Sample records for drinking water level

  1. Ammonia pollution characteristics of centralized drinking water sources in China.

    PubMed

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  2. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    PubMed

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  3. Geographical distribution of drinking-water with high iodine level and association between high iodine level in drinking-water and goitre: a Chinese national investigation.

    PubMed

    Shen, Hongmei; Liu, Shoujun; Sun, Dianjun; Zhang, Shubin; Su, Xiaohui; Shen, Yanfeng; Han, Hepeng

    2011-07-01

    Excessive iodine intake can cause thyroid function disorders as can be caused by iodine deficiency. There are many people residing in areas with high iodine levels in drinking-water in China. The main aim of the present study was to map the geographical distribution of drinking-water with high iodine level in China and to determine the relationship between high iodine level in drinking-water and goitre prevalence. Iodine in drinking-water was measured in 1978 towns of eleven provinces in China, with a total of 28,857 water samples. We randomly selected children of 8-10 years old, examined the presence of goitre and measured their urinary iodine in 299 towns of nine provinces. Of the 1978 towns studied, 488 had iodine levels between 150 and 300 μg/l in drinking-water, and in 246 towns, the iodine level was >300 μg/l. These towns are mainly distributed along the original Yellow River flood areas, the second largest river in China. Of the 56 751 children examined, goitre prevalence was 6.3 % in the areas with drinking-water iodine levels of 150-300 μg/l and 11.0 % in the areas with drinking-water iodine >300 μg/l. Goitre prevalence increased with water and urinary iodine levels. For children with urinary iodine >1500 μg/l, goitre prevalence was 3.69 times higher than that for those with urinary iodine levels of 100-199 μg/l. The present study suggests that drinking-water with high iodine levels is distributed in eleven provinces of China. Goitre becomes more prevalent with the increase in iodine level in drinking-water. Therefore, it becomes important to prevent goitre through stopping the provision of iodised salt and providing normal drinking-water iodine through pipelines in these areas in China.

  4. Fluoride and bacterial content of bottled drinking water versus municipal tap water.

    PubMed

    Mythri, H; Chandu, G N; Prashant, G M; Subba Reddy, V V

    2010-01-01

    Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs) per milliliter. Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.

  5. Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern.

    PubMed

    Baken, Kirsten A; Sjerps, Rosa M A; Schriks, Merijn; van Wezel, Annemarie P

    2018-06-13

    Toxicological risk assessment of contaminants of emerging concern (CEC) in (sources of) drinking water is required to identify potential health risks and prioritize chemicals for abatement or monitoring. In such assessments, concentrations of chemicals in drinking water or sources are compared to either (i) health-based (statutory) drinking water guideline values, (ii) provisional guideline values based on recent toxicity data in absence of drinking water guidelines, or (iii) generic drinking water target values in absence of toxicity data. Here, we performed a toxicological risk assessment for 163 CEC that were selected as relevant for drinking water. This relevance was based on their presence in drinking water and/or groundwater and surface water sources in downstream parts of the Rhine and Meuse, in combination with concentration levels and physicochemical properties. Statutory and provisional drinking water guideline values could be derived from publically available toxicological information for 142 of the CEC. Based on measured concentrations it was concluded that the majority of substances do not occur in concentrations which individually pose an appreciable human health risk. A health concern could however not be excluded for vinylchloride, trichloroethene, bromodichloromethane, aniline, phenol, 2-chlorobenzenamine, mevinphos, 1,4-dioxane, and nitrolotriacetic acid. For part of the selected substances, toxicological risk assessment for drinking water could not be performed since either toxicity data (hazard) or drinking water concentrations (exposure) were lacking. In absence of toxicity data, the Threshold of Toxicological Concern (TTC) approach can be applied for screening level risk assessment. The toxicological information on the selected substances was used to evaluate whether drinking water target values based on existing TTC levels are sufficiently protective for drinking water relevant CEC. Generic drinking water target levels of 37 μg/L for Cramer class I substances and 4 μg/L for Cramer class III substances in drinking water were derived based on these CEC. These levels are in line with previously reported generic drinking water target levels based on original TTC values and are shown to be protective for health effects of the majority of contaminants of emerging concern evaluated in the present study. Since the human health impact of many chemicals appearing in the water cycle has been studied insufficiently, generic drinking water target levels are useful for early warning and prioritization of CEC with unknown toxicity in drinking water and its sources for future monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Geographical mapping of fluoride levels in drinking water sources in Nigeria.

    PubMed

    Akpata, Enosakhare S; Danfillo, I S; Otoh, E C; Mafeni, J O

    2009-12-01

    Knowledge of fluoride levels in drinking water is of importance in dental public health, yet this information is lacking, at national level, in Nigeria. To map out fluoride levels in drinking water sources in Nigeria. Fluoride levels in drinking water sources from 109 randomly selected Local Government Areas (LGAs) in the 6 Nigerian geopolitical zones were determined. From the results, maps showing LGAs with fluoride concentrations exceeding 0.3 ppm, were drawn. ANOVA and t-test were used to determine the significance of the differences between the fluoride levels in the drinking water sources. Fluoride levels were low in most parts of the country, being 0.3 ppm or less in 62% of the LGAs. Fluoride concentrations were generally higher in North Central geopolitical zone, than the other zones in the country (p<0.05). In a few drinking water sources, fluoride concentrations exceeded 1.5 ppm, but was as high as 6.7 ppm in one well. Only 9% of the water sources were from waterworks. Most of the water sources in Nigeria contained low fluoride levels; but few had excessive concentrations and need to be partially defluoridated, or else alternative sources of drinking water provided for the community.

  7. Drinking Water Maximum Contaminant Levels (MCLs)

    EPA Pesticide Factsheets

    National Primary Drinking Water Regulations (NPDWRs or primary standards) are legally enforceable standards that apply to public water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water.

  8. Nitrate in drinking water and colorectal cancer risk: A nationwide population-based cohort study.

    PubMed

    Schullehner, Jörg; Hansen, Birgitte; Thygesen, Malene; Pedersen, Carsten B; Sigsgaard, Torben

    2018-07-01

    Nitrate in drinking water may increase risk of colorectal cancer due to endogenous transformation into carcinogenic N-nitroso compounds. Epidemiological studies are few and often challenged by their limited ability of estimating long-term exposure on a detailed individual level. We exploited population-based health register data, linked in time and space with longitudinal drinking water quality data, on an individual level to study the association between long-term drinking water nitrate exposure and colorectal cancer (CRC) risk. Individual nitrate exposure was calculated for 2.7 million adults based on drinking water quality analyses at public waterworks and private wells between 1978 and 2011. For the main analyses, 1.7 million individuals with highest exposure assessment quality were included. Follow-up started at age 35. We identified 5,944 incident CRC cases during 23 million person-years at risk. We used Cox proportional hazards models to estimate hazard ratios (HRs) of nitrate exposure on the risk of CRC, colon and rectal cancer. Persons exposed to the highest level of drinking water nitrate had an HR of 1.16 (95% CI: 1.08-1.25) for CRC compared with persons exposed to the lowest level. We found statistically significant increased risks at drinking water levels above 3.87 mg/L, well below the current drinking water standard of 50 mg/L. Our results add to the existing evidence suggesting increased CRC risk at drinking water nitrate concentrations below the current drinking water standard. A discussion on the adequacy of the drinking water standard in regards to chronic effects is warranted. © 2018 UICC.

  9. Correlation between lead levels in drinking water and mothers' breast milk: Dakahlia, Egypt.

    PubMed

    Mandour, Raafat A; Ghanem, Abdel-Aziz; El-Azab, Somaia M

    2013-04-01

    This study was performed on fifty-two drinking tap water samples (surface and groundwater) collected from different districts of Dakahlia Governorate and fifty-two breast milk samples from lactating mothers hosted in Dakahlia Governorate hospitals. All these samples were subjected to lead analysis. Lead level in drinking groundwater showed higher levels than in drinking surface water. Also, an elevation of lead levels in breast milk of mothers drinking groundwater was noticed when compared with that of mothers drinking surface water. The comparison between mean lead levels in drinking water and mothers' breast milk samples showed positive relationship. Lead concentrations in breast milk of the studied samples were elevated by exposure to smoking. We conclude that prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood. Also, we recommend that chemical analyses must be carried out periodically for the surface and groundwater to ensure the water suitability for drinking purposes. Passive exposure to smoking during lactation should be avoided. Capsule: Prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood.

  10. Trihalomethanes in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    PubMed

    Kuo, Hsin-Wei; Chen, Pei-Shih; Ho, Shu-Chen; Wang, Li-Yu; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were (1) to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of rectal cancer development and (2) to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of TTHM on risk of developing rectal cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to rectal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All rectal cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from the Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for rectal cancer occurrence was 1.04 (0.88-1.22) for individuals who resided in municipalities served by drinking water with a TTHM exposure >or=4.9 ppb. There was no evidence of an interaction of drinking-water TTHM levels with low Ca intake via drinking water. However, evidence of an interaction was noted between drinking-water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of rectal cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing rectal cancer risk will aid in public policymaking and standard setting.

  11. Trihalomethanes in drinking water and the risk of death from esophageal cancer: does hardness in drinking water matter?

    PubMed

    Tsai, Shang-Shyue; Chiu, Hui-Fen; Yang, Chun-Yuh

    2013-01-01

    The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of esophageal cancer occurrence and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop esophageal cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to esophageal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All esophageal cancer deaths in the 53 municipalities from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level <4.9 ppb, the adjusted odds ratio (OR) with 95% confidence interval (CI) for esophageal cancer was 1.02 (0.84-1.23) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. There was evidence of an interaction between drinking-water TTHM levels and low Ca and Mg intake. Our findings showed that the correlation between TTHM exposure and risk of esophageal cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effect modification by Ca and Mg intake from drinking water on the correlation between TTHM exposure and risk of esophageal cancer occurrence. Increased knowledge of the interaction between Ca, Mg, and TTHM in reducing risk of esophageal cancer development will aid in public policymaking and standard setting for drinking water.

  12. Health implications of PAH release from coated cast iron drinking water distribution systems in The Netherlands.

    PubMed

    Blokker, E J Mirjam; van de Ven, Bianca M; de Jongh, Cindy M; Slaats, P G G Nellie

    2013-05-01

    Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. We estimated the potential human cancer risk from PAHs in coated cast iron water mains. In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations.

  13. Health Implications of PAH Release from Coated Cast Iron Drinking Water Distribution Systems in the Netherlands

    PubMed Central

    van de Ven, Bianca M.; de Jongh, Cindy M.

    2013-01-01

    Background: Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. Objective: We estimated the potential human cancer risk from PAHs in coated cast iron water mains. Method: In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. Results: During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. Conclusions: The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations. PMID:23425894

  14. [The dose-effect relationship of water fluoride levels and renal damage in children].

    PubMed

    Liu, Jun-Ling; Xia, Tao; Yu, Yao-Yong; Sun, Xian-Zhong; Zhu, Qilong; He, Weihong; Zhang, Ming; Wang, Aiguo

    2005-05-01

    To explore the dose-effect relationship of water fluoride levels and renal damage in children and observe the difference of renal function between high-loaded fluoride people and dental fluorosis people in the same water fluoride level region. 210 children were divided into seven groups in term of drinking water fluoride levels and whether they suffered from dental fluorosis. Fluoride concentrations in urine and serum and activities of urine NAG and gamma-GT were determined. The urine and serum fluoride of high-loaded fluoride people and dental fluorosis people increased compared with control, moreover fluoride contents in urine and serum increased gradually with the increase of fluoride level in drinking water. Urine NAG and gamma-GT activities significantly increased in dental fluorosis people from area of 2.58 mg/L fluoride in drinking water and in those two groups from area of 4.51 mg/L fluoride in drinking water. Moreover, there existed an obvious dose-effect relationship between the drinking water fluoride concentration and NAG and gamma-GT activity. Over 2.0 mg/L fluoride in drinking water can cause renal damage in children, and the damage degree increases with the drinking water fluoride content. Renal damage degree is not related to whether the children suffered from dental fluorosis and mainly due to water fluoride concentration.

  15. Determining the optimal fluoride concentration in drinking water for fluoride endemic regions in South India.

    PubMed

    Viswanathan, Gopalan; Jaswanth, A; Gopalakrishnan, S; Siva Ilango, S; Aditya, G

    2009-10-01

    Fluoride ion in drinking water is known for both beneficial and detrimental effects on health. The prevalence of fluorosis is mainly due to the intake of large quantities of fluoride through drinking water owing to more than 90% bioavailability. The objective of this study is to predict optimal fluoride level in drinking water for fluoride endemic regions by comprising the levels of fluoride and other water quality parameters in drinking water, prevalence of fluorosis, fluoride intake through water, food and beverages such as tea and coffee and also considering the progressive accumulation of fluoride in animal bones, by comparing with non fluoride endemic areas comprise of the same geological features with the aid of regression analysis. Result of this study shows that increase of fluoride level above 1.33 mg/l in drinking water increases the community fluorosis index (CFI) value more than 0.6, an optimum index value above which fluorosis is considered to be a public health problem. Regression plot between water fluoride and bone fluoride levels indicates that, every increase of 0.5mg/l unit of water fluoride level increases the bone fluoride level of 52 mg/kg unit within 2 to 3 years. Furthermore, the consumption of drinking water containing more than 0.65 mg/l of fluoride can raise the total fluoride intake per day more than 4 mg, which is the optimum fluoride dose level recommended for adults by the Agency for Toxic Substances and Disease Registry. From the result, the people in fluoride endemic areas in South India are advised to consume drinking water with fluoride level within the limit of 0.5 to 0.65 mg/l to avoid further fluorosis risk.

  16. Effect modification of the association between trihalomethanes and pancreatic cancer by drinking water hardness: evidence from an ecological study.

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh

    2010-07-01

    The objective of this study was to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of pancreatic cancer and to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop pancreatic cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to pancreatic cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All pancreatic cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level < 4.9ppb, the adjusted OR (95% CI) for pancreatic cancer was 1.01 (0.85-1.21) for individuals who resided in municipalities served by drinking water with a TTHM exposure > 4.9ppb. There was no evidence of an interaction of drinking water TTHM levels with low Ca intake via drinking water. However, we observed evidence of an interaction between drinking water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of pancreatic cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing pancreatic cancer risk will aid in public policy making and standard setting. 2010 Elsevier Inc. All rights reserved.

  17. Nitrates in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    PubMed

    Chang, Chih-Ching; Chen, Chih-Cheng; Wu, Deng-Chuang; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and increased risk of death from rectal cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on development of rectal cancer. A matched case-control study was used to investigate the relationship between the risk of death from rectal cancer and exposure to nitrate in drinking water in Taiwan. All rectal cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water was collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure level was <0.38 ppm, the adjusted odds ratio (OR) (95% CI) for rectal cancer occurrence was 1.15 (1.01-1.32) for individuals who resided in municipalities served by drinking water with a NO(3)-N exposure > or =0.38 ppm. There was no apparent evidence of an interaction between drinking water NO(3)-N levels with low Mg intake via drinking water. However, evidence of a significant interaction was noted between drinking-water NO(3)-N concentrations and Ca intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of rectal cancer development was influenced by Ca in drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of rectal cancer occurrence. Increased knowledge of the mechanistic interaction between Ca and NO(3)-N in reducing rectal cancer risk will aid in public policymaking and setting threshold standards.

  18. Human Health Benchmarks for Pesticides

    EPA Pesticide Factsheets

    Advanced testing methods now allow pesticides to be detected in water at very low levels. These small amounts of pesticides detected in drinking water or source water for drinking water do not necessarily indicate a health risk. The EPA has developed human health benchmarks for 363 pesticides to enable our partners to better determine whether the detection of a pesticide in drinking water or source waters for drinking water may indicate a potential health risk and to help them prioritize monitoring efforts.The table below includes benchmarks for acute (one-day) and chronic (lifetime) exposures for the most sensitive populations from exposure to pesticides that may be found in surface or ground water sources of drinking water. The table also includes benchmarks for 40 pesticides in drinking water that have the potential for cancer risk. The HHBP table includes pesticide active ingredients for which Health Advisories or enforceable National Primary Drinking Water Regulations (e.g., maximum contaminant levels) have not been developed.

  19. Review of epidemiological studies on drinking water hardness and cardiovascular diseases.

    PubMed

    Monarca, Silvano; Donato, Francesco; Zerbini, Ilaria; Calderon, Rebecca L; Craun, Gunther F

    2006-08-01

    Major risk factors do not entirely explain the worldwide variability of morbidity and mortality due to cardiovascular disease. Environmental exposures, including drinking water minerals may affect cardiovascular disease risks. We conducted a qualitative review of the epidemiological studies of cardiovascular disease and drinking water hardness and calcium and magnesium levels. Many but not all ecological studies found an inverse (i.e., protective) association between cardiovascular disease mortality and water hardness, calcium, or magnesium levels; but results are not consistent. Some case-control studies and one cohort study found either a reduced cardiovascular disease mortality risk with increased drinking water magnesium levels or an increased risk with low magnesium levels. However, the analytical studies provide little evidence that cardiovascular risks are associated with drinking water hardness or calcium levels. Information from epidemiological and other studies supports the hypothesis that a low intake of magnesium may increase the risk of dying from, and possibly developing, cardiovascular disease or stroke. Thus, not removing magnesium from drinking water, or in certain situations increasing the magnesium intake from water, may be beneficial, especially for populations with an insufficient dietary intake of the mineral.

  20. Arsenic levels in cutaneous appendicular organs are correlated with digitally evaluated hyperpigmented skin of the forehead but not the sole in Bangladesh residents.

    PubMed

    Yajima, Ichiro; Ahsan, Nazmul; Akhand, Anwarul Azim; Al Hossain, Mm Aeorangajeb; Yoshinaga, Masafumi; Ohgami, Nobutaka; Iida, Machiko; Oshino, Reina; Naito, Mariko; Wakai, Kenji; Kato, Masashi

    2018-01-01

    There has been no report showing the effect of arsenic level on digitized skin pigmentation level, a typical diagnostic marker for arsenicosis. Correlations among history of drinking well water, arsenic levels in hair and toenails, and digitalized skin pigmentation levels (L*-value) in sunlight-exposed (forehead) and unexposed (sole) skin areas digitally evaluated by using a reflectance spectrophotometer were examined in 150 residents of Bangladesh. Univariate analysis showed that arsenic levels in hair and toenails of subjects with a history of drinking well water were 10.6-fold and 7.1-fold higher, respectively, than those in subjects without a history of drinking well water. The mean L*-value of foreheads, but not that of soles, in subjects with a history of drinking well water was 1.15-fold lower (more pigmented) than that in subjects without a history of drinking well water. Significant correlations were found between duration of drinking well water and arsenic concentrations in hair (r=0.63; P<0.01) and toenails (r=0.60; P<0.01). Multivariate analysis showed that the arsenic levels in hair and toenails and the duration of drinking well water were strongly correlated with the digitized pigmented level of the forehead but not that of the sole. An increase in the duration of drinking well water may increase hyperpigmentation in the forehead, but not that in the sole, through an increased arsenic level in the human body as shown in cutaneous appendicular organs (hair and toenails).

  1. Relationship between drinking water and toenail arsenic concentrations among a cohort of Nova Scotians.

    PubMed

    Yu, Zhijie M; Dummer, Trevor J B; Adams, Aimee; Murimboh, John D; Parker, Louise

    2014-01-01

    Consumption of arsenic-contaminated drinking water is associated with increased cancer risk. The relationship between arsenic body burden, such as concentrations in human toenails, and arsenic in drinking water is not fully understood. We evaluated the relationship between arsenic concentrations in drinking water and toenail clippings among a cohort of Nova Scotians. A total of 960 men and women aged 35 to 69 years provided home drinking water and toenail clipping samples. Information on water source and treatment use and covariables was collected through questionnaires. Arsenic concentrations in drinking water and toenail clippings and anthropometric indices were measured. Private drilled water wells had higher arsenic concentrations compared with other dug wells and municipal drinking water sources (P<0.001). Among participants with drinking water arsenic levels ≥1 μg/l, there was a significant relationship between drinking water and toenail arsenic concentrations (r=0.46, P<0.0001). Given similar levels of arsenic exposure from drinking water, obese individuals had significantly lower concentrations of arsenic in toenails compared with those with a normal weight. Private drilled water wells were an important source of arsenic exposure in the study population. Body weight modifies the relationship between drinking water arsenic exposure and toenail arsenic concentrations.

  2. Livestock ownership and microbial contamination of drinking-water: Evidence from nationally representative household surveys in Ghana, Nepal and Bangladesh.

    PubMed

    Wardrop, Nicola A; Hill, Allan G; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Wright, Jim A

    2018-01-01

    Current priorities for diarrhoeal disease prevention include use of sanitation and safe water. There have been few attempts to quantify the importance of animal faeces in drinking-water contamination, despite the presence of potentially water-borne zoonotic pathogens in animal faeces. This study aimed to quantify the relationship between livestock ownership and point-of-consumption drinking-water contamination. Data from nationally representative household surveys in Nepal, Bangladesh, and Ghana, each with associated water quality assessments, were used. Multinomial regression adjusting for confounders was applied to assess the relationship between livestock ownership and the level of drinking-water contamination with E. coli. Ownership of five or more large livestock (e.g. cattle) was significantly associated with drinking-water contamination in Ghana (RRR=7.9, 95% CI=1.6 to 38.9 for medium levels of contamination with 1-31cfu/100ml; RRR=5.2, 95% CI=1.1-24.5 for high levels of contamination with >31cfu/100ml) and Bangladesh (RRR=2.4, 95% CI=1.3-4.5 for medium levels of contamination; non-significant for high levels of contamination). Ownership of eight or more poultry (chickens, guinea fowl, ducks or turkeys) was associated with drinking-water contamination in Bangladesh (RRR=1.5, 95% CI=1.1-2.0 for medium levels of contamination, non-significant for high levels of contamination). These results suggest that livestock ownership is a significant risk factor for the contamination of drinking-water at the point of consumption. This indicates that addressing human sanitation without consideration of faecal contamination from livestock sources will not be sufficient to prevent drinking-water contamination. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  3. Reducing Lead in School Drinking Water: A Case Study.

    ERIC Educational Resources Information Center

    Odell, Lee

    1991-01-01

    The Seattle School District began a program in 1990 to identify lead levels in the district's drinking water and to implement measures to lower any high lead levels. Recounts each of the seven steps of the program, discusses what the district found, and explains how it lowered lead levels in the drinking water. (MLF)

  4. [Bacteriological quality of drinking water in the City of Merida, Mexico].

    PubMed

    Flores-Abuxapqui, J J; Suárez-Hoil, G J; Puc-Franco, M A; Heredia-Navarrete, M R; Vivas-Rosel, M D; Franco-Monsreal, J

    1995-01-01

    With the aim of knowing the microbiological quality of drinking water in Merida, Yucatan, 383 paired samples of drinking water (two per house) were studied. Three hundred sixty four (95%) city water system samples and 283 (73.89%) tap water samples met the microbiological standards for drinking water. It was concluded that microbiological quality of drinking water from the city water system is satisfactory, except for the water system district Merida III, which has a significant aerobic plate count contamination level (21.7% of the samples). Domestic storage systems preserve water quality, with the exception of district Merida I, which has the highest level of contamination (4.8% of the samples) possibly from sewage water and fecal sources.

  5. Assessing the Association between Thermotolerant Coliforms in Drinking Water and Diarrhea: An Analysis of Individual-Level Data from Multiple Studies.

    PubMed

    Hodge, James; Chang, Howard H; Boisson, Sophie; Collin, Simon M; Peletz, Rachel; Clasen, Thomas

    2016-10-01

    Fecally contaminated drinking water is believed to be a major contributor to the global burden of diarrheal disease and a leading cause of mortality among young children. However, recent systematic reviews and results from blinded studies of water quality interventions have raised questions about the risk associated with fecally contaminated water, particularly as measured by thermotolerant coliform (TTC) bacteria, a WHO-approved indicator of drinking water quality. We investigated the association between TTC in drinking water and diarrhea using data from seven previous studies. We obtained individual-level data from available field studies that measured TTC levels in household-drinking water and reported prevalence of diarrhea among household members during the days prior to the visit. The combined data set included diarrhea prevalence for 26,518 individuals and 8,000 water samples from 4,017 households, yielding 45,052 observations. The odds of diarrhea increased for each log10 increase in TTC/100 mL by 18% (95% CI: 11, 26%) for children < 5 years old and 12% (95% CI: 8, 18%) for all ages. For all ages, the odds of diarrhea increased by 21%, 35% and 49% for those whose household water samples were from 11-100, 101-1,000, and > 1,000 TTC/100 mL, respectively compared to < 1 TTC/100 mL. We found no evidence of increased odds of diarrhea with contamination levels below 11 TTC/100 mL, either in adults or children. Our analysis of individual-level data shows increased risk of diarrhea with increasing levels of TTC in drinking water. These results suggest an association between fecally contaminated water and diarrheal disease and provides support for health-based targets for levels of TTC in drinking water and for interventions to improve drinking water quality to prevent diarrhea. Hodge J, Chang HH, Boisson S, Collin SM, Peletz R, Clasen T. 2016. Assessing the association between thermotolerant coliforms in drinking water and diarrhea: an analysis of individual level data from multiple studies. Environ Health Perspect 124:1560-1567; http://dx.doi.org/10.1289/EHP156.

  6. Assessing the Association between Thermotolerant Coliforms in Drinking Water and Diarrhea: An Analysis of Individual–Level Data from Multiple Studies

    PubMed Central

    Hodge, James; Chang, Howard H.; Boisson, Sophie; Collin, Simon M.; Peletz, Rachel; Clasen, Thomas

    2016-01-01

    Background: Fecally contaminated drinking water is believed to be a major contributor to the global burden of diarrheal disease and a leading cause of mortality among young children. However, recent systematic reviews and results from blinded studies of water quality interventions have raised questions about the risk associated with fecally contaminated water, particularly as measured by thermotolerant coliform (TTC) bacteria, a WHO-approved indicator of drinking water quality. Objectives: We investigated the association between TTC in drinking water and diarrhea using data from seven previous studies. Methods: We obtained individual-level data from available field studies that measured TTC levels in household-drinking water and reported prevalence of diarrhea among household members during the days prior to the visit. Results: The combined data set included diarrhea prevalence for 26,518 individuals and 8,000 water samples from 4,017 households, yielding 45,052 observations. The odds of diarrhea increased for each log10 increase in TTC/100 mL by 18% (95% CI: 11, 26%) for children < 5 years old and 12% (95% CI: 8, 18%) for all ages. For all ages, the odds of diarrhea increased by 21%, 35% and 49% for those whose household water samples were from 11–100, 101–1,000, and > 1,000 TTC/100 mL, respectively compared to < 1 TTC/100 mL. We found no evidence of increased odds of diarrhea with contamination levels below 11 TTC/100 mL, either in adults or children. Conclusions: Our analysis of individual-level data shows increased risk of diarrhea with increasing levels of TTC in drinking water. These results suggest an association between fecally contaminated water and diarrheal disease and provides support for health-based targets for levels of TTC in drinking water and for interventions to improve drinking water quality to prevent diarrhea. Citation: Hodge J, Chang HH, Boisson S, Collin SM, Peletz R, Clasen T. 2016. Assessing the association between thermotolerant coliforms in drinking water and diarrhea: an analysis of individual level data from multiple studies. Environ Health Perspect 124:1560–1567; http://dx.doi.org/10.1289/EHP156 PMID:27164618

  7. Low-level arsenic exposure via drinking water consumption and female fecundity - A preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susko, Michele L.; Bloom, Michael S., E-mail: mbloom@albany.edu; Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, New York

    High level arsenic exposure is associated with reproductive toxicity in experimental and observational studies; however, few data exist to assess risks at low levels. Even less data are available to evaluate the impact of low level arsenic exposure on human fecundity. Our aim in this pilot study was a preliminary evaluation of associations between low level drinking water arsenic contamination and female fecundity. This retrospective study was conducted among women previously recruited to a hospital-based case-control study of spontaneous pregnancy loss in Timiá¹£ County, Romania. Women (n=94) with planned pregnancies of 5–20 weeks gestation completed a comprehensive physician-administered study questionnairemore » and reported the number of menstrual cycles attempting to conceive as the time to pregnancy (TTP). Drinking water samples were collected from residential drinking water sources and we determined arsenic levels using hydride generation-atomic absorption spectrometry (HG-AAS). Multivariable Cox-proportional hazards regression with Efron approximation was employed to evaluate TTP as a function of drinking water arsenic concentrations among planned pregnancies, adjusted for covariates. There was no main effect for drinking water arsenic exposure, yet the conditional probability for pregnancy was modestly lower among arsenic exposed women with longer TTPs, relative to women with shorter TTPs, and relative to unexposed women. For example, 1 µg/L average drinking water arsenic conferred 5%, 8%, and 10% lower likelihoods for pregnancy in the 6th, 9th, and 12th cycles, respectively (P=0.01). While preliminary, our results suggest that low level arsenic contamination in residential drinking water sources may further impair fecundity among women with longer waiting times; however, this hypothesis requires confirmation by a future, more definitive study. - Highlights: • We assessed low level drinking water arsenic as a predictor of fecundability. • Arsenic did not affect time to pregnancy among women conceiving quickly. • Arsenic increased time to pregnancy among women taking longer to conceive. • Low level drinking water arsenic may adversely impact women with lower fecundity.« less

  8. Excretion of arsenic (As) in urine of children, 7-11 years, exposed to elevated levels of As in the city water supply in Hermosillo, Sonora, México.

    PubMed

    Wyatt, C J; Lopez Quiroga, V; Olivas Acosta, R T; Olivia Méndez, R

    1998-07-01

    Arsenic (As) is a common element in the environment with many industrial uses, but it also can be a contaminant in drinking water and present serious health concerns. Earlier studies on the quality of drinking water in the city of Hermosillo, Sonora, México, showed high levels of As (> 0.05 ppm) in water from wells located in the northern part of the city. Additionally a high positive correlation between the levels of Fluoride (F) and As in the same wells was found. Therefore, the objective of this study was to determine the excretion of As in children, 7-11 years of age, that had been exposed to elevated levels of As in their drinking water. Twenty-four-hour urine samples and a water sample taken directly in the home were collected from school age children living in two different areas with known high levels of As in their drinking water. A control group with normal levels of As in their water was also included. As was determined by an atomic absorption-hydride generator, verified with the use of NBS certified standards (SRM 1643a and SRM 2670). None of the water samples exceeded the limit established for drinking water; however, there was a significant difference between the intake of As and the As in drinking water among the three areas of the study. Average As in water was 0.009 +/- 0.002 and 0.030 +/- 0.011 micrograms/ml between the control and high areas. Intake (in micrograms/day) was 15 +/- 3 and 54 +/- 18. In the group consuming water with high levels of As, 65% of the children exceeded the recommended dose of < 1 micrograms/kg/day (EPA, 1988). Several children in this study also had high levels of As in their urine. Even though As levels in the drinking water are within the norms, it appears that children exposed to high levels of As in their drinking water may have a health risk.

  9. Correlation of lithium levels between drinking water obtained from different sources and scalp hair samples of adult male subjects.

    PubMed

    Baloch, Shahnawaz; Kazi, Tasneem Gul; Afridi, Hassan Imran; Baig, Jameel Ahmed; Talpur, Farah Naz; Arain, Muhammad Balal

    2017-10-01

    There is some evidence that natural levels of lithium (Li) in drinking water may have a protective effect on neurological health. In present study, we evaluate the Li levels in drinking water of different origin and bottled mineral water. To evaluate the association between lithium levels in drinking water with human health, the scalp hair samples of male subjects (25-45 years) consumed drinking water obtained from ground water (GW), municipal treated water (MTW) and bottled mineral water (BMW) from rural and urban areas of Sindh, Pakistan were selected. The water samples were pre-concentrated five to tenfold at 60 °C using temperature-controlled electric hot plate. While scalp hair samples were oxidized by acid in a microwave oven, prior to determined by flame atomic absorption spectrometry. The Li content in different types of drinking water, GW, MTW and BMW was found in the range of 5.12-22.6, 4.2-16.7 and 0.0-16.3 µg/L, respectively. It was observed that Li concentration in the scalp hair samples of adult males consuming ground water was found to be higher, ranged as 292-393 μg/kg, than those who are drinking municipal treated and bottle mineral water (212-268 and 145-208 μg/kg), respectively.

  10. Calcium and magnesium in drinking-water and risk of death from lung cancer in women.

    PubMed

    Cheng, Meng-Hsuan; Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Chih-Cheng; Yang, Chun-Yuh

    2012-01-01

    The possible association between the risk of lung cancer in women and the levels of calcium (Ca) and magnesium (Mg) in drinking-water from municipal supplies was investigated in a matched, case-control study in Taiwan. All eligible female lung cancer deaths (3,532 cases) of Taiwan residents, from 2000 through to 2008, were compared with deaths from other causes (3,532 controls), and the levels of Ca and Mg in drinking-water of these residents were determined. Data on Ca and Mg levels in drinking-water throughout Taiwan were obtained from the Taiwan Water Supply Corporation (TWSC). The control group consisted of people who died from other causes, and the controls were pair-matched to the cases by sex, year of birth, and year of death. The adjusted odd ratios were not statistically significant for the relationship between Ca levels in drinking-water and lung cancer in women. The adjusted odd ratios for female lung cancer deaths for those with higher Mg levels in their drinking-water, as compared to the lowest tertile, were 0.82 (95% CI = 0.72-0.93) and 0.80 (95% CI = 0.69-0.93), respectively. The results of the present study show that there is a significant trend toward a decreased risk of lung cancer in women with increasing Mg levels in drinking-water.

  11. Effect modification by drinking water hardness of the association between nitrate levels and gastric cancer: evidence from an ecological study.

    PubMed

    Chiu, Hui-Fen; Kuo, Chao-Hung; Tsai, Shang-Shyue; Chen, Chih-Cheng; Wu, Deng-Chuang; Wu, Trong-Neng; Yang, Chun-Yuh

    2012-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from gastric cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on the risk of gastric cancer development. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to gastric cancer and exposure to nitrate in drinking water in Taiwan. All deaths due to gastric cancer in Taiwan residents from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Deaths from other causes served as controls and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure levels were <0.38 ppm, the adjusted odds ratio (OR) and 95% confidence interval (CI) for gastric cancer occurrence was 1.16 (1.05-1.29) for individuals who resided in municipalities served by drinking water with a NO(3)-N exposure ≥ 0.38 ppm. There was apparent evidence of an interaction between drinking water NO(3)-N levels and low Ca and Mg intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of gastric cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effects modification by Ca and Mg intake from drinking water on the relationship between NO(3)-N exposure and risk of gastric cancer occurrence. Increased knowledge of the mechanistic interactions between Ca, Mg, and NO(3)-N in reducing risk of gastric cancer development will aid in public policy decisions and setting threshold standards.

  12. Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion

    PubMed Central

    Fewtrell, Lorna

    2004-01-01

    On behalf of the World Health Organization (WHO), I have undertaken a series of literature-based investigations examining the global burden of disease related to a number of environmental risk factors associated with drinking water. In this article I outline the investigation of drinking-water nitrate concentration and methemoglobinemia. The exposure assessment was based on levels of nitrate in drinking water greater than the WHO guideline value of 50 mg/L. No exposure–response relationship, however, could be identified that related drinking-water nitrate level to methemoglobinemia. Indeed, although it has previously been accepted that consumption of drinking water high in nitrates causes methemoglobinemia in infants, it appears now that nitrate may be one of a number of co-factors that play a sometimes complex role in causing the disease. I conclude that, given the apparently low incidence of possible water-related methemoglobinemia, the complex nature of the role of nitrates, and that of individual behavior, it is currently inappropriate to attempt to link illness rates with drinking-water nitrate levels. PMID:15471727

  13. Occurrence of bisphenol A in surface water, drinking water and plasma from Malaysia with exposure assessment from consumption of drinking water.

    PubMed

    Santhi, V A; Sakai, N; Ahmad, E D; Mustafa, A M

    2012-06-15

    This study investigated the level of bisphenol A (BPA) in surface water used as potable water, drinking water (tap and bottled mineral water) and human plasma in the Langat River basin, Malaysia. BPA was present in 93% of the surface water samples at levels ranging from below limit of quantification (LOQ; 1.3 ng/L) to 215 ng/L while six fold higher levels were detected in samples collected near industrial and municipal sewage treatment plant outlets. Low levels of BPA were detected in most of the drinking water samples. BPA in tap water ranged from 3.5 to 59.8 ng/L with the highest levels detected in samples collected from taps connected to PVC pipes and water filter devices. Bottled mineral water had lower levels of BPA (3.3±2.6 ng/L) although samples stored in poor storage condition had significantly higher levels (11.3±5.3 ng/L). Meanwhile, only 17% of the plasma samples had detectable levels of BPA ranging from 0.81 to 3.65 ng/mL. The study shows that BPA is a ubiquitous contaminant in surface, tap and bottled mineral water. However, exposure to BPA from drinking water is very low and is less than 0.01% of the tolerable daily intake (TDI). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Colon cancer and content of nitrates and magnesium in drinking water.

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh

    2010-06-01

    The objective of this study was to explore whether magnesium levels (Mg) in drinking water modify the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year-of-birth, and year-of-death. Information on the levels of nitrate-nitrogen (NO3-N) and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO3-N and Mg exposure via drinking water. The results of our study show that there is a significant trend towards an elevated risk of death from colon cancer with increasing nitrate levels in drinking water. Furthermore, we observed evidence of an interaction between drinking water NO3-N and Mg intake via drinking water. This is the first study to report effect modification by Mg intake from drinking water on the association between NO3-N exposure and colon cancer risk.

  15. [Investigation of the association between arsenic levels in drinking water and suicide rate of Hungarian settlements between 2005 and 2011. A preliminary study].

    PubMed

    Rihmer, Zoltán; Hal, Melinda; Kapitány, Balázs; Gonda, Xénia; Vargha, Márta; Döme, Péter

    2016-01-01

    Both suicidal behaviour and consumption of arsenic-contaminated drinking-water represent major public health problems. Previous epidemiological and animal studies showed that high arsenic intake may also be associated with the elevated risk for depression. Since untreated depression is the most powerful risk factor for suicidal behaviour, we postulated that the consumption of arsenic-contaminated tap drinking-water may also be related to suicide. Based on the level of arsenic in their drinking water Hungarian settlements with more then 500 inhabitants (n=1639) were divided into four groups. Then average age-standardized suicide rates of the four groups were compared. We found that the higher is the arsenic level in the drinking water the higher is the suicide rate of the settlements. In addition to the practical consequences of our preliminary results (e.g. in the suicide prevention) they also suggest that high level of arsenic in drinking water might contribute, at least in part, to the well-known and stable in time regional differences in suicide mortality of Hungary since the highest arsenic levels in drinking water have been found in counties with traditionally high suicide rates, such as Bacs-Kiskun, Csongrad, Bekes and Hajdu- Bihar.

  16. Oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during Salmonella typhimurium infection.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo

    2012-12-01

    It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.

  17. Trihalomethanes in drinking water and the risk of death from kidney cancer: does hardness in drinking water matter?

    PubMed

    Liao, Yen-Hsiung; Chen, Chih-Cheng; Chang, Chih-Ching; Peng, Chiung-Yu; Chiu, Hui-Fen; Wu, Trong-Neng; Yang, Chun-Yuh

    2012-01-01

    The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of development of kidney cancer and (2) determine whether hardness levels in drinking water modify the effects of TTHM on risk of kidney cancer induction. A matched case-control study was used to investigate the relationship between the risk of death attributed to kidney cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All kidney cancer deaths in the 53 municipalities from 1998 through 2007 were obtained. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels and levels of hardness in drinking water were also collected. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM and hardness exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for kidney cancer was 0.98 (0.77-1.25) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. However, evidence of an interaction was noted between the use of soft water and drinking water TTHM concentrations. Increased knowledge of the interaction between hardness and TTHM levels in reducing risk of kidney cancer development will aid in public policy decision and establishing standards to prevent disease occurrence.

  18. Nitrates in drinking water and the risk of death from brain cancer: does hardness in drinking water matter?

    PubMed

    Ho, Chi-Kung; Yang, Ya-Hui; Yang, Chun-Yuh

    2011-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from brain cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the influence of nitrates on development of brain cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death from brain cancer and exposure to nitrates in drinking water in Taiwan. All brain cancer deaths of Taiwan residents from 2003 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO₃-N), Ca, and Mg in drinking water was obtained from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was <0.38 ppm, the adjusted OR (95% CI) for brain cancer occurrence was 1.04 (0.85-1.27) for individuals who resided in municipalities served by drinking water with a NO₃-N exposure ≥ 0.38 ppm. No marked effect modification was observed due to Ca and Mg intake via drinking water on brain cancer occurrence.

  19. Data on fluoride concentration level in villages of Asara (Alborz, Iran) and daily fluoride intake based on drinking water consumption.

    PubMed

    Akhavan, Giti; Dobaradaran, Sina; Borazjani, Jaleh Mohajeri

    2016-12-01

    In the present data article, fluoride concentration levels of drinking water (with spring or groundwater sources) in 10 villages of Asara area located in Alborz province were determined by the standard SPADNS method using a spectrophotometer (DR/2000 Spectrophotometer, USA). Daily fluoride intakes were also calculated based on daily drinking water consumption. The fluoride content were compared with EPA and WHO guidelines for drinking water.

  20. METHOD DEVELOPMENT FOR THE LOW-LEVEL DETERMINATION OF PERCHLORATE IN DRINKING WATER

    EPA Science Inventory

    Perchlorate anion has been found in numerous drinking water supplies at concentrations that recent studies indicate may adversely affect human health. In order to measure perchlorate at levels of health concern in drinking water, there is a need to be able to quantify perchlorat...

  1. A survey of ²²²Rn in drinking water in Mexico City.

    PubMed

    Vázquez-López, C; Zendejas-Leal, B E; Golzarri, J I; Espinosa, G

    2011-05-01

    In Mexico City there are more than 22 millions of inhabitants (10 in the metropolitan area and 12 in the suburban zone) exposed to drinking water. The local epidemiological authorities recognised that exposure to radon contaminated drinking water is a potential health hazard, as has been considered worldwide. The United States Environmental Protection Agency has proposed a limit of 11.1 Bq l(-1) for the radon level in drinking water. In Mexico a maximum contamination level of radon in drinking water has not yet even considered. In this work, a (222)Rn study of drinking water in Mexico City has revealed a range of concentrations from background level to 3.8 Bq l(-1). (222)Rn was calculated using a portable degassing system (AquaKIT) associated with an AlphaGUARD measuring system. Samples from 70 wells of the water system of the south of the Valley Basin of Mexico City and from houses of some other political administrative divisions of Mexico City were taken.

  2. Low-level arsenic exposure via drinking water consumption and female fecundity - A preliminary investigation.

    PubMed

    Susko, Michele L; Bloom, Michael S; Neamtiu, Iulia A; Appleton, Allison A; Surdu, Simona; Pop, Cristian; Fitzgerald, Edward F; Anastasiu, Doru; Gurzau, Eugen S

    2017-04-01

    High level arsenic exposure is associated with reproductive toxicity in experimental and observational studies; however, few data exist to assess risks at low levels. Even less data are available to evaluate the impact of low level arsenic exposure on human fecundity. Our aim in this pilot study was a preliminary evaluation of associations between low level drinking water arsenic contamination and female fecundity. This retrospective study was conducted among women previously recruited to a hospital-based case-control study of spontaneous pregnancy loss in Timiṣ County, Romania. Women (n=94) with planned pregnancies of 5-20 weeks gestation completed a comprehensive physician-administered study questionnaire and reported the number of menstrual cycles attempting to conceive as the time to pregnancy (TTP). Drinking water samples were collected from residential drinking water sources and we determined arsenic levels using hydride generation-atomic absorption spectrometry (HG-AAS). Multivariable Cox-proportional hazards regression with Efron approximation was employed to evaluate TTP as a function of drinking water arsenic concentrations among planned pregnancies, adjusted for covariates. There was no main effect for drinking water arsenic exposure, yet the conditional probability for pregnancy was modestly lower among arsenic exposed women with longer TTPs, relative to women with shorter TTPs, and relative to unexposed women. For example, 1µg/L average drinking water arsenic conferred 5%, 8%, and 10% lower likelihoods for pregnancy in the 6th, 9th, and 12th cycles, respectively (P=0.01). While preliminary, our results suggest that low level arsenic contamination in residential drinking water sources may further impair fecundity among women with longer waiting times; however, this hypothesis requires confirmation by a future, more definitive study. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Low-level arsenic exposure via drinking water consumption and female fecundity - a preliminary investigation

    PubMed Central

    Susko, Michele L.; Bloom, Michael S.; Neamtiu, Iulia A.; Appleton, Allison A.; Surdu, Simona; Pop, Cristian; Fitzgerald, Edward F.; Anastasiu, Doru; Gurzau, Eugen S.

    2017-01-01

    High level arsenic exposure is associated with reproductive toxicity in experimental and observational studies; however, few data exist to assess risks at low levels. Even less data are available to evaluate the impact of low level arsenic exposure on human fecundity. Our aim in this pilot study was a preliminary evaluation of associations between low level drinking water arsenic contamination and female fecundity. This retrospective study was conducted among women previously recruited to a hospital-based case-control study of spontaneous pregnancy loss in Timiş County, Romania. Women (n = 94) with planned pregnancies of 5–20 weeks gestation completed a comprehensive physician-administered study questionnaire and reported the number of menstrual cycles attempting to conceive as the time to pregnancy (TTP). Drinking water samples were collected from residential drinking water sources and we determined arsenic levels using hydride generation-atomic absorption spectrometry (HG-AAS). Multivariable Cox-proportional hazards regression with Efron approximation was employed to evaluate TTP as a function of drinking water arsenic concentrations among planned pregnancies, adjusted for covariates. There was no main effect for drinking water arsenic exposure, yet the conditional probability for pregnancy was modestly lower among arsenic exposed women with longer TTPs, relative to women with shorter TTPs, and relative to unexposed women For example, 1 μg/L average drinking water arsenic conferred 5%, 8%, and 10% lower likelihoods for pregnancy in the 6th, 9th, and 12th cycles, respectively (P = 0.01). While preliminary, our results suggest that low level arsenic contamination in residential drinking water sources may further impair fecundity among women with longer waiting times; however, this hypothesis requires confirmation by a future, more definitive study. PMID:28061371

  4. [Study for distribution level of disinfection byproducts in drinking water from six cities in China].

    PubMed

    Deng, Ying; Wei, Jianrong; E, Xueli; Wang, Wuyi; et al

    2008-03-01

    To find the distribution level and geographical variations of disinfection by-products (DBPs) in drinking water. The samples were selected from water utilities in six cities (Daqing, Beijing, Tianjin, Zhengzhou, Changsha and Shenzhen) of China. The water source and technology of water treatment were investigated and the indices including trihalomethanes (THMs) and haloacetic acids (HAAs) in main DBPs and natural organic materials (NOM), pH, chlorine dosage and temperature were determined. In six cities the highest concentrations of TTHMs and THAAs in the distribution system were 92.8 microg/L and 40.0 microg/L, respectively. The concentration of every compound of THMs and HAAs was under the limit of standards for drinking water quality, but the concentrations of 'TTHMs at some samples were higher than the maximum acceptable level (MAC) defined by standards for drinking water quality. The geographical variations of THMs and HAAs in six cities were Zhengzhou > Tianjin > Daqing > Beijing > Shenzhen > Changsha and Changsha > Tianjin > Shenzhen > Daqing > Zhengzhou > Beijing, respectively. The levels of THMs of drinking water at Tianjin and Zhengzhou were higher than the others and the levels of HAAs of drinking water at Changsha, Tianjin and Shenzhen were higher than the others. The seasonal variations of both groups of THMs and HAAs were high in summer and low in winter. The pollution level of DBPs in drinking water from Chinese six cities were low. The concentration of DBPs related to seasonal. THMs distributed mainly to the North and HAAs distributed mainly to the South.

  5. Chemical, physical, and radiological quality of selected public water supplies in Florida, February-April 1980

    USGS Publications Warehouse

    Franks, Bernard J.; Irwin, G.A.

    1981-01-01

    Virtually all treated public water supplies in Florida meet the National Interim Primary and Secondary Drinking Water Regulations. These findings are based on a water-quality reconnaissance of 126 raw and treated public water supplies throughout the State during the period February through April 1980. Primary drinking water regulations maximum contaminant levels were rarely exceeded, although mercury (1 site), fluoride (2 sites), and radionuclides (3 sites) in water supplies were above established maximum contaminant levels. Dissolved solids, chloride, copper, manganese, iron, color, sulfate, and pH, were occasionally slightly in excess of the recommended maximum contaminant levels of the secondary drinking water regulation. The secondary regulations, however, pertain mainly to the esthetic quality of drinking water and not directly to public health aspects. (USGS)

  6. Contaminated drinking water and rural health perspectives in Rajasthan, India: an overview of recent case studies.

    PubMed

    Suthar, Surindra

    2011-02-01

    Access to safe drinking water is an important issue of health and development at national, regional, and local levels. The concept of safe drinking water assumes greater significance in countries like India where the majority of the population lives in villages with bare infrastructures and poor sanitation facilities. This review presents an overview of drinking water quality in rural habitations of northern Rajasthan, India. Although fluoride is an endemic problem to the groundwater of this region, recently, other anthropogenic chemicals has also been reported in the local groundwater. Recent case studies indicate that about 95% of sites of this region contain a higher fluoride level in groundwater than the maximum permissible limit as decided by the Bureau of Indian Standards. Nitrate (as NO3-) contamination has appeared as another anthropogenic threat to some intensively cultivable rural habitations of this region. Biological contamination has appeared as another issue of unsafe drinking water resources in rural areas of the state. Recent studies have claimed a wide variety of pathogenic bacteria including members of the family Enterobacteriaceae in local drinking water resources. Overall, the quality of drinking water in this area is not up to the safe level, and much work is still required to establish a safe drinking water supply program in this area.

  7. How Trace Element Levels of Public Drinking Water Affect Body Composition in Turkey.

    PubMed

    Cetin, Ihsan; Nalbantcilar, Mahmut Tahir; Tosun, Kezban; Nazik, Aydan

    2017-02-01

    Since waterborne minerals appear in ionic form and are readily absorbed by the gastrointestinal tract, drinking water could be a crucial source of mineral intake. However, no comprehensive research has yet determined how trace elements in drinking water relate to body composition. We aimed to assess the relationship between clinically important trace elements in public drinking water and body composition in average, overweight and obese individuals in Turkey. The study's population consisted of 423 participants: 143 overweight, 138 obese and 142 healthy control individuals, grouped according to clinical cutoff points of body mass index (BMI). We measured levels of lithium (Li), nickel (Ni), lead (Pb), silicon (Si), tin (Sn), strontium (Sr), boron (B), aluminium (Al), barium (Ba) and rubidium (Rb) in samples from wells of municipal water by using inductively coupled plasma mass spectrometry. We gauged all the participants' body composition measurements with a BC-418 body composition analyser. In all the participants, body weight values showed significant positive correlations with Ni levels in drinking water, as did BMI values with Al levels and percentage of obesity with Ni, Si and B levels. In particular, Ni levels showed significant positive correlations with the basal metabolic rate, activity calories, and total activity of participants. Giving findings showing correlations between obesity-related parameters and Al, Si, B and Ni content in drinking water, we hope that these associations will be clarified with further studies including cellular, experimental and clinical studies. Hence, medical practitioners must be aware of trace element levels in drinking water for overweight and obese patients.

  8. Evaluation of toxic risk assessment of arsenic in male subjects through drinking water in southern Sindh Pakistan.

    PubMed

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Shah, Abdul Qadir; Afridi, Hassan Imran; Khan, Sumaira; Kolachi, Nida Fatima; Kandhro, Ghulam Abbas; Wadhwa, Sham Kumar; Shah, Faheem

    2011-11-01

    The arsenic (As) hazardous quotient was estimated based on concentration of As in drinking water and scalp hair of male subjects of two age groups (n=360) consuming As contaminated water at different levels and non-contaminated drinking water. The total As concentrations in drinking water of less-exposed (LE) and high-exposed (HE) areas was found to be 3- to 30-fold higher than the permissible limit of the World Health Organization (2004) for drinking water, while the levels of As in drinking water of non-exposed (NE) areas was within the permissible limit. The levels of As in scalp hair samples of male subjects of two age groups belonging to NE, LE, and HE areas ranged from 0.01 to 0.27, 0.11-1.31, and 0.36-6.80 μg/g, respectively. A significant correlation between As contents of drinking water and As concentration in scalp hair was observed in sub-district Gambit (r=0.825-0.852, p<0.001) as compared to those subjects belonging to LE sub-district Thari Mirwah. A toxicity risk assessment provides a hazard quotient corresponding to <10 that indicates non-carcinogenic exposure risk of understudy areas.

  9. A Review of Nitrates in Drinking Water: Maternal Exposure and Adverse Reproductive and Developmental Outcomes

    PubMed Central

    Manassaram, Deana M.; Backer, Lorraine C.; Moll, Deborah M.

    2006-01-01

    In this review we present an update on maternal exposure to nitrates in drinking water in relation to possible adverse reproductive and developmental effects, and also discuss nitrates in drinking water in the United States. The current standard for nitrates in drinking water is based on retrospective studies and approximates a level that protects infants from methemoglobinemia, but no safety factor is built into the standard. The current standard applies only to public water systems. Drinking water source was related to nitrate exposure (i.e., private systems water was more likely than community system water to have nitrate levels above the maximum contaminant limit). Animal studies have found adverse reproductive effects resulting from higher doses of nitrate or nitrite. The epidemiologic evidence of a direct exposure–response relationship between drinking water nitrate level and adverse reproductive effect is still not clear. However, some reports have suggested an association between exposure to nitrates in drinking water and spontaneous abortions, intrauterine growth restriction, and various birth defects. Uncertainties in epidemiologic studies include the lack of individual exposure assessment that would rule out confounding of the exposure with some other cause. Nitrates may be just one of the contaminants in drinking water contributing to adverse outcomes. We conclude that the current literature does not provide sufficient evidence of a causal relationship between exposure to nitrates in drinking water and adverse reproductive effects. Future studies incorporating individual exposure assessment about users of private wells—the population most at risk—should be considered. PMID:16507452

  10. Lead in drinking water: sampling in primary schools and preschools in south central Kansas.

    PubMed

    Massey, Anne R; Steele, Janet E

    2012-03-01

    Studies in Philadelphia, New York City, Houston, Washington, DC, and Greenville, North Carolina, have revealed high lead levels in drinking water. Unlike urban areas, lead levels in drinking water in suburban and rural areas have not been adequately studied. In the study described in this article, drinking water in primary schools and preschools in five suburban and rural south central Kansas towns was sampled to determine if any exceeded the U.S. Environmental Protection Agency (U.S. EPA) guidance level for schools and child care facilities of 20 parts per billion (ppb). The results showed a total of 32.1% of the samples had detectable lead levels and 3.6% exceeded the U.S. EPA guidance level for schools and child care providers of 20 ppb. These results indicate that about one-third of the drinking water consumed by children age six and under in the five suburban and rural south central Kansas towns studied has some lead contamination, exposing these children to both short-term and long-term health risks. The authors suggest a need for increased surveillance of children's drinking water in these facilities.

  11. Different Choices of Drinking Water Source and Different Health Risks in a Rural Population Living Near a Lead/Zinc Mine in Chenzhou City, Southern China.

    PubMed

    Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan

    2015-11-12

    This study aimed to describe the households' choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10(-9)~3.62 × 10(-5). The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water's highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals.

  12. Assessment of Nitrification in Distribution Systems of Waters with Elevated Ammonia Levels

    EPA Science Inventory

    The objective of this work is to monitor ammonia, nitrite, and nitrate in drinking water from the distribution systems of four drinking water utilities in Illinois. A monthly drinking water distribution system water quality monitoring protocol for each water utility in Illinois h...

  13. Drinking Water Action Plan

    EPA Pesticide Factsheets

    EPA's Drinking Water Action Plan serves as a national call to action, urging all levels of government, utilities, community organizations, and other stakeholders to work together to increase the safety and reliability of drinking water.

  14. Private Drinking Water Wells as a Source of Exposure to Perfluorooctanoic Acid (PFOA) in Communities Surrounding a Fluoropolymer Production Facility

    PubMed Central

    Hoffman, Kate; Webster, Thomas F.; Bartell, Scott M.; Weisskopf, Marc G.; Fletcher, Tony; Vieira, Verónica M.

    2011-01-01

    Background The C8 Health Project was established in 2005 to collect data on perfluorooctanoic acid (PFOA, or C8) and human health in Ohio and West Virginia communities contaminated by a fluoropolymer production facility. Objective We assessed PFOA exposure via contaminated drinking water in a subset of C8 Health Project participants who drank water from private wells. Methods Participants provided demographic information and residential, occupational, and medical histories. Laboratory analyses were conducted to determine serum-PFOA concentrations. PFOA data were collected from 2001 through 2005 from 62 private drinking water wells. We examined the relationship between drinking water and PFOA levels in serum using robust regression methods. As a comparison with regression models, we used a first-order, single-compartment pharmacokinetic model to estimate the serum:drinking-water concentration ratio at steady state. Results The median serum PFOA concentration in 108 study participants who used private wells was 75.7 μg/L, approximately 20 times greater than the levels in the U.S. general population but similar to those of local residents who drank public water. Each 1 μg/L increase in PFOA levels in drinking water was associated with an increase in serum concentrations of 141.5 μg/L (95% confidence interval, 134.9–148.1). The serum:drinking-water concentration ratio for the steady-state pharmacokinetic model was 114. Conclusions PFOA-contaminated drinking water is a significant contributor to PFOA levels in serum in the study population. Regression methods and pharmacokinetic modeling produced similar estimates of the relationship. PMID:20920951

  15. Evaluation of Microbiological and Physicochemical Parameters of Alternative Source of Drinking Water: A Case Study of Nzhelele River, South Africa.

    PubMed

    Edokpayi, Joshua N; Odiyo, John O; Popoola, Elizabeth O; Msagati, Titus A M

    2018-01-01

    Access to clean and safe drinking water is still a problem in developing countries and more pronounced in rural areas. Due to erratic supply of potable, rural dwellers often seek for an alternative source of water to meet their basic water needs. The objective of this study is to monitor the microbiological and physicochemical water quality parameters of Nzhelele River which is a major alternative source of drinking water to villages along its course in Limpopo province of South Africa. Membrane filtration method was employed in evaluating the levels of E. coli and Enterococci in the river water from January-June, 2014. Specialized multimeter was used to measure the pH, electrical conductivity and turbidity of the river water. Ion Chromatograph was used to measure major anions such as fluoride, chloride, nitrate and sulphate in the water. High levels of E. coli (1 x 10 2 - 8 x 10 4 cfu/100 mL) and enterococci (1 x 10 2 - 5.7 x 10 3 cfu/100 mL) were found in the river water and exceeded their permissible limits of 0 cfu/100 mL for drinking water. Turbidity values ranged from 1.12-739.9 NTU. The pH, electrical conductivity, chloride, fluoride, nitrate and sulphate levels were below their permissible limits for drinking water. The river water is contaminated with faecal organisms and is unfit for drinking purposes. However, the levels of the major anions accessed were within the permissible limits of drinking water.

  16. Evaluation of Microbiological and Physicochemical Parameters of Alternative Source of Drinking Water: A Case Study of Nzhelele River, South Africa

    PubMed Central

    Edokpayi, Joshua N.; Odiyo, John O.; Popoola, Elizabeth O.; Msagati, Titus A.M.

    2018-01-01

    Background: Access to clean and safe drinking water is still a problem in developing countries and more pronounced in rural areas. Due to erratic supply of potable, rural dwellers often seek for an alternative source of water to meet their basic water needs. The objective of this study is to monitor the microbiological and physicochemical water quality parameters of Nzhelele River which is a major alternative source of drinking water to villages along its course in Limpopo province of South Africa. Methods: Membrane filtration method was employed in evaluating the levels of E. coli and Enterococci in the river water from January-June, 2014. Specialized multimeter was used to measure the pH, electrical conductivity and turbidity of the river water. Ion Chromatograph was used to measure major anions such as fluoride, chloride, nitrate and sulphate in the water. Results: High levels of E. coli (1 x 102 - 8 x 104 cfu/100 mL) and enterococci (1 x 102 – 5.7 x 103 cfu/100 mL) were found in the river water and exceeded their permissible limits of 0 cfu/100 mL for drinking water. Turbidity values ranged from 1.12-739.9 NTU. The pH, electrical conductivity, chloride, fluoride, nitrate and sulphate levels were below their permissible limits for drinking water. Conclusion: The river water is contaminated with faecal organisms and is unfit for drinking purposes. However, the levels of the major anions accessed were within the permissible limits of drinking water. PMID:29541268

  17. Does drinking water influence hospital-admitted sialolithiasis on an epidemiological level in Denmark?

    PubMed Central

    Schrøder, Stine; Homøe, Preben; Wagner, Niels; Vataire, Anne-Lise; Lundager Madsen, Hans Erik; Bardow, Allan

    2015-01-01

    Objectives Sialolithiasis, or salivary stones, is not a rare disease of the major salivary glands. However, the aetiology and incidence remain largely unknown. Since sialoliths are comprised mainly of calcium phosphate salts, we hypothesise that drinking water calcium levels and other elements in drinking water could play a role in sialolithiasis. Owing to substantial intermunicipality differences in drinking water composition, Denmark constitutes a unique environment for testing such relations. Design An epidemiological study based on patient data extracted from the National Patient Registry and drinking water data from the Geological Survey of Denmark and Greenland retrieved as weighted data on all major drinking water constituents for each of the 3364 waterworks in Denmark. All patient cases with International Statistical Classification of Diseases 10th Revision (ICD-10) codes for sialolithiasis registered between the years 2000 and 2010 were included in the study (n=3014) and related to the drinking water composition on a municipality level (n=98). Primary and secondary outcome measures Multiple regression analysis using iterative search and testing among all demographic and drinking water variables with sialolithiasis incidence as the outcome in search of possible relations among the variables tested. Results The nationwide incidence of hospital-admitted sialolithiasis was 5.5 cases per 100 000 citizens per year in Denmark. Strong relations were found between the incidence of sialolithiasis and the drinking water concentration of calcium, magnesium and hydrogen carbonate, however, in separate models (p<0.001). Analyses also confirmed correlations between drinking water calcium and magnesium and their concentration in saliva whereas this was not the case for hydrogen carbonate. Conclusions Differences in drinking water calcium and magnesium may play a role in the incidence of sialolithiasis. These findings are of interest because many countries have started large-scale desalination programmes of drinking water. PMID:25941183

  18. Magnesium Levels in Drinking Water and Coronary Heart Disease Mortality Risk: A Meta-Analysis.

    PubMed

    Jiang, Lei; He, Pengcheng; Chen, Jiyan; Liu, Yong; Liu, Dehui; Qin, Genggeng; Tan, Ning

    2016-01-02

    Epidemiological studies have demonstrated inconsistent associations between drinking water magnesium levels and risk of mortality from coronary heart disease (CHD); thus, a meta-analysis was performed to assess the association between them. Relevant studies were searched by the databases of Cochrane, EMBASE, PubMed and Web of Knowledge. Pooled relative risks (RR) with their 95% CI were calculated to assess this association using a random-effects model. Finally, nine articles with 10 studies involving 77,821 CHD cases were used in this study. Our results revealed an inverse association between drinking water magnesium level and CHD mortality (RR = 0.89, 95% CI = 0.79-0.99, I² = 70.6). Nine of the 10 studies came from Europe, and the association was significant between drinking water magnesium level and the risk of CHD mortality (RR = 0.83, 95% CI = 0.69-0.98). In conclusion, drinking water magnesium level was significantly inversely associated with CHD mortality.

  19. Magnesium Levels in Drinking Water and Coronary Heart Disease Mortality Risk: A Meta-Analysis

    PubMed Central

    Jiang, Lei; He, Pengcheng; Chen, Jiyan; Liu, Yong; Liu, Dehui; Qin, Genggeng; Tan, Ning

    2016-01-01

    Epidemiological studies have demonstrated inconsistent associations between drinking water magnesium levels and risk of mortality from coronary heart disease (CHD); thus, a meta-analysis was performed to assess the association between them. Relevant studies were searched by the databases of Cochrane, EMBASE, PubMed and Web of Knowledge. Pooled relative risks (RR) with their 95% CI were calculated to assess this association using a random-effects model. Finally, nine articles with 10 studies involving 77,821 CHD cases were used in this study. Our results revealed an inverse association between drinking water magnesium level and CHD mortality (RR = 0.89, 95% CI = 0.79–0.99, I2 = 70.6). Nine of the 10 studies came from Europe, and the association was significant between drinking water magnesium level and the risk of CHD mortality (RR = 0.83, 95% CI = 0.69–0.98). In conclusion, drinking water magnesium level was significantly inversely associated with CHD mortality. PMID:26729158

  20. Health Effects and Environmental Justice Concerns of Exposure to Uranium in Drinking Water.

    PubMed

    Corlin, Laura; Rock, Tommy; Cordova, Jamie; Woodin, Mark; Durant, John L; Gute, David M; Ingram, Jani; Brugge, Doug

    2016-12-01

    We discuss the recent epidemiologic literature regarding health effects of uranium exposure in drinking water focusing on the chemical characteristics of uranium. While there is strong toxicologic evidence for renal and reproductive effects as well as DNA damage, the epidemiologic evidence for these effects in people exposed to uranium in drinking water is limited. Further, epidemiologic evidence is lacking for cardiovascular and oncogenic effects. One challenge in characterizing health effects of uranium in drinking water is the paucity of long-term cohort studies with individual level exposure assessment. Nevertheless, there are environmental justice concerns due to the substantial exposures for certain populations. For example, we present original data suggesting that individuals living in the Navajo Nation are exposed to high levels of uranium in unregulated well water used for drinking. In 10 out of 185 samples (5.4 %), concentrations of uranium exceeded standards under the Safe Drinking Water Act. Therefore, efforts to mitigate exposure to toxic elements in drinking water are warranted and should be prioritized.

  1. A review and rationale for studying the cardiovascular effects of drinking water arsenic in women of reproductive age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Richard K., E-mail: rkwok@rti.org

    2007-08-01

    Drinking water arsenic has been shown to be associated with a host of adverse health outcomes at exposure levels > 300 {mu}g of As/L. However, the results are not consistent at exposures below this level. We have reviewed selected articles that examine the effects of drinking water arsenic on cardiovascular outcomes and present a rationale for studying these effects on women of reproductive age, and also over the course of pregnancy when they would potentially be more susceptible to adverse cardiovascular and reproductive outcomes. It is only recently that reproductive effects have been linked to drinking water arsenic. However, theremore » is a paucity of information about the cardiovascular effects of drinking water arsenic on women of reproductive age. Under the cardiovascular challenge of pregnancy, we hypothesize that women with a slightly elevated exposure to drinking water arsenic may exhibit adverse cardiovascular outcomes at higher rates than in the general population. Studying sensitive clinical and sub-clinical indicators of disease in susceptible sub-populations may yield important information about the potentially enormous burden of disease related to low-level drinking water arsenic exposure.« less

  2. Nitrates in municipal drinking water and non-Hodgkin lymphoma: an ecological cancer case-control study in Taiwan.

    PubMed

    Chang, Chih-Ching; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh

    2010-01-01

    The relationship between nitrate levels in drinking water and increased risk of non-Hodgkin lymphoma (NHL) development has been inconclusive. A matched cancer case-control and a nitrate ecology study was used to investigate the association between mortality attributed to NHL and nitrate exposure from Taiwan's drinking water. All deaths due to NHL in Taiwan residents from 2000 through 2006 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO(3)-N) levels of drinking water throughout Taiwan were collected from the Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios (OR) for NHL death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.02 (0.87-1.2) and 1.05 (0.89-1.24), respectively. The results of the present study show that there was no statistically significant association between nitrates in drinking water at levels in this investigation and increased risk of death attributed to NHL.

  3. Nitrate in drinking water and risk of death from pancreatic cancer in Taiwan.

    PubMed

    Yang, Chun-Yuh; Tsai, Shang-Shyue; Chiu, Hui-Fen

    2009-01-01

    The relationship between nitrate levels in drinking water and risk of pancreatic cancer development remains inconclusive. A matched case-control and nitrate ecology study was used to investigate the association between mortality attributed to pancreatic cancer and nitrate exposure from Taiwan's drinking water. All pancreatic cancer deaths of Taiwan residents from 2000 through 2006 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO(3)-N) levels of drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios and confidence limits for pancreatic cancer death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.03 (0.9-1.18) and 1.1 (0.96-1.27), respectively. The results of the present study show that there was no statistically significant association between the levels of nitrate in drinking water and increased risk of death from pancreatic cancer.

  4. Nitrate in drinking water and risk of death from bladder cancer: an ecological case-control study in Taiwan.

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Yang, Chun-Yuh

    2007-06-01

    The relationship between nitrate levels in drinking water and bladder cancer development is controversial. A matched cancer case-control with nitrate ecology study was used to investigate the association between bladder cancer mortality occurrence and nitrate exposure from Taiwan drinking water. All bladder cancer deaths of Taiwan residents from 1999 through 2003 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth,and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on nitrate-nitrogen (NO3-N) levels in drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios for bladder cancer death for those with high nitrate levels in their drinking water were 1.76 (1.28-2.42) and 1.96 (1.41-2.72) as compared to the lowest tertile. The results of the present study show that there was a significant positive relationship between the levels of nitrate in drinking water and risk of death from bladder cancer.

  5. Does calcium in drinking water modify the association between nitrate in drinking water and risk of death from colon cancer?

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Pei-Shih; Wu, Trong-Neng; Yang, Chun-Yuh

    2011-09-01

    The objective of this study was to explore whether calcium (Ca) levels in drinking water modified the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Ca in drinking water have been collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO(3)-N and Ca exposure via drinking water. We observed evidence of an interaction between drinking water NO(3)-N and Ca intake via drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of colon cancer mortality.

  6. Piloting water quality testing coupled with a national socioeconomic survey in Yogyakarta province, Indonesia, towards tracking of Sustainable Development Goal 6.

    PubMed

    Cronin, Aidan A; Odagiri, Mitsunori; Arsyad, Bheta; Nuryetty, Mariet Tetty; Amannullah, Gantjang; Santoso, Hari; Darundiyah, Kristin; Nasution, Nur 'Aisyah

    2017-10-01

    There remains a pressing need for systematic water quality monitoring strategies to assess drinking water safety and to track progress towards the Sustainable Development Goals (SDG). This study incorporated water quality testing into an existing national socioeconomic survey in Yogyakarta province, Indonesia; the first such study in Indonesia in terms of SDG tracking. Multivariate regression analysis assessed the association between faecal and nitrate contamination and drinking water sources household drinking water adjusted for wealth, education level, type of water sources and type of sanitation facilities. The survey observed widespread faecal contamination in both sources for drinking water (89.2%, 95%CI: 86.9-91.5%; n=720) and household drinking water (67.1%, 95%CI: 64.1-70.1%; n=917) as measured by Escherichia coli. This was despite widespread improved drinking water source coverage (85.3%) and commonly self-reported boiling practices (82.2%). E.coli concentration levels in household drinking water were associated with wealth, education levels of a household head, and type of water source (i.e. vender water or local sources). Following the proposed SDG definition for Target 6.1 (water) and 6.2 (sanitation), the estimated proportion of households with access to safely managed drinking water and sanitation was 8.5% and 45.5%, respectively in the study areas, indicating substantial difference from improved drinking water (82.2%) and improved sanitation coverage (70.9%) as per the MDGs targets. The greatest contamination and risk factors were found in the poorest households indicating the urgent need for targeted and effective interventions here. There is suggested evidence that sub-surface leaching from on-site sanitation adversely impacts on drinking water sources, which underscores the need for further technical assistance in promoting latrine construction. Urgent action is still needed to strengthen systematic monitoring efforts towards tracking SDG Goal 6. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Peer Review for EPA’s Proposed Approaches to Inform the Derivation of a Maximum Contaminant Level Goal for Perchlorate in Drinking Water

    EPA Science Inventory

    EPA is developing approaches to inform the derivation of a Maximum Contaminant Level Goal (MCLG) for perchlorate in drinking water under the Safe Drinking Water Act. EPA previously conducted an independent, external, scientific peer review of the draft biologically-based dose-res...

  8. High fluoride and low pH level have been detected in popular flavoured beverages in Malaysia.

    PubMed

    Ha Rahim, Zubaidah; M Bakri, Marina; Hm, Zakir; Ia, Ahmed; Na, Zulkifli

    2014-03-01

    In children, excessive ingestion of fluoride from different sources including bottled drinking water and flavoured beverages or soft drinks can lead to the development of dental fluorosis. In addition, the pH level of beverages is important. Low pH can cause dental erosion. In this study we explore the fluoride content and pH level of certain popular beverages available in Malaysian supermarkets and hawkers' stalls. Bottled drinking water and selected popular flavoured packet drinks were purchased from a supermarket and the corresponding flavoured hawkers' drinks, from a hawker's stall in Kuala Lumpur. Fluoride and pH of the beverages were determined using digital fluoride meter and digital pH meter respectively. It was found that fluoride content and pH level vary among the beverages. The mean fluoride content in both packet and hawkers' drinks (7.64±1.88 mg/L, 7.51±1.60 mg/L, respectively) was approximately 7 times higher than the bottled drinking water (1.05±0.35 mg/L). Among the beverages, the tea packet drink was found to contain the highest amount of fluoride (13.02±0.23 mg/L). The mean pH of bottled-drinking water was near neutral (6.96±0.17), but acidic for both supermarket (4.78.00±0.49) and hawkers' drinks (5.73±0.24). The lychee packet drink had the lowest pH level (2.97±0.03). Due to the wide variation of the fluoride content and pH level of the drinks tested in this study, it is recommended that steps should be taken to control the fluoride concentration and pH level in beverages if dental fluorosis and erosion are to be prevented.

  9. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment.

    PubMed

    de Jesus Gaffney, Vanessa; Almeida, Cristina M M; Rodrigues, Alexandre; Ferreira, Elisabete; Benoliel, Maria João; Cardoso, Vitor Vale

    2015-04-01

    A monitoring study of 31 pharmaceuticals along Lisbon's drinking water supply system was implemented, which comprised the analysis of 250 samples including raw water (surface water and groundwater), and drinking water. Of the 31 pharmaceutical compounds, only sixteen were quantified in the analyzed samples, with levels ranging from 0.005 to 46 ng/L in raw water samples and 0.09-46 ng/L in drinking water samples. The human health risk assessment performed showed that appreciable risks to the consumer's health arising from exposure to trace levels of pharmaceuticals in drinking water are extremely unlikely, as RQs values were all below 0.001. Also, pharmaceuticals were selected as indicators to be used as a tool to control the quality of raw water and the treatment efficiency in the drinking water treatment plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... part. The maximum contaminant levels for turbidity in drinking water, measured at a representative...

  11. Is fluoride a risk factor for bone cancer? Small area analysis of osteosarcoma and Ewing sarcoma diagnosed among 0-49-year-olds in Great Britain, 1980-2005.

    PubMed

    Blakey, Karen; Feltbower, Richard G; Parslow, Roger C; James, Peter W; Gómez Pozo, Basilio; Stiller, Charles; Vincent, Tim J; Norman, Paul; McKinney, Patricia A; Murphy, Michael F; Craft, Alan W; McNally, Richard J Q

    2014-02-01

    Artificial fluoridation of drinking water to improve dental health has long been a topic of controversy. Opponents of this public health measure have cited the possibility of bone cancer induction. The study objective was to examine whether increased risk of primary bone cancer was associated with living in areas with higher concentrations of fluoride in drinking water. Case data on osteosarcoma and Ewing sarcoma, diagnosed at ages 0-49 years in Great Britain (GB) (defined here as England, Scotland and Wales) during the period 1980-2005, were obtained from population-based cancer registries. Data on fluoride levels in drinking water in England and Wales were accessed through regional water companies and the Drinking Water Inspectorate. Scottish Water provided data for Scotland. Negative binomial regression was used to examine the relationship between incidence rates and level of fluoride in drinking water at small area level. The study analysed 2566 osteosarcoma and 1650 Ewing sarcoma cases. There was no evidence of an association between osteosarcoma risk and fluoride in drinking water [relative risk (RR) per one part per million increase in the level of fluoride = 1·001; 90% confidence interval (CI) 0·871, 1·151] and similarly there was no association for Ewing sarcoma (RR = 0·929; 90% CI 0·773, 1·115). The findings from this study provide no evidence that higher levels of fluoride (whether natural or artificial) in drinking water in GB lead to greater risk of either osteosarcoma or Ewing sarcoma.

  12. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost.

  13. 76 FR 5691 - Cyprodinil; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ....'' This includes exposure through drinking water and in residential settings, but does not include... exposure from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for cyprodinil in drinking water. These simulation models take into account...

  14. 75 FR 17579 - Aminopyralid; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... exposure through drinking water and in residential settings, but does not include occupational exposure... from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for aminopyralid in drinking water. These simulation models take into account...

  15. Nitrates in drinking water and risk of death from rectal cancer in Taiwan.

    PubMed

    Kuo, Hsin-Wei; Wu, Trong-Neng; Yang, Chun-Yuh

    2007-10-01

    The relationship between nitrate levels in drinking water and rectal cancer development has been inconclusive. A matched case-control and nitrate ecology study was used to investigate the association between mortality attributed to rectal cancer and drinking-water nitrate exposure in Taiwan. All deaths due to rectal cancer of Taiwan residents from 1999 through 2003 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO3-N) levels in drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios for rectal cancer death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.22 (0.98-1.52) and 1.36 (1.08-1.70), respectively. The findings of this study warrant further investigation of the role of nitrates in drinking water in the etiology of rectal cancer in Taiwan.

  16. Nitrates in drinking water and the risk of death from childhood brain tumors in Taiwan.

    PubMed

    Weng, Hsu-Huei; Tsai, Shang-Shyue; Wu, Trong-Neng; Sung, Fung-Chang; Yang, Chun-Yuh

    2011-01-01

    The objective of this study was to (1) examine the relationship between nitrate (NO₃-N) levels in public water supplies and risk of death from childhood brain tumors (CBT) and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of NO₃-N on development of CBT. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to CBT and exposure to NO₃-N in drinking water in Taiwan. All CBT deaths of Taiwan residents from 1999 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen NO₃-N, Ca, and Mg in drinking water were collected from Taiwan Water Supply Corporation. The municipality of residence for CBT cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was ≤ 0.31 ppm, and the adjusted odds ration (OR) (95% confidence interval [CI]) for CBT occurrence was 1.4 (1.07-1.84) for individuals who resided in municipalities served by drinking water with a NO₃-N exposure > 0.31 ppm. No significant effect modification was observed by Ca and Mg intake via drinking water. Data suggest that exposure to NO₃-N in drinking water is associated with a higher risk of CBT development in Taiwan.

  17. Lithium in drinking water and suicide mortality: interplay with lithium prescriptions

    PubMed Central

    Helbich, Marco; Leitner, Michael; Kapusta, Nestor D.

    2015-01-01

    Background Little is known about the effects of lithium intake through drinking water on suicide. This intake originates either from natural rock and soil elution and/or accumulation of lithium-based pharmaceuticals in ground water. Aims To examine the interplay between natural lithium in drinking water, prescribed lithium-based pharmaceuticals and suicide in Austria. Method Spatial Bayesian regressions for males, females and pooled suicide mortality rates were estimated. Results Although the expected inverse association between lithium levels in drinking water and suicide mortality was confirmed for males and for total suicide rates, the relationship for females was not significant. The models do not indicate that lithium from prescriptions, assumed to accumulate in drinking water, is related to suicide risk patterns either as an individual effect or as a moderator of lithium levels in drinking water. Gender-specific differences in risk factors and local risk hot spots are confirmed. Conclusions The findings do not support the hypotheses that lithium prescriptions have measureable protective effects on suicide or that they interact with lithium in drinking water. PMID:25953888

  18. Lithium in drinking water and suicide mortality: interplay with lithium prescriptions.

    PubMed

    Helbich, Marco; Leitner, Michael; Kapusta, Nestor D

    2015-07-01

    Little is known about the effects of lithium intake through drinking water on suicide. This intake originates either from natural rock and soil elution and/or accumulation of lithium-based pharmaceuticals in ground water. To examine the interplay between natural lithium in drinking water, prescribed lithium-based pharmaceuticals and suicide in Austria. Spatial Bayesian regressions for males, females and pooled suicide mortality rates were estimated. Although the expected inverse association between lithium levels in drinking water and suicide mortality was confirmed for males and for total suicide rates, the relationship for females was not significant. The models do not indicate that lithium from prescriptions, assumed to accumulate in drinking water, is related to suicide risk patterns either as an individual effect or as a moderator of lithium levels in drinking water. Gender-specific differences in risk factors and local risk hot spots are confirmed. The findings do not support the hypotheses that lithium prescriptions have measureable protective effects on suicide or that they interact with lithium in drinking water. © The Royal College of Psychiatrists 2015.

  19. Correlation between Fluoride in Drinking Water and Its Levels in Breast Milk in Golestan Province, Northern Iran.

    PubMed

    Faraji, Hossein; Mohammadi, Ali Akbar; Akbari-Adergani, Behrouz; Vakili Saatloo, Naimeh; Lashkarboloki, Gholamreza; Mahvi, Amir Hossein

    2014-12-01

    Fluoride is an essential element for human health. However, excess fluoride in drinking water may cause dental and/or skeletal fluorosis. Drinking water is the main route of fluoride intake. The aim of the present study was to measure fluoride levels in human breast milk collected from two regions of Golestan Province, northern Iran with different amount of fluoride concentration of drinking water in Bandar Gaz and Nokande cities and to correlate it with fluoride concentrations in drinking water used by mothers living in these two areas. Twenty samples of water were collected from seven drinking water wells during 2012 from Bandar Gaz and Nokande in Iran during 2012. Fluoride concentration of water samples was measured using SPADNS method. Sixty breast milk samples were collected from lactating mothers of Bandar Gaz and Nokande cities. Content in breast milk was determined using standard F ion-selective electrode. Spearman's rho correlation analysis was used to assess any possible relationship between fluoride levels in breast milk and in drinking water. The means and standard deviation for F concentration in breast milk and drinking water were 0.002188±0.00026224 ppm and 0.5850±0.22542 ppm, respectively. Analysis of data showed that the variables were not normally distributed so the Spearman correlation coefficient between two variables calculated (ρ S = 0.65) and it was significant (P=0.002). Fluoride concentration in water can directly act on its concentration in breast milk. We speculate that modifying F concentration in water can affect accessibility of fluoride for infants.

  20. Correlation between Fluoride in Drinking Water and Its Levels in Breast Milk in Golestan Province, Northern Iran

    PubMed Central

    FARAJI, Hossein; MOHAMMADI, Ali Akbar; AKBARI-ADERGANI, Behrouz; VAKILI SAATLOO, Naimeh; LASHKARBOLOKI, Gholamreza; MAHVI, Amir Hossein

    2014-01-01

    Background: Fluoride is an essential element for human health. However, excess fluoride in drinking water may cause dental and/or skeletal fluorosis. Drinking water is the main route of fluoride intake. The aim of the present study was to measure fluoride levels in human breast milk collected from two regions of Golestan Province, northern Iran with different amount of fluoride concentration of drinking water in Bandar Gaz and Nokande cities and to correlate it with fluoride concentrations in drinking water used by mothers living in these two areas. Methods: Twenty samples of water were collected from seven drinking water wells during 2012 from Bandar Gaz and Nokande in Iran during 2012. Fluoride concentration of water samples was measured using SPADNS method. Sixty breast milk samples were collected from lactating mothers of Bandar Gaz and Nokande cities. Content in breast milk was determined using standard F ion-selective electrode. Spearman’s rho correlation analysis was used to assess any possible relationship between fluoride levels in breast milk and in drinking water. Results: The means and standard deviation for F concentration in breast milk and drinking water were 0.002188±0.00026224 ppm and 0.5850±0.22542 ppm, respectively. Analysis of data showed that the variables were not normally distributed so the Spearman correlation coefficient between two variables calculated (ρS = 0.65) and it was significant (P=0.002). Conclusion: Fluoride concentration in water can directly act on its concentration in breast milk. We speculate that modifying F concentration in water can affect accessibility of fluoride for infants. PMID:26171359

  1. Excretion of arsenic (As) in urine of children, 7--11 years, exposed to elevated levels of As in the city water supply in Hermosillo, Sonora, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyatt, C.J.; Quiroga, V.L.; Acosta, R.T.O.

    1998-07-01

    Arsenic (As) is a common element in the environment with many industrial uses, but it also can be a contaminant in drinking water and present serious health concerns. Earlier studies on the quality of drinking water in the city of Hermosillo, Sonora, Mexico, showed high levels of As in water from wells located in the northern part of the city. Additionally a high positive correlation between the levels of Fluoride (F) and As in the same wells was found. Therefore, the objective of this study was to determine the excretion of As in children, 7--11 years of age, that hadmore » been exposed to elevated levels of As in their drinking water. Twenty-four-hour urine samples and a water sample taken directly in the home were collected from school age children living in two different areas with known high levels of As in their drinking water. A control group with normal levels of As in their water was also included.« less

  2. 78 FR 3328 - Fluroxypyr; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... drinking water and in residential settings, but does not include occupational exposure. Section 408(b)(2)(C... from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for fluroxypyr in drinking water. These simulation models take into account...

  3. Different Choices of Drinking Water Source and Different Health Risks in a Rural Population Living Near a Lead/Zinc Mine in Chenzhou City, Southern China

    PubMed Central

    Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan

    2015-01-01

    This study aimed to describe the households’ choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10−9~3.62 × 10−5. The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water’s highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals. PMID:26569281

  4. Fluoride exposure in public drinking water and childhood and adolescent osteosarcoma in Texas.

    PubMed

    Archer, Natalie P; Napier, Thomas S; Villanacci, John F

    2016-07-01

    The purpose of this study was to examine the association between fluoride levels in public drinking water and childhood and adolescent osteosarcoma in Texas; to date, studies examining this relationship have been equivocal. Using areas with high and low naturally occurring fluoride, as well as areas with optimal fluoridation, we examined a wide range of fluoride levels in public drinking water. This was a population-based case-control study, with both cases and controls obtained from the Texas Cancer Registry. Eligible cases were Texas children and adolescents <20 years old diagnosed with osteosarcoma between 1996 and 2006. Controls were sampled from children and adolescents diagnosed with either central nervous system (CNS) tumors or leukemia during the same time frame. Using geocoded patient addresses at the time of diagnosis, we estimated patients' drinking water fluoride exposure levels based on the fluoride levels of their residence's public water system (PWS). Unconditional logistic regression models were used to assess the association between osteosarcoma and public drinking water fluoride level, adjusting for several demographic risk factors. Three hundred and eight osteosarcoma cases, 598 leukemia controls, and 604 CNS tumor controls met selection criteria and were assigned a corresponding PWS fluoride level. PWS fluoride level was not associated with osteosarcoma, either in a univariable analysis or after adjusting for age, sex, race, and poverty index. Stratified analyses by sex were conducted; no association between PWS fluoride level and osteosarcoma was observed among either males or females. No relationship was found between fluoride levels in public drinking water and childhood/adolescent osteosarcoma in Texas.

  5. Radon-contaminated drinking water from private wells: an environmental health assessment examining a rural Colorado mountain community's exposure.

    PubMed

    Cappello, Michael Anthony; Ferraro, Aimee; Mendelsohn, Aaron B; Prehn, Angela Witt

    2013-11-01

    In the study discussed in this article, 27 private drinking water wells located in a rural Colorado mountain community were sampled for radon contamination and compared against (a) the U.S. Environmental Protection Agency's (U.S. EPA's) proposed maximum contaminant level (MCL), (b) the U.S. EPA proposed alternate maximum contaminate level (AMCL), and (c) the average radon level measured in the local municipal drinking water system. The data from the authors' study found that 100% of the wells within the study population had radon levels in excess of the U.S. EPA MCL, 37% were in excess of the U.S. EPA AMCL, and 100% of wells had radon levels greater than that found in the local municipal drinking water system. Radon contamination in one well was found to be 715 times greater than the U.S. EPA MCL, 54 times greater than the U.S. EPA AMLC, and 36,983 times greater than that found in the local municipal drinking water system. According to the research data and the reviewed literature, the results indicate that this population has a unique and elevated contamination profile and suggest that radon-contaminated drinking water from private wells can present a significant public health concern.

  6. Fluoride in drinking water and human urine in Southern Haryana, India.

    PubMed

    Singh, Bhupinder; Gaur, Shalini; Garg, V K

    2007-06-01

    The objective of this study was to determine the fluoride content in drinking water and urine samples of adolescent males aged 11-16 years living in Southern Haryana, India. A total of 30 drinking water sources in the studied habitations were assessed for fluoride contamination. Fluoride was estimated in the urine of 400 male children randomly selected from these habitations. The fluoride concentration in drinking water and urine samples was determined using USEPA fluoride ion selective electrode method. The mean fluoride concentration in drinking water samples of Pataudi, Haily Mandi and Harsaru villages was 1.68+/-0.35, 3.22+/-1.18 and 1.78+/-0.12 mg/l, respectively. The mean urinary fluoride concentration was 2.26+/-0.024 mg/l at Pataudi, 2.48+/-0.77 mg/l at Haily Mandi and 2.43+/-0.84 mg/l at Harsaru village. The higher fluoride levels in the urine of children may be associated to higher fluoride levels in drinking water. The accuracy of measurements was assessed with known addition method in water and urine. Mean fluoride recovery was 98.0 and 99.1% in water and urine. The levels obtained were reproducible with in +/-3% error limit.

  7. Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

    PubMed Central

    Gomez-Rosales, S.; de L. Angeles, M.

    2015-01-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water. PMID:25557817

  8. Addition of a worm leachate as source of humic substances in the drinking water of broiler chickens.

    PubMed

    Gomez-Rosales, S; de L Angeles, M

    2015-02-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water.

  9. Occurrence and sources of bromate in chlorinated tap drinking water in Metropolitan Manila, Philippines.

    PubMed

    Genuino, Homer C; Espino, Maria Pythias B

    2012-04-01

    Significant levels of potentially carcinogenic bromate were measured in chlorinated tap drinking water in Metropolitan Manila, Philippines, using an optimized ion-chromatographic method. This method can quantify bromate in water down to 4.5 μg l⁻¹ by employing a postcolumn reaction with acidic fuchsin and subsequent spectrophotometric detection. The concentration of bromate in tap drinking water samples collected from 21 locations in cities and municipalities within the 9-month study period ranged from 7 to 138 μg l⁻¹. The average bromate concentration of all tap drinking water samples was 66 μg l⁻¹ (n = 567), almost seven times greater than the current regulatory limit in the country. The levels of bromate in other water types were also determined to identify the sources of bromate found in the distribution lines and to further uncover contaminated sites. The concentration of bromate in water sourced from two rivers and two water treatment plants ranged from 15 to 80 and 12 to 101 μg l⁻¹, respectively. Rainwater did not contribute bromate in rivers but decreased bromate level by dilution. Groundwater and wastewater samples showed bromate concentrations as high as 246 and 342 μg l⁻¹, respectively. Bromate presence in tap drinking water can be linked to pollution in natural water bodies and the practice of using hypochlorite chemicals in addition to gaseous chlorine for water disinfection. This study established the levels, occurrence, and possible sources of bromate in local drinking water supplies.

  10. ADVANCES IN DRINKING WATER TREATMENT IN THE UNITED STATES

    EPA Science Inventory

    The United States drinking water public health protection goal is to provide water that meets all health-based standards to ninety-five percent of the population served by public drinking water supplies by 2005. In 2002, the level of compliance with some eighty-five health-based ...

  11. 77 FR 26954 - 1-Naphthaleneacetic acid; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... for which there is reliable information.'' This includes exposure through drinking water and in... exposure from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for NAA in drinking water. These simulation models take into account data on...

  12. 78 FR 29049 - Streptomycin; Pesticide Tolerances for Emergency Exemptions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... exposures for which there is reliable information.'' This includes exposure through drinking water and in... commodities. 2. Dietary exposure from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for streptomycin in drinking water. These simulation...

  13. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water.

    PubMed

    Kato, Masashi; Kumasaka, Mayuko Y; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro

    2013-01-01

    Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.

  14. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water

    PubMed Central

    Kato, Masashi; Kumasaka, Mayuko Y.; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U.; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro

    2013-01-01

    Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system. PMID:23805262

  15. 40 CFR 141.60 - Effective dates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.60 Effective dates. (a) The effective dates for § 141...

  16. An urgent need to reassess the safe levels of copper in the drinking water: lessons from studies on healthy animals harboring no genetic deficits.

    PubMed

    Pal, Amit; Jayamani, Jayagandan; Prasad, Rajendra

    2014-09-01

    Recent seminal studies have established neurodegeneration, cognitive waning and/or β-amyloid deposition due to chronic copper intoxication via drinking water in healthy animals; henceforth, fuelling the debate all again over the safe levels of copper in the drinking water. This review encompasses the contemporary imperative animal studies in which the effect of chronic copper toxicity (especially via drinking water) was evaluated on the central nervous system and memory of uncompromised animals along with discussing the future perspectives. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Is fluoride a risk factor for bone cancer? Small area analysis of osteosarcoma and Ewing sarcoma diagnosed among 0–49-year-olds in Great Britain, 1980–2005

    PubMed Central

    Blakey, Karen; Feltbower, Richard G; Parslow, Roger C; James, Peter W; Gómez Pozo, Basilio; Stiller, Charles; Vincent, Tim J; Norman, Paul; McKinney, Patricia A; Murphy, Michael F; Craft, Alan W; McNally, Richard JQ

    2014-01-01

    Background: Artificial fluoridation of drinking water to improve dental health has long been a topic of controversy. Opponents of this public health measure have cited the possibility of bone cancer induction. The study objective was to examine whether increased risk of primary bone cancer was associated with living in areas with higher concentrations of fluoride in drinking water. Methods: Case data on osteosarcoma and Ewing sarcoma, diagnosed at ages 0–49 years in Great Britain (GB) (defined here as England, Scotland and Wales) during the period 1980–2005, were obtained from population-based cancer registries. Data on fluoride levels in drinking water in England and Wales were accessed through regional water companies and the Drinking Water Inspectorate. Scottish Water provided data for Scotland. Negative binomial regression was used to examine the relationship between incidence rates and level of fluoride in drinking water at small area level. Results: The study analysed 2566 osteosarcoma and 1650 Ewing sarcoma cases. There was no evidence of an association between osteosarcoma risk and fluoride in drinking water [relative risk (RR) per one part per million increase in the level of fluoride = 1·001; 90% confidence interval (CI) 0·871, 1·151] and similarly there was no association for Ewing sarcoma (RR = 0·929; 90% CI 0·773, 1·115). Conclusions: The findings from this study provide no evidence that higher levels of fluoride (whether natural or artificial) in drinking water in GB lead to greater risk of either osteosarcoma or Ewing sarcoma. PMID:24425828

  18. An Environmental Assessment of United States Drinking Water Watersheds

    EPA Science Inventory

    There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of drinking water watersheds using data on land cover, hydrography a...

  19. Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers.

    PubMed

    Metcalfe, Chris; Hoque, M Ehsanul; Sultana, Tamanna; Murray, Craig; Helm, Paul; Kleywegt, Sonya

    2014-03-01

    Contaminants of emerging concern (CEC) have been detected in drinking water world-wide. The source of most of these compounds is generally attributed to contamination from municipal wastewater. Traditional water sampling methods (grab or composite) often require the concentration of large amounts of water in order to detect trace levels of these contaminants. The Polar Organic Compounds Integrative Sampler (POCIS) is a passive sampling technology that has been developed to concentrate trace levels of CEC to provide time-weighted average concentrations for individual compounds in water. However, few studies to date have evaluated whether POCIS is suitable for monitoring contaminants in drinking water. In this study, the POCIS was evaluated as a monitoring tool for CEC in drinking water over a period of 2 and 4 weeks with comparisons to typical grab samples. Seven "indicator compounds" which included carbamazepine, trimethoprim, sulfamethoxazole, ibuprofen, gemfibrozil, estrone and sucralose, were monitored in five drinking water treatment plants (DWTPs) in Ontario. All indicator compounds were detected in raw water samples from the POCIS in comparison to six from grab samples. Similarly, four compounds were detected in grab samples of treated drinking water, whereas six were detected in the POCIS. Sucralose was the only compound that was detected consistently at all five plants. The POCIS technique provided integrative exposures of CECs in drinking water at lower detection limits, while episodic events were captured via traditional sampling methods. There was evidence that the accumulation of target compounds by POCIS is a dynamic process, with adsorption and desorption on the sorbent occurring in response to ambient levels of the target compounds in water. CECs in treated drinking water were present at low ng L(-1) concentrations, which are not considered to be a threat to human health.

  20. Source of drinking water and other risk factors for dental fluorosis in Sri Lanka.

    PubMed

    van der Hoek, Wim; Ekanayake, Lilani; Rajasooriyar, Lorraine; Karunaratne, Ravi

    2003-09-01

    This study was done to describe the association between source of drinking water and other potential risk factors with dental fluorosis. Prevalence of dental fluorosis among 518 14-year-old students in the south of Sri Lanka was 43.2%. The drinking water sources of the students were described and fluoride samples were taken. There was a strong association between water fluoride level and prevalence of fluorosis. Tea drinking before 7 years of age was also an independent risk factor in a multivariate analysis. Having been fed with formula bottle milk as an infant seemed to increase the risk although the effect was not statistically significant. No clear effects could be found for using fluoridated toothpaste, occupation of the father, and socio-economic status. Drinking water obtained from surface water sources had lower fluoride levels (median 0.22 mg l(-1)) than water from deep tube wells (median 0.80 mg l(-1)). Most families used shallow dug wells and these had a median fluoride value of 0.48 mg l(-1) but with a wide range from 0.09 to 5.90 mg l(-1). Shallow wells located close to irrigation canals or other surface water had lower fluoride values than wells located further away. Fluoride levels have to be taken into account when planning drinking water projects. From the point of view of prevention of dental fluorosis, drinking water from surface sources or from shallow wells located close to surface water would be preferable.

  1. Trends in Drinking Water Nitrate Violations Across the United States

    EPA Science Inventory

    Drinking water maximum contaminant levels (MCL) are established by the U.S. EPA in order to protect human health. Since 1975, public water suppliers across the U.S. have reported violations of the MCL to the national Safe Drinking Water Information System (SDWIS). Nitrate is on...

  2. Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study.

    PubMed

    Manassaram, Deana M; Backer, Lorraine C; Messing, Rita; Fleming, Lora E; Luke, Barbara; Monteilh, Carolyn P

    2010-10-14

    Private water systems are more likely to have nitrate levels above the maximum contaminant level (MCL). Pregnant women are considered vulnerable to the effects of exposure to high levels of nitrates in drinking water due to their altered physiological states. The level of methemoglobin in the blood is the biomarker often used in research for assessing exposure to nitrates. The objective of this study was to assess methemoglobin levels and examine how various factors affected methemoglobin levels during pregnancy. We also examined whether differences in water use practices existed among pregnant women based on household drinking water source of private vs. public supply. A longitudinal study of 357 pregnant women was conducted. Longitudinal regression models were used to examine changes and predictors of the change in methemoglobin levels over the period of gestation. Pregnant women showed a decrease in methemoglobin levels with increasing gestation although <1% had levels above the physiologic normal of 2% methemoglobin, regardless of the source of their drinking water. The multivariable analyses did not show a statistically significant association between methemoglobin levels and the estimated nitrate intake from tap water among pregnant women around 36 weeks gestation (β = 0.046, p = 0.986). Four women had tap water nitrate levels above the MCL of 10 mg/L. At enrollment, a greater proportion of women who reported using water treatment devices were private wells users (66%) compared to public system users (46%) (p < 0.0001). Also, a greater proportion of private well users (27%) compared to public system users (13%) were using devices capable of removing nitrate from water (p < 0.0001). Pregnant women potentially exposed to nitrate levels primarily below the MCL for drinking water were unlikely to show methemoglobin levels above the physiologic normal. Water use practices such as the use of treatment devices to remove nitrates varied according to water source and should be considered in the assessment of exposure to nitrates in future studies.

  3. Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study

    PubMed Central

    2010-01-01

    Background Private water systems are more likely to have nitrate levels above the maximum contaminant level (MCL). Pregnant women are considered vulnerable to the effects of exposure to high levels of nitrates in drinking water due to their altered physiological states. The level of methemoglobin in the blood is the biomarker often used in research for assessing exposure to nitrates. The objective of this study was to assess methemoglobin levels and examine how various factors affected methemoglobin levels during pregnancy. We also examined whether differences in water use practices existed among pregnant women based on household drinking water source of private vs. public supply. Methods A longitudinal study of 357 pregnant women was conducted. Longitudinal regression models were used to examine changes and predictors of the change in methemoglobin levels over the period of gestation. Results Pregnant women showed a decrease in methemoglobin levels with increasing gestation although <1% had levels above the physiologic normal of 2% methemoglobin, regardless of the source of their drinking water. The multivariable analyses did not show a statistically significant association between methemoglobin levels and the estimated nitrate intake from tap water among pregnant women around 36 weeks gestation (β = 0.046, p = 0.986). Four women had tap water nitrate levels above the MCL of 10 mg/L. At enrollment, a greater proportion of women who reported using water treatment devices were private wells users (66%) compared to public system users (46%) (p < 0.0001). Also, a greater proportion of private well users (27%) compared to public system users (13%) were using devices capable of removing nitrate from water (p < 0.0001). Conclusion Pregnant women potentially exposed to nitrate levels primarily below the MCL for drinking water were unlikely to show methemoglobin levels above the physiologic normal. Water use practices such as the use of treatment devices to remove nitrates varied according to water source and should be considered in the assessment of exposure to nitrates in future studies. PMID:20946657

  4. "Borderline" fluorotic region in Serbia: correlations among fluoride in drinking water, biomarkers of exposure and dental fluorosis in schoolchildren.

    PubMed

    Antonijevic, Evica; Mandinic, Zoran; Curcic, Marijana; Djukic-Cosic, Danijela; Milicevic, Nemanja; Ivanovic, Mirjana; Carevic, Momir; Antonijevic, Biljana

    2016-06-01

    This study explores relation between dental fluorosis occurrence in schoolchildren, residents of Ritopek, a small local community near Belgrade, and fluoride exposure via drinking water. Additionally, fluoride levels were determined in children's urine and hair samples, and efforts were made to correlate them with dental fluorosis. Dental fluorosis and caries prevalence were examined in a total of 52 schoolchildren aged 7-15 years (29 boys and 23 girls). Fluoride levels in three types of samples were analyzed using composite fluoride ion-selective electrode. Results showed high prevalence of dental fluorosis (34.6 %) and low prevalence of dental caries (23.1 %, mean DMFT 0.96) among children exposed to wide range of water fluoride levels (0.11-4.14 mg/L, n = 27). About 11 % of water samples exceeded 1.5 mg/L, a drinking-water quality guideline value for fluoride given by the World Health Organization (2006). Fluoride levels in urine and hair samples ranged between 0.07-2.59 (n = 48) and 1.07-19.83 mg/L (n = 33), respectively. Severity of dental fluorosis was positively and linearly correlated with fluoride levels in drinking water (r = 0.79). Fluoride levels in urine and hair were strongly and positively correlated with levels in drinking water (r = 0.92 and 0.94, respectively). Fluoride levels in hair samples appeared to be a potentially promising biomarker of fluoride intake via drinking water on one hand, and severity of dental fluorosis on the other hand. Based on community fluorosis index value of 0.58, dental fluorosis revealed in Ritopek can be considered as "borderline" public health issue.

  5. Levels of exposure from drinking water.

    PubMed

    van Dijk-Looijaard, A M; van Genderen, J

    2000-01-01

    The relative exposure from drinking water is generally small, although there is a lack of information on total daily intake of individual organic micropollutants. There are, however, a few exceptions. Materials used in domestic distribution systems (lead, copper and plastics) may cause a deterioration of the water quality, especially in stagnant water. The relative exposure to the related compounds may increase considerably. Monitoring data from the tap (with defined sampling techniques) are needed. Also, disinfection/oxidation by-products (bromate, trihalomethanes) can be present in drinking water in considerable amounts and the relative exposure from drinking water may even approach 100%. Especially for volatile organic micropollutants, exposure routes from drinking water other than ingestion must be taken into account (inhalation, percutaneous uptake). When there is a need for detection of substances at very low levels it is important that the measurements are reliable. International interlaboratory comparisons for organic micropollutants are lacking at the moment.

  6. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature.

    PubMed

    Post, Gloria B; Cohn, Perry D; Cooper, Keith R

    2012-07-01

    Perfluorooctanoic acid (PFOA) is an anthropogenic contaminant that differs in several ways from most other well-studied organic chemicals found in drinking water. PFOA is extremely resistant to environmental degradation processes and thus persists indefinitely. Unlike most other persistent and bioaccumulative organic pollutants, PFOA is water-soluble, does not bind well to soil or sediments, and bioaccumulates in serum rather than in fat. It has been detected in finished drinking water and drinking water sources impacted by releases from industrial facilities and waste water treatment plants, as well as in waters with no known point sources. However, the overall occurrence and population exposure from drinking water is not known. PFOA persists in humans with a half-life of several years and is found in the serum of almost all U.S. residents and in populations worldwide. Exposure sources include food, food packaging, consumer products, house dust, and drinking water. Continued exposure to even relatively low concentrations in drinking water can substantially increase total human exposure, with a serum:drinking water ratio of about 100:1. For example, ongoing exposures to drinking water concentrations of 10 ng/L, 40 ng/L, 100 ng/L, or 400 ng/L are expected to increase mean serum levels by about 25%, 100%, 250%, and 1000%, respectively, from the general population background serum level of about 4 ng/mL. Infants are potentially a sensitive subpopulation for PFOA's developmental effects, and their exposure through breast milk from mothers who use contaminated drinking water and/or from formula prepared with contaminated drinking water is higher than in adults exposed to the same drinking water concentration. Numerous health endpoints are associated with human PFOA exposure in the general population, communities with contaminated drinking water, and workers. As is the case for most such epidemiology studies, causality for these effects is not proven. Unlike most other well-studied drinking water contaminants, the human dose-response curve for several effects appears to be steepest at the lower exposure levels, including the general population range, with no apparent threshold for some endpoints. There is concordance in animals and humans for some effects, while humans and animals appear to react differently for other effects such as lipid metabolism. PFOA was classified as "likely to be carcinogenic in humans" by the USEPA Science Advisory Board. In animal studies, developmental effects have been identified as more sensitive endpoints for toxicity than carcinogenicity or the long-established hepatic effects. Notably, exposure to an environmentally relevant drinking water concentration caused adverse effects on mammary gland development in mice. This paper reviews current information relevant to the assessment of PFOA as an emerging drinking water contaminant. This information suggests that continued human exposure to even relatively low concentrations of PFOA in drinking water results in elevated body burdens that may increase the risk of health effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Contaminant Occurrence and Related Data for Six-Year Review of Drinking Water Standards

    EPA Pesticide Factsheets

    Learn about data EPA collects to conduct the Six-Year Review of National Primary Drinking Water Regulations. The data allows EPA to characterize frequency of occurrence, the levels found, and the geographic distribution of contaminants in drinking water.

  8. RESPONDING TO THREATS AND INCIDENTS OF INTENTIONAL DRINKING WATER CONTAMINATION

    EPA Science Inventory

    All drinking water systems have some degree of vulnerability to contamination, and analysis shows that it is possible to contaminate drinking water at levels causing varying degrees of harm. Furthermore, experience indicates that the threat of contamination, overt or circumstant...

  9. Trihalomethane levels in Madras public drinking water supply system and its impact on public health.

    PubMed

    Rajan, S; Azariah, J; Bauer, U

    1990-02-01

    It is known that trihalomethanes (THM) are formed during chlorination of drinking water for disinfection. Heightened concern about these substances is due to the fact that THMs are now characterized as potential mutagen, carcinogen and teratogen. Thus, it is a risk factor in human beings. In the present study, a total number of 13 stations located in different drinking water trunk mains of the city of Madras were analysed for THM using the Gas Liquid Chromatographic method. It is reported that THM are formed after treatment of raw water with chlorine at the levels required for disinfection. The THM level in drinking water increased towards the dead-end of the water trunk mains. A relationship between the distance travelled by the potable water and the level of THM was established. At certain stations, the total trihalomethanes level (TTHM) was found to exceed the EPA's maximum contaminant level. Further, an intermittent addition of the precursors for the formation of THM through the seepage of polluted River Cooum water into the pipe lines has been demonstrated. An experiment on the trihalomethane formation potential (THMFP) clearly revealed the occurrence of higher magnitude of humic substances in source water. Therefore, it is suggested that if suitable steps are not taken, various environmental factors may trigger the THM kinetics. Hence, it is obvious that pretreatment regulations proposed by developed countries are essential if safe drinking water is to be supplied to the people of Madras.

  10. High fluoride and low pH level have been detected in popular flavoured beverages in Malaysia

    PubMed Central

    HA Rahim, Zubaidah; M Bakri, Marina; HM, Zakir; IA, Ahmed; NA, Zulkifli

    2014-01-01

    Objective: In children, excessive ingestion of fluoride from different sources including bottled drinking water and flavoured beverages or soft drinks can lead to the development of dental fluorosis. In addition, the pH level of beverages is important. Low pH can cause dental erosion. In this study we explore the fluoride content and pH level of certain popular beverages available in Malaysian supermarkets and hawkers’ stalls. Methods: Bottled drinking water and selected popular flavoured packet drinks were purchased from a supermarket and the corresponding flavoured hawkers’ drinks, from a hawker’s stall in Kuala Lumpur. Fluoride and pH of the beverages were determined using digital fluoride meter and digital pH meter respectively. Results: It was found that fluoride content and pH level vary among the beverages. The mean fluoride content in both packet and hawkers’ drinks (7.64±1.88 mg/L, 7.51±1.60 mg/L, respectively) was approximately 7 times higher than the bottled drinking water (1.05±0.35 mg/L). Among the beverages, the tea packet drink was found to contain the highest amount of fluoride (13.02±0.23 mg/L). The mean pH of bottled-drinking water was near neutral (6.96±0.17), but acidic for both supermarket (4.78.00±0.49) and hawkers’ drinks (5.73±0.24). The lychee packet drink had the lowest pH level (2.97±0.03). Conclusions: Due to the wide variation of the fluoride content and pH level of the drinks tested in this study, it is recommended that steps should be taken to control the fluoride concentration and pH level in beverages if dental fluorosis and erosion are to be prevented. PMID:24772152

  11. Fate of Salmonella Typhimurium in laboratory-scale drinking water biofilms.

    PubMed

    Schaefer, L M; Brözel, V S; Venter, S N

    2013-12-01

    Investigations were carried out to evaluate and quantify colonization of laboratory-scale drinking water biofilms by a chromosomally green fluorescent protein (gfp)-tagged strain of Salmonella Typhimurium. Gfp encodes the green fluorescent protein and thus allows in situ detection of undisturbed cells and is ideally suited for monitoring Salmonella in biofilms. The fate and persistence of non-typhoidal Salmonella in simulated drinking water biofilms was investigated. The ability of Salmonella to form biofilms in monoculture and the fate and persistence of Salmonella in a mixed aquatic biofilm was examined. In monoculture S. Typhimurium formed loosely structured biofilms. Salmonella colonized established multi-species drinking water biofilms within 24 hours, forming micro-colonies within the biofilm. S. Typhimurium was also released at high levels from the drinking water-associated biofilm into the water passing through the system. This indicated that Salmonella could enter into, survive and grow within, and be released from a drinking water biofilm. The ability of Salmonella to survive and persist in a drinking water biofilm, and be released at high levels into the flow for recolonization elsewhere, indicates the potential for a persistent health risk to consumers once a network becomes contaminated with this bacterium.

  12. A sub-tank water-saving drinking water station

    NASA Astrophysics Data System (ADS)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small amount of water consumption, the drinking water station is different from the ordinary drinking water station repeatedly boil, greatly saving energy, embodies the idea of energy saving.

  13. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi.

    PubMed

    Kayser, Georgia L; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E

    2015-04-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries-Brazil, Ecuador, and Malawi-as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers.

  14. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi

    PubMed Central

    Kayser, Georgia L.; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E.

    2015-01-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries—Brazil, Ecuador, and Malawi—as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers. PMID:25798068

  15. Drinking water: a major source of lead exposure in Karachi, Pakistan.

    PubMed

    Ul-Haq, N; Arain, M A; Badar, N; Rasheed, M; Haque, Z

    2011-11-01

    Excess lead in drinking water is a neglected source of lead toxicity in Pakistan. A cross-sectional survey in 2007/08 was made of water samples from drinking water sources in Karachi, a large industrial city. This study aimed to compare lead levels between untreated ground water and treated surface (tap) water in 18 different districts. Of 216 ground and surface water samples collected, 86% had lead levels higher than the World Health Organization maximum acceptable concentration of l0 ppb. Mean lead concentration in ground water [146 (SD 119) ppb] was significantly higher than in surface water [77.1 (SD 54) ppb]. None of the 18 districts had a mean lead level of ground or surface water below the WHO cut-off and ground water sources in 9 districts had a severe level of contamination (>150 ppb). Urgent action is needed to eliminate sources of contamination.

  16. [Health Risk Assessment of Drinking Water Quality in Tianjin Based on GIS].

    PubMed

    Fu, Gang; Zeng, Qiang; Zhao, Liang; Zhang, Yue; Feng, Bao-jia; Wang, Rui; Zhang, Lei; Wang, Yang; Hou, Chang-chun

    2015-12-01

    This study intends to assess the potential health hazards of drinking water quality and explore the application of geographic information system( GIS) in drinking water safety in Tianjin. Eight hundred and fifty water samples from 401 sampling points in Tianjin were measured according to the national drinking water standards. The risk assessment was conducted using the environmental health risk assessment model recommended by US EAP, and GIS was combined to explore the information visualization and risk factors simultaneously. The results showed that the health risks of carcinogens, non-carcinogens were 3.83 x 10⁻⁵, 5.62 x 10⁻⁹ and 3.83 x 10⁻⁵ for total health risk respectively. The rank of health risk was carcinogen > non-carcinogen. The rank of carcinogens health risk was urban > new area > rural area, chromium (VI) > cadmium > arsenic > trichlormethane > carbon tetrachloride. The rank of non-carcinogens health risk was rural area > new area > urban, fluoride > cyanide > lead > nitrate. The total health risk level of drinking water in Tianjin was lower than that of ICRP recommended level (5.0 x 10⁻⁵), while was between US EPA recommended level (1.0 x 10⁻⁴-1.0 x 10⁻⁶). It was at an acceptable level and would not cause obvious health hazards. The main health risks of drinking water came from carcinogens. More attentions should be paid to chromium (VI) for carcinogens and fluoride for non-carcinogens. GIS can accomplish information visualization of drinking water risk assessment and further explore of risk factors.

  17. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water.

    PubMed

    Hussain, Iftak; Ahamad, Kamal Uddin; Nath, Pabitra

    2017-01-03

    Groundwater is the major source of drinking water for people living in rural areas of India. Pollutants such as fluoride in groundwater may be present in much higher concentration than the permissible limit. Fluoride does not give any visible coloration to water, and hence, no effort is made to remove or reduce the concentration of this chemical present in drinking water. This may lead to a serious health hazard for those people taking groundwater as their primary source of drinking water. Sophisticated laboratory grade tools such as ion selective electrodes (ISE) and portable spectrophotometers are commercially available for in-field detection of fluoride level in drinking water. However, such tools are generally expensive and require expertise to handle. In this paper, we demonstrate the working of a low cost, robust, and field portable smartphone platform fluoride sensor that can detect and analyze fluoride concentration level in drinking water. For development of the proposed sensor, we utilize the ambient light sensor (ALS) of the smartphone as light intensity detector and its LED flash light as an optical source. An android application "FSense" has been developed which can detect and analyze the fluoride concentration level in water samples. The custom developed application can be used for sharing of in-field sensing data from any remote location to the central water quality monitoring station. We envision that the proposed sensing technique could be useful for initiating a fluoride removal program undertaken by governmental and nongovernmental organizations here in India.

  18. Validating a High Performance Liquid Chromatography-Ion Chromatography (HPLC-IC) Method with Conductivity Detection After Chemical Suppression for Water Fluoride Estimation.

    PubMed

    Bondu, Joseph Dian; Selvakumar, R; Fleming, Jude Joseph

    2018-01-01

    A variety of methods, including the Ion Selective Electrode (ISE), have been used for estimation of fluoride levels in drinking water. But as these methods suffer many drawbacks, the newer method of IC has replaced many of these methods. The study aimed at (1) validating IC for estimation of fluoride levels in drinking water and (2) to assess drinking water fluoride levels of villages in and around Vellore district using IC. Forty nine paired drinking water samples were measured using ISE and IC method (Metrohm). Water samples from 165 randomly selected villages in and around Vellore district were collected for fluoride estimation over 1 year. Standardization of IC method showed good within run precision, linearity and coefficient of variance with correlation coefficient R 2  = 0.998. The limit of detection was 0.027 ppm and limit of quantification was 0.083 ppm. Among 165 villages, 46.1% of the villages recorded water fluoride levels >1.00 ppm from which 19.4% had levels ranging from 1 to 1.5 ppm, 10.9% had recorded levels 1.5-2 ppm and about 12.7% had levels of 2.0-3.0 ppm. Three percent of villages had more than 3.0 ppm fluoride in the water tested. Most (44.42%) of these villages belonged to Jolarpet taluk with moderate to high (0.86-3.56 ppm) water fluoride levels. Ion Chromatography method has been validated and is therefore a reliable method in assessment of fluoride levels in the drinking water. While the residents of Jolarpet taluk (Vellore distict) are found to be at a high risk of developing dental and skeletal fluorosis.

  19. ELEVATED LEVELS OF SODIUM IN COMMUNITY DRINKING WATER

    EPA Science Inventory

    A comparison study of students from towns with differing levels of sodium in drinking water revealed statistically significantly higher blood pressure distributions among the students from the town with high sodium levels. Differences were found in both systolic and diastolic rea...

  20. Detection and quantification of trihalomethanes in drinking water from Alexandria, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, A.A.M.; Benfenati, E.; Fanelli, R.

    1996-03-01

    Trihalomethanes (THMs) are one group of harmful chlorinated compounds which are known to contaminate drinking water. The total concentration of the four THMs in drinking water may vary up to 1000 {mu}g/l but it should not exceed 100 {mu}g/l. Toxicological studies suggest that chloroform and other THMs may have detrimental effect on human health. Chloroform was reported to cause cancer in experimental animals. Other THMs, based on the structural similarity to chloroform, may be also classified as health hazard compounds. Accordingly, THMs in water supplies should be monitored closely so that measures may be taken to minimize or eliminate theirmore » presence whenever the concentration approach levels of concern. Little is known about the levels of THMs in drinking water of Egypt compared to other countries. Few studies have been reported from Cairo. To our knowledge, no studies concerning the THMs levels in drinking water have been reported from Alexandria. Therefore, the aim of this study is to detect and quantitate the levels of THMs in drinking water from some main districts in Alexandria, Solid Phase Micro Extraction (SPME) is a fast, sensitive, inexpensive, portable and solvent-free method for extracting organic compounds from aqueous samples. It is amenable to automation and can be used with any gas chromatograph (or mass spectrometer). The technique meets detection limits specified by EPA methods and was therefore used in this work.« less

  1. Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature.

    PubMed

    Mohammadi, Ali Akbar; Yousefi, Mahmood; Mahvi, Amir Hossein

    2017-08-01

    Long-term exposure to high level of fluoride can caused several adverse effects on human health including dental and skeletal fluorosis. We investigated all the drinking water source located in rural areas of Poldasht city, west Azerbaijan Province, North West Iran between 2014 and 2015. Fluoride concentration of water samples was measured by SPADNS method. We found that in the villages of Poldasht the average of fluoride concentration in drinking water sources (well, and the river) was in the range mg/l 0.28-10.23. The average daily received per 2 l of drinking water is in the range mg/l 0.7-16.6 per day per person. Drinking water demands cause fluorosis in the villages around the area residents and based on the findings of this study writers are announced suggestions below in order to take care of the health of area residents.

  2. An assessment of drinking-water quality post-Haiyan.

    PubMed

    Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.

  3. An assessment of drinking-water quality post-Haiyan

    PubMed Central

    Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136

  4. STATISTICAL PROCEDURES FOR DETERMINATION AND VERIFICATION OF MINIMUM REPORTING LEVELS FOR DRINKING WATER METHODS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) Office of Ground Water and Drinking Water (OGWDW) has developed a single-laboratory quantitation procedure: the lowest concentration minimum reporting level (LCMRL). The LCMRL is the lowest true concentration for which fu...

  5. Toxicological relevance of pharmaceuticals in drinking water.

    PubMed

    Bruce, Gretchen M; Pleus, Richard C; Snyder, Shane A

    2010-07-15

    Interest in the public health significance of trace levels of pharmaceuticals in potable water is increasing, particularly with regard to the effects of long-term, low-dose exposures. To assess health risks and establish target concentrations for water treatment, human health risk-based screening levels for 15 pharmaceutically active ingredients and four metabolites were compared to concentrations detected at 19 drinking water treatment plants across the United States. Compounds were selected based on rate of use, likelihood of occurrence, and potential for toxicity. Screening levels were established based on animal toxicity data and adverse effects at therapeutic doses, focusing largely on reproductive and developmental toxicity and carcinogenicity. Calculated drinking water equivalent levels (DWELs) ranged from 0.49 microg/L (risperidone) to 20,000 microg/L (naproxen). None of the 10 detected compounds exceeded their DWEL. Ratios of DWELs to maximum detected concentrations ranged from 110 (phenytoin) to 6,000,000 (sulfamethoxazole). Based on this evaluation, adverse health effects from targeted pharmaceuticals occurring in U.S. drinking water are not expected.

  6. Natural fluoride levels in the drinking water, water fluoridation and estimated risk of dental fluorosis in a tropical region of Brazil.

    PubMed

    Sampaio, Fábio Correia; Silva, Fábia Danielle; Silva, Andréa Cristina; Machado, Ana Thereza; de Araújo, Demétrius Antônio; de Sousa, Erik Melo

    2010-01-01

    The aim of the present study was to determine the natural fluoride levels in the drinking water supplies of a tropical area of Brazil to identify the cities at risk of high prevalence of dental fluorosis and to provide data for future water fluoridation projects in the region. The present study was carried out in Paraíba, in the north-eastern region of Brazil. A total of 223 cities were selected, and local health workers were instructed to collect three samples of drinking water: one from the main public water supply and the other two from a public or residential tap with the same water source. Fluoride analyses were carried out in duplicate using a fluoride-specific electrode coupled to an ion analyser. A total of 167 cities (75%) provided water samples for analysis. Fluoride levels ranged from 0.1 to 1.0 ppm (mg/l). Samples from most of the cities (n = 163, 73%) presented low levels of fluoride (< 0.5 mg/l). Samples from three cities (a total estimate of 28,222 inhabitants exposed) presented 'optimum' fluoride levels (0.6 to 0.8 mg/l). Samples from one city (16,724 inhabitants) with 1.0 mg/l of fluoride in the water were above the recommended level (0.7 mg/l) for the local temperature. It can be concluded that the cities in this area of Brazil presented low natural fluoride levels in the drinking water and could implement controlled water fluoridation projects when technical requirements are accomplished. A high or a moderate prevalence of dental fluorosis due to the intake of natural fluoride in the drinking water is likely to take place in one city only.

  7. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study.

    PubMed

    Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K

    2015-04-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Drinking water studies: a review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia).

    PubMed

    Ab Razak, Nurul Hafiza; Praveena, Sarva Mangala; Aris, Ahmad Zaharin; Hashim, Zailina

    2015-12-01

    Malaysia has abundant sources of drinking water from river and groundwater. However, rapid developments have deteriorated quality of drinking water sources in Malaysia. Heavy metal studies in terms of drinking water, applications of health risk assessment and bio-monitoring in Malaysia were reviewed from 2003 to 2013. Studies on heavy metal in drinking water showed the levels are under the permissible limits as suggested by World Health Organization and Malaysian Ministry of Health. Future studies on the applications of health risk assessment are crucial in order to understand the risk of heavy metal exposure through drinking water to Malaysian population. Among the biomarkers that have been reviewed, toenail is the most useful tool to evaluate body burden of heavy metal. Toenails are easy to collect, store, transport and analysed. This review will give a clear guidance for future studies of Malaysian drinking water. In this way, it will help risk managers to minimize the exposure at optimum level as well as the government to formulate policies in safe guarding the population. Copyright © 2015 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  9. [Assessment of non-carcinogenic risk for the health of the child population under the consumption of drinking water].

    PubMed

    Stepanova, N V; Valeeva, E R; Fomina, S F; Ziyatdinova, A I

    In the article there are given results of the evaluation of non-carcinogenic risks for the health of the child population residing in different areas (districts) of the city of Kazan with the aim of the subsequent comprehensive assessment of the pollutants in drinking water. Assessment of the risk for the human health was performed correspondingly to with the P 2.1.10.1920-04 for oral route of exposure in accordance to the chemical composition of drinking water with account for the standard and regional factors of the exposure. The results of the risk assessment under the consumption of drinking tap water by the child population with localized place of residence permit to reveal areas with a high level of health risk in the city. The screening assessment of carcinogenic risk due to the consumption of chemicals with drinking water revealed differences in regional and standard values of the exposure factors. This affects both on the value of the chronic average daily intake of chemical contaminants in drinking water and the level of risk under the consumption of drinking water by the child population.

  10. Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas.

    PubMed

    Zhang, Li E; Huang, Daizheng; Yang, Jie; Wei, Xiao; Qin, Jian; Ou, Songfeng; Zhang, Zhiyong; Zou, Yunfeng

    2017-03-01

    Studies have yet to evaluate the effects of water improvement on fluoride concentrations in drinking water and the corresponding health risks to Chinese residents in endemic fluorosis areas (EFAs) at a national level. This paper summarized available data in the published literature (2008-2016) on water fluoride from the EFAs in China before and after water quality was improved. Based on these obtained data, health risk assessment of Chinese residents' exposure to fluoride in improved drinking water was performed by means of a probabilistic approach. The uncertainties in the risk estimates were quantified using Monte Carlo simulation and sensitivity analysis. Our results showed that in general, the average fluoride levels (0.10-2.24 mg/L) in the improved drinking water in the EFAs of China were lower than the pre-intervention levels (0.30-15.24 mg/L). The highest fluoride levels were detected in North and Southwest China. The mean non-carcinogenic risks associated with consumption of the improved drinking water for Chinese residents were mostly accepted (hazard quotient < 1), but the non-carcinogenic risk of children in most of the EFAs at the 95th percentile exceeded the safe level of 1, indicating the potential non-cancer-causing health effects on this fluoride-exposed population. Sensitivity analyses indicated that fluoride concentration in drinking water, ingestion rate of water, and the exposure time in the shower were the most relevant variables in the model, therefore, efforts should focus mainly on the definition of their probability distributions for a more accurate risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Setting action levels for drinking water: are we protecting our health or our economy (or our backs!)?

    PubMed

    Reimann, Clemens; Banks, David

    2004-10-01

    Clean and healthy drinking water is important for life. Drinking water can be drawn from streams, lakes and rivers, directly collected (and stored) from rain, acquired by desalination of ocean water and melting of ice or it can be extracted from groundwater resources. Groundwater may reach the earth's surface in the form of springs or can be extracted via dug or drilled wells; it also contributes significantly to river baseflow. Different water quality issues have to be faced when utilising these different water resources. Some of these are at present largely neglected in water quality regulations. This paper focuses on the inorganic chemical quality of natural groundwater. Possible health effects, the problems of setting meaningful action levels or maximum admissible concentrations (MAC-values) for drinking water, and potential shortcomings in current legislation are discussed. An approach to setting action levels based on transparency, toxicological risk assessment, completeness, and identifiable responsibility is suggested.

  12. Development of California Public Health Goals (PHGs) for chemicals in drinking water.

    PubMed

    Howd, R A; Brown, J P; Morry, D W; Wang, Y Y; Bankowska, J; Budroe, J D; Campbell, M; DiBartolomeis, M J; Faust, J; Jowa, L; Lewis, D; Parker, T; Polakoff, J; Rice, D W; Salmon, A G; Tomar, R S; Fan, A M

    2000-01-01

    As part of a program for evaluation of environmental contaminants in drinking water, risk assessments are being conducted to develop Public Health Goals (PHGs) for chemicals in drinking water, based solely on public health considerations. California's Safe Drinking Water Act of 1996 mandated the development of PHGs for over 80 chemicals by 31 December 1999. The law allowed these levels to be set higher or lower than federal maximum contaminant levels (MCLs), including a level of zero if data are insufficient to determine a specific level. The estimated safe levels and toxicological rationale for the first 26 of these chemicals are described here. The chemicals include alachlor, antimony, benzo[a]pyrene, chlordane, copper, cyanide, dalapon, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 2,4-D, diethylhexylphthalate, dinoseb, endothall, ethylbenzene, fluoride, glyphosate, lead, nitrate, nitrite, oxamyl, pentachlorophenol, picloram, trichlorofluoromethane, trichlorotrifluoroethane, uranium and xylene(s). These risk assessments are to be considered by the State of California in revising and developing state MCLs for chemicals in drinking water (which must not exceed federal MCLs). The estimates are also notable for incorporation or consideration of newer guidelines and principles for risk assessment extrapolations.

  13. Impact of Plumbing Age on Copper Levels in Drinking Water

    EPA Science Inventory

    Theory and limited practical experiences suggest that higher copper levels in drinking water tap samples are typically associated with newer plumbing systems, and levels decrease with increasing plumbing age. Past researchers have developed a conceptual model to explain the “agin...

  14. Changes in Blood Lead Levels Associated with Use of Chloramines in Water Treatment Systems

    PubMed Central

    Miranda, Marie Lynn; Kim, Dohyeong; Hull, Andrew P.; Paul, Christopher J.; Galeano, M. Alicia Overstreet

    2007-01-01

    Background More municipal water treatment plants are using chloramines as a disinfectant in order to reduce carcinogenic by-products. In some instances, this has coincided with an increase in lead levels in drinking water in those systems. Lead in drinking water can be a significant health risk. Objectives We sought to test the potential effect of switching to chloramines for disinfection in water treatment systems on childhood blood lead levels using data from Wayne County, located in the central Coastal Plain of North Carolina. Methods We constructed a unified geographic information system (GIS) that links blood lead screening data with age of housing, drinking water source, and census data for 7,270 records. The data were analyzed using both exploratory methods and more formal multivariate techniques. Results The analysis indicates that the change to chloramine disinfection may lead to an increase in blood lead levels, the impact of which is progressively mitigated in newer housing. Conclusions Introducing chloramines to reduce carcinogenic by-products may increase exposure to lead in drinking water. Our research provides guidance on adjustments in the local childhood lead poisoning prevention program that should accompany changes in water treatment. As similar research is conducted in other areas, and the underlying environmental chemistry is clarified, water treatment strategies can be optimized across the multiple objectives that municipalities face in providing high quality drinking water to local residents. PMID:17384768

  15. The effect of drinking water quality on the health and longevity of people-A case study in Mayang, Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Lu, J.; Yuan, F.

    2017-08-01

    Drinking water is an important source for trace elements intake into human body. Thus, the drinking water quality has a great impact on people’s health and longevity. This study aims to study the relationship between drinking water quality and human health and longevity. A longevity county Mayang in Hunan province, China was chosen as the study area. The drinking water and hair of local centenarians were collected and analyzed the chemical composition. The drinking water is weak alkaline and rich in the essential trace elements. The daily intakes of Ca, Cu, Fe, Se, Sr from drinking water for residents in Mayang were much higher than the national average daily intake from beverage and water. There was a positive correlation between Ni and Pb in drinking water and Ni and Pb in hair. There were significant correlations between Cu, K in drinking water and Ba, Ca, Mg, Sr in the hair at the 0.01 level. The concentrations of Mg, Sr, Se in drinking water showed extremely significant positive relation with two centenarian index 100/80% and 100/90% correlation. Essential trace elements in drinking water can be an important factor for local health and longevity.

  16. STRAIN COMPARISON IN PREGNANT RATS OF ENDOCRINE RESPONSE TO BROMODICHLOROMETHANE: A DRINKING WATER DISINFECTION BY-PRODUCT

    EPA Science Inventory

    Bromodichloromethane (BDCM), a trihalomethane, is a by-product of the chlorination of drinking water. In an epidemiological study, consumption of drinking water with high levels of BDCM was associated with an increased risk of spontaneous abortion in pregnant women (Waller et al....

  17. REAGENTLESS FIELD-USABLE FIXED-SITE AND PORTABLE ANALYZER FOR TRIHALOMETHANE (THM) CONCENTRATIONS IN DRINKING WATER - PHASE I

    EPA Science Inventory

    Environmental Protection Agency rules stipulate that corrective action be taken for drinking water distribution systems that exceed the maximum contaminant level (MCL) for total Trihalomethanes (TTHMs) 80μg/L.  Real-time, or even periodic, monitoring of drinking water i...

  18. PARTICIPANT BLINDING AND GASTROINTESTINAL ILLNESS IN A RANDOMIZED, CONTROLLED TRIAL OF AN IN-HOME DRINKING WATER INTERVENTION

    EPA Science Inventory


    Background. There is no consensus about the level of risk of gastrointestinal illness posed by consumption of drinking water that meets all regulatory requirements. Earlier drinking water intervention trials from Canada suggested that 14% - 40% of such gastrointestinal il...

  19. Use of arsenic-73 in research supports USEPA's regulatory decisions on inorganic arsenic in drinking water*

    EPA Science Inventory

    Inorganic arsenic is a natural contaminant of drinking water in the United States and throughout the world. Long term exposure to inorganic arsenic in drinking water at elevated levels (>100 ug/L) is associated with development of cancer in several organs, cardiovascular disease,...

  20. Fecal contamination of drinking water in Kericho District, Western Kenya: role of source and household water handling and hygiene practices.

    PubMed

    Too, Johana Kiplagat; Kipkemboi Sang, Willy; Ng'ang'a, Zipporah; Ngayo, Musa Otieno

    2016-08-01

    Inadequate protection of water sources, and poor household hygienic and handling practices have exacerbated fecal water contamination in Kenya. This study evaluated the rate and correlates of thermotolerant coliform (TTC) household water contamination in Kericho District, Western Kenya. Culture and multiplex polymerase chain reaction (PCR) techniques were used to characterize TTCs. The disk diffusion method was used for antibiotic susceptibility profiling of pathogenic Escherichia coli. Out of the 103 households surveyed, 48 (46.6%) had TTC contaminated drinking water (TTC levels of >10 cfu/100 mL). Five of these households were contaminated with pathogenic E. coli, including 40% enteroaggregative E. coli, 40% enterotoxigenic E. coli, and 20% enteropathogenic E. coli. All these pathogenic E. coli strains were multidrug resistant to sulfamethoxazole/trimethoprim, ampicillin, tetracycline and ampicillin/sulbactam. Rural household locality, drinking water hand contact, water storage container cleaning practice, hand washing before water withdrawal, water source total coliforms <10 cfu/100 mL, temperature, and free chlorine levels were associated with TTC contamination of household drinking water. Significant proportions of household drinking water in Kericho District are contaminated with TTCs including with pathogenic multidrug-resistant E. coli. Source and household hygiene and practices contribute significantly to drinking water contamination.

  1. An Assessment of Potential Exposure and Risk from Estrogens in Drinking Water

    PubMed Central

    Caldwell, Daniel J.; Mastrocco, Frank; Nowak, Edward; Johnston, James; Yekel, Harry; Pfeiffer, Danielle; Hoyt, Marilyn; DuPlessie, Beth M.; Anderson, Paul D.

    2010-01-01

    Background Detection of estrogens in the environment has raised concerns in recent years because of their potential to affect both wildlife and humans. Objectives We compared exposures to prescribed and naturally occurring estrogens in drinking water to exposures to naturally occurring background levels of estrogens in the diet of children and adults and to four independently derived acceptable daily intakes (ADIs) to determine whether drinking water intakes are larger or smaller than dietary intake or ADIs. Methods We used the Pharmaceutical Assessment and Transport Evaluation (PhATE) model to predict concentrations of estrogens potentially present in drinking water. Predicted drinking water concentrations were combined with default water intake rates to estimate drinking water exposures. Predicted drinking water intakes were compared to dietary intakes and also to ADIs. We present comparisons for individual estrogens as well as combined estrogens. Results In the analysis we estimated that a child’s exposures to individual prescribed estrogens in drinking water are 730–480,000 times lower (depending upon estrogen type) than exposure to background levels of naturally occurring estrogens in milk. A child’s exposure to total estrogens in drinking water (prescribed and naturally occurring) is about 150 times lower than exposure from milk. Adult margins of exposure (MOEs) based on total dietary exposure are about 2 times smaller than those for children. Margins of safety (MOSs) for an adult’s exposure to total prescribed estrogens in drinking water vary from about 135 to > 17,000, depending on ADI. MOSs for exposure to total estrogens in drinking water are about 2 times lower than MOSs for prescribed estrogens. Depending on the ADI that is used, MOSs for young children range from 28 to 5,120 for total estrogens (including both prescribed and naturally occurring sources) in drinking water. Conclusions The consistently large MOEs and MOSs strongly suggest that prescribed and total estrogens that may potentially be present in drinking water in the United States are not causing adverse effects in U.S. residents, including sensitive subpopulations. PMID:20194073

  2. Evaluation and Refinement of a Field-Portable Drinking Water Toxicity Sensor Utilizing Electric Cell-Substrate Impedance Sensing and a Fluidic Biochip

    DTIC Science & Technology

    2014-01-01

    Potential interferences tested were chlorine and chloramine (commonly used for drinking water disinfection ), geosmin and 2-methyl-isoborneol (MIB...Protection Agency maximum residual disinfectant level for chlorine and chloramine is set at 4 mg l1 under the Safe Drinking Water Act and thus would...Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell–substrate impedance sensing and a fluidic

  3. Muddying the Waters: A New Area of Concern for Drinking Water Contamination in Cameroon

    PubMed Central

    Healy Profitós, Jessica M.; Mouhaman, Arabi; Lee, Seungjun; Garabed, Rebecca; Moritz, Mark; Piperata, Barbara; Tien, Joe; Bisesi, Michael; Lee, Jiyoung

    2014-01-01

    In urban Maroua, Cameroon, improved drinking water sources are available to a large majority of the population, yet this water is frequently distributed through informal distribution systems and stored in home containers (canaries), leaving it vulnerable to contamination. We assessed where contamination occurs within the distribution system, determined potential sources of environmental contamination, and investigated potential pathogens. Gastrointestinal health status (785 individuals) was collected via health surveys. Drinking water samples were collected from drinking water sources and canaries. Escherichia coli and total coliform levels were evaluated and molecular detection was performed to measure human-associated faecal marker, HF183; tetracycline-resistance gene, tetQ; Campylobacter spp.; and Staphylococcus aureus. Statistical analyses were performed to evaluate the relationship between microbial contamination and gastrointestinal illness. Canari samples had higher levels of contamination than source samples. HF183 and tetQ were detected in home and source samples. An inverse relationship was found between tetQ and E. coli. Presence of tetQ with lower E. coli levels increased the odds of reported diarrhoeal illness than E. coli levels alone. Further work is warranted to better assess the relationship between antimicrobial-resistant bacteria and other pathogens in micro-ecosystems within canaries and this relationship’s impact on drinking water quality. PMID:25464137

  4. Muddying the waters: a new area of concern for drinking water contamination in Cameroon.

    PubMed

    Profitós, Jessica M Healy; Mouhaman, Arabi; Lee, Seungjun; Garabed, Rebecca; Moritz, Mark; Piperata, Barbara; Tien, Joe; Bisesi, Michael; Lee, Jiyoung

    2014-11-28

    In urban Maroua, Cameroon, improved drinking water sources are available to a large majority of the population, yet this water is frequently distributed through informal distribution systems and stored in home containers (canaries), leaving it vulnerable to contamination. We assessed where contamination occurs within the distribution system, determined potential sources of environmental contamination, and investigated potential pathogens. Gastrointestinal health status (785 individuals) was collected via health surveys. Drinking water samples were collected from drinking water sources and canaries. Escherichia coli and total coliform levels were evaluated and molecular detection was performed to measure human-associated faecal marker, HF183; tetracycline-resistance gene, tetQ; Campylobacter spp.; and Staphylococcus aureus. Statistical analyses were performed to evaluate the relationship between microbial contamination and gastrointestinal illness. Canari samples had higher levels of contamination than source samples. HF183 and tetQ were detected in home and source samples. An inverse relationship was found between tetQ and E. coli. Presence of tetQ with lower E. coli levels increased the odds of reported diarrhoeal illness than E. coli levels alone. Further work is warranted to better assess the relationship between antimicrobial-resistant bacteria and other pathogens in micro-ecosystems within canaries and this relationship's impact on drinking water quality.

  5. Lithium levels in the public drinking water supply and risk of suicide: A pilot study.

    PubMed

    Liaugaudaite, Vilma; Mickuviene, Narseta; Raskauskiene, Nijole; Naginiene, Rima; Sher, Leo

    2017-09-01

    Suicide is a major public health concern affecting both the society and family life. There are data indicating that higher level lithium intake with drinking water is associated with lower suicide rate. This pilot study examined the relationship between lithium levels in drinking water and suicide rates in Lithuania. Twenty-two samples from public drinking water systems were taken in 9 cities of Lithuania. The lithium concentration in these samples was determined by inductively coupled plasma mass spectrometry (ICP-MS). The suicide data were obtained from the Lithuania Database of Health Indicators, and comprised all registered suicides across all ages and gender within the 5-year period from 2009 to 2013. The study demonstrated an inverse correlation between levels of lithium (log natural transformed), number of women for 1000 men and standardized mortality rate for suicide among total study population. After adjusting for confounder (the number of women for 1000 men), the lithium level remained statistically significant in men, but not in women. Our study suggested that higher levels of lithium in public drinking water are associated with lower suicide rates in men. It might have a protective effect on the risk of suicide in men. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply

    NASA Astrophysics Data System (ADS)

    Bereskie, Ty; Rodriguez, Manuel J.; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  7. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply.

    PubMed

    Bereskie, Ty; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  8. Magnesium in drinking water modifies the association between nitrate ingestion and risk of death from esophageal cancer.

    PubMed

    Liao, Yen-Hsiung; Chen, Pei-Shih; Chiu, Hui-Fen; Yang, Chun-Yuh

    2013-01-01

    The objective of this study was to explore whether magnesium (Mg) levels in drinking water modified the effects of nitrate on esophageal cancer risk occurrence. A matched cancer case-control study was used to investigate the relationship between the risk of death from esophageal cancer and exposure to nitrate in drinking water in Taiwan. All esophageal cancer deaths of Taiwan residents from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N and Mg exposure via drinking water. Evidence of an interaction was noted between drinking water NO(3)-N and Mg intake. This is the first study to report effect modification by Mg intake originating from drinking water on an association between NO(3)-N exposure and increased risk mortality attributed to esophageal cancer.

  9. Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor

    NASA Astrophysics Data System (ADS)

    Hashim, N. H.; Yusop, H. M.

    2016-07-01

    An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.

  10. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    PubMed

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to < 3μg/L, well below the MCL. Moreover, the amount of total dissolved solids or competing ions did not affect the ability of the ZeroWater® filter to remove arsenic below the MCL. Thus, the ZeroWater® pitcher filter is a cost effective and short-term solution to remove arsenic from drinking water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Effectiveness of Table Top Water Pitcher Filters to Remove Arsenic from Drinking Water

    PubMed Central

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P.; Hampton, Thomas H.; Stanton, Bruce A.

    2017-01-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10 μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As3+ and As5+, from 1,000 μg/L to < 3 μg/L, well below the MCL. Moreover, the amount of total dissolved solids or competing ions did not affect the ability of the ZeroWater® filter to remove arsenic below the MCL. Thus, the ZeroWater® pitcher filter is a cost effective and short-term solution to remove arsenic from drinking water and its use reduces plastic waste associated with bottled water. PMID:28719869

  12. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana.

    PubMed

    Cobbina, Samuel J; Duwiejuah, Abudu B; Quansah, Reginald; Obiri, Samuel; Bakobie, Noel

    2015-08-28

    The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga) in northern Ghana. Seventy-two (72) water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg), arsenic (As), lead (Pb), zinc (Zn), and cadmium (Cd) were determined using an atomic absorption spectrophotometer (AAS). Mean levels (mg/l) of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg), 0.031 and 0.002 (As), 0.250 and 0.031 (Pb), 0.034 and 0.002 (Zn), and 0.534 and 0.023 (Cd), respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO) stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended.

  13. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana

    PubMed Central

    Cobbina, Samuel J.; Duwiejuah, Abudu B.; Quansah, Reginald; Obiri, Samuel; Bakobie, Noel

    2015-01-01

    The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga) in northern Ghana. Seventy-two (72) water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg), arsenic (As), lead (Pb), zinc (Zn), and cadmium (Cd) were determined using an atomic absorption spectrophotometer (AAS). Mean levels (mg/l) of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg), 0.031 and 0.002 (As), 0.250 and 0.031 (Pb), 0.034 and 0.002 (Zn), and 0.534 and 0.023 (Cd), respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO) stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended. PMID:26343702

  14. [The EU drinking water recommendations: objectives and perspectives].

    PubMed

    Blöch, H

    2011-12-01

    Protection of our drinking water resources and provision of safe drinking water are key requirements of modern water management and health policy. Microbiological and chemical quality standards have been established in the EU water policy since 1980, and are now complemented by a comprehensive protection of water as a resource. This contribution reflects a presentation at the scientific conference of the Federal Associations of Physicians and Dentists within the Public Health Service in May 2011 and provides an overview on objectives and challenges for drinking water protection at the European level. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries.

    PubMed

    Malik, Amir Haider; Khan, Zahid Mehmood; Mahmood, Qaisar; Nasreen, Sadia; Bhatti, Zulfiqar Ahmed

    2009-08-30

    Arsenic concentrations above acceptable standards for drinking water have been detected in many countries and this should therefore is a global issue. The presence of arsenic in subsurface aquifers and drinking water systems is a potentially serious human health hazard. The current population growth in Pakistan and other developing countries will have direct bearing on the water sector for meeting the domestic, industrial and agricultural needs. Pakistan is about to exhaust its available water resources and is on the verge of becoming a water deficit country. Water pollution is a serious menace in Pakistan, as almost 70% of its surface waters as well as its groundwater reserves have contaminated by biological, organic and inorganic pollutants. In some areas of Pakistan, a number of shallow aquifers and tube wells are contaminated with arsenic at levels which are above the recommended USEPA arsenic level of 10 ppb (10 microg L(-1)). Adverse health effects including human mortality from drinking water are well documented and can be attributed to arsenic contamination. The present paper reviews appropriate and low cost methods for the elimination of arsenic from drinking waters. It is recommended that a combination of low cost chemical treatment like ion exchange, filtration and adsorption along with bioremediation may be useful option for arsenic removal from drinking water.

  16. The effectiveness of large household water storage tanks for protecting the quality of drinking water.

    PubMed

    Graham, Jay P; VanDerslice, James

    2007-06-01

    Many communities along the US-Mexico border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p < 0.05). Exploratory analyses were also carried out to measure water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (> 10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.

  17. Prevalence of arsenic exposure in population of Ballia district from drinking water and its correlation with blood arsenic level.

    PubMed

    Katiyar, Shashwat; Singh, Dharam

    2014-05-01

    An investigation was carried out to ascertain the effect of arsenic in the blocks of Ballia district in Uttar Pradesh in the upper and middle Ganga plain, India. Analysis of 100 drinking water samples revealed that arsenic concentration was below 10 μg l⁻¹ in 60% samples, 10-50 μg l⁻¹ in 6%, 100 μg l⁻¹ in 24% and 200 μg l⁻¹ in 10% samples, respectively. The arsenic concentration in drinking water ranged from 12.8 to 132.2 μg l⁻¹. The depth of source of drinking water (10-60 m) was also found with a mean of 36.12 ± 13.61 μg l⁻¹ arsenic concentration. Observations revealed that at depth ranging from 10 to 20 m, the mean level of arsenic concentration was 17.398 ± 21.796 μg l⁻¹, while at 21 to 40 m depth As level was 39.685 ± 40.832 μg l⁻¹ and at 41 to 60 m As level was 46.89 ± 52.80 μg l⁻¹, respectively. These observations revealed a significant positive correlation (r = 0.716, t = 4.215, P < 0.05) between depth and arsenic concentration in drinking water. The age of water sources were ranged from zero to 30 years. The study indicates that the older sources of drinking water showed higher chance of contamination. Results showed that group 21-30 years having maximum arsenic concentration with mean value of 52.57 ± 53.79 μg l⁻¹. Correlation analysis also showed a significant positive correlation (r = 0.801, t = 5.66, P < 0.05) between age of drinking water sources and their respective arsenic concentration (μg l⁻¹). Arsenic concentration in blood with mean value 0.226 ± 0.177 μg dl⁻¹ significantly increased as compared to control. The blood arsenic content correlated significantly (r = 0.6823, t = 3.93, P < 0.05) with drinking water arsenic level and exposure time (r = 0.545, t = 3.101 & *P < 0.05) for populations residing in Ballia districts. Observations and correlation analysis revealed that individuals having depth of drinking water sources 20-30 m were less affected with arsenic exposure.

  18. DRINKING WATER ARSENIC EXPOSURE AND BLOOD PRESSURE IN HEALTHY WOMEN OF REPRODUCTIVE AGE IN INNER MONGOLIA, CHINA

    EPA Science Inventory

    The extremely high exposure levels evaluated in prior investigations relating elevated levels of drinking water arsenic and hypertension prevalence make extrapolation to potential vascular effects at lower exposure levels very difficult. A cross-sectional study was conducted on ...

  19. Microbiological effectiveness of locally produced ceramic filters for drinking water treatment in Cambodia.

    PubMed

    Brown, Joe; Sobsey, Mark D

    2010-03-01

    Low-cost options for the treatment of drinking water at the household level are being explored by the Cambodian government and non-governmental organizations (NGOs) working in Cambodia, where many lack access to improved drinking water sources and diarrhoeal diseases are the most prevalent cause of death in children under 5 years of age. The ceramic water purifier (CWP), a locally produced, low-cost ceramic filter, is now being implemented by several NGOs, and an estimated 100,000+households in the country now use them for drinking water treatment. Two candidate filters were tested for the reduction of bacterial and viral surrogates for waterborne pathogens using representative Cambodian drinking water sources (rainwater and surface water) spiked with Escherichia coli and bacteriophage MS2. Results indicate that filters were capable of reducing key microbes in the laboratory with mean reductions of E. coli of approximately 99% and mean reduction of bacteriophages of 90-99% over >600 litres throughput. Increased effectiveness was not observed in filters with an AgNO3 amendment. At under US$10 per filter, locally produced ceramic filters may be a promising option for drinking water treatment and safe storage at the household level.

  20. 40 CFR 141.65 - Maximum residual disinfectant levels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 141.65 Section 141.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking Water... only ground water not under the direct influence of surface water must comply with this subpart...

  1. 40 CFR 141.65 - Maximum residual disinfectant levels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... 141.65 Section 141.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking Water... only ground water not under the direct influence of surface water must comply with this subpart...

  2. 40 CFR 141.65 - Maximum residual disinfectant levels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... 141.65 Section 141.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking Water... only ground water not under the direct influence of surface water must comply with this subpart...

  3. 40 CFR 141.65 - Maximum residual disinfectant levels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 141.65 Section 141.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking Water... only ground water not under the direct influence of surface water must comply with this subpart...

  4. An environmental assessment of United States drinking water watersheds

    Treesearch

    James Wickham; Timothy Wade; Kurt Riitters

    2011-01-01

    Abstract There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of 5,265 drinking water watersheds using data on land cover, hydrography and conservation status. Approximately 78% of the conterminous United States...

  5. Lead in School Drinking Water.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    Lead levels in school drinking water merit special concern because children are more at risk than adults from exposure to lead. This manual provides ways in which school officials can minimize this risk. It assists administrators by providing: (1) general information on the significance of lead in school drinking water and its effects on children;…

  6. Gestational exposure to high perchlorate concentrations in drinking water and neonatal thyroxine levels.

    PubMed

    Amitai, Yona; Winston, Gary; Sack, Joseph; Wasser, Janice; Lewis, Matthew; Blount, Benjamin C; Valentin-Blasini, Liza; Fisher, Nirah; Israeli, Avi; Leventhal, Alex

    2007-09-01

    To assess the effect of gestational perchlorate exposure through drinking water on neonatal thyroxine (T(4)). T(4) values were compared among newborns in Ramat Hasharon, Israel, whose mothers resided in suburbs where drinking water contained perchlorate < or = 340 microg/L (very high exposure, n = 97), 42-94 microg/L (high exposure, n = 216), and < 3 microg/L (low exposure, n = 843). In the very high and high exposure areas, T(4) values in newborns whose mothers drank tap water exclusively (as determined by a telephone interview) were analyzed as a subset. Serum perchlorate levels in blood from donors residing in the area were used as proxy indicators of exposure. Neonatal T(4) values (mean +/- SD) in the very high, high, and low exposure groups were 13.9 +/- 3.8, 13.9 +/- 3.4, and 14.0 +/- 3.5 microg/dL, respectively (p = NS). Serum perchlorate concentrations in blood from donors residing in areas corresponding to these groups were 5.99 +/- 3.89, 1.19 +/- 1.37, and 0.44 +/- 0.55 microg/L, respectively. T(4) levels of neonates with putative gestational exposure to perchlorate in drinking water were not statistically different from controls. This study finds no change in neonatal T(4) levels despite maternal consumption of drinking water that contains perchlorate at levels in excess of the Environmental Protection Agency (EPA) drinking water equivalent level (24.5 microg/L) based on the National Research Council reference dose (RfD) [0.7 microg/(kg.day)]. Therefore the perchlorate RfD is likely to be protective of thyroid function in neonates of mothers with adequate iodide intake.

  7. Metabolic profiles in serum of mouse after chronic exposure to drinking water.

    PubMed

    Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei

    2011-08-01

    The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.

  8. Organic extract contaminants from drinking water activate Nrf2-mediated antioxidant response in a human cell line.

    PubMed

    Wang, Shu; Zhang, Hao; Zheng, Weiwei; Wang, Xia; Andersen, Melvin E; Pi, Jingbo; He, Gengsheng; Qu, Weidong

    2013-05-07

    Traditional risk assessment methods face challenges in estimating risks from drinking waters that contain low-levels of large numbers of contaminants. Here, we evaluate the toxicity of organic contaminant (OC) extracts from drinking water by examining activation of nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant response. In HepG2 cells, the Nrf2-mediated antioxidant response-measured as Nrf2 protein accumulation, expression of antioxidant response element (ARE)-regulated genes and ARE-luciferase reporter gene assays were activated by OC extracts from drinking water sources that detected 25 compounds in 9 classification groups. Individual OCs induced oxidative stress at concentrations much higher than their environmental levels; however, mixtures of contaminants induced oxidative stress response at only 8 times the environmental levels. Additionally, a synthetic OC mixture prepared based on the contamination profiling of drinking water induced ARE activity to the same extent as the real-world mixture, reinforcing our conclusion that these mixture exposures produce responses relevant for human exposure situations. Our study tested the possibility of assessing toxicity of OCs of drinking water using a specific ARE-pathway measurement. This approach should be broadly useful in assisting risk assessment of mixed environmental exposure.

  9. Relationship between fluorine in drinking water and dental health of residents in some large cities in China.

    PubMed

    Wang, Binbin; Zheng, Baoshan; Zhai, Cheng; Yu, Guangqian; Liu, Xiaojing

    2004-10-01

    In this project, the relationship between fluorine content in drinking water and dental health of residents in some large cities in China was evaluated. The concentration of fluorine in tap water and in urine of local subjects of 28 cities and 4 high fluorine villages in China shows a strong positive correlation (r(2)=0.96, S.E.=0.9881). Our studies indicate that drinking water is the most important source of fluorine intake for Chinese people, and in more than 90% of urban cities, fluorine concentrations in drinking water are below levels recommended by the WHO (approximately 0.5-1.0 mg/l). A 1995 investigation by The National Committee on Oral Health of China (NCOH) shows the relationship between average number of decayed, missing and filled teeth (DMFT) of urban residents and fluorine concentration in drinking water to be negatively correlated but not forming a good linear relationship. Our results, together with the previous study, suggest that: (1) dental caries of the study population can be reduced by drinking water fluoridation and that (2) other factors such as economic level, weather, lifestyle, food habits, living condition, etc., of a city can also affect the incidence of dental caries that cannot be predicted by fluoridation alone. Research on the relation between index of fluorosis (IF) and the fluorine concentration in drinking water for the four high fluorine villages showed that the recommended concentration of fluorine in drinking water can protect from dental fluorosis.

  10. Relationship of drinking water disinfectants to plasma cholesterol and thyroid hormone levels in experimental studies.

    PubMed Central

    Revis, N W; McCauley, P; Bull, R; Holdsworth, G

    1986-01-01

    The effects of drinking water containing 2 or 15 ppm chlorine (pH 6.5 and 8.5), chlorine dioxide, and monochloramine on thyroid function and plasma cholesterol were studied because previous investigators have reported cardiovascular abnormalities in experimental animals exposed to chlorinated water. Plasma thyroxine (T4) levels, as compared to controls, were significantly decreased in pigeons fed a normal or high-cholesterol diet and drinking water containing these drinking water disinfectants at a concentration of 15 ppm (the exception was chlorine at pH 6.5) for 3 months. In most of the treatment groups, T4 levels were significantly lower following the exposure to drinking water containing the 2 ppm dose. Increases in plasma cholesterol were frequently observed in the groups with lower T4 levels. This association was most evident in pigeons fed the high-cholesterol diet and exposed to these disinfectants at a dose of 15 ppm. For example, after 3 months of exposure to deionized water or water containing 15 ppm monochloramine, plasma cholesterol was 1266 +/- 172 and 2049 +/- 212 mg/dl, respectively, a difference of 783 mg/dl. The factor(s) associated with the effect of these disinfectants on plasma T4 and cholesterol is not known. We suggest however that these effects are probably mediated by products formed when these disinfectants react with organic matter in the upper gastrointestinal tract. PMID:3456597

  11. Lithium in drinking water and suicide mortality.

    PubMed

    Kapusta, Nestor D; Mossaheb, Nilufar; Etzersdorfer, Elmar; Hlavin, Gerald; Thau, Kenneth; Willeit, Matthäus; Praschak-Rieder, Nicole; Sonneck, Gernot; Leithner-Dziubas, Katharina

    2011-05-01

    There is some evidence that natural levels of lithium in drinking water may have a protective effect on suicide mortality. To evaluate the association between local lithium levels in drinking water and suicide mortality at district level in Austria. A nationwide sample of 6460 lithium measurements was examined for association with suicide rates per 100,000 population and suicide standardised mortality ratios across all 99 Austrian districts. Multivariate regression models were adjusted for well-known socioeconomic factors known to influence suicide mortality in Austria (population density, per capita income, proportion of Roman Catholics, as well as the availability of mental health service providers). Sensitivity analyses and weighted least squares regression were used to challenge the robustness of the results. The overall suicide rate (R(2) = 0.15, β = -0.39, t = -4.14, P = 0.000073) as well as the suicide mortality ratio (R(2) = 0.17, β = -0.41, t = -4.38, P = 0.000030) were inversely associated with lithium levels in drinking water and remained significant after sensitivity analyses and adjustment for socioeconomic factors. In replicating and extending previous results, this study provides strong evidence that geographic regions with higher natural lithium concentrations in drinking water are associated with lower suicide mortality rates.

  12. Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children.

    PubMed

    Xiong, Xianzhi; Liu, Junling; He, Weihong; Xia, Tao; He, Ping; Chen, Xuemin; Yang, Kedi; Wang, Aiguo

    2007-01-01

    Although a dose-effect relationship between water fluoride levels and damage to liver and kidney functions in animals has been reported, it was not demonstrated in humans. To evaluate the effects of drinking water fluoride levels on the liver and kidney functions in children with and without dental fluorosis, we identified 210 children who were divided into seven groups with 30 each based on different drinking water fluoride levels in the same residential area. We found that the fluoride levels in serum and urine of these children increased as the levels of drinking water fluoride increased. There were no significant differences in the levels of total protein (TP), albumin (ALB), aspartate transamine (AST), and alanine transamine (ALT) in serum among these groups. However, the activities of serum lactic dehydrogenase (LDH), urine N-acetyl-beta-glucosaminidase (NAG), and urine gamma-glutamyl transpeptidase (gamma-GT) in children with dental fluorosis and having water fluoride of 2.15-2.96 mg/L and in children having water fluoride of 3.15-5.69 mg/L regardless of dental fluorosis were significantly higher than children exposed to water fluoride of 0.61-0.87 mg/L in a dose-response manner. In contrast to children with dental fluorosis and having water fluoride of 2.15-2.96 and 3.10-5.69 mg/L, serum LDH activity of children without dental fluorosis but exposed to the same levels of water fluoride as those with dental fluorosis were also markedly lower, but the activities of NAG and gamma-GT in their urine were not. Therefore, our results suggest that drinking water fluoride levels over 2.0mg/L can cause damage to liver and kidney functions in children and that the dental fluorosis was independent of damage to the liver but not the kidney. Further studies on the mechanisms and significance underlying damage to the liver without dental fluorosis in the exposed children are warranted.

  13. Exposure to high-fluoride drinking water and risk of dental caries and dental fluorosis in Haryana, India.

    PubMed

    Marya, Charu Mohan; Ashokkumar, B R; Dhingra, Sonal; Dahiya, Vandana; Gupta, Anil

    2014-05-01

    The present study aimed to determine the prevalence of and relationship between dental caries and dental fluorosis at varying levels of fluoride in drinking water. The study was conducted among 3007 school children in the age group of 12 to 16 years in 2 districts of Haryana having varying fluoride levels in drinking water. Type III examination for dental caries according to the WHO index and dental fluorosis estimation according to Dean's index was done. The prevalence of dental caries decreased from 48.02% to 28.07% as fluoride levels increased from 0.5 to 1.13 ppm, but as the fluoride level increased further to 1.51 ppm, there was no further reduction in caries prevalence, but there was a substantial increase in fluorosis prevalence. The optimum level of fluoride in drinking water was found to be 1.13 ppm, at which there was maximum caries reduction with minimum amount of esthetically objectionable fluorosis. © 2012 APJPH.

  14. Association of blood pressure and metabolic syndrome components with magnesium levels in drinking water in some Serbian municipalities.

    PubMed

    Rasic-Milutinovic, Zorica; Perunicic-Pekovic, Gordana; Jovanovic, Dragana; Gluvic, Zoran; Cankovic-Kadijevic, Milce

    2012-03-01

    Chronic exposure to insufficient levels of magnesium (Mg) in drinking water increases the risk of magnesium deficiency and its association with hypertension, dyslipidemia and type 2 diabetes mellitus. The aim of the study was to assess the potential association of mineral contents in drinking water with blood pressure and other components of metabolic syndrome (MetS) (BMI as measure of obesity, triglycerides, glucose, and insulin resistance, index-HOMA IR), in a healthy population. This study was conducted in three randomly selected municipalities (Pozarevac, Grocka and Banovci), and recruited 90 healthy blood donors, aged 20-50 years. The Pozarevac area had a four times higher mean Mg level in drinking water (42 mg L(-1)) than Grocka (11 mg L(-1)). Diastolic blood pressure was lowest in subjects from Pozarevac. Serum Mg (sMg) was highest, and serum Ca(2+)/Mg (sCa/Mg) lowest in subjects from Pozarevac, and after adjustment for confounders (age, gender, BMI), only total cholesterol and sMg levels were independent predictors of diastolic blood pressure, sMg levels were independent predictors of triglycerides, and sCa/Mg predicted glucose levels. These results suggest that Mg supplementation in areas of lower magnesium levels in drinking water may be an important measure in the prevention of hypertension and MetS in general.

  15. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water

    PubMed Central

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  16. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    PubMed

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.

  17. Chicago Lead in Drinking Water Study

    EPA Pesticide Factsheets

    EPA Region 5 and the Chicago Department of Water Management conducted a study on field sampling protocols for lead in drinking water. The purpose of the study was to evaluate the method used by public water systems to monitor lead levels.

  18. RELATIONSHIPS BETWEEN LEVELS OF HETEROTROPHIC BACTERIA AND WATER QUALITY PARAMETERS IN A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Conventional plating methods were used to quantify heterotrophic bacteria from a drinking water distribution system. Three media, plate count agar (PCA), R2A agar and sheep blood agar (TSA-SB) were used to determine heterotrophic plate count (HPC) levels. Grab samples were collec...

  19. Association of arsenic-contaminated drinking-water with prevalence of skin cancer in Wisconsin's Fox River Valley.

    PubMed

    Knobeloch, Lynda M; Zierold, Kristina M; Anderson, Henry A

    2006-06-01

    During July 2000-January 2002, the Wisconsin Division of Public Health conducted a study in 19 rural townships. A high percentage of private drinking-water wells in these townships contained traces of arsenic. Residents were asked to collect well-water samples and complete a questionnaire regarding residential history, consumption of drinking-water, and family health. In total, 2,233 household wells were tested, and 6,669 residents, aged less than one year to 100 years, provided information on water consumption and health. The well-water arsenic levels ranged from less than 1.0 to 3,100 microg/L. The median arsenic level was 2.0 microg/L. The arsenic levels were below the federal drinking-water standard of 10 microg/L in 80% of the wells, while 11% had an arsenic level of above 20 microg/L. Of residents aged over 35 years, those who had consumed arsenic-contaminated water for at least 10 years were significantly more likely to report a history of skin cancer than others. Tobacco use was also associated with higher rates of skin cancer and appeared to synergize the effect of arsenic on the development of skin cancer.

  20. [Study on the amount of daily iodine intake of inhabitants living in drinking water with excessive iodine content areas after termination of iodized salt supply].

    PubMed

    Zhang, Gen-hong; Li, Su-mei; Zheng, He-ming; Wang, Chuan-gang; Liu, Lie-jun; Li, Xiu-wei; Zhang, Hao-feng; Ke, Geng-yin; Ma, Jian-guo; Yang, Jin; Ma, Ying; Liu, Jin-wen

    2007-03-01

    To investigate the amount of daily iodine intake in the diet of the target population in drinking water with areas of excessive iodine after stopping supply of iodized salt, to provide evidence for developing strategies on control and prevention of excessive iodine. 335 objectives were selected by a two-stage sampling method in 4 administrative villages with different iodine contents in drinking water. The amount of drinking water intake and dietary survey for 335 people were done by a door-to-door survey,while the iodine contents in the drinking water of each selected family, local staple food and vegetable were measured. The median level of iodine in drinking water was 431.5 microg/L while the daily amount of iodine intake among the three groups of waters with different iodine contents were all greater than RNI. The daily iodine intake of local people was all greater than UL in the areas where the water iodine contents were more than 300 microg/L. It was of statistical sense that the iodine mean intake per capita per day of the three groups differed at different water iodine levels (P < 0.01). The iodine mean intake per capita per day of the three groups of different water iodine levels increased along with water iodine and showed a uptrend (P < 0.01). 83.2%-98.7% of the daily iodine intake of the three groups was from drinking water and 1.3%-16.8% came from food. The iodine intake had high-positive correlation relation with the content of water iodine (P < 0.01). It was concluded that drinking water was the main source of iodine intake in areas with iodine excessive water by the percentage of over 80%. It was necessary to adopt measures to improve the quality of water to decrease the iodine content other than just stopping supplies of iodized salt in the areas where the water iodine contents were greater than 300 microg/L, in order to prevent and control excessive intake of iodine.

  1. Dental caries and developmental defects of enamel in relation to fluoride levels in drinking water in an arid area of Sri Lanka.

    PubMed

    Ekanayake, L; van der Hoek, W

    2002-01-01

    The study was conducted to assess caries and developmental defects of enamel in relation to fluoride levels in drinking water and the association between caries experience and the severity of diffuse opacities in children living in Uda Walawe, an area with varying concentrations of fluoride in drinking water in Sri Lanka. A total of 518 14-year-old children who were lifelong residents in this area were examined for dental caries and developmental defects of enamel. But the present analysis is confined to 486 children from whom drinking water samples were collected. The prevalence of enamel defects and diffuse opacities ranged from 27 to 57% while the prevalence of caries ranged from 18 to 29% in the different fluoride exposure groups. The prevalence of enamel defects increased significantly with the increase in the fluoride level in drinking water. Both the caries prevalence and the mean caries experience were significantly higher in children with diffuse opacities than in those without in the group consuming water containing >0.70 mg/l of fluoride. The association between dental caries and the severity of diffuse opacities was also significant only in this group. Children with the mildest form of opacities (DDE scores 3 and 4) had the lowest DMFS (0.25 +/- 0.7), and the highest DMFS (1.1 +/- 1.7) was found in those with the most severe form of opacities (DDE score 6). In conclusion, the relationship that was observed in this study between fluoride levels in drinking water, diffuse opacities and caries suggests that the appropriate level of fluoride in drinking water for arid areas of Sri Lanka is around 0.3 mg/l. Also individuals with severe forms of enamel defects in high-fluoride areas are susceptible to dental caries. Copyright 2002 S. Karger AG, Basel

  2. NEVADA ARSENIC STUDY

    EPA Science Inventory

    The effects of exposure to arsenic in U.S. drinking water at low levels are difficult to assess. In particular, studies of sufficient sample size on US populations exposed to arsenic in drinking water are few. Churchill County, NV (population 25000) has arsenic levels in drinki...

  3. Arsenic in drinking water and adverse birth outcomes in Ohio.

    PubMed

    Almberg, Kirsten S; Turyk, Mary E; Jones, Rachael M; Rankin, Kristin; Freels, Sally; Graber, Judith M; Stayner, Leslie T

    2017-08-01

    Arsenic in drinking water has been associated with adverse reproductive outcomes in areas with high levels of naturally occurring arsenic. Less is known about the reproductive effects of arsenic at lower levels. This research examined the association between low-level arsenic in drinking water and small for gestational age (SGA), term low birth weight (term LBW), very low birth weight (VLBW), preterm birth (PTB), and very preterm birth (VPTB) in the state of Ohio. Exposure was defined as the mean annual arsenic concentration in drinking water in each county in Ohio from 2006 to 2008 using Safe Drinking Water Information System data. Birth outcomes were ascertained from the birth certificate records of 428,804 births in Ohio from the same time period. Multivariable generalized estimating equation logistic regression models were used to assess the relationship between arsenic and each birth outcome separately. Sensitivity analyses were performed to examine the roles of private well use and prenatal care utilization in these associations. Arsenic in drinking water was associated with increased odds of VLBW (AOR 1.14 per µg/L increase; 95% CI 1.04, 1.24) and PTB (AOR 1.10; 95% CI 1.06, 1.15) among singleton births in counties where <10% of the population used private wells. No significant association was observed between arsenic and SGA, or VPTB, but a suggestive association was observed between arsenic and term LBW. Arsenic in drinking water was positively associated with VLBW and PTB in a population where nearly all (>99%) of the population was exposed under the current maximum contaminant level of 10µg/L. Current regulatory standards may not be protective against reproductive effects of prenatal exposure to arsenic. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Concentration profiles of metals in breast milk, drinking water, and soil: relationship between matrices.

    PubMed

    Cardoso, Osmar O; Julião, Fabiana C; Alves, Renato I S; Baena, Antonio R; Díez, Isabel G; Suzuki, Meire N; Celere, Beatriz S; Nadal, Martí; Domingo, José L; Segura-Muñoz, Susana I

    2014-07-01

    The concentrations of Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sn, and Zn were determined in breast milk of women living in Conceição das Alagoas, Minas Gerais, Brazil. The potential relationships between metal levels in samples of breast milk, drinking water, and soils collected in the study area were also established. Metal levels in breast milk, except Cr, were lower in comparison to WHO reference concentrations. Zinc was the predominant element in breast milk and drinking water samples, with a median level of 46.2 and 82.2 μg · L(-1), respectively. Soils presented a different pattern of metal concentrations with respect to those found in breast milk and drinking water, Chromium showed the highest median levels (148 mg · kg(-1)), while a certain predominance of Zn and Cu was also observed (47.0 and 43.0 mg · kg(-1), respectively). Similar profiles were observed when comparing metal concentrations in drinking water and breast milk (chi-square χ(2) = 14.36; p < 0.05). In contrast, breast milk-soil and drinking water-soil metal concentration profiles showed significant differences (χ(2) = 635.05 and χ(2) = 721.78, respectively; p < 0.05). These results indicate that drinking water is an important exposure pathway for metals to newborns through breast milk. Further studies should be aimed at assessing the body burdens of metals in that population and at evaluating the potential relationships in the concentrations in biological and environmental matrices as well as at estimating the contribution of dietary intake of metals. In addition, the presence of other chemical pollutants in breast milk should be also studied in order to assess the combined newborn exposure to other contaminants.

  5. Formative Research to Design a Promotional Campaign to Increase Drinking Water among Central American Latino Youth in an Urban Area.

    PubMed

    Barrett, Nicole; Colón-Ramos, Uriyoán; Elkins, Allison; Rivera, Ivonne; Evans, W Douglas; Edberg, Mark

    2017-06-01

    Latinos consume more sugary drinks and less water than other demographic groups. Our objective was to understand beverage choice motivations and test promotional concepts that can encourage Central American Latino urban youth to drink more water. Two rounds of focus group discussions were conducted (n = 10 focus groups, 61 participants, 6-18 years old). Data were transcribed verbatim and analyzed using inductive and deductive coding approaches. Youth motivations for drinking water were shaped by level of thirst, weather, energy, and perceptions of health benefits. Youth were discouraged from drinking water due to its taste and perceptions of the safety and cleanliness of tap water. Youth beverage preference depended on what their friends were drinking. Availability of water versus other beverages at home and other settings influenced their choice. Promotional materials that included mixed language, informative messages about the benefits of drinking water, and celebrities or athletes who were active, energized, and drinking water were preferred. A promotional campaign to increase water consumption among these Latino youth should include bicultural messages to underscore the power of water to quench true thirst, highlight the health benefits of drinking water, and address the safety of tap water.

  6. A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico.

    PubMed

    González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Sánchez-Ramírez, Blanca; Ishida, María C; Barrera-Hernández, Angel; Gutiérrez-Torres, Daniela; Zacarias, Olga L; Saunders, R Jesse; Drobná, Zuzana; Mendez, Michelle A; García-Vargas, Gonzalo; Loomis, Dana; Stýblo, Miroslav; Del Razo, Luz M

    2015-04-24

    Inorganic arsenic (iAs) and fluoride (F-) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F- in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F- concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F-/L. Urinary arsenic (U-tAs) and urinary F- (U-F-) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F-/mL. A strong positive correlation was found between iAs and F- concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F- concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F-, raising questions about possible contribution of F- exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F- exposures and its related health risks deserves immediate attention.

  7. Occurrence of contaminant accumulation in lead pipe scales from domestic drinking-water distribution systems.

    PubMed

    Schock, Michael R; Hyland, Robert N; Welch, Meghan M

    2008-06-15

    Previously, contaminants, such as AI, As, and Ra, have been shown to accumulate in drinking-water distribution system solids. Accumulated contaminants could be periodically released back into the water supply causing elevated levels at consumers taps, going undetected by most current regulatory monitoring practices and consequently constituting a hidden risk. The objective of this study was to determine the occurrence of over 40 major scale constituents, regulated metals, and other potential metallic inorganic contaminants in drinking-water distribution system Pb (lead) or Pb-lined service lines. The primary method of analysis was inductively coupled plasma-atomic emission spectroscopy, following complete decomposition of scale material. Contaminants and scale constituents were categorized by their average concentrations, and many metals of potential health concern were found to occur at levels sufficient to result in elevated levels at the consumer's taps if they were to be mobilized. The data indicate distinctly nonconservative behavior for many inorganic contaminants in drinking-water distribution systems. This finding suggests an imminent need for further research into the transport and fate of contaminants throughout drinking-water distribution system pipes, as well as a re-evaluation of monitoring protocols in order to more accurately determine the scope and levels of potential consumer exposure.

  8. Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruhlke, J.M.; Galpin, F.L.

    1991-12-31

    The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to cleanmore » up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.« less

  9. Low-level arsenic in drinking water and risk of incident myocardial infarction: A cohort study.

    PubMed

    Monrad, Maria; Ersbøll, Annette Kjær; Sørensen, Mette; Baastrup, Rikke; Hansen, Birgitte; Gammelmark, Anders; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2017-04-01

    Epidemiological studies have shown that intake of drinking water with high levels of arsenic (>100μg/L) is associated with risk for cardiovascular diseases, but studies on lower levels of arsenic show inconsistent results. The aim of this study was to investigate the relationship between exposure to low level arsenic in drinking water and risk of myocardial infarction in Denmark. From the Danish Diet, Cancer and Health cohort of 57,053 people aged 50-64 years at enrolment in 1993-1997, we identified 2707 cases of incident myocardial infarction from enrolment to end of follow-up in February 2012. Cohort participants were enrolled in the Copenhagen and Aarhus areas. We geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water supply areas. Arsenic in tap water at each cohort members address from 1973 to 2012 was estimated for all cohort members. Poisson regression was used to estimate incidence rate ratios (IRRs) for myocardial infarction after adjustment for lifestyle factors and educational level. Arsenic levels in drinking water at baseline addresses ranged from 0.03 to 25.34μg/L, with the highest concentrations in the Aarhus area. We found no overall association between 20-years average concentration of arsenic and risk of myocardial infarction. However, in the Aarhus area, fourth arsenic quartile (2.21-25.34μg/L) was associated with an IRR of 1.48 (95% confidence interval (CI): 1.19-1.83) when compared with first quartile (0.05-1.83μg/L). An IRR of 1.26 (95% CI: 0.89-1.79) was found for ever (versus never) having lived at an address with 10μg/L or more arsenic in the drinking water. This study provides some support for an association between low levels of arsenic in drinking water and the risk of myocardial infarction. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. An assessment of drinking-water supplies on the Hanford site: an evaluation conducted at a federal nuclear facility in southeastern Washington state.

    PubMed

    Hanf, R William; Kelly, Lynn M

    2005-03-01

    Drinking water is supplied to most U.S. Department of Energy (DOE) facilities on the Hanford Site by DOE-owned, contractor-operated pumping and distribution systems. Water is primarily obtained from the Columbia River, but some facilities use water from on-site groundwater wells. Because of the large amount of radioactive and chemical waste produced, stored, and disposed of at Hanford, some people are concerned that waste materials are contaminating on-site drinking-water supplies. This paper describes the drinking-water facilities and treatment requirements on the Hanford Site and summarizes radiological and non-radiological water quality data obtained from water samples collected from each drinking-water system in use during 2001 and 2002. Monitoring data show that Hanford-produced radionuclides are measurable in some drinking-water samples. The only non-radiological contaminants detected either were by-products of the chlorination process or came from off-site agricultural activities. Contaminant level values were, in all cases, below state and federal drinking-water limits. This information will provide assurance to current employees and future site developers that drinking water on the Hanford Site is safe for public consumption.

  11. Exposure to High Fluoride Drinking Water and Risk of Dental Fluorosis in Estonia

    PubMed Central

    Indermitte, Ene; Saava, Astrid; Karro, Enn

    2009-01-01

    The purpose of this study was to assess exposure to drinking water fluoride and evaluate the risk of dental fluorosis among the Estonian population. The study covered all 15 counties in Estonia and 93.7% of population that has access to public water supplies. In Estonia groundwater is the main source for public water supply systems in most towns and rural settlements. The content of natural fluoride in water ranges from 0.01 to 7.20 mg/L. The exposure to different fluoride levels was assessed by linking data from previous studies on drinking water quality with databases of the Health Protection Inspectorate on water suppliers and the number of water consumers in water supply systems. Exposure assessment showed that 4% of the study population had excessive exposure to fluoride, mainly in small public water supplies in western and central Estonia, where the Silurian-Ordovician aquifer system is the only source of drinking water. There is a strong correlation between natural fluoride levels and the prevalence of dental fluorosis. Risk of dental fluorosis was calculated to different fluoride exposure levels over 1.5 mg/L. PMID:19440411

  12. Working with Communities to Solve a Big Problem in Small Water Systems

    EPA Pesticide Factsheets

    Ammonia is found at high levels in many agricultural areas where groundwater is the primary drinking water source. EPA researchers developed affordable and easy-to-use biological drinking water treatment systems to treat ammonia in water.

  13. Drinking water arsenic exposure and blood pressure in healthy women of reproductive age in Inner Mongolia, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Richard K.; Mendola, Pauline; Liu Zhiyi

    2007-08-01

    The extremely high exposure levels evaluated in prior investigations relating elevated levels of drinking water arsenic and hypertension prevalence make extrapolation to potential vascular effects at lower exposure levels very difficult. A cross-sectional study was conducted on 8790 women who had recently been pregnant in an area of Inner Mongolia, China known to have a gradient of drinking water arsenic exposure. This study observed increased systolic blood pressure levels with increasing drinking water arsenic, at lower exposure levels than previously reported in the literature. As compared to the referent category (below limit of detection to 20 {mu}g of As/L), themore » overall population mean systolic blood pressure rose 1.29 mm Hg (95% CI 0.82, 1.75), 1.28 mm Hg (95% CI 0.49, 2.07), and 2.22 mm Hg (95% CI 1.46, 2.97) as drinking water arsenic concentration increased from 21 to 50, 51 to 100, and > 100 {mu}g of As/L, respectively. Controlling for age and body weight (n = 3260), the population mean systolic blood pressure rose 1.88 mm Hg (95% CI 1.03, 2.73), 3.90 mm Hg (95% CI 2.52, 5.29), and 6.83 mm Hg (95% CI 5.39, 8.27) as drinking water arsenic concentration increased, respectively. For diastolic blood pressure effect, while statistically significant, was not as pronounced as systolic blood pressure. Mean diastolic blood pressure rose 0.78 mm Hg (95% CI 0.39, 1.16), 1.57 mm Hg (95% CI 0.91, 2.22) and 1.32 mm Hg (95% CI 0.70, 1.95), respectively, for the overall population and rose 2.11 mm Hg (95% CI 1.38, 2.84), 2.74 mm Hg (95% CI 1.55, 3.93), and 3.08 mm Hg (95% CI 1.84, 4.31), respectively, for the adjusted population (n = 3260) at drinking water arsenic concentrations of 21 to 50, 51 to 100, and > 100 {mu}g of As/L. If our study results are confirmed in other populations, the potential burden of cardiovascular disease attributable to drinking water arsenic is significant.« less

  14. Methods for Environments and Contaminants: Drinking Water

    EPA Pesticide Factsheets

    EPA’s Safe Drinking Water Information System Federal Version (SDWIS/FED) includes information on populations served and violations of maximum contaminant levels or required treatment techniques by the nation’s 160,000 public water systems.

  15. Optimization Program for Drinking Water Systems

    EPA Pesticide Factsheets

    The Area-Wide Optimization Program (AWOP) provides tools and approaches for drinking water systems to meet water quality optimization goals and provide an increased – and sustainable – level of public health protection to their consumers.

  16. Toxic Risk Assessment of Arsenic in Males Through Drinking Water in Tharparkar Region of Sindh, Pakistan.

    PubMed

    Brahman, Kapil Dev; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Sadaf Sadia; Kazi, Atif Gul; Talpur, Farah Naz; Baig, Jameel Ahmed; Panhwar, Abdul Haleem; Arain, Mariam Shezadi; Ali, Jamshed; Arain, Mohammad Balal; Naeemullah

    2016-07-01

    Humans are exposed to arsenic (As) through air, drinking water, and food. The arsenic (As) hazardous quotient was calculated on the basis of its concentration in drinking water of different origin and scalp hair of male subjects (n = 313), residents of different exposed and non-exposed areas of Sindh, Pakistan. The total As was determined in water and scalp hair samples, while As species were determined in water samples by advance extraction methodologies. The total As concentrations in drinking water of less-exposed (LE) and high-exposed (HE) areas was found to be 2.63 to 4.46 and 52 to 235, fold higher than the permissible limit, respectively, than recommended by World Health Organization (2004) for drinking water. While the levels of As in drinking water of non-exposed (NE) areas was within the permissible limit. The resulted data indicated that the dominant species was As(+5) in groundwater samples. The levels of As in scalp hair samples of male subjects of two age groups (18-30 and 31-50 years), belonging to NE, LE, and HE areas, ranged from 0.26 to 0.69, 0.58 to 1.34, and 15.6 to 60.9 μg/g, respectively. A significant correlation between As levels in drinking water and scalp hair was observed in HE area (r = 0.86-0.90, p < 0.001) as compared to those subjects belonging to LE area. A toxicity risk assessment was calculated as hazard quotient (HQ), which indicates that the study subjects of HE area have significantly higher values of HQ than LE. The population of As exposed areas is at high risk of non-carcinogenic and carcinogenesis effects.

  17. Occurrence assessment for disinfectants and disinfection by-products (phase 6A) in public drinking water. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The EPA Office of Ground Water and Drinking Water is developing national primary drinking water regulations for disinfectant and disinfection by-product contaminants. Thirteen contaminants are being considered to be regulated under Phase 6. These contaminants, referred to as Phase 6a, are the subject of the report. The information is important for setting the Maximum Contaminant Level Goal for a contaminant. The exposure information also is used to estimate the baseline health impact assessment of current levels and for evaluation of the health benefits of the regulatory alternatives.

  18. Away-from-home drinking water consumption practices and the microbiological quality of water consumed in rural western Kenya.

    PubMed

    Onyango-Ouma, W; Gerba, Charles P

    2011-12-01

    A cross-sectional descriptive study was conducted to examine away-from-home drinking water consumption practices and the microbiological quality of water consumed in rural western Kenya. The study involved adults and schoolchildren. Data were collected using focus group discussions, questionnaire survey, observations, diaries and interviews. The findings suggest that away-from-home drinking water consumption is a common practice in the study area; however, the microbiological quality of the water consumed is poor. While some respondents perceive the water to be safe for drinking mainly because of the clear colour of the water, others are forced by circumstances to drink the water as it is owing to a lack of alternative safe sources. It is concluded that there is a need for new innovative approaches to address away-from-home drinking water consumption in resource-poor settings in order to complement and maximize the benefits of point-of-use water treatment at the household level.

  19. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    PubMed

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to improve public health.

  20. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues.

    PubMed

    Wasana, Hewa M S; Perera, Gamage D R K; Gunawardena, Panduka De S; Fernando, Palika S; Bandara, Jayasundera

    2017-02-14

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined "consumption of contaminated drinking water could be a silent killer". As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  1. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues

    NASA Astrophysics Data System (ADS)

    Wasana, Hewa M. S.; Perera, Gamage D. R. K.; Gunawardena, Panduka De S.; Fernando, Palika S.; Bandara, Jayasundera

    2017-02-01

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined “consumption of contaminated drinking water could be a silent killer”. As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  2. The Occurrence and Toxicity of Disinfection Byproducts in European Drinking Waters in Relation with the HIWATE Epidemiology Study

    PubMed Central

    Jeong, Clara H.; Wagner, Elizabeth D.; Siebert, Vincent R.; Anduri, Sridevi; Richardson, Susan D.; Daiber, Eric J.; McKague, A. Bruce; Kogevinas, Manolis; Villanueva, Cristina M.; Goslan, Emma H.; Luo, Wentai; Isabelle, Lorne M.; Pankow, James F.; Grazuleviciene, Regina; Cordier, Sylvaine; Edwards, Susan C.; Righi, Elena; Nieuwenhuijsen, Mark J.; Plewa, Michael J.

    2012-01-01

    The HIWATE (Health Impacts of long-term exposure to disinfection byproducts in drinking WATEr) project was a systematic analysis that combined the epidemiology on adverse pregnancy outcomes and other health effects with long term exposure to low levels of drinking water disinfection byproducts (DBPs) in the European Union. The present study focused on the relationship of the occurrence and concentration of DBPs with in vitro mammalian cell toxicity. Eleven drinking water samples were collected from 5 European countries. Each sampling location corresponded with an epidemiological study for the HIWATE program. Over 90 DBPs were identified; the range in the number of DBPs and their levels reflected the diverse collection sites, different disinfection processes, and the different characteristics of the source waters. For each sampling site, chronic mammalian cell cytotoxicity correlated highly with the numbers of DBPs identified and the levels of DBP chemical classes. Although there was a clear difference in the genotoxic responses among the drinking waters, these data did not correlate as well with the chemical analyses. Thus, the agents responsible for the genomic DNA damage observed in the HIWATE samples may be due to unresolved associations of combinations of identified DBPs, unknown emerging DBPs that were not identified, or other toxic water contaminants. This study represents the first to integrate quantitative in vitro toxicological data with analytical chemistry and human epidemiologic outcomes for drinking water DBPs. PMID:22958121

  3. Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up

    PubMed Central

    Knudsen, Nikoline N.; Schullehner, Jörg; Hansen, Birgitte; Jørgensen, Lisbeth F.; Kristiansen, Søren M.; Voutchkova, Denitza D.; Gerds, Thomas A.; Andersen, Per K.; Bihrmann, Kristine; Grønbæk, Morten; Kessing, Lars V.; Ersbøll, Annette K.

    2017-01-01

    Suicide is a major public health concern. High-dose lithium is used to stabilize mood and prevent suicide in patients with affective disorders. Lithium occurs naturally in drinking water worldwide in much lower doses, but with large geographical variation. Several studies conducted at an aggregate level have suggested an association between lithium in drinking water and a reduced risk of suicide; however, a causal relation is uncertain. Individual-level register-based data on the entire Danish adult population (3.7 million individuals) from 1991 to 2012 were linked with a moving five-year time-weighted average (TWA) lithium exposure level from drinking water hypothesizing an inverse relationship. The mean lithium level was 11.6 μg/L ranging from 0.6 to 30.7 μg/L. The suicide rate decreased from 29.7 per 100,000 person-years at risk in 1991 to 18.4 per 100,000 person-years in 2012. We found no significant indication of an association between increasing five-year TWA lithium exposure level and decreasing suicide rate. The comprehensiveness of using individual-level data and spatial analyses with 22 years of follow-up makes a pronounced contribution to previous findings. Our findings demonstrate that there does not seem to be a protective effect of exposure to lithium on the incidence of suicide with levels below 31 μg/L in drinking water. PMID:28604590

  4. Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up.

    PubMed

    Knudsen, Nikoline N; Schullehner, Jörg; Hansen, Birgitte; Jørgensen, Lisbeth F; Kristiansen, Søren M; Voutchkova, Denitza D; Gerds, Thomas A; Andersen, Per K; Bihrmann, Kristine; Grønbæk, Morten; Kessing, Lars V; Ersbøll, Annette K

    2017-06-10

    Suicide is a major public health concern. High-dose lithium is used to stabilize mood and prevent suicide in patients with affective disorders. Lithium occurs naturally in drinking water worldwide in much lower doses, but with large geographical variation. Several studies conducted at an aggregate level have suggested an association between lithium in drinking water and a reduced risk of suicide; however, a causal relation is uncertain. Individual-level register-based data on the entire Danish adult population (3.7 million individuals) from 1991 to 2012 were linked with a moving five-year time-weighted average (TWA) lithium exposure level from drinking water hypothesizing an inverse relationship. The mean lithium level was 11.6 μg/L ranging from 0.6 to 30.7 μg/L. The suicide rate decreased from 29.7 per 100,000 person-years at risk in 1991 to 18.4 per 100,000 person-years in 2012. We found no significant indication of an association between increasing five-year TWA lithium exposure level and decreasing suicide rate. The comprehensiveness of using individual-level data and spatial analyses with 22 years of follow-up makes a pronounced contribution to previous findings. Our findings demonstrate that there does not seem to be a protective effect of exposure to lithium on the incidence of suicide with levels below 31 μg/L in drinking water.

  5. Multi-Generational Drinking of Bottled Low Mineral Water Impairs Bone Quality in Female Rats

    PubMed Central

    Zeng, Hui; Wang, Lingqiao; Wang, Dahua; Luo, Jiaohua; Zhang, Liang; Huang, Yujing; Chen, Ji-an; Shu, Weiqun

    2015-01-01

    Background Because of reproductions and hormone changes, females are more sensitive to bone mineral loss during their lifetime. Bottled water has become more popular in recent years, and a large number of products are low mineral water. However, research on the effects of drinking bottled low mineral water on bone health is sparse. Objective To elucidate the skeletal effects of multi-generational bottled water drinking in female rats. Methods Rats continuously drank tap water (TW), bottled natural water (bNW), bottled mineralized water (bMW), or bottled purified water (bPW) for three generations. Results The maximum deflection, elastic deflection, and ultimate strain of the femoral diaphysis in the bNW, bMW, and bPW groups and the fracture strain in the bNW and bMW groups were significantly decreased. The tibiae calcium levels in both the bNW and bPW groups were significantly lower than that in the TW group. The tibiae and teeth magnesium levels in both the bNW and bPW groups were significantly lower than those in the TW group. The collagen turnover markers PICP (in both bNW and bPW groups) were significantly lower than that in the TW group. In all three low mineral water groups, the 1,25-dihydroxy-vitamin D levels were significantly lower than those in the TW group. Conclusion Long-term drinking of low mineral water may disturb bone metabolism and biochemical properties and therefore weaken biomechanical bone properties in females. Drinking tap water, which contains adequate minerals, was found to be better for bone health. To our knowledge, this is the first report on drinking bottled low mineral water and female bone quality on three generation model. PMID:25803851

  6. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water.

    PubMed

    O'Flaherty, E; Borrego, C M; Balcázar, J L; Cummins, E

    2018-03-01

    Antibiotic-resistant bacteria (ARB) are a potential threat to human health through drinking water with strong evidence of ARB presence in post treated tap water around the world. This study examines potential human exposure to antibiotic-resistant (AR) Escherichia coli (E. coli) through drinking water, the effect of different drinking water treatments on AR E. coli and the concentration of AR E. coli required in the source water for the EU Drinking Water Directive (DWD) (Council Directive 98/83/EC, 0CFU/100ml of E. coli in drinking water) to be exceeded. A number of scenarios were evaluated to examine different water treatment combinations and to reflect site specific conditions at a study site in Europe. A literature search was carried out to collate data on the effect of environmental conditions on AR E. coli, the effect of different water treatments on AR E. coli and typical human consumption levels of tap water. A human exposure assessment model was developed with probability distributions used to characterise uncertainty and variability in the input data. Overall results show the mean adult human exposure to AR E. coli from tap water consumption ranged between 3.44×10 -7 and 2.95×10 -1 cfu/day for the scenarios tested and varied depending on the water treatments used. The level of AR E. coli required in the source water pre-treatment to exceed the DWD varied between 1 and 5logcfu/ml, depending on the water treatments used. This can be used to set possible monitoring criteria in pre-treated water for potential ARB exposure in drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [Field study on the change of urinary iodine levels among family members with iodine content of 5 - 150 microg/L in drinking water before and after non-iodized salt intervention].

    PubMed

    Li, Su-mei; Zhang, Gen-hong; Sun, Fan; Wang, Pei-hua; Zhang, Zhi-zhong; Li, Xiu-wei; Li, Shu-hua

    2008-08-01

    To compare the changes of urinary iodine levels among the family members with iodine content of 5 - 150 microg/L in drinking water, before and after non-iodized salt intervention through a field trail study. Family members who routinely drank water with iodine content 5 - 150 microg/L were chosen to substitute non-iodized salt for their current iodized salt for 2 months, and urine samples of the family members were collected for determination of iodine change before and after intervention was carried out. Median urinary iodine of school children, women with productive age and male adults exceeding 370 microg/L before intervention and the frequency distribution of urinary iodine were all above 70%. Our results revealed that iodine excess exited in three groups of family members. After intervention, all median urinary iodine level seemed to have decreased significantly, and groups with drinking water iodine 5.0 - 99.9 microg/L reduced to adequate or close to adequate while the group that drinking water iodine was 100 - 150 microg/L reached the cut-off point of excessive iodine level (300 microg/L). Results from your study posed the idea that the iodine adequate areas should be defined as the areas with iodine content of 5.0 - 100 microg/L in drinking water, and edible salt not be iodized in these areas. Areas with iodine content of 100 - 150 microg/L in drinking water should be classified as iodine excessive.

  8. [Fluoridation of drinking water, why is it needed?].

    PubMed

    Zusman, S P; Natapov, L; Ramon, T

    2004-01-01

    Dental caries is a widespread disease. It causes irreversible damage, pain and considerable expense. Fluoride is the only known substance that raises the tooth's resistance to acid attack. Natural drinking waters contain fluoride at different concentration. The most effective method of fluoride administration to the community level is by adjustng the fluoride concentration in the drinking water to about 1 part per million. To describe the mode of action of fluoride, methods of administration and to describe water fluoridation, advantages and disadvantages. Fluoridation of drinking water started in 1945 in the world and in 1981 in Israel. Today more then 300 million people in some 60 countries enjoy the defending effect of fluoride in drinking water. This is the most effective method for decreasing incidence of caries, as well as being cost effective. Over the years there were many attempts to 'blame' fluoridation with negative side effects to human health. Till today, none of the allegations passed scientific scrutiny. There is overwhelming scientific support for the Regulations that oblige the Water supplier to adjust fluoride levels to 1 ppm in every town or municipality with more then 5,000 inhabitants.

  9. National survey of MTBE and other VOCs in community drinking-water sources

    USGS Publications Warehouse

    Clawges, Rick M.; Rowe, Barbara L.; Zogorski, John S.

    2001-01-01

    Methyl tert-butyl ether (MTBE) is a volatile organic compound (VOC) that is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The chemical properties and widespread use of MTBE can result in contamination of private and public drinking-water sources. MTBE contamination is a concern in drinking water because of the compound's low taste and odor threshold and potential human-health effects.Because of this concern, a survey was initiated in collaboration with researchers and water suppliers. The purpose of this survey is to provide sound, unbiased, scientific information on the occurrence of MTBE and other VOCs in ground water, reservoirs, and rivers that are sources of drinking water used by communities of various sizes throughout the Nation. This fact sheet presents a general description of the survey.

  10. Prevalence of dental fluorosis in relation with different fluoride levels in drinking water among school going children in Sarada tehsil of Udaipur district, Rajasthan.

    PubMed

    Sarvaiya, B U; Bhayya, D; Arora, R; Mehta, D N

    2012-01-01

    To estimate the prevalence of dental fluorosis in relation with different fluoride levels in drinking water among school going children of 6-12 years age group. Dental fluorosis was recorded using Dean's index in school children of selected villages. The drinking water samples of all the selected villages were collected in polyethylene bottles and the fluoride content of these samples was determined by fluoride ion selective method using Orion microprocessor analyser. The overall prevalence of dental fluorosis was found to be 69.84%. An increase in the community fluorosis index (CFI) with corresponding increase in water fluoride content was found. There was an increase in prevalence of dental fluorosis with a corresponding increase in water fluoride content from 0.8 ppm to 4.1 ppm. A significantly strong positive correlation was found between CFI and fluoride concentration in drinking water.

  11. [Microorganisms surviving in drinking water systems and related problems].

    PubMed

    Aulicino, F A; Pastoni, F

    2004-01-01

    Drinking water in distribution systems may show abnormal values of some parameters, such as turbidity, and may support particular phenomena, such as bacterial regrowth or presence of Viable Not Culturable (VNC) bacteria. Turbidity can provide shelter for opportunistic microorganisms and pathogens. The Milwaukee outbreak (400,000 people) is one example of waterborne disease caused by the presence of pathogens (Cryptosporidium) in drinking water characterized by high and intermittent levels of turbidity. Bacterial regrowth in drinking water distribution systems may cause high increments of microorganisms such as heterotrophic bacteria, coliforms and pathogens. Microorganisms isolated from biofilm including Pseudomonas, Aeromonas, Legionella may have a significant health hazard especially in hospital areas. The presence of VNC bacteria in drinking water may represent a problem for their discussed role in infectious diseases, but also for the possibility of a considerable underestimation of true microbial concentrations in drinking waters. To study this kind of problems is necessary to apply suitable methods for drinking water analyses.

  12. Surveillance of bacteriological quality of drinking water in Chandigarh, northern India.

    PubMed

    Goel, Naveen K; Pathak, Rambha; Gulati, Sangeeta; Balakrishnan, S; Singh, Navpreet; Singh, Hardeep

    2015-09-01

    The study was carried out in Chandigarh, India with the following objectives: (1) to monitor the bacteriological quality of drinking water; (2) to collect data on bacteriological contamination of water collected at point of use; (3) to test both groundwater being supplied through hand pumps and pre-treated water; and (4) to determine the pattern of seasonal variations in quality of water. The community-based longitudinal study was carried out from 2002 to 2007. Water samples from hand pumps and tap water were collected from different areas of Chandigarh following a simple random sampling strategy. The time trends and seasonal variations in contamination of water according to area and season were analysed. It was found that the contamination of water was higher during the pre-monsoon period compared with the rest of the year. The water being used in slums and rural areas for drinking purposes also had higher contamination levels than urban areas, with highest levels in rural areas. This study found that drinking water supply in Chandigarh is susceptible to contamination especially in rural areas and during pre-monsoon. Active intervention from public health and the health department along with raising people's awareness regarding water hygiene are required for improving the quality of drinking water.

  13. A Systems Approach to Manage Drinking Water Quality ...

    EPA Pesticide Factsheets

    Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate the water supply vulnerability and examine technological options in adaptation. Total organic carbon (TOC) in surface water can vary significantly due to changes or a combination of changes in watershed land use, climate variability, and extreme meteorological events (e.g., hurricanes). On the other hand, water demand is known to vary temporarily and spatially leading to changes in water ages and hence DBP formation potential. Typically a drinking water facility is designed to operate within a projected range of influent water quality and water demand. When the variations exceed the design range, water supply becomes vulnerable in the compliance to Safe Drinking Water Act (SDWA) Stage-II disinfection by-product (DBP) rules. This paper describes a framework of systems-level modeling, monitoring and control in adaptive planning and system operation. The framework, built upon the integration of model projections, adaptive monitoring and systems control, has three primary functions. Its advantages and limitations will be discussed with the application examples in Cincinnati (Ohio, USA) and Las Vegas (Nevada, USA). At a conceptual level, an integrated land use and hydrological model

  14. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea.

    PubMed

    Lee, Sunggyu; Jeong, Woochang; Kannan, Kurunthachalam; Moon, Hyo-Bang

    2016-10-15

    Organophosphate flame retardants (OPFRs) have been widely used as flame retardants and plasticizers in commercial products. Limited data are available on the occurrence and exposure of OPFRs via drinking water consumption. In this study, 127 drinking water samples were collected from tap water, purified water (tap water that is passed through in-house filters) and bottled water from major cities in Korea in 2014. The total concentrations of OPFRs (ΣOPFR) in all of the samples ranged from below the method detection limit (MDL) to 1660 (median: 48.7) ng/L. The predominant OPFR compounds in drinking water were tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroethyl) phosphate (TCPP), and tris(2-butoxyethyl) phosphate (TBEP). Significant differences were observed in the levels of TCPP, TBEP and ΣOPFR among various types of drinking water. TCPP is introduced in the drinking water during the water purification process. Regional differences existed in the levels and patterns of OPFRs in water samples, which indicated the existence of diverse sources of these contaminants. Purified water was a significant contributor to the total OPFR intake by humans. The estimated daily intake of OPFRs was lower than the tentative oral reference dose (RfD) values. In comparison with exposure of OPFRs via dust ingestion, water consumption was a significant source of chlorinated PFRs (99% for TCEP and 34% for TCPP to the total intakes) for Koreans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Determination of trace metals in drinking water in Irbid City-Northern Jordan.

    PubMed

    Alomary, Ahmed

    2013-02-01

    Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.

  16. Occurrence of perfluorinated compounds (PFCs) in drinking water of North Rhine-Westphalia, Germany and new approach to assess drinking water contamination by shorter-chained C4-C7 PFCs.

    PubMed

    Wilhelm, Michael; Bergmann, Sabine; Dieter, Hermann H

    2010-06-01

    After detection of perfluorooctanoate (PFOA) in drinking water at concentrations up to 0.64 microg/l in Arnsberg, Sauerland, Germany, the German Drinking Water Commission (TWK) assessed perfluorinated compounds (PFCs) in drinking water and set for the first time worldwide in June 2006 a health-based guide value for safe lifelong exposure at 0.3 microg/l (sum of PFOA and perfluorooctanesulfonate, PFOS). PFOA and PFOS can be effectively removed from drinking water by percolation over granular activated carbon. Additionally, recent EU-regulations require phasing out use of PFOS and ask to voluntarily reduce the one of PFOA. New and shorter-chained PFCs (C4-C7) and their mixtures are being introduced as replacements. We assume that some of these "new" compounds could be main contributors to total PFC levels in drinking water in future, especially since short-chained PFCs are difficult to remove from drinking water by common treatment techniques and also by filtration over activated carbon. The aims of the study were to summarize the data from the regularly measured PFC levels in drinking water and in the drinking water resources in North Rhine-Westphalia (NRW) for the sampling period 2008-2009, to give an overview on the general approach to assess PFC mixtures and to assess short-chained PFCs by using toxicokinetic instead of (sub)chronic data. No general increase of substitutes for PFOS and PFOA in wastewater and surface water was detected. Present findings of short-chained PFC in drinking waters in NRW were due to extended analysis and caused by other impacts. Additionally, several PFC contamination incidents in drinking water resources (groundwater and rivers) have been reported in NRW. The new approach to assess short-chained PFCs is based on a ranking of their estimated half-lives for elimination from the human body. Accordingly, we consider the following provisional health-related indication values (HRIV) as safe in drinking water for lifelong exposure: perfluorobutanoate (PFBA) 7 microg/l, perfluoropentanoate (PFPA) 3 microg/l, perfluorohexanoate (PFHxA) 1 microg/l, perfluoroheptanoate (PFHpA) 0.3 microg/l, perfluorobutanesulfonate (PFBS) 3 microg/l, perfluoropentanesulfonate (PFPS) 1 microg/l, perfluorohexanesulfonate (PFHxS) 0.3 microg/l and perfluoroheptanesulfonate (PFHpS) 0.3 microg/l. For all PFCs the long-term lowest maximal quality goal (general precautionary value, PVg) in drinking water is set to -0.1 microg/l.

  17. Do estrogenic compounds in drinking water migrating from plastic pipe distribution system pose adverse effects to human? An analysis of scientific literature.

    PubMed

    Liu, Ze-Hua; Yin, Hua; Dang, Zhi

    2017-01-01

    With the widespread application of plastic pipes in drinking water distribution system, the effects of various leachable organic chemicals have been investigated and their occurrence in drinking water supplies is monitored. Most studies focus on the odor problems these substances may cause. This study investigates the potential endocrine disrupting effects of the migrating compound 2,4-di-tert-butylphenol (2,4-d-t-BP). The summarized results show that the migration of 2,4-d-t-BP from plastic pipes could result in chronic exposure and the migration levels varied greatly among different plastic pipe materials and manufacturing brands. Based on estrogen equivalent (EEQ), the migrating levels of the leachable compound 2,4-d-t-BP in most plastic pipes were relative low. However, the EEQ levels in drinking water migrating from four out of 15 pipes may pose significant adverse effects. With the increasingly strict requirements on regulation of drinking water quality, these results indicate that some drinking water transported with plastic pipes may not be safe for human consumption due to the occurrence of 2,4-d-t-BP. Moreover, 2,4-d-t-BP is not the only plastic pipe-migrating estrogenic compound, other compounds such as 2-tert-butylphenol (2-t-BP), 4-tert-butylphenol (4-t-BP), and others may also be leachable from plastic pipes.

  18. The need for a reassessment of the safe upper limit of selenium in drinking water.

    PubMed

    Vinceti, Marco; Crespi, Catherine M; Bonvicini, Francesca; Malagoli, Carlotta; Ferrante, Margherita; Marmiroli, Sandra; Stranges, Saverio

    2013-01-15

    Results of recent epidemiologic studies suggest the need to reassess the safe upper limit in drinking water of selenium, a metalloid with both toxicological and nutritional properties. Observational and experimental human studies on health effects of organic selenium compounds consumed through diet or supplements, and of inorganic selenium consumed through drinking water, have shown that human toxicity may occur at much lower levels than previously surmised. Evidence indicates that the chemical form of selenium strongly influences its toxicity, and that its biological activity may differ in different species, emphasizing the importance of the few human studies on health effects of the specific selenium compounds found in drinking water. Epidemiologic studies that investigated the effects of selenate, an inorganic selenium species commonly found in drinking water, together with evidence of toxicity of inorganic selenium at low levels in from in vitro and animal studies, indicate that health risks may occur at exposures below the current European Union and World Health Organization upper limit and guideline of 10 and 40 μg/l, respectively, and suggest reduction to 1 μg/l in order to adequately protect human health. Although few drinking waters are currently known to have selenium concentrations exceeding this level, the public health importance of this issue should not be overlooked, and further epidemiologic research is critically needed in this area. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The Savannah River Site`s groundwater monitoring program. Third quarter 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in thismore » report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.« less

  20. The Savannah River Site's groundwater monitoring program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in thismore » report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.« less

  1. Screening high-fluoride and high-arsenic drinking waters and surveying endemic fluorosis and arsenism in Shaanxi province in western China.

    PubMed

    Zhu, Cansheng; Bai, Guanglu; Liu, Xiaoli; Li, Yue

    2006-09-01

    The objectives of this study were to screen high-fluoride and high-arsenic drinking waters, to evaluate the effectiveness of fluoride-reducing projects and to assess the present condition of endemic fluorosis and arsenism in Shaanxi province in western China. For screening high-fluoride drinking waters, five water samples were collected from each selected village where dental fluorosis patients were detected in 8-12 year-old children. For evaluating the effectiveness of fluoride-reducing projects, four water samples were collected from each project at end-user level. Fluoride concentrations in water samples were measured by fluoride-selective electrode method or spectrophotometry. Dental fluorosis in children aging 8-12 years was examined according to Horowitz's Tooth Surface Index of Fluorosis. Skeletal fluorosis in adults was detected clinically and radiologically according to Chinese Criteria of Clinical Diagnosis of Skeletal Fluorosis. For screening high-arsenic waters, 20 water samples were collected from each village which was selected from areas characterized by the geographic features to induce high-arsenic underground water, i.e., alluvial plains, ore mining or smelting areas, geothermal artesians, and thermal springs. Arsenic concentrations in water samples were determined by spectrophotometry or arsine generation atomic fluorospectrophotometry. Arsenism in adults aging 40-89 years was examined in villages with arsenic concentrations in drinking water above 0.05 mg/l according to Chinese Criteria for Classification of Endemic Arsenism Areas and Clinical Diagnoses of Endemic Arsenism. The results showed that the fluoride level of 7144 water samples was 1.17 +/- 0.93 mg/l. There were 3396 (47.6%) high-fluoride waters (fluoride level was above 1.0 mg/l) distributing in 786 (45.1%) villages, where about 0.8 million (50.0%) people inhabited. Additionally, the 1315 fluoride-reducing projects were studied. The fluoride level of the projects was 2.79 +/- 1.09 and 0.98 +/- 0.47 mg/l before and after building the projects, which remained at relatively lower level (1.03 +/- 0.47 mg/l). But there were still 58.0% of the projects providing drinking waters with fluoride concentrations beyond 1.0mg/l. The rates of dental fluorosis and skeletal fluorosis were 38.2% and 11.8%, respectively. The arsenic level of 1732 water samples was 0.010 +/- 0.082 mg/l. There were 174 (14.9%) high-arsenic waters (arsenic level was above 0.010 mg/l) being detected, distributing in 41 (38.7%) villages. The arsenic level in 53 (4.5%) water samples was beyond 0.025 mg/l. There were 3 villages with arsenic level in drinking water beyond Chinese National Permissible Limits (0.050 mg/l), and the prevalence rate of arsenism reached 37.0% in these three villages, 3.7%, 22.2%, and 11.1% of subjects suffering from mild, moderate, and severe arsenism, respectively. Conclusively, the wide distribution of high-fluoride drinking waters contributes to the prevalence of dental and skeletal fluorosis in Shaanxi province and the quality of fluoride-reducing projects should be further improved. Ore mining and smelting induces high-arsenic drinking waters, resulting in arsenism prevalence in Shang-luo city. Proper measures should be taken to deal with water pollution in the ore mining and smelting areas in order to solve the high-arsenic water problem in Shaanxi province.

  2. [Impact of drinking water calcium and magnesium levels on morbidity in the Omsk Region].

    PubMed

    Erofeev, Iu V; Neskin, T A; Turchaninov, D V

    2006-01-01

    Drinking water calcium and magnesium levels were examined for impact on morbidity in a model rural area of a West Siberian region. It was ascertained that there were negative correlations between the water levels of the above elements and the incidence of respiratory, gastrointestinal, and locomotor diseases and positive correlations between the concentrations of calcium and magnesium and the incidence of nervous, urogenital, and eye diseases. It is concluded that by adjusting the findings, the medical care availability factor should be taken into account in the investigations using the health indices calculated on the data from official medical accounts. This investigation has shown the estimation of the drinking water levels of calcium and magnesium as a significant hygienic problem for a model region.

  3. 40 CFR 141.63 - Maximum contaminant levels (MCLs) for microbiological contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... water pressure in all parts of the distribution system; (4) Filtration and/or disinfection of surface water, as described in subpart H, or disinfection of ground water using strong oxidants such as chlorine... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking...

  4. Lack of effect of drinking water barium on cardiovascular risk factors.

    PubMed Central

    Wones, R G; Stadler, B L; Frohman, L A

    1990-01-01

    Higher cardiovascular mortality has been associated in a single epidemiological study with higher levels of barium in drinking water. The purpose of this study was to determine whether drinking water barium at levels found in some U.S. communities alters the known risk factors for cardiovascular disease. Eleven healthy men completed a 10-week dose-response protocol in which diet was controlled (600 mg cholesterol; 40% fat, 40% carbohydrate, 20% protein; sodium and potassium controlled at the subject's pre-protocol estimated intake). Other aspects of the subjects' lifestyles known to affect cardiac risk factors were controlled, and the barium content (as barium chloride) of the drinking water (1.5 L/day) was varied from 0 (first 2 weeks), to 5 ppm (next 4 weeks), to 10 ppm (last 4 weeks). Multiple blood and urine samples, morning and evening blood pressure measurements, and 48-hr electrocardiographic monitoring were performed at each dose of barium. There were no changes in morning or evening systolic or diastolic blood pressures, plasma cholesterol or lipoprotein or apolipoprotein levels, serum potassium or glucose levels, or urine catecholamine levels. There were no arrhythmias related to barium exposure detected on continuous electrocardiographic monitoring. A trend was seen toward increased total serum calcium levels with exposure to barium, which was of borderline statistical significance and of doubtful clinical significance. In summary, drinking water barium at levels of 5 and 10 ppm did not appear to affect any of the known modifiable cardiovascular risk factors. PMID:2384067

  5. Elevated Lead in Drinking Water in Washington, DC, 2003–2004: The Public Health Response

    PubMed Central

    Guidotti, Tee L.; Calhoun, Thomas; Davies-Cole, John O.; Knuckles, Maurice E.; Stokes, Lynette; Glymph, Chevelle; Lum, Garret; Moses, Marina S.; Goldsmith, David F.; Ragain, Lisa

    2007-01-01

    Background In 2003, residents of the District of Columbia (DC) experienced an abrupt rise in lead levels in drinking water, which followed a change in water-disinfection treatment in 2001 and which was attributed to consequent changes in water chemistry and corrosivity. Objectives To evaluate the public health implications of the exceedance, the DC Department of Health expanded the scope of its monitoring programs for blood lead levels in children. Methods From 3 February 2004 to 31 July 2004, 6,834 DC residents were screened to determine their blood lead levels. Results Children from 6 months to 6 years of age constituted 2,342 of those tested; 65 had blood lead levels > 10 μg/dL (the “level of concern” defined by the Centers for Disease Control and Prevention), the highest with a level of 68 μg/dL. Investigation of their homes identified environmental sources of lead exposure other than tap water as the source, when the source was identified. Most of the children with elevated blood lead levels (n = 46; 70.8%) lived in homes without lead drinking-water service lines, which is the principal source of lead in drinking water in older cities. Although residents of houses with lead service lines had higher blood lead levels on average than those in houses that did not, this relationship is confounded. Older houses that retain lead service lines usually have not been rehabilitated and are more likely to be associated with other sources of exposure, particularly lead paint. None of 96 pregnant women tested showed blood lead levels > 10 μg/dL, but two nursing mothers had blood lead levels > 10 μg/dL. Among two data sets of 107 and 71 children for whom paired blood and water lead levels could be obtained, there was no correlation (r2 = –0.03142 for the 107). Conclusions The expanded screening program developed in response to increased lead levels in water uncovered the true dimensions of a continuing problem with sources of lead in homes, specifically lead paint. This study cannot be used to correlate lead in drinking water with blood lead levels directly because it is based on an ecologic rather than individualized exposure assessment; the protocol for measuring lead was based on regulatory requirements rather than estimating individual intake; numerous interventions were introduced to mitigate the effect; exposure from drinking water is confounded with other sources of lead in older houses; and the period of potential exposure was limited and variable. PMID:17520055

  6. Quality of Kelantan drinking water and knowledge, attitude and practice among the population of Pasir Mas, Malaysia.

    PubMed

    Ab Razak, N H; Praveena, S M; Aris, A Z; Hashim, Z

    2016-02-01

    Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk. Information on KAP was collected using a standardized questionnaire. Heavy metal analysis of drinking water samples was performed using graphite furnace atomic absorption spectrophotometry. The population of Pasir Mas has good knowledge (80%), a less positive attitude (93%) and good practice (81%) towards heavy metal contamination of drinking water. The concentrations of heavy metals analysed in this study were found to be below the permissible limits for drinking water set by the Malaysian Ministry of Health and the World Health Organization. The HRA showed no potential non-carcinogenic and carcinogenic risks from the intake of heavy metal through drinking water. By investigating the quality of drinking water, KAP and HRA, the results of this study will provide authorities with the knowledge and resources to improve the management of drinking water quality in the future. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  7. 40 CFR 141.64 - Maximum contaminant levels for disinfection byproducts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disinfection byproducts. 141.64 Section 141.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking... source water: Disinfection byproduct Best available technology Total trihalomethanes (TTHM) and...

  8. [Fluoride intake through consumption of water from municipal network in the INMA-Gipuzkoa cohort].

    PubMed

    Jiménez-Zabala, Ana; Santa-Marina, Loreto; Otazua, Mónica; Ayerdi, Mikel; Galarza, Ane; Gallastegi, Mara; Ulibarrena, Enrique; Molinuevo, Amaia; Anabitarte, Asier; Ibarluzea, Jesús

    2017-05-22

    To estimate fluoride intake through consumption of water from the municipal network in pregnant women and their children from the INMA-Gipuzkoa cohort and to compare these intakes with recommended levels. In Euskadi (Spain), fluoridation of drinking water is compulsory in water supplies for more than 30,000 inhabitants. 575 pregnant women (recruitment, 2006-2008) and 424 4-year-old children (follow-up, 2010-2012) have been included. Fluoride levels in drinking water were obtained from the water consumption information system of the Basque Country (EKUIS). Water consumption habits and socioeconomic variables were obtained by questionnaire. 74.9% and 87.7% of women and children consumed water from the municipal network. Average fluoride levels in fluoridated water were 0.805 (SD: 0.194) mg/L during baseline recruitment and 0.843 (SD: 0.080) mg/L during follow up, at 4 years old of the children. Average and 95th percentile of fluoride intake were 0.015 and 0.026mg/kg per day in women and 0.033 and 0.059mg/kg per day in children. Considering only fluoride provided by drinking water, 8.71% of children living in fluoridated areas exceeded intake level recommended by the European Food Safety Authority, consisting in 0.05mg/kg per day. The results show that ingested levels of fluoride through consumption of municipal water can exceed the recommended levels in children and encourages further studies that will help in fluoridation policies of drinking water in the future. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    PubMed

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A Concurrent Exposure to Arsenic and Fluoride from Drinking Water in Chihuahua, Mexico

    PubMed Central

    González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Sánchez-Ramírez, Blanca; Ishida, María C.; Barrera-Hernández, Angel; Gutiérrez-Torres, Daniela; Zacarias, Olga L.; Saunders, R. Jesse; Drobná, Zuzana; Mendez, Michelle A.; García-Vargas, Gonzalo; Loomis, Dana; Stýblo, Miroslav; Del Razo, Luz M.

    2015-01-01

    Inorganic arsenic (iAs) and fluoride (F−) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F− in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F− concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F−/L. Urinary arsenic (U-tAs) and urinary F− (U-F−) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F−/mL. A strong positive correlation was found between iAs and F− concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F− concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F−, raising questions about possible contribution of F− exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F− exposures and its related health risks deserves immediate attention. PMID:25918912

  11. What's Wrong with the Tap? Examining Perceptions of Tap Water and Bottled Water at Purdue University

    NASA Astrophysics Data System (ADS)

    Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon

    2011-09-01

    The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates ( n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors—especially whether individuals trust tap water to be clean—but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.

  12. What's wrong with the tap? Examining perceptions of tap water and bottled water at Purdue University.

    PubMed

    Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon

    2011-09-01

    The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates (n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors-especially whether individuals trust tap water to be clean-but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.

  13. Regional Distribution of Longevity Population and Elements in Drinking Water in Jiangjin District, Chongqing City, China.

    PubMed

    Liu, Yonglin; Yuan, Yuyang; Luo, Kunli

    2017-10-25

    In order to determine the spatial variation of longevity population and elements contained in the drinking water of longevity region in Jiangjin and investigate the relationship between the elements in drinking water and longevity, population censuses on township level and 98 drinking water samples from Jiangjin District, Chongqing City in West China were collected and analyzed. Population statistics on township level showed that the number of centenarians per 100,000 inhabitants (OC), centenarity index (CI), and number of centenarians per 10,000 over 65-year-old subjects (UC) present obvious geographic distribution properties, generally Central region > Northern region > Southern region (Kruskal-Wallis test, p < 0.05). Moderate hard water (150 mg/L < total hardness (TH) = 156.17 mg/L < 300 mg/L) was mainly found in drinking water from longevity township (OC > 7.5) in Jiangjin District, whereas soft water (75 mg/L < TH = 111.23 mg/L < 150 mg/L) was mostly in non-longevity township (OC < 7.5). The mean concentration of strontium (Sr) (0.73 mg/L) in drinking water from the longevity township was apparently higher than that of non-longevity township (0.44 mg/L) (Mann-Whitney U test, p = 0.019 < 0.05). The concentrations of Ba, Li, Mn, Ni, and Se in drinking water from longevity township were also higher than those of non-longevity township (Mann-Whitney U test, p < 0.05). The research indicates that exercising strict control over the concentrations of TH, Sr, Ba, Li, Mn, Ni, and Se in drinking water might be good for the health and prolong people's life.

  14. Integrated risk assessment and screening analysis of drinking water safety of a conventional water supply system.

    PubMed

    Sun, F; Chen, J; Tong, Q; Zeng, S

    2007-01-01

    Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.

  15. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet

    PubMed Central

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-01

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity. PMID:28098768

  16. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    PubMed

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  17. Rural drinking water issues in India’s drought-prone area: a case of Maharashtra state

    NASA Astrophysics Data System (ADS)

    Udmale, Parmeshwar; Ichikawa, Yutaka; Nakamura, Takashi; Shaowei, Ning; Ishidaira, Hiroshi; Kazama, Futaba

    2016-07-01

    Obtaining sufficient drinking water with acceptable quality under circumstances of lack, such as droughts, is a challenge in drought-prone areas of India. This study examined rural drinking water availability issues during a recent drought (2012) through 22 focus group discussions (FGDs) in a drought-prone catchment of India. Also, a small chemical water quality study was undertaken to evaluate the suitability of water for drinking purpose based on Bureau of Indian Standards (BIS). The drought that began in 2011 and further deteriorated water supplies in 2012 caused a rapid decline in reservoir storages and groundwater levels that led, in turn, to the failure of the public water supply systems in the Upper Bhima Catchment. Dried up and low-yield dug wells and borewells, tanker water deliveries from remote sources, untimely water deliveries, and degraded water quality were the major problems identified in the FGDs. In addition to severe drinking water scarcity during drought, the quality of the drinking water was found to be a major problem, and it apparently was neglected by local governments and users. Severe contamination of the drinking water with nitrate-nitrogen, ammonium-nitrogen, and chlorides was found in the analyzed drinking water samples. Hence, in addition to the water scarcity, the results of this study point to an immediate need to investigate the problem of contaminated drinking water sources while designing relief measures for drought-prone areas of India.

  18. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    PubMed

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  19. The impact of aluminum, fluoride, and aluminum-fluoride complexes in drinking water on chronic kidney disease.

    PubMed

    Wasana, Hewa M S; Perera, Gamage D R K; De Gunawardena, Panduka S; Bandara, Jayasundera

    2015-07-01

    It is suspected that drinking water containing fluoride and aluminum results in negative health effects especially on brain, liver, and kidney. In this investigation, the effect of F, Al, and AlFx complex on chronic kidney disease (CKD) was investigated. Mice were treated either with WHO recommended or slightly higher F and Al levels in drinking water. Treatment solutions contained 0.05-10.0 mg/L of F, 0.08-10.0 mg/L of Al, or 0.07-15 mg/L of AlFx, and the treatment period was 42 weeks. Blood urea level and creatinine levels were investigated as a measure of malfunction of kidneys. Histopathological evaluations of kidney tissues were carried out to assess the extent of damage that F, Al, and AlFx complex could cause. It was demonstrated that the treated drinking water containing F and Al with par with WHO or moderately above the WHO levels or AlFx in low level (0.07-15 mg/L) does not lead to CKD in mice.

  20. The risk of cancer as a result of elevated levels of nitrate in drinking water and vegetables in Central India.

    PubMed

    Taneja, Pinky; Labhasetwar, Pawan; Nagarnaik, Pranav; Ensink, Jeroen H J

    2017-08-01

    The objective of the present study was to determine the effect of nitrates on the incidence of gastrointestinal (GI) cancer development. Nitrate converted to nitrite under reducing conditions of gut results in the formation of N-nitrosamines which are linked to an increased gastric cancer risk. A population of 234 individuals with 78 cases of GI cancer and 156 controls residing at urban and rural settings in Nagpur and Bhandara districts of India were studied for 2 years using a case-control study. A detailed survey of 16 predictor variables using Formhub software was carried out. Nitrate concentrations in vegetables and primary drinking water supplies were measured. The logistic regression model showed that nitrate was statistically significant in predicting increasing risk of cancer when potential confounders were kept at base level (P value of 0.001 nitrate in drinking water; 0.003 for nitrate in vegetable) at P < 0.01. Exposure to nitrate in drinking water at >45 mg/L level of nitrate was associated with a higher risk of GI cancers. Analysis suggests that nitrate concentration in drinking water was found statistically significant in predicting cancer risk with an odds ratio of 1.20.

  1. Drinking-water quality management: the Australian framework.

    PubMed

    Sinclair, Martha; Rizak, Samantha

    The most effective means of assuring drinking-water quality and the protection of public health is through adoption of a preventive management approach that encompasses all steps in water production from catchment to consumer. However, the reliance of current regulatory structures on compliance monitoring of treated water tends to promote a reactive management style where corrective actions are initiated after monitoring reveals that prescribed levels have been exceeded, and generally after consumers have received the noncomplying water. Unfortunately, the important limitations of treated water monitoring are often not appreciated, and there is a widespread tendency to assume that intensification of compliance monitoring or lowering of compliance limits is an effective strategy to improving the protection of public health. To address these issues and emphasize the role of preventive system management, the Australian National Health and Medical Research Council in collaboration with the Co-operative Research Centre for Water Quality and Treatment has developed a comprehensive quality management approach for drinking water. This Framework for Management of Drinking Water Quality will assist water suppliers in providing a higher level of assurance for drinking water quality and safety. The framework integrates quality and risk management principles, and provides a comprehensive, flexible, and proactive means of optimizing, drinking-water quality and protecting public health. It does not eliminate the requirement for compliance monitoring but allows it to be viewed in the proper perspective as providing verification that preventive measures are effective, rather than as the primary means of protecting public health.

  2. An upper-bound assessment of the benefits of reducing perchlorate in drinking water.

    PubMed

    Lutter, Randall

    2014-10-01

    The Environmental Protection Agency plans to issue new federal regulations to limit drinking water concentrations of perchlorate, which occurs naturally and results from the combustion of rocket fuel. This article presents an upper-bound estimate of the potential benefits of alternative maximum contaminant levels for perchlorate in drinking water. The results suggest that the economic benefits of reducing perchlorate concentrations in drinking water are likely to be low, i.e., under $2.9 million per year nationally, for several reasons. First, the prevalence of detectable perchlorate in public drinking water systems is low. Second, the population especially sensitive to effects of perchlorate, pregnant women who are moderately iodide deficient, represents a minority of all pregnant women. Third, and perhaps most importantly, reducing exposure to perchlorate in drinking water is a relatively ineffective way of increasing iodide uptake, a crucial step linking perchlorate to health effects of concern. © 2014 Society for Risk Analysis.

  3. Exposure of children to arsenic in drinking water in the Tharparkar region of Sindh, Pakistan.

    PubMed

    Brahman, Kapil Dev; Kazi, Tasneem Gul; Afridi, Hassan Imran; Baig, Jameel Ahmed; Arain, Sadaf Sadia; Talpur, Farah Naz; Kazi, Atif Gul; Ali, Jamshed; Panhwar, Abdul Haleem; Arain, Muhammad Balal

    2016-02-15

    Humans can be exposed to arsenic (As) through air, drinking water, and food. The aim of this study was to calculate the hazard quotient (HQ) of As, based on its concentration in drinking water and the scalp hair of children (males) belonging to two age groups (5-10 and 11-14 years) who consumed water contaminated with different concentrations of As. The water samples were collected from As-exposed and nonexposed areas, which were classified as low-exposed (LE), high-exposed (HE), and nonexposed (NE) areas. The total concentration of inorganic As (iAs) and its species (As(III) and As(V)) in water samples of all selected areas was determined by advanced extraction methods. For purposes of comparison, the total As level was also determined in all water samples. The resulting data indicated that the predominant inorganic As species in groundwater samples was arsenate (As(V)). The As concentrations in drinking water of LE and HE areas were found to be 2.6-230-fold higher than the permissible limit for drinking water established by the World Health Organization (2004). However, the As levels in drinking water of the NE area was within the permissible limit (<10 μg/L). The As levels in the scalp hair samples from boys of NE, LE, and HE areas ranged from 0.16 to 0.36, 0.36 to 0.83, and 11.5 to 31.9 mg/kg, respectively. A significant, positive correlation was observed between the As levels in drinking water and scalp hair samples of children from the HE area, compared with the other two groups (p>0.01). The As toxicity risk assessment based on HQ for the NE, LE, and HE areas corresponded to <10, ≥ 10, and >10, respectively. These HQ values indicated the noncarcinogenic, less carcinogenic, and highly carcinogenic exposure risks faced by children from the NE, LE, and HE areas, respectively. It can be concluded that children consuming the groundwater of the LE (Khairpur Mir's) and HE (Tharparkar) areas of Pakistan are at a potential risk of chronic As toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nanofiltration Membranes for Removal of Color and Pathogens in Small Public Drinking Water Sources

    EPA Science Inventory

    Small public water supplies that use surface water as a source for drinking water are frequently faced with elevated levels of color and natural organic matter (NOM) that are precursors for chlorinated disinfection byproduct (DBP) formation. Nanofiltration (NF) systems can preve...

  5. Particulate Arsenic Release in a Drinking Water Distribution System

    EPA Science Inventory

    Trace contaminants, such as arsenic, have been shown to accumulate in solids found in drinking water distribution systems. The obvious concern is that the contaminants in these solids could be released back into the water resulting in elevated levels in a consumer’s tap water. Th...

  6. Gastrointestinal upsets associated with ingestion of copper-contaminated water.

    PubMed Central

    Knobeloch, L; Ziarnik, M; Howard, J; Theis, B; Farmer, D; Anderson, H; Proctor, M

    1994-01-01

    During 1992 and 1993 the Wisconsin Division of Health investigated five cases in which copper-contaminated drinking water was suspected of causing gastrointestinal upsets. Each of these case studies was conducted after our office was notified of high copper levels in drinking water or notified of unexplained illnesses. Our findings suggest that drinking water that contains copper at levels above the federal action limit of 1.3 mg/l may be a relatively common cause of diarrhea, abdominal cramps, and nausea. These symptoms occurred most frequently in infants and young children and among resident of newly constructed or renovated homes. Images p958-a PMID:9738210

  7. Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada.

    PubMed

    Sultana, Tamanna; Murray, Craig; Kleywegt, Sonya; Metcalfe, Chris D

    2018-07-01

    Because of the persistence and solubility of neonicotinoid insecticides (NNIs), there is concern that these compounds may contaminate sources of drinking water. The objective of this project was to evaluate the distribution of NNIs in raw and treated drinking water from selected municipalities that draw their water from the lower Great Lakes in areas of southern Ontario, Canada where there is high intensity agriculture. Sites were monitored using Polar Organic Chemical Integrative Samplers (POCIS) and by collecting grab samples at six drinking water treatment plants. Thiamethoxam, clothianidin and imidacloprid were detected in both POCIS and grab samples of raw water. The frequency of detection of NNIs was much lower in treated drinking water, but some compounds were still detected at estimated concentrations in the low ng L -1 range. Thiamethoxam was detected in one grab sample of raw drinking water at a mean concentration of 0.28 μg L -1 , which is above the guidelines for drinking water recommended in some jurisdictions, including the European Union directive on pesticide levels <0.1 μg L -1 in water intended for human consumption. Further work is required to determine whether contamination of sources of drinking water with this class of insecticides is a global problem in agricultural regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effectiveness of the Preservation Protocol within the Environmental Protection Agency (EPA) Method 200.8 for Soluble and Particulate Lead Recovery in Drinking Water

    EPA Science Inventory

    Lead (Pb) is a toxic trace metal that is regulated in drinking water. The U.S. Environmental Protection Agency (USEPA) issued the Lead and Copper Rule (LCR), which defines the action level for lead at the tap as 0.015 mg/L. Researchers and drinking water utilities typically emplo...

  9. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    PubMed

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (P<0.0001) predictor of SumAs (R(2)=0.18). Associations improved (R(2)=0.29, P<0.0001) when individuals with less than 1 μg/l of arsenic in drinking water were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, P<0.0001). A separate analysis indicated that AsB and DMA[V] were significantly correlated with fish and shellfish consumption, which may suggest that seafood intake influences DMA[V] excretion. The Spearman correlation between arsenic concentration in toenails and SumAs was 0.36 and between arsenic concentration in toenails and arsenic concentration in water was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  10. Toxicological relevance of emerging contaminants for drinking water quality.

    PubMed

    Schriks, Merijn; Heringa, Minne B; van der Kooi, Margaretha M E; de Voogt, Pim; van Wezel, Annemarie P

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we derived provisional drinking water guideline values for a selection of 50 emerging contaminants relevant for drinking water and the water cycle. For only 10 contaminants, statutory guideline values were available. Provisional drinking water guideline values were based upon toxicological literature data. The maximum concentration levels reported in surface waters, groundwater and/or drinking water were compared to the (provisional) guideline values of the contaminants thus obtained, and expressed as Benchmark Quotient (BQ) values. We focused on occurrence data in the downstream parts of the Rhine and Meuse river basins. The results show that for the majority of compounds a substantial margin of safety exists between the maximum concentration in surface water, groundwater and/or drinking water and the (provisional) guideline value. The present assessment therefore supports the conclusion that the majority of the compounds evaluated pose individually no appreciable concern to human health. (c) 2009 Elsevier Ltd. All rights reserved.

  11. 40 CFR 141.60 - Effective dates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Effective dates. 141.60 Section 141.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking Water Regulations: Maximum Contaminant Levels...

  12. Environmental health risk assessment of nickel contamination of drinking water in a country town in NSW.

    PubMed

    Alam, Noore; Corbett, Stephen J; Ptolemy, Helen C

    2008-01-01

    To assess the health risks associated with consumption of drinking water with elevated nickel concentration in a NSW country town named Sampleton. We used enHealth Guidelines (2002) as our risk assessment tool. Laboratory test results for nickel in water samples were compared with the Australian Drinking Water Guidelines 2004 and the World Health Organization's (WHO) Guidelines for Drinking Water Quality 2005. The mean nickel concentration in the drinking water samples tested over a 4-year period (2002-2005) was 0.03 mg/L (95% CI: 0.02-0.04). The average daily consumption of two litres of water by a 70-kg adult provided 0.06 mg (0.03 mg x 2) of nickel, which was only 7% of the lowest observed adverse effect level (LOAEL) based on experiments on nickel-sensitive people in a fasting state. The mean nickel concentration in drinking water appears to have no health risks for the inhabitants of Sampleton.

  13. Effects of saline drinking water on early gosling development

    USGS Publications Warehouse

    Stolley, D.S.; Bissonette, J.A.; Kadlec, J.A.; Coster, D.

    1999-01-01

    Relatively high levels of saline drinking water may adversely affect the growth, development, and survival of young waterfowl. Saline drinking water was suspect in the low survival rate of Canada goose (Branta canadensis) goslings at Fish Springs National Wildlife Refuge (FSNWR) in western Utah. Hence, we investigated the effects of saline drinking water on the survival and growth of captive, wild-strain goslings from day 1-28 following hatch. We compared survival and growth (as measured by body mass, wing length, and culmen length) between a control group on tap water with a mean specific conductivity of 650 ??S/cm, and 2 saline water treatments: (1) intermediate level (12,000 ??S/cm), and (2) high level (18,000 ??S/cm). Gosling mortality occurred only in the 18,000 ??S/cm treatment group (33%; n = 9). Slopes of regressions of mean body mass, wing length, and culmen length on age were different from each other (P < 0.05), except for culmen length for the intermediate and high treatment levels. We predict that free-ranging wild goslings will experience mortality at even lower salinity levels than captive goslings because of the combined effects of depressed growth and environmental stresses, including hot desert temperatures and variable food quality over summer.

  14. Chemical, physical, and radiological quality of selected public water supplies in Florida, November 1977-February 1978

    USGS Publications Warehouse

    Irwin, G.A.; Hull, Robert W.

    1979-01-01

    Virtually all treated public water supplies sampled in Florida meet the National Interim Primary and Proposed Secondary Drinking Water Regulations. These findings are based on a water-quality reconnaissance of 129 treated public supplies throughout the State during the period November 1977 through February 1978. While primary drinking water regulation exceedences were infrequent, lead, selenium, and gross alpha radioactivity in a very few water supplies were above established maximum contaminant levels. Additionally, the secondary drinking water regulation parameters--dissolved solids , chloride, sulfate, iron, color, and pH--were occasionally detected in excess of the proposed Federal regulations. The secondary regulations, however, pertain mainly to the aesthetic quality of drinking water and not directly to public health aspects. (Woodard-USGS)

  15. Cardiovascular protection of deep-seawater drinking water in high-fat/cholesterol fed hamsters.

    PubMed

    Hsu, Chin-Lin; Chang, Yuan-Yen; Chiu, Chih-Hsien; Yang, Kuo-Tai; Wang, Yu; Fu, Shih-Guei; Chen, Yi-Chen

    2011-08-01

    Cardiovascular protection of deep-seawater (DSW) drinking water was assessed using high-fat/cholesterol-fed hamsters in this study. All hamsters were fed a high-fat/cholesterol diet (12% fat/0.2% cholesterol), and drinking solutions were normal distiled water (NDW, hardness: 2.48ppm), DSW300 (hardness: 324.5ppm), DSW900 (hardness: 858.5ppm), and DSW1500 (hardness: 1569.0ppm), respectively. After a 6-week feeding period, body weight, heart rates, and blood pressures of hamsters were not influenced by DSW drinking waters. Serum total cholesterol (TC), triacylglycerol (TAG), atherogenic index, and malondialdehyde (MDA) levels were decreased (p<0.05) in the DSW-drinking-water groups, as compared to those in the NDW group. Additionally, increased (p<0.05) serum Trolox equivalent antioxidant capacity (TEAC), and faecal TC, TAG, and bile acid outputs were measured in the DSW-drinking-water groups. Hepatic low-density-lipoprotein receptor (LDL receptor) and cholesterol-7α-hydroxylase (CYP7A1) gene expressions were upregulated (p<0.05) by DSW drinking waters. These results demonstrate that DSW drinking water benefits the attenuation of high-fat/cholesterol-diet-induced cardiovascular disorders in hamsters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. THE EFFECT OF FLUORIDE ON THE EFFECTIVENESS OF CONVENTIONAL COAGULATION/FLOCCULATION/SEDIMENTATION USING ALUMINUM SULFATE

    EPA Science Inventory

    The Safe Drinking Water Act states that no drinking water facility is reuqired to fluoridate their water, however, any facility fluoridating their water is bound by the Maximum contaminant Level (MCL) of 4 mg/L. A survey of 600 large water utilities was conducted in conjunction w...

  17. Minerals leached into drinking water from rubber stoppers.

    PubMed

    Kennedy, B W; Beal, T S

    1991-06-01

    Drinking water and its delivery system are potential sources of variation in animal research. Concern arose that rubber stoppers used to cork water bottles might be a source of some nutritionally required minerals which could leach into drinking water. Six types of stoppers, each having different compositions, were cleaned with stainless-steel sipper tubes inserted into them and attached to polypropylene bottles filled with either deionized water (pH 4.5) or acidified-deionized water (pH 2.5). After six days of contact, water levels of copper, magnesium, iron, manganese, zinc, chromium, and selenium were determined by atomic absorption spectroscopy. Additionally, three of the stopper types were analyzed for mineral content. Minerals were present in both stoppers and drinking water. Acidified-deionized water generally leached minerals from the stoppers than did deionized water. The black stopper which is commonly used in animal facilities contained and leached measurable levels of some minerals, but it still can be recommended for typical animal husbandry uses, although other types of stoppers would be more suitable for specific nutritional and toxicologic studies.

  18. Consuming untreated water in four southwestern Alaska Native communities: reasons revealed and recommendations for change.

    PubMed

    Ritter, Troy L; Lopez, Ellen D S; Goldberger, Rachel; Dobson, Jennifer; Hickel, Korie; Smith, Jeffrey; Johnson, Rhonda M; Bersamin, Andrea

    2014-12-01

    In this article, the authors provide the first in-depth account of why some Alaska Native people drink untreated water when treated water is available. Their qualitative research was conducted in four Alaska Native village communities that have treated water available from a centralized distribution point. Most respondents (n = 172; 82%) reported that some of their household's drinking water came from an untreated source. Motives for drinking untreated water emerged from analysis of open-ended questions about drinking water practice and could be categorized into six themes: chemicals, taste, health, access, tradition, and cost. Importantly, some residents reported consuming untreated water because they both liked untreated water and disliked treated water. As such, interventions to increase safe water consumption should address this dichotomy by providing education about the benefits of treated water alongside the risks involved with drinking untreated water. Based on the findings, the authors provide specific recommendations for developing behavior change interventions that address influences at multiple social-ecological levels.

  19. The effect of drinking water contaminated with perfluoroalkyl substances on a 10-year longitudinal trend of plasma levels in an elderly Uppsala cohort.

    PubMed

    Stubleski, Jordan; Salihovic, Samira; Lind, P Monica; Lind, Lars; Dunder, Linda; McCleaf, Philip; Eurén, Karin; Ahrens, Lutz; Svartengren, Magnus; van Bavel, Bert; Kärrman, Anna

    2017-11-01

    In 2012, drinking water contaminated with per- and polyfluoroalkyl substances (PFASs), foremost perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) at levels over 20ng/L and 40ng/L, respectively, was confirmed in Uppsala, Sweden. We assessed how a longitudinally sampled cohort's temporal trend in PFAS plasma concentration was influenced by their residential location and determined the plausible association or disparity between the PFASs detected in the drinking water and the trend in the study cohort. The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort provided plasma samples three times from 2001 to 2014. Individuals maintaining the same zip code throughout the study (n = 399) were divided into a reference (no known PFAS exposure), low, intermediate and high exposure area depending on the proportion of contaminated drinking water received. Eight PFASs detected in the majority (75%) of the cohort's plasma samples were evaluated for significant changes in temporal PFAS concentrations using a random effects (mixed) model. PFHxS plasma concentrations continued to significantly increase in individuals living in areas receiving the largest percentage of contaminated drinking water (p < 0.0001), while PFOS showed an overall decrease. The temporal trend of other PFAS plasma concentrations did not show an association to the quality of drinking water received. The distribution of contaminated drinking water had a direct effect on the trend in PFHxS plasma levels among the different exposure groups, resulting in increased concentrations over time, especially in the intermediate and high exposure areas. PFOS and the remaining PFASs did not show the same relationship, suggesting other sources of exposure influenced these PFAS plasma trends. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Concentration of Fluoride in Cow's and Buffalo's Milk in Relation to Varying Levels of Fluoride Concentration in Drinking Water of Mathura City in India- A Pilot Study.

    PubMed

    Gupta, Prahlad; Gupta, Nidhi; Meena, Komal; Moon, Ninad Joshirao; Kumar, Puneet; Kaur, Ravneet

    2015-05-01

    To estimate fluoride concentration in drinking water, cow's milk and buffalo's milk and to correlate the concentration of fluoride in cow's milk and buffalo's milk with varying levels of fluoride concentration in drinking water. Ten households having both cows and buffalo's were selected by convenience in each of the 3 zones (below optimum fluoride <0.7 ppm (parts per million), optimum fluoride 0.7-1.2 ppm and above optimum fluoride areas > 1.2 ppm). From these selected households, 200 ml of fresh milk of both cows and buffaloes was collected along with 200 ml of drinking water for estimation of fluoride concentration by using a fluoride ion selective electrode method. The data was analysed using SPSS, version 11.5 for windows. The mean fluoride concentration of drinking water, cow's milk and buffalo's milk in three different fluoride zones was 0.89±0.39, 0.09±0.07, 0.09±0.08 respectively. Pearson's correlation found a statistically significant correlation between fluoride concentrations in cow's and buffalo's milk with varying levels of fluoride concentration in drinking water in zone B and zone C. However, this correlation was not statistically significant in zone A. With an increase in fluoride concentration in drinking water there was an increase in concentration of fluoride in cow's and buffalo's milk. We conclude that this association is seen in conjunction to not only a single factor but rather due to culmination of several other aspects. So, there is a need to elucidate the other factors that might be contributing to this increase and dental fluorosis.

  1. Effects of drinking water monochloramine on lipid and thyroid metabolism in healthy men.

    PubMed Central

    Wones, R G; Deck, C C; Stadler, B; Roark, S; Hogg, E; Frohman, L A

    1993-01-01

    The purpose of this study was to determine whether a 4-week consumption of 1.5L per day of drinking water containing monochloramine at a concentration of 2 ppm (ppm = mg/L) or 15 ppm under controlled conditions would alter parameters of lipid or thyroid metabolism in healthy men. Forty-eight men completed an 8-week protocol during which diet (600 mg cholesterol per day, 40% calories as fat) and other factors known to affect lipid metabolism were controlled. During the first 4 weeks of the protocol, all subjects consumed distilled water. During the second 4 weeks, one-third of the subjects were assigned randomly to drink 1.5 L per day of water containing 2 ppm of monochloramine, to drink 1.5 L per day of water containing 15 ppm monochloramine, or to continue drinking distilled water. Four blood samples were collected from each subject at the end of each 4-week study period. Subjects drinking monochloramine at a concentration of 2 ppm showed no significant changes in total cholesterol, triglycerides, HDL cholesterol, LDL cholesterol, apolipoproteins A1, A2, or B when compared to the distilled water group. Parameters of thyroid function also were unchanged by exposure to monochloramine at this concentration. However, subjects drinking monochloramine at a concentration of 15 ppm experienced an increase in the level of apolipoprotein B. Other parameters of lipid and thyroid metabolism did not change. We conclude that consumption of drinking water containing 2 ppm of monochloramine does not alter parameters of lipid and thyroid metabolism in healthy men. Consumption of water containing 15 ppm monochloramine may be associated with increased levels of plasma apolipoprotein B. PMID:8319653

  2. Standard setting processes and regulations for environmental contaminants in drinking water: State versus federal needs and viewpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidhu, K.S.

    1991-06-01

    The primary objective of a standard setting process is to arrive at a drinking water concentration at which exposure to a contaminant would result in no known or potential adverse health effect on human health. The drinking water standards also serve as guidelines to prevent pollution of water sources and may be applicable in some cases as regulatory remediation levels. The risk assessment methods along with various decision making parameters are used to establish drinking water standards. For carcinogens classified in Groups A and B by the United States Environmental Protection Agency (USEPA) the standards are set by using nonthresholdmore » cancer risk models. The linearized multistage model is commonly used for computation of potency factors for carcinogenic contaminants. The acceptable excess risk level may vary from 10(-6) to 10(-4). For noncarcinogens, a threshold model approach based on application of an uncertainty factor is used to arrive at a reference dose (RfD). The RfD approach may also be used for carcinogens classified in Group C by the USEPA. The RfD approach with an additional uncertainty factory of 10 for carcinogenicity has been applied in the formulation of risk assessment for Group C carcinogens. The assumptions commonly used in arriving at drinking water standards are human life expectancy, 70 years; average human body weight, 70 kg; human daily drinking water consumption, 2 liters; and contribution of exposure to the contaminant from drinking water (expressed as a part of the total environmental exposure), 20%. Currently, there are over 80 USEPA existing or proposed primary standards for organic and inorganic contaminants in drinking water. Some of the state versus federal needs and viewpoints are discussed.« less

  3. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    NASA Astrophysics Data System (ADS)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied in order to reduce health risks.

  4. Variation of levels and distribution of N-nitrosamines in different seasons in drinking waters of East China.

    PubMed

    Li, Ting; Yu, Dian; Xian, Qiming; Li, Aimin; Sun, Cheng

    2015-08-01

    We surveyed the occurrence of nine N-nitrosamine species in ten bottled drinking waters from supermarket and other water samples including raw waters, finished waters, and distribution system waters from nine municipal drinking water treatment plants in eight cities of Jiangsu Province, East China. N-nitrosodimethylamine (NDMA) was detected in one of ten bottled drinking water samples at concentration of 4.8 ng/L and N-nitrosomorpholine (NMor) was detected in four of the ten bottles with an average concentration and a standard deviation of 16 ± 15 ng/L. The levels of nitrosamines in the distribution system water samples collected during summer season ranged from below detection limit (BDL) to 5.4 ng/L for NDMA, BDL to 9.5 ng/L for N-nitrosomethylethylamine (NMEA), BDL to 2.7 ng/L for N-nitrosodiethylamine (NDEA) and BDL to 8.5 ng/L for N-nitrosopyrrolidine (NPyr). Samples of distribution system waters collected in winter season had levels of nitrosamines ranged from BDL to 45 ng/L for NDMA, BDL to 5.2 ng/L for NPyr, and BDL to 309 ng/L for N-nitrosopiperidine (NPip). A positive correlation of the concentration of NDMA as well as the total nine N-nitrosamines between finished waters and distribution system waters was observed. Both dissolved organic carbon and nitrite were found to correlate linearly with N-nitrosamine levels in raw waters.

  5. Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada).

    PubMed

    Ochoo, Benjamin; Valcour, James; Sarkar, Atanu

    2017-11-01

    Studying public perception on drinking water quality is crucial for managing of water resources, generation of water quality standards, and surveillance of the drinking-water quality. However, in policy discourse, the reliability of public perception concerning drinking water quality and associated health risks is questionable. Does the public perception of water quality equate with the actual water quality? We investigated public perceptions of water quality and the perceived health risks and associated with the actual quality of public water supplies in the same communities. The study was conducted in 45 communities of Newfoundland (Canada) in 2012. First, a telephone survey of 100 households was conducted to examine public perceptions of drinking water quality of their respective public sources. Then we extracted public water quality reports of the same communities (1988-2011) from the provincial government's water resources portal. These reports contained the analysis of 2091 water samples, including levels of Disinfection By-Products (DBPs), nutrients, metals, ions and physical parameters. The reports showed that colour, manganese, total dissolved solids, iron, turbidity, and DBPs were the major detected parameters in the public water. However, the majority of the respondents (>56%) were either completely satisfied or very satisfied with the quality of drinking water. Older, higher educated and high-income group respondents were more satisfied with water quality than the younger, less educated and low-income group respondents. The study showed that there was no association with public satisfaction level and actual water quality of the respective communities. Even, in the communities, supplied by the same water system, the respondents had differences in opinion. Despite the effort by the provincial government to make the water-test results available on its website for years, the study showed existing disconnectedness between public perception of drinking water quality and actual quality. We had little scope to explore the possible explanations, and hence further studies are required to verify the age, gender educational status and income differential about the satisfaction of public service like water supply. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Infantile methemoglobinemia: reexamining the role of drinking water nitrates.

    PubMed

    Avery, A A

    1999-07-01

    Ingestion of nitrates in drinking water has long been thought to be a primary cause of acquired infantile methemoglobinemia, often called blue baby syndrome. However, recent research and a review of historical cases offer a more complex picture of the causes of infantile methemoglobinemia. Gastrointestinal infection and inflammation and the ensuing overproduction of nitric oxide may be the cause of many cases of infantile methemoglobinemia previously attributed to drinking water nitrates. If so, current limits on allowable levels of nitrates in drinking water, which are based solely on the health threat of infantile methemoglobinemia, may be unnecessarily strict.

  7. Does Global Progress on Sanitation Really Lag behind Water? An Analysis of Global Progress on Community- and Household-Level Access to Safe Water and Sanitation

    PubMed Central

    Cumming, Oliver; Elliott, Mark; Overbo, Alycia; Bartram, Jamie

    2014-01-01

    Safe drinking water and sanitation are important determinants of human health and wellbeing and have recently been declared human rights by the international community. Increased access to both were included in the Millennium Development Goals under a single dedicated target for 2015. This target was reached in 2010 for water but sanitation will fall short; however, there is an important difference in the benchmarks used for assessing global access. For drinking water the benchmark is community-level access whilst for sanitation it is household-level access, so a pit latrine shared between households does not count toward the Millennium Development Goal (MDG) target. We estimated global progress for water and sanitation under two scenarios: with equivalent household- and community-level benchmarks. Our results demonstrate that the “sanitation deficit” is apparent only when household-level sanitation access is contrasted with community-level water access. When equivalent benchmarks are used for water and sanitation, the global deficit is as great for water as it is for sanitation, and sanitation progress in the MDG-period (1990–2015) outstrips that in water. As both drinking water and sanitation access yield greater benefits at the household-level than at the community-level, we conclude that any post–2015 goals should consider a household-level benchmark for both. PMID:25502659

  8. Does global progress on sanitation really lag behind water? An analysis of global progress on community- and household-level access to safe water and sanitation.

    PubMed

    Cumming, Oliver; Elliott, Mark; Overbo, Alycia; Bartram, Jamie

    2014-01-01

    Safe drinking water and sanitation are important determinants of human health and wellbeing and have recently been declared human rights by the international community. Increased access to both were included in the Millennium Development Goals under a single dedicated target for 2015. This target was reached in 2010 for water but sanitation will fall short; however, there is an important difference in the benchmarks used for assessing global access. For drinking water the benchmark is community-level access whilst for sanitation it is household-level access, so a pit latrine shared between households does not count toward the Millennium Development Goal (MDG) target. We estimated global progress for water and sanitation under two scenarios: with equivalent household- and community-level benchmarks. Our results demonstrate that the "sanitation deficit" is apparent only when household-level sanitation access is contrasted with community-level water access. When equivalent benchmarks are used for water and sanitation, the global deficit is as great for water as it is for sanitation, and sanitation progress in the MDG-period (1990-2015) outstrips that in water. As both drinking water and sanitation access yield greater benefits at the household-level than at the community-level, we conclude that any post-2015 goals should consider a household-level benchmark for both.

  9. Exposure to low-dose barium by drinking water causes hearing loss in mice.

    PubMed

    Ohgami, Nobutaka; Hori, Sohjiro; Ohgami, Kyoko; Tamura, Haruka; Tsuzuki, Toyonori; Ohnuma, Shoko; Kato, Masashi

    2012-10-01

    We continuously ingest barium as a general element by drinking water and foods in our daily life. Exposure to high-dose barium (>100mg/kg/day) has been shown to cause physiological impairments. Direct administration of barium to inner ears by vascular perfusion has been shown to cause physiological impairments in inner ears. However, the toxic influence of oral exposure to low-dose barium on hearing levels has not been clarified in vivo. We analyzed the toxic influence of oral exposure to low-dose barium on hearing levels and inner ears in mice. We orally administered barium at low doses of 0.14 and 1.4 mg/kg/day to wild-type ICR mice by drinking water. The doses are equivalent to and 10-fold higher than the limit level (0.7 mg/l) of WHO health-based guidelines for drinking water, respectively. After 2-week exposure, hearing levels were measured by auditory brain stem responses and inner ears were morphologically analyzed. After 2-month exposure, tissue distribution of barium was measured by inductively coupled plasma mass spectrometry. Low-dose barium in drinking water caused severe hearing loss in mice. Inner ears including inner and outer hair cells, stria vascularis and spiral ganglion neurons showed severe degeneration. The Barium-administered group showed significantly higher levels of barium in inner ears than those in the control group, while barium levels in bone did not show a significant difference between the two groups. Barium levels in other tissues including the cerebrum, cerebellum, heart, liver and kidney were undetectably low in both groups. Our results demonstrate for the first time that low-dose barium administered by drinking water specifically distributes to inner ears resulting in severe ototoxicity with degeneration of inner ears in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Measuring sporadic gastrointestinal illness associated with drinking water - an overview of methodologies.

    PubMed

    Bylund, John; Toljander, Jonas; Lysén, Maria; Rasti, Niloofar; Engqvist, Jannes; Simonsson, Magnus

    2017-06-01

    There is an increasing awareness that drinking water contributes to sporadic gastrointestinal illness (GI) in high income countries of the northern hemisphere. A literature search was conducted in order to review: (1) methods used for investigating the effects of public drinking water on GI; (2) evidence of possible dose-response relationship between sporadic GI and drinking water consumption; and (3) association between sporadic GI and factors affecting drinking water quality. Seventy-four articles were selected, key findings and information gaps were identified. In-home intervention studies have only been conducted in areas using surface water sources and intervention studies in communities supplied by ground water are therefore needed. Community-wide intervention studies may constitute a cost-effective alternative to in-home intervention studies. Proxy data that correlate with GI in the community can be used for detecting changes in the incidence of GI. Proxy data can, however, not be used for measuring the prevalence of illness. Local conditions affecting water safety may vary greatly, making direct comparisons between studies difficult unless sufficient knowledge about these conditions is acquired. Drinking water in high-income countries contributes to endemic levels of GI and there are public health benefits for further improvements of drinking water safety.

  11. LABORATORY ANALYSIS FOR ARSENIC IN DRINKING WATER SAMPLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) has established maximum contaminant levels ( MCLs ), for many inorganic contaminants found in drinking water, to protect the health of consumers. Some of these chemicals occur naturally in source waters while some are the result o...

  12. Drinking water systems, hydrology, and childhood gastrointestinal illness in central and northern Wisconsin

    USDA-ARS?s Scientific Manuscript database

    Background: Current United States drinking water regulations create areas with different levels of water quality. Municipalities accessing untreated groundwater and households with unmonitored private wells may be at increased risk for acquiring waterborne disease. Objectives: The study investigat...

  13. REMOVAL OF ALACHLOR FROM DRINKING WATER

    EPA Science Inventory

    Alachlor (Lasso) is a pre-emergent herbicide used in the production of corn and soybeans. U.S. EPA has studied control of alachlor in drinking water treatment processes to define treatability before setting maximum contaminant levels and to assist water utilities in selecting con...

  14. Drinking Water in Transition: A Multilevel Cross-sectional Analysis of Sachet Water Consumption in Accra.

    PubMed

    Stoler, Justin; Weeks, John R; Appiah Otoo, Richard

    2013-01-01

    Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water-sealed single-use plastic sleeves-has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa.

  15. Drinking Water State Revolving Fund National Information Management System Reports

    EPA Pesticide Factsheets

    The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for the program at both the State and National level.

  16. Association between Longevity and Element Levels in Food and Drinking Water of Typical Chinese Longevity Area.

    PubMed

    Hao, Z; Liu, Y; Li, Y; Song, W; Yu, J; Li, H; Wang, W

    2016-01-01

    To carrying out an integrated analysis on regional environment and human health in China and to detect the association between longevity and daily element intake from food and drinking water. Cross-sectional study. All the 18 cities and counties in Hainan Province. The distribution of elderly population and longevity indexes at a county level in Hainan Province were investigated. Quality of food and drinking water in Hainan was evaluated by comparing the chemical elements with National Standards. In addition, the association between element concentrations in food and water and longevity was examined using spearman's rank correlation. The proportion of elderly people is higher in the northern part of the province compared with southern counties. Food contributes a greater proportion of daily element intake than drinking water. Compared with the National Standards, reaching rates for elements were over 85% for both food and drinking water. There was a positive correlation between daily intake of Cu, Se, and Zn from food and water and aging and longevity indexes, and a negative correlation between Pb intake and these indexes. The quality of food and water in Hainan Province are good and that, compared with water, food is a more important source of trace elements. An appropriate supply of Cu, Se, and Zn is important, whereas excessive intake of Pb should be avoided. The findings also provide basic data to support further studies on regional variations in longevity and their relationship to diet and drinking water.

  17. Fault tree analysis for integrated and probabilistic risk analysis of drinking water systems.

    PubMed

    Lindhe, Andreas; Rosén, Lars; Norberg, Tommy; Bergstedt, Olof

    2009-04-01

    Drinking water systems are vulnerable and subject to a wide range of risks. To avoid sub-optimisation of risk-reduction options, risk analyses need to include the entire drinking water system, from source to tap. Such an integrated approach demands tools that are able to model interactions between different events. Fault tree analysis is a risk estimation tool with the ability to model interactions between events. Using fault tree analysis on an integrated level, a probabilistic risk analysis of a large drinking water system in Sweden was carried out. The primary aims of the study were: (1) to develop a method for integrated and probabilistic risk analysis of entire drinking water systems; and (2) to evaluate the applicability of Customer Minutes Lost (CML) as a measure of risk. The analysis included situations where no water is delivered to the consumer (quantity failure) and situations where water is delivered but does not comply with water quality standards (quality failure). Hard data as well as expert judgements were used to estimate probabilities of events and uncertainties in the estimates. The calculations were performed using Monte Carlo simulations. CML is shown to be a useful measure of risks associated with drinking water systems. The method presented provides information on risk levels, probabilities of failure, failure rates and downtimes of the system. This information is available for the entire system as well as its different sub-systems. Furthermore, the method enables comparison of the results with performance targets and acceptable levels of risk. The method thus facilitates integrated risk analysis and consequently helps decision-makers to minimise sub-optimisation of risk-reduction options.

  18. High Content of Lead Is Associated with the Softness of Drinking Water and Raised Cardiovascular Morbidity: A Review.

    PubMed

    Bjørklund, Geir; Dadar, Maryam; Chirumbolo, Salvatore; Aaseth, Jan

    2018-04-14

    Daily ingestion of lead (Pb), even through piped drinking water, has long time been an important issue of concern, attracting for decades research in environmental science and toxicology, and again comes to prominence because of recent high-profile cases of exposure of populations in several countries to Pb-contaminated water. Numerous studies have reported an association between Pb in water and the risk of cardiovascular pathologies. Low levels of magnesium and calcium, i.e., low degree of hardness of the drinking water, may accentuate Pb leaching from water pipes and furthermore increase Pb absorption. This review evaluates the evidence for an association between Pb exposure from drinking water and cardiovascular end points in human populations.

  19. Measurement of (222)Rn concentration levels in drinking water and the associated health effects in the Southern part of West Bank - Palestine.

    PubMed

    Thabayneh, Khalil M

    2015-09-01

    Radon concentration and annual effective doses were measured in drinking water in the Southern Part of West Bank - Palestine, by using both passive and active techniques. 184 samples were collected from various sources i.e. tap water, groundwater, rain waters and mineral waters. It is found that the annual effective dose resulting from inhalation and ingestion of radon emanated from all types of drinking water is negligible compared to the total annual effective dose from indoor radon in the region. Results reveal that there is no significant public health risk from radon ingested and inhalation with drinking water in the study region. Copyright © 2015. Published by Elsevier Ltd.

  20. Global assessment of exposure to faecal contamination through drinking water based on a systematic review.

    PubMed

    Bain, Robert; Cronk, Ryan; Hossain, Rifat; Bonjour, Sophie; Onda, Kyle; Wright, Jim; Yang, Hong; Slaymaker, Tom; Hunter, Paul; Prüss-Ustün, Annette; Bartram, Jamie

    2014-08-01

    To estimate exposure to faecal contamination through drinking water as indicated by levels of Escherichia coli (E. coli) or thermotolerant coliform (TTC) in water sources. We estimated coverage of different types of drinking water source based on household surveys and censuses using multilevel modelling. Coverage data were combined with water quality studies that assessed E. coli or TTC including those identified by a systematic review (n = 345). Predictive models for the presence and level of contamination of drinking water sources were developed using random effects logistic regression and selected covariates. We assessed sensitivity of estimated exposure to study quality, indicator bacteria and separately considered nationally randomised surveys. We estimate that 1.8 billion people globally use a source of drinking water which suffers from faecal contamination, of these 1.1 billion drink water that is of at least 'moderate' risk (>10 E. coli or TTC per 100 ml). Data from nationally randomised studies suggest that 10% of improved sources may be 'high' risk, containing at least 100 E. coli or TTC per 100 ml. Drinking water is found to be more often contaminated in rural areas (41%, CI: 31%-51%) than in urban areas (12%, CI: 8-18%), and contamination is most prevalent in Africa (53%, CI: 42%-63%) and South-East Asia (35%, CI: 24%-45%). Estimates were not sensitive to the exclusion of low quality studies or restriction to studies reporting E. coli. Microbial contamination is widespread and affects all water source types, including piped supplies. Global burden of disease estimates may have substantially understated the disease burden associated with inadequate water services. © 2014 The Authors. Tropical Medicine and International Health published by John Wiley & Sons Ltd.

  1. Global assessment of exposure to faecal contamination through drinking water based on a systematic review

    PubMed Central

    Bain, Robert; Cronk, Ryan; Hossain, Rifat; Bonjour, Sophie; Onda, Kyle; Wright, Jim; Yang, Hong; Slaymaker, Tom; Hunter, Paul; Prüss-Ustün, Annette; Bartram, Jamie

    2014-01-01

    Objectives To estimate exposure to faecal contamination through drinking water as indicated by levels of Escherichia coli (E. coli) or thermotolerant coliform (TTC) in water sources. Methods We estimated coverage of different types of drinking water source based on household surveys and censuses using multilevel modelling. Coverage data were combined with water quality studies that assessed E. coli or TTC including those identified by a systematic review (n = 345). Predictive models for the presence and level of contamination of drinking water sources were developed using random effects logistic regression and selected covariates. We assessed sensitivity of estimated exposure to study quality, indicator bacteria and separately considered nationally randomised surveys. Results We estimate that 1.8 billion people globally use a source of drinking water which suffers from faecal contamination, of these 1.1 billion drink water that is of at least ‘moderate’ risk (>10 E. coli or TTC per 100 ml). Data from nationally randomised studies suggest that 10% of improved sources may be ‘high’ risk, containing at least 100 E. coli or TTC per 100 ml. Drinking water is found to be more often contaminated in rural areas (41%, CI: 31%–51%) than in urban areas (12%, CI: 8–18%), and contamination is most prevalent in Africa (53%, CI: 42%–63%) and South-East Asia (35%, CI: 24%–45%). Estimates were not sensitive to the exclusion of low quality studies or restriction to studies reporting E. coli. Conclusions Microbial contamination is widespread and affects all water source types, including piped supplies. Global burden of disease estimates may have substantially understated the disease burden associated with inadequate water services. PMID:24811893

  2. Impact of Past Land Use Changes on Drinking Water Quantity and Quality in Ljubljana Aquifer

    NASA Astrophysics Data System (ADS)

    Bracic Zeleznik, Branka; Cencur Curk, Barbara

    2010-05-01

    Most of the practical problems that we face today with the on-site management of drinking water sources and distribution of healthy drinking water, originate from past actions, interventions and political decisions. In Ljubljana, the capital of the Republic of Slovenia, underlying groundwater is the main drinking water source. The main threat to drinking water sources is constant input of pollutant loads from roads, roofs, sewers, industry and agricultural areas. The main problems are directly and indirectly related to the significant decrease of groundwater level and deterioration of groundwater quality observed in the last decades as an effect of land use practices under varying climate conditions. The Vodovod-Kanalizacija Public Utility is responsible for water supply of the city residents as well as for management of the water supply system, its surveillance and maintenance. In the past, the Ljubljana Municipality was responsible for the protection of water resources and the first delineation of groundwater protection areas was issued in Decree in 1955. In 2004 a Decree on the water protection zones for the aquifer of Ljubljansko polje on the state level was issued and passed the competences of proclamation of the water protection zones to the state. Spatial planning is a domain of The Municipality and land use is limited according to water protection legislation. For several observation wells long-time data sets about groundwater levels and quality are available, which enable us to analyse changes in groundwater quantity and quality parameters. From the data it is obvious that climate variations are affecting groundwater recharge. In addition, changing of land use affects groundwater quality. In spite of the Decree on the water protection there is a heavy pressure of investors to change land use plans and regulations on protection zones, which causes every day problems in managing the drinking water source. Groundwater management in Ljubljana demands strong and effective co-operation between state, municipality, public water supply company and consumers.

  3. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices has also been investigated.

  4. [Arsenic levels in drinking water supplies from underground sources in the community of Madrid].

    PubMed

    Aragonés Sanz, N; Palacios Diez, M; Avello de Miguel, A; Gómez Rodríguez, P; Martínez Cortés, M; Rodríguez Bernabeu, M J

    2001-01-01

    In 1998, arsenic concentrations of more than 50 micrograms/l were detected in some drinking water supplies from underground sources in the Autonomous Community of Madrid, which is the maximum permissible concentration for drinking water in Spain. These two facts have meant the getting under way of a specific plan for monitoring arsenic in the drinking water in the Autonomous Community of Madrid. The results of the first two sampling processes conducted in the arsenic level monitoring plan set out are presented. In the initial phase, water samples from 353 water supplies comprised within the census of the Public Health Administration of the Autonomous Community of Madrid were analyzed. A water supply risk classification was made based on these initial results. In a second phase, six months later, the analyses were repeated on those 35 water supplies which were considered to possibly pose a risk to public health. Seventy-four percent (74%) of the water supplies studied in the initial phase were revealed to have an arsenic concentration of less than 10 micrograms/l, 22.6% containing levels of 10 micrograms/l-50 micrograms/l, and 3.7% over 50 micrograms/l. Most of the water supplies showing arsenic levels of more than 10 micrograms/l are located in the same geographical area. In the second sampling process (six months later), the 35 water supplies classified as posing a risk were included. Twenty-six (26) of these supplies were revealed to have the same arsenic level ((10-50 micrograms/l), and nine changed category, six of which had less than 10 micrograms/l and three more than 50 micrograms/l. In the Autonomous Community of Madrid, less than 2% of the population drinks water coming from supplies which are from underground sources. The regular water quality monitoring conducted by the Public Health Administration has led to detecting the presence of more than 50 micrograms/l of arsenic in sixteen drinking water supplies from underground sources, which is the maximum permissible level under the laws currently in force in Spain. Measures have been taken to prevent water from being used from these water supplies. Around 20% of the water supplies studies must take measures in the near future to lower the arsenic concentration to below 10 micrograms/l when the water directive which is currently in the process of being written into Spanish law enters into effect.

  5. Simple and sensitive determination of hydrazine in drinking water by ultra-high-performance liquid chromatography-tandem mass spectrometry after derivatization with naphthalene-2,3-dialdehyde.

    PubMed

    Oh, Jin-Aa; Shin, Ho-Sang

    2015-05-22

    An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to determine the level of hydrazine in drinking water. The method is based on the derivatization of hydrazine with naphthalene-2,3-dicarboxaldehyde (NDA) in water. The optimum conditions for UPLC-MS/MS detection were determined as follows: derivatization reagent dosage, 50mg/L of NDA; pH 2; and reaction time, 1min; room temperature. The formed derivative was injected into an LC system without extraction or purification procedures. Under the established conditions, the method was used to detect hydrazine in raw drinking water and chlorinated drinking water. The limits of detection and quantification for hydrazine in drinking water were 0.003μg/L and 0.01μg/L, respectively. The accuracy was in the range of 97-104%, and precision, expressed as relative standard deviation, was less than 9% in drinking water. Hydrazine was detected at a concentration of 0.13μg/L in one sample among 24 raw drinking water samples and in a range of 0.04-0.45μg/L in three samples among 24 chlorinated drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dental fluorosis in populations from Chiang Mai, Thailand with different fluoride exposures – Paper 1: assessing fluorosis risk, predictors of fluorosis and the potential role of food preparation

    PubMed Central

    2012-01-01

    Background To determine the severity of dental fluorosis in selected populations in Chiang Mai, Thailand with different exposures to fluoride and to explore possible risk indicators for dental fluorosis. Methods Subjects were male and female lifetime residents aged 8–13 years. For each child the fluoride content of drinking and cooking water samples were assessed. Digital images were taken of the maxillary central incisors for later blind scoring for TF index (10% repeat scores). Interview data explored previous cooking and drinking water use, exposure to fluoride, infant feeding patterns and oral hygiene practices. Results Data from 560 subjects were available for analysis (298 M, 262 F). A weighted kappa of 0.80 was obtained for repeat photographic scores. The prevalence of fluorosis (TF 3+) for subjects consuming drinking and cooking water with a fluoride concentration of <0.9 ppm was 10.2%. For subjects consuming drinking and cooking water >0.9 ppm F the prevalence of fluorosis (TF 3+) rose to 37.3%. Drinking and cooking water at age 3, water used for infant formula and water used for preparing infant food all demonstrated an increase in fluorosis severity with increase in water fluoride level (p < 0.001). The probability estimate for the presentation of aesthetically significant fluorosis was 0.53 for exposure to high fluoride drinking (≥0.9 ppm) and cooking water (≥1.6 ppm). Conclusions The consumption of drinking water with fluoride content >0.9 ppm and use of cooking water with fluoride content >1.6 ppm were associated with an increased risk of aesthetically significant dental fluorosis. Fluoride levels in the current drinking and cooking water sources were strongly correlated with fluorosis severity. Further work is needed to explore fluorosis risk in relation to total fluoride intake from all sources including food preparation. PMID:22720834

  7. Dental fluorosis in populations from Chiang Mai, Thailand with different fluoride exposures - paper 1: assessing fluorosis risk, predictors of fluorosis and the potential role of food preparation.

    PubMed

    McGrady, Michael G; Ellwood, Roger P; Srisilapanan, Patcharawan; Korwanich, Narumanas; Worthington, Helen V; Pretty, Iain A

    2012-06-21

    To determine the severity of dental fluorosis in selected populations in Chiang Mai, Thailand with different exposures to fluoride and to explore possible risk indicators for dental fluorosis. Subjects were male and female lifetime residents aged 8-13 years. For each child the fluoride content of drinking and cooking water samples were assessed. Digital images were taken of the maxillary central incisors for later blind scoring for TF index (10% repeat scores). Interview data explored previous cooking and drinking water use, exposure to fluoride, infant feeding patterns and oral hygiene practices. Data from 560 subjects were available for analysis (298 M, 262 F). A weighted kappa of 0.80 was obtained for repeat photographic scores. The prevalence of fluorosis (TF 3+) for subjects consuming drinking and cooking water with a fluoride concentration of <0.9 ppm was 10.2%. For subjects consuming drinking and cooking water >0.9 ppm F the prevalence of fluorosis (TF 3+) rose to 37.3%. Drinking and cooking water at age 3, water used for infant formula and water used for preparing infant food all demonstrated an increase in fluorosis severity with increase in water fluoride level (p < 0.001). The probability estimate for the presentation of aesthetically significant fluorosis was 0.53 for exposure to high fluoride drinking (≥0.9 ppm) and cooking water (≥1.6 ppm). The consumption of drinking water with fluoride content >0.9 ppm and use of cooking water with fluoride content >1.6 ppm were associated with an increased risk of aesthetically significant dental fluorosis. Fluoride levels in the current drinking and cooking water sources were strongly correlated with fluorosis severity. Further work is needed to explore fluorosis risk in relation to total fluoride intake from all sources including food preparation.

  8. Peer Review of Report Modeling the Relationship Between Lead in Drinking Water and Blood Lead Levels in Children

    EPA Science Inventory

    EPA is peer reviewing the Agency’s report modeling the relationship between lead in drinking water and blood lead levels in children utilizing the Integrated Exposure Uptake Biokinetic (IEUBK) model. The report being peer reviewed may be used to inform the derivation of a concent...

  9. Exposure to arsenic at levels found inU.S. drinking water modifies expression in the mouse lung.

    PubMed

    Andrew, Angeline S; Bernardo, Viviane; Warnke, Linda A; Davey, Jennifer C; Hampton, Thomas; Mason, Rebecca A; Thorpe, Jessica E; Ihnat, Michael A; Hamilton, Joshua W

    2007-11-01

    The mechanisms of action of drinking water arsenic in the lung and the threshold for biologic effects remain controversial. Our study utilizes Affymetrix 22,690 transcript oligonucleotide microarrays to assess the long-term effects of increasing doses of drinking water arsenic on expression levels in the mouse lung. Mice were exposed at levels commonly found in contaminated drinking water wells in the United States (0, 0.1, 1 ppb), as well as the 50 ppb former maximum contaminant level, for 5 weeks. The expression profiles revealed modification of a number of important signaling pathways, many with corroborating evidence of arsenic responsiveness. We observed statistically significant expression changes for transcripts involved in angiogenesis, lipid metabolism, oxygen transport, apoptosis, cell cycle, and immune response. Validation by reverse transcription-PCR and immunoblot assays confirmed expression changes for a subset of transcripts. These data identify arsenic-modified signaling pathways that will help guide investigations into mechanisms of arsenic's health effects and clarify the threshold for biologic effects and potential disease risk.

  10. IDENTIFICATION OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS FORMED IN THE PRESENCE OF BROMIDE

    EPA Science Inventory

    Using a combination of mass spectrometry and infrared spectroscopy, disinfection by-products (DBPs) were identified in ozonated drinking water containing elevated bromide levels, and in ozonated water treated with secondary chlorine or chloramine. Only one brominated by-product-d...

  11. Cations and anions in drinking water as putative contributory factors to endemic goitre in Plateau State, Nigeria.

    PubMed

    Das, S C; Isichei, U P; Egbuta, J O; Banwo, A I

    1989-10-01

    The prevalence of endemic goitre in Plateau State, Nigeria was established and an attempt was made to identify some of the possible environmental goitrogenic agents in the region to establish their likely relationship with the goitre endemicity. Iodine deficiency appears to be a major aetiological factor for the disease as indicated by low iodine levels observed in portable drinking water and in daily urinary excretion. The carbonate (CO3-) content of drinking water supply was found to bear a significant positive correlation with the goitre rate for the entire state (p less than 0.005). The calcium (Ca++) and magnesium (Mg++) levels of the drinking water also exhibited relatively good linear direct correlations with the percentage goitre distribution in a region, nearly 2/3 of the state. It is concluded that there is possibly an interplay of several factors and in particular the carbonate content of drinking water which, in association with a state of iodine deficiency, may be regarded as responsible for the goitre endemic seen in this part of the Continental Africa.

  12. Manganese in Madison's drinking water.

    PubMed

    Schlenker, Thomas; Hausbeck, John; Sorsa, Kirsti

    2008-12-01

    Public concern over events of manganese-discolored drinking water and the potential for adverse health effects from exposure to excess manganese reached a high level in 2005. In response, Public Health Madison Dane County, together with the Madison Water Utility, conceived and implemented a public health/water utility strategy to quantify the extent of the manganese problem, determine the potential for adverse human health effects, and communicate these findings to the community. This strategy included five basic parts: taking an inventory of wells and their manganese levels, correlating manganese concentration with turbidity, determining the prevalence and distribution of excess manganese in Madison households, reviewing the available scientific literature, and effectively communicating our findings to the community. The year-long public health/water utility strategy successfully resolved the crisis of confidence in the safety of Madison's drinking water.

  13. Comparison of the Mineral Content of Tap Water and Bottled Waters

    PubMed Central

    Azoulay, Arik; Garzon, Philippe; Eisenberg, Mark J

    2001-01-01

    OBJECTIVES Because of growing concern that constituents of drinking water may have adverse health effects, consumption of tap water in North America has decreased and consumption of bottled water has increased. Our objectives were to 1) determine whether North American tap water contains clinically important levels of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) and 2) determine whether differences in mineral content of tap water and commercially available bottled waters are clinically important. DESIGN We obtained mineral analysis reports from municipal water authorities of 21 major North American cities. Mineral content of tap water was compared with published data regarding commercially available bottled waters and with dietary reference intakes (DRIs). MEASUREMENTS AND MAIN RESULTS Mineral levels varied among tap water sources in North America and among bottled waters. European bottled waters generally contained higher mineral levels than North American tap water sources and North American bottled waters. For half of the tap water sources we examined, adults may fulfill between 8% and 16% of their Ca2+ DRI and between 6% and 31% of their Mg2+ DRI by drinking 2 liters per day. One liter of most moderate mineralization European bottled waters contained between 20% and 58% of the Ca2+ DRI and between 16% and 41% of the Mg2+ DRI in adults. High mineralization bottled waters often contained up to half of the maximum recommended daily intake of Na+. CONCLUSION Drinking water sources available to North Americans may contain high levels of Ca2+, Mg2+, and Na+ and may provide clinically important portions of the recommended dietary intake of these minerals. Physicians should encourage patients to check the mineral content of their drinking water, whether tap or bottled, and choose water most appropriate for their needs. PMID:11318912

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medrano, Ma Jose, E-mail: pmedrano@isciii.es; Boix, Raquel; Pastor-Barriuso, Roberto

    Background: High-chronic arsenic exposure in drinking water is associated with increased cardiovascular disease risk. At low-chronic levels, as those present in Spain, evidence is scarce. In this ecological study, we evaluated the association of municipal drinking water arsenic concentrations during the period 1998-2002 with cardiovascular mortality in the population of Spain. Methods: Arsenic concentrations in drinking water were available for 1721 municipalities, covering 24.8 million people. Standardized mortality ratios (SMRs) for cardiovascular (361,750 deaths), coronary (113,000 deaths), and cerebrovascular (103,590 deaths) disease were analyzed for the period 1999-2003. Two-level hierarchical Poisson models were used to evaluate the association of municipalmore » drinking water arsenic concentrations with mortality adjusting for social determinants, cardiovascular risk factors, diet, and water characteristics at municipal or provincial level in 651 municipalities (200,376 cardiovascular deaths) with complete covariate information. Results: Mean municipal drinking water arsenic concentrations ranged from <1 to 118 {mu}g/L. Compared to the overall Spanish population, sex- and age-adjusted mortality rates for cardiovascular (SMR 1.10), coronary (SMR 1.18), and cerebrovascular (SMR 1.04) disease were increased in municipalities with arsenic concentrations in drinking water >10 {mu}g/L. Compared to municipalities with arsenic concentrations <1 {mu}g/L, fully adjusted cardiovascular mortality rates were increased by 2.2% (-0.9% to 5.5%) and 2.6% (-2.0% to 7.5%) in municipalities with arsenic concentrations between 1-10 and>10 {mu}g/L, respectively (P-value for trend 0.032). The corresponding figures were 5.2% (0.8% to 9.8%) and 1.5% (-4.5% to 7.9%) for coronary heart disease mortality, and 0.3% (-4.1% to 4.9%) and 1.7% (-4.9% to 8.8%) for cerebrovascular disease mortality. Conclusions: In this ecological study, elevated low-to-moderate arsenic concentrations in drinking water were associated with increased cardiovascular mortality at the municipal level. Prospective cohort studies with individual measures of arsenic exposure, standardized cardiovascular outcomes, and adequate adjustment for confounders are needed to confirm these ecological findings. Our study, however, reinforces the need to implement arsenic remediation treatments in water supply systems above the World Health Organization safety standard of 10 {mu}g/L.« less

  15. U. S. drinking-water regulations: Treatment technologies and cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykins, B.W. Jr.; Clark, R.M.

    The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the US drinking-water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of these regulations is an Information Collection Rule and an Enhanced Surface Water Treatment Rule. These rules will require monitoring for microorganisms such as Giardia, Cryptosporidium, and viruses. Certain surface-water systems may be required to remove microbiological contaminants above levels currently required by the Surface Water Treatment Rule. Also included in these rules will be monitoring requirements for disinfection by-products andmore » evaluation of precursor removal technologies. As various regulations are promulgated, regulators and those associated with the drinking-water industry need to be cognizant of the potential impact of treatment to control one contaminant or group of contaminants on control of other contaminants. Compliance with drinking-water regulations mandated under the Safe Drinking Water Act and its amendments has been estimated to cost about $1.6 billion.« less

  16. Investigating social inequalities in exposure to drinking water contaminants in rural areas.

    PubMed

    Delpla, Ianis; Benmarhnia, Tarik; Lebel, Alexandre; Levallois, Patrick; Rodriguez, Manuel J

    2015-12-01

    Few studies have assessed social inequalities in exposure to drinking water contaminants. This study explores this issue in 593 rural municipalities of Québec, Canada. Quartiles of an ecological composite deprivation index were used as a proxy of socioeconomic status. Total trihalomethanes (TTHMs) and lead were chosen as proxies of chemical drinking water quality. The results show that the majority of deprived rural municipalities apply no treatment to their water (26%) or use a basic treatment (51%), whereas a relative majority of the wealthiest municipalities (40%) use advanced treatment. The proportion of municipalities having important lead (>5 μg/L) levels is highest in most deprived municipalities. Moreover, most deprived municipalities have a higher risk of high tap lead levels (RR = 1.33; 95%CI: 1.30, 1.36). Conversely, most deprived municipalities have a lower risk of high TTHMs levels (RR = 0.78; 95%CI: 0.69, 0.86). These findings suggest an environmental inequality in drinking water contaminants distribution in rural municipalities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice

    PubMed Central

    Etani, Reo; Kataoka, Takahiro; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori

    2016-01-01

    Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)–induced hyperuricemia in mice. Mice inhaled radon at a concentration of 2000 Bq/m3 for 24 h or were given hot spring water for 2 weeks. Mice were then administrated PO at a dose of 500 mg/kg. The results obtained showed that serum uric acid levels were significantly increased by the administration of PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it. PMID:27021217

  18. A population-based case-control study of drinking-water nitrate and congenital anomalies using Geographic Information Systems (GIS) to develop individual-level exposure estimates.

    PubMed

    Holtby, Caitlin E; Guernsey, Judith R; Allen, Alexander C; Vanleeuwen, John A; Allen, Victoria M; Gordon, Robert J

    2014-02-05

    Animal studies and epidemiological evidence suggest an association between prenatal exposure to drinking water with elevated nitrate (NO3-N) concentrations and incidence of congenital anomalies. This study used Geographic Information Systems (GIS) to derive individual-level prenatal drinking-water nitrate exposure estimates from measured nitrate concentrations from 140 temporally monitored private wells and 6 municipal water supplies. Cases of major congenital anomalies in Kings County, Nova Scotia, Canada, between 1988 and 2006 were selected from province-wide population-based perinatal surveillance databases and matched to controls from the same databases. Unconditional multivariable logistic regression was performed to test for an association between drinking-water nitrate exposure and congenital anomalies after adjusting for clinically relevant risk factors. Employing all nitrate data there was a trend toward increased risk of congenital anomalies for increased nitrate exposure levels though this was not statistically significant. After stratification of the data by conception before or after folic acid supplementation, an increased risk of congenital anomalies for nitrate exposure of 1.5-5.56 mg/L (2.44; 1.05-5.66) and a trend toward increased risk for >5.56 mg/L (2.25; 0.92-5.52) was found. Though the study is likely underpowered, these results suggest that drinking-water nitrate exposure may contribute to increased risk of congenital anomalies at levels below the current Canadian maximum allowable concentration.

  19. A Population-Based Case-Control Study of Drinking-Water Nitrate and Congenital Anomalies Using Geographic Information Systems (GIS) to Develop Individual-Level Exposure Estimates

    PubMed Central

    Holtby, Caitlin E.; Guernsey, Judith R.; Allen, Alexander C.; VanLeeuwen, John A.; Allen, Victoria M.; Gordon, Robert J.

    2014-01-01

    Animal studies and epidemiological evidence suggest an association between prenatal exposure to drinking water with elevated nitrate (NO3-N) concentrations and incidence of congenital anomalies. This study used Geographic Information Systems (GIS) to derive individual-level prenatal drinking-water nitrate exposure estimates from measured nitrate concentrations from 140 temporally monitored private wells and 6 municipal water supplies. Cases of major congenital anomalies in Kings County, Nova Scotia, Canada, between 1988 and 2006 were selected from province-wide population-based perinatal surveillance databases and matched to controls from the same databases. Unconditional multivariable logistic regression was performed to test for an association between drinking-water nitrate exposure and congenital anomalies after adjusting for clinically relevant risk factors. Employing all nitrate data there was a trend toward increased risk of congenital anomalies for increased nitrate exposure levels though this was not statistically significant. After stratification of the data by conception before or after folic acid supplementation, an increased risk of congenital anomalies for nitrate exposure of 1.5–5.56 mg/L (2.44; 1.05–5.66) and a trend toward increased risk for >5.56 mg/L (2.25; 0.92–5.52) was found. Though the study is likely underpowered, these results suggest that drinking-water nitrate exposure may contribute to increased risk of congenital anomalies at levels below the current Canadian maximum allowable concentration. PMID:24503976

  20. Response of reservoir atrazine concentrations following regulatory and management changes

    USDA-ARS?s Scientific Manuscript database

    Since the early 1990s, atrazine concentrations in United States drinking water supplies exceeding the drinking water standard of 3 parts per billion (ppb) have been identified as a costly and major water quality concern. Atrazine levels in Columbus, Ohio tap water reached 8.74 ppb in the early 1990s...

  1. Why Do People Stop Treating Contaminated Drinking Water with Solar Water Disinfection (SODIS)?

    ERIC Educational Resources Information Center

    Tamas, Andrea; Mosler, Hans-Joachim

    2011-01-01

    Solar Water Disinfection (SODIS) is a simple method designed to treat microbiologically contaminated drinking water at household level. This article characterizes relapse behavior in comparison with continued SODIS use after a 7-month nonpromotion period. In addition, different subtypes among relapsers and continuers were assumed to diverge mainly…

  2. 40 CFR 141.63 - Maximum contaminant levels (MCLs) for microbiological contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... parts of the distribution system; (4) Filtration and/or disinfection of surface water, as described in subparts H, P, T, and W of this part, or disinfection of ground water, as described in subpart S of this... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking...

  3. 40 CFR 141.63 - Maximum contaminant levels (MCLs) for microbiological contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... parts of the distribution system; (4) Filtration and/or disinfection of surface water, as described in subparts H, P, T, and W of this part, or disinfection of ground water, as described in subpart S of this... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking...

  4. Effects Of Haloacetic Acid Mixtures in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    EPA Science Inventory

    The haloacetic acids (HAAs) are a class of chemicals produced as byproducts of drinking water disinfection. Source water characteristics (such as level of bromide) affects which HAAs are present in drinking water and their concentration. For example, high bromide-source water wil...

  5. Lead in drinking water and human blood lead levels in the United States.

    PubMed

    Brown, Mary Jean; Margolis, Stephen

    2012-08-10

    Lead is a pervasive environmental contaminant. The adverse health effects of lead exposure in children and adults are well documented, and no safe blood lead threshold in children has been identified. Lead can be ingested from various sources, including lead paint and house dust contaminated by lead paint, as well as soil, drinking water, and food. The concentration of lead, total amount of lead consumed, and duration of lead exposure influence the severity of health effects. Because lead accumulates in the body, all sources of lead should be controlled or eliminated to prevent childhood lead poisoning. Beginning in the 1970s, lead concentrations in air, tap water, food, dust, and soil began to be substantially reduced, resulting in significantly reduced blood lead levels (BLLs) in children throughout the United States. However, children are still being exposed to lead, and many of these children live in housing built before the 1978 ban on lead-based residential paint. These homes might contain lead paint hazards, as well as drinking water service lines made from lead, lead solder, or plumbing materials that contain lead. Adequate corrosion control reduces the leaching of lead plumbing components or solder into drinking water. The majority of public water utilities are in compliance with the Safe Drinking Water Act Lead and Copper Rule (LCR) of 1991. However, some children are still exposed to lead in drinking water. EPA is reviewing LCR, and additional changes to the rule are expected that will further protect public health. Childhood lead poisoning prevention programs should be made aware of the results of local public water system lead monitoring measurement under LCR and consider drinking water as a potential cause of increased BLLs, especially when other sources of lead exposure are not identified.

  6. Social disparities in nitrate-contaminated drinking water in California's San Joaquin Valley.

    PubMed

    Balazs, Carolina; Morello-Frosch, Rachel; Hubbard, Alan; Ray, Isha

    2011-09-01

    Research on drinking water in the United States has rarely examined disproportionate exposures to contaminants faced by low-income and minority communities. This study analyzes the relationship between nitrate concentrations in community water systems (CWSs) and the racial/ethnic and socioeconomic characteristics of customers. We hypothesized that CWSs in California's San Joaquin Valley that serve a higher proportion of minority or residents of lower socioeconomic status have higher nitrate levels and that these disparities are greater among smaller drinking water systems. We used water quality monitoring data sets (1999-2001) to estimate nitrate levels in CWSs, and source location and census block group data to estimate customer demographics. Our linear regression model included 327 CWSs and reported robust standard errors clustered at the CWS level. Our adjusted model controlled for demographics and water system characteristics and stratified by CWS size. Percent Latino was associated with a 0.04-mg nitrate-ion (NO3)/L increase in a CWS's estimated NO3 concentration [95% confidence interval (CI), -0.08 to 0.16], and rate of home ownership was associated with a 0.16-mg NO3/L decrease (95% CI, -0.32 to 0.002). Among smaller systems, the percentage of Latinos and of homeownership was associated with an estimated increase of 0.44 mg NO3/L (95% CI, 0.03-0.84) and a decrease of 0.15 mg NO3/L (95% CI, -0.64 to 0.33), respectively. Our findings suggest that in smaller water systems, CWSs serving larger percentages of Latinos and renters receive drinking water with higher nitrate levels. This suggests an environmental inequity in drinking water quality.

  7. Social Disparities in Nitrate-Contaminated Drinking Water in California’s San Joaquin Valley

    PubMed Central

    Morello-Frosch, Rachel; Hubbard, Alan; Ray, Isha

    2011-01-01

    Background: Research on drinking water in the United States has rarely examined disproportionate exposures to contaminants faced by low-income and minority communities. This study analyzes the relationship between nitrate concentrations in community water systems (CWSs) and the racial/ethnic and socioeconomic characteristics of customers. Objectives: We hypothesized that CWSs in California’s San Joaquin Valley that serve a higher proportion of minority or residents of lower socioeconomic status have higher nitrate levels and that these disparities are greater among smaller drinking water systems. Methods: We used water quality monitoring data sets (1999–2001) to estimate nitrate levels in CWSs, and source location and census block group data to estimate customer demographics. Our linear regression model included 327 CWSs and reported robust standard errors clustered at the CWS level. Our adjusted model controlled for demographics and water system characteristics and stratified by CWS size. Results: Percent Latino was associated with a 0.04-mg nitrate-ion (NO3)/L increase in a CWS’s estimated NO3 concentration [95% confidence interval (CI), –0.08 to 0.16], and rate of home ownership was associated with a 0.16-mg NO3/L decrease (95% CI, –0.32 to 0.002). Among smaller systems, the percentage of Latinos and of homeownership was associated with an estimated increase of 0.44 mg NO3/L (95% CI, 0.03–0.84) and a decrease of 0.15 mg NO3/L (95% CI, –0.64 to 0.33), respectively. Conclusions: Our findings suggest that in smaller water systems, CWSs serving larger percentages of Latinos and renters receive drinking water with higher nitrate levels. This suggests an environmental inequity in drinking water quality. PMID:21642046

  8. Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs

    PubMed Central

    Ward, Mary H.; deKok, Theo M.; Levallois, Patrick; Brender, Jean; Gulis, Gabriel; Nolan, Bernard T.; VanDerslice, James

    2005-01-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered. PMID:16263519

  9. Workgroup report: Drinking-water nitrate and health - Recent findings and research needs

    USGS Publications Warehouse

    Ward, M.H.; deKok, T.M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B.T.; VanDerslice, J.

    2005-01-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.

  10. Workgroup report: Drinking-water nitrate and health--recent findings and research needs.

    PubMed

    Ward, Mary H; deKok, Theo M; Levallois, Patrick; Brender, Jean; Gulis, Gabriel; Nolan, Bernard T; VanDerslice, James

    2005-11-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.

  11. Water Sources and Their Protection from the Impact of Microbial Contamination in Rural Areas of Beijing, China

    PubMed Central

    Ye, Bixiong; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Li, Hairong

    2013-01-01

    Bacterial contamination of drinking water is a major public health problem in rural China. To explore bacterial contamination in rural areas of Beijing and identify possible causes of bacteria in drinking water samples, water samples were collected from wells in ten rural districts of Beijing, China. Total bacterial count, total coliforms and Escherichia coli in drinking water were then determined and water source and wellhead protection were investigated. The bacterial contamination in drinking water was serious in areas north of Beijing, with the total bacterial count, total coliforms and Escherichia coli in some water samples reaching 88,000 CFU/mL, 1,600 MPN/100 mL and 1,600 MPN/100 mL, respectively. Water source types, well depth, whether the well was adequately sealed and housed, and whether wellhead is above or below ground were the main factors influencing bacterial contamination levels in drinking water. The bacterial contamination was serious in the water of shallow wells and wells that were not closed, had no well housing or had a wellhead below ground level. The contamination sources around wells, including village dry toilets and livestock farms, were well correlated with bacterial contamination. Total bacterial counts were affected by proximity to sewage ditches and polluting industries, however, proximity to landfills did not influence the microbial indicators. PMID:23462436

  12. Arsenic occurrence in drinking water supply systems in ten municipalities in Vojvodina Region, Serbia.

    PubMed

    Jovanovic, Dragana; Jakovljević, Branko; Rašić-Milutinović, Zorica; Paunović, Katarina; Peković, Gordana; Knezević, Tanja

    2011-02-01

    Vojvodina, a northern region of Serbia, belongs to the Pannonian Basin, whose aquifers contain high concentrations of arsenic. This study represents arsenic levels in drinking water in ten municipalities in Serbia. Around 63% of all water samples exceeded Serbian and European standards for arsenic in drinking water. Large variations in arsenic were observed among supply systems. Arsenic concentrations in public water supply systems in Vojvodina were much higher than in other countries in the Pannonian Basin. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Consumption of low-moderate level arsenic contaminated water does not increase spontaneous pregnancy loss: a case control study.

    PubMed

    Bloom, Michael S; Neamtiu, Iulia A; Surdu, Simona; Pop, Cristian; Lupsa, Ioana Rodica; Anastasiu, Doru; Fitzgerald, Edward F; Gurzau, Eugen S

    2014-10-13

    Previous work suggests an increased risk for spontaneous pregnancy loss linked to high levels of inorganic arsenic (iAs) in drinking water sources (>10 μg/L). However, there has been little focus to date on the impact of low-moderate levels of iAs in drinking water (<10 μg/L). To address this data gap we conducted a hospital-based case-control study in Timis County, Romania. We recruited women with incident spontaneous pregnancy loss of 5-20 weeks completed gestation as cases (n = 150), and women with ongoing pregnancies matched by gestational age (±1 week) as controls (n = 150). Participants completed a physician-administered questionnaire and we collected water samples from residential drinking sources. We reconstructed residential drinking water exposure histories using questionnaire data weighted by iAs determined using hydride generation-atomic absorption spectrometry (HG-AAS). Logistic regression models were used to generate odds ratios (OR) and 95% confidence intervals (CI) for associations between iAs exposure and loss, conditioned on gestational age and adjusted for maternal age, cigarette smoking, education and prenatal vitamin use. We explored potential interactions in a second set of models. Drinking water arsenic concentrations ranged from 0.0 to 175.1 μg/L, with median 0.4 μg/L and 90th%tile 9.4 μg/L. There were no statistically significant associations between loss and average or peak drinking water iAs concentrations (OR 0.98, 95% CI 0.96-1.01), or for daily iAs intake (OR 1.00, 95% CI 0.98-1.02). We detected modest evidence for an interaction between average iAs concentration and cigarette smoking during pregnancy (P = 0.057) and for daily iAs exposure and prenatal vitamin use (P = 0.085). These results suggest no increased risk for spontaneous pregnancy loss in association with low to moderate level drinking water iAs exposure. Though imprecise, our data also raise the possibility for increased risk among cigarette smokers. Given the low exposures overall, these data should reassure pregnant women and policy makers with regard to the potential effect of drinking water iAs on early pregnancy, though a larger more definitive study to investigate the potential risk increase in conjunction with cigarette smoking is merited.

  14. Water

    MedlinePlus

    ... Agendas, and Minutes New Blood Lead Level Information Funding Information Lead in Drinking Water Lead-based Water Lines Washington, D.C. Blood Lead Level Tests Effect of Previously Missing Blood Lead Level (BPb) Surveillance ...

  15. Consequences and Reduction of Elevated Ammonia in Illinois Groundwaters: U.S. EPA Research Efforts

    EPA Science Inventory

    Nitrification in drinking water distribution systems is a concern of many drinking water systems. Although chloramination as a source of nitrification has drawn the most attention, many source waters contain significant levels of ammonia, particularly in Midwestern States such a...

  16. EVOLUTION OF AN ANALYTICAL METHOD FOR HALOGENATED FURANONES IN DRINKING WATER

    EPA Science Inventory

    A unified method of detection for seven halogenated furanones present in drinking waters at the ng/L level has been developed. The use of GC/ECD makes this method amenable to manyenvironmental laboratories and water treatment plants in the United States. Detection limits observe...

  17. Wastewater to Drinking Water: Are Emerging Contaminants Making it Through?

    EPA Science Inventory

    Lake Mead serves as the primary drinking water source for Las Vegas, Nevada and surrounding communities. Besides snow-melt from the Rockies water levels in the lake are supplemented by the inflow of treated wastewater from communities along the Colorado River, including Las Vegas...

  18. Long-term exposure to low-level arsenic in drinking water and diabetes incidence: a prospective study of the diet, cancer and health cohort.

    PubMed

    Bräuner, Elvira Vaclavik; Nordsborg, Rikke Baastrup; Andersen, Zorana Jovanovic; Tjønneland, Anne; Loft, Steffen; Raaschou-Nielsen, Ole

    2014-10-01

    Established causes of diabetes do not fully explain the present epidemic. High-level arsenic exposure has been implicated in diabetes risk, but the effect of low-level arsenic exposure in drinking water remains unclear. We sought to determine whether long-term exposure to low-level arsenic in drinking water in Denmark is associated with an increased risk of diabetes using a large prospective cohort. During 1993-1997, we recruited 57,053 persons. We followed each cohort member for diabetes occurrence from enrollment until 31 December 2006. We traced and geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water-supply areas. We estimated individual exposure to arsenic using all addresses from 1 January 1971 until the censoring date. Cox proportional hazards models were used to model the association between arsenic exposure and diabetes incidence, separately for two definitions of diabetes: all cases and a more strict definition in which cases of diabetes based solely on blood glucose results were excluded. Over a mean follow-up period of 9.7 years for 52,931 eligible participants, there were a total of 4,304 (8.1%) diabetes cases, and 3,035 (5.8%) cases of diabetes based on the more strict definition. The adjusted incidence rate ratios (IRRs) per 1-μg/L increment in arsenic levels in drinking water were as follows: IRR = 1.03 (95% CI: 1.01, 1.06) and IRR = 1.02 (95% CI: 0.99, 1.05) for all and strict diabetes cases, respectively. Long-term exposure to low-level arsenic in drinking water may contribute to the development of diabetes.

  19. Pregnant women in Timis County, Romania are exposed primarily to low-level (<10 μg/L) arsenic through residential drinking water consumption

    PubMed Central

    Neamtiu, Iulia; Bloom, Michael S.; Gati, Gabriel; Goessler, Walter; Surdu, Simona; Pop, Cristian; Braeuer, Simone; Fitzgerald, Edward F.; Baciu, Calin; Lupsa, Ioana Rodica; Anastasiu, Doru; Gurzau, Eugen

    2015-01-01

    Excessive arsenic content in drinking water poses health risks to millions of people worldwide. Inorganic arsenic (iAs) in groundwater exceeding the 10 μg/l maximum contaminant level (MCL) set by the World Health Organization (WHO) is characteristic for intermediate-depth aquifers over large areas of the Pannonian Basin in Central Europe. In western Romania, near the border with Hungary, Arad, Bihor, and Timis counties use drinking water coming partially or entirely from iAs contaminated aquifers. In nearby Arad and Bihor counties, more than 45,000 people are exposed to iAs over 10 μg/l via public drinking water sources. However, comparable data are unavailable for Timis County. To begin to address this data gap, we determined iAs in 124 public and private Timis County drinking water sources, including wells and taps, used by pregnant women participating in a case-control study of spontaneous loss. Levels in water sources were low overall (median = 3.0; range = < 0.5–175 μg/l), although higher in wells (median = 3.1, range = < 0.5–175) than in community taps (median = 2.7, range = < 0.5–36.4). In a subsample of 20 control women we measured urine biomarkers of iAs exposure, including iAs (arsenite and arsenate), dimethylarsinic acid (DMA), and methylarsonic acid (MMA). Median values were higher among 10 women using iAs contaminated drinking water sources compared to 10 women using uncontaminated sources for urine total iAs (6.6 vs. 5.0 μg/l, P = 0.24) and DMA (5.5 vs. 4.2 μg/l, P = 0.31). The results suggested that the origin of urine total iAs (r = 0.35, P = 0.13) and DMA (r = 0.31, P = 0.18) must have been not only iAs in drinking-water but also some other source. Exposure of pregnant women to arsenic via drinking water in Timis County appears to be lower than for surrounding counties; however, it deserves a more definitive investigation as to its origin and the regional distribution of its risk potential. PMID:25697081

  20. Arsenic levels in drinking water and mortality of liver cancer in Taiwan.

    PubMed

    Lin, Hung-Jung; Sung, Tzu-I; Chen, Chi-Yi; Guo, How-Ran

    2013-11-15

    The carcinogenic effect of arsenic is well documented, but epidemiologic data on liver cancer were limited. To evaluate the dose-response relationship between arsenic in drinking water and mortality of liver cancer, we conducted a study in 138 villages in the southwest coast area of Taiwan. We assessed arsenic levels in drinking water using data from a survey conducted by the government and reviewed death certificates from 1971 to 1990 to identify liver cancer cases. Using village as the unit, we conducted multi-variate regression analyses and then performed post hoc analyses to validate the findings. During the 20-year period, 802 male and 301 female mortality cases of liver cancer were identified. After adjusting for age, arsenic levels above 0.64 mg/L were associated with an increase in the liver cancer mortality in both genders, but no significant effect was observed for lower exposure categories. Post hoc analyses and a review of literature supported these findings. We concluded that exposures to high arsenic levels in drinking water are associated with the occurrence of liver cancer, but such an effect is not prominent at exposure levels lower than 0.64 mg/L. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Long-Term Exposure to Low-Level Arsenic in Drinking Water and Diabetes Incidence: A Prospective Study of the Diet, Cancer and Health Cohort

    PubMed Central

    Bräuner, Elvira Vaclavik; Nordsborg, Rikke Baastrup; Andersen, Zorana Jovanovic; Tjønneland, Anne; Loft, Steffen

    2014-01-01

    Background: Established causes of diabetes do not fully explain the present epidemic. High-level arsenic exposure has been implicated in diabetes risk, but the effect of low-level arsenic exposure in drinking water remains unclear. Objective: We sought to determine whether long-term exposure to low-level arsenic in drinking water in Denmark is associated with an increased risk of diabetes using a large prospective cohort. Methods: During 1993–1997, we recruited 57,053 persons. We followed each cohort member for diabetes occurrence from enrollment until 31 December 2006. We traced and geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water-supply areas. We estimated individual exposure to arsenic using all addresses from 1 January 1971 until the censoring date. Cox proportional hazards models were used to model the association between arsenic exposure and diabetes incidence, separately for two definitions of diabetes: all cases and a more strict definition in which cases of diabetes based solely on blood glucose results were excluded. Results: Over a mean follow-up period of 9.7 years for 52,931 eligible participants, there were a total of 4,304 (8.1%) diabetes cases, and 3,035 (5.8%) cases of diabetes based on the more strict definition. The adjusted incidence rate ratios (IRRs) per 1-μg/L increment in arsenic levels in drinking water were as follows: IRR = 1.03 (95% CI: 1.01, 1.06) and IRR = 1.02 (95% CI: 0.99, 1.05) for all and strict diabetes cases, respectively. Conclusions: Long-term exposure to low-level arsenic in drinking water may contribute to the development of diabetes. Citation: Bräuner EV, Nordsborg RB, Andersen ZJ, Tjønneland A, Loft S, Raaschou-Nielsen O. 2014. Long-term exposure to low-level arsenic in drinking water and diabetes incidence: a prospective study of the Diet, Cancer and Health cohort. Environ Health Perspect 122:1059–1065; http://dx.doi.org/10.1289/ehp.1408198 PMID:24927198

  2. Infantile methemoglobinemia: reexamining the role of drinking water nitrates.

    PubMed Central

    Avery, A A

    1999-01-01

    Ingestion of nitrates in drinking water has long been thought to be a primary cause of acquired infantile methemoglobinemia, often called blue baby syndrome. However, recent research and a review of historical cases offer a more complex picture of the causes of infantile methemoglobinemia. Gastrointestinal infection and inflammation and the ensuing overproduction of nitric oxide may be the cause of many cases of infantile methemoglobinemia previously attributed to drinking water nitrates. If so, current limits on allowable levels of nitrates in drinking water, which are based solely on the health threat of infantile methemoglobinemia, may be unnecessarily strict. Images Figure 1 Figure 2 PMID:10379005

  3. Priority chemical pollutants of drinking water in the city of Kazan: approach based on risk assessment

    NASA Astrophysics Data System (ADS)

    Stepanova, N. V.; Arkhipova, N. S.; Fomina, S. F.

    2018-01-01

    Assessment of non-carcinogenic risks from chemical substances ingested with drinking water included peroral, skin and inhalation routes of contact with water. The study was carried out for children aged 3-6 years living in 4 districts (zones) of the city of Kazan. Regional exposure factors (REF) at the median (Me) and the 95-th Percentile (95P) levels were identified according to the results of the questionnaire survey. The value of total hazard indices (THI) calculated with application of REF at the median (Me) and the 95-th Percentile (95P) levels made THIMe = 14.2 and 17.1, and THI 95perc = 13.03 and 16.3 in zones with a combined type of water supply. The ingestion of chemical substances with drinking water in different zones of the city of Kazan implies, alert and high levels of non-carcinogenic health risk for the child population.

  4. Occurrence and distribution of methyl tert-butyl ether and other volatile organic compounds in drinking water in the Northeast and Mid-Atlantic regions of the United States, 1993-98

    USGS Publications Warehouse

    Grady, S.J.; Casey, G.D.

    2001-01-01

    Data on volatile organic compounds (VOCs) in drinking water supplied by 2,110 randomly selected community water systems (CWSs) in 12 Northeast and Mid-Atlantic States indicate 64 VOC analytes were detected at least once during 1993-98. Selection of the 2,110 CWSs inventoried for this study targeted 20 percent of the 10,479 active CWSs in the region and represented a random subset of the total distribution by State, source of water, and size of system. The data include 21,635 analyses of drinking water collected for compliance monitoring under the Safe Drinking Water Act; the data mostly represent finished drinking water collected at the pointof- entry to, or at more distal locations within, each CWS?s distribution system following any watertreatment processes. VOC detections were more common in drinking water supplied by large systems (serving more than 3,300 people) that tap surface-water sources or both surface- and groundwater sources than in small systems supplied exclusively by ground-water sources. Trihalomethane (THM) compounds, which are potentially formed during the process of disinfecting drinking water with chlorine, were detected in 45 percent of the randomly selected CWSs. Chloroform was the most frequently detected THM, reported in 39 percent of the CWSs. The gasoline additive methyl tert-butyl ether (MTBE) was the most frequently detected VOC in drinking water after the THMs. MTBE was detected in 8.9 percent of the 1,194 randomly selected CWSs that analyzed samples for MTBE at any reporting level, and it was detected in 7.8 percent of the 1,074 CWSs that provided MTBE data at the 1.0-?g/L (microgram per liter) reporting level. As with other VOCs reported in drinking water, most MTBE concentrations were less than 5.0 ?g/L, and less than 1 percent of CWSs reported MTBE concentrations at or above the 20.0-?g/L lower limit recommended by the U.S. Environmental Protection Agency?s Drinking-Water Advisory. The frequency of MTBE detections in drinking water is significantly related to high- MTBE-use patterns. Detections are five times more likely in areas where MTBE is or has been used in gasoline at greater than 5 percent by volume as part of the oxygenated or reformulated (OXY/RFG) fuels program. Detection frequencies of the individual gasoline compounds (benzene, toluene, ethylbenzene, and xylenes (BTEX)) were mostly less than 3 percent of the randomly selected CWSs, but collectively, BTEX compounds were detected in 8.4 percent of CWSs. BTEX concentrations also were low and just three drinkingwater samples contained BTEX at concentrations exceeding 20 ?g/L. Co-occurrence of MTBE and BTEX was rare, and only 0.8 percent of CWSs reported simultaneous detections of MTBE and BTEX compounds. Low concentrations and cooccurrence of MTBE and BTEX indicate most gasoline contaminants in drinking water probably represent nonpoint sources. Solvents were frequently detected in drinking water in the 12-State area. One or more of 27 individual solvent VOCs were detected at any reporting level in 3,080 drinking-water samples from 304 randomly selected CWSs (14 percent) and in 206 CWSs (9.8 percent) at concentrations at or above 1.0 ?g/L. High co-occurrence among solvents probably reflects common sources and the presence of transformation by-products. Other VOCs were relatively rarely detected in drinking water in the 12-State area. Six percent (127) of the 2,110 randomly selected CWSs reported concentrations of 16 VOCs at or above drinking-water criteria. The 127 CWSs collectively serve 2.6 million people. The occurrence of VOCs in drinking water was significantly associated (p<0.0001) with high population- density urban areas. New Jersey, Massachusetts, and Rhode Island, States with substantial urbanization and high population density, had the highest frequency of VOC detections among the 12 States. More than two-thirds of the randomly selected CWSs in New Jersey reported detecting VOC concentrations in drinking water at or above 1

  5. Acute gastrointestinal effects of graded levels of copper in drinking water.

    PubMed Central

    Pizarro, F; Olivares, M; Uauy, R; Contreras, P; Rebelo, A; Gidi, V

    1999-01-01

    The objective of this study was to determine the acute gastrointestinal effects caused by the consumption of drinking water containing graded levels of added copper. Sixty healthy, adult women were randomly assigned to receive copper [Cu(II)] at four concentrations in their drinking water following a Latin-square design. Each group (n = 15) received tap water with no added copper, 1, 3, and 5 mg Cu/l of added copper sulfate for a 2-week study period, followed by 1 week of standard tap water. The subjects recorded their water consumption and gastrointestinal symptoms daily on a special form. The average daily consumption of water was 1.64 liters per subject, regardless of the amount of copper added. Final serum copper, ceruloplasmin, and liver enzymes were measured in all subjects and were not different from baseline concentrations. Twenty-one subjects (35%) recorded gastrointestinal disturbances sometime during the study, 9 had diarrhea, some with abdominal pain and vomiting, and 12 subjects presented abdominal pain, nausea, or vomiting. There was no association between copper levels in drinking water and diarrhea. However, nausea, abdominal pain, or vomiting were significantly related to copper concentrations in water. The recorded incidence rate of these symptoms was 5, 2, 17, and 15% while ingesting water with 0, 1, 3, and 5 mg Cu/l, respectively (overall [chi]2 = 11.3, p<0.01; Cu [less than/equal to]1 mg/l versus Cu [Greater than/equal to]3 mg/l, [chi]2, p<0.01). When subjects interrupted their consumption of drinking water with added copper, most symptoms disappeared. We conclude that under the conditions of the study, there was no association between aggregate copper in drinking water within the range of 0-5 mg/l and diarrhea, but a [Greater than/equal to]3 mg Cu/l level of ionized copper was associated with nausea, abdominal pain, or vomiting. Additional studies with sufficient numbers of subjects are needed to define thresholds for specific gastrointestinal symptoms with precision and to extrapolate these results to the population at large. Images Figure 1 Figure 2 PMID:9924006

  6. Recent advances in drinking water disinfection: successes and challenges.

    PubMed

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality, it is recommended that water disinfection should never be compromised by attempting to control DBPs. The reason for this is that the risks of human illness and death from pathogens in drinking water are much greater than the risks from exposure to disinfectants and disinfection by-products. Nevertheless, if DBP levels exceed regulatory limits, strategies should focus on eliminating organic impurities that foster their formation, without compromising disinfection. As alternatives to chlorine, disinfectants such as chloramines, ozone, chlorine dioxide, and UV disinfection are gaining popularity. Chlorine and each of these disinfectants have individual advantage and disadvantage in terms of cost, efficacy-stability, ease of application, and nature of disinfectant by-products (DBPs). Based on efficiency, ozone is the most efficient disinfectant for inactivating bacteria, viruses, and protozoa. In contrast, chloramines are the least efficient and are not recommended for use as primary disinfectants. Chloramines are favored for secondary water disinfection, because they react more slowly than chlorine and are more persistent in distribution systems. In addition, chloramines produce lower DBP levels than does chlorine, although microbial activity in the distribution system may produce nitrate from monochloramine, when it is used as a residual disinfectant, Achieving the required levels of water quality, particularly microbial inactivation levels, while minimizing DBP formation requires the application of proper risk and disinfection management protocols. In addition, the failure of conventional treatment processes to eliminate critical waterborne pathogens in drinking water demand that improved and/or new disinfection technologies be developed. Recent research has disclosed that nanotechnology may offer solutions in this area, through the use of nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, and nanoparticle-enhanced filtration.

  7. Determination of trace level bromate and perchlorate in drinking water by ion chromatography with an evaporative preconcentration technique.

    PubMed

    Liu, Yongjian; Mou, Shifen; Heberling, Shawn

    2002-05-17

    A simple sample preconcentration technique employing microwave-based evaporation for the determination of trace level bromate and perchlorate in drinking water with ion chromatography is presented. With a hydrophilic anion-exchange column and a sodium hydroxide eluent in linear gradient, bromate and perchlorate can be determined in one injection within 35 min. Prior to ion chromatographic analysis, the drinking water sample was treated with an OnGuard-Ag cartridge to remove the superfluous chloride and concentrated 20-fold using a PTFE beaker in a domestic microwave oven for 15 min. The recoveries of the anions ranged from 94.6% for NO2- to 105.2% for F-. The detection limits for bromate, perchlorate, iodate and chlorate were 0.1, 0.2, 0.1 and 0.2 microg/l, respectively. The developed method is applicable for the quantitation of bromate and perchlorate in drinking water samples.

  8. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less

  9. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less

  10. Growing pigs' drinking behaviour: number of visits, duration, water intake and diurnal variation.

    PubMed

    Andersen, H M-L; Dybkjær, L; Herskin, M S

    2014-11-01

    Individual drinking patterns are a potential tool for disease monitoring in pigs. However, to date, individual pig drinking behaviour has not been described, and effects of external factors have not been examined. The aim of this study was to perform detailed quantification of drinking behaviour of growing pigs and to examine effects of period of day and effects of competition for access to the drinking nipple on the drinking behaviour, amount of water used and water wastage. In all, 52 cross-bred castrated male pigs (live weight 20.5±1.7 kg; mean±s.d.) maintained as either 3 (N3) or 10 (N10) pigs per pen and water nipple (four groups/treatment) were used. All pigs were fitted with a transponder ear tag. A radio frequency identification reader recorded and time stamped visits at the nipple. In each pen, water flow was logged every second. The drinking behaviour was recorded for 4 consecutive days and analysed using a linear mixed model. Overall, the pigs spent 594 s at the nipple during 24 h distributed among 44 visits. During this period, 5 l of water were used, of which >30% was wasted. Social competition did not affect the drinking behaviour over 24 h, except for the proportion of interrupted visits where pigs, kept with recommended nipple availability (N10), showed an increased proportion of interrupted drinking bouts compared with pigs kept at very low level of competition (N3) (0.18±0.01 v. 0.11±0.01; P<0.01). However, splitting data into 8-h periods (P1, P2, P3) starting from 0600 h revealed differences between treatments, showing that in N3, water use per visit was lower in P1 than P2 and P3 (110±10 v. 126±7 and 132±7 ml; P<0.05), whereas in N10, the water used per visit was higher during P3 than during the other periods (P1: 107±14 ml, P2: 112±10 ml v. P3: 151±10 ml; P<0.001). A similar pattern was found for visit duration. In N3, fewer nipple visits were observed in P2 than P1 (15.6±1.2 v. 22.0±1.2; P<0.001), whereas no difference was found between P1 and P2 in N10. The results demonstrate that growing pigs at the two levels of competition maintained a comparable level of 24 h water intake by changing behavioural variables involved in drinking. This dynamic characteristic of drinking behaviour means that if individual drinking patterns are to be used as disease monitoring tools, it is important to consider effects of external factors and include data on period level to allow rapid detection of behavioural changes.

  11. Daily intake of magnesium and calcium from drinking water in relation to myocardial infarction.

    PubMed

    Rosenlund, Mats; Berglind, Niklas; Hallqvist, Johan; Bellander, Tom; Bluhm, Gösta

    2005-07-01

    A decreased risk for cardiovascular disease has been related to the hardness of drinking water, particularly high levels of magnesium. However, the evidence is still uncertain, especially in relation to individual intake from water. We used data from the Stockholm Heart Epidemiology Program, a population-based case-control study conducted during 1992-1994, to study the association between myocardial infarction and the daily intake of drinking water magnesium and calcium. Our analyses are based on 497 cases age 45-70 years, and 677 controls matched on age, sex, and hospital catchment area. Individual data on magnesium, calcium, and hardness of the domestic drinking water were assessed from waterwork registers or analyses of well water. After adjustment for the matching variables and smoking, hypertension, socioeconomic status, job strain, body mass index, diabetes, and physical inactivity, the odds ratio for myocardial infarction was 1.09 (95% confidence interval = 0.81-1.46) associated with a tap water hardness above the median (>4.4 German hardness degrees) and 0.88 (0.67-1.15) associated with a water magnesium intake above the median (>1.86 mg/d). There was no apparent sign of any exposure-response pattern related to water intake of magnesium or calcium. This study does not support previous reports of a protective effect on myocardial infarction associated with consumption of drinking water with higher levels of hardness, magnesium, or calcium.

  12. Fluoride contamination in drinking water in rural habitations of Central Rajasthan, India.

    PubMed

    Hussain, Ikbal; Arif, Mohd; Hussain, Jakir

    2012-08-01

    Fluoride concentration in groundwater sources used as major drinking water source in rural area of block Nawa (Nagaur District), Rajasthan was examined and the toxic effects by intake of excess fluoride on rural habitants were studied. In block 13, habitations (30%) were found to have fluoride concentration more than 1.5 mg/l (viz. maximum desirable limit of Indian drinking water standards IS 10500, 1999). In five habitations (11%), fluoride concentration in groundwater is at toxic level (viz. above 3.0 mg/l). The maximum fluoride concentration in the block is 5.91 mg/l from Sirsi village. As per the desirable and maximum permissible limit for fluoride in drinking water, determined by World Health Organization or by Bureau of Indian Standards, the groundwater of about 13 habitations of the studied sites is unfit for drinking purposes. Due to the higher fluoride level in drinking water, several cases of dental and skeletal fluorosis have appeared at alarming rate in this region. There is an instant need to take ameliorative steps in this region to prevent the population from fluorosis. Groundwater sources of block Nawa can be used for drinking after an effective treatment in absence of other safe source. The evaluation of various defluoridation methods on the basis of social and economical structure of India reveals that the clay pot chip, activated alumina adsorption, and Nalgonda techniques are the most promising.

  13. Why Do Some First Nations Communities Have Safe Water and Others Not? Socioeconomic Determinants of Drinking Water Risk

    PubMed Central

    Brown, Brandon; Wachowiak-Smolíková, Renata; Spence, Nicholas D.; Wachowiak, Mark P.; Walters, Dan F.

    2016-01-01

    Securing safe and adequate drinking water is an ongoing issue for many Canadian First Nations communities despite nearly 15 years of reports, studies, policy changes, financial commitments, and regulations. The federal drinking water evaluation scheme is narrowly scoped, ignoring community level social factors, which may play a role in access to safe water in First Nations. This research used the 2006 Aboriginal Affairs and Northern Development Canada First Nations Drinking Water System Risk Survey data and the Community Well-Being Index, including labour force, education, housing, and income, from the 2006 Census. Bivariate analysis was conducted using the Spearman’s correlation, Kendall’s tau correlation, and Pearson’s correlation. Multivariable analysis was conducted using an ordinal (proportional or cumulative odds) regression model. Results showed that the regression model was significant. Community socioeconomic indicators had no relationship with drinking water risk characterization in both the bivariate and multivariable models, with the sole exception of labour force, which had a significantly positive effect on drinking water risk rankings. Socioeconomic factors were not important in explaining access to safe drinking water in First Nations communities. Improvements in the quality of safe water data as well as an examination of other community processes are required to address this pressing policy issue. PMID:27157172

  14. Why Do Some First Nations Communities Have Safe Water and Others Not? Socioeconomic Determinants of Drinking Water Risk.

    PubMed

    Brown, Brandon; Wachowiak-Smolíková, Renata; Spence, Nicholas D; Wachowiak, Mark P; Walters, Dan F

    2016-09-01

    Securing safe and adequate drinking water is an ongoing issue for many Canadian First Nations communities despite nearly 15 years of reports, studies, policy changes, financial commitments, and regulations. The federal drinking water evaluation scheme is narrowly scoped, ignoring community level social factors, which may play a role in access to safe water in First Nations. This research used the 2006 Aboriginal Affairs and Northern Development Canada First Nations Drinking Water System Risk Survey data and the Community Well-Being Index, including labour force, education, housing, and income, from the 2006 Census. Bivariate analysis was conducted using the Spearman's correlation, Kendall's tau correlation, and Pearson's correlation. Multivariable analysis was conducted using an ordinal (proportional or cumulative odds) regression model. Results showed that the regression model was significant. Community socioeconomic indicators had no relationship with drinking water risk characterization in both the bivariate and multivariable models, with the sole exception of labour force, which had a significantly positive effect on drinking water risk rankings. Socioeconomic factors were not important in explaining access to safe drinking water in First Nations communities. Improvements in the quality of safe water data as well as an examination of other community processes are required to address this pressing policy issue.

  15. Effect of long-term exposure to fluoride in drinking water on risks of bone fractures.

    PubMed

    Li, Y; Liang, C; Slemenda, C W; Ji, R; Sun, S; Cao, J; Emsley, C L; Ma, F; Wu, Y; Ying, P; Zhang, Y; Gao, S; Zhang, W; Katz, B P; Niu, S; Cao, S; Johnston, C C

    2001-05-01

    Findings on the risk of bone fractures associated with long-term fluoride exposure from drinking water have been contradictory. The purpose of this study was to determine the prevalence of bone fracture, including hip fracture, in six Chinese populations with water fluoride concentrations ranging from 0.25 to 7.97 parts per million (ppm). A total of 8266 male and female subjects > or =50 years of age were enrolled. Parameters evaluated included fluoride exposure, prevalence of bone fractures, demographics, medical history, physical activity, cigarette smoking, and alcohol consumption. The results confirmed that drinking water was the only major source of fluoride exposure in the study populations. A U-shaped pattern was detected for the relationship between the prevalence of bone fracture and water fluoride level. The prevalence of overall bone fracture was lowest in the population of 1.00-1.06 ppm fluoride in drinking water, which was significantly lower (p < 0.05) than that of the groups exposed to water fluoride levels > or =4.32 and < or =0.34 ppm. The prevalence of hip fractures was highest in the group with the highest water fluoride (4.32-7.97 ppm). The value is significantly higher than the population with 1.00-1.06 ppm water fluoride, which had the lowest prevalence rate. It is concluded that long-term fluoride exposure from drinking water containing > or =4.32 ppm increases the risk of overall fractures as well as hip fractures. Water fluoride levels at 1.00-1.06 ppm decrease the risk of overall fractures relative to negligible fluoride in water; however, there does not appear to be similar protective benefits for the risk of hip fractures.

  16. Risk assessment of additives through soft drinks and nectars consumption on Portuguese population: a 2010 survey.

    PubMed

    Diogo, Janina S G; Silva, Liliana S O; Pena, Angelina; Lino, Celeste M

    2013-12-01

    This study investigated whether the Portuguese population is at risk of exceeding ADI levels for acesulfame-K, saccharin, aspartame, caffeine, benzoic and sorbic acid through an assessment of dietary intake of additives and specific consumption of four types of beverages, traditional soft drinks and soft drinks based on mineral waters, energetic drinks, and nectars. The highest mean levels of additives were found for caffeine in energetic drinks, 293.5mg/L, for saccharin in traditional soft drinks, 18.4 mg/L, for acesulfame-K and aspartame in nectars, with 88.2 and 97.8 mg/L, respectively, for benzoic acid in traditional soft drinks, 125.7 mg/L, and for sorbic acid in soft drinks based on mineral water, 166.5 mg/L. Traditional soft drinks presented the highest acceptable daily intake percentages (ADIs%) for acesulfame-K, aspartame, benzoic and sorbic acid and similar value for saccharin (0.5%) when compared with soft drinks based on mineral water, 0.7%, 0.08%, 7.3%, and 1.92% versus 0.2%, 0.053%, 0.6%, and 0.28%, respectively. However for saccharin the highest percentage of ADI was obtained for nectars, 0.9%, in comparison with both types of soft drinks, 0.5%. Therefore, it is concluded that the Portuguese population is not at risk of exceeding the established ADIs for the studied additives. Copyright © 2013. Published by Elsevier Ltd.

  17. Alleviative effects of deep-seawater drinking water on hepatic lipid accumulation and oxidation induced by a high-fat diet.

    PubMed

    Chen, I-Shu; Chang, Yuan-Yen; Hsu, Chin-Lin; Lin, Hui-Wen; Chang, Ming-Hsu; Chen, Jr-Wei; Chen, Sheng-Shih; Chen, Yi-Chen

    2013-02-01

    Hepatic steatosis is defined as excessive amounts of triglyceride and other fats inside liver cells and has become an emergent liver disease in developed and developing countries. Deep seawater (DSW)300, DSW900, and DSW1500 drinking waters were formulated via a combination of reverse osmosis and electrodialysis. Hamsters on a high-fat diet were assigned to drink the following solutions: (1) normal distilled water, (2) DSW300, (3) DSW900, or (4) DSW1500. Serum, liver, and fecal biochemical values, expression of hepatic genes related to fatty-acid homeostasis, as well as liver antioxidative levels were measured after a 6-week feeding period. Additionally, hematoxylin and eosin staining was used to investigate the liver histopathology. Serum/liver lipids, liver sizes, liver malondialdehyde content, and serum aspartate aminotransferase and alanine aminotransferase of high-fat diet hamsters were reduced (p < 0.05) by drinking DSW, while daily fecal lipid and bile acid outputs were increased (p < 0.05). DSW drinking water maintained (p < 0.05) higher liver glutathione and Trolox equivalent antioxidant capacity levels. Although hepatic sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase, fatty acid synthase, and malic enzyme gene expression were not (p > 0.05) altered, DSW drinking water upregulated (p < 0.05) hepatic peroxisome proliferator-activated receptor-alpha, retinoid X receptor alpha, and uncoupling protein-2 gene expression in high-fat diet hamsters. The lipid droplets in livers were also reduced in DSW-drinking-water groups as compared to those only drinking distilled water. DSW shows a preventive effect on development of hepatosteatosis induced by a high-fat diet. Copyright © 2012. Published by Elsevier B.V.

  18. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China.

    PubMed

    Lu, Shao-You; Zhang, Hui-Min; Sojinu, Samuel O; Liu, Gui-Hua; Zhang, Jian-Qing; Ni, Hong-Gang

    2015-01-01

    The levels of seven essential trace elements (Mn, Co, Ni, Cu, Zn, Se, and Mo) and six non-essential trace elements (Cr, As, Cd, Sb, Hg, and Pb) in a total of 89 drinking water samples collected in Shenzhen, China were determined using inductively coupled plasma mass spectrometry (ICP-MS) in the present study. Both the essential and non-essential trace elements were frequently detectable in the different kinds of drinking waters assessed. Remarkable temporal and spatial variations were observed among most of the trace elements in the tap water collected from two tap water treatment plants. Meanwhile, potential human health risk from these non-essential trace elements in the drinking water for local residents was also assessed. The median values of cancer risks associated with exposure to carcinogenic metals via drinking water consumption were estimated to be 6.1 × 10(-7), 2.1 × 10(-8), and 2.5 × 10(-7) for As, Cd, and Cr, respectively; the median values of incremental lifetime for non-cancer risks were estimated to be 6.1 × 10(-6), 4.4 × 10(-5), and 2.2 × 10(-5) for Hg, Pb, and Sb, respectively. The median value of total incremental lifetime health risk induced by the six non-essential trace elements for the population was 3.5 × 10(-5), indicating that the potential health risks from non-carcinogenic trace elements in drinking water also require some attention. Sensitivity analysis indicates that the most important factor for health risk assessment should be the levels of heavy metal in drinking water.

  19. The psychology of drinking water quality: An exploratory study

    NASA Astrophysics Data System (ADS)

    Syme, Geoffrey J.; Williams, Katrina D.

    1993-12-01

    Perceptions of drinking water quality were measured for residents at four locations in Western Australia. The total dissolved solid levels for the locations varied. Four scales of drinking water satisfaction were measured: acceptability of water quality; water quality risk judgment; perception of neighborhood water quality; and attitudes toward fluoride as an additive. Responses to each of these scales did not appear to be highly related to total dissolved solids. The relationship between attitudes toward water quality and a variety of psychological, attitudinal, experiential, and demographic variables was investigated. It was found that responses to the acceptability of water quality and water quality risk judgment scales related to perceived credibility of societal institutions and feelings of control over water quality and environmental problems. For the remaining two scales few significant correlations were found. The results support those who advocate localized information and involvement campaigns on drinking water quality issues.

  20. Reducing Exposure to High Fluoride Drinking Water in Estonia—A Countrywide Study

    PubMed Central

    Indermitte, Ene; Saava, Astrid; Karro, Enn

    2014-01-01

    Fluoride is a naturally occurring contaminant in groundwater in Estonia. There are several regions in Estonia with fluoride contents in public water supplies as high as 7 mg/L. Long-term exposure to high-fluoride drinking water may have several adverse health effects, primarily dental fluorosis. The opportunities for exposure reduction rely highly on water treatment technologies. Since 2004 public water suppliers in Estonia have made efforts to diminish fluoride content in drinking water systems. A follow-up study on a country level was carried out in 2004–2012 to analyze the changes in population exposure to excessive (over 1.5 mg/L) fluoride in drinking water and to get information about the reduction methods applied by public water supplies (PWS) to optimize the fluoride levels in public water system. The results showed that bigger PWS have been more effective in fluoride reduction measures than small PWS. The main methods used to lower the fluoride content were reverse osmosis technology and replacement of water sources with new ones (new drilled wells). As a result of all the measures taken the overall high-fluoride exposure has been reduced substantially (82%). PMID:24637908

  1. Reducing exposure to high fluoride drinking water in Estonia-a countrywide study.

    PubMed

    Indermitte, Ene; Saava, Astrid; Karro, Enn

    2014-03-14

    Fluoride is a naturally occurring contaminant in groundwater in Estonia. There are several regions in Estonia with fluoride contents in public water supplies as high as 7 mg/L. Long-term exposure to high-fluoride drinking water may have several adverse health effects, primarily dental fluorosis. The opportunities for exposure reduction rely highly on water treatment technologies. Since 2004 public water suppliers in Estonia have made efforts to diminish fluoride content in drinking water systems. A follow-up study on a country level was carried out in 2004-2012 to analyze the changes in population exposure to excessive (over 1.5 mg/L) fluoride in drinking water and to get information about the reduction methods applied by public water supplies (PWS) to optimize the fluoride levels in public water system. The results showed that bigger PWS have been more effective in fluoride reduction measures than small PWS. The main methods used to lower the fluoride content were reverse osmosis technology and replacement of water sources with new ones (new drilled wells). As a result of all the measures taken the overall high-fluoride exposure has been reduced substantially (82%).

  2. Effects of water uptake on melamine renal stone formation in mice.

    PubMed

    Peng, Jiao; Li, Daxu; Chan, Yee Kwan; Chen, Yan; Lamb, Jonathan R; Tam, Paul K H; El-Nezami, Hani

    2012-06-01

    Melamine-tainted food can induce kidney stones both in humans and animals and in domestic animals, severe cases caused acute kidney failure and death. Although increasing water intake can ameliorate kidney stone formation, its effect on melamine (Mel)-induced kidney stones has not been studied. We have analysed the effect of restricted ingestion of drinking water on melamine stone formation in mice. They were given melamine and cyanuric acid orally and received drinking water either freely or for a restricted time. Kidney stone formation and renal function were monitored. Mice receiving drinking water for a restricted 10-h period initially lost body weight, which returned to normal within 2 days. No other abnormalities were observed. Ingestion of melamine alone failed to induce kidney stones even under conditions of restricted drinking water. In mice treated with melamine together with cyanuric acid for 3 days, no renal stones were formed when the supply of drinking was normal. However, when drinking water was limited, stone formation was observed and accompanied by high levels of serum urea and creatinine. An increase in urine haemoglobin and glucose levels was also found. The administration resulted in up-regulated tissue osteopontin, kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin messenger RNA expression and macrophage infiltration. Our results indicate the importance of water intake in the formation of melamine-induced renal stone formation in the mouse and provide new information on the mechanisms of melamine stone formation.

  3. 7 CFR 1780.57 - Design policies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...

  4. 7 CFR 1780.57 - Design policies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...

  5. 7 CFR 1780.57 - Design policies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...

  6. 7 CFR 1780.57 - Design policies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...

  7. 7 CFR 1780.57 - Design policies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... et seq.). (c) Energy/environment. Facility design should consider cost effective energy-efficient and... distribution system water losses do not exceed reasonable levels. (g) Conformity with State drinking water... title XIV of the Public Health Service Act (commonly known as the ‘Safe Drinking Water Act’) (42 U.S.C...

  8. LOW-LEVEL DETERMINATION OF PERCHLORATE IN DRINKING WATER USING ION CHROMATOGRAPHY MASS SPECTROMETRY

    EPA Science Inventory

    Perchlorate is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag inflators, and i...

  9. THE OCCURRENCE OF CONTAMINANT ACCUMULATION IN LEAD PIPE SCALES FROM DOMESTIC DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Previous work has shown that contaminants, such as Al, As and Ra, can accumulate in drinking water distribution system solids. The release of accumulated contaminants back into the water supply could result in elevated levels at consumers’ taps, and current monitoring practices d...

  10. DETERMINATION OF PERCHLORATE AT TRACE LEVELS IN DRINKING WATER BY ION-PAIR EXTRACTION WITH ELECTROSPRAY IONIZATION MASS SPECTROMETRY.

    EPA Science Inventory

    Perchlorate has been added to the U.S. Environmental Protection Agency,s Drinking Water Contaminant Candidate List (CCL). The present work describes the analysis of perchlorate in water by liquid-liquid extraction followed by flow injection electrospray mass spectrometry (ESI/MS...

  11. The Occurrence of Contaminant Accumulation in Lead Pipe Scales from Domestic Drinking Water Distribution Systems-ABSTRACT

    EPA Science Inventory

    Previous work has shown that contaminants such as Al, As and Ra, can accumulate in drinking water distribution system solids. The release of accumulated contaminants back into the water supply could conceivably result in elevated levels at consumers’ taps. The current regulatory...

  12. Control of New Copper Corrosion in High-Alkalinity Drinking Water using Orthophosphate - article

    EPA Science Inventory

    Research and field experience have shown that high-alkalinity waters can be associated with elevated copper levels in drinking water. The objective of this study was to document the application of orthophosphate to the distribution system of a building with a copper problem asso...

  13. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic.

    PubMed

    Daley, Kiley; Truelstrup Hansen, Lisbeth; Jamieson, Rob C; Hayward, Jenny L; Piorkowski, Greg S; Krkosek, Wendy; Gagnon, Graham A; Castleden, Heather; MacNeil, Kristen; Poltarowicz, Joanna; Corriveau, Emmalina; Jackson, Amy; Lywood, Justine; Huang, Yannan

    2017-06-13

    Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of <2000) on trucked service, and in Iqaluit (population ~6700), which uses a combination of trucked and piped water conveyance. Generally, the source and drinking water was of satisfactory microbial quality, containing Escherichia coli levels of <1 MPN/100 mL with a few exceptions, and selected pathogenic bacteria and parasites were below detection limits using quantitative polymerase chain reaction (qPCR) methods. Tap water in households receiving trucked water contained less than the recommended 0.2 mg/L of free chlorine, while piped drinking water in Iqaluit complied with Health Canada guidelines for residual chlorine (i.e. >0.2 mg/L free chlorine). Some buildings in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks in buildings and ultimately at the tap.

  14. Modelling fate and transport of pesticides in river catchments with drinking water abstractions

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Seuntjens, Piet; Touchant, Kaatje

    2010-05-01

    When drinking water is abstracted from surface water, the presence of pesticides may have a large impact on the purification costs. In order to respect imposed thresholds at points of drinking water abstraction in a river catchment, sustainable pesticide management strategies might be required in certain areas. To improve management strategies, a sound understanding of the emission routes, the transport, the environmental fate and the sources of pesticides is needed. However, pesticide monitoring data on which measures are founded, are generally scarce. Data scarcity hampers the interpretation and the decision making. In such a case, a modelling approach can be very useful as a tool to obtain complementary information. Modelling allows to take into account temporal and spatial variability in both discharges and concentrations. In the Netherlands, the Meuse river is used for drinking water abstraction and the government imposes the European drinking water standard for individual pesticides (0.1 ?g.L-1) for surface waters at points of drinking water abstraction. The reported glyphosate concentrations in the Meuse river frequently exceed the standard and this enhances the request for targeted measures. In this study, a model for the Meuse river was developed to estimate the contribution of influxes at the Dutch-Belgian border on the concentration levels detected at the drinking water intake 250 km downstream and to assess the contribution of the tributaries to the glyphosate loads. The effects of glyphosate decay on environmental fate were considered as well. Our results show that the application of a river model allows to asses fate and transport of pesticides in a catchment in spite of monitoring data scarcity. Furthermore, the model provides insight in the contribution of different sub basins to the pollution level. The modelling results indicate that the effect of local measures to reduce pesticides concentrations in the river at points of drinking water abstraction, might be limited due to dominant transboundary loads. This emphasizes the need for transboundary management strategies on a river catchment scale.

  15. Incidence of heavy metal contamination in water supplies in northern Mexico.

    PubMed

    Wyatt, C J; Fimbres, C; Romo, L; Méndez, R O; Grijalva, M

    1998-02-01

    Contaminants in drinking water present public health risks. The objective of this study was to analyze water samples taken from wells or storage tanks, direct sources for domestic water in Northern Mexico, for the presence of lead (Pb), copper (Cu), cadmium (Cd), arsenic (As), and mercury (Hg). The samples were analyzed by atomic absorption coupled with a hydride generator or a graphite furnace. High levels of Pb (0.05-0.12 ppm) were found in Hermosillo, Guaymas, and Nacozari. Forty-three percent of the samples in Sonora exceeded the action level (0.015 ppm) established by the EPA for Pb. For As, 8.92% exceeded the limit with a range of 0.002-0.305 ppm. Several studies have indicated a possible link between As and fluoride (F) in drinking water. This study showed a positive correlation between F and As (r = 0.53, P = 0.01, and n = 116). One location in Hermosillo had 7.36 ppm of F and 0.117 ppm of As, 3.5 times the recommended F levels in drinking water and 2 times higher than the level permitted for As. Hg contamination was found in 42% of the samples. Based on the results of this study, it appears that As, Hg, and Pb contamination in the drinking water for some areas of the state of Sonora is a major concern.

  16. [Risk analysis of nitrate contamination in wells supplying drinking water in a rural area of Chile].

    PubMed

    Arumi, José Luis; Núñez, Jorge; Salgado, Luis; Claret, Marcelino

    2006-12-01

    To assess the risk associated with nitrate contamination of wells that supply drinking water in the rural, Parral region of central Chile. The nitrate concentration levels were determined using water samples from 94 wells. An analysis of the distribution of nitrate concentration levels was performed in order to assess possible geographic correlations. For the risk analysis, two exposure situations were identified among the population (for adults and for infants), and the health risks were mapped. Fourteen percent of the wells studied had nitrate concentration levels greater than what the Chilean health standards allow for drinking water. There was no geographic correlation for the nitrate concentration levels. The mean hazard quotient (HQ) for adults in the study area was 0.12, indicating an absence of risk for this population group. For infants, the HQ values had a maximum value of 3.1 in some locations, but the average was 0.69 (still below 1.0), indicating that the well water in the study area was generally not hazardous for infants. In the Parral region of Chile, nitrate contamination of wells is primarily linked to certain factors such as construction practices and the proximity of livestock. These factors affect the quality of drinking water in isolated cases. There was no risk found for the adult population, but there was for infants fed on formula mixed with water coming from the contaminated wells.

  17. Exposure to Tetrachloroethylene-Contaminated Drinking Water and the Risk of Pregnancy Loss

    PubMed Central

    Aschengrau, Ann; Weinberg, Janice M.; Gallagher, Lisa G.; Winter, Michael R.; Vieira, Veronica M.; Webster, Thomas F.; Ozonoff, David M.

    2010-01-01

    There is little information on the impact of solvent-contaminated drinking water on pregnancy outcomes. This retrospective cohort study examined whether maternal exposure to tetrachloroethylene (PCE) - contaminated drinking water in the Cape Cod region of Massachusetts influenced the risk of clinically recognized pregnancy loss. The study identified exposed (n=959) and unexposed (1,087) women who completed a questionnaire on their residential and pregnancy histories, and confounding variables. Exposure was estimated using water distribution system modeling software. No meaningful associations were seen between PCE exposure level and the risk of clinically recognized pregnancy loss at the exposure levels experienced by the study population. Because PCE remains a common water contaminant, it is important to continue monitoring its impact on women and their pregnancies. PMID:20613966

  18. [Research on the relationship between populations' long-term exposure to fluoride in drinking water and bone fracture in China].

    PubMed

    Liang, C; Ji, R; Cao, J; Cheng, X

    2001-09-01

    There are contradictory reports on the prevalence of bone fractures associated with long-term fluoride exposure from drinking water. The prevalence of bone fracture in six rural areas of China and the exposure of fluoride in drinking water was investigated. The data including medical history and demographic information, bone fractures, fluoride content in drinking water, physical activity, cigarette smoking, alcohol consumption and dietary intakes were collected. A retrospective epidemiological study by using the same design, method, quality control and the same questionnaire was conducted. A total of 8266 male and female over 50 years of age were divided into 6 groups by the fluoride concentrations in drinking water. The subjects in each group exposed to different levels of fluoride (0.25-0.34, 0.58-0.73, 1.00-1.06, 1.45-2.19, 2.62-3.58 and 4.32-7.97 mg/L) were 1363, 1407, 1370, 1574, 1051 and 1501 respectively. It has been confirmed that drinking water was the only major source of fluoride exposure in the studied populations. The total bone fracture rates were 7.41%, 6.40%, 5.11%, 6.04%, 6.09% and 7.40% in each group. Natural bone fracture rates in each group were 3.01%, 2.21%, 1.31%, 1.65%, 1.43% and 3.66% respectively. The prevalence of bone fracture and water fluoride level appeared a U-shaped relationship. The prevalence of total bone fracture and natural bone fracture in the population with fluoride 1.00-1.06 mg/L in drinking water was the lowest, compared with the groups exposed to fluoride higher than 4.32 mg/L and lower than 0.73 mg/L. The highest prevalence of hip fracture was in the group with higher water fluoride (4.32-7.97 mg/L) exposure. In general, the prevalence of hip fracture was lower and stable up to 1.06 mg/L of fluoride in drinking water, and then it appeared to rise. Based on the data collected in this investigation, it is concluded that the long-term fluoride exposure from drinking water higher than 4.32 mg/L might increase the risk of overall fractures as well as hip fractures. The risk of overall fractures and natural fractures might be lower while the water fluoride level is at 1.00-1.06 mg/L, however, no protective benefits of fluoride for the risk of hip fracture was observed.

  19. [Parasitic zoonoses transmitted by drinking water. Giardiasis and cryptosporidiosis].

    PubMed

    Exner, M; Gornik, V

    2004-07-01

    Nowadays, the parasitic zoonose organisms Giardia lamblia und Cryptosporidium spp. are among the most relevant pathogens of drinking water-associated disease outbreaks. These pathogens are transmitted via a fecal-oral route; in both cases the dose of infection is low. Apart from person-to-person or animal-to-person transmissions, the consumption of contaminated food and water are further modes of transmission. The disease is mainly characterized by gastrointestinal symptoms. In industrialized countries, the prevalence rate of giardiasis is 2-5 % and of cryptosporidiosis 1-3%. Throughout the world, a large number of giardiasis and cryptosporidiosis outbreaks associated with drinking water were published; in 2001 the first case in Germany was identified. Giardia and Cryptosporidium are detected in surface water and sporadically in unprotected groundwater. Use of these waters for drinking water abstraction makes high demands on the technology of the treatment process: because of the disinfectant resistance of the parasites, safe elimination methods are needed, which even at high contamination levels of source water guarantee safe drinking water. Further measures for prevention and control are implementation of the HACCP concept, which includes the whole chain of procedures of drinking water supply from catchment via treatment to tap and a quality management system.

  20. Assessment of semi-volatile organic compounds in drinking water sources in Jiangsu, China.

    PubMed

    Wu, Yifeng; Jia, Yongzhi; Lu, Xiwu

    2013-08-01

    Many xenobiotic compounds, especially organic pollutants in drinking water, can cause threats to human health and natural ecosystems. The ability to predict the level of pollutants and identify their source is crucial for the design of pollutant risk reduction plans. In this study, 25 semi-volatile organic compounds (SVOCs) were assessed at 16 monitoring sites of drinking water sources in Jiangsu, east China, to evaluate water quality conditions and source of pollutants. Four multivariate statistical techniques were used for this analysis. The correlation test indicated that 25 SVOCs parameters variables had a significant spatial variability (P<0.05). The results of correlation analysis, principal component analysis (PCA) and cluster analysis (CA) suggested that at least four sources, i.e., agricultural residual pesticides, industrial sewage, water transportation vehicles and miscellaneous sources, were responsible for the presence of SVOCs in the drinking water sites examined, accounting for 89.6% of the total variance in the dataset. The analysis of site similarity showed that 16 sites could be divided into high, moderate, and low pollutant level groups at (D(link)/D(max))×25<10, and each group had primary typical SVOCs. These results provide useful information for developing appropriate strategies for contaminants control in drinking water sources. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Low-level arsenic exposure from drinking water is associated with prostate cancer in Iowa.

    PubMed

    Roh, Taehyun; Lynch, Charles F; Weyer, Peter; Wang, Kai; Kelly, Kevin M; Ludewig, Gabriele

    2017-11-01

    Inorganic arsenic is a toxic naturally occurring element in soil and water in many regions of the US including the Midwest. Prostate cancer is the second most common type of cancer in men in Iowa, surpassed only by non-melanotic skin cancer. Epidemiology studies have evaluated arsenic exposure from drinking water and prostate cancer, but most have focused on high-level exposures outside the US. As drinking water from groundwater sources is a major source of arsenic exposure, we conducted an ecologic study to evaluate prostate cancer and arsenic in drinking water from public water sources and private wells in Iowa, where exposure levels are low, but duration of exposure can be long. Arsenic data from public water systems were obtained from the Iowa Safe Drinking Water Information System for the years 1994-2003 and for private wells from two Iowa Well Water Studies, the Iowa Community Private Well Study (ICPWS, 2002-2003) and Iowa Statewide Rural Well Water Survey Phase 2 (SWIRL2, 2006-2008) that provided data for 87 Iowa counties. Prostate cancer incidence data from 2009 to 2013 for Iowa were obtained from Surveillance, Epidemiology and End Results' SEER*Stat software. County averages of water arsenic levels varied from 1.08 to 18.6 ppb, with three counties above the current 10 ppb limit. Based on the tertiles of arsenic levels, counties were divided into three groups: low (1.08-2.06 ppb), medium (2.07-2.98 ppb), and high (2.99-18.6 ppb). Spatial Poisson regression modeling was conducted to estimate the risk ratios (RR) of prostate cancer by tertiles of arsenic level at a county level, adjusted for demographic and risk factors. The RR of prostate cancer were 1.23 (95% CI, 1.16-1.30) and 1.28 (95% CI, 1.21-1.35) in the medium and high groups, respectively, compared to the low group after adjusting for risk factors. The RR increased to 1.36 (95% CI, 1.28-1.45) in the high group when analyses were restricted to aggressive prostate cancers (Gleason score ≥ 7). This study shows a significant dose-dependent association between low-level arsenic exposure and prostate cancer, and if this result is replicated in future individual-level studies, may suggest that 10 ppb is not protective for human health. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    PubMed

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.

  3. Long-term mortality patterns in a residential cohort exposed to inorganic selenium in drinking water.

    PubMed

    Vinceti, Marco; Ballotari, Paola; Steinmaus, Craig; Malagoli, Carlotta; Luberto, Ferdinando; Malavolti, Marcella; Giorgi Rossi, Paolo

    2016-10-01

    Selenium (Se) is a metalloid of considerable nutritional and toxicological importance in humans. To date, limited epidemiologic evidence exists about the health effects of exposure to this trace element in drinking water. We investigated the relationship between Se levels in water and mortality in the municipality of Reggio Emilia, Italy, where high levels of Se were previously observed in drinking water. From 1974 to 1985, 2065 residents consumed drinking water with Se levels close to the European standard of 10μg/l, in its inorganic hexavalent form (selenate). Follow-up was conducted for the years 1986-2012 in Reggio Emilia and a lesser exposed comparison group of around 100,000 municipal residents, with comparable socio-demographic characteristics. Overall mortality from all causes, cardiovascular disease and cancer showed little evidence of differences. However, excess rate ratios were seen for some site specific cancers such as neoplasms of buccal cavity and pharynx, urinary tract, lymphohematopoietic tissue, melanoma, and two neurodegenerative diseases, Parkinson's disease and amyotrophic lateral sclerosis. Excess mortality in the exposed cohort for specific outcomes was concentrated in the first period of follow-up (1986-1997), and waned starting 10 years after the high exposure ended. We also found lower mortality from breast cancer in females during the first period of follow-up. When we extended the analysis to include residents who had been consuming the high-selenium drinking water for a shorter period, mortality rate ratios were also increased, but to a lesser extent. Overall, we found that the mortality patterns related to long-term exposure to inorganic hexavalent selenium through drinking water were elevated for several site-specific cancers and neurodegenerative disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    PubMed

    Liu, Xiaolu; Wang, Jingqi; Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L(-1) in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5) cells.mL(-1) to 2.6 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.6 mg.L(-1) to 4.8 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.3 mg.L(-1) due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.

  5. Effects of Assimilable Organic Carbon and Free Chlorine on Bacterial Growth in Drinking Water

    PubMed Central

    Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1×105 cells.mL-1 to 2.6×104 cells.mL-1 at an initial free chlorine dose of 0.6 mg.L-1 to 4.8×104 cells.mL-1 at an initial free chlorine dose of 0.3 mg.L-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network. PMID:26034988

  6. [The effect of mineral water on serotonin and insulin production (an experimental study)].

    PubMed

    Polushina, N D

    1998-01-01

    Radioimmunoassay (DRG kits) and orthotoluidine test were conducted to measure blood serotonin, insulin and glucose in 70 intact Wistar rat males before and after a course of drinking mineral water Essentuki 17 (MW). After the MW drinking course, a single dose of mineral water increases basal levels of serotonin and insulin, sensitivity of endocrine cells to MW. Serotonin and insulin rose maximally on minute 5 after the drink while in contrast to minute 15 and 30 before initiation of the MW drinking course. A direct correlation was found between blood concentrations of serotonin and insulin.

  7. Drinking Water in Transition: A Multilevel Cross-sectional Analysis of Sachet Water Consumption in Accra

    PubMed Central

    Stoler, Justin; Weeks, John R.; Appiah Otoo, Richard

    2013-01-01

    Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water–sealed single-use plastic sleeves–has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa. PMID:23840643

  8. An insight into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict.

    PubMed

    Vivar, M; Pichel, N; Fuentes, M; Martínez, F

    2016-04-15

    Drinking water access in the Saharawi refugee camps located in the Algerian desert is a challenge that is still an on-going problem after 40years of conflict. This work presents an analysis of the situation with emphasis on the water supply in health institutions (quantity and quality) including both sanitary inspections and a comprehensive water quality study. Results from sanitary inspections show that only half of the water supply installations at the hospitals are in adequate conditions and the rest present high risk of microbiological contamination. Water access in small medical community centres on the other hand present issues related to the non-availability of food-grade water tanks for the institutions (70%), the use of small 10l containers as the main water supply (40%), poor maintenance (60% under antihygienic conditions and 30% with damaged covers), and insufficient chlorine levels that prevent microbiological contamination. Regarding water quality analyses, raw water supply in Smara, El Aiun and Awserd camps present high conductivity and high levels of fluoride, chloride, nitrate and sulphate, but dropping to normal levels within the drinking-water standards after water treatment via reverse osmosis plants. But for the case of El Aiun and Awserd, the reverse osmosis plant only provides treated water to the population each 20days, so the population receives raw water directly and health risks should be evaluated. Finally, Dakhla water supply is the best in terms of physico-chemical parameters quality, currently providing safe drinking water after a chlorination stage. In summary, drinking water access has improved dramatically in the last years due to the efforts of local and international authorities but several issues remain to be solved: access to treated water for all the population, improved water quality controls (especially in Dakhla), expansion of distribution networks, and adequate storage systems and maintenance. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evolution of regulatory targets for drinking water quality.

    PubMed

    Sinclair, Martha; O'Toole, Joanne; Gibney, Katherine; Leder, Karin

    2015-06-01

    The last century has been marked by major advances in the understanding of microbial disease risks from water supplies and significant changes in expectations of drinking water safety. The focus of drinking water quality regulation has moved progressively from simple prevention of detectable waterborne outbreaks towards adoption of health-based targets that aim to reduce infection and disease to a level well below detection limits at the community level. This review outlines the changes in understanding of community disease and waterborne risks that prompted development of these targets, and also describes their underlying assumptions and current context. Issues regarding the appropriateness of selected target values, and how continuing changes in knowledge and practice may influence their evolution, are also discussed.

  10. Characterizing the concentration of Cryptosporidium in Australian surface waters for setting health-based targets for drinking water treatment.

    PubMed

    Petterson, S; Roser, D; Deere, D

    2015-09-01

    It is proposed that the next revision of the Australian Drinking Water Guidelines will include 'health-based targets', where the required level of potable water treatment quantitatively relates to the magnitude of source water pathogen concentrations. To quantify likely Cryptosporidium concentrations in southern Australian surface source waters, the databases for 25 metropolitan water supplies with good historical records, representing a range of catchment sizes, land use and climatic regions were mined. The distributions and uncertainty intervals for Cryptosporidium concentrations were characterized for each site. Then, treatment targets were quantified applying the framework recommended in the World Health Organization Guidelines for Drinking-Water Quality 2011. Based on total oocyst concentrations, and not factoring in genotype or physiological state information as it relates to infectivity for humans, the best estimates of the required level of treatment, expressed as log10 reduction values, ranged among the study sites from 1.4 to 6.1 log10. Challenges associated with relying on historical monitoring data for defining drinking water treatment requirements were identified. In addition, the importance of quantitative microbial risk assessment input assumptions on the quantified treatment targets was investigated, highlighting the need for selection of locally appropriate values.

  11. Concentration of heavy metals in drinking water of different localities in district east Karachi.

    PubMed

    Jaleel, M A; Noreen, R; Baseer, A

    2001-01-01

    Several heavy metals are present in drinking water that play important roles in the body provided their level remains within the specified range recommended by WHO. But now due to the industrialization and rapid urbanization, the problems of pollution have surfaced. This study was designed to ascertain the contents of some heavy metals and then their variations if any in drinking water in different localities of district East of Karachi, Pakistan. Drinking water samples were collected from different sources and localities of district East of Karachi. The concentration of the heavy metals i.e. Lead, Arsenic, Copper, Iron, Mercury, Chromium, Manganese, Nickel, Cadmium and Zinc were determined by Atomic Absorption Spectrophotometry. PH was estimated by pH meter. Total dissolved solids (TDS) were calculated by formula. These concentrations of heavy metals, pH and TDS were compared with the standards set by WHO. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water (Piped water, Hand pump water and Tanker water supply). Chromium was found to be raised in hand pump water. Arsenic and Mercury were not detected in any source of water. Copper, iron, manganese, cadmium and zinc were found to be within the safe limits in all the three sources of water. pH was found to be within the range of WHO recommended level in all the three sources of water. TDS was found to be elevated in hand pump water and tanker water. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water in district East of Karachi.

  12. Time to revisit arsenic regulations: comparing drinking water and rice.

    PubMed

    Sauvé, Sébastien

    2014-05-17

    Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l(-1) was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l(-1). Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water.

  13. Fluoride content in bottled drinking waters, carbonated soft drinks and fruit juices in Davangere city, India.

    PubMed

    Thippeswamy, H M; Kumar, Nanditha; Anand, S R; Prashant, G M; Chandu, G N

    2010-01-01

    The regular ingestion of fluoride lowers the prevalence of dental caries. The total daily intake of fluoride for optimal dental health should be 0.05-0.07 mg fluoride/kg body weight and to avoid the risk of dental fluorosis, the daily intake should not exceed a daily level of 0.10 mg fluoride/kg body weight. The main source of fluoride is from drinking water and other beverages. As in other countries, consumption of bottled water, juices and carbonated beverages has increased in our country. To analyze the fluoride content in bottled water, juices and carbonated soft drinks that were commonly available in Davangere city. Three samples of 10 commercially available brands of bottled drinking water, 12 fruit juices and 12 carbonated soft drinks were purchased. Bottled water and carbonated soft drinks were stored at a cold place until fluoride analysis was performed and a clear juice was prepared using different fruits without the addition of water. Then, the fluoride analysis was performed. The mean and standard deviation of fluoride content of bottled water, fruit juices and carbonated soft drinks were measured, which were found to be 0.20 mg (±0.19) F/L, 0.29 mg (±0.06) F/L and 0.22 mg (±0.05) F/L, respectively. In viewing the results of the present study, it can be concluded that regulation of the optimal range of fluoride in bottled drinking water, carbonated soft drinks and fruit juices should be drawn for the Indian scenario.

  14. Environmental Survey of Drinking Water Sources in Kampala, Uganda, during a Typhoid Fever Outbreak

    PubMed Central

    Kahler, A. M.; Nansubuga, I.; Nanyunja, E. M.; Kaplan, B.; Jothikumar, N.; Routh, J.; Gómez, G. A.; Mintz, E. D.; Hill, V. R.

    2017-01-01

    ABSTRACT In 2015, a typhoid fever outbreak began in downtown Kampala, Uganda, and spread into adjacent districts. In response, an environmental survey of drinking water source types was conducted in areas of the city with high case numbers. A total of 122 samples was collected from 12 source types and tested for Escherichia coli, free chlorine, and conductivity. An additional 37 grab samples from seven source types and 16 paired large volume (20 liter) samples from wells and springs were also collected and tested for the presence of Salmonella enterica serovar Typhi. Escherichia coli was detected in 60% of kaveras (drinking water sold in plastic bags) and 80% of refilled water bottles; free chlorine was not detected in either source type. Most jerry cans (68%) contained E. coli and had free chlorine residuals below the WHO-recommended level of 0.5 mg/liter during outbreaks. Elevated conductivity readings for kaveras, refilled water bottles, and jerry cans (compared to treated surface water supplied by the water utility) suggested that they likely contained untreated groundwater. All unprotected springs and wells and more than 60% of protected springs contained E. coli. Water samples collected from the water utility were found to have acceptable free chlorine levels and no detectable E. coli. While S. Typhi was not detected in water samples, Salmonella spp. were detected in samples from two unprotected springs, one protected spring, and one refilled water bottle. These data provided clear evidence that unregulated vended water and groundwater represented a risk for typhoid transmission. IMPORTANCE Despite the high incidence of typhoid fever globally, relatively few outbreak investigations incorporate drinking water testing. During waterborne disease outbreaks, measurement of physical-chemical parameters, such as free chlorine residual and electrical conductivity, and of microbiological parameters, such as the presence of E. coli or the implicated etiologic agent, in drinking water samples can identify contaminated sources. This investigation indicated that unregulated vended water and groundwater sources were contaminated and were therefore a risk to consumers during the 2015 typhoid fever outbreak in Kampala. Identification of contaminated drinking water sources and sources that do not contain adequate disinfectant levels can lead to rapid targeted interventions. PMID:28970225

  15. Drinking water insecurity: water quality and access in coastal south-western Bangladesh.

    PubMed

    Benneyworth, Laura; Gilligan, Jonathan; Ayers, John C; Goodbred, Steven; George, Gregory; Carrico, Amanda; Karim, Md Rezaul; Akter, Farjana; Fry, David; Donato, Katherine; Piya, Bhumika

    2016-01-01

    National drinking water assessments for Bangladesh do not reflect local variability, or temporal differences. This paper reports on the findings of an interdisciplinary investigation of drinking water insecurity in a rural coastal south-western Bangladesh. Drinking water quality is assessed by comparison of locally measured concentrations to national levels and water quality criteria; resident's access to potable water and their perceptions are based on local social surveys. Residents in the study area use groundwater far less than the national average; salinity and local rainwater scarcity necessitates the use of multiple water sources throughout the year. Groundwater concentrations of arsenic and specific conductivity (SpC) were greater than surface water (pond) concentrations; there was no statistically significant seasonal difference in mean concentrations in groundwater, but there was for ponds, with arsenic higher in the dry season. Average arsenic concentrations in local water drinking were 2-4 times times the national average. All of the local groundwater samples exceeded the Bangladesh guidance for SpC, although the majority of residents surveyed did not perceive their water as having a 'bad' or 'salty' taste.

  16. 78 FR 32558 - Expedited Approval of Alternative Test Procedures for the Analysis of Contaminants Under the Safe...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ...This action announces the U.S. Environmental Protection Agency's (EPA's) approval of alternative testing methods for use in measuring the levels of contaminants in drinking water and determining compliance with national primary drinking water regulations. The Safe Drinking Water Act (SDWA) authorizes EPA to approve the use of alternative testing methods through publication in the Federal Register. EPA is using this streamlined authority to make 84 additional methods available for analyzing drinking water samples. This expedited approach provides public water systems, laboratories, and primacy agencies with more timely access to new measurement techniques and greater flexibility in the selection of analytical methods, thereby reducing monitoring costs while maintaining public health protection.

  17. Human Health Screening and Public Health Significance of ...

    EPA Pesticide Factsheets

    The source water and treated drinking water from twenty five drinking water treatment plants (DWTPs) across the United States were sampled in 2010 – 2012. Samples were analyzed for 247 contaminants using 15 chemical and microbiological methods. Most of these contaminants are not regulated currently either in drinking water or in discharges to ambient water by the United States Environmental Protection Agency (EPA) or other U.S. regulatory agencies. This analysis shows that there is little public health concern for most of the contaminants detected in treated water from the 25 DWTPs participating in this study. For vanadium, the calculated MOE was less than the screening MOE in two DWTPs. Additional study, for example a national survey may be needed to determine the number of people ingesting vanadium above a level of concern. In addition, the concentrations of lithium found in treated water from several DWTPs are within the range previous research has suggested to have a human health effect. Additional investigation of this issue may also be appropriate. Finally, new toxicological data suggests that exposure to manganese at levels in public water supplies may present a public health concern which may warrant a more robust assessment of this information. This paper provides a screening-level human health risk assessment using the margin of exposure of exposure approach, of contaminants of emerging concern detected in drinking water. As far as we are a

  18. Arsenic in public water supplies and cardiovascular mortality in Spain.

    PubMed

    Medrano, M A José; Boix, Raquel; Pastor-Barriuso, Roberto; Palau, Margarita; Damián, Javier; Ramis, Rebeca; Del Barrio, José Luis; Navas-Acien, Ana

    2010-07-01

    High-chronic arsenic exposure in drinking water is associated with increased cardiovascular disease risk. At low-chronic levels, as those present in Spain, evidence is scarce. In this ecological study, we evaluated the association of municipal drinking water arsenic concentrations during the period 1998-2002 with cardiovascular mortality in the population of Spain. Arsenic concentrations in drinking water were available for 1721 municipalities, covering 24.8 million people. Standardized mortality ratios (SMRs) for cardiovascular (361,750 deaths), coronary (113,000 deaths), and cerebrovascular (103,590 deaths) disease were analyzed for the period 1999-2003. Two-level hierarchical Poisson models were used to evaluate the association of municipal drinking water arsenic concentrations with mortality adjusting for social determinants, cardiovascular risk factors, diet, and water characteristics at municipal or provincial level in 651 municipalities (200,376 cardiovascular deaths) with complete covariate information. Mean municipal drinking water arsenic concentrations ranged from <1 to 118 microg/L. Compared to the overall Spanish population, sex- and age-adjusted mortality rates for cardiovascular (SMR 1.10), coronary (SMR 1.18), and cerebrovascular (SMR 1.04) disease were increased in municipalities with arsenic concentrations in drinking water > 10 microg/L. Compared to municipalities with arsenic concentrations < 1 microg/L, fully adjusted cardiovascular mortality rates were increased by 2.2% (-0.9% to 5.5%) and 2.6% (-2.0% to 7.5%) in municipalities with arsenic concentrations between 1-10 and >10 microg/L, respectively (P-value for trend 0.032). The corresponding figures were 5.2% (0.8% to 9.8%) and 1.5% (-4.5% to 7.9%) for coronary heart disease mortality, and 0.3% (-4.1% to 4.9%) and 1.7% (-4.9% to 8.8%) for cerebrovascular disease mortality. In this ecological study, elevated low-to-moderate arsenic concentrations in drinking water were associated with increased cardiovascular mortality at the municipal level. Prospective cohort studies with individual measures of arsenic exposure, standardized cardiovascular outcomes, and adequate adjustment for confounders are needed to confirm these ecological findings. Our study, however, reinforces the need to implement arsenic remediation treatments in water supply systems above the World Health Organization safety standard of 10 microg/L. 2009 Elsevier Inc. All rights reserved.

  19. Exposure to low level of arsenic and lead in drinking water from Antofagasta city induces gender differences in glucose homeostasis in rats.

    PubMed

    Palacios, Javier; Roman, Domingo; Cifuentes, Fredi

    2012-08-01

    Populations chronically exposed to arsenic in drinking water often have increased prevalence of diabetes mellitus. The purpose of this study was to compare the glucose homeostasis of male and female rats exposed to low levels of heavy metals in drinking water. Treated groups were Sprague-Dawley male and female rats exposed to drinking water from Antofagasta city, with total arsenic of 30 ppb and lead of 53 ppb for 3 months; control groups were exposed to purified water by reverse osmosis. The two treated groups in both males and females showed arsenic and lead in the hair of rats. The δ-aminolevulinic acid dehydratase was used as a sensitive biomarker of arsenic toxicity and lead. The activity of δ-aminolevulinic acid dehydratase was reduced only in treated male rats, compared to the control group. Treated males showed a significantly sustained increase in blood glucose and plasma insulin levels during oral glucose tolerance test compared to control group. The oral glucose tolerance test and the homeostasis model assessment of insulin resistance demonstrated that male rats were insulin resistant, and females remained sensitive to insulin after treatment. The total cholesterol and LDL cholesterol increased in treated male rats vs. the control, and triglyceride increased in treated female rats vs. the control. The activity of intestinal Na+/glucose cotransporter in male rats increased compared to female rats, suggesting a significant increase in intestinal glucose absorption. The findings indicate that exposure to low levels of arsenic and lead in drinking water could cause gender differences in insulin resistance.

  20. Association between drinking water uranium content and cancer risk in Bavaria, Germany.

    PubMed

    Radespiel-Tröger, M; Meyer, M

    2013-10-01

    To evaluate the possible association between uranium (U) content in public drinking water on the one hand and the risk of cancer of the colorectum, lung, female breast, prostate, kidney, and urinary bladder, total cancer, and leukemia on the other hand in Bavaria, an ecologic study on the level of municipalities was performed. Cancer incidence data for the years 2002-2008 were obtained from the population-based cancer registry Bavaria according to sex. Current U content data of public drinking water on the level of municipalities were obtained from a publicly available source. The possible association between drinking water U content and cancer risk adjusted for average socio-economic status was evaluated using Poisson regression. Drinking water U content was below 20 μg/L in 458 out of 461 included municipalities. We found a significantly increased risk of leukemia in men in the intermediate (U level, 1.00-4.99 μg/L; relative risk [RR], 1.14) and in the highest U exposure category (U level, ≥5 μg/L; RR, 1.28). Moreover, in women, a significantly elevated risk was identified with respect to kidney cancer in the highest exposure category (RR, 1.16) and with respect to lung cancer in the intermediate exposure category (RR, 1.12). The slightly increased risk of leukemia in men, kidney cancer in women, and lung cancer in women may require further investigation. If an increased cancer risk is confirmed, preventive measures (e.g., introduction of U filters in public water systems) may be considered.

  1. Prevalence of fluorosis and identification of fluoride endemic areas in Manur block of Tirunelveli District, Tamil Nadu, South India

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Subarayan Bothi; Viswanathan, Gopalan; Siva Ilango, S.

    2012-12-01

    Prevalence of fluorosis is mainly due to the consumption of more fluoride through drinking water. It is necessary to identify the fluoride endemic areas to adopt remedial measures for the people under the risk of fluorosis. The objectives of this study were to identify the exact location of fluoride endemic areas in Manur block of Tirunelveli District and to estimate fluoride exposure level through drinking water for different age groups. Identification of fluoride endemic areas was performed through Isopleth and Google earth mapping techniques. Fluoride level in drinking water samples was estimated by fluoride ion selective electrode method. A systematic clinical survey conducted in 19 villages of Manur block revealed the rate of prevalence of fluorosis. From this study, it has been found that Alavanthankulam, Melapilliyarkulam, Keezhapilliyarkulam, Nadupilliyarkulam, Keezhathenkalam and Papankulam are the fluoride endemic villages, where the fluoride level in drinking water is above 1 mg/l. Consumption of maximum fluoride exposure levels of 0.30 mg/kg/day for infants, 0.27 mg/kg/day for children and 0.15 mg/kg/day for adults were found among the respective age group people residing in high fluoride endemic area. As compared with adequate intake level of fluoride of 0.01 mg/kg/day for infants and 0.05 mg/kg/day for other age groups, the health risk due to excess fluoride intake to the people of Alavanthankulam and nearby areas has become evident. Hence the people of these areas are advised to consume drinking water with optimal fluoride to avoid further fluorosis risks.

  2. Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances.

    PubMed

    Kaboré, Hermann A; Vo Duy, Sung; Munoz, Gabriel; Méité, Ladji; Desrosiers, Mélanie; Liu, Jinxia; Sory, Traoré Karim; Sauvé, Sébastien

    2018-03-01

    In the last decade or so, concerns have arisen with respect to the widespread occurrence of perfluoroalkyl acids (PFAAs) in the environment, food, drinking water, and humans. In this study, the occurrence and levels of a large range of perfluoroalkyl and polyfluoroalkyl substances (PFASs) were investigated in drinking water (bottled and tap water samples) from various locations around the world. Automated off-line solid phase extraction followed by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was used to analyze PFASs of various chain lengths and functional groups. In total, 29 target and 104 suspect-target PFASs were screened in drinking water samples (n=97) from Canada and other countries (Burkina Faso, Chile, Ivory Coast, France, Japan, Mexico, Norway, and the USA) in 2015-2016. Out of the 29 PFASs quantitatively analyzed, perfluorocarboxylates (PFCAs: C 4/14 ), perfluoroalkane sulfonates (PFSAs: C 4 , C 6 , C 8 ), and perfluoroalkyl acid precursors (e.g., 5:3 fluorotelomer carboxylate (5:3 FTCA)) were recurrently detected in drinking water samples (concentration range:

  3. Efficacy of water treatment processes and endemic gastrointestinal illness - A multi-city study in Sweden.

    PubMed

    Tornevi, Andreas; Simonsson, Magnus; Forsberg, Bertil; Säve-Söderbergh, Melle; Toljander, Jonas

    2016-10-01

    Outbreaks of acute gastrointestinal illnesses (AGI) have been linked to insufficient drinking water treatment on numerous occasions in the industrialized world, but it is largely unknown to what extent public drinking water influences the endemic level of AGI. This paper aimed to examine endemic AGI and the relationship with pathogen elimination efficacy in public drinking water treatment processes. For this reason, time series data of all telephone calls to the Swedish National Healthcare Guide between November 2007 and February 2014 from twenty Swedish cities were obtained. Calls concerning vomiting, diarrhea or abdominal pain (AGI calls) were separated from other concerns (non-AGI calls). Information on which type of microbial barriers each drinking water treatment plant in these cities have been used were obtained, together with the barriers' theoretical pathogen log reduction efficacy. The total log reduction in the drinking water plants varied between 0.0 and 6.1 units for viruses, 0.0-14.6 units for bacteria and 0.0-7.3 units regarding protozoans. To achieve one general efficacy parameter for each plant, a weighted mean value of the log reductions (WLR) was calculated, with the weights based on how commonly these pathogen groups cause AGI. The WLR in the plants varied between 0.0 and 6.4 units. The effect of different pathogen elimination efficacy on levels of AGI calls relative non-AGI calls was evaluated in regression models, controlling for long term trends, population size, age distribution, and climatological area. Populations receiving drinking water produced with higher total log reduction was associated with a lower relative number of AGI calls. In overall, AGI calls decreased by 4% (OR = 0.96, CI: 0.96-0.97) for each unit increase in the WLR. The findings apply to both groundwater and surface water study sites, but are particularly evident among surface water sites during seasons when viruses are the main cause of AGI. This study proposes that the endemic level of gastroenteritis can indeed be reduced with more advanced treatment processes at many municipal drinking water treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Volatile organic compounds in samples from domestic and public wells, 1985-2002

    USGS Publications Warehouse

    Rowe, Barbara L.; Zogorski, John S.; Valder, Joshua F.

    2006-01-01

    The U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program recently completed a national study of volatile organic compounds (VOCs) in the Nation's ground water (Zogorski and others, 2006). Part of this assessment emphasizes the occurrence of 55 VOCs in samples from 2,401 domestic wells and 1,096 public wells during 1985-2002. Samples were collected prior to any treatment or blending of water. Domestic wells are privately owned, self-supplied sources used for drinking water and household use (Moran and others, 2002). Public wells are privately or publicly owned and supply water to public water systems (PWSs). Samples from public wells in this assessment characterize the quality of water captured by wells that supply drinking water to PWSs. These systems supply drinking water to at least 15 service connections or regularly serve at least 25 individuals daily at least 60 days a year (U.S. Environmental Protection Agency, 2005). For a screening-level assessment, VOC concentrations were compared to human-health benchmarks. Concentrations greater than the U.S. Environmental Protection Agency's (USEPA) Maximum Contamination Levels (MCLs) (U.S. Environmental Protection Agency, 2004) or the USGS's Health-Based Screening Levels (HBSLs) (Zogorski and others, 2006) were considered of potential human-health concern. The findings from the well samples provide an important perspective on the quality of the Nation's ground water used for drinking-water supplies. More information about this national assessment of VOCs is available (http://water.usgs.gov/nawqa/vocs/national_assessment).

  5. Microbiological effectiveness of disinfecting water by boiling in rural Guatemala.

    PubMed

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-03-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1-10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations.

  6. Microbiological Effectiveness of Disinfecting Water by Boiling in Rural Guatemala

    PubMed Central

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-01-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1–10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations. PMID:20207876

  7. Geogenic fluoride and arsenic contamination in the groundwater environments in Tanzania

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Prosun; Lesafi, Fina; Filemon, Regina; Ligate, Fanuel; Ijumulana, Julian; Mtalo, Felix

    2016-04-01

    Adequate, safe and accessible drinking water is an important aspect to human health worldwide. Understanding this importance, the Tanzanian Government has initiated a number of programmes to ensure access to high quality water by the citizens. However, elevated concentration of geochemical pollutants in many drinking water sources pose a serious challenge to water suppliers and users in the country. Fluoride is a widespread drinking water contaminant of geogenic origin occuring in both surface- and groundwater around volcanic mountains and many parts within the East African Rift Valley in regions including Arusha (10 mg/L), Shinyanga (2.9 mg/L) and Singida (1.8 mg/L). An estimated 90% of the population living along the Rift Valley region are affected by dental or skeletal fluorosis and bone crippling because of long term exposure to very high levels of fluoride in drinking water sources. In the mining areas within Lake Victoria basin, groundwater wit elevated concentrations of arsenic has been discovered over an extended area. Most of these geochemical and naturally occurring drinking water pollutants are patchy with uncertainities in their spatial and temporal distribution patterns. The adverse health effects of skin disorder and cancer due to an elevated As concentration are reported from the North Mara gold and Geita mining areas in the Lake Victoria basin. About 30% of the water sources used for drinking in Tanzania exceed the WHO guideline values of fluoride (1.5 mg/L) and arsenic (10 μg/L). There is a scarcity of baseline information on the water quality data especially on geogenic contaminants in the groundwater and surface water as potable sources. This information is crucial in exploring sources of safe drinking water aquifers, associated human health risks of fluoride and arsenic pollution. using Laboratory based studies during the past two decades have shown promising results on the removal of fluoride and arsenic using locally available adsorbent materials such as pumice, bauxite, ferralsols and bone char. Developing innovative technologies, pilot-scale implementation and scaling-up water purification based on the locally available adsorbents is thus necessary to safeguard the public health for communities exposed to high levels of fluoride and arsenic in drinking water.

  8. Rural drinking water at supply and household levels: quality and management.

    PubMed

    Hoque, Bilqis A; Hallman, Kelly; Levy, Jason; Bouis, Howarth; Ali, Nahid; Khan, Feroze; Khanam, Sufia; Kabir, Mamun; Hossain, Sanower; Shah Alam, Mohammad

    2006-09-01

    Access to safe drinking water has been an important national goal in Bangladesh and other developing countries. While Bangladesh has almost achieved accepted bacteriological drinking water standards for water supply, high rates of diarrheal disease morbidity indicate that pathogen transmission continues through water supply chain (and other modes). This paper investigates the association between water quality and selected management practices by users at both the supply and household levels in rural Bangladesh. Two hundred and seventy tube-well water samples and 300 water samples from household storage containers were tested for fecal coliform (FC) concentrations over three surveys (during different seasons). The tube-well water samples were tested for arsenic concentration during the first survey. Overall, the FC was low (the median value ranged from 0 to 4 cfu/100ml) in water at the supply point (tube-well water samples) but significantly higher in water samples stored in households. At the supply point, 61% of tube-well water samples met the Bangladesh and WHO standards of FC; however, only 37% of stored water samples met the standards during the first survey. When arsenic contamination was also taken into account, only 52% of the samples met both the minimum microbiological and arsenic content standards of safety. The contamination rate for water samples from covered household storage containers was significantly lower than that of uncovered containers. The rate of water contamination in storage containers was highest during the February-May period. It is shown that safe drinking water was achieved by a combination of a protected and high quality source at the initial point and maintaining quality from the initial supply (source) point through to final consumption. It is recommended that the government and other relevant actors in Bangladesh establish a comprehensive drinking water system that integrates water supply, quality, handling and related educational programs in order to ensure the safety of drinking water supplies.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschengrau, A.; Zierler, S.; Cohen, A.

    To investigate the relationship between community drinking water quality and spontaneous abortion, we compared trace element levels in the drinking water of 286 women having a spontaneous abortion through 27 wk gestation with that of 1,391 women having live births. Trace element levels were gathered from analyses of public tap water supplies from the communities where the women resided during pregnancy. After adjustment for potential confounders, an increase in the frequency of spontaneous abortion was associated with detectable levels of mercury; high levels of arsenic, potassium, and silica; moderately hard water, and surface water. In contrast, a decrease in themore » frequency of spontaneous abortion was associated with high levels of alkalinity and sulfate, and any detectable level of nitrate. These results require further corroboration because there is a paucity of data investigating this issue.« less

  10. Fluoride estimation and its correlation with other physicochemical parameters in drinking water of some areas of Balochistan, Pakistan.

    PubMed

    Chandio, Tasawar Ali; Khan, Muhammad Nasiruddin; Sarwar, Anila

    2015-08-01

    The fluoride level in drinking water is an important parameter and has to be controlled in order to prevent dental and skeletal fluorosis. The objective of this study is to assess fluoride content and other water quality parameters in the samples taken from open wells, tube wells, and karezes of Mastung, Mangochar, and Pringabad areas of Balochistan province. A total number of 96 drinking water samples out of 150 were found unfit for human consumption. Area-wise analysis show that the samples from 39 sites from Mastung, 12 from Mangochar, and 13 from Pringabad were found in the risk of dental fluorosis of mild to severe nature. However, 12 sampling sites from Mastung, 8 from Mangochar, and 2 from Pringabad were identified as the risks of mottling and skeletal fluorosis or other bone abnormalities. The highest concentration of F(-) has been observed as 14 mg L(-1) in Mastung. Correlation analysis show that fluoride solubility in drinking water is pH dependent; and the salts of Ca(2+), Na(+), K(+), Cl(-), and SO4(2-) contribute to attain the favorable pH for dissolution of fluoride compounds in drinking water. Principal component analysis shows that the geochemical composition of the rocks is only responsible for groundwater contamination. On the basis of the results, defloridation of the identified sampling sites and continuous monitoring of drinking water at regular basis is recommended at government level to avoid further fluorosis risks.

  11. Health risk assessment of fluoride in drinking water from Anhui Province in China.

    PubMed

    Gao, Hong-jian; Jin, You-qian; Wei, Jun-ling

    2013-05-01

    This study analyzes the concentrations and health risks of fluoride in 249 drinking water samples collected from different regions of Anhui Province in China. Results indicated that fluoride content in drinking water ranged from 0.12 to 1.94 mg L(-1) (mean = 0.57 mg L(-1)) in the following order: Huaibei plain region > Jianghuai hill region ≈ Dabieshan mountainous region > plain along the Yangtze River region > southern Anhui mountainous region. The fluoride contents were less than 0.50 mg L(-1) in 66.66 % of the drinking water samples, 0.51-1.0 mg L(-1) in 23.29 %, and higher than 1.0 mg L(-1) in 12.04 %. The fluoride levels in some samples were lower than the recommended values for controlling dental caries (0.50-1.0 mg L(-1)). The total fluoride intake from drinking water was between 0.14 and 2.33 mg per day in different regions of the province, supposing an individual consumes 1.2 L of water per day. Therefore, measures should be taken to increase fluoride intake in the Jianghuai hill region, Dabieshan mountainous region, plain along the Yangtze River, and southern Anhui mountainous region to control dental caries. On the other hand, the fluoride levels must be reduced in the Huaibei plain region to decrease endemic fluorosis. The results serve as crucial guidelines for managing fluoride safety in drinking water and controlling endemic fluorosis in different regions of Anhui Province.

  12. Rapid analysis of perchlorate in drinking water at parts per billion levels using microchip electrophoresis.

    PubMed

    Gertsch, Jana C; Noblitt, Scott D; Cropek, Donald M; Henry, Charles S

    2010-05-01

    A microchip capillary electrophoresis (MCE) system has been developed for the determination of perchlorate in drinking water. The United States Environmental Protection Agency (USEPA) recently proposed a health advisory limit for perchlorate in drinking water of 15 parts per billion (ppb), a level requiring large, sophisticated instrumentation, such as ion chromatography coupled with mass spectrometry (IC-MS), for detection. An inexpensive, portable system is desired for routine online monitoring applications of perchlorate in drinking water. Here, we present an MCE method using contact conductivity detection for perchlorate determination. The method has several advantages, including reduced analysis times relative to IC, inherent portability, high selectivity, and minimal sample pretreatment. Resolution of perchlorate from more abundant ions was achieved using zwitterionic, sulfobetaine surfactants, N-hexadecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate (HDAPS) and N-tetradecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate (TDAPS). The system performance and the optimization of the separation chemistry, including the use of these surfactants to resolve perchlorate from other anions, are discussed in this work. The system is capable of detection limits of 3.4 +/- 1.8 ppb (n = 6) in standards and 5.6 +/- 1.7 ppb (n = 6) in drinking water.

  13. Comparing the microbial risks associated with household drinking water supplies used in peri-urban communities of Phnom Penh, Cambodia.

    PubMed

    Thomas, K; McBean, E; Shantz, A; Murphy, H M

    2015-03-01

    Most Cambodians lack access to a safe source of drinking water. Piped distribution systems are typically limited to major urban centers in Cambodia, and the remaining population relies on a variety of surface, rain, and groundwater sources. This study examines the household water supplies available to Phnom Penh's resettled peri-urban residents through a case-study approach of two communities. A quantitative microbial risk assessment is performed to assess the level of diarrheal disease risk faced by community members due to microbial contamination of drinking water. Risk levels found in this study exceed those associated with households consuming piped water. Filtered and boiled rain and tank water stored in a kettle, bucket/cooler, bucket with spigot or a 500 mL bottle were found to provide risk levels within one order-of-magnitude to the piped water available in Phnom Penh. Two primary concerns identified are the negation of the risk reductions gained by boiling due to prevailing poor storage practices and the use of highly contaminated source water.

  14. Effect of agrochemical use on the drinking water quality of Agogo, a tomato growing community in Ashanti Akim, Ghana.

    PubMed

    Obiri-Danso, K; Adonadaga, M G; Hogarh, J N

    2011-01-01

    The effect of agrochemical use in agricultural activities on the drinking water quality of ground and surface water within Agogo, a prominent tomato growing area in the Ashanti region of Ghana was assessed by monitoring physicochemical parameters, trace metals and microbial quality of two water sources. Levels of contamination were greater in surface water than groundwater. Trace metal levels (mg/L) were 1.40, 0.12, 0.08 and 0.18 in surface water and 0.08, 0.10, 0.05 and 0.08 in groundwater for Fe, Pb, Zn and Cd, respectively. Lead and Cd in surface and groundwater exceeded USEPA maximum acceptable levels (MCLs) for drinking water. Bacterial indicator numbers (geometric means/100 mL) in surface water varied from 9.35 x 10⁵ to 1.57 x 10¹¹ for total coliforms, 4.15 x 10⁴ to 2.10 x 10⁷ for faecal coliforms and 2.80 x 10 to 3.25 x 10² for enterococci, but none was found in groundwater.

  15. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... 40 Protection of Environment 26 2011-07-01 2011-07-01 false EPA Interim Primary Drinking Water... Water Standards Parameter Maximum level (mg/l) Arsenic 0.05 Barium 1.0 Cadmium 0.01 Chromium 0.05...

  16. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... 40 Protection of Environment 25 2010-07-01 2010-07-01 false EPA Interim Primary Drinking Water... Water Standards Parameter Maximum level (mg/l) Arsenic 0.05 Barium 1.0 Cadmium 0.01 Chromium 0.05...

  17. OVERVIEW OF A NEW EPA METHOD: DETERMINATION OF PERCHLORATE IN DRINKING WATER, GROUNDWATER AND HIGH SALINITY WATER BY ION CHROMATOGRAPHY, SUPPRESSED CONDUCTIVITY WITH ELECTROSPRAY IONIZATION MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    In this presentation the analytical instrumentation and procedures necessary to qualitatively and quantitatively determine low levels of perchlorate (ClO4-) in drinking waters using ion chromatography with electrolytic conductivity suppression, electrospray ionization mass spec...

  18. Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice.

    PubMed

    Etani, Reo; Kataoka, Takahiro; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori

    2016-06-01

    Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)-induced hyperuricemia in mice. Mice inhaled radon at a concentration of 2000 Bq/m(3) for 24 h or were given hot spring water for 2 weeks. Mice were then administrated PO at a dose of 500 mg/kg. The results obtained showed that serum uric acid levels were significantly increased by the administration of PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. Reexamining the risks of drinking-water nitrates on public health.

    PubMed

    Richard, Alyce M; Diaz, James H; Kaye, Alan David

    2014-01-01

    Nitrates in drinking water are generally considered the sole source of nitrite poisoning with methemoglobinemia in infantile methomoglobinemia (IM). However, IM, which occurs during the first 4 months of life, is actually a constellation of cyanosis and hypoxia associated with methemoglobinemia that can result from several other causes. This review reexamines the role of nitrate levels in drinking water as a cause of IM and identifies other sources of nitrates that can affect public health and cause chronic diseases. Causes of IM include nitrites in foods, environmental chemical exposures, commonly prescribed pharmaceuticals, and the endogenous generation of oxides of nitrogen. Infants with congenital enzyme deficiencies in glucose-6-phosphate dehydrogenase and methemoglobin reductase are at greater risk of nitrite-induced methemoglobinemia from nitrates in water and food and from exposures to hemoglobin oxidizers. Early epidemiological studies demonstrated significant associations between high groundwater nitrate levels and elevated methemoglobin levels in infants fed drinking water-diluted formulas. However, more recent epidemiological investigations suggest other sources of nitrogenous substance exposures in infants, including protein-based formulas and foods and the production of nitrate precursors (nitric acid) by bacterial action in the infant gut in response to inflammation and infection.

  20. Arsenic in Drinking Water—A Global Environmental Problem

    NASA Astrophysics Data System (ADS)

    Shaofen Wang, Joanna; Wai, Chien M.

    2004-02-01

    Arsenic contamination of groundwater is a global environmental problem affecting a large number of populations, especially in developing countries. The "blackfoot disease"that occurred in Taiwan more than half of a century ago was attributed to drinking arsenic-contaminated water from deep wells containing high concentrations of the trivalent arsenite species. Similar arsenic poisoning cases were reported later in Chinese Inner Mongolia, Bangladesh, and India—all related to drinking groundwater contaminated with arsenic. The maximum contaminant level (MCL) of arsenic in drinking water has been changed recently by the U.S. EPA from 50 ppb to 10 ppb; the compliance date is January 2006. This article summarizes documented global arsenic contamination problems, the regulatory controversy regarding MCL of arsenic in drinking water, and available technologies for removing arsenic from contaminated waters. Methods for analyzing total arsenic and arsenic species in water are also described.

  1. [Relationship of the quality of drinking water to its use regimens and the types of water supply pipes].

    PubMed

    Mysiakin, A E; Korolik, V V

    2010-01-01

    Drinking water running along the pipes made from different materials was investigated. Two experiments could determine the material that assured at least of all the quality of drinking water in accordance with SanPin 2.1.4.1074-01. The mechanism for worsening the quality of water supplied to a user was revealed in relation to the water use regimen. Short-term flow stoppage of water was found to result in its lower oxygen levels, a larger number of different groups of iron- and manganese-reducing bacteria and an enhanced bacterial reduction of oxides. The latter was accompanied by the dissolution of heavy metals, which induced secondary water contamination.

  2. Management of a toxic cyanobacterium bloom (Planktothrix rubescens) affecting an Italian drinking water basin: a case study.

    PubMed

    Bogialli, Sara; Nigro di Gregorio, Federica; Lucentini, Luca; Ferretti, Emanuele; Ottaviani, Massimo; Ungaro, Nicola; Abis, Pier Paolo; Cannarozzi de Grazia, Matteo

    2013-01-02

    An extraordinary bloom of Planktothrix rubescens, which can produce microcystins (MCs), was observed in early 2009 in the Occhito basin, used even as a source of drinking water in Southern Italy. Several activities, coordinated by a task force, were implemented to assess and manage the risk associated to drinking water contaminated by cyanobacteria. Main actions were: evaluation of analytical protocols for screening and confirmatory purpose, monitoring the drinking water supply chain, training of operators, a dedicated web site for risk communication. ELISA assay was considered suitable for health authorities as screening method for MCs and to optimize frequency of sampling according to alert levels, and as internal control for the water supplier. A liquid chromatography-tandem mass spectrometric method able to quantify 9 MCs was optimized with the aim of supporting health authorities in a comprehensive risk evaluation based on the relative toxicity of different congeners. Short, medium, and long-term corrective actions were implemented to mitigate the health risk. Preoxidation with chlorine dioxide followed by flocculation and settling have been shown to be effective in removing MCs in the water treatment plant. Over two years, despite the high levels of cyanobacteria (up to 160 × 10(6) cells/L) and MCs (28.4 μg/L) initially reached in surface waters, the drinking water distribution was never limited.

  3. Assessment of Two Different Drinking Water Treatment Plants for the Removal of Free-living Amoebae, Egypt.

    PubMed

    Al-Herrawy, Ahmad Z; Gad, Mahmoud A

    2017-01-01

    The aim of this study was to compare between slow and rapid sand filters for the removal of free-living amoebae during drinking water treatment production. Overall, 48 water samples were collected from two drinking water treatment plants having two different filtration systems (slow and rapid sand filters) and from inlet and outlet of each plant. Water samples were collected from Fayoum Drinking Water and Wastewater Holding Company, Egypt, during the year 2015. They were processed for detection of FLAs using non-nutrient agar (NNA). The isolates of FLAs were microscopically identified to the genus level based on the morphologic criteria and molecularly confirmed by the aid of PCR using genus-specific primers. The percentage of removal for FLAs through different treatment processes reached its highest rate in the station using slow sand filters (83%), while the removal by rapid sand filter system was 71.4%. Statistically, there was no significant difference ( P =0.55) for the removal of FLAs between the two different drinking water treatment systems. Statistically, seasons had no significant effect on the prevalence of FLAs in the two different drinking water treatment plants. Morphological identification of the isolated FLAs showed the presence of 3 genera namely Acanthamoeba , Naegleria , and Vermamoeba ( Hartmannella ) confirmed by PCR. The appearance of FLAs especially pathogenic amoebae in completely treated drinking water may cause potential health threat although there is no statistical difference between the two examined drinking water filtration systems.

  4. Formation of disinfection byproducts in typical Chinese drinking water.

    PubMed

    Liu, Wenbo; Zhao, Yanmei; Chow, Christopher W K; Wang, Dongsheng

    2011-01-01

    Eight typical drinking water supplies in China were selected in this study. Both source and tap water were used to investigate the occurrence of chlorinated disinfection byproducts (DBPs), and seasonal variation in the concentrations of trihalomethanes (THMs) of seven water sources was compared. The results showed that the pollution level for source water in China, as shown by DBP formation potential, was low. The most encountered DBPs were chloroform, dichloroacetic acid, trichloroacetic acid, and chlorodibromoacetic acid. The concentration of every THMs and haloacetic acid (HAA) compound was under the limit of standards for drinking water quality. The highest total THMs concentrations were detected in spring.

  5. Purchase of drinking water is associated with increased child morbidity and mortality among urban slum-dwelling families in Indonesia.

    PubMed

    Semba, Richard D; de Pee, Saskia; Kraemer, Klaus; Sun, Kai; Thorne-Lyman, Andrew; Moench-Pfanner, Regina; Sari, Mayang; Akhter, Nasima; Bloem, Martin W

    2009-07-01

    In developing countries, poor families in urban slums often do not receive municipal services including water. The objectives of our study were to characterize families who purchased drinking water and to examine the relation between purchasing drinking water and child morbidity and mortality in urban slums of Indonesia, using data collected between 1999 and 2003. Of 143,126 families, 46.8% purchased inexpensive drinking water from street vendors, 47.4% did not purchase water, i.e., had running or spring/well water within household, and 5.8% purchased more expensive water in the previous 7 days. Families that purchased inexpensive drinking water had less educated parents, a more crowded household, a father who smoked, and lower socioeconomic level compared with the other families. Among children of families that purchased inexpensive drinking water, did not purchase drinking water, or purchased more expensive water, the prevalence was, respectively, for diarrhea in last 7 days (11.2%, 8.1%, 7.7%), underweight (28.9%, 24.1%, 24.1%), stunting (35.6%, 30.5%, 30.5%), wasting (12.0%, 10.5%, 10.9%), family history of infant mortality (8.0%, 5.6%, 5.1%), and of under-five child mortality (10.4%, 7.1%, 6.4%) (all P<0.0001). Use of inexpensive drinking water was associated with under-five child mortality (Odds Ratio [O.R.] 1.32, 95% Confidence Interval [C.I.] 1.20-1.45, P<0.0001) and diarrhea (O.R. 1.43, 95% C.I. 1.29-1.60, P<0.0001) in multivariate logistic regression models, adjusting for potential confounders. Purchase of inexpensive drinking water was common and associated with greater child malnutrition, diarrhea, and infant and under-five child mortality in the family. Greater efforts must be made to ensure access to safe drinking water, a basic human right and target of the Millennium Development Goals, in urban slums.

  6. Use of the Threshold of Toxicological Concern (TTC) approach for deriving target values for drinking water contaminants.

    PubMed

    Mons, M N; Heringa, M B; van Genderen, J; Puijker, L M; Brand, W; van Leeuwen, C J; Stoks, P; van der Hoek, J P; van der Kooij, D

    2013-03-15

    Ongoing pollution and improving analytical techniques reveal more and more anthropogenic substances in drinking water sources, and incidentally in treated water as well. In fact, complete absence of any trace pollutant in treated drinking water is an illusion as current analytical techniques are capable of detecting very low concentrations. Most of the substances detected lack toxicity data to derive safe levels and have not yet been regulated. Although the concentrations in treated water usually do not have adverse health effects, their presence is still undesired because of customer perception. This leads to the question how sensitive analytical methods need to become for water quality screening, at what levels water suppliers need to take action and how effective treatment methods need to be designed to remove contaminants sufficiently. Therefore, in the Netherlands a clear and consistent approach called 'Drinking Water Quality for the 21st century (Q21)' has been developed within the joint research program of the drinking water companies. Target values for anthropogenic drinking water contaminants were derived by using the recently introduced Threshold of Toxicological Concern (TTC) approach. The target values for individual genotoxic and steroid endocrine chemicals were set at 0.01 μg/L. For all other organic chemicals the target values were set at 0.1 μg/L. The target value for the total sum of genotoxic chemicals, the total sum of steroid hormones and the total sum of all other organic compounds were set at 0.01, 0.01 and 1.0 μg/L, respectively. The Dutch Q21 approach is further supplemented by the standstill-principle and effect-directed testing. The approach is helpful in defining the goals and limits of future treatment process designs and of analytical methods to further improve and ensure the quality of drinking water, without going to unnecessary extents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Social representations of drinking water: subsidies for water quality surveillance programmes.

    PubMed

    Carmo, Rose Ferraz; Bevilacqua, Paula Dias; Barletto, Marisa

    2015-09-01

    A qualitative study was developed aimed at understanding the social representations of water consumption by a segment of the population of a small town in Brazil. A total of 19 semi-structured interviews were carried out and subjected to a content analysis addressing opinion on drinking water, characteristics of drinking water and its correlation to health and diseases, criteria for water usage and knowledge on the source and accountability for drinking-water quality. Social representations of drinking water predominantly incorporate the municipal water supply and sanitation provider and its quality. The identification of the municipal water supply provider as alone responsible for maintaining water quality indicated the lack of awareness of any health surveillance programme. For respondents, chlorine was accountable for conferring colour, odour and taste to the water. These physical parameters were reported as the cause for rejecting the water supplied and suggest the need to review the focus of health-educational strategies based on notions of hygiene and water-borne diseases. The study allowed the identification of elements that could contribute to positioning the consumers vs. services relationship on a level playing field, enabling dialogue and exchange of knowledge for the benefit of public health.

  8. Nitrate-nitrogen levels in rural drinking water: Is there an association with age-related macular degeneration?

    PubMed

    Klein, Barbara E K; McElroy, Jane A; Klein, Ronald; Howard, Kerri P; Lee, Kristine E

    2013-01-01

    We examined the association of nitrate-nitrogen exposure from rural private drinking water and incidence of age-related macular degeneration (AMD). All participants in the Beaver Dam Eye Study (53916 improvement plan code) completed a questionnaire and had an ocular examination including standardized, graded fundus photographs at five examinations. Only information from rural residents in that study are included in this report. Data from an environmental monitoring study with probabilistic-based agro-chemical sampling, including nitrate-nitrogen, of rural private drinking water were available. Incidence of early AMD was associated with elevated nitrate-nitrogen levels in rural private drinking water supply (10.0% for low, 19.2% for medium, and 26.1% for high nitrate-nitrogen level in the right eye). The odds ratios (ORs) were 1.77 (95% confidence interval [CI]: 1.12-2.78) for medium and 2.88 (95% CI: 1.59-5.23) for high nitrate-nitrogen level. Incidence of late AMD was increased for those with medium or high levels of nitrate-nitrogen compared to low levels (2.3% for low and 5.1% for the medium or high nitrate-nitrogen level, for the right eye). The OR for medium or high nitrate-nitrogen groups was 2.80 (95% CI: 1.07-7.31) compared to the low nitrate-nitrogen group.

  9. Nitrate-Nitrogen Levels in Rural Drinking Water: Is There an Association with Age-related Macular Degeneration?

    PubMed Central

    Klein, Barbara E. K.; McElroy, Jane A.; Klein, Ronald; Howard, Kerri P.; Lee, Kristine E.

    2014-01-01

    We examined the association of nitrate-nitrogen exposure from rural private drinking water and incidence of age-related macular degeneration (AMD). Participants of the Beaver Dam Eye Study living in rural areas within the 53916 zone improvement plan code but outside the city limits of Beaver Dam, Wisconsin (Beaver Dam Township) completed a questionnaire and ocular examination including standardized, graded fundus photographs at five examinations. Data from an environmental monitoring study with probabilistic-based agro-chemical sampling, including nitrate-nitrogen, of rural private drinking water were available. Incidence of early AMD was associated with elevated nitrate-nitrogen levels in rural private drinking water supply (10.0% for low, 19.2% for medium, and 26.1% for high nitrate-nitrogen level in the right eye). The odds ratios (ORs) were 1.77 (95% confidence interval [CI]: 1.12–2.78) for medium and 2.88 (95% CI: 1.59–5.23) for high nitrate-nitrogen level. Incidence of late AMD was increased for those with medium or high levels of nitrate-nitrogen compared to low levels (2.3% for low and 5.1% for the medium or high nitrate-nitrogen level, for the right eye). The OR for medium or high nitrate-nitrogen groups was 2.80 (95% CI: 1.07–7.31) compared to the low nitrate-nitrogen group. PMID:24007430

  10. A study of water hardness and the prevalence of hypomagnesaemia and hypocalcaemia in healthy subjects of Surat district (Gujarat).

    PubMed

    Kanadhia, Kirti C; Ramavataram, Divvi Venkata Subrahmanya Shri; Nilakhe, Shreeyas Prasad Dhanpal; Patel, Swati

    2014-01-01

    Various sources of drinking water, with varying levels of total hardness, and calcium and magnesium concentrations, are used by populations in different regions. The use of water purifiers can compound the problem of maintaining the desired levels of hardness. An inverse relationship between various conditions, including cardiovascular disease, and hard water has been reported. Until this study, investigation of the hardness of drinking water from different sources, and serum magnesium and calcium in normal subjects from the Surat district, had not been undertaken. This study was performed to assess the concentrations of calcium and magnesium, and total hardness in filtered and non-filtered water and the relationship with serum magnesium and calcium levels in normal subjects consuming such water. Three water samples were collected, at 15-day intervals, from 12 urban and rural areas of Surat; and also 10 different brands of bottled water. Samples were analyzed for total hardness and calcium by complexometric and EDTA methods respectively. Magnesium concentrations were obtained by subtraction of the calcium concentration from total hardness. Serum samples from healthy individuals were analyzed for magnesium and calcium using calmagite and arsenazo methods respectively. The independent t-test was used to establish significance at a level of 95%. A p-value <0.05 was considered significant. Mean total hardness, and calcium and magnesium concentrations in non-filtered, rural tube-well water were much higher than in filtered water from the same area, and the magnesium concentrations were significantly higher (p = 0.038). Filtered urban municipal had lower hardness and concentrations of calcium and magnesium (p = 0.01) compared to corresponding non-filtered water. Significantly lower levels were observed in bottled water compared to rural and urban sources of water. Serum magnesium was significantly lower in the population who were consuming filtered water compared to those drinking non-filtered water (p<0.05). No such difference was observed for serum calcium. Hypomagnesemia correlates with lower magnesium concentrations in drinking water (both rural tube-well and urban municipal waters), which can be attributed to the use of water purifiers. Assuming that a person consumes two liters of drinking water per day, it is estimated that there is an average loss of 160 mg (79%) of magnesium from total waterborne magnesium levels as a result of the filtration of both rural and urban water supplies. Bottled water is too hardness as in calcium and magnesium concentrations.

  11. Drinking water fluoride levels for a city in northern Mexico (durango) determined using a direct electrochemical method and their potential effects on oral health.

    PubMed

    Molina Frechero, Nelly; Sánchez Pérez, Leonor; Castañeda Castaneira, Enrique; Oropeza Oropeza, Anastasio; Gaona, Enrique; Salas Pacheco, José; Bologna Molina, Ronell

    2013-01-01

    Fluoride is ingested primarily through consuming drinking water. When drinking water contains fluoride concentrations>0.7 parts per million (ppm), consuming such water can be toxic to the human body; this toxicity is called "fluorosis." Therefore, it is critical to determine the fluoride concentrations in drinking water. The objective of this study was to determine the fluoride concentration in the drinking water of the city of Durango. The wells that supply the drinking water distribution system for the city of Durango were studied. One hundred eighty-nine (189) water samples were analyzed, and the fluoride concentration in each sample was quantified as established by the law NMX-AA-077-SCFI-2001. The fluoride concentrations in such samples varied between 2.22 and 7.23 ppm with a 4.313±1.318 ppm mean concentration. The highest values were observed in the northern area of the city, with a 5.001±2.669 ppm mean value. The samples produced values that exceeded the national standard for fluoride in drinking water. Chronic exposure to fluoride at such concentrations produces harmful health effects, the first sign of which is dental fluorosis. Therefore, it is essential that the government authorities implement water defluoridation programs and take preventative measures to reduce the ingestion of this toxic halogen.

  12. Drinking Water Fluoride Levels for a City in Northern Mexico (Durango) Determined Using a Direct Electrochemical Method and Their Potential Effects on Oral Health

    PubMed Central

    Molina Frechero, Nelly; Sánchez Pérez, Leonor; Castañeda Castaneira, Enrique; Oropeza Oropeza, Anastasio; Gaona, Enrique; Salas Pacheco, José; Bologna Molina, Ronell

    2013-01-01

    Fluoride is ingested primarily through consuming drinking water. When drinking water contains fluoride concentrations >0.7 parts per million (ppm), consuming such water can be toxic to the human body; this toxicity is called “fluorosis.” Therefore, it is critical to determine the fluoride concentrations in drinking water. The objective of this study was to determine the fluoride concentration in the drinking water of the city of Durango. The wells that supply the drinking water distribution system for the city of Durango were studied. One hundred eighty-nine (189) water samples were analyzed, and the fluoride concentration in each sample was quantified as established by the law NMX-AA-077-SCFI-2001. The fluoride concentrations in such samples varied between 2.22 and 7.23 ppm with a 4.313 ± 1.318 ppm mean concentration. The highest values were observed in the northern area of the city, with a 5.001 ± 2.669 ppm mean value. The samples produced values that exceeded the national standard for fluoride in drinking water. Chronic exposure to fluoride at such concentrations produces harmful health effects, the first sign of which is dental fluorosis. Therefore, it is essential that the government authorities implement water defluoridation programs and take preventative measures to reduce the ingestion of this toxic halogen. PMID:24348140

  13. Uranium in well drinking water of Kabul, Afghanistan and its effective, low-cost depuration using Mg-Fe based hydrotalcite-like compounds.

    PubMed

    Kato, Masashi; Azimi, Mohammad Daud; Fayaz, Said Hafizullah; Shah, Muhammad Dawood; Hoque, Md Zahirul; Hamajima, Nobuyuki; Ohnuma, Shoko; Ohtsuka, Tomomi; Maeda, Masao; Yoshinaga, Masafumi

    2016-12-01

    Toxic elements in drinking water have great effects on human health. However, there is very limited information about toxic elements in drinking water in Afghanistan. In this study, levels of 10 elements (chromium, nickel, copper, arsenic, cadmium, antimony, barium, mercury, lead and uranium) in 227 well drinking water samples in Kabul, Afghanistan were examined for the first time. Chromium (in 0.9% of the 227 samples), arsenic (7.0%) and uranium (19.4%) exceeded the values in WHO health-based guidelines for drinking-water quality. Maximum chromium, arsenic and uranium levels in the water samples were 1.3-, 10.4- and 17.2-fold higher than the values in the guidelines, respectively. We next focused on uranium, which is the most seriously polluted element among the 10 elements. Mean ± SD (138.0 ± 1.4) of the 238 U/ 235 U isotopic ratio in the water samples was in the range of previously reported ratios for natural source uranium. We then examined the effect of our originally developed magnesium (Mg)-iron (Fe)-based hydrotalcite-like compounds (MF-HT) on adsorption for uranium. All of the uranium-polluted well water samples from Kabul (mean ± SD = 190.4 ± 113.9 μg/L; n = 11) could be remediated up to 1.2 ± 1.7 μg/L by 1% weight of our MF-HT within 60 s at very low cost (<0.001 cents/day/family) in theory. Thus, we demonstrated not only elevated levels of some toxic elements including natural source uranium but also an effective depurative for uranium in well drinking water from Kabul. Since our depurative is effective for remediation of arsenic as shown in our previous studies, its practical use in Kabul may be encouraged. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Assessment of arsenic, fluoride, bacteria, and other contaminants in drinking water sources for rural communities of Kasur and other districts in Punjab, Pakistan.

    PubMed

    Arshad, Nasima; Imran, Saiqa

    2017-01-01

    High levels of arsenic contamination in drinking water of two villages, Badarpur and Ibrahimabad of district Kasur, central Punjab, Pakistan is reported first time in present studies. Groundwater quality situation was found to be impaired when samples of different rural areas of district Kasur were monitored according to Pakistan Standards and Quality Control Authority (PSQCA) for all significant water quality constituents and analyzed for trace elements, physico-chemical, and microbiological parameters. Out of 35water sources, 97 % were found unsafe and only 3 % of the sources were within safe limits. High concentrations of arsenic, fluoride, and bacteria were found in 91, 74, and 77 % sources of drinking water, respectively. Very high concentrations of arsenic ranging 58-3800 μg/L were found in the water samples obtained from Badarpur and Ibrahimabad. A decrease in water contamination was observed with increase in source depth. The health issues like arsenicosis and skeletal/dental flourosis were observed in the residents of the monitored areas. Drinking water quality conditions of some rural areas of northen and southern districts of Punjab was also analyzed and compared with Kasur district. High levels of nitrates were found in the samples of Islamabad and Rawalpindi, while high levels of arsenic, iron, fluoride, and TDS were found in Bahawalpur district. Graphical abstract ᅟ.

  15. Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water.

    PubMed Central

    LeChevallier, M W; Evans, T M; Seidler, R J

    1981-01-01

    To define interrelationships between elevated turbidities and the efficiency of chlorination in drinking water, experiments were performed to measure bacterial survival, chlorine demand, and interference with microbiological determinations. Experiments were conducted on the surface water supplies for communities which practice chlorination as the only treatment. Therefore, the conclusions of this study apply only to such systems. Results indicated that disinfection efficiency (log10 of the decrease in coliform numbers) was negatively correlated with turbidity and was influenced by season, chlorine demand of the samples, and the initial coliform level. Total organic carbon was found to be associated with turbidity and was shown to interfere with maintenance of a free chlorine residual by creating a chlorine demand. Interference with coliform detection in turbid waters could be demonstrated by the recovery of typical coliforms from apparently negative filters. The incidence of coliform masking in the membrane filter technique was found to increase as the turbidity of the chlorinated samples increased. the magnitude of coliform masking in the membrane filter technique increased from less than 1 coliform per 100 ml in water samples of less than 5 nephelometric turbidity units to greater than 1 coliform per 100 ml in water samples of greater than 5 nephelometric turbidity units. Statistical models were developed to predict the impact of turbidity on drinking water quality. The results justify maximum contaminant levels for turbidity in water entering a distribution system as stated in the National Primary Drinking Water Regulations of the Safe Drinking Water Act. Images PMID:7259162

  16. Association between lifetime exposure to inorganic arsenic in drinking water and coronary heart disease in Colorado residents.

    PubMed

    James, Katherine A; Byers, Tim; Hokanson, John E; Meliker, Jaymie R; Zerbe, Gary O; Marshall, Julie A

    2015-02-01

    Chronic diseases, including coronary heart disease (CHD), have been associated with ingestion of drinking water with high levels of inorganic arsenic (> 1,000 μg/L). However, associations have been inconclusive in populations with lower levels (< 100 μg/L) of inorganic arsenic exposure. We conducted a case-cohort study based on individual estimates of lifetime arsenic exposure to examine the relationship between chronic low-level arsenic exposure and risk of CHD. This study included 555 participants with 96 CHD events diagnosed between 1984 and 1998 for which individual lifetime arsenic exposure estimates were determined using data from structured interviews and secondary data sources to determine lifetime residence, which was linked to a geospatial model of arsenic concentrations in drinking water. These lifetime arsenic exposure estimates were correlated with historically collected urinary arsenic concentrations. A Cox proportional-hazards model with time-dependent CHD risk factors was used to assess the association between time-weighted average (TWA) lifetime exposure to low-level inorganic arsenic in drinking water and incident CHD. We estimated a positive association between low-level inorganic arsenic exposure and CHD risk [hazard ratio (HR): = 1.38, 95% CI: 1.09, 1.78] per 15 μg/L while adjusting for age, sex, first-degree family history of CHD, and serum low-density lipoprotein levels. The risk of CHD increased monotonically with increasing TWAs for inorganic arsenic exposure in water relative to < 20 μg/L (HR = 1.2, 95% CI: 0.6, 2.2 for 20-30 μg/L; HR = 2.2; 95% CI: 1.2, 4.0 for 30-45 μg/L; and HR = 3, 95% CI: 1.1, 9.1 for 45-88 μg/L). Lifetime exposure to low-level inorganic arsenic in drinking water was associated with increased risk for CHD in this population.

  17. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    EPA Science Inventory

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  18. Bacteriological quality of drinking water from source to household in Ibadan, Nigeria.

    PubMed

    Oloruntoba, E O; Sridhar, M K C

    2007-06-01

    The bacteriological quality of drinking water from well, spring, borehole, and tap sources and that stored in containers by urban households in Ibadan was assessed during wet and dry seasons. The MPN technique was used to detect and enumerate the number of coliforms in water samples. Results showed that majority of households relied on wells, which were found to be the most contaminated of all the sources. At the household level, water quality significantly deteriorated after collection and storage as a result of poor handling. Furthermore, there was significant seasonal variation in E. coli count at source (P=0.013) and household (P=0.001). The study concludes that there is a need to improve the microbial quality of drinking water at source and the household level through hygiene education, and provision of simple, acceptable, low-cost treatment methods.

  19. Effects of slightly acidic electrolysed drinking water on mice.

    PubMed

    Inagaki, Hideaki; Shibata, Yoshiko; Obata, Takahiro; Kawagoe, Masami; Ikeda, Katsuhisa; Sato, Masayoshi; Toida, Kazumi; Kushima, Hidemi; Matsuda, Yukihisa

    2011-10-01

    Slightly acidic electrolysed (SAE) water is a sanitizer with strong bactericidal activity due to hypochlorous acid. We assessed the safety of SAE water as drinking water for mice at a 5 ppm total residual chlorine (TRC) concentration to examine the possibility of SAE water as a labour- and energy-saving alternative to sterile water. We provided SAE water or sterile water to mice for 12 weeks, during which time we recorded changes in body weight and weekly water and food intakes. At the end of the experiment, all of the subject animals were sacrificed to assess serum aspartate aminotransferase, alanine aminotransferase and creatinine levels and to examine the main organs histopathologically under a light microscope. In addition, we investigated the bacteria levels of both types of water. We found no difference in functional and morphological health condition indices between the groups. Compared with sterile water, SAE water had a relatively higher ability to suppress bacterial growth. We suggest that SAE water at 5 ppm TRC is a safe and useful alternative to sterile water for use as drinking water in laboratory animal facilities.

  20. Tracking persistent pharmaceutical residues from municipal sewage to drinking water

    NASA Astrophysics Data System (ADS)

    Heberer, Thomas

    2002-09-01

    In urban areas such as Berlin (Germany) with high municipal sewage water discharges and low surface water flows there is a potential risk of drinking water contamination by polar organic compounds when groundwater recharge is used in drinking water production. Thus, some pharmaceutically active compounds (PhACs) are not eliminated completely in the municipal sewage treatment plants (STPs) and they are discharged as contaminants into the receiving waters. In terms of several monitoring studies carried out in Berlin between 1996 and 2000, PhACs such as clofibric acid, diclofenac, ibuprofen, propyphenazone, primidone and carbamazepine were detected at individual concentrations up to the μg/l-level in influent and effluent samples from STPs and in all surface water samples collected downstream from the STPs. Under recharge conditions, several compounds were also found at individual concentrations up to 7.3 μg/l in samples collected from groundwater aquifers near to contaminated water courses. A few of the PhACs were also identified at the ng/l-level in Berlin tap water samples.

  1. Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran.

    PubMed

    Yousefi, Mahmood; Ghoochani, Mahboobeh; Hossein Mahvi, Amir

    2018-02-01

    This study analyzes the concentrations and health risks of fluoride in 112 drinking water samples collected from 28 villages of the Poldasht city, West Azerbaijan province in Iran. Results indicated that fluoride content in drinking water ranged from0.27 to 10.3mgL -1 (average 1.70mgL -1 ). The 57% of samples analyzed exceeded the limit set for fluoride in drinking water. Based on findings from health risk assessment this study, the highest fluoride exposure for different regions of Poldasht city was observed in young consumers, children and teenager's groups. Also, most of the rural residents suffered from fluoride contaminated drinking water. The calculated HQ value was > 1 for all groups of residents in Agh otlogh and Sari soo areas. Therefore, it is imperative to take measures to reduce fluoride concentration in drinking water and control of fluorosis. Action should be implemented to enhance monitoring of fluoride levels to avoid the potential risk to the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems.

    PubMed

    Lin, Huirong; Zhu, Xuan; Wang, Yuxin; Yu, Xin

    2017-04-01

    Human health and biological safety problems resulting from urban drinking water pipe network biofilms pollution have attracted wide concern. Despite the inclusion of residual chlorine in drinking water distribution systems supplies, the bacterium is a recalcitrant human pathogen capable of forming biofilms on pipe walls and causing health risks. Typical drinking water bacterial biofilms and their response to different concentrations of chlorination was monitored. The results showed that the four bacteria all formed single biofilms susceptible to sodium hypochlorite. After 30 min disinfection, biomass and cultivability decreased with increasing concentration of disinfectant but then increased in high disinfectant doses. PMA-qPCR results indicated that it resulted in little cellular damage. Flow cytometry analysis showed that with increasing doses of disinfectant, the numbers of clusters increased and the sizes of clusters decreased. Under high disinfectant treatment, EPS was depleted by disinfectant and about 0.5-1 mg/L of residual chlorine seemed to be appropriate for drinking water treatment. This research provides an insight into the EPS protection to biofilms. Resistance of biofilms against high levels of chlorine has implications for the delivery of drinking water.

  3. Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water.

    PubMed

    Elless, Mark P; Poynton, Charissa Y; Willms, Cari A; Doyle, Mike P; Lopez, Alisa C; Sokkary, Dale A; Ferguson, Bruce W; Blaylock, Michael J

    2005-10-01

    Arsenic contamination of drinking water poses serious health risks to millions of people worldwide. To reduce such risks, the United States Environmental Protection Agency recently lowered the Maximum Contaminant Level for arsenic in drinking water from 50 to 10 microgL(-1). The majority of water systems requiring compliance are small systems that serve less than 10,000 people. Current technologies used to clean arsenic-contaminated water have significant drawbacks, particularly for small treatment systems. In this pilot-scale demonstration, we investigated the use of arsenic-hyperaccumulating ferns to remove arsenic from drinking water using a continuous flow phytofiltration system. Over the course of a 3-month demonstration period, the system consistently produced water having an arsenic concentration less than the detection limit of 2 microgL(-1), at flow rates as high as 1900 L day(-1) for a total treated water volume of approximately 60,000 L. Our results demonstrate that phytofiltration provides the basis for a solar-powered hydroponic technique to enable small-scale cleanup of arsenic-contaminated drinking water.

  4. Determination of 14 nitrosamines at nanogram per liter levels in drinking water.

    PubMed

    Qian, Yichao; Wu, Minghuo; Wang, Wei; Chen, Beibei; Zheng, Hao; Krasner, Stuart W; Hrudey, Steve E; Li, Xing-Fang

    2015-01-20

    N-Nitrosamines, probable human carcinogens, are a group of disinfection byproducts under consideration for drinking water regulation. Currently, no method can determine trace levels of alkyl and tobacco-specific nitrosamines (TSNAs) of varying physical and chemical properties in water by a single analysis. To tackle this difficulty, we developed a single solid-phase extraction (SPE) method with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination of 14 nitrosamines of health concern with widely differing properties. We made a cartridge composed of a vinyl/divinylbenzene polymer that efficiently concentrated the 14 nitrosamines in 100 mL of water (in contrast to 500 mL in other methods). This single SPE-HPLC-MS/MS technique provided calculated method detection limits of 0.01-2.7 ng/L and recoveries of 53-93% for the 14 nitrosamines. We have successfully demonstrated that this method can determine the presence or absence of the 14 nitrosamines in drinking water systems (eight were evaluated in Canada and the U.S.), with occurrence similar to that in other surveys. N-Nitrosodimethylamine (NDMA), N-nitrosodiphenylamine, and the TSNA 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol were identified and quantified in authentic drinking water. Formation potential (FP) tests demonstrated that NDMA and TSNA precursors were present in (1) water samples in which tobacco was leached and (2) wastewater-impacted drinking water. Our results showed that prechlorination or ozonation destroyed most of the nitrosamine precursors in water. Our new single method determination of alkylnitrosamines and TSNAs significantly reduced the time and resource demands of analysis and will enable other studies to more efficiently study precursor sources, formation mechanisms, and removal techniques. It will be useful for human exposure and health risk assessments of nitrosamines in drinking water.

  5. Bioanalytical assessment of adaptive stress responses in drinking water: A predictive tool to differentiate between micropollutants and disinfection by-products.

    PubMed

    Hebert, Armelle; Feliers, Cedric; Lecarpentier, Caroline; Neale, Peta A; Schlichting, Rita; Thibert, Sylvie; Escher, Beate I

    2018-04-01

    Drinking water can contain low levels of micropollutants, as well as disinfection by-products (DBPs) that form from the reaction of disinfectants with organic and inorganic matter in water. Due to the complex mixture of trace chemicals in drinking water, targeted chemical analysis alone is not sufficient for monitoring. The current study aimed to apply in vitro bioassays indicative of adaptive stress responses to monitor the toxicological profiles and the formation of DBPs in three drinking water distribution systems in France. Bioanalysis was complemented with chemical analysis of forty DBPs. All water samples were active in the oxidative stress response assay, but only after considerable sample enrichment. As both micropollutants in source water and DBPs formed during treatment can contribute to the effect, the bioanalytical equivalent concentration (BEQ) approach was applied for the first time to determine the contribution of DBPs, with DBPs found to contribute between 17 and 58% of the oxidative stress response. Further, the BEQ approach was also used to assess the contribution of volatile DBPs to the observed effect, with detected volatile DBPs found to have only a minor contribution as compared to the measured effects of the non-volatile chemicals enriched by solid-phase extraction. The observed effects in the distribution systems were below any level of concern, quantifiable only at high enrichment and not different from bottled mineral water. Integrating bioanalytical tools and the BEQ mixture model for monitoring drinking water quality is an additional assurance that chemical monitoring is not overlooking any unknown chemicals or transformation products and can help to ensure chemically safe drinking water. Copyright © 2017. Published by Elsevier Ltd.

  6. Faecal contamination of household drinking water in Rwanda: A national cross-sectional study.

    PubMed

    Kirby, Miles A; Nagel, Corey L; Rosa, Ghislaine; Iyakaremye, Laurien; Zambrano, Laura Divens; Clasen, Thomas F

    2016-11-15

    Unsafe drinking water is a leading cause of morbidity and mortality, especially among young children in low-income settings. We conducted a national survey in Rwanda to determine the level of faecal contamination of household drinking water and risk factors associated therewith. Drinking water samples were collected from a nationally representative sample of 870 households and assessed for thermotolerant coliforms (TTC), a World Health Organization (WHO)-approved indicator of faecal contamination. Potential household and community-level determinants of household drinking water quality derived from household surveys, the 2012 Rwanda Population and Housing Census, and a precipitation dataset were assessed using multivariate logistic regression. Widespread faecal contamination was present, and only 24.9% (95% CI 20.9-29.4%, n=217) of household samples met WHO Guidelines of having no detectable TTC contamination, while 42.5% (95% CI 38.0-47.1%, n=361) of samples had >100TTC/100mL and considered high risk. Sub-national differences were observed, with poorer water quality in rural areas and Eastern province. In multivariate analyses, there was evidence for an association between detectable contamination and increased open waste disposal in a sector, lower elevation, and water sources other than piped to household or rainwater/bottled. Risk factors for intermediate/high risk contamination (>10TTC/100mL) included low population density, increased open waste disposal, lower elevation, water sources other than piped to household or rainwater/bottled, and occurrence of an extreme rain event the previous day. Modelling suggests non-household-based risk factors are determinants of water quality in this setting, and these results suggest a substantial proportion of Rwanda's population are exposed to faecal contamination through drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers.

    PubMed

    Roux, S; Baudoin, C; Boute, D; Brazier, M; De La Guéronniere, V; De Vernejoul, M C

    2004-01-01

    To compare the effects of 2 drinking waters containing similar calcium (Ca) concentration in order to analyze the role of ions other than Ca on bone metabolism. These mineral drinking-waters differed by their mineral composition primarily concerning the concentration of bicarbonate (HCO3-), high in the HB, and sulfate, high in HS water. Of 60 included women, 39 completed the study. Patients were randomly assigned to an intake of 1 liter per day of mineral water HB or HS for 28 d, followed by cross-over to the alternative drinking-water for a further 28 d. At baseline and after each period of one month, Ca metabolism parameters, acid-base status, and bone remodeling markers were measured. Changes in Ca metabolism were significant in the HB group where the ionized Ca increased and the PTH decreased. Serum pH showed a similar increase whatever the used drinking water compared to baseline. In the HB group, significant increase in urine pH, and significant decrease in AT-HCO3- and NH4+ were observed. Bone resorption markers, urinary CTx/Cr, Pyr/Cr, and D-Pyr/Cr, significantly decreased in the HB group compared to baseline, and were not significantly modified in the HS group. These results showed a beneficial effect of the bicarbonaterich HB water on bone metabolism. This may account for a better bioavailability of the Ca, a greater alkalinization, and a larger decrease in PTH level secondary to a higher ionized Ca level. The higher content of silica in HB water may have also participated to the positive action on bone balance that was observed. In this short term study, these data underlined the potential role of the mineral drinking water composition on bone metabolism.

  8. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence.

    PubMed

    Saint-Jacques, Nathalie; Parker, Louise; Brown, Patrick; Dummer, Trevor Jb

    2014-06-02

    Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2-4.1]; 4.2 [2.1-6.3] and; 5.8 [2.9-8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35-4.0], 2.3 [0.59-6.4], and 3.1 [0.80-8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (<150 μg/L), there is uncertainty due to the increased likelihood of exposure misclassification at the lower end of the exposure curve. Meta-analyses suggest exposure to 10 μg/L of arsenic in drinking water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these arsenic concentrations worldwide the public health consequences of arsenic in drinking water are substantial.

  9. Calcium in drinking water: effect on iron stores in Danish blood donors-results from the Danish Blood Donor Study.

    PubMed

    Rigas, Andreas S; Ejsing, Benedikte H; Sørensen, Erik; Pedersen, Ole B; Hjalgrim, Henrik; Erikstrup, Christian; Ullum, Henrik

    2018-06-01

    Studies confirm that calcium inhibits iron absorption. Danish tap water comes from groundwater, which contains varying amounts of calcium depending on the subsoil. We investigated the association of calcium in drinking water with iron levels in Danish blood donors. We used data on Danish blood donors including dietary and lifestyle habits, blood donation history, and physiologic characteristics including measures of ferritin levels along with information on area of residence from The Danish Blood Donor Study. Data on calcium levels in groundwater ("water hardness") were obtained through the Geological Survey of Denmark and Greenland. We performed multiple linear and logistic regression analyses to evaluate the effect of water hardness on ferritin levels and risk of having iron deficiency (defined as ferritin levels <15 ng/mL), stratified by sex. There was a significant negative association between water hardness and ferritin levels in both men and women. Risk of iron deficiency was correspondingly increased in both men (odds ratio [OR], 1.55; 95% confidence interval [CI], 1.14-2.12) and women (OR, 1.20; 95% CI, 1.03-1.40) with increasing water hardness. In analyses restricted to individuals who received supplemental iron tablets no significant association between groundwater hardness and ferritin levels was observed. As measured by ferritin levels, residential drinking water calcium content is associated with blood donors- iron levels and risk of iron deficiency. However, effect sizes are small. © 2018 AABB.

  10. Availability of drinking water in US public school cafeterias.

    PubMed

    Hood, Nancy E; Turner, Lindsey; Colabianchi, Natalie; Chaloupka, Frank J; Johnston, Lloyd D

    2014-09-01

    This study examined the availability of free drinking water during lunchtime in US public schools, as required by federal legislation beginning in the 2011-2012 school year. Data were collected by mail-back surveys in nationally representative samples of US public elementary, middle, and high schools from 2009-2010 to 2011-2012. Overall, 86.4%, 87.4%, and 89.4% of students attended elementary, middle, and high schools, respectively, that met the drinking water requirement. Most students attended schools with existing cafeteria drinking fountains and about one fourth attended schools with water dispensers. In middle and high schools, respondents were asked to indicate whether drinking fountains were clean, and whether they were aware of any water-quality problems at the school. The vast majority of middle and high school students (92.6% and 90.4%, respectively) attended schools where the respondent perceived drinking fountains to be clean or very clean. Approximately one in four middle and high school students attended a school where the survey respondent indicated that there were water-quality issues affecting drinking fountains. Although most schools have implemented the requirement to provide free drinking water at lunchtime, additional work is needed to promote implementation at all schools. School nutrition staff at the district and school levels can play an important role in ensuring that schools implement the drinking water requirement, as well as promote education and behavior-change strategies to increase student consumption of water at school. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  11. Time to revisit arsenic regulations: comparing drinking water and rice

    PubMed Central

    2014-01-01

    Background Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Discussion Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l-1 was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l-1. Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Summary Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water. PMID:24884827

  12. Assessing health risk due to exposure to arsenic in drinking water in Hanam Province, Vietnam.

    PubMed

    Huy, Tung Bui; Tuyet-Hanh, Tran Thi; Johnston, Richard; Nguyen-Viet, Hung

    2014-07-24

    We assessed health risks related to Arsenic (As) in contaminated drinking water in Hanam, applying the Australian Environmental Health Risk Assessment Framework, which promotes stakeholder involvement in risk assessments. As concentrations in 300 tube-well water samples, before and after filtration, were analyzed and the water consumption levels in 150 households were estimated. Skin cancer risk was characterized using Cancer Slope Factor index and lifetime average daily dose with a probabilistic approach. The results showed that arsenic concentrations in tube-well water ranged from 8-579 ppb (mean 301 ppb) before filtration and current sand filters used by the households did not meet the standard for As removal. Arsenic daily consumption of 40% of the adults exceeded the level of TDI (Tolerable Daily Intake) at 1 µg/kg/day. The average skin cancer risk in adults due to consuming filtered tube-well water for drinking purpose were 25.3 × 10-5 (using only well water) and 7.6 × 10-5 (using both well and rain water). The skin cancer risk would be 11.5 times higher if the water was not filtered. Improvement of filtration measures or the replacement of the current drinking water sources to minimize the health risks to the local population is urgently needed.

  13. Assessing Health Risk due to Exposure to Arsenic in Drinking Water in Hanam Province, Vietnam

    PubMed Central

    Bui Huy, Tung; Tuyet-Hanh, Tran Thi; Johnston, Richard; Nguyen-Viet, Hung

    2014-01-01

    We assessed health risks related to Arsenic (As) in contaminated drinking water in Hanam, applying the Australian Environmental Health Risk Assessment Framework, which promotes stakeholder involvement in risk assessments. As concentrations in 300 tube-well water samples, before and after filtration, were analyzed and the water consumption levels in 150 households were estimated. Skin cancer risk was characterized using Cancer Slope Factor index and lifetime average daily dose with a probabilistic approach. The results showed that arsenic concentrations in tube-well water ranged from 8–579 ppb (mean 301 ppb) before filtration and current sand filters used by the households did not meet the standard for As removal. Arsenic daily consumption of 40% of the adults exceeded the level of TDI (Tolerable Daily Intake) at 1 µg/kg/day. The average skin cancer risk in adults due to consuming filtered tube-well water for drinking purpose were 25.3 × 10−5 (using only well water) and 7.6 × 10−5 (using both well and rain water). The skin cancer risk would be 11.5 times higher if the water was not filtered. Improvement of filtration measures or the replacement of the current drinking water sources to minimize the health risks to the local population is urgently needed. PMID:25062276

  14. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment.

    PubMed

    Postigo, Cristina; Richardson, Susan D

    2014-08-30

    Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sanitary survey of the drinking water supply of Kombinati suburb-Tirana, Albania.

    PubMed

    Angjeli, V; Reme, B; Leno, L; Bukli, R; Bushati, G

    2000-01-01

    Microbiological pollution of drinking water is a major health problem in the suburbs of the Albanian capital. Intermittent supply and contamination, resulting in several gastrointestinal manifestations, are the main concerns for the population and health workers. The risk of outbreaks of water-borne diseases is high. Pollution originates from contamination of drinking water with domestic sewage. This research investigated the drinking water cycle from its natural source to the consumer, analysing samples and verifying pollution levels in the microbiological and chemical setting. The most important pollution sources were found in the distribution network, due to cross-contamination with sewers and illegal connections. The second pollution source was found around the extraction wells. This is related to abusive constructions within the sanitary zone around the wells and maybe the highly sewage-contaminated river water which feeds the aquifer.

  16. Pregnant women in Timis County, Romania are exposed primarily to low-level (<10μg/l) arsenic through residential drinking water consumption.

    PubMed

    Neamtiu, Iulia; Bloom, Michael S; Gati, Gabriel; Goessler, Walter; Surdu, Simona; Pop, Cristian; Braeuer, Simone; Fitzgerald, Edward F; Baciu, Calin; Lupsa, Ioana Rodica; Anastasiu, Doru; Gurzau, Eugen

    2015-06-01

    Excessive arsenic content in drinking water poses health risks to millions of people worldwide. Inorganic arsenic (iAs) in groundwater exceeding the 10μg/l maximum contaminant level (MCL) set by the World Health Organization (WHO) is characteristic for intermediate-depth aquifers over large areas of the Pannonian Basin in Central Europe. In western Romania, near the border with Hungary, Arad, Bihor, and Timis counties use drinking water coming partially or entirely from iAs contaminated aquifers. In nearby Arad and Bihor counties, more than 45,000 people are exposed to iAs over 10μg/l via public drinking water sources. However, comparable data are unavailable for Timis County. To begin to address this data gap, we determined iAs in 124 public and private Timis County drinking water sources, including wells and taps, used by pregnant women participating in a case-control study of spontaneous loss. Levels in water sources were low overall (median=3.0; range=<0.5-175μg/l), although higher in wells (median=3.1, range=<0.5-1.75) than in community taps (median=2.7, range=<0.5-36.4). In a subsample of 20 control women we measured urine biomarkers of iAs exposure, including iAs (arsenite and arsenate), dimethylarsinic acid (DMA), and methylarsonic acid (MMA). Median values were higher among 10 women using iAs contaminated drinking water sources compared to 10 women using uncontaminated sources for urine total iAs (6.6 vs. 5.0μg/l, P=0.24) and DMA (5.5 vs. 4.2μg/l, P=0.31). The results suggested that the origin of urine total iAs (r=0.35, P=0.13) and DMA (r=0.31, P=0.18) must have been not only iAs in drinking-water but also some other source. Exposure of pregnant women to arsenic via drinking water in Timis County appears to be lower than for surrounding counties; however, it deserves a more definitive investigation as to its origin and the regional distribution of its risk potential. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Distribution of polycyclic aromatic hydrocarbons in surface water and sediment near a drinking water reservoir in Northeastern China.

    PubMed

    Liu, Yu; Shen, Jimin; Chen, Zhonglin; Ren, Nanqi; Li, Yifan

    2013-04-01

    The levels of polycyclic aromatic hydrocarbons (PAHs) in the water and the sediment samples collected near the Mopanshan Reservoir-the most important drinking water resource of Harbin City in Northeast China-were examined. A total of 16 PAHs were concurrently identified and quantified in the three water bodies tested (Lalin River, Mangniu River, and Mopanshan Reservoir) and in the Mopanshan drinking water treatment plant during the high- and low water periods. The total PAH concentrations in the water and sediment samples ranged from 122.7 to 639.8 ng/L and from 89.1 to 749.0 ng/g dry weight, respectively. Similar spatial and temporal trends were also found for both samples. The lowest Σ16PAH concentration of the Mopanshan Reservoir was obtained during the high water period; by contrast, the Lalin River had the highest concentration during the low water period. The PAH profiles resembling the three water bodies, with high percentages of low-molecular weight PAHs and dominated by two- to three-ring PAHs (78.4 to 89.0%). Two of the molecular indices used reflected the possible PAH sources, indicating the main input from coal combustion, especially during the low water period. The conventional drinking water treatment operations resulted in a 20.7 to 67.0% decrease in the different-ringed PAHs in the Mopanshan-treated drinking water. These findings indicate that human activities negatively affect the drinking water resource. Without the obvious removal of the PAHs in the waterworks, drinking water poses certain potential health risks to people.

  18. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China.

    PubMed

    Luo, Qian; Wang, Donghong; Wang, Zijian

    2012-10-15

    An investigation of the occurrence of nine nitrosamines in drinking water following different water treatment processes was conducted using samples from seven drinking water treatment plants in three cities and tap waters in one city in China. The total nitrosamine levels ranged from not detected (n.d.) to 43.45 ng/L. The species and concentrations of the nine nitrosamines varied with disinfection methods and source waters. N-nitrosodimethylamine (NDMA), which is the nitrosamines of greatest concern, was identified in raw water, disinfecting water, finished water and tap water samples, ranging from 0.8 to 21.6, 0.12 to 24.2, n.d. to 8.8, and n.d. to 13.3 ng/L, respectively. Chloramination alone produced the most significant amounts of NDMA, while ozonation followed by chloramination led to moderately reduced levels. Additionally, chlorination produced relatively less NDMA, while low pressure ultraviolet radiation followed by chlorination could also significantly reduce them. Total organic carbon is one of the most important factors influencing nitrosamines formation in disinfecting water. In contrast, the addition of chlorine following any other disinfection was found to increase the formation of the other eight species of nitrosamines. The three nitrosamines recommended for monitoring by the US EPA were detected in the tap water samples, but most were present at levels below those that pose a risk to human health. Nevertheless, the occurrence and concentration of nitrosamines regulated in the Drinking Water Contaminant Candidate List could cause some potential human effects and therefore warrant attention. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. THE EFFECTS OF SCALE, DISTANCE AND TIME ON DRINKING WATER SYSTEMS RESEARCH

    EPA Science Inventory

    This presentation introduces and describes many components related to what generates and/or controls the concentrations of metals and other constituents in drinking water. Emphasis is placed on ways in which sampling protocol affects apparent levels of constituents, and the magn...

  20. IDENTIFICATION OF CHLORINE DIOXIDE DRINKING WATER DISINFECTION BY-PRODUCTS FORMED AT HIGH BROMIDE LEVELS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs), haloacetic acids, and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide is a popular alternative, with over 500 dri...

  1. Changes in Biofilm Community Structure Associated with Monochloramine-treated Drinking Water Biofilms

    EPA Science Inventory

    Monochloramine is increasingly used as a drinking water disinfectant because it forms lower levels of traditional disinfectant by-products compared to free-chlorine disinfection treatment. The use of monochloramine has been shown to increase ammonia-oxidizing bacteria and the pr...

  2. Establishment and Early Succession of Bacterial Communities in Monochloramine-Treated Drinking Water Biofilms

    EPA Science Inventory

    Monochloramine is increasingly used as a drinking water disinfectant because it forms lower levels of regulated disinfection by-products. While its use has been shown to increase nitrifying bacteria, little is known about the bacterial succession within biofilms in monochloramin...

  3. Establishment and Early Succession of Bacterial Communities in Monochloramine-treated Drinking Water Biofilms

    EPA Science Inventory

    The use of monochloramine as drinking water disinfectant is increasing because it forms lower levels of traditional disinfection by-products compared to free-chlorine. However, little is known about the bacterial succession within biofilms in monochloramine-treated systems. The d...

  4. A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness.

    PubMed

    Catling, Louise A; Abubakar, Ibrahim; Lake, Iain R; Swift, Louise; Hunter, Paul R

    2008-12-01

    The aim of this study is to systematically review and critically assess analytical observational epidemiology studies investigating the association between levels of drinking water hardness and cardiovascular disease. We searched electronic databases and used standardised forms to extract data and assess study quality. Of 2,906 papers identified, 14 met the inclusion criteria (nine case control and five cohort studies). Of the nine case control studies, seven examined both drinking water magnesium and calcium and risk of death from cardiovascular disease. A pooled odds ratio showed a statistically significant inverse association between magnesium and cardiovascular mortality (OR 0.75 (95%CI 0.68, 0.82), p < 0.001). Only two studies reported a statistically significant effect for calcium. Substantial heterogeneity between studies made calculation of a summary estimate for drinking water calcium inappropriate. Of three cohort studies reviewed, two were of good quality. A weak suggestion that soft water was harmful in females and possibly associated with a slightly greater risk of sudden death was reported, but there was no association between water hardness and mortality from stroke or cardiovascular disease. This study found significant evidence of an inverse association between magnesium levels in drinking water and cardiovascular mortality following a meta-analysis of case control studies. Evidence for calcium remains unclear. Copyright IWA Publishing 2008.

  5. Engineering Design and Operation Report: Biological Treatment Process for the Removal of Ammonia from a Small Drinking Water System in Iowa: Pilot to Full-Scale

    EPA Science Inventory

    Many regions in the United States have excessive levels of ammonia in their drinking water sources (e.g., ground and surface waters) as a result of naturally occurring processes, agricultural and urban runoff, concentrated animal feeding operations, municipal wastewater treatment...

  6. Innovative Biological Treatment Process for the Removal of Ammonia, Arsenic, Iron and Manganese from a Small Drinking Water System in Gilbert, Iowa (Phase 1: Pilot Evaluation)

    EPA Science Inventory

    Many regions in the United States have excessive levels of ammonia in their drinking water sources (e.g., ground and surface waters) as a result of naturally occurring processes, agricultural and urban runoff, concentrated animal feeding operations, municipal wastewater treatment...

  7. Viruses in non-disinfected drinking water from municipal wells are related to community rates of acute gastrointestinal illness

    USDA-ARS?s Scientific Manuscript database

    Groundwater supplies for drinking water are frequently contaminated with low-levels of human enteric virus genomes, yet evidence for waterborne disease transmission is lacking. We related qPCR-measured enteric viruses in the tap water of 14 non-chlorinating communities in the U.S. to acute gastroint...

  8. Changes in water manganese levels and longitudinal assessment of intellectual function in children exposed through drinking water.

    PubMed

    Dion, Laurie-Anne; Saint-Amour, Dave; Sauvé, Sébastien; Barbeau, Benoit; Mergler, Donna; Bouchard, Maryse F

    2018-01-01

    Manganese is commonly found in water but potential neurotoxic effects from exposure through drinking water are poorly understood. We previously reported a cross-sectional study showing that drinking water Mn concentration was associated with lower IQ in children aged 6 to 13 years. For this follow-up study, we aimed to re-assess the relation between exposure to Mn from drinking water and IQ at adolescence. In addition, we aimed to examine whether changes in drinking water Mn concentration was associated with changes in IQ scores. From the 380 children enrolled in the baseline study, 287 participated to this follow-up study conducted in average 4.4 years after. Mn concentration was measured in home tap water and children's hair. The relationships between these Mn exposure indicators and IQ scores (Weschsler Abbreviated Scale of Intelligence) at follow-up were assessed with linear regression analysis, adjusting for potential confounders. Intra-individual differences in IQ scores between the two examinations were compared for children whose Mn concentration in water remained stable between examinations, increased or decreased. The mean age at follow-up was 13.7 years (range, 10.5 to 18.0 years). Geometric mean of Mn concentration in water at follow-up was 14.5μg/L. Higher Mn concentration in water measured at follow-up was associated with lower Performance IQ in girls (β for a 10-fold increase=-2.8, 95% confidence intervals [CI] -4.8 to -0.8) and higher Performance IQ in boys (β=3.9, 95% CI 1.4 to 6.4). IQ scores were not significantly associated with Mn concentration in hair, although similar trends as for concentration in water were observed. For children whose Mn concentration in water increased between baseline and follow-up, Performance IQ scores decreased significantly (intra-individual difference, -2.4 points). Higher levels of Mn in drinking water were associated with lower Performance IQ in girls, whereas the opposite was observed in boys. These findings suggest long-term exposure to Mn through drinking water is associated differently with cognition in boys and girls. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The importance of waterborne disease outbreak surveillance in the United States.

    PubMed

    Craun, Gunther Franz

    2012-01-01

    Analyses of the causes of disease outbreaks associated with contaminated drinking water in the United States have helped inform prevention efforts at the national, state, and local levels. This article describes the changing nature of disease outbreaks in public water systems during 1971-2008 and discusses the importance of a collaborative waterborne outbreak surveillance system established in 1971. Increasing reports of outbreaks throughout the early 1980s emphasized that microbial contaminants remained a health-risk challenge for suppliers of drinking water. Outbreak investigations identified the responsible etiologic agents and deficiencies in the treatment and distribution of drinking water, especially the high risk associated with unfiltered surface water systems. Surveillance information was important in establishing an effective research program that guided government regulations and industry actions to improve drinking water quality. Recent surveillance statistics suggest that prevention efforts based on these research findings have been effective in reducing outbreak risks especially for surface water systems.

  10. Assessment of age-dependent uranium intake due to drinking water in Hyderabad, India.

    PubMed

    Balbudhe, A Y; Srivastava, S K; Vishwaprasad, K; Srivastava, G K; Tripathi, R M; Puranik, V D

    2012-03-01

    A study has been done to assess the uranium intake through drinking water. The area of study is twin cities of Hyderabad and Secunderabad, India. Uranium concentration in water samples was analysed by laser-induced fluorimetry. The associated age-dependent uranium intake was estimated by taking the prescribed water intake values. The concentration of uranium varies from below detectable level (minimum detectable level = 0.20 ± 0.02 μg l(-1)) to 2.50 ± 0.18 μg l(-1), with the geometric mean (GM) of 0.67 μg l(-1) in tap water, whereas in ground water, the range is 0.60 ± 0.05 to 82 ± 7.1 µg l(-1) with GM of 10.07 µg l(-1). The daily intake of uranium by drinking water pathway through tap water for various age groups is found to vary from 0.14 to 9.50 µg d(-1) with mean of 1.55 µg d(-1).

  11. Occurrence and Control of Genotoxins in Drinking Water: A Monitoring Proposal

    PubMed Central

    Ceretti, Elisabetta; Moretti, Massimo; Zerbini, Ilaria; Villarini, Milena; Zani, Claudia; Monarca, Silvano; Feretti, Donatella

    2016-01-01

    Many studies have shown the presence of numerous organic genotoxins and carcinogens in drinking water. These toxic substances derive not only from pollution, but also from the disinfection treatments, particularly when water is obtained from surface sources and then chlorinated. Most of the chlorinated compounds in drinking water are nonvolatile and are difficult to characterize. Thus, it has been proposed to study such complex mixtures using short-term genotoxicity tests predictive of carcinogenic activity. Mutagenicity of water before and after disinfection has mainly been studied by the Salmonella/microsome (Ames test); in vitro genotoxicity tests have also been performed in yeasts and mammalian cells; in situ monitoring of genotoxins has also been performed using complete organisms such as aquatic animals or plants (in vivo). The combination of bioassay data together with results of chemical analyses would give us a more firm basis for the assessment of human health risks related to the consumption of drinking water. Tests with different genetic end-points complement each other with regard to sensitivity toward environmental genotoxins and are useful in detecting low genotoxicity levels which are expected in drinking water samples. Significance for public health The provision of a safe drinking water is an important public health problem. Many studies have shown the presence of numerous genotoxins and carcinogens in drinking water. These toxic substances derive not only from pollution, but also from the disinfection treatments, particularly when water is obtained from surface sources and then chlorinated. The potential health risks of disinfection by-products (DBPs) from drinking water include cancer and adverse reproductive outcomes. People are exposed to disinfected drinking/shower/bathing water as a mixture of at least 600 identified DBPs and other toxic compounds via dermal, inhalation, and ingestion routes. Many of these substances are present in trace concentration, hardly detectable by chemical standard analysis. The monitoring of environmental genotoxins by short-term bioassays could allow a better evaluation of the global human exposure to water genotoxins and could help health officers and drinking water managers to reduce genotoxic hazards and distribute high quality drinking water. PMID:28083525

  12. Lead

    MedlinePlus

    ... Agendas, and Minutes New Blood Lead Level Information Funding Information Lead in Drinking Water Lead-based Water Lines Washington, D.C. Blood Lead Level Tests Effect of Previously Missing Blood Lead Level (BPb) Surveillance ...

  13. Candy

    MedlinePlus

    ... Agendas, and Minutes New Blood Lead Level Information Funding Information Lead in Drinking Water Lead-based Water Lines Washington, D.C. Blood Lead Level Tests Effect of Previously Missing Blood Lead Level (BPb) Surveillance ...

  14. Salt and nitric oxide synthase inhibition-induced hypertension: kidney dysfunction and brain anti-oxidant capacity.

    PubMed

    Oktar, Süleyman; Ilhan, Selçuk; Meydan, Sedat; Aydin, Mehmet; Yönden, Zafer; Gökçe, Ahmet

    2010-01-01

    The specific aim of this study was to examine the effects of salt-loading on kidney function and brain antioxidant capacity. Wistar rats were divided into four groups: Control rats were given normal drinking water and no drug treatment for 2 weeks. LNNA group: rats were given normal drinking water and the nitric oxide (NO) inhibitor NG-nitro-L-arginine (L-NNA), 3 mg/kg/day. LNNA + Salt group: rats were given drinking water containing salt 2% and 3 mg/kg L-NNA. Salt group: rats were given drinking water containing salt 2% and no drug treatment. Basal blood pressure and the levels of serum BUN, creatinine, uric acid, cortisol, electrolyte, serum antioxidant capacity, and oxidative stress were measured. NO, superoxide dismutase (SOD), and catalase (CAT) levels were measured in the hypothalamus, brainstem, and cerebellum. Salt overload increased the blood pressure of the LNNA + Salt group. Salt-loading enhanced BUN, creatinine, sodium retention. High salt produced an increase in uric acid levels and a decrease in cortisol levels in serum. Additionally, the oxidative stress index in serum increased in the LNNA + Salt group. Salt-loading enhanced brain NO levels, but not SOD and CAT activity. L-NNA increased brain SOD activity, but not CAT and NO levels. In conclusion, salt-loading causes hypertension, kidney dysfunction, and enhances oxidative stress in salt-sensitive rats.

  15. A method for the analysis of perfluorinated compounds in environmental and drinking waters and the determination of their lowest concentration minimal reporting levels.

    PubMed

    Boone, J Scott; Guan, Bing; Vigo, Craig; Boone, Tripp; Byrne, Christian; Ferrario, Joseph

    2014-06-06

    A trace analytical method was developed for the determination of seventeen specific perfluorinated chemicals (PFCs) in environmental and drinking waters. The objectives were to optimize an isotope-dilution method to increase the precision and accuracy of the analysis of the PFCs and to eliminate the need for matrix-matched standards. A 250 mL sample of environmental or drinking water was buffered to a pH of 4, spiked with labeled surrogate standards, extracted through solid phase extraction cartridges, and eluted with ammonium hydroxide in methyl tert-butyl ether: methanol solution. The sample eluents were concentrated to volume and analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The lowest concentration minimal reporting levels (LCMRLs) for the seventeen PFCs were calculated and ranged from 0.034 to 0.600 ng/L for surface water and from 0.033 to 0.640 ng/L for drinking water. The relative standard deviations (RSDs) for all compounds were <20% for all concentrations above the LCMRL. The method proved effective and cost efficient and addressed the problems with the recovery of perfluorobutanoic acid (PFBA) and other short chain PFCs. Various surface water and drinking water samples were used during method development to optimize this method. The method was used to evaluate samples from the Mississippi River at New Orleans and drinking water samples from a private residence in that same city. The method was also used to determine PFC contamination in well water samples from a fire training area where perfluorinated foams were used in training to extinguish fires. Published by Elsevier B.V.

  16. Urinary fluoride levels and prevalence of dental fluorosis in three Brazilian cities with different fluoride concentrations in the drinking water.

    PubMed

    Heintze, S D; Bastos, J R; Bastos, R

    1998-10-01

    Urine samples from three daytime periods were collected from 545 5-50-year-old residents of three different Brazilian cities: Garça had fluoridated drinking water since 1973, Bauru since 1975 and Itápolis was not fluoridated. Dental fluorosis was examined in 985 5-24-year-olds using the Thylstrup-Fejerskov index (TF). The subjects were asked to estimate their daily intake of liquids and frequency of beverage consumption. The analysis of 94 water samples showed high variations in the fluoride content of the drinking water. The mean fluoride concentration of the water samples in Garça was 0.9 mg/L (range 0.75-1.2), in Bauru 0.64 mg/L (range 0.01-1.3), and in Itápolis 0.02 mg/L. Mean urinary fluoride concentration was 1.31 mg/L (s 0.61) in Garça, 0.88 mg/L (s 0.49) in Bauru, and 0.39 mg/L (s 0.21) in Itápolis. Self-reported daily liquid intake was not related to urinary fluoride concentration. The mean prevalence of fluorosis was 13.3% in Garça, 6.8% in Bauru, and 1.7% in Itápolis, with mainly categories TF 1 and TF 2 being recorded. Subjects with dental fluorosis tended to show a higher mean urinary fluoride concentration but the difference was not statistically significant. The study showed that fluoride exposure measured by urinary fluoride excretion was within the range expected for the level of fluoride concentration in the drinking water. However, enamel fluorosis tended to be markedly lower than expected. This study revealed that fluoride levels in the two cities with fluoridated drinking water were variable. To optimise anticaries benefits and minimise the risk of fluorosis greater control of the fluoride dosing of the drinking water is required.

  17. Elevated tissue Cr levels, increased plasma oxidative markers, and global hypomethylation of blood DNA in male Sprague-Dawley rats exposed to potassium dichromate in drinking water.

    PubMed

    Wang, Yu; Wu, Wei; Yao, Chunji; Lou, Jianlin; Chen, Riping; Jin, Lingzhi; Wu, Nanxiang; Gao, Ming; Song, Peng; Tan, Yufeng; Liu, Kecheng

    2016-09-01

    Hexavalent chromium [Cr (VI)] is prevalent in ground water in some areas, but evidence on the toxic effects of Cr (VI) via ingestion through drinking water remains insufficient. The aims of our study were to investigate the toxic effects of Cr (VI) through oral water ingestion on oxidative stress and DNA methylation. Thirty-two Sprague-Dawley rats were randomly divided into four groups, and exposed to porassium dichromate (K2 Cr2 O7 ; 0, 30, 100, and 300 mg/L) in drinking water for 4 weeks. Mean body weight gain, mean water consumption, clinical chemistry determinations, and oxidative stress levels in plasma were measured. Global DNA methylation changes and DNA methylation status at the promoter of p16 gene were also detected. After 4 weeks, mild anemic effects and increased plasma malondialdehyde (MDA) levels occurred in rats exposed to 100 mg/L or 300 mg/L of Cr (VI). Plasma glutathione peroxidase (GSH-Px) activity decreased in all exposed groups. Global DNA methylation levels were reduced in 100 mg/L and 300 mg/L exposure groups. However, DNA methylation status at the promoter of P16 gene remained unchanged in all K2 Cr2 O7- treated groups. The correlation analysis indicated that increased MDA levels were closely correlated to global DNA hypomethylation. Our results indicated that oral ingestion of Cr (VI) through drinking water caused not only oxidative stress in plasma, but also global DNA hypomethylation in blood cells from male rats, and a good correlation was found between increased MDA levels and reduced global DNA methylation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1080-1090, 2016. © 2015 Wiley Periodicals, Inc.

  18. (238)U and total radioactivity in drinking waters in Van province, Turkey.

    PubMed

    Selçuk Zorer, Özlem; Dağ, Beşir

    2014-06-01

    As part of the national survey to evaluate natural radioactivity in the environment, concentration levels of total radioactivity and natural uranium have been analysed in drinking water samples. A survey to study natural radioactivity in drinking waters was carried out in the Van province, East Turkey. Twenty-three samples of drinking water were collected in the Van province and analysed for total α, total β and (238)U activity. The total α and total β activities were counted by using the α/β counter of the multi-detector low background system (PIC MPC-9604), and the (238)U concentrations were determined by inductively coupled plasma-mass spectrometry (Thermo Scientific Element 2). The samples were categorised according to origin: tap, spring or mineral supply. The activity concentrations for total α were found to range from 0.002 to 0.030 Bq L(-1) and for total β from 0.023 to 1.351 Bq L(-1). Uranium concentrations ranging from 0.562 to 14.710 μg L(-1) were observed in drinking waters. Following the World Health Organisation rules, all investigated waters can be used as drinking water.

  19. Chlorine stress mediates microbial surface attachment in drinking water systems.

    PubMed

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  20. Results of the Level-1 Water-Quality Inventory at the Pinnacles National Monument, June 2006

    USGS Publications Warehouse

    Borchers, James W.; Lyttge, Michael S.

    2007-01-01

    To help define baseline water quality of key water resources at Pinnacles National Monument, California, the U.S. Geological Survey collected and analyzed ground water from seven springs sampled during June 2006. During the dry season, seeps and springs are the primary source of water for wildlife in the monument and provide habitat for plants, amphibians, and aquatic life. Water samples were analyzed for dissolved concentrations of major ions, trace elements, nutrients, stable isotopes of hydrogen and oxygen, and tritium. In most cases, the concentrations of measured water-quality constituents in spring samples were lower than California threshold standards for drinking water and Federal threshold standards for drinking water and aquatic life. The concentrations of dissolved arsenic in three springs were above the Federal Maximum Contaminant Level for drinking water (10 g/L). Water-quality information for samples collected from the springs will provide a reference point for comparison of samples collected from future monitoring networks and hydrologic studies in the Pinnacles National Monument, and will help National Park Service managers assess relations between water chemistry, geology, and land use.

  1. Drinking water and sanitation: progress in 73 countries in relation to socioeconomic indicators

    PubMed Central

    Bartram, Jamie

    2016-01-01

    Abstract Objective To assess progress in the provision of drinking water and sanitation in relation to national socioeconomic indicators. Methods We used household survey data for 73 countries – collected between 2000 and 2012 – to calculate linear rates of change in population access to improved drinking water (n = 67) and/or sanitation (n = 61). To enable comparison of progress between countries with different initial levels of access, the calculated rates of change were normalized to fall between –1 and 1. In regression analyses, we investigated associations between the normalized rates of change in population access and national socioeconomic indicators: gross national income per capita, government effectiveness, official development assistance, freshwater resources, education, poverty, Gini coefficient, child mortality and the human development index. Findings The normalized rates of change indicated that most of the investigated countries were making progress towards achieving universal access to improved drinking water and sanitation. However, only about a third showed a level of progress that was at least half the maximum achievable level. The normalized rates of change did not appear to be correlated with any of the national indicators that we investigated. Conclusion In many countries, the progress being made towards universal access to improved drinking water and sanitation is falling well short of the maximum achievable level. Progress does not appear to be correlated with a country’s social and economic characteristics. The between-country variations observed in such progress may be linked to variations in government policies and in the institutional commitment and capacity needed to execute such policies effectively. PMID:26957676

  2. Drinking water and sanitation: progress in 73 countries in relation to socioeconomic indicators.

    PubMed

    Luh, Jeanne; Bartram, Jamie

    2016-02-01

    To assess progress in the provision of drinking water and sanitation in relation to national socioeconomic indicators. We used household survey data for 73 countries - collected between 2000 and 2012 - to calculate linear rates of change in population access to improved drinking water (n = 67) and/or sanitation (n = 61). To enable comparison of progress between countries with different initial levels of access, the calculated rates of change were normalized to fall between -1 and 1. In regression analyses, we investigated associations between the normalized rates of change in population access and national socioeconomic indicators: gross national income per capita, government effectiveness, official development assistance, freshwater resources, education, poverty, Gini coefficient, child mortality and the human development index. The normalized rates of change indicated that most of the investigated countries were making progress towards achieving universal access to improved drinking water and sanitation. However, only about a third showed a level of progress that was at least half the maximum achievable level. The normalized rates of change did not appear to be correlated with any of the national indicators that we investigated. In many countries, the progress being made towards universal access to improved drinking water and sanitation is falling well short of the maximum achievable level. Progress does not appear to be correlated with a country's social and economic characteristics. The between-country variations observed in such progress may be linked to variations in government policies and in the institutional commitment and capacity needed to execute such policies effectively.

  3. The effects of sodium sulfate in the water of nursery pigs and the efficacy of nonnutritive feed additives to mitigate those effects.

    PubMed

    Flohr, J R; Tokach, M D; Dritz, S S; DeRouchey, J M; Goodband, R D; Nelssen, J L

    2014-08-01

    Two experiments were conducted to investigate the effects of sodium sulfate water and the efficacy of nonnutritive feed additives in nursery pig diets. In Exp. 1, 320 barrows (5.4 ± 0.1 kg BW and 21 d of age) were allotted to 1 of 8 treatments for 24 d in a 2 × 4 factorial with 2 levels of sodium sulfate water (control or 3,000 mg sodium sulfate/L added), and 4 dietary zeolite (clinoptilolite) levels (0, 0.25, 0.50, or 1%). Fecal samples were collected on d 5, 9, 16, and 23; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. No interactions of sodium sulfate × zeolite were observed for any response criteria. Overall (d 0 to 24), pigs drinking sodium sulfate water had decreased (P < 0.01) ADG, ADFI, and G:F compared with pigs drinking control water. Pigs drinking sodium sulfate water also had increased (P < 0.01) fecal scores and lower (P < 0.04) fecal DM on d 5, 9, and 16 compared with pigs drinking control water. Increasing dietary zeolite increased (linear; P < 0.05) ADG and ADFI but had no effect on G:F. In Exp. 2, 350 barrows (5.7 ± 0.1 kg BW and 21 d of age) were allotted to 1 of 10 treatments in a 2 × 5 factorial for 21 d with 2 levels of sodium sulfate water (control or 2,000 mg sodium sulfate/L added) and 5 dietary treatments (control, 1 or 2% zeolite, 1% humic acid substance [HA], and 1% humic and fulvic acid substance [HFB]). Fecal samples were collected on d 5, 8, 15, and 21; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. Overall (d 0 to 21), a water source × diet interaction was observed for ADG and G:F because pigs fed the 1% HA had decreased (P < 0.01) ADG and G:F when drinking sodium sulfate water compared with other treatments but increased ADG and G:F when drinking control water. Pigs drinking sodium sulfate water had decreased (P < 0.01) ADG and G:F and tended (P < 0.08) to have decreased ADFI compared with pigs drinking control water. Pigs drinking sodium sulfate water had increased (P < 0.01) fecal scores and decreased (P < 0.01) fecal DM on d 5 and 8. In conclusion, water high in sodium sulfate concentrations decreased growth performance and increased fecal moisture in newly weaned pigs. Although zeolite improved growth performance in the first experiment, it did not influence growth in the second study. The nonnutritive feed additives used in both experiments were unsuccessful in ameliorating the increased osmotic diarrhea observed from high sodium sulfate water.

  4. Occurrence of regulated and emerging iodinated DBPs in the Shanghai drinking water.

    PubMed

    Wei, Xiao; Chen, Xin; Wang, Xia; Zheng, Weiwei; Zhang, Dong; Tian, Dajun; Jiang, Songhui; Ong, Choon Nam; He, Gengsheng; Qu, Weidong

    2013-01-01

    Drinking water chlorination plays a pivotal role in preventing pathogen contamination against water-borne disease. However, chemical disinfection leads to the formation of halogenated disinfection by products (DBPs). Many DBPs are highly toxic and are of health concern. In this study, we conducted a comprehensive measurements of DBPs, including iodoacetic acid (IAA), iodoform (IF), nine haloacetic acids and four trihalomethanes in drinking waters from 13 water plants in Shanghai, China. The results suggested that IAA and IF were found in all the water treatment plants, with maximum levels of 1.66 µg/L and 1.25 µg/L for IAA and IF, respectively. Owing to deterioration of water quality, the Huangpu River has higher IAA and IF than the Yangtze River. Our results also demonstrated that low pH, high natural organic matter, ammonia nitrogen, and iodide in source waters increased IAA and IF formation. Compared to chlorine, chloramines resulted in higher concentration of iodinated DBP, but reduced the levels of trihalomethanes. This is the first study to reveal the widespread occurrence of IAA and IF in drinking water in China. The data provide a better understanding on the formation of iodinated disinfection byproducts and the findings should be useful for treatment process improvement and disinfection byproducts controls.

  5. Chemical and bioanalytical assessments on drinking water treatments by quaternized magnetic microspheres.

    PubMed

    Shi, Peng; Ma, Rong; Zhou, Qing; Li, Aimin; Wu, Bing; Miao, Yu; Chen, Xun; Zhang, Xuxiang

    2015-03-21

    This study aimed to compare the toxicity reduction performance of conventional drinking water treatment (CT) and a treatment (NT) with quaternized magnetic microspheres (NDMP) based on chemical analyses. Fluorescence excitation-emission-matrix combined with parallel factor analysis identified four components in source water of different rivers or lake, and the abundance of each component differed greatly among the different samples. Compared with the CT, the NT evidently reduced the concentrations of dissolved organic carbon, adsorbable organic halogens (AOX), bromide and disinfection by-products. Toxicological evaluation indicated that the NT completely eliminated the cytotoxicity, and greatly reduced the genotoxicity and oxidative stress of all raw water. In contrast, the CT increased the cytotoxicity of Taihu Lake and the Zhongshan River water, genotoxicity of Taihu Lake and the Mangshe River water, as well as the levels of superoxide dismutase and malondialdehyde of the Mangshe River water. Correlation analysis indicated that the AOX of the treated samples was significantly correlated with the genotoxicity and glutathione concentration, but exhibited no correlation with either of them for all the samples. As it can effectively reduce pollutant levels and the toxicities of drinking water, NDMP might be widely used for drinking water treatment in future. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Occurrence of Regulated and Emerging Iodinated DBPs in the Shanghai Drinking Water

    PubMed Central

    Wei, Xiao; Chen, Xin; Wang, Xia; Zheng, Weiwei; Zhang, Dong; Tian, Dajun; Jiang, Songhui; Ong, Choon Nam; He, Gengsheng; Qu, Weidong

    2013-01-01

    Drinking water chlorination plays a pivotal role in preventing pathogen contamination against water-borne disease. However, chemical disinfection leads to the formation of halogenated disinfection by products (DBPs). Many DBPs are highly toxic and are of health concern. In this study, we conducted a comprehensive measurements of DBPs, including iodoacetic acid (IAA), iodoform (IF), nine haloacetic acids and four trihalomethanes in drinking waters from 13 water plants in Shanghai, China. The results suggested that IAA and IF were found in all the water treatment plants, with maximum levels of 1.66 µg/L and 1.25 µg/L for IAA and IF, respectively. Owing to deterioration of water quality, the Huangpu River has higher IAA and IF than the Yangtze River. Our results also demonstrated that low pH, high natural organic matter, ammonia nitrogen, and iodide in source waters increased IAA and IF formation. Compared to chlorine, chloramines resulted in higher concentration of iodinated DBP, but reduced the levels of trihalomethanes. This is the first study to reveal the widespread occurrence of IAA and IF in drinking water in China. The data provide a better understanding on the formation of iodinated disinfection byproducts and the findings should be useful for treatment process improvement and disinfection byproducts controls. PMID:23555742

  7. Contribution of the Antibiotic Chloramphenicol and Its Analogues as Precursors of Dichloroacetamide and Other Disinfection Byproducts in Drinking Water.

    PubMed

    Chu, Wenhai; Krasner, Stuart W; Gao, Naiyun; Templeton, Michael R; Yin, Daqiang

    2016-01-05

    Dichloroacetamide (DCAcAm), a disinfection byproduct, has been detected in drinking water. Previous research showed that amino acids may be DCAcAm precursors. However, other precursors may be present. This study explored the contribution of the antibiotic chloramphenicol (CAP) and two of its analogues (thiamphenicol, TAP; florfenicol, FF) (referred to collectively as CAPs), which occur in wastewater-impacted source waters, to the formation of DCAcAm. Their formation yields were compared to free and combined amino acids, and they were investigated in filtered waters from drinking-water-treatment plants, heavily wastewater-impacted natural waters, and secondary effluents from wastewater treatment plants. CAPs had greater DCAcAm formation potential than two representative amino acid precursors. However, in drinking waters with ng/L levels of CAPs, they will not contribute as much to DCAcAm formation as the μg/L levels of amino acids. Also, the effect of advanced oxidation processes (AOPs) on DCAcAm formation from CAPs in real water samples during subsequent chlorination was evaluated. Preoxidation of CAPs with AOPs reduced the formation of DCAcAm during postchlorination. The results of this study suggest that CAPs should be considered as possible precursors of DCAcAm, especially in heavily wastewater-impacted waters.

  8. Microbiological, chemical and physical quality of drinking water for commercial turkeys: a cross-sectional study.

    PubMed

    Di Martino, G; Piccirillo, A; Giacomelli, M; Comin, D; Gallina, A; Capello, K; Buniolo, F; Montesissa, C; Bonfanti, L

    2018-04-17

    Drinking water for poultry is not subject to particular microbiological, chemical and physical requirements, thereby representing a potential transmission route for pathogenic microorganisms and contaminants and/or becoming unsuitable for water-administered medications. This study assessed the microbiological, chemical and physical drinking water quality of 28 turkey farms in North-Eastern Italy: 14 supplied with tap water (TW) and 14 with well water (WW). Water salinity, hardness, pH, ammonia, sulphate, phosphate, nitrate, chromium, copper and iron levels were also assessed. Moreover, total bacterial count at 22°C, presence and enumeration of Enterococcus spp. and E. coli, presence of Salmonella spp. and Campylobacter spp. were quantified. A water sample was collected in winter and in summer at 3 sampling sites: the water source (A), the beginning (B) and the end (C) of the nipple line (168 samples in total). Chemical and physical quality of both TW and WW sources was mostly within the limits of TW for humans. However, high levels of hardness and iron were evidenced in both sources. In WW vs. TW, sulphate and salinity levels were significantly higher, whilst pH and nitrate levels were significantly lower. At site A, microbiological quality of WW and TW was mostly within the limit of TW for humans. However, both sources had a significantly lower microbiological quality at sites B and C. Salmonella enterica subsp. enterica serotype Kentucky was isolated only twice from WW. Campylobacter spp. were rarely isolated (3.6% of farms); however, Campylobacter spp. farm-level prevalence by real-time PCR was up to 43% for both water sources. Winter posed at higher risk than summer for Campylobacter spp. presence in water, whereas no significant associations were found with water source, site, recirculation system, and turkey age. Low salinity and high hardness were significant risk factors for C. coli and C. jejuni presence, respectively. These results show the need of improving sanitization of drinking water pipelines for commercial turkeys.

  9. Health Risk Assessment of Cyanobacterial (Blue-green Algal) Toxins in Drinking Water

    PubMed Central

    Falconer, Ian R.; Humpage, Andrew R.

    2005-01-01

    Cyanobacterial toxins have caused human poisoning in the Americas, Europe and Australia. There is accumulating evidence that they are present in treated drinking water supplies when cyanobacterial blooms occur in source waters. With increased population pressure and depleted groundwater reserves, surface water is becoming more used as a raw water source, both from rivers and lakes/reservoirs. Additional nutrients in water which arise from sewage discharge, agricultural run-off or storm water result in overabundance of cyanobacteria, described as a ‘water bloom’. The majority of cyanobacterial water-blooms are of toxic species, producing a diversity of toxins. The most important toxins presenting a risk to the human population are the neurotoxic alkaloids (anatoxins and paralytic shellfish poisons), the cyclic peptide hepatotoxins (microcystins) and the cytotoxic alkaloids (cylindrospermopsins). At the present time the only cyanobacteral toxin family that have been internationally assessed for health risk by the WHO are the microcystins, which cause acute liver injury and are active tumour promoters. Based on sub-chronic studies in rodents and pigs, a provisional Guideline Level for drinking water of 1μg/L of microcystin-LR has been determined. This has been adopted in legislation in countries in Europe, South America and Australasia. This may be revised in the light of future teratogenicity, reproductive toxicity and carcinogenicity studies. The other cyanobacterial toxin which has been proposed for detailed health risk assessment is cylindrospermopsin, a cytotoxic compound which has marked genotoxicity, probable mutagenicity, and is a potential carcinogen. This toxin has caused human poisoning from drinking water, and occurs in water supplies in the USA, Europe, Asia, Australia and South America. An initial health risk assessment is presented with a proposed drinking water Guideline Level of 1μg/L. There is a need for both increased monitoring data for toxins in drinking water and epidemiological studies on adverse health effects in exposed populations to clarify the extent of the health risk. PMID:16705800

  10. Assessment of Drinking Water Quality from Bottled Water Coolers

    PubMed Central

    FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar

    2014-01-01

    Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769

  11. Engineering Design and Operation Report: Biological ...

    EPA Pesticide Factsheets

    Many regions in the United States have excessive levels of ammonia in their drinking water sources (e.g., ground and surface waters) as a result of naturally occurring processes, agricultural and urban runoff, concentrated animal feeding operations, municipal wastewater treatment plants, and other sources. Ammonia is not regulated by the U.S. Environmental Protection Agency (EPA) as a contaminant. Based on a 2003 World Health Organization (WHO) assessment, ammonia levels in groundwater are typically below 0.2 milligrams per liter (mg/L), and do not pose a direct health concern at levels expected in drinking water (WHO 2003); however, they may pose a concern when nitrification of significant levels of ammonia from the source water occurs in the drinking water distribution system. Specifically, this nitrification, which is the conversion of the ammonia to nitrite and nitrate by bacteria, leads to water quality issues, such as potential corrosion problems, oxidant demand, taste and odor complaints, and elevated nitrite levels (Bremer et al.,2001; Fleming et al., 2005; Lee et al., 1980; Odell et al., 1996; Rittman & Snoeyink, 1984; Suffet et al., 1996). The EPA’s regulatory limits for nitrite and nitrate (at the entry point to the distribution system) are 0.1 and 10 mg N/L, respectively. Ammonia in water may also pose problems with water treatment effectiveness. For example, in source waters containing both ammonia and arsenic, the ammonia may negatively impact

  12. Drinking water quality in six small tea gardens of Sonitpur District of Assam, India, with special reference to heavy metals.

    PubMed

    Dutta, Joydev; Chetia, Mridul; Misra, A K

    2011-10-01

    Contamination of drinking water by arsenic and other heavy metals and their related toxicology is a serious concern now-a-days. Millions of individual world-wide are suffering from the arsenic and other heavy metal related diseases due to the consumption of contaminated groundwater. 60 water samples from different sources of 6 small tea gardens of Sonitpur district were collected to study the potability of water for drinking purposes. The water samples collected from sources like tube wells, ring wells and ponds were analyzed for arsenic, heavy metals like iron, manganese and mercury with sodium, potassium, calcium, magnesium, pH, total hardness, chloride, fluoride and sulphate. Some drain water samples of the tea garden areas were also collected to analyze the above mentioned water parameters to see the contamination level. Experiments revealed that 78% samples of total collection had arsenic content above the permissible limit (0.01 ppm) of WHO guideline value for drinking water. The highest arsenic was observed 0.09 ppm at one sample of Gobindra Dahal tea garden of Gohpur sub division of Sonitpur district. 94% samples had contamination due to manganese 39% samples had iron and 44% samples had Hg. The water quality data was subjected to some statistical treatments like NDA, cluster analysis and pearson correlation to observe the distribution pattern of the different water quality parameters. A strong pearson correlation coefficient was observed between parameters-arsenic and manganese (0.865) and arsenic and mercury (0.837) at 0.01 level, indicated the same sources of drinking water contamination.

  13. Fluoride in the drinking water and the geographical variation of coronary heart disease in Finland.

    PubMed

    Kaipio, Juhana; Näyhä, Simo; Valtonen, Ville

    2004-02-01

    Fluoride in drinking water prevents dental disease, which in turn has been reported to increase the risk of coronary heart disease (CHD). Since mortality from CHD in Finland is high in the north-east where the fluoride content of drinking water is low, the association was examined here in more detail. Mortality from CHD during the period 1961-1995 in 365 rural areas of Finland (188 888 deaths) was linked with 2131 drinking water fluoride determinations performed in 1958 using negative binomial regression, adjustments being made for sex, age, mean income of the resident commune and drinking water magnesium and calcium. An inverse J-shaped relationship was found between drinking water fluoride and CHD, the association being most pronounced in the 1960s and levelling off consistently as a function of time. In 1961-1970, the adjusted mortality from CHD was 22% (95% confidence interval 18-27%) lower in the fourth quintile of fluoride (0.15-0.30 mg/l) than in the first quintile (0.00-0.06 mg/l) but this deficit reduced to 13% (7-18%) in 1991-1995. Although causality cannot be asserted, the geographical pattern of CHD in Finland is consistent with the concentration of fluoride in drinking water. One mechanism could be that fluoride prevents dental infections, which in turn reduces mortality from CHD. The more widespread use of fluoridated toothpastes, soft drinks and certain food items since the 1960s may have reduced the significance of drinking water as a source of fluoride.

  14. Spatial distribution mapping of drinking water fluoride levels in Karnataka, India: fluoride-related health effects.

    PubMed

    Chowdhury, Chitta R; Shahnawaz, Khijmatgar; Kumari, Divya; Chowdhury, Avidyuti; Bedi, Raman; Lynch, Edward; Harding, Stewart; Grootveld, Martin

    2016-11-01

    (1) To estimate the concentrations of fluoride in drinking water throughout different zones and districts of the state of Karnataka. (2) To investigate the variation of fluoride concentration in drinking water from different sources, and its relationships to daily temperature and rainfall status in the regional districts. (3) To develop an updated fluoride concentration intensity map of the state of Karnataka, and to evaluate these data in the context of fluoride-related health effects such as fluorosis and their prevalence. Aqueous standard solutions of 10, 100 and 1,000 ppm fluoride (F - ) were prepared with analytical grade Na + /F - and a buffer; TISAB II was incorporated in both calibration standard and analysis solutions in order to remove the potentially interfering effects of trace metal ions. This analysis was performed using an ion-selective electrode (ISE), and mean determination readings for n = 5 samples collected at each Karnataka water source were recorded. The F - concentration in drinking water in Karnataka state was found to vary substantially, with the highest mean values recorded being in the north-eastern zone (1.61 ppm), and the lowest in the south-western one (only 0.41 ppm). Analysis of variance (ANOVA) demonstrated that there were very highly significant 'between-zone' and 'between-districts-within-zones' sources of variation (p < 10 -5 -10 -9 ), results consistent with a substantial spatial variance of water source F - levels within this state. The southern part of Karnataka has low levels of F - in its drinking water, and may require fluoridation treatment in order to mitigate for dental caries and further ailments related to fluoride deficiency. However, districts within the north-eastern region have contrastingly high levels of fluoride, an observation which has been linked to dental and skeletal fluorosis. This highlights a major requirement for interventional actions in order to ensure maintenance of the recommended range of fluoride concentrations (0.8-1.5 ppm) in Karnataka's drinking water sources. © Royal Society for Public Health 2016.

  15. 40 CFR 141.80 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.80 General requirements. (a... drinking water regulations for lead and copper. Unless otherwise indicated, each of the provisions of this... and copper action levels measured in samples collected at consumers' taps. (c) Lead and copper action...

  16. THE FEASIBILITY OF EPIDEMIOLOGIC STUDIES OF ARSENIC-RELATED HEALTH EFFECTS IN THE U.S.

    EPA Science Inventory

    The planning of the feasibility studies will rely on existing data on drinking water arsenic-exposed populations. Exposure concentrations of drinking water arsenic will be collected at the state and local levels, and other descriptive information about the populations exposed inc...

  17. 78 FR 48068 - Topramezone; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... from proteins in the diet). Inhibition of HPPD can result in elevated tyrosine levels in the blood, a... protein diet. This indicates that HPPD inhibitor in it of itself cannot easily overwhelm the tyrosine... from drinking water. The highest drinking water concentrations are expected to result from the direct...

  18. EXTRACTION AND DETERMINATION OF ARSENICALS FOUND IN FISH TISSUE

    EPA Science Inventory

    Arsenic in Drinking Water is regulated under the Safe Drinking Water Act. The maximum contaminant level (MCL) for arsenic is currently 50ppb. The USEPA is currently under a court order to revise the arsenic regulation by the year 2000. One aspect which requires some considerat...

  19. MOBILITY OF ARSENIC CONTAINING IRON OXIDES IN ENVIRONMENTAL SYSTEMS

    EPA Science Inventory

    The Arsenic Rule, which became effective on February 22, 2002, is going to require public treatment facilities to remove arsenic (As) from drinking water supplies if As exceeds the new ten parts per billion (ppb) drinking water maximum contaminant level (MCL). The date by which ...

  20. The Interaction of Nitrites with Food, Drugs, and Contaminants.

    ERIC Educational Resources Information Center

    Greenland, Sander

    1978-01-01

    Nitrites commonly occur in food and drinking water as additives, contaminants, or products of biological processes. These highly reactive substances combine with other commonly ingested substances to form potent carcinogens. Controls are needed on levels of nitrites and reactive contaminants in food and drinking water. (RE)

  1. Drinking Water Salinity and Maternal Health in Coastal Bangladesh: Implications of Climate Change

    PubMed Central

    Ireson, Andrew; Kovats, Sari; Mojumder, Sontosh Kumar; Khusru, Amirul; Rahman, Atiq; Vineis, Paolo

    2011-01-01

    Background: Drinking water from natural sources in coastal Bangladesh has become contaminated by varying degrees of salinity due to saltwater intrusion from rising sea levels, cyclone and storm surges, and upstream withdrawal of freshwater. Objective: Our objective was to estimate salt intake from drinking water sources and examine environmental factors that may explain a seasonal excess of hypertension in pregnancy. Methods: Water salinity data (1998–2000) for Dacope, in rural coastal Bangladesh, were obtained from the Centre for Environment and Geographic Information System in Bangladesh. Information on drinking water sources, 24-hr urine samples, and blood pressure was obtained from 343 pregnant Dacope women during the dry season (October 2009 through March 2010). The hospital-based prevalence of hypertension in pregnancy was determined for 969 pregnant women (July 2008 through March 2010). Results: Average estimated sodium intakes from drinking water ranged from 5 to 16 g/day in the dry season, compared with 0.6–1.2 g/day in the rainy season. Average daily sodium excretion in urine was 3.4 g/day (range, 0.4–7.7 g/day). Women who drank shallow tube-well water were more likely to have urine sodium > 100 mmol/day than women who drank rainwater [odds ratio (OR) = 2.05; 95% confidence interval (CI), 1.11–3.80]. The annual hospital prevalence of hypertension in pregnancy was higher in the dry season (OR = 12.2%; 95% CI, 9.5–14.8) than in the rainy season (OR = 5.1%; 95% CI, 2.91–7.26). Conclusions: The estimated salt intake from drinking water in this population exceeded recommended limits. The problem of saline intrusion into drinking water has multiple causes and is likely to be exacerbated by climate change–induced sea-level rise. PMID:21486720

  2. Environmental evaluation of fluoride in drinking water at "Los Altos de Jalisco," in the central Mexico region.

    PubMed

    Hurtado, Roberto; Gardea-Torresdey, Jorge

    Naturally occurring fluoride has been detected and quantified in drinking water in several cities of the "Los Altos de Jalisco" (LAJ) region. LAJ is located in the northeastern part of the state of Jalisco-Mexico, covering an area of 16,410 km2 with a population of 696,318 in 20 municipalities. Drinking water comes mainly from groundwater aquifers, located in the Trans-Mexican Volcanic Belt, which is a volcanic region characterized by hydrothermal activity. Results indicated that water supply from 42% of the municipalities had a fluoride concentration over the Mexican standards of 1.5 mg/L. It is important to notice that there are three cities, Lagos de Moreno (1.66-5.88 mg/L F(-)), Teocaltiche (3.82-18.58 mg/L F(-)), and Encarnación de Díaz (2.58-4.40 mg/L F(-)) where all water samples resulted in fluoride concentration over the maximum contaminant level. The total population from these three cities is over 122,000 inhabitants. Another important city with high levels of fluoride in the water supply was Tepatitlán de Morelos (2 wells with 6.54 and 13.47 mg/L F(-)). In addition to water supply, 30 samples of brand-name bottled water were tested. Surprisingly, 8 samples (27%) demonstrated fluoride level over the standards, mainly Agua de Lagos with 5.27 mg/L. Fluoridated table salt (200-300 mg/kg F(-)) is another important source of fluoride. A large number of people living in the region, mainly school children, might be under adverse health risk because they are consuming contaminated drinking water. It is well known that long-term exposure to water with high levels of fluoride produces severe health problems.

  3. Swim drink study: a randomised controlled trial of during-exercise rehydration and swimming performance.

    PubMed

    Briars, Graham L; Gordon, Gillian Suzanne; Lawrence, Andrew; Turner, Andrew; Perry, Sharon; Pillbrow, Dan; Walston, Florence Einstein; Molyneux, Paul

    2017-01-01

    To determine whether during-exercise rehydration improves swimming performance and whether sports drink or water have differential effects on performance. Randomised controlled multiple crossover trial. A UK competitive swimming club. 19 club-level competitive swimmers, median age (range) 13 (11-17) years. Subjects were scheduled to drink ad libitum commercial isotonic sports drink (3.9 g sugars and 0.13 g salt per 100 mL) or water (three sessions each) or no drink (six sessions) in the course of twelve 75 min training sessions, each of which was followed by a 30 min test set of ten 100 m maximum-effort freestyle sprints each starting at 3 min intervals. Times for the middle 50 m of each sprint measured using electronic timing equipment in a Federation Internationale de Natation (FINA)-compliant six-lane 25 m competition swimming pool. Software-generated individual random session order in sealed envelopes. Analysis subset of eight sessions randomly selected by software after data collection completed. Participants blind to drink allocation until session start. In the analysis data set of 1118 swims, there was no significant difference between swim times for drinking and not drinking nor between drinking water or a sports drink. Mean (SEM) 50 m time for no-drink swims was 38.077 (0.128) s and 38.105 (0.131) s for drink swims, p=0.701. Mean 50 m times were 38.031 (0.184) s for drinking sports drink and 38.182 (0.186) s for drinking water, p=0.073. Times after not drinking were 0.027 s faster than after drinking (95% CI 0.186 s faster to 0.113 s slower). Times after drinking sports drink were 0.151 s faster than after water (95% CI 0.309 s faster to 0.002 s slower). Mean (SEM) dehydration from exercise was 0.42 (0.11)%. Drinking water or sports drink over 105 min of sustained effort swimming training does not improve swimming performance. ISRCTN: 49860006.

  4. Qualitative and quantitative aspects of drinking water supply in Sardinia, Italy. A descriptive analysis of the ordinances and public notices issued during the years 2010-2015.

    PubMed

    Dettori, M; Piana, A; Castiglia, P; Loria, E; Azara, A

    2016-01-01

    The aim of the study is to analyze the regional district ordinances and the warnings regarding qualitative and quantitavive drinking water abnormalities discovered by the Sardinian Municipalities and the Water Managing Authority between 2010 and 2015 in order to describe and identify the causes leading to an interruption or a limitation of the drinking water supply. We carefully reviewed all ordinances and warnings of non-potable water and service interruption published between 2010 and 2015 by the websites of 377 Sardinian Municipalities and by the main regional newspapers, the Water Managing Authority and the Regional Health Trusts. From 2010 to 2015, 738 warnings/ordinances regarding drinking water supply limitation or interruption were issued. The warnings involved more than half (n. 191, 50.7%) of the 377 Sardinian Municipalities. Considering that these Municipalities included the main Sardinian cities we estimated that 80.3% of the population was affected by the issue. During the 6 years we observed a progressive increase of Municipalities involved beginning with 25 and reaching up 110 in 2014. The initial 29 warnings rose to 256 in 2014 along with an increased number of abnormal values, parameters and standards of the drinking water. Regarding the ordinances issued by the 191 Mayors we noticed that the legal limits were exceeded in 23 cases. Among those, we underline the abnormal levels of chlorites and trihalomethanes (22% of cases), the turbidity, the abnormal concentration of total chemical substances and the abnormal level of coliforms, Escherichia coli, manganese, aluminum, nitrites and iron. According to our observations, the Sardinian drinking water supply system is affected by a major inconvenience and the data suggest that qualitative abnormalities are mainly due to water purification treatments used in addition to the poor water supply network in existence. Considering these results, a cooperation between all Authorities involved would be desirable in order to analyze official data and provide a careful evaluation of population exposure and real risks related to the level of every parameter considered.

  5. [Fundamental study on effect of high-mineral drinking water for osteogenesis in calciprivia ovariectomized rats].

    PubMed

    Ogata, Fumihiko; Nagai, Noriaki; Ito, Yoshimasa; Kawasaki, Naohito

    2014-01-01

    Since osteoporosis is a major public health problem in Japan, it is important to clarify the effect of high-mineral drinking water consumption on osteogenesis. Therefore, in this study, we investigated the relationship between high-mineral drinking water consumption and osteogenesis in ovariectomized rats that received a low-calcium diet and purified water (PW group) or a low-calcium diet and high-mineral drinking water (CR group). High-mineral drinking water affected the rats' body weight. After 3 months, the bone density of the CR group was higher than that of the PW group (p<0.05). Furthermore, the CR group showed a decrease in the amount of calcium in the bones after 3 months. These results suggest that high-mineral drinking water contributes to the maintenance of bone density and not to the amount of calcium in bone. On the other hand, serum alkaline phosphatase levels in the PW group at 3 months were higher than those in the CR group, which indicates that the blood concentration of calcium in the CR group was maintained. Moreover, the amount of magnesium in the bones and the blood concentration of magnesium in the CR group after 3 months were higher than the corresponding values in the PW group. These results suggest that consumption of high-mineral drinking water could be beneficial for osteogenesis (i.e., for maintaining bone quantity).

  6. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-01-01

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources. PMID:24919129

  7. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    PubMed

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  8. Estimated Maternal Pesticide Exposure from Drinking Water and Heart Defects in Offspring

    PubMed Central

    Kim, Jihye; Swartz, Michael D.; Langlois, Peter H.; Romitti, Paul A.; Weyer, Peter; Mitchell, Laura E.; Ramakrishnan, Anushuya; Malik, Sadia; Lupo, Philip J.; Feldkamp, Marcia L.; Meyer, Robert E.; Winston, Jennifer J.; Reefhuis, Jennita; Blossom, Sarah J.; Bell, Erin; Agopian, A. J.

    2017-01-01

    Our objective was to examine the relationship between estimated maternal exposure to pesticides in public drinking water and the risk of congenital heart defects (CHD). We used mixed-effects logistic regression to analyze data from 18,291 nonsyndromic cases with heart defects from the Texas Birth Defects Registry and 4414 randomly-selected controls delivered in Texas from 1999 through 2005. Water district-level pesticide exposure was estimated by linking each maternal residential address to the corresponding public water supply district’s measured atrazine levels. We repeated analyses among independent subjects from the National Birth Defects Prevention Study (NBDPS) (1620 nonsyndromic cases with heart defects and 1335 controls delivered from 1999 through 2005). No positive associations were observed between high versus low atrazine level and eight CHD subtypes or all included heart defects combined. These findings should be interpreted with caution, in light of potential misclassification and relatively large proportions of subjects with missing atrazine data. Thus, more consistent and complete monitoring and reporting of drinking water contaminants will aid in better understanding the relationships between pesticide water contaminants and birth defects. PMID:28786932

  9. Contingency plan to provide safe drinking water for the city of Milan, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talbot, J.J.; Brew, P.

    1994-12-31

    The city of Milan, in western Tennessee, supplies drinking water to approximately 4,000 customers. Environmental investigations conducted by the US Army have detected low concentrations of RDX, a compound used in the manufacture of explosives, in two of the three city water supply wells. The RDX is traceable to the Milan Army Ammunition Plant nearby. The levels of RDX are being monitored and current trends indicate that levels in the wells will exceed the EPA Health Advisory Limits in the near term. In order to ensure an uninterrupted supply of acceptable quality drinking water for the city residents, the Armymore » prepared and is implementing a Contingency Plan. The plan evaluated remedial alternatives to be implemented once a trigger level of RDX is reached, including institutional controls, installation of an RDX treatment system for the water supply system, and construction of a new well field. Institutional controls include: shutting down existing wells; continued monitoring; and promulgation of ground water ordinances. Treatment technologies evaluated include: ultraviolet light and hydrogen peroxide; or removal using granular activated carbon.« less

  10. Estimated Maternal Pesticide Exposure from Drinking Water and Heart Defects in Offspring.

    PubMed

    Kim, Jihye; Swartz, Michael D; Langlois, Peter H; Romitti, Paul A; Weyer, Peter; Mitchell, Laura E; Luben, Thomas J; Ramakrishnan, Anushuya; Malik, Sadia; Lupo, Philip J; Feldkamp, Marcia L; Meyer, Robert E; Winston, Jennifer J; Reefhuis, Jennita; Blossom, Sarah J; Bell, Erin; Agopian, A J

    2017-08-08

    Our objective was to examine the relationship between estimated maternal exposure to pesticides in public drinking water and the risk of congenital heart defects (CHD). We used mixed-effects logistic regression to analyze data from 18,291 nonsyndromic cases with heart defects from the Texas Birth Defects Registry and 4414 randomly-selected controls delivered in Texas from 1999 through 2005. Water district-level pesticide exposure was estimated by linking each maternal residential address to the corresponding public water supply district's measured atrazine levels. We repeated analyses among independent subjects from the National Birth Defects Prevention Study (NBDPS) (1620 nonsyndromic cases with heart defects and 1335 controls delivered from 1999 through 2005). No positive associations were observed between high versus low atrazine level and eight CHD subtypes or all included heart defects combined. These findings should be interpreted with caution, in light of potential misclassification and relatively large proportions of subjects with missing atrazine data. Thus, more consistent and complete monitoring and reporting of drinking water contaminants will aid in better understanding the relationships between pesticide water contaminants and birth defects.

  11. Molecular Analysis of Bacterial Communities in Biofilms of a Drinking Water Clearwell

    PubMed Central

    Zhang, Minglu; Liu, Wenjun; Nie, Xuebiao; Li, Cuiping; Gu, Junnong; Zhang, Can

    2012-01-01

    Microbial community structures in biofilms of a clearwell in a drinking water supply system in Beijing, China were examined by clone library, terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing of the amplified 16S rRNA gene. Six biofilm samples (designated R1–R6) collected from six locations (upper and lower sites of the inlet, middle and outlet) of the clearwell revealed similar bacterial patterns by T-RFLP analysis. With respect to the dominant groups, the phylotypes detected by clone library and T-RFLP generally matched each other. A total of 9,543 reads were obtained from samples located at the lower inlet and the lower outlet sites by pyrosequencing. The bacterial diversity of the two samples was compared at phylum and genus levels. Alphaproteobacteria dominated the communities in both samples and the genus of Sphingomonas constituted 75.1%–99.6% of this phylum. A high level of Sphingomonas sp. was first observed in the drinking water biofilms with 0.6–1.0 mg L−1 of chlorine residual. Disinfectant-resistant microorganisms deserve special attention in drinking water management. This study provides novel insights into the microbial populations in drinking water systems and highlights the important role of Sphingomonas species in biofilm formation. PMID:23059725

  12. Removal naturally occurring radionuclides from drinking water using a filter specifically designed for Drinking Water Treatment Plants.

    PubMed

    Baeza, A; Salas, A; Guillén, J; Muñoz-Serrano, A; Ontalba-Salamanca, M Á; Jiménez-Ramos, M C

    2017-01-01

    The occurrence of naturally occurring radionuclides in drinking water can pose health hazards in some populations, especially taking into account that routine procedures in Drinking Water Treatment Plants (DWTPs) are normally unable to remove them efficiently from drinking water. In fact, these procedures are practically transparent to them, and in particular to radium. In this paper, the characterization and capabilities of a patented filter designed to remove radium from drinking water with high efficiency is described. This filter is based on a sandwich structure of silica and green sand, with a natural high content manganese oxide. Both sands are authorized by Spanish authorities to be used in Drinking Water Treatment Plants. The Mn distribution in the green sand was found to be homogenous, thus providing a great number of adsorption sites for radium. Kinetic studies showed that the 226 Ra adsorption on green sand was influenced by the content of major cations solved in the treated water, but the saturation level, about 96-99%, was not affected by it. The physico-chemical parameters of the treated water were unaltered by the filter. The efficiency of the filter for the removal of 226 Ra remained unchanged with large water volumes passed through it, proving its potential use in DWTP. This filter was also able to remove initially the uranium content due to the presence of Fe 2 O 3 particles in it, although it is saturated faster than radium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Chemical quality and regulatory compliance of drinking water in Iceland.

    PubMed

    Gunnarsdottir, Maria J; Gardarsson, Sigurdur M; Jonsson, Gunnar St; Bartram, Jamie

    2016-11-01

    Assuring sufficient quality of drinking water is of great importance for public wellbeing and prosperity. Nations have developed regulatory system with the aim of providing drinking water of sufficient quality and to minimize the risk of contamination of the water supply in the first place. In this study the chemical quality of Icelandic drinking water was evaluated by systematically analyzing results from audit monitoring where 53 parameters were assessed for 345 samples from 79 aquifers, serving 74 water supply systems. Compliance to the Icelandic Drinking Water Regulation (IDWR) was evaluated with regard to parametric values, minimum requirement of sampling, and limit of detection. Water quality compliance was divided according to health-related chemicals and indicators, and analyzed according to size. Samples from few individual locations were benchmarked against natural background levels (NBLs) in order to identify potential pollution sources. The results show that drinking compliance was 99.97% in health-related chemicals and 99.44% in indicator parameters indicating that Icelandic groundwater abstracted for drinking water supply is generally of high quality with no expected health risks. In 10 water supply systems, of the 74 tested, there was an indication of anthropogenic chemical pollution, either at the source or in the network, and in another 6 water supplies there was a need to improve the water intake to prevent surface water intrusion. Benchmarking against the NBLs proved to be useful in tracing potential pollution sources, providing a useful tool for identifying pollution at an early stage. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. [Uranium Concentration in Drinking Water from Small-scale Water Supplies in Schleswig-Holstein, Germany].

    PubMed

    Ostendorp, G

    2015-04-01

    In this study the drinking water of 212 small-scale water supplies, mainly situated in areas with intensive agriculture or fruit-growing, was analysed for uranium. The median uranium concentration amounted to 0.04 µg/lL, the 95(th) percentile was 2.5 µg/L. The maximum level was 14 µg/L. This sample exceeded the guideline value for uranium in drinking water. The uranium concentration in small-scale water supplies was found to be slightly higher than that in central water works in Schleswig-Holstein. Water containing more than 10 mg/L nitrate showed significantly higher uranium contents. The results indicate that the uranium burden in drinking water from small wells is mainly determined by geological factors. An additional anthropogenic effect of soil management cannot be excluded. Overall uranium concentrations were low and not causing health concerns. However, in specific cases higher concentrations may occur. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? A large observational study of GP practice data and fluoride levels in drinking water.

    PubMed

    Peckham, S; Lowery, D; Spencer, S

    2015-07-01

    While previous research has suggested that there is an association between fluoride ingestion and the incidence of hypothyroidism, few population level studies have been undertaken. In England, approximately 10% of the population live in areas with community fluoridation schemes and hypothyroidism prevalence can be assessed from general practice data. This observational study examines the association between levels of fluoride in water supplies with practice level hypothyroidism prevalence. We used a cross-sectional study design using secondary data to develop binary logistic regression models of predictive factors for hypothyroidism prevalence at practice level using 2012 data on fluoride levels in drinking water, 2012/2013 Quality and Outcomes Framework (QOF) diagnosed hypothyroidism prevalence data, 2013 General Practitioner registered patient numbers and 2012 practice level Index of Multiple Deprivation scores. We found that higher levels of fluoride in drinking water provide a useful contribution for predicting prevalence of hypothyroidism. We found that practices located in the West Midlands (a wholly fluoridated area) are nearly twice as likely to report high hypothyroidism prevalence in comparison to Greater Manchester (non-fluoridated area). In many areas of the world, hypothyroidism is a major health concern and in addition to other factors-such as iodine deficiency-fluoride exposure should be considered as a contributing factor. The findings of the study raise particular concerns about the validity of community fluoridation as a safe public health measure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Environmental Survey of Drinking Water Sources in Kampala, Uganda, during a Typhoid Fever Outbreak.

    PubMed

    Murphy, J L; Kahler, A M; Nansubuga, I; Nanyunja, E M; Kaplan, B; Jothikumar, N; Routh, J; Gómez, G A; Mintz, E D; Hill, V R

    2017-12-01

    In 2015, a typhoid fever outbreak began in downtown Kampala, Uganda, and spread into adjacent districts. In response, an environmental survey of drinking water source types was conducted in areas of the city with high case numbers. A total of 122 samples was collected from 12 source types and tested for Escherichia coli , free chlorine, and conductivity. An additional 37 grab samples from seven source types and 16 paired large volume (20 liter) samples from wells and springs were also collected and tested for the presence of Salmonella enterica serovar Typhi. Escherichia coli was detected in 60% of kaveras (drinking water sold in plastic bags) and 80% of refilled water bottles; free chlorine was not detected in either source type. Most jerry cans (68%) contained E. coli and had free chlorine residuals below the WHO-recommended level of 0.5 mg/liter during outbreaks. Elevated conductivity readings for kaveras, refilled water bottles, and jerry cans (compared to treated surface water supplied by the water utility) suggested that they likely contained untreated groundwater. All unprotected springs and wells and more than 60% of protected springs contained E. coli Water samples collected from the water utility were found to have acceptable free chlorine levels and no detectable E. coli While S Typhi was not detected in water samples, Salmonella spp. were detected in samples from two unprotected springs, one protected spring, and one refilled water bottle. These data provided clear evidence that unregulated vended water and groundwater represented a risk for typhoid transmission. IMPORTANCE Despite the high incidence of typhoid fever globally, relatively few outbreak investigations incorporate drinking water testing. During waterborne disease outbreaks, measurement of physical-chemical parameters, such as free chlorine residual and electrical conductivity, and of microbiological parameters, such as the presence of E. coli or the implicated etiologic agent, in drinking water samples can identify contaminated sources. This investigation indicated that unregulated vended water and groundwater sources were contaminated and were therefore a risk to consumers during the 2015 typhoid fever outbreak in Kampala. Identification of contaminated drinking water sources and sources that do not contain adequate disinfectant levels can lead to rapid targeted interventions. Copyright © 2017 American Society for Microbiology.

  17. Occurrence and Control of Genotoxins in Drinking Water: A Monitoring Proposal.

    PubMed

    Ceretti, Elisabetta; Moretti, Massimo; Zerbini, Ilaria; Villarini, Milena; Zani, Claudia; Monarca, Silvano; Feretti, Donatella

    2016-12-09

    Many studies have shown the presence of numerous organic genotoxins and carcinogens in drinking water. These toxic substances derive not only from pollution, but also from the disinfection treatments, particularly when water is obtained from surface sources and then chlorinated. Most of the chlorinated compounds in drinking water are nonvolatile and are difficult to characterize. Thus, it has been proposed to study such complex mixtures using short-term genotoxicity tests predictive of carcinogenic activity. Mutagenicity of water before and after disinfection has mainly been studied by the Salmonella/microsome (Ames test); in vitro genotoxicity tests have also been performed in yeasts and mammalian cells; in situ monitoring of genotoxins has also been performed using complete organisms such as aquatic animals or plants (in vivo). The combination of bioassay data together with results of chemical analyses would give us a more firm basis for the assessment of human health risks related to the consumption of drinking water. Tests with different genetic end-points complement each other with regard to sensitivity toward environmental genotoxins and are useful in detecting low genotoxicity levels which are expected in drinking water samples.

  18. Evaluation of genotoxic effects caused by extracts of chlorinated drinking water using a combination of three different bioassays.

    PubMed

    Zeng, Qiang; Zhang, Shao-Hui; Liao, Jing; Miao, Dong-Yue; Wang, Xin-Yi; Yang, Pan; Yun, Luo-Jia; Liu, Ai-Lin; Lu, Wen-Qing

    2015-10-15

    Potential genotoxic effects of chlorinated drinking water now are of a great concern. In this study, raw water, finished water, and tap water from a water plant in Wuhan, China were collected in two different sampling times of the year (January and July). Genotoxic effects of water extracts were evaluated using a combination of three different bioassays: SOS/umu test, HGPRT gene mutation assay, and micronucleus assay, which were separately used to detect DNA damage, gene mutation, and chromosome aberration. The results of three different bioassays showed that all water samples in January and July induced at least one types of genotoxic effects, of which the DNA-damage effects were all detectable. The levels of DNA-damage effects and gene-mutation effects of finished water and tap water in January were higher than those in July. Chlorination could increase the DNA-damage effects of drinking water in January and the gene-mutation effects of drinking water in both January and July, but did not increase the chromosome-aberration effects of drinking water in both January and July. Our results highlighted the importance of using a combination of different bioassays to evaluate the genotoxicity of water samples in different seasons. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Children's Lead Exposure: A Multimedia Modeling Analysis to Guide Public Health Decision-Making.

    PubMed

    Zartarian, Valerie; Xue, Jianping; Tornero-Velez, Rogelio; Brown, James

    2017-09-12

    Drinking water and other sources for lead are the subject of public health concerns around the Flint, Michigan, drinking water and East Chicago, Indiana, lead in soil crises. In 2015, the U.S. Environmental Protection Agency (EPA)'s National Drinking Water Advisory Council (NDWAC) recommended establishment of a "health-based, household action level" for lead in drinking water based on children's exposure. The primary objective was to develop a coupled exposure-dose modeling approach that can be used to determine what drinking water lead concentrations keep children's blood lead levels (BLLs) below specified values, considering exposures from water, soil, dust, food, and air. Related objectives were to evaluate the coupled model estimates using real-world blood lead data, to quantify relative contributions by the various media, and to identify key model inputs. A modeling approach using the EPA's Stochastic Human Exposure and Dose Simulation (SHEDS)-Multimedia and Integrated Exposure Uptake and Biokinetic (IEUBK) models was developed using available data. This analysis for the U.S. population of young children probabilistically simulated multimedia exposures and estimated relative contributions of media to BLLs across all population percentiles for several age groups. Modeled BLLs compared well with nationally representative BLLs (0-23% relative error). Analyses revealed relative importance of soil and dust ingestion exposure pathways and associated Pb intake rates; water ingestion was also a main pathway, especially for infants. This methodology advances scientific understanding of the relationship between lead concentrations in drinking water and BLLs in children. It can guide national health-based benchmarks for lead and related community public health decisions. https://doi.org/10.1289/EHP1605.

  20. The correlation of arsenic levels in drinking water with the biological samples of skin disorders.

    PubMed

    Kazi, Tasneem Gul; Arain, Muhammad Balal; Baig, Jameel Ahmed; Jamali, Muhammad Khan; Afridi, Hassan Imran; Jalbani, Nusrat; Sarfraz, Raja Adil; Shah, Abdul Qadir; Niaz, Abdul

    2009-01-15

    Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n=187). The referent samples of both genders were also collected from the areas having low level of As (<10 microg/L) in drinking water (n=121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 microg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 microg As/g for hair and <0.5-4.2 microg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2=0.852 and 0.718) as compared to non-diseased subjects (R2=0.573 and 0.351), respectively.

Top