering effects are analyzed. The results show that thermal gradients in the range of 300-3000 K have minimal effects, while pressure gradients in the range of 1-50 atm result in pronounced beam steering and the resulting signal fluctuations in the geometries investigated. However, with increasing pressures, the temperature gradients can also have a pronounced effect on the resultant signal levels.

  3. Organic geochemistry, lithology, and paleontology of Tertiary and Mesozoic rocks from wells on the Alaska Peninsula

    USGS Publications Warehouse

    McLean, Hugh James

    1977-01-01

    Core chips and drill cuttings from eight of the nine wells drilled along the Bering Sea lowlands of the Alaska Peninsula were subjected to lithologic and paleontologic analyses. Results suggest that at least locally, sedimentary rocks of Tertiary age contain oil and gas source and reservoir rocks capable of generating and accumulating liquid and gas hydrocarbons. Paleogene strata rich in organic carbon are immature. However, strata in offshore basins to the north and south may have been subjected to a more productive thermal environment. Total organic carbon content of fine grained Neogene strata appears to be significantly lower than in Paleogene rocks, possibly reflecting nonmarine or brackish water environments of deposition. Neogene sandstone beds locally yield high values of porosity and permeability to depths of about 8,000 feet (2,439 m). Below this depth, reservoir potential rapidly declines. The General Petroleum, Great Basins No. 1 well drilled along the shore of Bristol Bay reached granitic rocks. Other wells drilled closer to the axis of the present volcanic arc indicate that both Tertiary and Mesozoic sedimentary rocks have been intruded by dikes and sills of andesite and basalt. Although the Alaska Peninsula has been the locus of igneous activity throughout much of Mesozoic and Tertiary time, thermal maturity indicators such as vitrinite reflectance and coal rank suggest, that on a regional scale, sedimentary rocks have not been subjected to abnormally high geothermal gradients.

  4. Geochemical constraints on the temperature and timing of carbonate formation and lithification in the Nankai Trough, NanTroSEIZE transect

    NASA Astrophysics Data System (ADS)

    Sample, James C.; Torres, Marta E.; Fisher, Andrew; Hong, Wei-Li; Destrigneville, Christine; Defliese, William F.; Tripati, Aradhna E.

    2017-02-01

    Information about diagenetic processes and temperatures during burial of sediments entering the subduction zone is important for understanding changes in physical properties and seismic behavior during deformation. The geochemistry of authigenic carbonates from accretionary prisms can serve as proxies for conditions during carbonate cementation and resultant lithification. We report results from the Nankai accretionary prism recovered from Integrated Ocean Drilling Program (IODP) sites C0011 and C0012 and we document continued cementation of deep sediment sections prior to subduction. Elemental and isotope data provide evidence for complex mixing of different isotopic reservoirs in pore waters contributing to carbonate chemical signatures. Carbon stable isotope values exhibit a broad range (δ13CV-PDB = +0.1‰ to -22.5‰) that corresponds to different stages of cement formation during burial. Carbonate formation temperatures from carbonate-clumped isotope geochemistry range from 16 °C to 63 °C at Site C0011 and 8.7 °C to 68 °C at Site C0012. The correspondence between the clumped-isotope temperatures and extrapolations of measured in situ temperatures indicate the carbonate is continuing to form at present. Calculated water isotopic compositions are in some cases enriched in 18O relative to measured interstitial waters suggesting a component of inherited seawater or input from clay-bound water. Low oxygen isotope values and the observed Ba/Ca ratios are also consistent with carbonate cementation at depth. Strontium isotopes of interstitial waters (87Sr/86Sr of 0.7059-0.7069) and carbonates (87Sr/86Sr of 0.70715-0.70891) support formation of carbonates from a mixture of strontium reservoirs including current interstitial waters and relic seawater contemporaneous with deposition. Collectively our data reflect mixed sources of dissolved inorganic carbon and cations that include authigenic phases driven by organic carbon and volcanic alteration reactions. Physical properties of input sediments continue to undergo modification by carbonate cementation at present. Due to ongoing recrystallization, temperatures from carbonate-clumped isotopes reflect the modern geothermal gradient and may serve as useful measures of geothermal gradients in other siliciclastic basins where carbonate cementation occurs. We conclude that clumped-isotope signatures in authigenic carbonates from accretionary prisms are important proxies for the timing and conditions of cementation in active margins. Our results highlight the importance of using multi-proxy approaches to elucidate the history of carbonate cementation, particularly to establish carbonate precipitation at depth and its potential impact on the physical and mechanical properties of the sediment prior to subduction.

  5. Hypersolidus geothermal energy from the moving freeze-fracture-flow boundary

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles; Eichelberger, John; Sigmundsson, Freysteinn; Papale, Paolo; Sun, Yunwei

    2014-05-01

    Rhyolitic magmas at low pressure undergo much of their crystallization over a small temperature interval just above the solidus. This hypersolidus material has a high energy density and effective heat capacity because of stored heat of crystallization, yet may sustain fractures and therefore admit heat exchange with fluids because of its interlocking crystal framework. Rhyolitic magmas emplaced near the liquidus should at first cool rapidly, owing to internal convection, modest crystallization with declining temperature, and extreme temperature gradients at their boundaries. However, once the solidus is approached the rapid rise in effective heat capacity should result in low temperature gradients and rates of heat flow within the bodies. They are suspended for a time in the hypersolidus state. Prodigious quantities of heat can be released from these thermal masses by hydrothermal systems, natural or perhaps stimulated, fracturing their way inward from the margins. The fracture front drives the solidus isotherm ahead of it. Heat of crystallization in front of the advancing solidus is transferred across the thin, moving boundary zone to the external fluid, which advects it away. Once the material is below (outboard of) the solidus, it behaves as normal rock and cools rapidly, having a heat capacity only about 20% that of water. Variations on this theme were published by Lister (1974) for mid-ocean ridges, Hardee (1980) for lava lakes, and Bjornsson et al (1982) for Grimsvotn and Heimaey, who cited possible geothermal energy exploitiation. This scenario is consistent with a number of observations: 1. The geophysical rarity of imaging mostly liquid magma in the shallow crust, despite common petrologic evidence that silicic magma has undergone shallow storage. 2. More common imaging of "partial melt" volumes, whose inferred properties suggest some, but not dominant proportion of melt. 3. Evidence that pure-melt rhyolitic eruptions may have drained relatively shallow hypersolidus plutons. 4. Downward propagating thin conductive boundary zone observed in repeated coring of Kilauea Iki lava lake, Hawaii 5. Record enthalpy flow and temperature during flow-testing of Iceland Deep Drilling Project (IDDP)-1 in Krafla Caldera by Landsvirkjun Co. Production came from a 2.1-km-deep 500oC "magma" contact zone, from the vicinity of which fresh rhyolite glass-bearing felsite and crystal-poor rhyolite glass fragments were recovered. The hypothesis of a moving freeze-fracture-flow boundary raises the possibility of ultra-high-temperature, natural or engineered geothermal systems in volcanic areas. We believe that this prospect, as well as the benefit to understanding volcanic hazards at restless calderas, gives merit to further exploration of the hypersolidus regime beneath Krafla Caldera.

  6. Post-Drilling Changes in Seabed Landscape and Megabenthos in a Deep-Sea Hydrothermal System, the Iheya North Field, Okinawa Trough

    PubMed Central

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, ‘artificially’ creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has been altered for long-term. PMID:25902075

  7. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough.

    PubMed

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has been altered for long-term.

  8. Influence of sintering temperature on the characteristics of shale brick containing oil well-derived drilling waste.

    PubMed

    Li, Xiang-Guo; Lv, Yang; Ma, Bao-Guo; Jian, Shou-Wei; Tan, Hong-Bo

    2011-11-01

    The influence of sintering temperature on the physico-mechanical characteristics (such as water absorption, apparent porosity, bulk density, weight loss on ignition, firing shrinkage, and compressive strength), leachability, and microstructure of shale brick containing oil well-derived drilling waste (DW) was investigated. The experiments were conducted at a temperature ranging from 950°C to 1,050°C with 30% DW addition. The results indicate that increasing the sintering temperature decreases the water absorption and apparent porosity and increases the shrinkage, density, and compressive strength of sintered specimens. Moreover, the physico-mechanical properties of samples sintered at 1,050°C meet the requirements of the MU20 according to GB/T 5101-2003 (in China). The heavy metal concentrations of the leachate are much lower than the current regulatory limits according to GB16889-2008. The results from XRD and SEM show that increasing sintering temperature results in an increase of the high temperature liquid phase, which may have a significant effect on the densification process of the samples.

  9. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  10. Sapwood temperature gradients between lower stems and the crown do not influence estimates of stand-level stem CO(2) efflux.

    PubMed

    Bowman, William P; Turnbull, Matthew H; Tissue, David T; Whitehead, David; Griffin, Kevin L

    2008-10-01

    Temperature plays a critical role in the regulation of respiration rates and is often used to scale measurements of respiration to the stand-level and calculate annual respiratory fluxes. Previous studies have indicated that failure to consider temperature gradients between sun-exposed stems and branches in the crown and shaded lower stems may result in errors when deriving stand-level estimates of stem CO(2) efflux. We measured vertical gradients in sapwood temperature in a mature lowland podocarp rain forest in New Zealand to: (1) estimate the effects of within-stem temperature variation on the vertical distribution of stem CO(2) efflux; and (2) use these findings to estimate stand-level stem CO(2) efflux for this forest. Large within-stem gradients in sapwood temperature (1.6 +/- 0.1 to 6.0 +/- 0.5 degrees C) were observed. However, these gradients did not significantly influence the stand-level estimate of stem CO(2) efflux in this forest (536 +/- 42 mol CO(2) ha(-1) day(-1)) or the vertical distribution of stem CO(2) efflux, because of the opposing effects of daytime warming and nighttime cooling on CO(2) efflux in the canopy, and the small fraction of the woody biomass in the crowns of forest trees. Our findings suggest that detailed measurements of within-stand temperature gradients are unlikely to greatly improve the accuracy of tree- or stand-level estimates of stem CO(2) efflux.

  11. High Temperature Ferroelectrics for Actuators: Recent Developments and Challenges

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp; Kowalski, Benjamin

    2014-01-01

    A variety of piezoelectric applications have been driving the research in development of new high temperature ferroelectrics; ranging from broader markets such as fuel and gas modulation and deep well oil drilling to very specific applications such as thermoacoustic engines and ultrasonic drilling on the surface of Venus. The focus has been mostly on increasing the Curie temperature. However, greater challenges for high temperature ferroelectrics limit the operating temperature to levels much below the Curie temperature. These include enhanced loss tangent and dc conductivity at high fields as well as depoling due to thermally activated domain rotation. The initial work by Eitel et al. [Jpn. J. Appl. Phys., 40 [10, Part 1] 59996002 (2001)] increased interest in investigation of Bismuth containing perovskites in solid solution with lead titanate. Issues that arise vary from solubility limits to increased tetragonality; the former one prohibits processing of morphotropic phase boundary, while the latter one impedes thorough poling of the polycrystalline ceramics. This talk will summarize recent advances in development of high temperature piezoelectrics and provide information about challenges encountered as well as the approaches taken to improve the high temperature behavior of ferroelectrics with a focus on applications that employ the converse piezoelectric effect.

  12. Continuous gradient temperature Raman spectroscopy of unsaturated fatty acids

    USDA-ARS?s Scientific Manuscript database

    A new innovative technique gradient temperature, Raman spectroscopy (GTRS), identifies Raman frequency shifts in solid or liquid samples, and correlates them with specific temperature ranges within which flexible structures absorb heat. GTRS can easily detect changes that occur within one celcius te...

  13. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    USDA-ARS?s Scientific Manuscript database

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  14. An Automated, Low Mass, Low Power Drill for Acquiring Subsurface Samples of Ground Ice for Astrobiology Studies on Earth and on Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G. A.; McKay, C.; George, J.; Derkowski, G.; Cooper, G.; Zacny, K.; Baker, R. Fincher; Pollard, W.; Clifford, S.

    2003-01-01

    As a project that is part of NASA s Astrobiology Technology & Instrument Development Program (ASTID), we are developing a low mass (approx.20kg) drill that will be operated without drilling fluids and at very low power levels (approx.60 watts electrical) to access and retrieve samples from permafrost regions of Earth and Mars. The drill, designed and built as a joint effort by NASA JSC and Baker-Hughes International, takes the form of a down-hole unit attached to a cable so that it can, in principle, be scaled easily to reach significant depths. A parallel laboratory effort is being carried out at UC Berkeley to characterize the physics of dry drilling under martian conditions of pressure, temperature and atmospheric composition. Data from the UCB and JSC laboratory experiments are being used as input to a drill simulation program which is under development to provide autonomous control of the drill. The first Arctic field test of the unit is planned for May 2004. A field expedition to Eureka on Ellesmere Island in Spring 2003 provided an introduction for several team members to the practical aspects of drilling under Arctic conditions. The field effort was organized by Wayne Pollard of McGill University and Christopher McKay of NASA ARC. A conventional science drill provided by New Zealand colleagues was used to recover ground ice cores for analysis of their microbial content and also to develop techniques using tracers to track the depth of penetration of contamination from the core surface into the interior of the samples.

  15. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  16. Evaluation of thermal cooling mechanisms for laser application to teeth.

    PubMed

    Miserendino, L J; Abt, E; Wigdor, H; Miserendino, C A

    1993-01-01

    Experimental cooling methods for the prevention of thermal damage to dental pulp during laser application to teeth were compared to conventional treatment in vitro. Pulp temperature measurements were made via electrical thermistors implanted within the pulp chambers of extracted human third molar teeth. Experimental treatments consisted of lasing without cooling, lasing with cooling, laser pulsing, and high-speed dental rotary drilling. Comparisons of pulp temperature elevation measurements for each group demonstrated that cooling by an air and water spray during lasing significantly reduced heat transfer to dental pulp. Laser exposures followed by an air and water spray resulted in pulp temperature changes comparable to conventional treatment by drilling. Cooling by an air water spray with evacuation appears to be an effective method for the prevention of thermal damage to vital teeth following laser exposure.

  17. Temperature distribution in the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo B, F.; Bermejo M, F.J.; Domiguez A, B.

    1981-01-01

    A series of temperature and pressure logs and flow rate measurements was compiled for each of the geothermal wells drilled to different reservoir depths between October 1979 and December 1980. Based on the valuable information obtained, a series of graphs showing the thermal characteristics of the reservoir were prepared. These graphs clearly show the temperature distribution resulting from the movement of fluids from the deep regions toward the higher zones of the reservoir, thus establishing more reliable parameters for locating new wells with better production zones. Updated information based on data from new deep wells drilled in the geothermal fieldmore » is presented here. This new information does not differ much from earlier estimates and theories. However, the influence of faulting and fracturing on the hydrothermal recharge of the geothermal reservoir is seen more clearly.« less

  18. Correlation of Aerogravity and BHT Data to Develop a Geothermal Gradient Map of the Northern Western Desert of Egypt using an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek

    2015-06-01

    The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.

  19. Customised spatiotemporal temperature gradients created by a liquid metal enabled vortex generator.

    PubMed

    Zhu, Jiu Yang; Thurgood, Peter; Nguyen, Ngan; Ghorbani, Kamran; Khoshmanesh, Khashayar

    2017-11-07

    Generating customised temperature gradients in miniaturised flow-free liquid chambers is challenging due to the dominance of diffusion. Inducing internal flows in the form of vortices is an effective strategy for overcoming the limitations of diffusion in such environments. Vortices can be produced by applying pressure, temperature and electric potential gradients via miniaturised actuators. However, the difficulties associated with the fabrication, integration, maintenance and operation of such actuators hinder their utility. Here, we utilise liquid metal enabled pumps to induce vortices inside a miniaturised liquid chamber. The configuration and rotational velocity of these vortices can be controlled by tuning the polarity and frequency of the energising electrical signal. This allows creation of customised spatial temperature gradients inside the chamber. The absence of conventional moving elements in the pumps facilitates the rapid reconfiguration of vortices. This enables quick transition from one temperature profile to another, and creates customised spatiotemporal temperature gradients. This allows temperature oscillation from 35 to 62 °C at the hot spot, and from 25 to 27 °C at the centre of the vortex within 15 seconds. Our liquid metal enabled vortex generator can be fabricated, integrated and operated easily, and offers opportunities for studying thermo-responsive materials and biological samples.

  20. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-02-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

Top