Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
... the DEEPWATER HORIZON, a Mobile Offshore Drilling Unit (MODU), at Mississippi Canyon 252, in the Outer... the DEEPWATER HORIZON, a Mobile Offshore Drilling Unit (MODU), which is currently set to expire on... response to the sinking of the DEEPWATER HORIZON, a Mobile Offshore Drilling Unit (MODU), near Mississippi...
30 CFR 250.417 - What must I provide if I plan to use a mobile offshore drilling unit (MODU)?
Code of Federal Regulations, 2012 CFR
2012-07-01
... offshore drilling unit (MODU)? 250.417 Section 250.417 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL... plan to use a mobile offshore drilling unit (MODU)? If you plan to use a MODU, you must provide: (a...
30 CFR 250.417 - What must I provide if I plan to use a mobile offshore drilling unit (MODU)?
Code of Federal Regulations, 2013 CFR
2013-07-01
... offshore drilling unit (MODU)? 250.417 Section 250.417 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL... plan to use a mobile offshore drilling unit (MODU)? If you plan to use a MODU, you must provide: (a...
30 CFR 250.417 - What must I provide if I plan to use a mobile offshore drilling unit (MODU)?
Code of Federal Regulations, 2010 CFR
2010-07-01
... offshore drilling unit (MODU)? 250.417 Section 250.417 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and... a mobile offshore drilling unit (MODU)? If you plan to use a MODU, you must provide: (a) Fitness...
30 CFR 250.417 - What must I provide if I plan to use a mobile offshore drilling unit (MODU)?
Code of Federal Regulations, 2014 CFR
2014-07-01
... offshore drilling unit (MODU)? 250.417 Section 250.417 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL... plan to use a mobile offshore drilling unit (MODU)? If you plan to use a MODU, you must provide: (a...
30 CFR 250.417 - What must I provide if I plan to use a mobile offshore drilling unit (MODU)?
Code of Federal Regulations, 2011 CFR
2011-07-01
... offshore drilling unit (MODU)? 250.417 Section 250.417 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... must I provide if I plan to use a mobile offshore drilling unit (MODU)? If you plan to use a MODU, you...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... establishing a safety zone around the riser for the DEEPWATER HORIZON, a Mobile Offshore Drilling Unit (MODU... Mexico in response to the sinking of the DEEPWATER HORIZON, a Mobile Offshore Drilling Unit (MODU), which.... 147.T08-849 to read as follows: Sec. 147.T08-849 DEEPWATER HORIZON Mobile Offshore Drilling Unit...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
...-AA00 Safety Zone; KULLUK, Outer Continental Shelf Mobile Offshore Drilling Unit (MODU), Beaufort Sea... on location in order to drill exploratory wells at various prospects located in the Beaufort Sea... in order to drill exploratory wells in several prospects located in the Beaufort Sea during the 2012...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... establishing a continued safety zone around the riser for the DEEPWATER HORIZON, a Mobile Offshore Drilling... sinking of the DEEPWATER HORIZON, a Mobile Offshore Drilling Unit (MODU), near Mississippi Canyon 252 with... read as follows: Sec. 147.T08-849 DEEPWATER HORIZON Mobile Offshore Drilling Unit Safety Zone. (a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... Mobile Offshore Drilling Unit (MODU) KULLUK currently located in Kiliuda Bay, Kodiak Island, Alaska with... large ocean-going drill vessel, while it is under tow from Kiliuda Bay, Kodiak Island to Captains Bay...
Deepwater Horizon Situation Report #5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-06-10
At approximately 11:00 pm EDT April 20, 2010 an explosion occurred aboard the Deepwater Horizon mobile offshore drilling unit (MODU) located 52 miles Southeast of Venice, LA and 130 miles southeast of New Orleans, LA. The MODU was drilling an exploratory well and was not producing oil at the time of the incident. The Deepwater Horizon MODU sank 1,500 feet northwest of the well site. Detailed information on response and recovery operations can be found at: http://www.deepwaterhorizonresponse.com/go/site/2931/
76 FR 39885 - Risk-Based Targeting of Foreign Flagged Mobile Offshore Drilling Units (MODUs)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Foreign Flagged Mobile Offshore Drilling Units (MODUs) AGENCY: Coast Guard, DHS. ACTION: Notice of... 11-06, Risk-Based Targeting of Foreign Flagged Mobile Offshore Drilling Units (MODUs). This policy... applicable regulations, every foreign-flagged mobile offshore drilling unit (MODU) must undergo a Coast Guard...
46 CFR 174.030 - Specific applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.030 Specific applicability. Each mobile offshore drilling unit (MODU) inspected under Subchapter IA of this...
46 CFR 174.030 - Specific applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.030 Specific applicability. Each mobile offshore drilling unit (MODU) inspected under Subchapter IA of this...
77 FR 71607 - Mobile Offshore Drilling Unit (MODU) Electrical Equipment Certification Guidance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-03
... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0839] Mobile Offshore Drilling... hazardous areas on foreign-flagged Mobile Offshore Drilling Units (MODUs) that have never operated, but... International Maritime Organization (IMO) Code for the Construction and Equipment of Mobile Offshore Drilling...
76 FR 2254 - Notice of Arrival on the Outer Continental Shelf
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... of arrival for floating facilities, mobile offshore drilling units (MODUs), and vessels planning to... Ship Security Certificate. MMS Minerals Management Service. MODU Mobile Offshore Drilling Unit. NAICS... rule outlines the procedures that owners or operators of floating facilities, mobile offshore drilling...
33 CFR 147.T08-849 - DEEPWATER HORIZON Mobile Offshore Drilling Unit Safety Zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DEEPWATER HORIZON Mobile Offshore Drilling Unit Safety Zone. (a) Location. All areas within 500 meters (1640... area surrounds the DEEPWATER HORIZON, a Mobile Offshore Drilling Unit (MODU), that sank in the... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false DEEPWATER HORIZON Mobile Offshore...
MODU marine safety: Structural inspection and readiness surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, M.W.; Marucci, T.F.; Taft, D.G.
1987-11-01
Several years ago, Exxon instituted a survey of mobile offshore drilling units (MODU's) under contract to the corporation to evaluate structural integrity and readiness to respond properly to marine emergencies. This paper briefly describes results of the inspections and our on-going marine safety program. Industry activity is also highlighted.
76 FR 81957 - Mobile Offshore Drilling Unit Guidance Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... Purpose Dynamic Positioning Systems (DPSs), Emergency Disconnect Systems (EDSs), Blowout Preventers (BOPs..., ``Dynamically Positioned Mobile Offshore Drilling Unit (MODU) Critical Systems, Personnel and Training.'' We... association, business, labor union, etc.). You may review a Privacy Act, system of records notice regarding...
46 CFR 58.60-1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...
46 CFR 58.60-1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...
46 CFR 58.60-1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...
46 CFR 58.60-1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...
46 CFR 58.60-1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...
77 FR 37600 - Safety Zone; Arctic Drilling and Support Vessels, Puget Sound, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... made local inquiries and chartered a vessel to observe the mobile offshore drilling unit (MODU) KULLUK... 1625-AA00 Safety Zone; Arctic Drilling and Support Vessels, Puget Sound, WA AGENCY: Coast Guard, DHS... nineteen vessels associated with Arctic drilling as well as their lead towing vessels while those vessels...
46 CFR 108.101 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Incorporation by reference. 108.101 Section 108.101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN... Equipment of Mobile Offshore Drilling Units (MODU Code), 19 October 1989 with amendments of June 1991 108...
46 CFR 108.101 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Incorporation by reference. 108.101 Section 108.101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN... Equipment of Mobile Offshore Drilling Units (MODU Code), 19 October 1989 with amendments of June 1991 108...
46 CFR 108.101 - Incorporation by reference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Incorporation by reference. 108.101 Section 108.101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN... Equipment of Mobile Offshore Drilling Units (MODU Code), 19 October 1989 with amendments of June 1991 108...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... sensitivity of the environmental and subsistence importance to the indigenous population; (4) the lack of any... Outer Continental Shelf Lands Act and 33 C.F.R 147. Accordingly, State and Local law enforcement... due to the location of the MODU KULLUK on the Outer Continental Shelf and its distance from both land...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-23
... Offshore Drilling Units AGENCY: Coast Guard, DHS. ACTION: Notice of availability. SUMMARY: The Coast Guard...), Code for the Construction and Equipment of Mobile Offshore Drilling Units, 2009 (2009 MODU Code). CG...: Background and Purpose Foreign documented MODUs engaged in any offshore activity associated with the...
46 CFR 10.107 - Definitions in subchapter B.
Code of Federal Regulations, 2012 CFR
2012-10-01
... officer. Ballast control operator or BCO means an officer restricted to service on mobile offshore... attend classes, make contributions of time or money, receive treatment, submit to any manner of probation.... Mobile offshore drilling unit or MODU means a vessel capable of engaging in drilling operations for the...
46 CFR 10.107 - Definitions in subchapter B.
Code of Federal Regulations, 2013 CFR
2013-10-01
... officer. Ballast control operator or BCO means an officer restricted to service on mobile offshore... attend classes, make contributions of time or money, receive treatment, submit to any manner of probation.... Mobile offshore drilling unit or MODU means a vessel capable of engaging in drilling operations for the...
Gulf coast ports surrounding the Deepwater Horizon oil spill
DOT National Transportation Integrated Search
2010-06-01
This fact sheet provides a snapshot of two major seaports : (New Orleans, LA, and Mobile, AL) and summary tables of : other Gulf coast seaports close to the Deepwater Horizon mobile : offshore drilling unit (MODU) explosion and oil spill. New : Orlea...
46 CFR 110.10-1 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Classing Mobile Offshore Drilling Units, Part 4 Machinery and Systems, 2001 (“ABS MODU Rules”), IBR... Hazardous (Classified) Locations: Type of Protection—Encapsulation “m”, approved July 31, 2009 (“ANSI/ISA... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-13 Inspection. An industrial system is accepted by the Coast Guard if the inspector finds— (a) The system meets...
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-13 Inspection. An industrial system is accepted by the Coast Guard if the inspector finds— (a) The system meets...
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-13 Inspection. An industrial system is accepted by the Coast Guard if the inspector finds— (a) The system meets...
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-13 Inspection. An industrial system is accepted by the Coast Guard if the inspector finds— (a) The system meets...
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-13 Inspection. An industrial system is accepted by the Coast Guard if the inspector finds— (a) The system meets...
46 CFR 58.60-2 - Alternatives and substitutions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Alternatives and substitutions. 58.60-2 Section 58.60-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-9 - Industrial systems: Design.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Industrial systems: Design. 58.60-9 Section 58.60-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-5 - Industrial systems: Locations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Industrial systems: Locations. 58.60-5 Section 58.60-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-5 - Industrial systems: Locations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Industrial systems: Locations. 58.60-5 Section 58.60-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-7 - Industrial systems: Piping.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-2 - Alternatives and substitutions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Alternatives and substitutions. 58.60-2 Section 58.60-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-3 - Pressure vessel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-3 Pressure vessel. A pressure vessel that is a component in an industrial system under this subpart must meet...
46 CFR 58.60-5 - Industrial systems: Locations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Industrial systems: Locations. 58.60-5 Section 58.60-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-7 - Industrial systems: Piping.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-9 - Industrial systems: Design.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Industrial systems: Design. 58.60-9 Section 58.60-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-7 - Industrial systems: Piping.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-3 - Pressure vessel.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-3 Pressure vessel. A pressure vessel that is a component in an industrial system under this subpart must meet...
46 CFR 58.60-7 - Industrial systems: Piping.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-7 - Industrial systems: Piping.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-9 - Industrial systems: Design.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Industrial systems: Design. 58.60-9 Section 58.60-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-2 - Alternatives and substitutions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Alternatives and substitutions. 58.60-2 Section 58.60-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-5 - Industrial systems: Locations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Industrial systems: Locations. 58.60-5 Section 58.60-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-9 - Industrial systems: Design.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Industrial systems: Design. 58.60-9 Section 58.60-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-3 - Pressure vessel.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-3 Pressure vessel. A pressure vessel that is a component in an industrial system under this subpart must meet...
46 CFR 58.60-3 - Pressure vessel.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-3 Pressure vessel. A pressure vessel that is a component in an industrial system under this subpart must meet...
46 CFR 58.60-9 - Industrial systems: Design.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Industrial systems: Design. 58.60-9 Section 58.60-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-3 - Pressure vessel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-3 Pressure vessel. A pressure vessel that is a component in an industrial system under this subpart must meet...
46 CFR 58.60-5 - Industrial systems: Locations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Industrial systems: Locations. 58.60-5 Section 58.60-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
46 CFR 58.60-2 - Alternatives and substitutions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Alternatives and substitutions. 58.60-2 Section 58.60-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...
33 CFR 96.210 - Who does this subpart apply to?
Code of Federal Regulations, 2011 CFR
2011-07-01
... freight vessel, a freight vessel or a self-propelled mobile offshore drilling unit (MODU) of 500 gross... public vessel, which includes a U.S. vessel of the National Defense Reserve Fleet owned by the U.S... more, engaged on a foreign voyage. (2) On or after July 1, 2002, for other freight vessels and self...
33 CFR 96.210 - Who does this subpart apply to?
Code of Federal Regulations, 2013 CFR
2013-07-01
... freight vessel, a freight vessel or a self-propelled mobile offshore drilling unit (MODU) of 500 gross... public vessel, which includes a U.S. vessel of the National Defense Reserve Fleet owned by the U.S... more, engaged on a foreign voyage. (2) On or after July 1, 2002, for other freight vessels and self...
33 CFR 96.210 - Who does this subpart apply to?
Code of Federal Regulations, 2012 CFR
2012-07-01
... freight vessel, a freight vessel or a self-propelled mobile offshore drilling unit (MODU) of 500 gross... public vessel, which includes a U.S. vessel of the National Defense Reserve Fleet owned by the U.S... more, engaged on a foreign voyage. (2) On or after July 1, 2002, for other freight vessels and self...
33 CFR 96.210 - Who does this subpart apply to?
Code of Federal Regulations, 2014 CFR
2014-07-01
... freight vessel, a freight vessel or a self-propelled mobile offshore drilling unit (MODU) of 500 gross... public vessel, which includes a U.S. vessel of the National Defense Reserve Fleet owned by the U.S... more, engaged on a foreign voyage. (2) On or after July 1, 2002, for other freight vessels and self...
1983-05-20
features of off-load and on-load release gears. Model tests in a wave tank have shown this system to reliably provide automatic release of the boat. It...similar to the lifeboats. The approved release hook system automatically releases the raft when the hook is aet during lowering and the raft becomes...the severe storm; the lack of written casualty control procedures; the inadequate ballast system pump and piping design and arrangement for dewatering
Advanced jack up rig breaking U.S. construction drought
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, P.
1997-03-10
A new heavy duty jack up, due in mid-1998, will be able to simultaneously drill and produce wells in harsher environments and deeper water than current jack ups in the worldwide fleet. Rowan Cos. Inc.`s Gorilla V is the only mobile offshore drilling unit (MODU) currently under construction in the US. Two more enhanced Gorilla design rigs are planned before the year 2000. The enhanced Gorilla class jack up represents the most technologically advanced jack up unit constructed to date. The rigs are structurally designed to meet year-round weather challenges in the harshest geographical environments. Rising demand for drilling rigs,more » coupled with a dwindling fleet, is generating supply shortages around the world, particularly at the high-specification end of the market. Even increasing the historical retirement age from 20 to 25 years, rig attrition continues at a level of about 18 rigs per year. Apart from the jack up market per se, however, Rowan`s strategy in designing and building enhanced Gorillas is to improve existing jack up drilling technology and offer the versatility to operate as a drilling unit, a mobile production unit, or both simultaneously in either open water locations or alongside existing platforms. The paper discusses the market for these heavy jack-ups, the use of one on the Cohasset project in Nova Scotia, the Gorilla V and enhanced Gorillas, geographical range of use, and MOPU economics.« less
46 CFR 11.544 - Endorsement as assistant engineer (MODU).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Endorsement as assistant engineer (MODU). 11.544 Section... REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.544 Endorsement as assistant engineer (MODU). To qualify for an endorsement as assistant engineer (MODU) an applicant must: (a...
46 CFR 11.544 - Endorsement as assistant engineer (MODU).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Endorsement as assistant engineer (MODU). 11.544 Section... REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.544 Endorsement as assistant engineer (MODU). To qualify for an endorsement as assistant engineer (MODU) an applicant must: (a...
46 CFR 11.544 - Endorsement as assistant engineer (MODU).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Endorsement as assistant engineer (MODU). 11.544 Section... REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.544 Endorsement as assistant engineer (MODU). To qualify for an endorsement as assistant engineer (MODU) an applicant must: (a...
46 CFR 11.542 - Endorsement as chief engineer (MODU).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Endorsement as chief engineer (MODU). 11.542 Section 11... REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.542 Endorsement as chief engineer (MODU). To qualify for an endorsement as chief engineer (MODU) an applicant must: (a...
46 CFR 11.542 - Endorsement as chief engineer (MODU).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Endorsement as chief engineer (MODU). 11.542 Section 11... REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.542 Endorsement as chief engineer (MODU). To qualify for an endorsement as chief engineer (MODU) an applicant must: (a...
46 CFR 11.542 - Endorsement as chief engineer (MODU).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Endorsement as chief engineer (MODU). 11.542 Section 11... REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.542 Endorsement as chief engineer (MODU). To qualify for an endorsement as chief engineer (MODU) an applicant must: (a...
46 CFR 11.542 - Endorsement as chief engineer (MODU).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Endorsement as chief engineer (MODU). 11.542 Section 11... REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for National Engineer Officer Endorsements § 11.542 Endorsement as chief engineer (MODU). (a) To qualify for an endorsement as chief engineer (MODU...
46 CFR 11.542 - Endorsement as chief engineer (MODU).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Endorsement as chief engineer (MODU). 11.542 Section 11... REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.542 Endorsement as chief engineer (MODU). To qualify for an endorsement as chief engineer (MODU) an applicant must: (a...
Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)
NASA Technical Reports Server (NTRS)
Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete
2017-01-01
The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.
46 CFR 11.544 - Endorsement as assistant engineer (MODU).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Endorsement as assistant engineer (MODU). 11.544 Section... REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for National Engineer Officer Endorsements § 11.544 Endorsement as assistant engineer (MODU). (a) To qualify for an endorsement as assistant engineer...
Methylselenium and Prostate Cancer Apoptosis
2008-02-01
Page C , Hu C , Nunez G, BakerV. Bcl-xL is expressed in ovarian carcinoma and modu- lates chemotherapy-induced apoptosis. Gynecol Oncol1998;70:398^403...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT NUMBER University of Minnesota...Austin, MN 55912 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical
78 FR 6033 - Safety Zone; MODU KULLUK; Sitkalidak Island to Kiliuda Bay, AK
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... immediately following the MODU KULLUK grounding and provides a longer effective period in anticipation of... impact of regulations on small entities during rulemaking. The term ``small entities'' comprises small... being hailed by a U.S. Coast Guard vessel by siren, radio, flashing light or other means, the operator...
30 CFR 250.1605 - Drilling requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... provide information and data on the fitness of the drilling unit to perform the proposed drilling... rated capacity of the unit. (c) Oceanographic, meteorological, and drilling unit performance data. Where oceanographic, meteorological, and drilling unit performance data are not otherwise readily available, lessees...
46 CFR 2.10-130 - Fees for examination of foreign mobile offshore drilling units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Fees for examination of foreign mobile offshore drilling... drilling units. Each foreign mobile offshore drilling unit must pay: (a) For examination for the issuance... Equipment of Mobile Offshore Drilling Units, a fee of $1,830. (b) For examination for the issuance of a...
46 CFR 2.10-130 - Fees for examination of foreign mobile offshore drilling units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Fees for examination of foreign mobile offshore drilling... drilling units. Each foreign mobile offshore drilling unit must pay: (a) For examination for the issuance... Equipment of Mobile Offshore Drilling Units, a fee of $1,830. (b) For examination for the issuance of a...
46 CFR 2.10-130 - Fees for examination of foreign mobile offshore drilling units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Fees for examination of foreign mobile offshore drilling... drilling units. Each foreign mobile offshore drilling unit must pay: (a) For examination for the issuance... Equipment of Mobile Offshore Drilling Units, a fee of $1,830. (b) For examination for the issuance of a...
46 CFR 2.10-130 - Fees for examination of foreign mobile offshore drilling units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Fees for examination of foreign mobile offshore drilling... drilling units. Each foreign mobile offshore drilling unit must pay: (a) For examination for the issuance... Equipment of Mobile Offshore Drilling Units, a fee of $1,830. (b) For examination for the issuance of a...
46 CFR 2.10-130 - Fees for examination of foreign mobile offshore drilling units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Fees for examination of foreign mobile offshore drilling... drilling units. Each foreign mobile offshore drilling unit must pay: (a) For examination for the issuance... Equipment of Mobile Offshore Drilling Units, a fee of $1,830. (b) For examination for the issuance of a...
46 CFR 11.468 - Officer endorsements for mobile offshore drilling units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Officer endorsements for mobile offshore drilling units... Officer endorsements for mobile offshore drilling units. Officer endorsements for service on mobile offshore drilling units (MODUs) authorize service on units of any gross tons upon ocean waters while on...
46 CFR 11.468 - Officer endorsements for mobile offshore drilling units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Officer endorsements for mobile offshore drilling units... Officer endorsements for mobile offshore drilling units. Officer endorsements for service on mobile offshore drilling units (MODUs) authorize service on units of any gross tons upon ocean waters while on...
46 CFR 11.468 - Officer endorsements for mobile offshore drilling units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Officer endorsements for mobile offshore drilling units... Officer endorsements for mobile offshore drilling units. Officer endorsements for service on mobile offshore drilling units (MODUs) authorize service on units of any gross tons upon ocean waters while on...
46 CFR 11.468 - Officer endorsements for mobile offshore drilling units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Officer endorsements for mobile offshore drilling units... Officer endorsements for mobile offshore drilling units. Officer endorsements for service on mobile offshore drilling units (MODUs) authorize service on units of any gross tons upon ocean waters while on...
46 CFR 111.105-33 - Mobile offshore drilling units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...
46 CFR 111.105-33 - Mobile offshore drilling units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...
46 CFR 111.105-33 - Mobile offshore drilling units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...
46 CFR 111.105-33 - Mobile offshore drilling units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...
46 CFR 15.520 - Mobile offshore drilling units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Mobile offshore drilling units. 15.520 Section 15.520... REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units. (a) The requirements in this section for mobile offshore drilling units (MODUs) supplement other requirements in this...
46 CFR 111.105-33 - Mobile offshore drilling units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...
46 CFR 15.520 - Mobile offshore drilling units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Mobile offshore drilling units. 15.520 Section 15.520... REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units. (a) The requirements in this section for mobile offshore drilling units (MODUs) supplement other requirements in this...
46 CFR 15.520 - Mobile offshore drilling units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Mobile offshore drilling units. 15.520 Section 15.520... REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units. (a) The requirements in this section for mobile offshore drilling units (MODUs) supplement other requirements in this...
46 CFR 15.520 - Mobile offshore drilling units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Mobile offshore drilling units. 15.520 Section 15.520... REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units. (a) The requirements in this section for mobile offshore drilling units (MODUs) supplement other requirements in this...
30 CFR 250.1605 - Drilling requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... District Manager. (3) The lessee shall provide information and data on the fitness of the drilling unit to... drilling unit performance data. Where oceanographic, meteorological, and drilling unit performance data are not otherwise readily available, lessees shall collect and report such data upon request to the...
30 CFR 250.1605 - Drilling requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... District Manager. (3) The lessee shall provide information and data on the fitness of the drilling unit to... drilling unit performance data. Where oceanographic, meteorological, and drilling unit performance data are not otherwise readily available, lessees shall collect and report such data upon request to the...
30 CFR 250.1605 - Drilling requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... District Manager. (3) The lessee shall provide information and data on the fitness of the drilling unit to... drilling unit performance data. Where oceanographic, meteorological, and drilling unit performance data are not otherwise readily available, lessees shall collect and report such data upon request to the...
30 CFR 250.403 - What drilling unit movements must I report?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.403 What drilling unit movements must I report? (a) You must report the... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What drilling unit movements must I report? 250...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 250.403 - What drilling unit movements must I report?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What drilling unit movements must I report? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.403 What drilling unit movements must I report? (a) You must...
30 CFR 250.403 - What drilling unit movements must I report?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What drilling unit movements must I report? 250..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.403 What drilling unit movements must I report? (a...
30 CFR 250.403 - What drilling unit movements must I report?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What drilling unit movements must I report? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.403 What drilling unit movements must I report? (a) You must...
30 CFR 250.403 - What drilling unit movements must I report?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What drilling unit movements must I report? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.403 What drilling unit movements must I report? (a) You must...
46 CFR 11.544 - Endorsement as assistant engineer (MODU).
Code of Federal Regulations, 2010 CFR
2010-10-01
... marine, mechanical, or electrical engineering technology which is accredited by the Accreditation Board for Engineering and Technology (ABET). The National Maritime Center will give consideration to...
33 CFR 146.203 - Requirements for U.S. and undocumented MODUs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES OPERATIONS Mobile Offshore Drilling Units § 146.203 Requirements for U.S. and undocumented MODUs. Each mobile offshore drilling unit documented under the laws of the United States and each mobile offshore drilling unit that is not documented under the laws of any...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.035 Definitions. (a... IA of this chapter: (1) Column stabilized unit. (2) Mobile offshore drilling unit. (3) Self-elevating... loaded or arranged for drilling, field transit, or ocean transit. (4) Severe storm condition means a...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.035 Definitions. (a... IA of this chapter: (1) Column stabilized unit. (2) Mobile offshore drilling unit. (3) Self-elevating... loaded or arranged for drilling, field transit, or ocean transit. (4) Severe storm condition means a...
46 CFR 15.520 - Mobile offshore drilling units (MODUs).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Mobile offshore drilling units (MODUs). 15.520 Section... MANNING REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units... endorsement on an MMC as offshore installation manager (OIM), barge supervisor (BS), or ballast control...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2011-1106] Dynamic Positioning... ``Mobile Offshore Drilling Unit Dynamic Positioning Guidance''. The notice recommended owners and operators of Mobile Offshore Drilling Units (MODUs) follow Marine Technology Society (MTS) Dynamic Positioning...
Development of a novel ice-resistant semisubmersible drilling unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corona, E.N.; Schloerb, D.W.; Yashima, N.
1983-05-01
A multiyear program was initiated by ARCO Alaska, Inc. to assess the operational feasibility of drilling operations year-round in the ice-covered waters of the Bering, Chukchi, and Beaufort Seas. ARCO Alaska, Inc. is considering several alternative concepts for year-round drilling in the Bering Sea. One such concept, the Ice-Resistant Semisubmersible Drilling Unit, is a design concept of Mitsui Engineering and Shipbuilding Company. The design is intended to operate in broken, continuous, and ridged sea ice, and withstand severe open water sea conditions. The requirement to operate in two dissimilar environments results in a unit that is somewhat unusual when comparedmore » to typical semisubmersible drilling units.« less
46 CFR 11.540 - Endorsements for engineers of mobile offshore drilling units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Endorsements for engineers of mobile offshore drilling units. 11.540 Section 11.540 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE... § 11.540 Endorsements for engineers of mobile offshore drilling units. Endorsements as chief engineer...
46 CFR 11.540 - Endorsements for engineers of mobile offshore drilling units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Endorsements for engineers of mobile offshore drilling units. 11.540 Section 11.540 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE... § 11.540 Endorsements for engineers of mobile offshore drilling units. Endorsements as chief engineer...
46 CFR 11.540 - Endorsements for engineers of mobile offshore drilling units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Endorsements for engineers of mobile offshore drilling units. 11.540 Section 11.540 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE... § 11.540 Endorsements for engineers of mobile offshore drilling units. Endorsements as chief engineer...
46 CFR 11.540 - Endorsements for engineers of mobile offshore drilling units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Endorsements for engineers of mobile offshore drilling units. 11.540 Section 11.540 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE... § 11.540 Endorsements for engineers of mobile offshore drilling units. Endorsements as chief engineer...
75 FR 74674 - Updates to Vessel Inspection Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... Certificate of Inspection and foreign tankships and mobile offshore drilling units required to maintain a... offshore drilling units trading in U.S. ports. Subpart 2.10 also sets forth fees for inspections conducted...: Length not greater than 200 feet 1,435 More than 200 feet 2,550 Mobile Offshore Drilling Units (MODUs...
46 CFR 11.540 - Endorsements as engineers of mobile offshore drilling units (MODUs).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Endorsements as engineers of mobile offshore drilling units (MODUs). 11.540 Section 11.540 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT... Engineer Officer Endorsements § 11.540 Endorsements as engineers of mobile offshore drilling units (MODUs...
75 FR 54912 - Drill Pipe and Drill Collars From China
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
...)] Drill Pipe and Drill Collars From China AGENCY: United States International Trade Commission. ACTION... retarded, by reason of subsidized and less-than-fair-value imports from China of drill pipe and drill... defined the subject merchandise as steel drill pipe, and steel drill collars, whether or not conforming to...
30 CFR 250.1605 - Drilling requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... by the District Manager. (3) The lessee shall provide information and data on the fitness of the..., meteorological, and drilling unit performance data. Where oceanographic, meteorological, and drilling unit performance data are not otherwise readily available, lessees shall collect and report such data upon request...
Molecular mechanisms of hypolipidemic effects of curcumin
USDA-ARS?s Scientific Manuscript database
Recent evidence suggests potential benefits from phytochemicals and micronutrients in reducing the elevated oxidative- and lipid-mediated stress present during inflammation, obesity and atherosclerosis. These compounds may either directly scavenge reactive oxygen or nitrogen species or they may modu...
46 CFR 11.468 - National officer endorsements for mobile offshore drilling units (MODUs).
Code of Federal Regulations, 2014 CFR
2014-10-01
... National Deck Officer Endorsements § 11.468 National officer endorsements for mobile offshore drilling... 46 Shipping 1 2014-10-01 2014-10-01 false National officer endorsements for mobile offshore drilling units (MODUs). 11.468 Section 11.468 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...
30 CFR 33.35 - Methods of drilling; dust-collector unit.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...
30 CFR 33.35 - Methods of drilling; dust-collector unit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...
30 CFR 33.35 - Methods of drilling; dust-collector unit.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...
30 CFR 33.35 - Methods of drilling; dust-collector unit.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...
30 CFR 33.35 - Methods of drilling; dust-collector unit.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...
33 CFR 143.200 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Mobile Offshore Drilling Units § 143.200 Applicability. This subpart applies to mobile offshore drilling units when engaged in OCS activities. ...
46 CFR 109.213 - Emergency training and drills.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Emergency training and drills. 109.213 Section 109.213 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.213 Emergency training and drills. (a) Training materials...
46 CFR 109.213 - Emergency training and drills.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Emergency training and drills. 109.213 Section 109.213 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.213 Emergency training and drills. (a) Training materials...
46 CFR 109.213 - Emergency training and drills.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Emergency training and drills. 109.213 Section 109.213 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.213 Emergency training and drills. (a) Training materials...
46 CFR 109.213 - Emergency training and drills.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Emergency training and drills. 109.213 Section 109.213 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.213 Emergency training and drills. (a) Training materials...
46 CFR 109.213 - Emergency training and drills.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Emergency training and drills. 109.213 Section 109.213 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.213 Emergency training and drills. (a) Training materials...
46 CFR 11.920 - Subjects for MODU endorsements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... systems: Marine engineering terminology X X X X X X X Engineering equipment, operations and failures X X X... X X Medical care: Knowledge and use of: First aid X X X X X X X First response medical action X X X...
46 CFR 11.920 - Subjects for MODU endorsements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... systems: Marine engineering terminology X X X X X X X Engineering equipment, operations and failures X X X... X X Medical care: Knowledge and use of: First aid X X X X X X X First response medical action X X X...
46 CFR 11.920 - Subjects for MODU endorsements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... systems: Marine engineering terminology X X X X X X X Engineering equipment, operations and failures X X X... X X Medical care: Knowledge and use of: First aid X X X X X X X First response medical action X X X...
Nutritional influences on epigenetics and age-related disease
USDA-ARS?s Scientific Manuscript database
Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...
46 CFR 11.920 - Subjects for MODU endorsements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... systems: Marine engineering terminology X X X X X X X Engineering equipment, operations and failures X X X... X X Medical care: Knowledge and use of: First aid X X X X X X X First response medical action X X X...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... Equipment, Training and Drills Onboard Offshore Facilities and Mobile Offshore Drilling Units (MODUs... lifesaving and fire-fighting equipment, training and drills on board offshore facilities and MODUs operating... guidance concerning lifesaving and fire-fighting equipment, training, and drills onboard manned offshore...
Spectral structure of a polycapillary lens shaped X-ray beam
NASA Astrophysics Data System (ADS)
Gogolev, A. S.; Filatov, N. A.; Uglov, S. R.; Hampai, D.; Dabagov, S. B.
2018-04-01
Polycapillary X-ray optics is widely used in X-ray analysis techniques to create a small secondary source, for instance, or to deliver X-rays to the point of interest with minimum intensity losses [1]. The main characteristics of the analytical devices on its base are the size and divergence of the focused or translated beam. In this work, we used the photon-counting pixel detector ModuPIX to study the parameters for polycapillary focused X-ray tube radiation as well as the energy and spatial dependences of radiation at the focus. We have characterized the high-speed spectral camera ModuPIX, which is a single Timepix device with a fast parallel readout allowing up to 850 frames per second with 256 × 256 pixels and a 55 μm pitch defined by the frame frequency. By means of the silicon monochromator the energy response function is measured in clustering mode by the energy scan over total X-ray tube spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tubb, M.
1981-03-01
Rig builders maintain their frantic work pace to meet drilling contractors' orders for new mobile units - principally the jack-up and semis now so popular. Leading new rig client is Santa Fe Drilling, which has ordered its seventh new offshore unit. The order includes two Enhanced 9500 Pacesetter Series semis, each scheduled to cost $80 million, to be built by Daewoo Shipbuilding and Heavy Machinery in Korea.
33 CFR 143.205 - Requirements for U.S. and undocumented MODUs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Mobile Offshore Drilling Units § 143.205 Requirements for U.S. and undocumented MODUs. Each mobile offshore drilling unit that is...
Effect of DGPS failures on dynamic positioning of mobile drilling units in the North Sea.
Chen, Haibo; Moan, Torgeir; Verhoeven, Harry
2009-11-01
Basic features of differential global positioning system (DGPS), and its operational configuration on dynamically positioned (DP) mobile offshore drilling units in the North Sea are described. Generic failure modes of DGPS are discussed, and a critical DGPS failure which has the potential to cause drive-off for mobile drilling units is identified. It is the simultaneous erroneous position data from two DGPS's. Barrier method is used to analyze this critical DGPS failure. Barrier elements to prevent this failure are identified. Deficiencies of each barrier element are revealed based on the incidents and operational experiences in the North Sea. Recommendations to strengthen these barrier elements, i.e. to prevent erroneous position data from DGPS, are proposed. These recommendations contribute to the safety of DP operations of mobile offshore drilling units.
National and regional trends in water-well drilling in the United States, 1964-84
Hindall, S.M.; Eberle, Michael
1989-01-01
Information on national and regional water-well drilling activity is important for water-resource planning and management and for water-related equipment marketing. This report describes a study to analyze drilling trends on the basis of data for selected years from 1964 through 1984. The study focused primarily on the years 1964 and 1980-84 but also included data from 1960. Approximately 397,000 water wells were drilled in the United States in 1984. Seven States, Florida, Texas, New York, Michigan, North Carolina, Virginia, and Ohio, accounted for 39 percent of all the wells drilled in the United States in 1984. Florida led the Nation in drilling activity with 45,600 new wells. The 1984 national drilling total was 2.6 percent greater than the total for 1980 (387,000) and 8.5 percent less than the total for 1964 (434,000). However, these moderate differences do not reflect substantial year-to-year fluctuations that may have occurred during that 20-year period. Qualitative comparisons suggest that drilling activity for a given year is closely related to the number of housing starts for that year. If so, there may have been peaks in drilling activity in 1972 and 1977-78 (corresponding to peaks in housing starts) that are not identified in this study because of a lack of available well-drilling data for those years. Well-drilling data for 1964 and the 1980-84 period probably represent a low to moderate level of drilling activity and, if compared to earlier data, suggest that there has been no substantial growth or decline in the water-well industry as a whole since the 1940's.
National and regional trends in water-well drilling in the United States, 1964-84
Hindall, S.M.; Eberle, Michael
1987-01-01
Information on national and regional water well drilling activity is important for water resource planning and management and for water related equipment marketing. A study was conducted to analyze drilling trends on the basis of data for selected years from 1964 through 1984. The study focused primarily on the years 1964 and 1980-84, but also included data from 1960. Approximately 397,000 water wells were drilled in the United States in 1984. Seven states--Florida, Texas, New York, Michigan , North Carolina, Virginia, and Ohio--accounted for 39% of all the wells drilled in the United States in 1984. Florida led the nation in drilling activity with 45,600 new wells. The 1984 national drilling total was 2.6% > the total for 1980 (387,000) and 8.5% < the total for 1964 (434,000). However, these moderate differences do not reflect substantial year-to-year fluctuations that may have occurred during that 20-yr period. Qualitative comparisons suggest that drilling activity for a given year is closely related to the number of housing starts for that year. If so, there may have been peaks in drilling activity in 1972 and 1977-78 (corresponding to peaks in housing starts) that are not identified in this study because of a lack of available well drilling data for those years. Well drilling data for 1964 and the 1980-84 period probably represent a low to moderate level of drilling activity, and, if compared to earlier data, suggest that there has been no substantial growth or decline in the water well industry as a whole since the 1940's. (Author 's abstract)
Design and Implementation of Multifunctional Automatic Drilling End Effector
NASA Astrophysics Data System (ADS)
Wang, Zhanxi; Qin, Xiansheng; Bai, Jing; Tan, Xiaoqun; Li, Jing
2017-03-01
In order to realize the automatic drilling in aircraft assembly, a drilling end effector is designed by integrating the pressure unit, drilling unit, measurement unit, control system and frame structure. In order to reduce the hole deviation, this paper proposes a vertical normal adjustment program based on 4 laser distance sensors. The actual normal direction of workpiece surface can be calculated through the sensors measurements, and then robot posture is adjusted to realize the hole deviation correction. A base detection method is proposed to detect and locate the hole automatically by using the camera and the reference hole. The experiment results show that the position accuracy of the system is less than 0.3mm, and the normal precision is less than 0.5°. The drilling end effector and robot can greatly improve the efficiency of the aircraft parts and assembly quality, and reduce the product development cycle.
Seismic imaging for an ocean drilling site survey and its verification in the Izu rear arc
NASA Astrophysics Data System (ADS)
Yamashita, Mikiya; Takahashi, Narumi; Tamura, Yoshihiko; Miura, Seiichi; Kodaira, Shuichi
2018-01-01
To evaluate the crustal structure of a site proposed for International Ocean Discovery Program drilling, the Japan Agency for Marine-Earth Science and Technology carried out seismic surveys in the Izu rear arc between 2006 and 2008, using research vessels Kaiyo and Kairei. High-resolution dense grid surveys, consisting of three kinds of reflection surveys, generated clear seismic profiles, together with a seismic velocity image obtained from a seismic refraction survey. In this paper, we compare the seismic profiles with the geological column obtained from the drilling. Five volcaniclastic sedimentary units were identified in seismic reflection profiles above the 5 km/s and 6 km/s contours of P-wave velocity obtained from the velocity image from the seismic refraction survey. However, some of the unit boundaries interpreted from the seismic images were not recognised in the drilling core, highlighting the difficulties of geological target identification in volcanic regions from seismic images alone. The geological core derived from drilling consisted of seven lithological units (labelled I to VII). Units I to V were aged at 0-9 Ma, and units VI and VII, from 1320-1806.5 m below seafloor (mbsf) had ages from 9 to ~15 Ma. The strong heterogeneity of volcanic sediments beneath the drilling site U1437 was also identified from coherence, calculated using cross-spectral analysis between grid survey lines. Our results suggest that use of a dense grid configuration is important in site surveys for ocean drilling in volcanic rear-arc situations, in order to recognise heterogeneous crustal structure, such as sediments from different origins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tubb, M.
1981-02-01
Friede and Goldman Ltd. of New Orleans, Louisiana has a successful drilling rig, the L-780 jack-up series. The triangular-shaped drilling vessel measures 180 x 176 ft. and is equipped with three 352 ft legs including spud cans. It is designed to work in up to 250 ft waters and drill to 20,000 ft depths. The unit is scheduled to begin initial drilling operations in the Gulf of Mexico for Arco. Design features are included for the unit. Davie Shipbuilding Ltd. has entered the Mexican offshore market with the signing of a $40,000,000 Canadian contract for a jack-up to work inmore » 300 ft water depths. Baker Marine Corporation has contracted with the People's Republic of China for construction of two self-elevating jack-ups. The units will be built for Magnum Marine, headquartered in Houston. Details for the two rigs are given. Santa Fe International Corporation has ordered a new jack-up rig to work initially in the Gulf of Suez. The newly ordered unit, Rig 136, will be the company's fourth offshore drilling rig now being built in the Far East. Temple Drilling Company has signed a construction contract with Bethlehem Steel for a jack-up to work in 200 ft water depths. Penrod Drilling Company has ordered two additional cantilever type jack-ups for Hitachi Shipbuilding and Engineering Co. Ltd. of Japan. Two semi-submersibles, capable of working in up to 2000 ft water depths, have been ordered by two Liberian companies. Details for these rigs are included. (DP)« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions... apparatus for collecting the dust that results from drilling in rock in coal mines, and is independent of the drilling equipment. (f) Combination unit means a rock-drilling device with an integral dust...
Code of Federal Regulations, 2014 CFR
2014-07-01
... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions... apparatus for collecting the dust that results from drilling in rock in coal mines, and is independent of the drilling equipment. (f) Combination unit means a rock-drilling device with an integral dust...
Code of Federal Regulations, 2012 CFR
2012-07-01
... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions... apparatus for collecting the dust that results from drilling in rock in coal mines, and is independent of the drilling equipment. (f) Combination unit means a rock-drilling device with an integral dust...
Code of Federal Regulations, 2011 CFR
2011-07-01
... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions... apparatus for collecting the dust that results from drilling in rock in coal mines, and is independent of the drilling equipment. (f) Combination unit means a rock-drilling device with an integral dust...
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions... apparatus for collecting the dust that results from drilling in rock in coal mines, and is independent of the drilling equipment. (f) Combination unit means a rock-drilling device with an integral dust...
Theory and application of drilling fluid hydraulics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittaker, A.
1985-01-01
The objectives of this book are (1) to serve as a reasonably comprehensive text on the subject of drilling hydraulics and (2) to provide the field geologist with a quick reference to drilling hydraulics calculations. Chapter 1 introduces the basic principles of fluid properties, and Chapter 2 presents the general principles of fluid hydraulics. Chapters 3 through 10 analyze specific hydraulic considerations of the drilling process, such as viscometric measurements, pressure losses, swab and surge pressures, cuttings transport and hydraulic optimization. The units and nomenclature are consistent throughout the manual. Equations are given generally in consistent S.I. units; some commonmore » expressions are also given in oilfield units. Nomenclature is explained after every equation when necessary, and a comprehensive list of the nomenclature used is given in Appendix A. Units are listed in Appendix B. In Appendix C, all the important equations are given in both S.I. and oilfield units. Appendix D contains example hydraulics calculations.« less
Gallegos, Tanya J.; Varela, Brian A.
2015-01-01
Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in low-permeability, unconventional reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. This national spatial and temporal analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 (aggregated in Data Series 868) is used to identify hydraulic fracturing trends in drilling methods and use of proppants, treatment fluids, additives, and water in the United States. These trends are compared to the literature in an effort to establish a common understanding of the differences in drilling methods, treatment fluids, and chemical additives and of how the newer technology has affected the water use volumes and areal distribution of hydraulic fracturing. Historically, Texas has had the highest number of records of hydraulic fracturing treatments and associated wells in the United States documented in the datasets described herein. Water-intensive horizontal/directional drilling has also increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increases in horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. As such, the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. Publicly available derivative datasets and locations developed from these analyses are described.
Lower crustal section of the Oman Ophiolite drilled in Hole GT1A, ICDP Oman Drilling Project
NASA Astrophysics Data System (ADS)
Umino, S.; Kelemen, P. B.; Matter, J. M.; Coggon, J. A.; Takazawa, E.; Michibayashi, K.; Teagle, D. A. H.
2017-12-01
Hole GT1A (22° 53.535'N, 58° 30.904'E) was drilled by the Oman Drilling Project (OmDP) into GT1A of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT1A was diamond cored in 22 Jan to 08 Feb 2017 to a total depth of 403.05 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT1A drilled the lower crustal section in the southern Oman Ophiolite and recovered 401.52 m of total cores (99.6% recovery). The main lithology is dominated by olivine gabbro (65.9%), followed in abundance by olivine-bearing gabbro (21.5%) and olivine melagabbro (3.9%). Minor rock types are orthopyroxene-bearing olivine gabbro (2.4%), oxide-bearing olivine gabbro (1.5%), gabbro (1.1%), anorthositic gabbro (1%), troctolitic gabbro (0.8%); orthopyroxene-bearing gabbro (0.5%), gabbronorite (0.3%); and dunite (0.3%). These rocks are divided into Lithologic Unit I to VII at 26.62 m, 88.16 m, 104.72 m, 154.04 m, 215.22 m, 306.94 m in Chikyu Curated Depth in descending order; Unit I and II consist of medium-grained olivine gabbro with lower olivine abundance in Unit II. Unit III is medium-grained olivine melagabbros, marked by an increase in olivine. Unit IV is relatively homogenous medium-grained olivine gabbros with granular textures. Unit V is identified by the appearance of fine-grained gabbros, but the major rocktypes are medium grained olivine gabbros. Unit VI is medium-grained olivine gabbro, marked by appearance of orthopyroxene. Unit VII is of fine- to medium-grained olivine gabbros with less olivine.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-844] Certain Drill Bits and Products... sale for importation, and the sale within the United States after importation of certain drill bits and... Christensen Trading Inc. of Panama; and Intermountain Drilling Supply Corp. of West Valley City, Utah. On June...
33 CFR 146.202 - Notice of arrival or relocation of MODUs on the OCS.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES OPERATIONS Mobile Offshore Drilling Units § 146.202 Notice of arrival or relocation of MODUs on the OCS. (a) The owner of any mobile offshore drilling unit engaged in OCS activities shall, 14 days before arrival of the unit on the OCS or as...
78 FR 16177 - Safety Zone; M/V XIANG YUN KOU and MODU NOBLE DISCOVERER; Resurrection Bay, Seward, AK
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... and comment. Immediate action is needed to protect human life, property, and the environment from... regulations to the Small Business and Agriculture Regulatory Enforcement Ombudsman and the Regional Small... voluntary consensus standards. 14. Environment We have analyzed this rule under Department of Homeland...
33 CFR 144.20-5 - Exposure suits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... readily accessible location in or near the berthing area of the person for whom the exposure suit is... stowed in that location) is readily accessible to the station. (c) Each exposure suit on a MODU must be... type or multi-tone type, of corrosion resistant construction, and in good working order. The whistle...
HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Radtke; David Glowka; Man Mohan Rai
2008-03-31
Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hardmore » and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.« less
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Stability. 108.301 Section 108.301 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Stability... Mobile Offshore Drilling Units. [CGD 79-023, 48 FR 51008, Nov. 4, 1983] ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Stability. 108.301 Section 108.301 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Stability... Mobile Offshore Drilling Units. [CGD 79-023, 48 FR 51008, Nov. 4, 1983] ...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Stability. 108.301 Section 108.301 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Stability... Mobile Offshore Drilling Units. [CGD 79-023, 48 FR 51008, Nov. 4, 1983] ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Stability. 108.301 Section 108.301 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Stability... Mobile Offshore Drilling Units. [CGD 79-023, 48 FR 51008, Nov. 4, 1983] ...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Stability. 108.301 Section 108.301 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Stability... Mobile Offshore Drilling Units. [CGD 79-023, 48 FR 51008, Nov. 4, 1983] ...
77 FR 26562 - Mobile Offshore Drilling Unit Dynamic Positioning Guidance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
... regarding a draft policy letter on Dynamic Positioning (DP) Systems, Emergency Disconnect Systems, Blowout... Coast Guard, NOSAC issued the report ``Recommendations for Dynamic Positioning System Design and... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2011-1106] Mobile Offshore Drilling Unit Dynamic...
Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska North Slope
Lee, M.W.; Agena, W.F.; Collett, T.S.; Inks, T.L.
2011-01-01
In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. ?? 2009.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-844] Certain Drill Bits and Products Containing... drill bits and products containing the same by reason of infringement of certain claims of U.S. Patent... States, the sale for importation, or the sale within the United States after importation of certain drill...
NASA Astrophysics Data System (ADS)
Priymak, E. Yu.; Stepanchukova, A. V.; Yakovleva, I. L.; Tereshchenko, N. A.
2015-05-01
Nitrocarburizing is tested at the Drill Equipment Plant for reinforcing threaded joints of drill pipes for units with retrievable core receiver (RCR). The effect of the nitrocarburizing on the mechanical properties of steels of different alloying systems is considered. Steels for the production of threaded joints of drill pipes are recommended.
46 CFR 107.269 - Annual inspection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Annual inspection. 107.269 Section 107.269 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.269 Annual inspection. (a) Your mobile offshore drilling unit...
46 CFR 107.269 - Annual inspection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Annual inspection. 107.269 Section 107.269 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.269 Annual inspection. (a) Your mobile offshore drilling unit...
46 CFR 107.269 - Annual inspection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Annual inspection. 107.269 Section 107.269 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.269 Annual inspection. (a) Your mobile offshore drilling unit...
46 CFR 107.269 - Annual inspection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Annual inspection. 107.269 Section 107.269 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.269 Annual inspection. (a) Your mobile offshore drilling unit...
33 CFR 143.210 - Letter of compliance.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Mobile Offshore Drilling Units § 143.210 Letter of compliance. (a) The Officer in Charge, Marine Inspection, determines whether a mobile offshore... of a foreign mobile offshore drilling unit requiring a letter of compliance examination must pay the...
46 CFR 107.269 - Annual inspection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Annual inspection. 107.269 Section 107.269 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.269 Annual inspection. (a) Your mobile offshore drilling unit...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... Shelf Permits Issued to Shell Offshore, Inc. for the Kulluk Conical Drilling Unit AGENCY: United States... (OCS) permit to construct and Title V air quality operating permit to Shell Offshore, Inc. (``Shell'') for operation of the Kulluk conical drilling unit in the Beaufort Sea off the north coast of Alaska...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newcomer, Darrell R.
2007-09-30
Slug-test results obtained from single and multiple, stress-level slug tests conducted during drilling and borehole advancement provide detailed hydraulic conductivity information at two Hanford Site Operable Unit (OU) ZP-1 test well locations. The individual test/depth intervals were generally sited to provide hydraulic-property information within the upper ~10 m of the unconfined aquifer (i.e., Ringold Formation, Unit 5). These characterization results complement previous and ongoing drill-and-test characterization programs at surrounding 200-West and -East Area locations (see Figure S.1).
46 CFR 108.101 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Incorporation by reference. 108.101 Section 108.101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN....105. Resolution A.649(16), Code for the Construction and Equipment of Mobile Offshore Drilling Units...
46 CFR 107.01 - Purpose of subchapter.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Purpose of subchapter. 107.01 Section 107.01 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND..., construction, equipment, inspection and operation of mobile offshore drilling units operating under the U.S...
78 FR 63233 - National Offshore Safety Advisory Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... Equipment in Hazardous Areas on Foreign Flag Mobile Offshore Drilling Units. (4) Safety Impact of Liftboat... Equipment in Hazardous Areas on Foreign Flag Mobile Offshore Drilling Units (MODUs); (d) Safety Impact of... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2013-0886] National Offshore Safety...
46 CFR 108.101 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Incorporation by reference. 108.101 Section 108.101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN....105. Resolution A.649(16), Code for the Construction and Equipment of Mobile Offshore Drilling Units...
46 CFR 107.01 - Purpose of subchapter.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Purpose of subchapter. 107.01 Section 107.01 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND..., construction, equipment, inspection and operation of mobile offshore drilling units operating under the U.S...
Wellbore manufacturing processes for in situ heat treatment processes
Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles
2012-12-11
A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, M.D.; Waddell, S.J.; Vick, G.S.
1986-12-31
Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). Thesemore » formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-07
... for all Mobile Offshore Drilling Units and Floating Outer Continental Shelf Facilities (as defined in... Commander. Vessels requiring Coast Guard inspection include Mobile Offshore Drilling Units (MODUs), Floating... engage directly in oil and gas exploration or production in the offshore waters of the Eighth Coast Guard...
Wang, Yudan; Wen, Guojun; Chen, Han
2017-04-27
The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.
Wang, Yudan; Wen, Guojun; Chen, Han
2017-01-01
The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. PMID:28448445
1993-01-31
interferometric modulator. 5 1-4 Bias point drift in interferometric modulators made using Ti-indiffused waveguides. Illumination was continuous; the gaps...In an interferometric modulator, illustrated in Figure 1-3, these waveguide changes affect the modu- lation performance. Different changes in total...modulator. 5 We have evaluated both straight waveguides and interferometric modulators. The majority of de- vices tested had 6-/m-wide Ti-indiffused
Report on drilling activities in the Thar Desert, Sindh Province, Pakistan
Thomas, Roger E.; Fassett, James E.; Warwick, Peter D.; Wardlaw, Bruce R.; Shah, Abas A.; Khan, Shafique Ahmed; Tagar, Mohammad A.; Memon, Abdul R.; Lashari, Ghulam S.; Khan, Zameer M.; Khan, Muhammad D.; Chandio, Altaf H.; Anwar, Mohammad; Nizamani, Mohammad A.; Ahmad, Mujeeb; Ur-Raman, Mehtab-
1994-01-01
Coal test drilling in the Thar Desert of southeast Pakistan was conducted as part of the Coal Exploration and Assessment Program (COALREAP) involving the United States Agency for International Development (USAID), the Geological Survey of Pakistan (GSP), and the U.S. Geological Survey. Drilling was performed in the Thar Desert, or Great Indian Desert, approximately 175 km northeast of Karachi. Twenty five exploration holes were drilled between January 1992 and May 1994. Drill core was described by geologists of the Pakistan Geological Survey and coal samples were analyzed in both the United States and Pakistan. U.S. Geological Survey geologists offered technical assistance, trained GSP personnel, and managed the drilling program according to an agreement with USAID under the Energy Planning and Development Project.Drilling was performed by the Geological Survey of Pakistan. During drilling, the first 50 m was rotary drilled and cuttings collected every 2 m for examination. Average depth for all coal beds is 214 m with a total average thickness of 10 m of coal per drill hole. Core was described, boxed, and stored at the Geological Survey of Pakistan core library at Sonda, near Hyderabad. Approximately 6,412 m of Paleocene to Eocene rock was drilled of which 3,990 m was cored and 1,113 m was rotary drilled.There was 1,309 m of core loss. Geophysical logging of each drill hole permitted detailed thicknesses of coal to be determined. Analysis of the coal indicated a rank of lignite B with an as-received heating value over 5,000 Btu.This report presents data collected at the drill sites and should be used inconjunction with the published interpretive report (Fassett and Durrani, 1994) and the USGS Open-File Report 94-167, which contains analysis of the coal samples. Tables provide quick reference to numeric data and results. Detailed index maps and specific data, for each drill hole are included. This report covers drill holes TP-5 to TP-31. Drill holes TP-16, 17, 21, 26, 27, and 29 were planned but not drilled due to time restraints and (or) a determination that those drill sites were not needed to effectively delineate the coal deposit. The basic data for drill holes TP-1 through TP-4 are included in SanFilipo and others, 1994 however, some data for these drill holes are included for consistency.
46 CFR 108.503 - Relationship to international standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 108.503 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING... after a drill in accordance with § 108.540(f). (g) The requirements for guarding of falls in §§ 108.553... § 108.580(c). (l) All abandonment drills conducted on units carrying immersion suits must include...
46 CFR 108.503 - Relationship to international standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 108.503 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING... after a drill in accordance with § 108.540(f). (g) The requirements for guarding of falls in §§ 108.553... § 108.580(c). (l) All abandonment drills conducted on units carrying immersion suits must include...
46 CFR 108.503 - Relationship to international standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 108.503 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING... after a drill in accordance with § 108.540(f). (g) The requirements for guarding of falls in §§ 108.553... § 108.580(c). (l) All abandonment drills conducted on units carrying immersion suits must include...
46 CFR 108.503 - Relationship to international standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 108.503 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING... after a drill in accordance with § 108.540(f). (g) The requirements for guarding of falls in §§ 108.553... § 108.580(c). (l) All abandonment drills conducted on units carrying immersion suits must include...
Special mobile rescue unit can speed recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-04-01
Since time is often a matter of life and death in a mine disaster, Mine Emergency Operations (MEO) personnel are prepared to begin rescue work at any mining site in the eastern part of the United States within six hours of notification, and within no more than nine hours in the western United States. The entire MEO force, including vans, trucks, bulldozers to clear and level the drilling site, seismic equipment, and the big drilling rig can be on any site within less than 20 hours of a disaster. The speed of deployment is made possible in some measure bymore » a special agreement between MESA and the United States Air Force, which stands ready 24 hours a day to dispatch giant C-130 cargo aircraft to airlift the tons of bulky MEO equipment. While the big drilling rig is usually taken to disaster sites by highway, it can also be airlifted when necessary.« less
46 CFR 174.040 - Stability requirements: general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.040... draft for navigation, towing, or drilling afloat, or at a temporary draft when changing drafts. ...
46 CFR 174.040 - Stability requirements: general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.040... draft for navigation, towing, or drilling afloat, or at a temporary draft when changing drafts. ...
30 CFR 250.1604 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... moving equipment such as a well-drilling, well-completion, or well-workover rig or associated equipment..., platform age, and previous stresses. (f) Traveling-block safety device. All drilling units being used for...
30 CFR 250.1604 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... moving equipment such as a well-drilling, well-completion, or well-workover rig or associated equipment..., platform age, and previous stresses. (f) Traveling-block safety device. All drilling units being used for...
30 CFR 250.1604 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... moving equipment such as a well-drilling, well-completion, or well-workover rig or associated equipment..., platform age, and previous stresses. (f) Traveling-block safety device. All drilling units being used for...
Coast Guard Regulations Applied to Offshore Drilling. Module SH-45. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on Coast Guard regulations applied to offshore drilling is one of 50 modules concerned with job safety and health. This module presents requirements that apply to the design, construction, equipment, inspection, and operation of offshore drilling units. Following the introduction, 10 objectives (each keyed to a page in the…
Offshore Oil Drilling: Buying Energy Independence or Buying Time?
ERIC Educational Resources Information Center
Baird, Stephen L.
2008-01-01
This article addresses the issues and concerns about offshore oil drilling in the United States. The demand for energy is going up, not down, and for a long time, even as alternative sources of energy are developed, more oil will be needed. The strongest argument against drilling is that it could distract the country from the pursuit of…
Carr, W.J.
1982-01-01
New evidence for a possible resurgent dome in the caldera related to eruption of the Bullfrog Member of the Crater Flat Tuff has been provided by recent drilling of a 762-meter (2,501-foot) hole in central Crater Flat. Although no new volcanic units were penetrated by the drill hole (USW-VH-1), the positive aeromagnetic anomaly in the vicinity of the drill hole appears to result in part from the unusually thick, densely welded tuff of the Bullfrog. Major units penetrated include alluvium, basalt of Crater Flat, Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, and Prow Pass and Bullfrog Members of the Crater Flat Tuff. In addition, the drill hole provided the first subsurface hydrologic information for the area. The water table in the hole is at about 180 meters (600 feet), and the temperature gradient appears slightly higher than normal for the region.
Reliability and Maintainability Analysis: A Conceptual Design Model
1972-03-01
Elements For a System I. Research ane Development A. Preliminary design and engineering B. Fabrication of test equipment C. Test operations D...reliability racquiro:wents, little, if any, modu larzation and auto- matic test features would be incorporated in the subsystem design, limited reliability...niaintaina~ility testing and monitoring would be conducted turing dev!qopmcnt, and little Quality Control effort, in the rell ability/’uaintainalility
33 CFR 146.215 - Safety and Security notice of arrival for U.S. or foreign MODUs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... using methods specified in the NVMC's Web site at http://www.nvmc.uscg.gov/. (c) Updates to a submitted... becomes inaccurate, the owner or operator of the MODU must revise and re-submit the NOA within the times required in paragraph (e) of this section. An owner or operator does not need to revise or re-submit an NOA...
33 CFR 146.215 - Safety and Security notice of arrival for U.S. or foreign MODUs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... using methods specified in the NVMC's Web site at http://www.nvmc.uscg.gov/. (c) Updates to a submitted... becomes inaccurate, the owner or operator of the MODU must revise and re-submit the NOA within the times required in paragraph (e) of this section. An owner or operator does not need to revise or re-submit an NOA...
33 CFR 146.215 - Safety and Security notice of arrival for U.S. or foreign MODUs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... using methods specified in the NVMC's Web site at http://www.nvmc.uscg.gov/. (c) Updates to a submitted... becomes inaccurate, the owner or operator of the MODU must revise and re-submit the NOA within the times required in paragraph (e) of this section. An owner or operator does not need to revise or re-submit an NOA...
33 CFR 146.215 - Safety and Security notice of arrival for U.S. or foreign MODUs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... at http://www.nvmc.uscg.gov/. (c) Updates to a submitted NOA. Unless otherwise specified in this... the MODU must revise and re-submit the NOA within the times required in paragraph (e) of this section. An owner or operator does not need to revise or re-submit an NOA for the following: (1) A change in...
33 CFR 143.201 - Existing MODUs exempted from new design requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT Mobile Offshore Drilling Units § 143.201 Existing MODUs exempted from new design requirements. Any mobile offshore drilling...
Installation Of Service Connections For Sensors Or Transmitters In Buried Water Pipes
Burnham, Alan K.; Cooper, John F.
2006-02-21
A system for installing warning units in a buried pipeline. A small hole is drilled in the ground to the pipeline. A collar is affixed to one of the pipes of the pipeline. A valve with an internal passage is connected to the collar. A hole is drilled in the pipe. A warning unit is installed in the pipe by moving the warning unit through the internal passage, the collar, and the hole in the pipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-05-31
Research was expanded to the drilling of crystalline rock. Advance rates of 40 inches per minute have been achieved at 16,000 psi, 10 gpm flow rate in a 30,000 psi compressive strength rock using the water alone as the drilling mechanism. The quality of the hole achieved as the jet drilled a variety of rock was found to vary and a hydromechanical drilling bit, combining high pressure water jets with roller cones, has been developed. A field drilling unit has been tested and modified to allow the drilling of holes to 3/sup 1///sub 2/ inch diameter using the hydromechanical drill.more » Preliminary work on the development of a cavitation test for rock is also included.« less
Continental Scientific Drilling Program Data Base
NASA Astrophysics Data System (ADS)
Pawloski, Gayle
The Continental Scientific Drilling Program (CSDP) data base at Lawrence Livermore National Laboratory is a central repository, cataloguing information from United States drill holes. Most holes have been drilled or proposed by various federal agencies. Some holes have been commercially funded. This data base is funded by the Office of Basic Energy Sciences of t he Department of Energy (OBES/DOE) to serve the entire scientific community. Through the unrestricted use of the database, it is possible to reduce drilling costs and maximize the scientific value of current and planned efforts of federal agencies and industry by offering the opportunity for add-on experiments and supplementing knowledge with additional information from existing drill holes.
Gaven, Jr., Joseph V.; Bak, Chan S.
1983-01-01
Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.
NASA Technical Reports Server (NTRS)
Briggs, G. A.; McKay, C.; George, J.; Derkowski, G.; Cooper, G.; Zacny, K.; Baker, R. Fincher; Pollard, W.; Clifford, S.
2003-01-01
As a project that is part of NASA s Astrobiology Technology & Instrument Development Program (ASTID), we are developing a low mass (approx.20kg) drill that will be operated without drilling fluids and at very low power levels (approx.60 watts electrical) to access and retrieve samples from permafrost regions of Earth and Mars. The drill, designed and built as a joint effort by NASA JSC and Baker-Hughes International, takes the form of a down-hole unit attached to a cable so that it can, in principle, be scaled easily to reach significant depths. A parallel laboratory effort is being carried out at UC Berkeley to characterize the physics of dry drilling under martian conditions of pressure, temperature and atmospheric composition. Data from the UCB and JSC laboratory experiments are being used as input to a drill simulation program which is under development to provide autonomous control of the drill. The first Arctic field test of the unit is planned for May 2004. A field expedition to Eureka on Ellesmere Island in Spring 2003 provided an introduction for several team members to the practical aspects of drilling under Arctic conditions. The field effort was organized by Wayne Pollard of McGill University and Christopher McKay of NASA ARC. A conventional science drill provided by New Zealand colleagues was used to recover ground ice cores for analysis of their microbial content and also to develop techniques using tracers to track the depth of penetration of contamination from the core surface into the interior of the samples.
Publications - GMC 67 | Alaska Division of Geological & Geophysical Surveys
from Alaska; drill cuttings being from the following three wells: Mobil Oil Corporation Salmonberry ; drill cuttings being from the following three wells: Mobil Oil Corporation Salmonberry Lake Unit #1
46 CFR 11.920 - Subjects for MODU endorsements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... engineering terminology X X X X X X X Engineering equipment, operations and failures X X X X X X Offshore... X X X X X Mooring equipment X X X X X X Crane use procedures and inspections X X X X X X Medical care: Knowledge and use of: First aid X X X X X X X First response medical action X X X X X X X...
Joint Services Electronics Program.
1986-01-01
89 IAooeston ? N1TIS GRA&If : i TC TAB 17 Distribuitioll/ Avatlabllity Codes_. iAv il and/or Dist Special . iii V’/-. *’V*. ’/ ’ 2 ...Similar structures were also studied by direct reflectance measurements at 2 K where the excitonic transitions are so strong that modu- lation is...separate investigation. single quantum wells of varying sizes were grown and studied [ 2 ]. The binding energies of acceptors were also determined. \\ore
A Summary of the Naval Postgraduate School Research Program.
1982-05-01
and testing of PCM modu- lation formats, design and test of an underwater video line using a diver’s handheld camera and bi-directional interconnection...to design and develop advanced control schemes which successfully optimize the tor- pedo steering performance for Project Courageous. cummary: Work...investigating the feasibility and design of fiber optic communications in underwater torpedo ranges. Summary: An underwater fiber optic video uplink was
Development and validation of a BEAMnrc component module for a miniature multileaf collimator.
Doerner, E; Hartmann, G H
2012-05-21
A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM.
Development and validation of a BEAMnrc component module for a miniature multileaf collimator
NASA Astrophysics Data System (ADS)
Doerner, E.; Hartmann, G. H.
2012-05-01
A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM.
Code of Federal Regulations, 2010 CFR
2010-07-01
... RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra... after May 18, 2007, reported on the Oil and Gas Operations Report, Part A (OGOR-A) for your lease under... the unitized portion of lease A (drilled after the ultra-deep well on the non-unitized portion of that...
NASA Astrophysics Data System (ADS)
Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Renken, J.; Zabel, M.; Wefer, G.
2011-12-01
State of the art technology for long-term monitoring of fluid migration within the sea floor is the sealing of a borehole with a Circulation Obviation Retrofit Kit (CORK) after sensor installation and/or fluid sampling devices within the drill string. However, the combined used of a drilling vessels and a remotely operated drilling (ROV) required for a CORK installation in the deep sea is a costly exercise that limits the number of monitoring stations installed. Robotic sea floor drill rigs are a cost effective alternative for shallow drillings down to 50-100 m below sea floor. Here we present a Mini-CORK system that is developed for installation with the sea floor drill rig MeBo. This rig was developed at MARUM Research Centre, University of Bremen in 2005 and can sample the sea floor in water depths up to 2000 m. The MeBo is deployed on the seabed and remotely controlled from the vessel. All required drill tools for wire-line core drilling down to 70 m below sea floor are stored on two rotating magazines and can be loaded below the top drive drill head for assembling the drill string. For one of the upcoming cruises with RV Sonne offshore Japan (Nankai Trough accretionary prism), MeBo will be used for the first time to place observatories. Two different designs have been developed. The first, relatively simple long-term device resembles a MeBo drill rod in its geometry, and contains a pressure and temperature transducer in the borehole plus an identical pair of transducers for seafloor reference. The device also contains a data logger, battery unit, and an acoustic modem so that data can be downloaded at any time from a ship of opportunity. The key element at the base of the observatory rod is a seal at the conical thread to separate the borehole hydraulically from the overlying water body. It is realized by an adapter, which also contains a hotstab hydraulic connection and an electrical connection. The second observatory device is a seafloor unit, which replaces part of the first unit and which is deployed by ROV. In essence, the upper portion of the former observatory is taken away by ROV, and an umbilical containing hydraulic lines and tubing to withdraw formation water from the borehole is plugged into the hotstab female adapter by ROV. At the far end, the umbilical is connected to a seafloor unit with battery power, data logger, P and T transducers, and the same acoustic modem as the former one. In addition, the latter contains osmo samplers and biological chambers (FLOCS) for in situ sampling and experiments. After the envisaged deployment period, the entire unit is replaced while an identical one is prepared on deck and lowered from the vessel. In theory, the MeBo hole infinitely serves as an access to depth since no electronic, but only tubing is lowered into the (open) hole. In summary, long-term borehole installations with MeBo offer an affordable way to measure key physical properties over time and sample the formation fluids for geochemistry and microbiology (in case of the second, ROV-deployed CORK).
NASA Astrophysics Data System (ADS)
Efimenko, N.; Schleicher, A. M.; Buchs, D. M.; Buret, C.; Kawabata, K.; Boutt, D. F.; Underwood, M.; Araki, E.; Byrne, T. B.; McNeill, L. C.; Saffer, D. M.; Eguchi, N. O.; Takahashi, K.; Toczko, S.; Scientists, E.
2009-12-01
The use of cuttings as an alternative or addition to core material is broadly debated in on-shore and off-shore drilling expeditions. Expedition 319 is the first IODP based Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) project using the riser-drilling method to collect cutting and core samples for scientific studies. One major scientific objective for this site was to characterise the lithology and deformation history of the Kumano forearc basin sediments and its underlying units through comparison of (i) cuttings, (ii) core, (iii) measurements while drilling, and (iv) wireline logging data. Cuttings were retrieved from each 5 m intervals from 703.9 to 1604 m, and cores were recovered from 1509.7 to 1593.9 m below sea floor. As core availability was limited, the study of cuttings was a crucial step in improving our understanding of their potential and limits for lithostratigraphical interpretations compared to core. Mineralogical and chemical analysis of cuttings and core, wireline logging data, and gamma ray data from MWD were available to define four lithostratigraphic units. These units are composed of mud and mudstone with coarser silty and sandy interbeds, and volcanic ash/tuff. Consistency between unit boundaries determined from cuttings and those determined from log data is good in terms of depth, with typical mismatches of less than 10m. Three significant problems affecting the preservation of cuttings were (1) mixing of cuttings as they travel from the drill face to the surface, (2) alteration of natural mineral and structure signatures, and (3) possible contamination from natural clay minerals with the polymer/bentonite drill mud. These difficulties can be overcome in part through the analysis of cuttings of similar sizes (1-4 mm), guided by the analyses of bulk cuttings. A more accurate quantitative characterisation of cuttings through the use of digital imaging might improve the description of lithofacies. Although the quality of cuttings is affected by caving and drilling mud contamination, our results clearly indicate that cuttings retrieval is a viable alternative to coring in ocean drilling. However, to improve the precision of lithostratigraphical observations and interpretations in critical intervals, the study of cores is needed.
46 CFR 108.540 - Survival craft muster and embarkation arrangements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.540 Survival craft muster and... over the edge of the deck; and (2) Safely disembarked after a drill in the case of a survival craft not...
46 CFR 108.540 - Survival craft muster and embarkation arrangements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.540 Survival craft muster and... over the edge of the deck; and (2) Safely disembarked after a drill in the case of a survival craft not...
46 CFR 108.540 - Survival craft muster and embarkation arrangements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.540 Survival craft muster and... over the edge of the deck; and (2) Safely disembarked after a drill in the case of a survival craft not...
Dokos, J.A.
1997-12-30
A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokos, James A.
A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotationmore » of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokos, J.A.
A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.« less
1983-01-01
Daily. Proposal Evaluation Procedure Organizations interested in doing the work adverstised submit proposals and cost estimates. The USCG contracting...types of offshore structures. These structures have largely been fixed platforms for petroleum drilling and production, and mobile offshore drilling...structures and of those mobile drilling units that are bottom supported, such as jack-ups and submersibles. Structures which are held in place by anchors
Olea, R.A.; Luppens, J.A.; Tewalt, S.J.
2011-01-01
A common practice for characterizing uncertainty in coal resource assessments has been the itemization of tonnage at the mining unit level and the classification of such units according to distance to drilling holes. Distance criteria, such as those used in U.S. Geological Survey Circular 891, are still widely used for public disclosure. A major deficiency of distance methods is that they do not provide a quantitative measure of uncertainty. Additionally, relying on distance between data points alone does not take into consideration other factors known to have an influence on uncertainty, such as spatial correlation, type of probability distribution followed by the data, geological discontinuities, and boundary of the deposit. Several geostatistical methods have been combined to formulate a quantitative characterization for appraising uncertainty. Drill hole datasets ranging from widespread exploration drilling to detailed development drilling from a lignite deposit in Texas were used to illustrate the modeling. The results show that distance to the nearest drill hole is almost completely unrelated to uncertainty, which confirms the inadequacy of characterizing uncertainty based solely on a simple classification of resources by distance classes. The more complex statistical methods used in this study quantify uncertainty and show good agreement between confidence intervals in the uncertainty predictions and data from additional drilling. ?? 2010.
75 FR 8113 - Drill Pipe From China
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-474 and 731-TA-1176 (Preliminary)] Drill Pipe From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date: February 16, 2010. FOR...
Depolarization and Scattering of Electromagnetic Waves. Appendices.
1986-06-30
for both specular point scattering and Bragg scattering in a self-consistent manner is used to express the total cross section of the flake as a...by Arbitrarily Oriented Composite Rough Surfaces. In this work the full wave approach is used to determine the modu- lations of the like and cross...analyze multiple scattering using the equation of radiative transfer with the general Stokes’ parameters. Our ultimate goal is to develop codes which will
Overview of Hole GT2A: Drilling middle gabbro in Wadi Tayin massif, Oman ophiolite
NASA Astrophysics Data System (ADS)
Takazawa, E.; Kelemen, P. B.; Teagle, D. A. H.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.
2017-12-01
Hole GT2A (UTM: 40Q 655960.7E / 2529193.5N) was drilled by the Oman Drilling Project (OmDP) into Wadi Gideah of Wadi Tayin massif in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT2A was diamond cored in 25 Dec 2016 to 18 Jan 2017 to a total depth of 406.77 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. 33 shipboard scientists were divided into six teams (Igneous, Alteration, Structural, Geochem, Physical Properties, Paleomag) to describe and analyze the cores. Hole GT2A drilled through the transition between foliated and layered gabbro. The transition zone occurs between 50 and 150 m curation corrected depth (CCD). The top 50 m of Hole GT2A is foliated gabbro whereas the bottom 250 m consists of layered gabbro. Brittle fracture is observed throughout the core. Intensity of alteration vein decreases from the top to the bottom of the hole. On the basis of changes in grain size and/or modal abundance and/or appearance/disappearance of igneous primary mineral(s) five lithological units are defined in Hole GT2A (Unit I to V). The uppermost part of Hole GT2A (Unit I) is dominated by fine-grained granular olivine gabbro intercalated with less dominant medium-grained granular olivine gabbro and rare coarse-grained varitextured gabbro. The lower part of the Hole (Units II, III and V) is dominated by medium-grained olivine gabbro, olivine melagabbro and olivine-bearing gabbro. Modally-graded rhythmic layering with olivine melagabbro and olivine-bearing gabbro is well conspicuous in the bottom part of Unit II. The Unit IV occurs between 284.25 m and 293.92 m CCD from the top of the hole and is characterized by orthopyroxene-bearing lithologies such as fine-grained gabbronorite and coarse-grained troctolite. Discrete orthopyroxene crystals occur in these lithologies.
Coal test drilling for the DE-NA-Zin Bisti Area, San Juan County, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R.W.; Jentgen, R.W.
1980-01-01
From October 1978 to June 1979, the US Geological Survey (USGS) drilled 51 test holes, and cored 9 holes, in the vicinity of the Bisti Trading Post in the southwestern part of the San Juan Basin, San Juan County, New Mexico. The drilling was done in response to expressions of interest received by the Bureau of Land Management concerning coal leasing and, in some places, badlands preservation. The object of the drilling was to determine the depth, thickness, extent, and quality of the coal in the Upper Cretaceous Fruitland Formation in northwest New Mexico. The holes were geophysically logged immediatelymore » after drilling. Resistivity spontaneous-potential, and natural gamma logs were run in all of the holes. A high-resolution density log was also run in all holes drilled before January 13, when a logging unit from the USGS in Albuquerque was available. After January 13, the holes were logged by a USGS unit from Casper, Wyoming that lacked density logging capabilities. At nine locations a second hole was drilled, about 20 ft from the first hole, down to selected coal-bearing intervals and the coal beds were cored. A detailed description of each of the cores is given on the page(s) following the logs for each hole. From these coal cores, 32 intervals were selected and submitted to the Department of Energy in Pittsburgh, Pennsylvania, for analysis.« less
46 CFR 107.01 - Purpose; preemptive effect.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Purpose; preemptive effect. 107.01 Section 107.01 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS... rules for the design, construction, equipment, inspection and operation of mobile offshore drilling...
46 CFR 107.211 - Original Certificate of Inspection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Original Certificate of Inspection. 107.211 Section 107.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS... Offshore Drilling Units” (Appendix A). Existing structure, arrangements, materials, equipment, and...
46 CFR 107.211 - Original Certificate of Inspection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Original Certificate of Inspection. 107.211 Section 107.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS... Offshore Drilling Units” (Appendix A). Existing structure, arrangements, materials, equipment, and...
46 CFR 107.211 - Original Certificate of Inspection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Original Certificate of Inspection. 107.211 Section 107.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS... Offshore Drilling Units” (Appendix A). Existing structure, arrangements, materials, equipment, and...
46 CFR 107.211 - Original Certificate of Inspection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Original Certificate of Inspection. 107.211 Section 107.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS... Offshore Drilling Units” (Appendix A). Existing structure, arrangements, materials, equipment, and...
46 CFR 107.211 - Original Certificate of Inspection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Original Certificate of Inspection. 107.211 Section 107.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS... Offshore Drilling Units” (Appendix A). Existing structure, arrangements, materials, equipment, and...
46 CFR 107.01 - Purpose; preemptive effect.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Purpose; preemptive effect. 107.01 Section 107.01 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS... rules for the design, construction, equipment, inspection and operation of mobile offshore drilling...
46 CFR 107.01 - Purpose; preemptive effect.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Purpose; preemptive effect. 107.01 Section 107.01 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS... rules for the design, construction, equipment, inspection and operation of mobile offshore drilling...
Self-propelled instrumented deep drilling system
NASA Technical Reports Server (NTRS)
Myrick, Thomas M. (Inventor); Gorevan, Stephen (Inventor)
2006-01-01
An autonomous subsurface drilling device has spaced-apart forward and rearward feet sections coupled to an axial thruster mechanism between them to operate using an inchworm method of mobility. In one embodiment, forward and rearward drill sections are carried on forward and rearward feet sections for drilling into material in the borehole in both forward and rearward directions, to allow the device to maneuver in any direction underground. In another embodiment, a front drill section has a drill head for cutting into the borehole and conveying cuttings through a center spine tube to an on-board depository for the cuttings. The feet sections of the device employ a foot scroll drive unit to provide radial thrust and synchronous motion to the feet for gripping the borehole wall. The axial thrust mechanism has a tandem set of thrusters in which the second thruster is used to provide the thrust needed for drilling, but not walking. A steering mechanism composed of concentric inner and outer eccentric rings provided with the rearward feet section allow small corrections in both direction and magnitude to the drilling direction as drilling commences.
Ouachitas need more exploratory drilling
Suneson, Neil H.; Campbell, Jock A.
1990-01-01
The Ouachita Mountains in southeastern Oklahoma and western Arkansas are part of a mostly buried late Paleozoic fold and thrust belt that extends from Alabama to northern Mexico. The principal hydrocarbon reservoirs in the Ouachita tectonic province can be subdivided into those that produce natural gas from shallow-water units and those that produce oil and/or natural gas from deep-water units. They can also be divided into those that are fractured and those that produce from primary pore spaces or vugs. The first successful oil well in the Ouachita Mountains was drilled in 1913 or 1914. Since the discovery of the Redden field, over 800 oil and gas wells have been drilled in the Ouachita tectonic province in Oklahoma. Yet, most of the region remains little explored.
Chalk play tops Gulf Coast horizontal scene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-11-18
This paper reports on horizontal drilling in the Cretaceous Austin chalk of Texas which dominates news of U.S. Gulf Coast horizontal action. In spite of a significant decline in horizontal drilling in Texas-the Texas Railroad Commission reported a 15 unit decline in the number of permits to drill horizontal wells during the third quarter-operators in East and South Texas continue to expand plays and develop new ones. The Cretaceous Bruda may be gaining some respect as a horizontal target in Texas. Elsewhere on the Gulf Coast, Mississippi soon will see more action on the horizontal drilling front.
Formation of ore minerals in metamorphic rocks of the German continental deep drilling site (KTB)
NASA Astrophysics Data System (ADS)
Kontny, A.; Friedrich, G.; Behr, H. J.; de Wall, H.; Horn, E. E.; Möller, P.; Zulauf, G.
1997-08-01
The German Continental Deep Drilling Program (KTB) drilled a 9.1 km deep profile through amphibolite facies metamorphic rocks and reached in situ temperatures of 265°C. Each lithologic unit is characterized by typical ore mineral assemblages related to the regional metamorphic conditions. Paragneisses contain pyrrhotite + rutile + ilmenite ± graphite, metabasic units bear ilmenite + rutile + pyrrhotite ± pyrite, and additionally, the so-called variegated units yield pyrrhotite + titanite assemblages. In the latter unit, magnetite + ilmenite + rutile + titanite assemblages related to the lower amphibolite facies breakdown of ilmenite-hematite solid solution also occur locally. Retrograde hydrothermal mineralization which commenced during Upper Carboniferous times is characterized by the following geochemical conditions: (1) low saline Na-K-Mg-Cl fluids with sulfur and oxygen fugacities at the pyrite-pyrrhotite buffer and temperatures of 400-500°C, (2) fluids with CO2, CH4±N2, andpH, Eh, sulfur, and oxygen fugacity in the stability field of graphite + pyrite at temperatures of 280-350° and (3) moderate to high saline Ca-Na-Cl fluids with CH4+ N2; sulfur and oxygen fugacity are in the stability field of pyrrhotite at temperatures <300°C. The latter environment is confirmed by in situ conditions found at the bottom of the deep drilling. Monoclinic, ferrimagnetic pyrrhotite is the main carrier of magnetization which disappears below about 8.6 km, corresponding to in situ temperatures of about 250°C. Below this depth, hexagonal antiferromagnetic pyrrhotite with a Curie temperature of 260°C is the stable phase. Temperature-dependent transformation of pyrrhotite and the reaching of its Curie isotherm within the Earth crust are one of the striking results of the KTB deep drilling project.
Engineering report on drilling in the San Rafael Swell area, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, L.I.
1980-05-01
The San Rafael Swell drilling project was conducted by Bendix Field Engineering Corporation in support of the US Department of Energy National Uranium Resource Evaluation (NURE) program. This project consisted of 27 drill holes ranging in depth from 120.0 ft (36.5 m) to 3,700.0 ft (1,127.7 m). A total of 41,716 ft (12,715 m) was drilled, of which 3,099.8 ft (944.8 m) were cored. Geophysical logging was supplied by Century Geophysical Corporation and Bendix Field Engineering Corporation. The objective of the project was to test the uranium potential of the Triassic and Jurassic sandstone units and to investigate areas wheremore » industry was unlikely to drill in the near future. Drilling commenced September 24, 1978, and was finished on December 17, 1979.« less
Influence of drilling operations on drilling mud gas monitoring during IODP Exp. 338 and 348
NASA Astrophysics Data System (ADS)
Hammerschmidt, Sebastian; Toczko, Sean; Kubo, Yusuke; Wiersberg, Thomas; Fuchida, Shigeshi; Kopf, Achim; Hirose, Takehiro; Saffer, Demian; Tobin, Harold; Expedition 348 Scientists, the
2014-05-01
The history of scientific ocean drilling has developed some new techniques and technologies for drilling science, dynamic positioning being one of the most famous. However, while industry has developed newer tools and techniques, only some of these have been used in scientific ocean drilling. The introduction of riser-drilling, which recirculates the drilling mud and returns to the platform solids and gases from the formation, to the International Ocean Drilling Program (IODP) through the launch of the Japan Agency of Marine Earth-Science and Technology (JAMSTEC) riser-drilling vessel D/V Chikyu, has made some of these techniques available to science. IODP Expedition 319 (NanTroSEIZE Stage 2: riser/riserless observatory) was the first such attempt, and among the tools and techniques used was drilling mud gas analysis. While industry regularly conducts drilling mud gas logging for safety concerns and reservoir evaluation, science is more interested in other components (e.g He, 222Rn) that are beyond the scope of typical mud logging services. Drilling mud gas logging simply examines the gases released into the drilling mud as part of the drilling process; the bit breaks and grinds the formation, releasing any trapped gases. These then circulate within the "closed circuit" mud-flow back to the drilling rig, where a degasser extracts these gases and passes them on to a dedicated mud gas logging unit. The unit contains gas chromatographs, mass spectrometers, spectral analyzers, radon gas analyzers, and a methane carbon isotope analyzer. Data are collected and stored in a database, together with several drilling parameters (rate of penetration, mud density, etc.). This initial attempt was further refined during IODP Expeditions 337 (Deep Coalbed Biosphere off Shimokita), 338 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 2) and finally 348 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 3). Although still in its development stage for scientific application, this technique can provide a valuable suite of measurements to complement more traditional IODP shipboard measurements. Here we present unpublished data from IODP Expeditions 338 and 348, penetrating the Nankai Accretionary wedge to 3058.5 meters below seafloor. Increasing mud density decreased degasser efficiency, especially for higher hydrocarbons. Blurring of the relative variations in total gas by depth was observed, and confirmed with comparison to headspace gas concentrations from the cored interval. Theoretically, overpressured zones in the formation can be identified through C2/C3 ratios, but these ratios are highly affected by changing drilling parameters. Proper mud gas evaluations will need to carefully consider the effects of variable drilling parameters when designing experiments and interpreting the data.
43 CFR 3281.15 - What is the minimum initial unit obligation a unit agreement must contain?
Code of Federal Regulations, 2011 CFR
2011-10-01
... (3000) GEOTHERMAL RESOURCES UNIT AGREEMENTS Application, Review, and Approval of a Unit Agreement § 3281... drilling temperature gradient wells. (d) BLM will not consider any work done prior to unit approval for the...
77 FR 57572 - Notice of Arrival on the Outer Continental Shelf
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
... program currently requires NOA information for those vessels, facilities, and Mobile Offshore Drilling... Lendvay, Commercial Vessel Compliance, Foreign and Offshore Vessel Compliance Division (CG-CVC-2), U.S... 2254), which required NOA information for those vessels, facilities and Mobile Drilling Units (MODUs...
Development of preliminary load and resistance factor design of drilled shafts in Iowa.
DOT National Transportation Integrated Search
2014-10-01
The Federal Highway Administration (FHWA) mandated utilizing the Load and Resistance Factor Design (LRFD) approach for all new : bridges initiated in the United States after October 1, 2007. To achieve part of this goal, a database for Drilled SHAft ...
A discontinuous melt sheet in the Manson impact structure
NASA Technical Reports Server (NTRS)
Izett, G. A.; Reynolds, R. L.; Rosenbaum, J. G.; Nishi, J. M.
1993-01-01
Petrologic studies of the core recovered from holes drilled in the Manson, Iowa, buried impact structure may unravel the thermal history of the crater-fill debris. We made a cursory examination of about 200 m of core recovered from the M-1 bore hole. The M-1 bore hole was the first of 12 holes drilled as part of a cooperative drilling program between the U.S. Geological Survey and the Iowa Geological Survey Bureau. The M-1 core hole is about 6 km northeast of the center of the impact structure, apparently on the flank of its central peak. We developed a working hypothesis that a 30-m-thick breccia unit within a 53-m-thick unit previously termed the 'crystalline clast breccia with glassy matrix' is part of a discontinuous melt sheet in the crater-fill impact debris. The 30-m-thick breccia unit reached temperatures sufficient to partially melt some small breccia clasts and convert the fine-grained breccia matrix into a silicate melt that cooled to a greenish-black, flinty, microcrystalline rock. The results of the investigation of this unit are presented.
The Final Phase of Drilling of the Hawaii Scientific Drilling Project
NASA Astrophysics Data System (ADS)
Stolper, E.; Depaolo, D.; Thomas, D.; Garcia, M.; Haskins, E.; Baker, M.
2008-12-01
The principal goal of the Hawaii Scientific Drilling Project (HSDP) was to core continuously deep into the flank of a Hawaiian volcano and to investigate the petrology, geochemisty, geochronology, magnetics, etc. of the recovered samples. Drilling in Hilo, on the island of Hawaii proceeded in three phases. A 1.06 km pilot hole was core-drilled in 1993; a second hole was core-drilled to 3,098 meters below sea level (mbsl) in 1999, then deepened in 2004-2007 to 3,509 mbsl. Although the final phase of drilling was at times technically challenging, core recovery was close to 100%. All rocks from the final phase of drilling were emplaced below sea level and are from the Mauna Kea volcano. On-site core logging identified 45 separate units (the 1999 phase of drilling yielded 345 units). Five lithologies were identified: pillows (~60%); pillow breccias (~10%); massive lavas (~12%); hyaloclastites (~17%); intrusives (~1%; these are mostly multiple thin (down to cm scale) fingers of magma with identical lithologies occurring over narrow depth intervals). The rocks are primarily tholeiitic, ranging from aphyric to highly olivine-phyric lavas (up to ~25% olivine phenocrysts), with considerable fresh glass and olivine; clays and zeolites are present throughout the core. Forty whole-rock samples were collected as a reference suite and sent to multiple investigators for study. Additionally, glass was collected at roughly 3 m intervals for electron microprobe analysis. Although continuous and consistent with the shallower rocks from the previous phase of coring, there are several noteworthy features of the deepest core: (1) Glasses from shallower portions of the core exhibited bimodal silica contents, a low SiO2 group (~48-50 wt.%) and a high SiO2 group (~50.5- 52 wt.%). Glasses from the last phase of drilling are essentially all in the high-silica group and are somewhat more evolved than the high-silica glasses from the shallower portion of the core (5.1-7.6 vs. 5.1-10.4 wt.% MgO). (2) The expected sequence of lithologies with depth in the core is subaerial lava flows, hyaloclastites (formed by debris flows carrying glass and lithic fragments from the shoreline down the submarine flanks of the volcano), and finally pillow lavas. This sequence was generally observed in the earlier phases of drilling, and it appeared that the deepest rocks from the 1999 phase of drilling were essentially all formed from pillow lavas (i.e., there were no more hyaloclastites). However, thick hyaloclastites reflecting long distance transport from the ancient shoreline reappear in the bottom ~100 m of the drill hole. Although it may be coincidence, pillow breccias occur in the shallower parts of the core from the final phase of drilling, but not in the deeper parts in which the hyaloclastites reappear. (3) Intrusive rocks make up a lower fraction (~1%) of samples from the final phase of coring than in the deeper parts of the section from the 1999 phase of drilling (3.8%). It had been suggested that intrusives might become more common the deeper the drilling, but this is not the case at depths down to 3.5 km. (4) There are three units classified as "massive" including one relatively thick (~40 m), featureless (no internal boundaries, no evidence of mixing or internal differentiation), moderately olivine-phyric basalt.
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or...
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or...
46 CFR 107.113 - Industrial personnel.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Industrial personnel. 107.113 Section 107.113 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND... required crew as set forth in the Certificate of Inspection, carried on board a mobile offshore drilling...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Sanitation. 109.203 Section 109.203 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.203 Sanitation. (a) The master or person in charge shall insure that the accommodation...
46 CFR 109.209 - Appliances for watertight integrity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Appliances for watertight integrity. 109.209 Section 109.209 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.209 Appliances for watertight integrity. (a) Before getting...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Sanitation. 109.203 Section 109.203 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.203 Sanitation. (a) The master or person in charge shall insure that the accommodation...
46 CFR 107.113 - Industrial personnel.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Industrial personnel. 107.113 Section 107.113 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND... required crew as set forth in the Certificate of Inspection, carried on board a mobile offshore drilling...
46 CFR 109.209 - Appliances for watertight integrity.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Appliances for watertight integrity. 109.209 Section 109.209 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.209 Appliances for watertight integrity. (a) Before getting...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Sanitation. 109.203 Section 109.203 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.203 Sanitation. (a) The master or person in charge shall insure that the accommodation...
46 CFR 109.209 - Appliances for watertight integrity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Appliances for watertight integrity. 109.209 Section 109.209 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.209 Appliances for watertight integrity. (a) Before getting...
46 CFR 109.209 - Appliances for watertight integrity.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Appliances for watertight integrity. 109.209 Section 109.209 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.209 Appliances for watertight integrity. (a) Before getting...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Sanitation. 109.203 Section 109.203 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.203 Sanitation. (a) The master or person in charge shall insure that the accommodation...
46 CFR 107.113 - Industrial personnel.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Industrial personnel. 107.113 Section 107.113 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND... required crew as set forth in the Certificate of Inspection, carried on board a mobile offshore drilling...
78 FR 58989 - Electrical Equipment in Hazardous Locations; Extension of Comment Period
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... to foreign Mobile Offshore Drilling Units (MODUs), floating facilities, and vessels that engage in... offshore supply vessels (OSVs). The proposed regulations would expand the list of national and... Purpose On September 6, 2013, we received a letter from the International Association of Drilling...
46 CFR 109.209 - Appliances for watertight integrity.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Appliances for watertight integrity. 109.209 Section 109.209 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.209 Appliances for watertight integrity. (a) Before getting...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Sanitation. 109.203 Section 109.203 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.203 Sanitation. (a) The master or person in charge shall insure that the accommodation...
46 CFR 109.223 - Fire fighting equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fire fighting equipment. 109.223 Section 109.223 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.223 Fire fighting equipment. The master or person in charge...
46 CFR 107.113 - Industrial personnel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Industrial personnel. 107.113 Section 107.113 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND... required crew as set forth in the Certificate of Inspection, carried on board a mobile offshore drilling...
46 CFR 109.223 - Fire fighting equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Fire fighting equipment. 109.223 Section 109.223 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.223 Fire fighting equipment. The master or person in charge...
46 CFR 109.223 - Fire fighting equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Fire fighting equipment. 109.223 Section 109.223 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.223 Fire fighting equipment. The master or person in charge...
46 CFR 107.113 - Industrial personnel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Industrial personnel. 107.113 Section 107.113 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND... required crew as set forth in the Certificate of Inspection, carried on board a mobile offshore drilling...
46 CFR 109.223 - Fire fighting equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Fire fighting equipment. 109.223 Section 109.223 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.223 Fire fighting equipment. The master or person in charge...
46 CFR 109.223 - Fire fighting equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Fire fighting equipment. 109.223 Section 109.223 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.223 Fire fighting equipment. The master or person in charge...
30 CFR 250.1604 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false General requirements. 250.1604 Section 250.1604 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR... stresses. (f) Traveling-block safety device. All drilling units being used for drilling, well-completion...
ERIC Educational Resources Information Center
Defense Language Inst., Washington, DC.
This 12-weeks course in basic Swahili comprises 55 lesson units in five volumes. The general course format consists of (1) perception drills for comprehension, oral production, and association using "situational picture" illustrations; (2) dialogs in English and Swahili, with cartoon guides; (3) sequenced pattern and recombination drills, and (4)…
Chemical stratigraphy of the Apollo 17 deep drill cores 70009-70007
NASA Technical Reports Server (NTRS)
Ehmann, W. D.; Ali, M. Z.
1977-01-01
A description is presented of an analysis of a total of 26 samples from three core segments (70009, 70008, 70007) of the Apollo 17 deep drill string. The deep drill string was taken about 700 m east of the Camelot Crater in the Taurus-Littrow region of the moon. Three core segments have been chemically characterized from the mainly coarse-grained upper portion of the deep drill string. The chemical data suggest that the entire 70007-70009 portion of the deep drill string examined was not deposited as a single unit, but was formed by several events sampling slightly different source materials which may have occurred over a relatively short period of time. According to the data from drill stem 70007, there were at least two phases of deposition. Core segment 70009 is probably derived from somewhat different source material than 70008. It seems to be a very well mixed material.
46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...
46 CFR 109.205 - Inspection of boilers and machinery.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Inspection of boilers and machinery. 109.205 Section 109.205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer...
46 CFR 109.205 - Inspection of boilers and machinery.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Inspection of boilers and machinery. 109.205 Section 109.205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer...
46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...
46 CFR 109.205 - Inspection of boilers and machinery.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Inspection of boilers and machinery. 109.205 Section 109.205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer...
46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...
46 CFR 109.205 - Inspection of boilers and machinery.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109.205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer...
46 CFR 109.205 - Inspection of boilers and machinery.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Inspection of boilers and machinery. 109.205 Section 109.205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer...
46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...
46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...
30 CFR 250.1615 - Securing of wells.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Securing of wells. 250.1615 Section 250.1615... of wells. A downhole-safety device such as a cement plug, bridge plug, or packer shall be timely... drilling crew, prevent station keeping, or require repairs to major drilling units or well-control...
30 CFR 250.1615 - Securing of wells.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Securing of wells. 250.1615 Section 250.1615... of wells. A downhole-safety device such as a cement plug, bridge plug, or packer shall be timely... drilling crew, prevent station keeping, or require repairs to major drilling units or well-control...
43 CFR 3137.71 - What must I do to meet continuing development obligations?
Code of Federal Regulations, 2011 CFR
2011-10-01
... following operations— (1) Drilling, testing, or completing additional wells to the primary target or other...; (3) Recompleting wells or other operations that establish new unit production; or (4) Drilling existing wells to a deeper target. (b) No later than 90 calendar days after meeting initial development...
43 CFR 3137.71 - What must I do to meet continuing development obligations?
Code of Federal Regulations, 2012 CFR
2012-10-01
... following operations— (1) Drilling, testing, or completing additional wells to the primary target or other...; (3) Recompleting wells or other operations that establish new unit production; or (4) Drilling existing wells to a deeper target. (b) No later than 90 calendar days after meeting initial development...
43 CFR 3137.71 - What must I do to meet continuing development obligations?
Code of Federal Regulations, 2014 CFR
2014-10-01
... following operations— (1) Drilling, testing, or completing additional wells to the primary target or other...; (3) Recompleting wells or other operations that establish new unit production; or (4) Drilling existing wells to a deeper target. (b) No later than 90 calendar days after meeting initial development...
43 CFR 3137.71 - What must I do to meet continuing development obligations?
Code of Federal Regulations, 2013 CFR
2013-10-01
... following operations— (1) Drilling, testing, or completing additional wells to the primary target or other...; (3) Recompleting wells or other operations that establish new unit production; or (4) Drilling existing wells to a deeper target. (b) No later than 90 calendar days after meeting initial development...
Discussion on the Modelling and Processing of Signals fom an Acousto-Optic Spectrum Analyzer.
1987-06-01
AD-AIBS 639 DISCUSSION ON THE MODELLING AND PROCESSIN OF SIGNALS 1/1 FOR RN ACOUSTO - OPTIC SPECTRUM ANALYZER(U)G DFENCE RESERCH ESTABGLISHMENT OTTANA...8217’~ AV - I National DefenseI Defence nationale DISCUSSION ON THE MODELLING AND PROCESSING OF SIGNALS FROM AN ACOUSTO - OPTIC SPECTRUM ANALYZER by Guy...signals generated by an Acousto - Optic Spectrum Analyzer (AOSA). It also shows how this calculation can be related to pulse modu- lated signals. In its
NASA Astrophysics Data System (ADS)
Glombitza, C.; Inagaki, F.; Lever, M. A.; Jørgensen, B. B.
2013-12-01
Integrated Ocean Drilling Program (IODP) Expedition 337 aboard the drilling vessel Chikyu in summer 2012 was the first IODP expedition to drill into a deeply buried hydrocarbon system by riser drilling and, in the process, extended the depth record of scientific ocean drilling to 2466 meters below seafloor (mbsf). A main scientific goal of Expedition 337 was to explore microbial communities associated with deeply buried coalbeds 2 km below the seafloor at Site C0020 off the Shimokita Peninsula of Japan, northwestern coast of the Pacific Ocean. Four lithological units were defined according to sedimentological observations (Inagaki et al. 2012). Temperature measurements during wireline logging revealed in-situ temperatures in the range habitable for life, with ~40-45°C in 2km-deep coalbeds and 60°C at the bottom of the hole. To determine potential sulfate reduction rates (pSRRs) throughout the lower half of the borehole (1200-2466 mbsf; Units II - IV), we prepared slurries from fresh core material in artificial seawater medium containing 1 mM of sulfate and incubated these onboard with 35S-labeled sulfate at approximate in-situ temperatures (i.e., 25, 35, and 45°C). A duplicate set of incubations was started from each sample, one with only N2 in the headspace, and one with N2 + CH4 in the headspace. We incubated samples with 3.7 MBq 35S for a period of 10 days to achieve a detection limit of ca. 10 fmol sulfate cm-3 d-1. pSRRs were close to the detection limit in Unit II and increased by two orders of magnitude up to 2 pmol cm-3 d-1 in the coal-bearing strata (Unit III), decreasing again below in Unit IV. Maximum rates in Unit III reached values similar to those determined during the Chikyu shakedown cruise at 350 mbsf at the same site in 2006. In contrast to the pSRRs determined previously, however, addition of methane did not stimulate pSRRs, suggesting that potential sulfate reduction was supported by electron donors other than methane. The increase of pSRR in the coal-bearing unit is in accordance with other indicators of increased microbial activity in this depth interval, such as high C1/C2 ratios with low 13C/12C isotope ratios of methane observed by real-time mud gas logging during riser drilling. Inagaki, F., K.-U. Hinrichs, Y. Kubo, and the Expedition 337 Scientists (2012), Deep coalbed biosphere off Shimokita: microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean, IODP Prel. Rept., 337, doi: 10.2204/iodp.pr.337.2012
46 CFR 131.585 - Periodic servicing of hydrostatic-release units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Periodic servicing of hydrostatic-release units. 131.585... OPERATIONS Tests, Drills, and Inspections § 131.585 Periodic servicing of hydrostatic-release units. (a) Except a disposable hydrostatic-release unit with an expiration date, each hydrostatic-release unit must...
Building Comprehensive Strategies for Obstetric Safety: Simulation Drills and Communication.
Austin, Naola; Goldhaber-Fiebert, Sara; Daniels, Kay; Arafeh, Julie; Grenon, Veronique; Welle, Dana; Lipman, Steven
2016-11-01
As pioneers in the field of patient safety, anesthesiologists are uniquely suited to help develop and implement safety strategies to minimize preventable harm on the labor and delivery unit. Most existing obstetric safety strategies are not comprehensive, lack input from anesthesiologists, are designed with a relatively narrow focus, or lack implementation details to allow customization for different units. This article attempts to address these gaps and build more comprehensive strategies by discussing the available evidence and multidisciplinary authors' local experience with obstetric simulation drills and optimization of team communication.
Digital Game-Based Learning: A Supplement for Medication Calculation Drills in Nurse Education
ERIC Educational Resources Information Center
Foss, Brynjar; Lokken, Atle; Leland, Arne; Stordalen, Jorn; Mordt, Petter; Oftedal, Bjorg F.
2014-01-01
Student nurses, globally, appear to struggle with medication calculations. In order to improve these skills among student nurses, the authors developed The Medication Game--an online computer game that aims to provide simple mathematical and medical calculation drills, and help students practise standard medical units and expressions. The aim of…
46 CFR 109.201 - Steering gear, whistles, general alarm, and means of communication.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Steering gear, whistles, general alarm, and means of communication. 109.201 Section 109.201 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.201 Steering gear...
46 CFR 109.211 - Testing of emergency lighting and power systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Testing of emergency lighting and power systems. 109.211 Section 109.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.211 Testing of emergency lighting and power...
46 CFR 109.211 - Testing of emergency lighting and power systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Testing of emergency lighting and power systems. 109.211 Section 109.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.211 Testing of emergency lighting and power...
46 CFR 109.201 - Steering gear, whistles, general alarm, and means of communication.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Steering gear, whistles, general alarm, and means of communication. 109.201 Section 109.201 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.201 Steering gear...
46 CFR 109.211 - Testing of emergency lighting and power systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Testing of emergency lighting and power systems. 109.211 Section 109.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.211 Testing of emergency lighting and power...
46 CFR 109.211 - Testing of emergency lighting and power systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Testing of emergency lighting and power systems. 109.211 Section 109.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.211 Testing of emergency lighting and power...
46 CFR 109.201 - Steering gear, whistles, general alarm, and means of communication.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Steering gear, whistles, general alarm, and means of communication. 109.201 Section 109.201 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.201 Steering gear...
46 CFR 109.211 - Testing of emergency lighting and power systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Testing of emergency lighting and power systems. 109.211 Section 109.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.211 Testing of emergency lighting and power...
46 CFR 109.201 - Steering gear, whistles, general alarm, and means of communication.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Steering gear, whistles, general alarm, and means of communication. 109.201 Section 109.201 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.201 Steering gear...
46 CFR 109.201 - Steering gear, whistles, general alarm, and means of communication.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Steering gear, whistles, general alarm, and means of communication. 109.201 Section 109.201 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.201 Steering gear...
33 CFR 96.340 - Safety Management Certificate: what is it and when is it needed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... if it is a tanker, bulk freight vessel, freight vessel, or a self-propelled mobile offshore drilling... vessel, or a self-propelled mobile offshore drilling unit of 500 gross tons or more, when engaged on... audit; (2) A satisfactory intermediate verification audit requested by the vessel's responsible person...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Bruce A.; Bjornstad, Bruce N.; Lanigan, David C.
2006-03-29
This report supplies the information obtained during drilling, characterization, and installation of the new groundwater monitoring well. This document also provides a compilation of hydrogeologic and well construction information obtained during drilling, well development, and sample collection/analysis activities.
30 CFR 250.1615 - Securing of wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Securing of wells. 250.1615 Section 250.1615... § 250.1615 Securing of wells. A downhole-safety device such as a cement plug, bridge plug, or packer... evacuation of the drilling crew, prevent station keeping, or require repairs to major drilling units or well...
30 CFR 250.203 - Where can wells be located under an EP, DPP, or DOCD?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL... that can be economically drilled for proper reservoir management; (e) Location of drilling units and platforms; (f) Extent and thickness of the reservoir; (g) Geologic and other reservoir characteristics; (h...
Geothermal Technologies | NREL
clean, renewable, domestic power source for the United States. Photo of a geothermal power plant in a technical barriers. GeoVision Study Photo of large gears on a drilling apparatus Technology Innovation We're of a woman in a hard hat with a large, drilling apparatus behind her in a grassy field Partnerships
43 CFR 3286.1 - Model Unit Agreement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... continue such drilling diligently until the ___ formation has been tested or until at a lesser depth... Operator shall not in any event be required to drill said well to a depth in excess of ___ feet. 11.5The... assert any legal or constitutional right or defense pertaining to the validity or invalidity of any law...
Bleiwas, Donald I.; Miller, M. Michael
2015-01-01
Domestic barite production was about 670,000 metric tons (t) in 2012, equivalent to about 20 percent of the domestic drilling industry’s barite demand. Mine production for the United States in 2012 was about one-third of what was produced in 1980. In 2012, barite imported from China was approximately 2.2 million t and comprised about 77 percent of total barite imports and about 70 percent of the barite used in domestic drilling. Barite from India (14 percent), Morocco (6 percent) and Mexico (2 percent) comprised the bulk of the remaining total import balance; drilling applications consumed nearly all barite imported from these three countries.
Stamm, Robert G.
2018-06-08
BackgroundIn the fall of 2011, the U.S. Geological Survey (USGS) was afforded an opportunity to participate in an environmental monitoring study of the potential impacts of a deep, unconventional Marcellus Shale hydraulic fracturing site. The drill site of the prospective case study is the “Range Resources MCC Partners L.P. Units 1-5H” location (also referred to as the “RR–MCC” drill site), located in Washington County, southwestern Pennsylvania. Specifically, the USGS was approached to provide a geologic framework that would (1) provide geologic parameters for the proposed area of a localized groundwater circulation model, and (2) provide potential information for the siting of both shallow and deep groundwater monitoring wells located near the drill pad and the deviated drill legs.The lead organization of the prospective case study of the RR–MCC drill site was the Groundwater and Ecosystems Restoration Division (GWERD) of the U.S. Environmental Protection Agency. Aside from the USGS, additional partners/participants were to include the Department of Energy, the Pennsylvania Geological Survey, the Pennsylvania Department of Environmental Protection, and the developer Range Resources LLC. During the initial cooperative phase, GWERD, with input from the participating agencies, drafted a Quality Assurance Project Plan (QAPP) that proposed much of the objectives, tasks, sampling and analytical procedures, and documentation of results.Later in 2012, the proposed cooperative agreement between the aforementioned partners and the associated land owners for a monitoring program at the drill site was not executed. Therefore, the prospective case study of the RR–MCC site was terminated and no installation of groundwater monitoring wells nor the collection of nearby soil, stream sediment, and surface-water samples were made.Prior to the completion of the QAPP and termination of the perspective case study the geologic framework was rapidly conducted and nearly completed. This was done for three principal reasons. First, there was an immediate need to know the distribution of the relatively undisturbed surface to near-surface bedrock geology and unconsolidated materials for the collection of baseline surface data prior to drill site development (drill pad access road, drill pad leveling) and later during monitoring associated with well drilling, well development, and well production. Second, it was necessary to know the bedrock geology to support the siting of: (1) multiple shallow groundwater monitoring wells (possibly as many as four) surrounding and located immediately adjacent to the drill pad, and (2) deep groundwater monitoring wells (possibly two) located at distance from the drill pad with one possibly being sited along one of the deviated production drill legs. Lastly, the framework geology would provide the lateral extent, thickness, lithology, and expected discontinuities of geologic units (to be parsed or grouped as hydrostratigraphic units) and regional structure trends as inputs into the groundwater model.This report provides the methodology of geologic data accumulation and aggregation, and its integration into a geographic information system (GIS) based program. The GIS program will allow multiple data to be exported in various formats (shapefiles [.shp], database files [.dbf], and Keyhole Markup Language files [.KML]) for use in surface and subsurface geologic site characterization, for sampling strategies, and for inputs for groundwater modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokos, J.A.
1996-12-31
A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.« less
Completion Report for Well ER-2-2 Corrective Action Unit 97: Yucca Flat/Climax Mine, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, Jeffrey
Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was notmore » completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted—principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at 551.69 m (1,810.01 ft) bgs. As expected, field measurements for tritium were above the Safe Drinking Water Act limit (20,000 picocuries per liter) for a portion of the Tertiary volcanic section near the water table. Tritium concentrations were at or near the field detection limit in the Lower carbonate aquifer (LCA) while drilling. During drilling, a sample was collected while circulating in the LCA. The sample was submitted for off-site laboratory analysis. The sample results indicated low but measurable tritium concentrations. All Fluid Management Plan requirements were met during drilling activities.« less
Exploration geothermal gradient drilling, Platanares, Honduras, Central America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.
1988-01-01
This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coringmore » operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... Offshore Drilling Units). OMB Control Number: 1014-0013. Abstract: The Outer Continental Shelf (OCS) Lands.... The subject of this ICR is an NTL, GPS (Global Positioning System) for MODUs (Mobile Offshore Drilling... Operators (NTL)--Gulf of Mexico OCS Region--GPS (Global Positioning System) for MODUs (Mobile Offshore...
Challenges in Leadership: A Text for U.S. Marine Corps Junior ROTC.
ERIC Educational Resources Information Center
Marine Corps Development and Education Command, Quantico, VA.
The textbook is addressed to seniors in high school Marine Corps Junior Reserve Officer Training Corps (JROTC) programs and deals with leaders and the various situations in which they may function. The first part explains the history of military drill and aspects of modern drill as practiced by military units today. The section on leadership…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
..., as amended (``the Act'').\\1\\ \\1\\ Due to the extended closure of the Government between February 5 and... Government Closure During the Recent Snowstorm, available at http://ia.ita.doc.gov/download/administrative... Conversion, Inc., Rotary Drilling Tools, TMK IPSCO, and the United Steel, Paper and Forestry, Rubber...
Machine Shop. Module 3: Bench Work and Material Science. Instructor's Guide.
ERIC Educational Resources Information Center
Walden, Charles H.; Nobles, Jack
This document consists of materials for an 11-unit course on the following topics: (1) hacksawing; (2) filing and deburring; (3) locating centers for drilling; (4) cutting threads with tap and die; (5) using a hand reamer; (6) pedestal/bench grinder operation; (7) whetting, polishing, and lapping; (8) screw, drill, and tap extraction; (9) arbor…
NASA Astrophysics Data System (ADS)
Van Baak, Christiaan; Vasiliev, Iuliana; Palcu, Dan; Dekkers, Mark; Krijgsman, Wout
2016-05-01
Throughout the Late Neogene, the Black Sea experienced large paleoenvironmental changes, switching between (anoxic) marine conditions when connected to the Mediterranean Sea and (oxic) freshwater conditions at times of isolation. We create a magnetostratigraphic time frame for three sites drilled during Deep Sea Drilling Project (DSDP) Leg 42B to the Black Sea (drilled in 1975). At the time, magnetostratigraphic dating was impossible because of the presence of the little understood iron sulfide mineral greigite (in sediments a precursor to pyrite) as magnetic carrier. Our rock-magnetic results indicate that only anoxic conditions result in poor magnetic signal, likely as a result of pyrite formation in the water column rather than in the sediment. The magnetostratigraphic results indicate that Hole 379A, drilled in the basin center, has a continuous sedimentary record dating back to 1.3 Ma. Hole 380/380A is subdivided into three consistent intervals, 0-700 mbsf, 700-860 mbsf and 860-1075 mbsf. The top unit covers the Pleistocene but the magnetostratigraphy is likely compromised by the presence of mass transport deposits. The middle unit spans between 4.3 and 6.1 Ma and records continuous deposition at ~10 cm/kyr. The lower unit lacks the independent age constraints to correlate the obtained magnetostratigraphy. Hole 381 is drilled on the Bosporus slope and as a result, hiatuses are common. A correlation to the nearby Hole 380/380A is proposed, but indicates deposits cannot straightforwardly be traced across the slope. Our improved age model does not support the original interpretation based on these cores of a desiccation of the Black Sea during the Messinian salinity crisis.
Flexible roof drill for low coal. Volume 2. Phase III and Phase IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, N.H.
1977-09-01
Design specifications were developed for a flexible drilling and bolting system. The system configuration is based on the use of the Galis dual-boom roof drill as a vehicle for the drilling/bolting system. The WSU Flex-drill drivehead is mounted on the Galis drill boom and the Galis parts are modified to accommodate the revised system. The flexible drillhead supports a bolt bender/inserter designed by Bendix Corporation and is integrated into the system operation. A supplemental bolt thruster was designed to complete insertion of the roof bolt following operation and removal of the Bendix bender from the bolt shank. The complete cyclemore » of drilling a 1-3/8-in. diameter bolt hole, bending a roof bolt into the hole, thrusting the bolt head and washer to the roof surface, and final torquing of the bolt is manually controlled by the operator located in the new position behind the bolting line. The new operating position is beneath newly bolted roof in a safer location in back of the stab jack ad roof jacks positioning the drill boom and drivehead. The Flex-drill/bolting system prototype was constructed from both purchased components and parts specially fabricated in the shops for this design. This unit was assembled and test-operated with appropriate support equipment in a laboratory test stand. Numerous test holes were drilled in blocks of concrete at feed rates of 5 ft/min with drill rotation speeds of 360 rpm. The drill feeds uniformly and cuts smoothly with no difficulty in collection of dust or clogging of the drill bit. The holes drilled were straight, as evidence by passage of a 1-1/4-in. diameter bar full depth into the hole with no binding or evidence of curvature. The flexible drill is capable of drilling 8-ft-deep roof bolt holes in low coal 36 in. in height.« less
PDC bit hydraulics design, profile are key to reducing balling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hariharan, P.R.; Azar, J.J.
1996-12-09
Polycrystalline diamond compact (PDC) bits with a parabolic profile and bladed hydraulic design have a lesser tendency to ball during drilling of reactive shales. PDC bits with ribbed or open-face hydraulic designs and those with flat or rounded profiles tended to ball more often in the bit balling experiments conducted. Experimental work also indicates that PDC hydraulic design seems to have a greater influence on bit balling tendency compared to bit profile design. There are five main factors that affect bit balling: formation type, drilling fluid, drilling hydraulics, bit design, and confining pressures. An equation for specific energy showed thatmore » it could be used to describe the efficiency of the drilling process by examining the amount of energy spent in drilling a unit volume of rock. This concept of specific energy has been used herein to correlate with the parameter Rd, a parameter to quantify the degree of balling.« less
40Ar/39Ar dating and zircon chronochemistry for the Izu-Bonin rear arc, IODP site U1437
NASA Astrophysics Data System (ADS)
Schmitt, A. K.; Konrad, K.; Andrews, G. D.; Horie, K.; Brown, S. R.; Koppers, A. A. P.; Busby, C.; Tamura, Y.
2016-12-01
The scientific objective of IODP Expedition 350 drilling at Site U1437 (31°47.390'N, 139°01.580'E) was to reveal the "missing half of the subduction factory": the rear arc of a long-lived intraoceanic subduction zone. Site U1437 lies in a 50 km long and 20 km wide volcano-bounded basin, 90 km west of the Izu arc front, and is the only IODP site drilled in the rear arc. The Izu rear arc is dominated by Miocene basaltic to dacitic seamount chains, which strike at a high angle to the arc front. Radiometric dating targeted a single igneous unit (1390 mbsf), and fine to coarse volcaniclastic units for which we present zircon and 40Ar/39Ar (hornblende, plagioclase, and groundmass) age determinations. All zircons analyzed as grain separates were screened for contamination from drill-mud (Andrews et al., 2016) by analyzing trace elements and, where material was available, O and Hf isotope compositions. Igneous Unit 1 is a rhyolite sheet and yielded concordant in-situ and crystal separate U-Pb zircon ages (13.7±0.3 Ma; MSWD = 1.3; n = 40 spots), whereas the 40Ar/39Ar hornblende plateau age (12.9±0.3; MSWD = 1.1; n = 9 steps) is slightly younger, possibly reflecting pre-eruptive zircon crystallization, or alteration of hornblende. U-Pb zircon and 40Ar/39Ar plateau ages from samples above igneous Unit 1 are concordant with biostratigraphic and paleomagnetic ages (available to 1300 mbsf), but plagioclase and groundmass samples below 1300 m become younger with depth, hinting at post-depositional alteration. A single zircon from 1600 mbsf yielded a U-Pb age of 15.4±1.8 Ma; its trace element composition resembles other igneous zircons from U1437, and is tentatively interpreted as a Middle Miocene age for the lowermost lithostratigraphic unit VII. Oxygen and Hf isotopic values of igneous zircon indicate mantle origins, with some influence of assimilation of hydrothermally altered oceanic crust evident in sub-mantle oxygen isotopic compositions. Lessons from site U1437 are that integrated chronochemistry is essential for achieving accurate age models in oceanic drilling. Reference: Andrews, G. D., Schmitt, A. K., Busby, C. J., Brown, S. R., Blum, P., & Harvey, J. (2016). Age and compositional data of zircon from sepiolite drilling mud to identify contamination of ocean drilling samples. G3. doi: 10.1002/2016GC006397.
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Flooding on self-elevating and surface type units. 174... Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or... superstructure deck where superstructures are fitted must be assumed to be subject to simultaneous flooding. (b...
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Flooding on self-elevating and surface type units. 174... Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or... superstructure deck where superstructures are fitted must be assumed to be subject to simultaneous flooding. (b...
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Flooding on self-elevating and surface type units. 174... Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or... superstructure deck where superstructures are fitted must be assumed to be subject to simultaneous flooding. (b...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Special examination in lieu of drydocking for column stabilized units or surface type units when specifically approved by the Commandant. 107.265 Section 107.265 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Special examination in lieu of drydocking for column stabilized units or surface type units when specifically approved by the Commandant. 107.265 Section 107.265 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Special examination in lieu of drydocking for column stabilized units or surface type units when specifically approved by the Commandant. 107.265 Section 107.265 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Special examination in lieu of drydocking for column stabilized units or surface type units when specifically approved by the Commandant. 107.265 Section 107.265 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Special examination in lieu of drydocking for column stabilized units or surface type units when specifically approved by the Commandant. 107.265 Section 107.265 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS...
NASA Astrophysics Data System (ADS)
Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe
2014-05-01
Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the cores were scanned for compositional variations using an XRF core scanner at the BGR lab and scan images of the slabbed surfaces were performed. The average core recovery rate was very high at nearly 100%. Altogether, we gained 533 m of excellent core material including sandstones, siltstones and claystones, carbonates, sulfates and chlorides. This provides valuable insight into the stratigraphic column of the Thuringian Syncline.
NASA Technical Reports Server (NTRS)
Dressler, Burkhard O.; Sharpton, Virgil L.; Schwandt, Craig S.; Ames, Doreen
2004-01-01
The impact breccias encountered in drill hole Yaxcopoil-1 (Yax-1) in the Chicxulub impact structure have been subdivided into six units. The two uppermost units are redeposited suevite and suevite, and together are only 28 m thick. The two units below are interpreted as a ground surge deposit similar to a pyroclastic flow in a volcanic regime with a fine-grained top (unit 3; 23 m thick; nuee ardente) and a coarse breccia (unit 4; approx.15 m thick) below. As such, they consist of a melange of clastic matrix breccia and melt breccia. The pyroclastic ground surge deposit and the two units 5 and 6 below are related to the ejecta curtain. Unit 5 (approx.24 m thick) is a silicate impact melt breccia, whereas unit 6 (10 m thick) is largely a carbonate melt breccia with some clastic-matrix components. Unit 5 and 6 reflect an overturning of the target stratigraphy. The suevites of units 1 and 2 were deposited after emplacement of the ejecta curtain debris. Reaction of the super-heated breccias with seawater led to explosive activity similar to phreomagmatic steam explosion in volcanic regimes. This activity caused further brecciation of melt and melt fragments. The fallback suevite deposit of units 1 and 2 is much thinner than suevite deposits at larger distances from the center of the impact structure than the 60 km of the Yax-1 drill site. This is evidence that the fallback suevite deposit (units 1 and 2) originally was much thicker. Unit 1 exhibits sedimentological features suggestive of suevite redeposition. Erosion possibly has occurred right after the IUT impact due to seawater backsurge, but erosion processes spanning thousands of years may also have been active. Therefore, the top of the 100 m thick impactite sequence at Yaxcopoil, in our opinion, is not the K/T boundary.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the transportation method and quantities of drilling fluids and chemical products (see § 250.213(b... description of the composition, quantities, and destination(s) of solid and liquid wastes (see § 250.217(a)) you will transport from your drilling unit. (e) Vicinity map. A map showing the location of your...
46 CFR 108.103 - Equipment not required on a unit.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Equipment not required on a unit. 108.103 Section 108.103 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT General § 108.103 Equipment not required on a unit. Each item of lifesaving and...
46 CFR 108.103 - Equipment not required on a unit.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Equipment not required on a unit. 108.103 Section 108.103 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT General § 108.103 Equipment not required on a unit. Each item of lifesaving and...
46 CFR 108.515 - Requirements for units built before October 1, 1996.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Requirements for units built before October 1, 1996. 108.515 Section 108.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.515 Requirements for units built...
46 CFR 108.515 - Requirements for units built before October 1, 1996.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Requirements for units built before October 1, 1996. 108.515 Section 108.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.515 Requirements for units built...
46 CFR 108.515 - Requirements for units built before October 1, 1996.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Requirements for units built before October 1, 1996. 108.515 Section 108.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.515 Requirements for units built...
46 CFR 108.515 - Requirements for units built before October 1, 1996.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Requirements for units built before October 1, 1996. 108.515 Section 108.515 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.515 Requirements for units built...
46 CFR 108.103 - Equipment not required on a unit.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Equipment not required on a unit. 108.103 Section 108.103 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT General § 108.103 Equipment not required on a unit. Each item of lifesaving and...
46 CFR 108.103 - Equipment not required on a unit.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Equipment not required on a unit. 108.103 Section 108.103 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT General § 108.103 Equipment not required on a unit. Each item of lifesaving and...
46 CFR 108.103 - Equipment not required on a unit.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Equipment not required on a unit. 108.103 Section 108.103 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT General § 108.103 Equipment not required on a unit. Each item of lifesaving and...
Feasibility study of a hand guided robotic drill for cochleostomy.
Brett, Peter; Du, Xinli; Zoka-Assadi, Masoud; Coulson, Chris; Reid, Andrew; Proops, David
2014-01-01
The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.
Probability of Intercept in Electronic Countermeasures Receivers
1975-12-01
modulating signals A and B are input to the WT helix caus.ing a single frequency on the helix of TWT #1 to produce phase modu- lation of frequency A...and harmonics of A in TWT #1. A single frequency on the helix of TVT 42 produces phase modulation of frequency B and harmonics of B in TWT #2. The high...with YIG Pres’Žlector 34 9 Superheterodyne Receiver YIG z iter TWT 36 10 Wideband crystal video receiver 38 11 Tangential Sensitivity 40 12 Sensitivity
TI-59 Programs for Multiple Regression.
1980-05-01
general linear hypothesis model of full rank [ Graybill , 19611 can be written as Y = x 8 + C , s-N(O,o 2I) nxl nxk kxl nxl where Y is the vector of n...a "reduced model " solution, and confidence intervals for linear functions of the coefficients can be obtained using (x’x) and a2, based on the t...O107)l UA.LLL. Library ModuIe NASTER -Puter 0NTINA Cards 1 PROGRAM DESCRIPTION (s s 2 ror the general linear hypothesis model Y - XO + C’ calculates
NASA Astrophysics Data System (ADS)
Urrutia-Fucugauchi, J.; Marin, L.; Trejo-Garcia, A.
As part of the UNAM drilling program at the Chicxulub structure, two 700 m deep continuously cored boreholes were completed between April and July, 1995. The Peto UNAM-6 and Tekax UNAM-7 drilling sites are ˜150 km and 125 km, respectively, SSE of Chicxulub Puerto, near the crater's center. Core samples from both sites show a sequence of post-crater carbonates on top of a thick impact breccia pile covering the disturbed Mesozoic platform rocks. At UNAM-7, two impact breccia units were encountered: (1) an upper breccia, mean magnetic susceptibility is high (˜55 × 10-6 SI units), indicating a large component of silicate basement has been incorporated into this breccia, and (2) an evaporite-rich, low susceptibility impact breccia similar in character to the evaporite-rich breccias observed at the PEMEX drill sites further out. The upper breccia was encountered at ˜226 m below the surface and is ˜125 m thick; the lower breccia is immediately subjacent and is >240 m thick. This two-breccia sequence is typical of the suevite-Bunte breccia sequence found within other well preserved impact craters. The suevitic upper unit is not present at UNAM-6. Instead, a >240 m thick evaporite-rich breccia unit, similar to the lower breccia at UNAM-7, was encountered at a depth of ˜280 m. The absence of an upper breccia equivalent at UNAM-6 suggests some portion of the breccia sequence has been removed by erosion. This is consistent with interpretations that place the high-standing crater rim at 130-150 km from the center. Consequently, the stratigraphic observations and magnetic susceptibiity records on the upper and lower breccias (depth and thickness) support a ˜300 km diameter crater model.
NASA Astrophysics Data System (ADS)
Lépine, Isabelle; Farrow, Darrell
2018-04-01
The Renard 2 kimberlite pipe is one of nine diamondiferous kimberlite pipes that form a cluster in the south-eastern portion of the Superior Province, Québec, Canada and is presently being extracted at the Renard Mine. It is interpreted as a diatreme-zone kimberlite consisting of two Kimberley-type pyroclastic units and related country rock breccias, all cross-cut by coherent kimberlite dykes and irregular intrusives. Renard 2 has been the subject of numerous diamond drilling campaigns since its discovery in 2001. The first two geological models modelled kimberlite and country rock breccia units separately. A change in modelling philosophy in 2009, which incorporated the emplacement envelope and history, modelled the entire intrusive event and projected the pipe shape to depth allowing for more targeted deep drilling where kimberlite had not yet been discovered. This targeted 2009 drilling resulted in a > 400% increase in the volume of the Indicated Resource. Modelling only the kimberlite units resulted in a significant underestimation of the pipe shape. Current open pit and underground mapping of the pipe shape corresponds well to the final 2015 geological model and contact changes observed are within the expected level of confidence for an Indicated Resource. This study demonstrates that a sound understanding of the geological emplacement is key to developing a reliable 3D geological and resource model that can be used for targeted delineation drilling, feasibility studies and during the initial stages of mining.
Luebke, N H; Brantley, W A; Sabri, Z I; Luebke, F L; Lausten, L L
1995-05-01
A laboratory study was performed on machine-driven Canal Master drills to determine their physical dimensions, torsional performance, bending properties, and metallurgical characteristics in fracture. Physical dimensions were determined for each of the available sizes (#50 to #100) of Canal Master drills from the manufacturer that distributes these instruments in the United States. Samples were also tested in clockwise torsion using a Maillefer memocouple. Bending properties of cantilever specimens were measured with a Tinius Olsen stiffness tester. Bending fatigue testing was performed on a unique laboratory apparatus. Scanning electron microscope examination confirmed visual observations that the stainless steel Canal Master drills exhibited ductile torsional fracture. This study is part of a continuing investigation to establish standards for all machine-driven rotary endodontic instruments.
Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamrick, Todd
2011-01-01
Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to computemore » the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.« less
1983-12-01
clarifiers, activated sludge units, trickling filters, aerobic and anaerobic digesters, and various dowatering devices and recommendations for...for locations of water- bearing fractures. Additional responsibilities included drilling with mud and air rotary drilling rigs as well as bucket auger...interpretation. Also conducted earth resistivity surveys in Georgia and Alabama Piedmont Provinces for locations of water- bearing fractures. Additional
The remarkable chemical uniformity of Apollo 16 layered deep drill core section 60002
NASA Technical Reports Server (NTRS)
Nava, D. F.; Philpotts, J. A.; Lindstrom, M. M.; Schuhmann, P. J.; Lindstrom, D. J.
1976-01-01
Atomic absorption and colorimetric spectrophotometers were used to determine major- and minor-element abundances in 12 samples from layered section 60002 of the Apollo 16 deep drill core. It is suggested that gardening of a relatively thick local unit produced the layering in this section in such a manner that the proportions of materials of different compositions remained virtually unchanged.
30 CFR 250.1301 - What are the requirements for unitization?
Code of Federal Regulations, 2010 CFR
2010-07-01
... delineated and productive reservoir if unitized operations are necessary to: (1) Prevent waste; (2) Conserve... more reservoirs and the initiation of actual development drilling or production operations and that... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Unitization § 250.1301 What are...
Lajolo, Carlo; Valente, Nicola Alberto; Romandini, William Giuseppe; Petruzzi, Massimo; Verdugo, Fernando; D'Addona, Antonio
2018-03-09
The apical portion of the implant osteotomy receives less irrigation and cooling during surgical preparation. High bone temperatures, above the critical 10°C threshold, may impair osseointegration, particularly, around dense cortical bone. The aim of this study is to evaluate the apical cortical plate temperature increase with two different devices and pressure loads in a porcine rib ex-vivo model. Twenty-four implant sites were prepared on porcine ribs divided into 4 groups of 6 samples each according to the device used (conventional drill system or piezosurgery) and pressure load applied (1000 g or 1500 g). A rubber dam was used to isolate the apical cortical plate from the cooling effect of irrigation. Temperature variation measurements were taken using an infrared thermometer. The piezosurgery unit was 2 times more likely to increase the osteotomy temperature by 10.0°C (OR = 2; 95% CI = 1.136-3.522; p < 0.05). The average temperature increase was 0.07°C (SD = 0.10) for group 1 (drill system-1,000 g), 0.22°C (SD = 0.26) for group 2 (drill system-1,500 g), 9.18°C (SD = 4.51) for group 3 (piezosurgery-1000 g) and 8.17°C (SD = 6.12) for group 4 (piezosurgery-1,500 g). The piezosurgery site preparation caused significantly higher temperature increase than conventional drills (p < 0.05). There was no statistically significant difference in temperature change between the two pressure loads applied (p = 0.78). Temperature increases exceeded the critical 10°C threshold in half of the samples prepared with the piezoelectric device. Bone overheating using a piezosurgery unit is a potential risk during implant site preparation. The piezosurgical device reached significantly higher temperatures than conventional drilling at the apical cortical portion of the osteotomy. The temperature increase is often higher than the critical 10°C threshold. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
...The Coast Guard proposes to revise regulations related to the design, certification, inspection, and testing of cranes. These regulations apply to cranes installed on Mobile Offshore Drilling Units (MODUs), Offshore Supply Vessels (OSVs), and floating Outer Continental Shelf (OCS) facilities. This revision would update industry standards incorporated by reference with more recent versions, which are used by industry and incorporated in Bureau of Safety and Environmental Enforcement regulations. Additionally, the Coast Guard proposes to revise regulations regarding certification, inspection, and testing of cranes by allowing use of additional organizations to act in lieu of Coast Guard marine inspectors.
Unsupervised learning on scientific ocean drilling datasets from the South China Sea
NASA Astrophysics Data System (ADS)
Tse, Kevin C.; Chiu, Hon-Chim; Tsang, Man-Yin; Li, Yiliang; Lam, Edmund Y.
2018-06-01
Unsupervised learning methods were applied to explore data patterns in multivariate geophysical datasets collected from ocean floor sediment core samples coming from scientific ocean drilling in the South China Sea. Compared to studies on similar datasets, but using supervised learning methods which are designed to make predictions based on sample training data, unsupervised learning methods require no a priori information and focus only on the input data. In this study, popular unsupervised learning methods including K-means, self-organizing maps, hierarchical clustering and random forest were coupled with different distance metrics to form exploratory data clusters. The resulting data clusters were externally validated with lithologic units and geologic time scales assigned to the datasets by conventional methods. Compact and connected data clusters displayed varying degrees of correspondence with existing classification by lithologic units and geologic time scales. K-means and self-organizing maps were observed to perform better with lithologic units while random forest corresponded best with geologic time scales. This study sets a pioneering example of how unsupervised machine learning methods can be used as an automatic processing tool for the increasingly high volume of scientific ocean drilling data.
Laser Materials Processing Final Report CRADA No. TC-1526-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crane, J.; Lehane, C. J.
2017-09-08
This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to bemore » developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.« less
Description and results of test-drilling program at Picatinny Arsenal, New Jersey, 1982-84
Harte, P.T.; Sargent, B.P.; Vowinkel, E.F.
1986-01-01
Picatinny Arsenal, located in north-central New Jersey, has a long history of explosives manufacturing. Past industrial activities and past waste-disposal practices have caused some groundwater contamination problems. In 1982, the U.S. Geological Survey, in cooperation with the U.S. Army, began a water resources investigation of the Arsenal. The test drilling program is designed to define the hydrogeology and install observation wells. Twenty-two boreholes were drilled and 21 observation wells installed in these holes. All drilling was done in a glaciated valley. The report includes lithologic and gamma-ray logs, results of grain-size analyses, well-construction data, and some groundwater levels. The generalized stratigraphic sequence of geologic units penetrated from the test-drilling program are from lower to upper: (1) pre-dominantly dolomitic Leithsville Formation, (2) in the upper part of bedrock, a weathered dolomite zone, (3) a thin discontinuous mantle of till, and (4) stratified drift deposit up to 208 ft thick. (USGS)
Comet sample acquisition for ROSETTA lander mission
NASA Astrophysics Data System (ADS)
Marchesi, M.; Campaci, R.; Magnani, P.; Mugnuolo, R.; Nista, A.; Olivier, A.; Re, E.
2001-09-01
ROSETTA/Lander is being developed with a combined effort of European countries, coordinated by German institutes. The commitment for such a challenging probe will provide a unique opportunity for in-situ analysis of a comet nucleus. The payload for coring, sampling and investigations of comet materials is called SD2 (Sampling Drilling and Distribution). The paper presents the drill/sampler tool and the sample transfer trough modeling, design and testing phases. Expected drilling parameters are then compared with experimental data; limited torque consumption and axial thrust on the tool constraint the operation and determine the success of tests. Qualification campaign involved the structural part and related vibration test, the auger/bit parts and drilling test, and the coring mechanism with related sampling test. Mechanical check of specimen volume is also reported, with emphasis on the measurement procedure and on the mechanical unit. The drill tool and all parts of the transfer chain were tested in the hypothetical comet environment, charcterized by frozen material at extreme low temperature and high vacuum (-160°C, 10-3 Pa).
43 CFR 3284.2 - What are the principal operational responsibilities of the unit operator?
Code of Federal Regulations, 2011 CFR
2011-10-01
... is authorized to conduct: (1) Any phase of drilling authorized under subpart 3260 of this chapter... resource produced from the unit. (b) Providing written notification to BLM within 30 days after any changes...
Communications systems and methods for subsea processors
Gutierrez, Jose; Pereira, Luis
2016-04-26
A subsea processor may be located near the seabed of a drilling site and used to coordinate operations of underwater drilling components. The subsea processor may be enclosed in a single interchangeable unit that fits a receptor on an underwater drilling component, such as a blow-out preventer (BOP). The subsea processor may issue commands to control the BOP and receive measurements from sensors located throughout the BOP. A shared communications bus may interconnect the subsea processor and underwater components and the subsea processor and a surface or onshore network. The shared communications bus may be operated according to a time division multiple access (TDMA) scheme.
Spengler, Richard W.; Muller, D.C.; Livermore, R.B.
1979-01-01
A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five fault zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members, restricted log coverage to the lower half of the drill hole.
46 CFR 107.267 - Special examination in lieu of drydocking for self-elevating units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Special examination in lieu of drydocking for self-elevating units. 107.267 Section 107.267 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.267...
46 CFR 107.267 - Special examination in lieu of drydocking for self-elevating units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Special examination in lieu of drydocking for self-elevating units. 107.267 Section 107.267 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.267...
46 CFR 107.267 - Special examination in lieu of drydocking for self-elevating units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Special examination in lieu of drydocking for self-elevating units. 107.267 Section 107.267 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.267...
46 CFR 107.267 - Special examination in lieu of drydocking for self-elevating units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Special examination in lieu of drydocking for self-elevating units. 107.267 Section 107.267 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.267...
46 CFR 107.267 - Special examination in lieu of drydocking for self-elevating units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Special examination in lieu of drydocking for self-elevating units. 107.267 Section 107.267 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.267...
Cambodian Basic Course; Volume Two, Units 46-90.
ERIC Educational Resources Information Center
Suos, Someth; And Others
Volume Two of this course is comprised of units 46-90 and a Cambodian-to-English Glossary for both Volume One and Volume Two. The units are made up of dialogs, narrations, and various kinds of pattern drills. All Cambodian material is written in Cambodian script. The Glossary gives both a short English equivalent and a unit number reference for…
Completion Report for Well ER-3-3 Corrective Action Unit 97: Yucca Flat/Climax Mine, Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, Jeffrey; Rehfeldt, Ken
Well ER-3-3 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled and completed from February 21 to March 15, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Yucca Flat/Climax Mine Corrective Action Unit (CAU) 97. The primary purpose of the well was to collect hydrogeologic data to assist in validating concepts of the flow system within the Yucca Flat/Climax Mine CAU, and to test for potential radionuclides in groundwater from the WAGTAIL (U3an) underground test.
Development of a Drilling Simulator for Dental Implant Surgery.
Kinoshita, Hideaki; Nagahata, Masahiro; Takano, Naoki; Takemoto, Shinji; Matsunaga, Satoru; Abe, Shinichi; Yoshinari, Masao; Kawada, Eiji
2016-01-01
The aim of this study was to develop and evaluate a dental implant surgery simulator that allows learners to experience the drilling forces necessary to perform an osteotomy in the posterior mandibular bone. The simulator contains a force-sensing device that receives input and counteracts this force, which is felt as resistance by the user. The device consists of an actuator, a load cell, and a control unit. A mandibular bone model was fabricated in which the predicted forces necessary to drill the cortical and trabecular bone were determined via micro CT image-based 3D finite element analysis. The simulator was evaluated by five dentists from the Department of Implantology at Tokyo Dental College. The ability of the evaluators to distinguish the drilling resistance through different regions of the mandibular bone was investigated. Of the five dentists, four sensed the change in resistance when the drill perforated the upper cortical bone. All five dentists were able to detect when the drill made contact with lingual cortical bone and when the lingual bone was perforated. This project successfully developed a dental implant surgery simulator that allows users to experience the forces necessary to drill through types of bone encountered during osteotomy. Furthermore, the researchers were able to build a device by which excessive drilling simulates a situation in which the lingual cortical bone is perforated--a situation that could lead to negative repercussions in a clinical setting. The simulator was found to be useful to train users to recognize the differences in resistance when drilling through the mandibular bone.
Counter-Rotating Tandem Motor Drilling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent Perry
2009-04-30
Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively comparedmore » to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.« less
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Hand Portable and Semiportable Fire Extinguishing Systems § 108.493 Location. (a) Each unit must have the hand portable and semiportable fire extinguishers prescribed in Table 108.495(a) of...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Hand Portable and Semiportable Fire Extinguishing Systems § 108.493 Location. (a) Each unit must have the hand portable and semiportable fire extinguishers prescribed in Table 108.495(a) of...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Hand Portable and Semiportable Fire Extinguishing Systems § 108.493 Location. (a) Each unit must have the hand portable and semiportable fire extinguishers prescribed in Table 108.495(a) of...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Hand Portable and Semiportable Fire Extinguishing Systems § 108.493 Location. (a) Each unit must have the hand portable and semiportable fire extinguishers prescribed in Table 108.495(a) of...
ERIC Educational Resources Information Center
Defense Language Inst., Washington, DC.
This basic audiolingual course in standard Swahili appears in six volumes, Lesson Units 1-56. Units consist of a "blueprint" prefatory page outlining the phonological, morphological, and syntactic structures and new vocabulary to be presented; perception drills; Swahili dialog with cartoon guides and English translation; pattern and recombination…
Tough new jack-up for rough seas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
Rowan Company's new deepwater jack-up, Rowan Gorilla I, is scheduled to spud its initial well off the east coast of Canada later this month for a consortium of oil companies including Bow Valley-Husky and ATS Exploration Ltd. The new rig's class designation--Gorilla--reflects designers' expectations for the drilling unit that is suited to work in virtually all ice-free hostile environmental areas of the world. Rowan's confidence in the design, built by Marathon LeTourneau's Vicksburg, Mississippi yard, is reiterated by the fact that two additional rigs in the Gorilla class are being built. Rowan Gorilla II is being constructed at Marathon's Singaporemore » yard, and the Rowan Gorilla III is in early construction stages at the firm's Vicksburg yard. The three Gorilla-class rigs will cost in excess of $85 million each, including owner-furnished drilling equipment. This, according to owners, will make them among the costliest jack-ups in the world. Another record being claimed by the Gorilla-class drilling units is that they are the largest jack-ups in the world. Fully outfitted, a Gorilla contains 16,000 tons of steel. Its triangular hull measures 297 ft from bow to stern and 292 ft across the stern. The rig has a variable load of 2,750 tons for drilling consumables and 42,265 sq ft of deck space. Its ample storage capacity, along with its 503-ft leg length and certain design features, makes the rig compatible with hostile offshore areas, where it can continue drilling for long periods unattended.« less
Voice Coil Percussive Mechanism Concept for Hammer Drill
NASA Technical Reports Server (NTRS)
Okon, Avi
2009-01-01
A hammer drill design of a voice coil linear actuator, spring, linear bearings, and a hammer head was proposed. The voice coil actuator moves the hammer head to produce impact to the end of the drill bit. The spring is used to store energy on the retraction and to capture the rebound energy after each impact for use in the next impact. The maximum actuator stroke is 20 mm with the hammer mass being 200 grams. This unit can create impact energy of 0.4 J with 0.8 J being the maximum. This mechanism is less complex than previous devices meant for the same task, so it has less mass and less volume. Its impact rate and energy are easily tunable without changing major hardware components. The drill can be driven by two half-bridges. Heat is removed from the voice coil via CO2 conduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. Seay Nance
2003-03-01
This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertakenmore » for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.« less
Comparative analysis of a jack-up drilling unit with different leg systems
NASA Astrophysics Data System (ADS)
Ren, Xiangang; Bai, Yong; Jia, Lusheng
2012-09-01
The jack-up unit is one of the best drilling platforms in offshore oil fields with water depth shallower than 150 meters. As the most pivotal component of the jack-up unit, the leg system can directly affect the global performance of a jack-up unit. Investigation shows that there are three kinds of leg structure forms in the world now: the reverse K, X, and mixing types. In order to clarify the advantage and defects of each one, as well as their effect on the global performance of the jack-up unit, this paper commenced to study performance targets of a deepwater jack-up unit with different leg systems (X type, reverse K type, and mixing type). In this paper a typical leg scantling dimension and identical external loads were selected, detailed finite element snalysis (FEA) models were built to simulate the jack-up unit's structural behavior, and the multi-point constraint (MPC) element together with the spring element was used to deal with the boundary condition. Finally, the above problems were solved by comparative analysis of their main performance targets (including ultimate static strength, dynamic response, and weight).
Mycological contamination in dental unit waterlines in Istanbul, Turkey
Kadaifciler, Duygu Göksay; Ökten, Suzan; Sen, Burhan
2013-01-01
Studies on dental units (DUs) are conducted either for the prevention or the reduction of the density of bacterial contamination in dental unit waterlines (DUWLs). However, the existence of fungi in the these systems requires more attention. During dental treatment, direct contact with water contaminated with fungi such as Candida, Aspergillus, or inhalation of aerosols from high-speed drill may cause various respiratory infections, such as asthma, allergies, and wounds on mucose membranes, especially on immunocompromised patients and dentists. The aims of this study are to investigate the number and colonization of fungi in DUWLs in the city of Istanbul, Turkey. Water samples were collected from air-water syringes, high-speed drills, and inlet waters from 41 DUs. The aerobic mesophilic fungi count in high- speed drills was higher than inlet waters and air-water syringes. Non-sporulating fungi were found in 7 DUs. The isolated fungi were identified as Penicillium waksmanii, Cladosporium spp., Penicillium spp., Candida famata, Cryptococcus laurentii, Candida guilliermondii, Penicillium verrucosum, Aspergillus pseudoglaucus, Penicillium decumbens, and Acremonium sp. Some of these fungal genera are known as opportunistic pathogens that led to respiratory diseases such as allergic rhinits. This study shows the importance of regular control of mycological contamination on water at DUs. PMID:24516467
46 CFR 108.655 - Operating instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Operating instructions. 108.655 Section 108.655 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.655 Operating instructions. Each unit must have posters...
46 CFR 108.655 - Operating instructions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Operating instructions. 108.655 Section 108.655 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.655 Operating instructions. Each unit must have posters...
46 CFR 108.655 - Operating instructions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Operating instructions. 108.655 Section 108.655 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.655 Operating instructions. Each unit must have posters...
46 CFR 108.655 - Operating instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Operating instructions. 108.655 Section 108.655 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.655 Operating instructions. Each unit must have posters...
46 CFR 108.655 - Operating instructions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Operating instructions. 108.655 Section 108.655 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.655 Operating instructions. Each unit must have posters...
Code of Federal Regulations, 2014 CFR
2014-07-01
... as set forth in— (1) Section 1001 of the Oil Pollution Act of 1990 (33 U.S.C. 2701), respecting the... zone, liable, liability, navigable waters, mobile offshore drilling unit, natural resources, offshore facility, oil, owner or operator, person, remove, removal, removal costs, security interest, and United...
Code of Federal Regulations, 2012 CFR
2012-07-01
... as set forth in— (1) Section 1001 of the Oil Pollution Act of 1990 (33 U.S.C. 2701), respecting the... zone, liable, liability, navigable waters, mobile offshore drilling unit, natural resources, offshore facility, oil, owner or operator, person, remove, removal, removal costs, security interest, and United...
Code of Federal Regulations, 2011 CFR
2011-07-01
... as set forth in— (1) Section 1001 of the Oil Pollution Act of 1990 (33 U.S.C. 2701), respecting the... zone, liable, liability, navigable waters, mobile offshore drilling unit, natural resources, offshore facility, oil, owner or operator, person, remove, removal, removal costs, security interest, and United...
Martinell, Jordi; Kowalewski, Michał; Domènech, Rosa
2012-01-01
We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ∼5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter), parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior) distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data). Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced) fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%). Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free-dwelling serpulid polychaetes are preyed upon by drilling predators and may provide a viable source of data on biotic interactions in the fossil record. PMID:22496828
Recent scientific and operational achievements of D/V Chikyu
NASA Astrophysics Data System (ADS)
Taira, Asahiko; Toczko, Sean; Eguchi, Nobu; Kuramoto, Shin'ichi; Kubo, Yusuke; Azuma, Wataru
2014-12-01
The D/V Chikyu, a scientific drilling vessel, is equipped with industry-standard riser capabilities. Riser drilling technology enables remarkable drilling and downhole logging capabilities and provides unprecedented hole-stability, enabling the shipboard team to retrieve high-quality wire-line logging data as well as well-preserved core samples. The 11 March 2011 Tohoku Oki mega-earthquake and tsunami cost over 18,000 casualties in NE Japan. Chikyu, docked in the Port of Hachinohe, was damaged by the tsunami. By April 2012, the ship was back in operation; drilling the toe of the Japan Trench fault zone where topographic surveys suggested there was up to 50 m eastward motion, the largest earthquake rupture ever recorded. During Integrated Ocean Drilling Program (IODP) Expeditions 343 and 343 T, Chikyu drilled 850 m below sea floor (mbsf) in 6,900+ m water depth and recovered core samples of a highly brecciated shear zone composed of pelagic claystone. A subseafloor observatory looking for temperature signatures caused by the fault friction during the earthquake, was installed and later successfully recovered. The recovered temperature loggers recorded data from which the level of friction during the mega-earthquake slip could be determined. Following Exp. 343, Chikyu began IODP Exp. 337, a riser drilling expedition into the Shimokita coal beds off Hachinohe, to study the deep subsurface biosphere in sedimentary units including Paleogene-Neogene coal beds. New records in scientific ocean drilling were achieved in deepest penetration (drilling reached 2,466 mbsf) and sample recovery. Currently Chikyu is conducting deep riser drilling at the Nankai Trough in the final stage of the NanTroSEIZE campaign. During the years 2011 to 2013, including drilling in the Okinawa Hydrothermal System, Chikyu's operational and scientific achievements have demonstrated that the ship's capabilities are vital for opening new frontiers in earth and biological sciences.
Hunter, R.B.; Collett, T.S.; Boswell, R.; Anderson, B.J.; Digert, S.A.; Pospisil, G.; Baker, R.; Weeks, M.
2011-01-01
The Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled within the Alaska North Slope (ANS) Milne Point Unit (MPU) from February 3 to 19, 2007. The well was conducted as part of a Cooperative Research Agreement (CRA) project co-sponsored since 2001 by BP Exploration (Alaska), Inc. (BPXA) and the U.S. Department of Energy (DOE) in collaboration with the U.S. Geological Survey (USGS) to help determine whether ANS gas hydrate can become a technically and commercially viable gas resource. Early in the effort, regional reservoir characterization and reservoir simulation modeling studies indicated that up to 0.34 trillion cubic meters (tcm; 12 trillion cubic feet, tcf) gas may be technically recoverable from 0.92 tcm (33 tcf) gas-in-place within the Eileen gas hydrate accumulation near industry infrastructure within ANS MPU, Prudhoe Bay Unit (PBU), and Kuparuk River Unit (KRU) areas. To further constrain these estimates and to enable the selection of a test site for further data acquisition, the USGS reprocessed and interpreted MPU 3D seismic data provided by BPXA to delineate 14 prospects containing significant highly-saturated gas hydrate-bearing sand reservoirs. The "Mount Elbert" site was selected to drill a stratigraphic test well to acquire a full suite of wireline log, core, and formation pressure test data. Drilling results and data interpretation confirmed pre-drill predictions and thus increased confidence in both the prospect interpretation methods and in the wider ANS gas hydrate resource estimates. The interpreted data from the Mount Elbert well provide insight into and reduce uncertainty of key gas hydrate-bearing reservoir properties, enable further refinement and validation of the numerical simulation of the production potential of both MPU and broader ANS gas hydrate resources, and help determine viability of potential field sites for future extended term production testing. Drilling and data acquisition operations demonstrated that gas hydrate scientific research programs can be safely, effectively, and efficiently conducted within ANS infrastructure. The program success resulted in a technical team recommendation to project management to drill and complete a long-term production test within the area of existing ANS infrastructure. If approved by stakeholders, this long-term test would build on prior arctic research efforts to better constrain the potential gas rates and volumes that could be produced from gas hydrate-bearing sand reservoirs. ?? 2010 Elsevier Ltd.
Maldonado, Florian; Koether, S.L.
1983-01-01
A continuously cored drill hole designated as USW G-2, located at Yucca Mountain in southwestern Nevada, penetrated 1830.6 m of Tertiary volcanic strata composed of abundant silicic ash-flow tuffs, minor lava and flow breccias, and subordinate volcaniclastic rocks. The volcanic strata penetrated are comprised of the following in descending order: Paintbrush Tuff (Tiva Canyon Member, Yucca Mountain Member, bedded tuff, Pah Canyon Member, and Topopah Spring Member), tuffaceous beds of Calico Hills, Crater Flat Tuff (Prow Pass Member, Bullfrog Member, and Tram unit), lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia (rhyolitic, quartz latitic, and dacitic), bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate the following: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of approximately 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an intrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted n tabulation of 7,848 fractures, predominately open and high angle. The fractures were filled or coated with material in various combinations and include the following in decreasing abundance: CaCo3, iron oxides and hydroxides, SiO2, manganese oxides and hydroxides, clays and zeolites. An increase in the intensity of fracturing can be correlated with the following: (1) densely welded zones, (2) lithophysal zones, (3) vitrophyre, (4) silicified zones, (5) fault zones, and (6) cooling joints. Numerous fault zones were penetrated by the drill hole, predominately in the lithophysal zone of the Topopah Spring Member and below the tuffaceous beds of Calico Hills. The faults are predominately high angle with both a vertical and lateral component. Three major faults were penetrated, two of which intersect the ground surface, with displacements of at least 20 m and possibly as much as 52 m. The faults and some fractures are probably related to the regional doming of the area associated with the volcanism-tectonism of the Timber Mountain-Claim Canyon caldera complex, and to Basin and Range tectonism.
Quantifying performance on an outdoor agility drill using foot-mounted inertial measurement units.
Zaferiou, Antonia M; Ojeda, Lauro; Cain, Stephen M; Vitali, Rachel V; Davidson, Steven P; Stirling, Leia; Perkins, Noel C
2017-01-01
Running agility is required for many sports and other physical tasks that demand rapid changes in body direction. Quantifying agility skill remains a challenge because measuring rapid changes of direction and quantifying agility skill from those measurements are difficult to do in ways that replicate real task/game play situations. The objectives of this study were to define and to measure agility performance for a (five-cone) agility drill used within a military obstacle course using data harvested from two foot-mounted inertial measurement units (IMUs). Thirty-two recreational athletes ran an agility drill while wearing two IMUs secured to the tops of their athletic shoes. The recorded acceleration and angular rates yield estimates of the trajectories, velocities and accelerations of both feet as well as an estimate of the horizontal velocity of the body mass center. Four agility performance metrics were proposed and studied including: 1) agility drill time, 2) horizontal body speed, 3) foot trajectory turning radius, and 4) tangential body acceleration. Additionally, the average horizontal ground reaction during each footfall was estimated. We hypothesized that shorter agility drill performance time would be observed with small turning radii and large tangential acceleration ranges and body speeds. Kruskal-Wallis and mean rank post-hoc statistical analyses revealed that shorter agility drill performance times were observed with smaller turning radii and larger tangential acceleration ranges and body speeds, as hypothesized. Moreover, measurements revealed the strategies that distinguish high versus low performers. Relative to low performers, high performers used sharper turns, larger changes in body speed (larger tangential acceleration ranges), and shorter duration footfalls that generated larger horizontal ground reactions during the turn phases. Overall, this study advances the use of foot-mounted IMUs to quantify agility performance in contextually-relevant settings (e.g., field of play, training facilities, obstacle courses, etc.).
46 CFR 174.085 - Flooding on column stabilized units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Flooding on column stabilized units. 174.085 Section 174.085 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...
46 CFR 174.085 - Flooding on column stabilized units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Flooding on column stabilized units. 174.085 Section 174.085 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling...
46 CFR 109.101 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Applicability. 109.101 Section 109.101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS General § 109.101 Applicability. No unit may be operated unless it complies with the regulations in this part. ...
46 CFR 109.101 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Applicability. 109.101 Section 109.101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS General § 109.101 Applicability. No unit may be operated unless it complies with the regulations in this part. ...
46 CFR 109.101 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Applicability. 109.101 Section 109.101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS General § 109.101 Applicability. No unit may be operated unless it complies with the regulations in this part. ...
46 CFR 109.101 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Applicability. 109.101 Section 109.101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS General § 109.101 Applicability. No unit may be operated unless it complies with the regulations in this part. ...
46 CFR 109.101 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Applicability. 109.101 Section 109.101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS General § 109.101 Applicability. No unit may be operated unless it complies with the regulations in this part. ...
30 CFR 250.1301 - What are the requirements for unitization?
Code of Federal Regulations, 2011 CFR
2011-07-01
... delineated and productive reservoir if unitized operations are necessary to: (1) Prevent waste; (2) Conserve... more reservoirs and the initiation of actual development drilling or production operations and that..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...
New Proposed Drilling at Surtsey Volcano, Iceland
NASA Astrophysics Data System (ADS)
Jackson, Marie D.
2014-12-01
Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.
Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada
Whitfield, M.S.; Thordarson, William; Eshom, E.P.
1984-01-01
Data are presented on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the U.S. Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1,219 meters. Depth to water below land surface was 519 meters or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. (USGS)
NASA Astrophysics Data System (ADS)
Paziewski, Jacek; Krukowska, Marta; Wielgosz, Paweł
2014-06-01
The presented preliminary research concerns the accuracy and reliability of new ultra-fast static positioning module - POZGEO-2 - in case of processing GPS data collected outside the ASG-EUPOS network. Such a case requires extrapolation of the network-derived atmospheric corrections which limits correction accuracy and, therefore, has adverse effect on the carrier phase ambiguity resolution. The presented processing tests are based on processing 5-minute long observing sessions and show that precise positioning can be supported up to 35 km from the ASG-EUPOS borders. This means that precise positioning with POZGEO-2 module can be assured for the most of the border areas of Poland. W pracy prezentowane są badania dotyczące dokładności i wiarygodności pozycji wyznaczanej z wykorzystaniem nowego modułu ultra-szybkiego pozycjonowania - POZGEO-2 opracowanego dla systemu ASG-EUPOS. Przedstawione testy obliczeniowe dotyczą szczególnego przypadku wyznaczania pozycji, gdy użytkownik znajduje się poza granicami sieci stacji referencyjnych. W takich warunkach wymagana jest ekstrapolacja sieciowych poprawek atmosferycznych. Wpływa to negatywnie na dokładność tych poprawek i może doprowadzić do sytuacji, w której wyznaczenie nieoznaczoności będzie niemożliwe. Prezentowane badania oparte są na pięciominutowych sesjach obserwacyjnych i pokazują, że poprawki mogą być ekstrapolowane dla obszarów położonych do około 35 km od granic sieci ASG-EUPOS. Oznacza to, że w praktyce precyzyjne pozycjonowanie ultra-szybkie z użyciem modułu POZGEO-2 może być zapewnione dla niemal całego obszaru Polski
The Newberry Deep Drilling Project (NDDP)
NASA Astrophysics Data System (ADS)
Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.
2017-12-01
We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.
Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2010-02-28
Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Septic Systems” and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: · CAS 03-04-02, Area 3 Subdock Septic Tank · CAS 03-59-05, Area 3 Subdock Cesspool · CAS 12-59-01, Drilling/Welding Shop Septic Tanks · CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives includedmore » No Further Action and Clean Closure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, Jeff
2016-08-01
Well ER-20-12 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area Activity. The well was drilled from October 2015 to January 2016 as an addition to the Central and Western Pahute Mesa corrective action units 101 and 102 the Phase II drilling program. Well ER-20-12 was identified based on recommendations of the Pahute Mesa Guidance Team as a result of anomalous tritium detections in groundwater samples collected from Well PM-3 in 2011 and 2013. The primary purpose of the well was to provide information on the hydrogeologymore » in the area downgradient of select underground tests on Western Pahute Mesa and define hydraulic properties in the saturated Tertiary volcanic rocks. The main 46.99-centimeter (cm) (18.5-inch [in.]) borehole was drilled to a depth of 765.14 meters (m) (2,510.3 ft) and the hole opened to 66.04 cm (26 in.); followed by the 50.80-cm (20-in.) surface casing, which was installed and sealed with cement; and a piezometer (p4) was set in the Timber Mountain welded-tuff aquifer (TMWTA) between the casing and the open borehole. The borehole was continued with a 46.99-cm (18.5-in.) drill bit to a depth of 1,326.53 m (4,352.16 ft), and an intermediate 24.44-cm (9.625-in.) casing was installed and sealed to 1,188.72 m (3,900.00 ft) A piezometer (p3) was installed across the Calico Hills zeolitic composite unit (CHZCM) (lava-flow aquifer [LFA]) in the annulus of the open borehole. Two additional piezometers were installed and completed between the intermediate casing and the borehole wall, one (p2) in the CHZCM and one (p1) in the Belted Range aquifer (BRA). The piezometers are set to monitor groundwater properties in the completed intervals. The borehole was continued with a 21.59-cm (8.5-in.) drill bit to a total depth of 1,384.80 m (4,543.33 ft), and the main completion 13.97-cm (5.5-in.) casing was installed in the open borehole across the Pre-Belted Range composite unit (PBRCM). Data collected during hole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs, hydrophysical logs, percussion core samples, water-quality measurements (including tritium), and water-level measurements. The well penetrated 1,384.4 m (4,543.33 ft) of Tertiary volcanic rocks. The stratigraphy and lithology were generally as expected with one noted exception. A thick lava-flow and related ash-flow tuffs were identified as Calico Hills Formation (Th), and no Crater Flat units were noted. Additionally, many of the Thirsty Canyon and Timber Mountain units were thicker than expected. Fluid levels measured in the borehole during drilling are the following: (1) on November 2, 2015, Navarro measured the fluid level in the borehole at a depth of 492.33 m (1,615.25 ft) below ground surface (bgs); (2) Schlumberger and COLOG recorded fluid levels during geophysical logging on November 4 and 5, 2015, at a depth of 492.86 m (1,617 ft) and 492.25 m (1,615 ft) bgs, respectively; and (3) on December 4, 2015, COLOG and Navarro measured fluid level in the 20-in. casing with an open borehole to 1,326.54 m (4,352.16 ft) bgs at 575.77 m (1,889.00 ft) and 574.03 m (1,883.3 ft) bgs, respectively. These and subsequent water-level measurements indicate a potential head difference of greater than 76.2 m (250 ft) for groundwater in aquifers above and below the Upper Paintbrush confining unit (UPCU). As expected, tritium was occasionally measured above the Safe Drinking Water Act limit (20,000 picocuries per liter [pCi/L]). Lab analysis on four bailed samples and taken from the undeveloped well indicate that the tritium activities average approximately 36,545 pCi/L. All Fluid Management Plan (FMP) requirements for Well ER-20-12 were met. Analysis of monitoring samples and FMP confirmatory samples indicate that fluids generated during drilling at ER-20-12 met the FMP criteria for discharge to the lined sump and designated infiltration area. All sanitary and hydrocarbon waste generated was properly handled and disposed of.« less
Completion Report for Well ER-EC-5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Nevada
2004-10-01
Well ER-EC-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 342.6 meters below ground surface. The borehole diameter was then decreased to 31.1 centimeters for drilling to amore » total depth of 762.0 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 309.9 meters, 40 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 18 sidewall samples taken at various depths below 349.6 meters, supplemented by geophysical log data and results from detailed chemical and mineralogical analyses of rock samples. The well penetrated Tertiary-age tuffs of the Thirsty Canyon Group, caldera moat-filling sedimentary deposits, lava of the Beatty Wash Formation, and landslide breccia and tuffs of the Timber Mountain Group. The well reached total depth in welded ashflow tuff of the Ammonia Tanks Tuff after penetrating 440.1 meters of this unit, which is also the main water-producing unit in the well. The geologic interpretation of data from this well constrains the western margin of the Ammonia Tanks caldera to the west of the well location.« less
46 CFR 108.401 - Fire main system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Fire main system. 108.401 Section 108.401 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.401 Fire main system. Each unit must have a fire main system. ...
46 CFR 108.401 - Fire main system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fire main system. 108.401 Section 108.401 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.401 Fire main system. Each unit must have a fire main system. ...
46 CFR 108.401 - Fire main system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Fire main system. 108.401 Section 108.401 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.401 Fire main system. Each unit must have a fire main system. ...
46 CFR 108.560 - Rescue boats.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Rescue boats. 108.560 Section 108.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.560 Rescue boats. Each unit must carry at least one rescue boat. Each rescue boat...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false General. 108.500 Section 108.500 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.500 General. (a) Each unit, other than a drillship, must meet the requirements in this...
46 CFR 108.560 - Rescue boats.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Rescue boats. 108.560 Section 108.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.560 Rescue boats. Each unit must carry at least one rescue boat. Each rescue boat...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false General. 108.500 Section 108.500 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.500 General. (a) Each unit, other than a drillship, must meet the requirements in this...
46 CFR 108.401 - Fire main system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Fire main system. 108.401 Section 108.401 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.401 Fire main system. Each unit must have a fire main system. ...
46 CFR 108.560 - Rescue boats.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Rescue boats. 108.560 Section 108.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.560 Rescue boats. Each unit must carry at least one rescue boat. Each rescue boat...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false General. 108.500 Section 108.500 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.500 General. (a) Each unit, other than a drillship, must meet the requirements in this...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false General. 108.500 Section 108.500 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.500 General. (a) Each unit, other than a drillship, must meet the requirements in this...
46 CFR 108.401 - Fire main system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Fire main system. 108.401 Section 108.401 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.401 Fire main system. Each unit must have a fire main system. ...
ERIC Educational Resources Information Center
Schneeberg, Nan; Kpotufe, Prosper
This volume consists of a guide to Ewe pronunciation and an Ewe textbook designed for students who are native speakers of English. Consonants, vowels and tones are introduced in the first section, and exercises that drill the contrasts between the segments are provided. The volume is divided into five units, each unit including a dialogue,…
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the following...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the following...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the following...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the following...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the following...
A Course in Baluchi. Volume Two
ERIC Educational Resources Information Center
Barker, Muhammad Abd-al-Rahman; Mengal, Aqil Khan
Volume Two contains Units XXI through XXX of the Baluchi course. Unit XXI introduces the Arabic script as adapted for Baluchi. Special conventions, abbreviations, numerals, and punctuation symbols are discussed next, and several sections are devoted to the orthography of certain substantive and verbal affies. A series of reading drills which…
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fire axes. 108.499 Section 108.499 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Miscellaneous Firefighting Equipment § 108.499 Fire axes. Each unit must have at least two...
Drill-specific head impact exposure in youth football practice.
Campolettano, Eamon T; Rowson, Steven; Duma, Stefan M
2016-11-01
OBJECTIVE Although 70% of football players in the United States are youth players (6-14 years old), most research on head impacts in football has focused on high school, collegiate, or professional populations. The objective of this study was to identify the specific activities associated with high-magnitude (acceleration > 40g) head impacts in youth football practices. METHODS A total of 34 players (mean age 9.9 ± 0.6 years) on 2 youth teams were equipped with helmet-mounted accelerometer arrays that recorded head accelerations associated with impacts in practices and games. Videos of practices and games were used to verify all head impacts and identify specific drills associated with each head impact. RESULTS A total of 6813 impacts were recorded, of which 408 had accelerations exceeding 40g (6.0%). For each type of practice drill, impact rates were computed that accounted for the length of time that teams spent on each drill. The tackling drill King of the Circle had the highest impact rate (95% CI 25.6-68.3 impacts/hr). Impact rates for tackling drills (those conducted without a blocker [95% CI 14.7-21.9 impacts/hr] and those with a blocker [95% CI 10.5-23.1 impacts/hr]) did not differ from game impact rates (95% CI 14.2-21.6 impacts/hr). Tackling drills were observed to have a greater proportion (between 40% and 50%) of impacts exceeding 60g than games (25%). The teams in this study participated in tackling or blocking drills for only 22% of their overall practice times, but these drills were responsible for 86% of all practice impacts exceeding 40g. CONCLUSIONS In youth football, high-magnitude impacts occur more often in practices than games, and some practice drills are associated with higher impact rates and accelerations than others. To mitigate high-magnitude head impact exposure in youth football, practices should be modified to decrease the time spent in drills with high impact rates, potentially eliminating a drill such as King of the Circle altogether.
Drill-specific head impact exposure in youth football practice
Campolettano, Eamon T.; Rowson, Steven; Duma, Stefan M.
2017-01-01
OBJECTIVE Although 70% of football players in the United States are youth players (6–14 years old), most research on head impacts in football has focused on high school, collegiate, or professional populations. The objective of this study was to identify the specific activities associated with high-magnitude (acceleration > 40g) head impacts in youth football practices. METHODS A total of 34 players (mean age 9.9 ± 0.6 years) on 2 youth teams were equipped with helmet-mounted accelerometer arrays that recorded head accelerations associated with impacts in practices and games. Videos of practices and games were used to verify all head impacts and identify specific drills associated with each head impact. RESULTS A total of 6813 impacts were recorded, of which 408 had accelerations exceeding 40g (6.0%). For each type of practice drill, impact rates were computed that accounted for the length of time that teams spent on each drill. The tackling drill King of the Circle had the highest impact rate (95% CI 25.6–68.3 impacts/hr). Impact rates for tackling drills (those conducted without a blocker [95% CI 14.7–21.9 impacts/hr] and those with a blocker [95% CI 10.5–23.1 impacts/hr]) did not differ from game impact rates (95% CI 14.2–21.6 impacts/hr). Tackling drills were observed to have a greater proportion (between 40% and 50%) of impacts exceeding 60g than games (25%). The teams in this study participated in tackling or blocking drills for only 22% of their overall practice times, but these drills were responsible for 86% of all practice impacts exceeding 40g. CONCLUSIONS In youth football, high-magnitude impacts occur more often in practices than games, and some practice drills are associated with higher impact rates and accelerations than others. To mitigate high-magnitude head impact exposure in youth football, practices should be modified to decrease the time spent in drills with high impact rates, potentially eliminating a drill such as King of the Circle altogether. PMID:27550390
Advanced Metallic Air Vehicle Structure Program
1974-06-01
soapstone line around the periphery of the lower plate from XFO.00 to the outboard edge using edge of MSLO X7224175 as guide. Remove MSLO X7224175. D...hole in the lug reinforcement plates). Make soapstone line to edge of MSLO to denote periphery of cutouts. E. Relocate MSLO X7224175 on opposite end of...of plate). G. Drill .50 diameter holes (10) using the Bux- Magnetic drill unit. See MAP-I-3 for approximate locations of these start and stop holes. A 1
33 CFR 143.207 - Requirements for foreign MODUs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the International Maritime Organization (IMO, formerly Inter-Governmental Maritime Consultative Organization or IMCO) (IMO) Code for Construction and Equipment of Mobile Offshore Drilling Units (IMO Assembly...
Dead Sea deep cores: A window into past climate and seismicity
NASA Astrophysics Data System (ADS)
Stein, Mordechai; Ben-Avraham, Zvi; Goldstein, Steven L.
2011-12-01
The area surrounding the Dead Sea was the locus of humankind's migration out of Africa and thus has been the home of peoples since the Stone Age. For this reason, understanding the climate and tectonic history of the region provides valuable insight into archaeology and studies of human history and helps to gain a better picture of future climate and tectonic scenarios. The deposits at the bottom of the Dead Sea are a geological archive of the environmental conditions (e.g., rains, floods, dust storms, droughts) during ice ages and warm ages, as well as of seismic activity in this key region. An International Continental Scientific Drilling Program (ICDP) deep drilling project was performed in the Dead Sea between November 2010 and March 2011. The project was funded by the ICDP and agencies in Israel, Germany, Japan, Norway, Switzerland, and the United States. Drilling was conducted using the new Large Lake Drilling Facility (Figure 1), a barge with a drilling rig run by DOSECC, Inc. (Drilling, Observation and Sampling of the Earth's Continental Crust), a nonprofit corporation dedicated to advancing scientific drilling worldwide. The main purpose of the project was to recover a long, continuous core to provide a high resolution record of the paleoclimate, paleoenvironment, paleoseismicity, and paleomagnetism of the Dead Sea Basin. With this, scientists are beginning to piece together a record of the climate and seismic history of the Middle East during the past several hundred thousand years in millennial to decadal to annual time resolution.
Hospital collaboration with public safety organizations on bioterrorism response.
Niska, Richard W
2008-01-01
To identify hospital characteristics that predict collaboration with public safety organizations on bioterrorism response plans and mass casualty drills. The 2003 and 2004 Bioterrorism and Mass Casualty Supplements to the National Hospital Ambulatory Medical Care Survey examined collaboration with emergency medical services (EMS), hazardous materials teams (HAZMAT), fire departments, and law enforcement. The sample included 112 geographic primary sampling units and 1,110 hospitals. Data were weighted by inverse selection probability, to yield nationally representative estimates. Characteristics included residency and medical school affiliation, bed capacity, ownership, urbanicity and Joint Commission accreditation. The response rate was 84.6%. Chi-square analysis was performed with alpha set at p < 0.05. Logistic regression modeling yielded odds ratios with 95% confidence intervals. During a bioterrorism incident, 68.9% of hospitals would contact EMS, 68.7% percent law enforcement, 61.6% fire departments, 58.1% HAZMAT, and 42.8% all four. About 74.2% had staged mass casualty drills with EMS, 70.4% with fire departments, 67.4% with law enforcement, 43.3% with HAZMAT, and 37.0% with all four. Predictors of drilling with some or all of these public safety organizations included larger bed capacity, nonprofit and proprietary ownership, and JCAHO accreditation. Medical school affiliation was a negative predictor of drilling with EMS. The majority of hospitals involve public safety organizations in their emergency plans or drills. Bed capacity was most predictive of drilling with these organizations. Medical school affiliation was the only characteristic negatively associated with drilling.
Valin, Zenon C.; Collett, Timothy S.
1992-01-01
Gas hydrates, which are crystalline substances of water molecules that encase gas molecules, have the potential for being a significant source of natural gas. World-wide estimates for the amount of gas contained in hydrates range from 1.1 x 105 to 2.7 x 108 trillion cubic feet. Gas hydrates exist in many Arctic regions, including the North Slope of Alaska. The two primary objectives of the U.S. Geological Survey Gas Hydrate Research Project are (1) to map the distribution of in-situ gas hydrates on the North Slope of Alaska, and (2) to evaluate the geologic parameters that control the distribution of these gas hydrates. To aid in this study, British Petroleum Exploration, ARCO Alaska, Exxon Company USA, and the Continental Oil Company allowed the U.S. Geological Survey to collect geochemical samples from drilling North Slope production wells. Molecular analysis of gaseous drill cutting and free-flowing gas samples from 10 production wells drilled in the Prudhoe Bay, Kuparuk River, and Milne Point oil fields indicates that methane is the primary hydrocarbon gas in the gas hydrate-bearing stratigraphic units. Isotopic data for several of these rock units indicate that the methane within the inferred gas hydrate occurences originated from both microbial and thermogenic processes.
Pantea, Michael P.; Cole, James C.; Smith, Bruce D.; Faith, Jason R.; Blome, Charles D.; Smith, David V.
2008-01-01
This multimedia report shows and describes digital three-dimensional faulted geologic surfaces and volumes of the lithologic units of the Edwards aquifer in the upper Seco Creek area of Medina and Uvalde Counties in south-central Texas. This geologic framework model was produced using (1) geologic maps and interpretations of depositional environments and paleogeography; (2) lithologic descriptions, interpretations, and geophysical logs from 31 drill holes; (3) rock core and detailed lithologic descriptions from one drill hole; (4) helicopter electromagnetic geophysical data; and (5) known major and minor faults in the study area. These faults were used because of their individual and collective effects on the continuity of the aquifer-forming units in the Edwards Group. Data and information were compared and validated with each other and reflect the complex relationships of structures in the Seco Creek area of the Balcones fault zone. This geologic framework model can be used as a tool to visually explore and study geologic structures within the Seco Creek area of the Balcones fault zone and to show the connectivity of hydrologic units of high and low permeability between and across faults. The software can be used to display other data and information, such as drill-hole data, on this geologic framework model in three-dimensional space.
33 CFR 146.205 - Requirements for foreign MODUs.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) The operating standards for mobile offshore drilling units contained in the International Maritime Organization (IMO, formerly Inter-Governmental Maritime Consultative Organization or IMCO) (IMO) Code for the...
ERIC Educational Resources Information Center
Memming, Agnes K.; And Others
This teacher's guide, for use in a fifth-grade German course, contains 12 units of instructional materials which concentrate on the development of basic audiolingual skills. Each of the units consists of conversational skits, dialogue adaptation, directed dialogue review, and classroom drills. Units include: (1) Das Aufstehen und das Fruhstuck,…
Corner-cutting mining assembly
Bradley, J.A.
1981-07-01
This invention resulted from a contract with the United States Department of Energy and relates to a mining tool. More particularly, the invention relates to an assembly capable of drilling a hole having a square cross-sectional shape with radiused corners. In mining operations in which conventional auger-type drills are used to form a series of parallel, cylindrical holes in a coal seam, a large amount of coal remains in place in the seam because the shape of the holes leaves thick webs between the holes. A higher percentage of coal can be mined from a seam by a means capable of drilling holes having a substantially square cross section. It is an object of this invention to provide an improved mining apparatus by means of which the amount of coal recovered from a seam deposit can be increased. Another object of the invention is to provide a drilling assembly which cuts corners in a hole having a circular cross section. These objects and other advantages are attained by a preferred embodiment of the invention.
46 CFR 109.107 - Designation of master or person in charge.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Designation of master or person in charge. 109.107 Section 109.107 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS General § 109.107 Designation of master or person in charge. The owner of a unit...
46 CFR 109.107 - Designation of master or person in charge.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Designation of master or person in charge. 109.107 Section 109.107 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS General § 109.107 Designation of master or person in charge. The owner of a unit...
46 CFR 109.107 - Designation of master or person in charge.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Designation of master or person in charge. 109.107 Section 109.107 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS General § 109.107 Designation of master or person in charge. The owner of a unit...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... Outer Continental Shelf Minor Source/Title V Minor Permit Modification Issued to Shell Offshore, Inc. for the Kulluk Conical Drilling Unit AGENCY: United States Environmental Protection Agency (EPA... decision granting Shell Offshore Inc.'s (``Shell'') request for minor modifications of Clean Air Act Outer...
46 CFR 109.107 - Designation of master or person in charge.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Designation of master or person in charge. 109.107 Section 109.107 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS General § 109.107 Designation of master or person in charge. The owner of a unit...
46 CFR 109.107 - Designation of master or person in charge.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Designation of master or person in charge. 109.107 Section 109.107 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS General § 109.107 Designation of master or person in charge. The owner of a unit...
Korean Basic Course. Volume Two.
ERIC Educational Resources Information Center
Park, B. Nam
Volume Two of the Korean Basic Course contains Units 29 through 47. Most units consist of (1) a basic dialog, (2) notes on the basic dialog, (3) additional vocabulary and phrases, (4) grammar notes, (5) drills, (6) a supplementary dialog for comprehension, (7) a narrative for comprehension and reading, and (8) exercises. Two of the last units…
46 CFR 108.570 - Rescue boat embarkation, launching and recovery arrangements.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.570 Rescue boat... possible time. (c) If the rescue boat is one of the unit's survival craft, the rescue boat must also be as... approval series 160.170, instead of a lifeboat release mechanism. (d) Rapid recovery of the rescue boat...
46 CFR 108.570 - Rescue boat embarkation, launching and recovery arrangements.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.570 Rescue boat... possible time. (c) If the rescue boat is one of the unit's survival craft, the rescue boat must also be as... approval series 160.170, instead of a lifeboat release mechanism. (d) Rapid recovery of the rescue boat...
46 CFR 108.570 - Rescue boat embarkation, launching and recovery arrangements.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.570 Rescue boat... possible time. (c) If the rescue boat is one of the unit's survival craft, the rescue boat must also be as... approval series 160.170, instead of a lifeboat release mechanism. (d) Rapid recovery of the rescue boat...
46 CFR 108.570 - Rescue boat embarkation, launching and recovery arrangements.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.570 Rescue boat... possible time. (c) If the rescue boat is one of the unit's survival craft, the rescue boat must also be as... approval series 160.170, instead of a lifeboat release mechanism. (d) Rapid recovery of the rescue boat...
46 CFR 108.570 - Rescue boat embarkation, launching and recovery arrangements.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.570 Rescue boat... possible time. (c) If the rescue boat is one of the unit's survival craft, the rescue boat must also be as... approval series 160.170, instead of a lifeboat release mechanism. (d) Rapid recovery of the rescue boat...
46 CFR 30.01-5 - Application of regulations-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Miscellaneous vessels, such as cable, salvage, pile-driving and oil-drilling-rig vessels: (i) Grades B, C, D..., and operations requirements relating to pollution prevention for vessels that carry oil. (a) The... United States, or which transfers oil in any port or place subject to the jurisdiction of the United...
46 CFR 108.707 - First aid kit.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false First aid kit. 108.707 Section 108.707 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.707 First aid kit. Each unit must have a first-aid kit approved by the Mine Safety...
46 CFR 108.707 - First aid kit.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false First aid kit. 108.707 Section 108.707 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.707 First aid kit. Each unit must have a first-aid kit approved by the Mine Safety...
46 CFR 108.707 - First aid kit.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false First aid kit. 108.707 Section 108.707 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.707 First aid kit. Each unit must have a first-aid kit approved by the Mine Safety...
46 CFR 108.707 - First aid kit.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false First aid kit. 108.707 Section 108.707 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.707 First aid kit. Each unit must have a first-aid kit approved by the Mine Safety...
46 CFR 108.707 - First aid kit.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false First aid kit. 108.707 Section 108.707 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.707 First aid kit. Each unit must have a first-aid kit approved by the Mine Safety...
Pellicer-Chover, H; Peñarrocha-Oltra, D; Aloy-Prosper, A; Sanchis-Gonzalez, J-C; Peñarrocha-Diago, M-A; Peñarrocha-Diago, M
2017-11-01
To compare the technique of high speed drilling with irrigation and low speed drilling without irrigation in order to evaluate the success rate and peri-implant bone loss at 12 months of follow-up. A randomized, controlled, parallel-group clinical trial was carried out in patients requiring dental implants to rehabilitate their unitary edentulism. Patients were recruited from the Oral Surgery Unit of the University of Valencia (Spain) between September 2014 and August 2015. Patients who met the inclusion criteria were randomized to two groups: group A (high-speed drilling with irrigation) and group B (low-speed drilling without irrigation). The success rate and peri-implant bone loss were recorded at 12 months of follow-up. Twenty-five patients (9 men and 16 women) with 30 implants were enrolled in the study: 15 implants in group A and 15 implants in group B. The mean bone loss of the implants in group A and group B was 0.83 ± 0.73 mm and 0.62 ± 0.70 mm, respectively (p> 0.05). In the maxilla, the bone loss was 1.04 ± 0.63 mm in group A and 0.71 ± 0.36 mm in group B (p> 0.05), while bone loss in the mandible was 0.59 ± 0.80 mm in group A and 0.69 ± 0.77 mm in group B (p> 0.05). The implant success rate at 12 months was 93.3% in group A and 100% in group B. Within the limitations of the study, the low-speed drilling technique presented peri-implant bone loss outcomes similar to those of the conventional drilling technique at 12 months of follow-up.
Occupational Noise Exposure and Risk for Noise-Induced Hearing Loss Due to Temporal Bone Drilling.
Vaisbuch, Yona; Alyono, Jennifer C; Kandathil, Cherian; Wu, Stanley H; Fitzgerald, Matthew B; Jackler, Robert K
2018-07-01
Noise-induced hearing loss is one of the most common occupational hazards in the United States. Several studies have described noise-induced hearing loss in patients following mastoidectomy. Although otolaryngologists care for patients with noise-induced hearing loss, few studies in the English literature have examined surgeons' occupational risk. Noise dosimeters and sound level meters with octave band analyzers were used to assess noise exposure during drilling of temporal bones intraoperatively and in a lab setting. Frequency specific sound intensities were recorded. Sound produced using burrs of varying size and type were compared. Differences while drilling varying anatomic structures were assessed using drills from two manufacturers. Pure tone audiometry was performed on 7 to 10 otolaryngology residents before and after a temporal bone practicum to assess for threshold shifts. Noise exposure during otologic drilling can exceed over 100 dB for short periods of time, and is especially loud using large diameter burrs > 4 mm, with cutting as compared with diamond burrs, and while drilling denser bone such as the cortex. Intensity peaks were found at 2.5, 5, and 6.3 kHz. Drilling on the tegmen and sigmoid sinus revealed peaks at 10 and 12.5 kHz. No temporary threshold shifts were found at 3 to 6 kHz, but were found at 8 to 16 kHz, though this did not reach statistical significance. This article examines noise exposure and threshold shifts during temporal bone drilling. We were unable to find previous descriptions in the literature of measurements done while multiple people drilling simultaneously, during tranlabyrinthine surgery and a specific frequency characterization of the change in peach that appears while drilling on the tegmen. Hearing protection should be considered, which would still allow the surgeon to appreciate pitch changes associated with drilling on sensitive structures and communication with surgical team members. As professionals who specialize in promoting the restoration and preservation of hearing for others, otologic surgeons should not neglect hearing protection for themselves.
Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, M.S. Jr.; Thordarson, W.; Eshom, E.P.
This report presents data on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the US Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1219 meters. Depthmore » to water below land surface was 519 meters, or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member of the Crater Flat Tuff (Tertiary age) was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member of the Crater Flat Tuff, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. 7 references, 26 figures, 9 tables.« less
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.
2010-01-01
DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the habitat) where it operated autonomously for 2-4 hours at each site. Depths achieved ranged from 15 to 70 cm depending on the soil compressive strength and the presence and depth of subsurface indurated layers. Subsurface samples weighing 0.5 to 1 g were collected at the deepest depth encountered at each of the sites using the MUM automated sample collection system, and subsequently analyzed with XRD. Downhole inspection of holes produced by MUM with the Raman spectrometer was acquired on two of the holes and spectral features associated with selenite were identified in specific soil layers. Previously unreported fossilized remains of vertebrate fauna from the Jurassic era were discovered during our mission. Analysis of mineral biomarkers associated with this discovery are underway.
The rush to drill for natural gas: a public health cautionary tale.
Finkel, Madelon L; Law, Adam
2011-05-01
Efforts to identify alternative sources of energy have focused on extracting natural gas from vast shale deposits. The Marcellus Shale, located in western New York, Pennsylvania, and Ohio, is estimated to contain enough natural gas to supply the United States for the next 45 years. New drilling technology-horizontal drilling and high-volume hydraulic fracturing of shale (fracking)-has made gas extraction much more economically feasible. However, this technique poses a threat to the environment and to the public's health. There is evidence that many of the chemicals used in fracking can damage the lungs, liver, kidneys, blood, and brain. We discuss the controversial technique of fracking and raise the issue of how to balance the need for energy with the protection of the public's health.
Fire in the OR--developing a fire safety plan.
McCarthy, Patricia M; Gaucher, Kenneth A
2004-03-01
Approximately 100 operating room fire occur each year in the United States. Although rare, fire in a perioperative setting can be disastrous for both patients and staff members. It is crucial that all perioperative departments have a well thought out and previously rehearsed fire plan in place. Multidisciplinary planning and implementation of regularly scheduled and scripted fire drills are essential to prevent adverse outcomes. Fire drills ensure that all staff members are familiar with the use and location of fire pull stations, fire extinguishers, and fire blankets. Fire drills also prepare staff members to evacuate the OR area if necessary. This article provides the information and framework necessary to develop and implement comprehensive OR fire safety plans that could make the difference between life and death in a fire emergency.
The Rush to Drill for Natural Gas: A Public Health Cautionary Tale
Law, Adam
2011-01-01
Efforts to identify alternative sources of energy have focused on extracting natural gas from vast shale deposits. The Marcellus Shale, located in western New York, Pennsylvania, and Ohio, is estimated to contain enough natural gas to supply the United States for the next 45 years. New drilling technology—horizontal drilling and high-volume hydraulic fracturing of shale (fracking)—has made gas extraction much more economically feasible. However, this technique poses a threat to the environment and to the public's health. There is evidence that many of the chemicals used in fracking can damage the lungs, liver, kidneys, blood, and brain. We discuss the controversial technique of fracking and raise the issue of how to balance the need for energy with the protection of the public's health. PMID:21421959
Research core drilling in the Manson impact structure, Iowa
NASA Technical Reports Server (NTRS)
Anderson, R. R.; Hartung, J. B.; Roddy, D. J.; Shoemaker, E. M.
1992-01-01
The Manson impact structure (MIS) has a diameter of 35 km and is the largest confirmed impact structure in the United States. The MIS has yielded a Ar-40/Ar-39 age of 65.7 Ma on microcline from its central peak, an age that is indistinguishable from the age of the Cretaceous-Tertiary boundary. In the summer of 1991 the Iowa Geological Survey Bureau and U.S. Geological Survey initiated a research core drilling project on the MIS. The first core was beneath 55 m of glacial drift. The core penetrated a 6-m layered sequence of shale and siltstone and 42 m of Cretaceous shale-dominated sedimentary clast breccia. Below this breccia, the core encountered two crystalline rock clast breccia units. The upper unit is 53 m thick, with a glassy matrix displaying various degrees of devitrification. The upper half of this unit is dominated by the glassy matrix, with shock-deformed mineral grains (especially quartz) the most common clast. The glassy-matrix unit grades downward into the basal unit in the core, a crystalline rock breccia with a sandy matrix, the matrix dominated by igneous and metamorphic rock fragments or disaggregated grains from those rocks. The unit is about 45 m thick, and grains display abundant shock deformation features. Preliminary interpretations suggest that the crystalline rock breccias are the transient crater floor, lifted up with the central peak. The sedimentary clast breccia probably represents a postimpact debris flow from the crater rim, and the uppermost layered unit probably represents a large block associated with the flow. The second core (M-2) was drilled near the center of the crater moat in an area where an early crater model suggested the presence of postimpact lake sediments. The core encountered 39 m of sedimentary clast breccia, similar to that in the M-1 core. Beneath the breccia, 120 m of poorly consolidated, mildly deformed, and sheared siltstone, shale, and sandstone was encountered. The basal unit in the core was another sequence of sedimentary clast breccia. The two sedimentary clast units, like the lithologically similar unit in the M-1 core, probably formed as debris flows from the crater rim. The middle, nonbrecciated interval is probably a large, intact block of Upper Cretaceous strata transported from the crater rim with the debris flow. Alternatively, the sequence may represent the elusive postimpact lake sequence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfred Wickline
Corrective Action Unit 563, Septic Systems, is located in Areas 3 and 12 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 563 is comprised of the four corrective action sites (CASs) below: • 03-04-02, Area 3 Subdock Septic Tank • 03-59-05, Area 3 Subdock Cesspool • 12-59-01, Drilling/Welding Shop Septic Tanks • 12-60-01, Drilling/Welding Shop Outfalls These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective actionmore » investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.« less
NASA Astrophysics Data System (ADS)
Handler, Sabine M.; Albano, Paolo G.; Bentlage, Rudolf; Drummond, Hannah; García-Ramos, Diego A.; Zuschin, Martin
2016-04-01
Intensities of drilling predation of molluscan assemblages in intertidal and subtidal soft substrates in the Persian (Arabian) Gulf Sabine Maria Handler1, Paolo G. Albano1, Rudolf Bentlage2, Hannah Drummond2, D.A. García-Ramos1, Martin Zuschin1 1 Department of Paleontology, University of Vienna, Austria 2 St. Lawrence University, Canton, New York 13617, USA Trace fossils left by predators in the skeleton of their prey are arguably one of the most powerful sources of direct data on predator-prey interactions available in the fossil record. Drill holes, especially those attributed to naticid and muricid gastropods, are unambiguous marks of predation and allow discriminating between successful and unsuccessful predation attempts (complete and incomplete holes, respectively). Latitude and water depth influence drilling frequency. We inspected death assemblages of an intertidal flat and of two subtidal (water depth between 6 and 20 m) sandy sites in the Persian (Arabian) Gulf, off the coast of the United Arab Emirates, to determine the patterns of predation on shelled molluscs along the depth gradient. The study is based on ~7,000 and ~60,000 shells from the intertidal and subtidal, respectively. Drilling Frequency (DF, the number of drilled individuals), Incomplete Drilling Frequency (IDF, number of incomplete drill holes), and Prey Effectiveness (ratio between the number of incomplete drill holes and the total number of drilling attempts) were used as metrics of drilling intensity. We observed major differences between the intertidal and subtidal study areas. Drilling frequencies were generally remarkably low and intertidal flats showed a much lower drilling frequency than the subtidal (1.4% and 6.7%, respectively). In the subtidal, we observed significant differences of drilling intensity among bivalve species and between the two sites. However, predation metrics did not correlate with environmental factors such as substrate type and depth, nor with species life habits such as infaunal vs. epifaunal and death assemblage indices such as diversity, abundance and evenness. The abundance of naticid and muricid predators in the living and death assemblage also did not correlate with predation intensities, with the single exception of muricid abundance in the LA at one of the two subtidal sites. The study shows that bivalve predation intensity in the studied area is highly variable among prey species and depth zones (intertidal vs subtidal), but poorly dependant upon other environmental and community structure factors. Results for gastropods are currently being analysed.
Pellicer-Chover, Hilario; Peñarrocha-Oltra, David; Aloy-Prosper, Amparo; Sanchis-Gonzalez, José-Carlos; Peñarrocha-Diago, Miguel
2017-01-01
Background To compare the technique of high speed drilling with irrigation and low speed drilling without irrigation in order to evaluate the success rate and peri-implant bone loss at 12 months of follow-up. Material and Methods A randomized, controlled, parallel-group clinical trial was carried out in patients requiring dental implants to rehabilitate their unitary edentulism. Patients were recruited from the Oral Surgery Unit of the University of Valencia (Spain) between September 2014 and August 2015. Patients who met the inclusion criteria were randomized to two groups: group A (high-speed drilling with irrigation) and group B (low-speed drilling without irrigation). The success rate and peri-implant bone loss were recorded at 12 months of follow-up. Results Twenty-five patients (9 men and 16 women) with 30 implants were enrolled in the study: 15 implants in group A and 15 implants in group B. The mean bone loss of the implants in group A and group B was 0.83 ± 0.73 mm and 0.62 ± 0.70 mm, respectively (p > 0.05). In the maxilla, the bone loss was 1.04 ± 0.63 mm in group A and 0.71 ± 0.36 mm in group B (p > 0.05), while bone loss in the mandible was 0.59 ± 0.80 mm in group A and 0.69 ± 0.77 mm in group B (p > 0.05). The implant success rate at 12 months was 93.3% in group A and 100% in group B. Conclusions Within the limitations of the study, the low-speed drilling technique presented peri-implant bone loss outcomes similar to those of the conventional drilling technique at 12 months of follow-up. Key words:Low-speed without irrigation, drilling technique. PMID:29053645
Marchand, Catherine; Chen, Gaoping; Tran-Khanh, Nicolas; Sun, Jun; Chen, Hongmei; Buschmann, Michael D; Hoemann, Caroline D
2012-03-01
This study analyzed the long-term cartilage and subchondral bone repair of microdrilled defects treated with chitosan glycerol-phosphate/blood implant, using thrombin (Factor IIa) to accelerate in situ solidification. We also evaluated the cartilage repair response to six smaller microdrill holes compared with two larger holes. Bilateral knee trochlear cartilage defects were created in n=8 skeletally mature rabbits, drilled with six proximal 0.5 mm and two distal 0.9 mm holes, then covered with in situ-solidified IIa-implants (treated) or with IIa-alone (control). After 6.5 months of repair, cartilage repair tissues were analyzed by histological scoring and histomorphometry for hyaline matrix characteristics and osseous integration. Subchondral repair bone was analyzed by 3D microcomputed tomography and compared to acute defects (n=6) and intact trochlea (n=8). Implant-treated cartilage repair tissues had higher structural integrity through the entire defect (p=0.02), twofold higher percent staining for glycosaminoglycan (p=0.0004), and ~24% more collagen type II staining over the smaller drill holes (p=0.008) compared with controls. Otherwise, hole diameter had no specific effect on cartilage repair. The subchondral bone plate was partially restored in treated and control defects but less dense than intact trochlea, with evidence of incomplete regeneration of the calcified cartilage layer. More residual drill holes (p=0.054) were detected in control versus treated defects, and control defects with more than 40% residual holes presented abnormally thicker trabeculae compared with treated defects. Low osteoclast numbers after 6.5 months repair suggested that bone was no longer remodeling. The subchondral bone plate surrounding the defects exhibited a significant thickening compared with age-matched intact trochlea. These data suggest that debridement and drilling can lead to long-term subchondral bone changes outside the cartilage defect. Compared with drilled controls, chitosan implants solidified with thrombin elicited a more hyaline and structurally integrated osteochondral unit, features needed for long-term durability.
ERIC Educational Resources Information Center
Holburn, C. Steven; Dougher, Michael J.
1985-01-01
Techniques for training a severely retarded blind client to exit his living unit during a fire drill used a combination of negative and positive reinforcement. Following a shaping procedure, the client learned to leave his living unit from any internal point through generalization training and subsequent test probes. (Author/CL)
ERIC Educational Resources Information Center
United Career Center, Clarksburg, WV.
This competency-based education curriculum for teaching the orientation and safety program for the oil and gas industry in West Virginia is organized into seven units. These units cover the following topics: introduction to oil and gas, first aid, site preparation, drilling operations, equipment familiarity, well completion, and preparation for…
46 CFR 108.601 - Crane design.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Crane design. 108.601 Section 108.601 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Cranes Cranes § 108.601 Crane design. (a) Each crane and crane foundation on a unit must be designed in accordance with the American Petroleum...
46 CFR 108.601 - Crane design.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Crane design. 108.601 Section 108.601 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Cranes Cranes § 108.601 Crane design. (a) Each crane and crane foundation on a unit must be designed in accordance with the American Petroleum...
ERIC Educational Resources Information Center
GRIFFIN, WILLIAM J.
AN ANALYSIS OF "T-UNITS" (THE MINIMAL TERMINABLE SYNTACTIC UNITS ALLOWED BY THE GRAMMAR OF ENGLISH), AS FOUND IN CHILDREN'S WRITING, IS A MORE SENSITIVE MEASURE OF GROWTH OF SYNTACTIC SKILL THAN TRADITIONAL CRITERIA. HUNT'S 1965 COMPARATIVE ANALYSIS OF CLASSROOM WRITING OF FOURTH-, EIGHTH-, AND 12TH-GRADE CHILDREN, AND OF MAGAZINE…
Estimating usable resources from historical industry data
Cargill, S.M.; Root, D.H.; Bailey, E.H.
1981-01-01
Historical production statistics are used to predict the quantity of remaining usable resources. The commodities considered are mercury, copper and its byproducts gold and silver, and petroleum; the production and discovery data are for the United States. The results of the study indicate that the cumulative return per unit of effort, herein measured as grade of metal ores and discovery rate of recoverable petroleum, is proportional to a negative power of total effort expended, herein measured as total ore mined and total exploratory wells or footage drilled. This power relationship can be extended to some limiting point (a lower ore grade or a maximum number of exploratory wells or footage), and the apparent quantity of available remaining resource at that limit can be calculated. For mercury ore of grades at and above 0.1 percent, the remaining usable resource in the United States is calculated to be 54 million kg (1,567,000 flasks). For copper ore of grades at and above 0.2 percent, the remaining usable copper resource is calculated to be 270 million metric tons (298 million short tons); remaining resources of its by-products gold and silver are calculated to be 3,656 metric tons (118 million troy ounces) and 64,676 metric tons (2,079 million troy ounces), respectively. The undiscovered recoverable crude oil resource in the conterminous United States, at 3 billion feet of additional exploratory drilling, is calculated to be nearly 37.6 billion barrels; the undiscovered recoverable petroleum resource in the Permian basin of western Texas and southeastern New Mexico, at 300 million feet of additional exploratory drilling or 50,000 additional exploratory wells, is calculated to be about 6.2 billion BOE (barrels of oil equivalent).
NASA Astrophysics Data System (ADS)
Mansouri, E.; Feizi, F.; Karbalaei Ramezanali, A. A.
2015-07-01
Ground magnetic anomaly separation using reduction-to-the-pole (RTP) technique and the fractal concentration-area (C-A) method has been applied to the Qoja-Kandi prosepecting area in NW Iran. The geophysical survey that resulted in the ground magnetic data was conducted for magnetic elements exploration. Firstly, RTP technique was applied for recognizing underground magnetic anomalies. RTP anomalies was classified to different populations based on this method. For this reason, drilling points determination with RTP technique was complicated. Next, C-A method was applied on the RTP-Magnetic-Anomalies (RTP-MA) for demonstrating magnetic susceptibility concentration. This identification was appropriate for increasing the resolution of the drilling points determination and decreasing the drilling risk, due to the economic costs of underground prospecting. In this study, the results of C-A Modeling on the RTP-MA are compared with 8 borehole data. The results show there is good correlation between anomalies derived via C-A method and log report of boreholes. Two boreholes were drilled in magnetic susceptibility concentration, based on multifractal modeling data analyses, between 63 533.1 and 66 296 nT. Drilling results show appropriate magnetite thickness with the grades greater than 20 % Fe total. Also, anomalies associated with andesite units host iron mineralization.
Ellis, William L.; Swolfs, Henri S.
1983-01-01
Observations made during drilling and subsequent testing of the USW G-1 drill hole, Yucca Mountain, Nevada, provide qualitative insights into the in- situ geomechanical characteristics of the layered tuff units penetrated by the hole. Substantial drilling-fluid losses, and the occurrence of drilling-induced fracturing, are understandable in terms of the low, minimum horizontal stress magnitudes interpreted from six hydraulic-fracturing stress measurements conducted between hole depths of 640 and 1,300 meters. Although not confirmed directly by the hydraulic-fracturing data, other observations suggest that the minimum stress magnitudes in the more densely welded and brittle tuff layers may be even smaller than in the less welded and more ductile rocks. Stress-induced borehole ellipticity observed along most of the length of USW G-1 indicates that the horizontal stress components are not equal, and that the concentration of these stresses around the hole is sufficient to locally exceed the yield strength of the rock. The low, minimum horizontal stress magnitudes, perhaps variable with lithology, and the indications from borehole ellipticity of a high in-situ stress/strength ratio, indicate the need for further studies to characterize the structural and geomechanical properties of the rocks at depth in Yucca Mountain.
The Auto-Gopher: A Wireline Rotary-Percussive Deep Sampler
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Zacny, Kris; Badescu, Mircea; Lee, Hyeong Jae; Sherrit, Stewart; Bao, Xiaoqi; Paulsen, Gale L.; Beegle, Luther
2016-01-01
Accessing regions on planetary bodies that potentially preserved biosignatures or are presently habitable is vital to meeting NASA solar system "Search for Life" exploration objectives. To address these objectives, a wireline deep rotary-percussive corer called Auto-Gopher was developed. The percussive action provides effective material fracturing and the rotation provides effective cuttings removal. To increase the drill's penetration rate, the percussive and rotary motions are operated simultaneously. Initially, the corer was designed as a percussive mechanism for sampling ice and was demonstrated in 2005 in Antarctica reaching about 2 m deep. The lessons learned suggested the need to use a combination of rotation and hammering to maximize the penetration rate. This lesson was implemented into the Auto-Gopher-I deep drill which was demonstrated to reach 3-meter deep in gypsum. The average drilling power that was used has been in the range of 100-150 Watt, while the penetration rate was approximately 2.4 m/hr. Recently, a task has started with the goal to develop Auto-Gopher-II that is equipped to execute all the necessary functions in a single drilling unit. These functions also include core breaking, retention and ejection in addition drilling. In this manuscript, the Auto-Gopher-II, its predecessors and their capability are described and discussed.
Radiation safety role in institutional disaster planning.
Classic, K L; Knutson, A H; Smith, G D
2000-05-01
United States Nuclear Regulatory Commission (NRC) materials license applicants (non-nuclear power) must submit spill procedures with their application. While our counterparts in the nuclear power industry historically have concerned themselves with disaster drills and evacuation plans as a result of fire, explosion, or an act of terrorism, other licensees are looking only at minor spills of unsealed radioactive material and only at tile radiation hazard. Beyond NRC regulations, various oversight and accrediting organizations require, or at a minimum encourage, a written disaster plan outlining actions to be taken for events likely to occur in the region of the institution. Some of these organizations require drills to practice implementation of the written plan. On 5 May 1999, Mayo Clinic performed a wide-scale disaster drill involving Rochester City and Olmsted County response organizations, and several Mayo Clinic departments. Planning took several months; the drill took approximately three hours. Participants gathered at several meetings post-drill for "debriefing" sessions to discuss successes, areas for improvement, and lessons learned. There were three overriding lessons learned: critical responders need special identification to allow access to the disaster site; initial victim surveys are for gross contamination only; and access to the potentially contaminated disaster site might take weeks or months following a real event.
Effective Dust Control Systems on Concrete Dowel Drilling Machinery
Echt, Alan S.; Sanderson, Wayne T.; Mead, Kenneth R.; Feng, H. Amy; Farwick, Daniel R.; Farwick, Dawn Ramsey
2016-01-01
Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels. PMID:27074062
Origin and depositional environment of clastic deposits in the Hilo drill hole, Hawaii
Beeson, M.H.; Clague, D.A.; Lockwood, J.P.
1996-01-01
Volcaniclastic units cored at depths of about 87, 164, 178, 226, and 246 m below sea level and carbonate units located between depths of 27 and 53 m below sea level in the Hilo drill core were found to be deposited at or near sea level. Four of these units are hydroclastic deposits, formed when subaerially erupted Mauna Loa lava flows entered the ocean and fragmented to produce quenched, glassy fragments during hydrovolcanic explosions. Ash units 24 and 26, at 178 m depth, accumulated at sea level in a freshwater bog. They contain pyroxenes crystallized from tholeiitic magma that we infer erupted explosively at the summit of Kilauea volcano. Two carbon-rich layers from these ashes have a weighted average radiocarbon age of 38.6 ?? 0.9 ka; the ashes probably correlate with the oldest and thickest part of the Pahala ash. Ash unit 44, at the transition from Mauna Kea to Mauna Loa lava flows, was probably nearly 3.2 m thick and is inferred to be equivalent to the lower thick part of the composite Homelani ash mapped in Hilo and on the flanks of Mauna Kea. The age of this part of Homelani ash is between 128 ?? 33 and 200 ?? 10 ka; it may have erupted subglacially during the Pohakuloa glacial maxima on Mauna Kea. Beach sand units 12 and 22 were derived from nearby Mauna Loa and Mauna Kea lava flows. The middle of beach sand unit 38 was derived mainly from lava erupted near the distal end of the subaerial east rift zone of Kilauea volcano; these sands were transported about 33 km northwest to Hilo Bay by prevailing longshore currents. Combined age, depth, and sea level markers in the core allow us to determine that lava flow recurrence intervals averaged one flow every 4 kyr during the past 86 kyr and one flow every 16 kyr between 86 and 200 ka at the drill site and that major explosive eruptions that deposit thick ash in Hilo have occurred only twice in the last 400 kyr. These recurrence intervals support the moderate lava flow hazard zonation (zone 3) for coastal Hilo previously determined from surficial mapping.
Bergstrom, Stig M.; Huff, W.D.; Koren', T.; Larsson, K.; Ahlberg, P.; Kolata, Dennis R.
1999-01-01
A core drilling at Ro??sta??nga, the first such drilling ever undertaken in this classical Lower Paleozoic outcrop area in W-central Scania, penetrated an approximately 96 m thick succession of Lower Silurian-upper Middle Ordovician marine rocks. The drilling was stopped at a depth of 132.59 m in an interval of crushed rocks, probably a prominent fault zone, that proved impossible to drill through. The core contains a stratigraphical sequence from the basal Upper Llandoverian (Telychian Stage) to the upper Middle Ordovician (Harjuan Stage). The following units are recognized in descending stratigraphic order (approximate thickness in parenthesis): Kallholn Formation (35 m), Lindega??rd Mudstone (27 m), Fja??cka Shale (13 m), Mossen Formation (0.75 m), Skagen Formation (2.5 m), and Sularp Shale (19 m+). Except for the Skagen Formation, the drilled sequence consists of shales and mudstones with occasional thin limestone interbeds and is similar to coeval successions elsewhere in Scania. There are 11 K-bentonite beds in the Kallholn Formation, 2(3?) in the Lindega??rd Mudstone, 1 in the Mossen Formation, 7 in the Skagen Formation, and 33 in the Sularp Shale. The core serves as an excellent Lower Silurian-upper Middle Ordovician reference standard not only for the Ro??sta??nga area but also for southernmost Sweden in general because the cored sequence is the stratigraphically most complete one known anywhere in this region.
Shao, Zhen-Xuan; Wang, Jian-Shun; Lin, Zhong-Ke; Ni, Wen-Fei; Wang, Xiang-Yang
2017-01-01
Transpedicular transdiscal screw fixation is an alternative technique used in lumbar spine fixation; however, it requires an accurate screw trajectory. The aim of this study is to design a novel 3D-printed custom drill guide and investigate its accuracy to guide the trajectory of transpedicular transdiscal (TPTD) lumbar screw fixation. Dicom images of thirty lumbar functional segment units (FSU, two segments) of L1–L4 were acquired from the PACS system in our hospital (patients who underwent a CT scan for other abdomen diseases and had normal spine anatomy) and imported into reverse design software for three-dimensional reconstructions. Images were used to print the 3D lumbar models and were imported into CAD software to design an optimal TPTD screw trajectory and a matched custom drill guide. After both the 3D printed FSU models and 3D-printed custom drill guide were prepared, the TPTD screws will be guided with a 3D-printed custom drill guide and introduced into the 3D printed FSU models. No significant statistical difference in screw trajectory angles was observed between the digital model and the 3D-printed model (P > 0.05). Our present study found that, with the help of CAD software, it is feasible to design a TPTD screw custom drill guide that could guide the accurate TPTD screw trajectory on 3D-printed lumbar models. PMID:28717599
Shallow Aquifer Methane Gas Source Assessment
NASA Astrophysics Data System (ADS)
Coffin, R. B.; Murgulet, D.; Rose, P. S.; Hay, R.
2014-12-01
Shale gas can contribute significantly to the world's energy demand. Hydraulic fracturing (fracking) on horizontal drill lines developed over the last 15 years makes formerly inaccessible hydrocarbons economically available. From 2000 to 2035 shale gas is predicted to rise from 1% to 46% of the total natural gas for the US. A vast energy resource is available in the United States. While there is a strong financial advantage to the application of fracking there is emerging concern about environmental impacts to groundwater and air quality from improper shale fracking operations. Elevated methane (CH4) concentrations have been observed in drinking water throughout the United States where there is active horizontal drilling. Horizontal drilling and hydraulic-fracturing can increase CH4 transport to aquifers, soil and the vadose zone. Seepage can also result from casing failure in older wells. However, there is strong evidence that elevated CH4 concentrations can be associated with topographic and hydrogeologic features, rather than shale-gas extraction processes. Carbon isotope geochemistry can be applied to study CH4source(s) in shallow vadose zone and groundwater systems. A preliminary TAMU-CC isotope data set from samples taken at different locations in southern Texas shows a wide range of CH4 signatures suggesting multiple sources of methane and carbon dioxide. These data are interpreted to distinguish regions with methane contributions from deep-sourced horizontal drilling versus shallow system microbial production. Development of a thorough environmental assessment using light isotope analysis can provide understanding of shallow anthropogenic versus natural CH4sources and assist in identifying regions that require remedial actions.